ggml.c 696 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #if defined(_MSC_VER)
  31. // disable "possible loss of data" to avoid hundreds of casts
  32. // we should just be careful :)
  33. #pragma warning(disable: 4244 4267)
  34. // disable POSIX deprecation warnings
  35. // these functions are never going away, anyway
  36. #pragma warning(disable: 4996)
  37. #endif
  38. #if defined(_WIN32)
  39. #define WIN32_LEAN_AND_MEAN
  40. #ifndef NOMINMAX
  41. #define NOMINMAX
  42. #endif
  43. #include <windows.h>
  44. typedef volatile LONG atomic_int;
  45. typedef atomic_int atomic_bool;
  46. static void atomic_store(atomic_int * ptr, LONG val) {
  47. InterlockedExchange(ptr, val);
  48. }
  49. static LONG atomic_load(atomic_int * ptr) {
  50. return InterlockedCompareExchange(ptr, 0, 0);
  51. }
  52. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  53. return InterlockedExchangeAdd(ptr, inc);
  54. }
  55. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  56. return atomic_fetch_add(ptr, -(dec));
  57. }
  58. typedef HANDLE pthread_t;
  59. typedef DWORD thread_ret_t;
  60. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  61. (void) unused;
  62. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  63. if (handle == NULL)
  64. {
  65. return EAGAIN;
  66. }
  67. *out = handle;
  68. return 0;
  69. }
  70. static int pthread_join(pthread_t thread, void * unused) {
  71. (void) unused;
  72. int ret = (int) WaitForSingleObject(thread, INFINITE);
  73. CloseHandle(thread);
  74. return ret;
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. #ifdef GGML_USE_CPU_HBM
  89. #include <hbwmalloc.h>
  90. #endif
  91. #if defined(__APPLE__)
  92. #include <TargetConditionals.h>
  93. #endif
  94. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  95. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  96. #include <sys/wait.h>
  97. void ggml_print_backtrace(void) {
  98. /*
  99. #include <execinfo.h>
  100. #include <dlfcn.h>
  101. void * trace[100];
  102. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  103. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  104. */
  105. // backtrack_symbols does not show line numbers, use gdb instead
  106. char attach[32];
  107. snprintf(attach, sizeof(attach), "attach %d", getpid());
  108. int pid = fork();
  109. if (pid == 0) {
  110. execlp("gdb", "gdb", "--batch",
  111. "-ex", "set style enabled on",
  112. "-ex", attach,
  113. "-ex", "bt -frame-info source-and-location",
  114. "-ex", "detach",
  115. "-ex", "quit",
  116. (char *) NULL);
  117. } else {
  118. waitpid(pid, NULL, 0);
  119. }
  120. }
  121. #else
  122. void ggml_print_backtrace(void) {
  123. // platform not supported
  124. }
  125. #endif
  126. /*#define GGML_PERF*/
  127. #define GGML_DEBUG 0
  128. #define GGML_GELU_FP16
  129. #define GGML_GELU_QUICK_FP16
  130. #define GGML_SILU_FP16
  131. // #define GGML_CROSS_ENTROPY_EXP_FP16
  132. // #define GGML_FLASH_ATTN_EXP_FP16
  133. #define GGML_SOFT_MAX_UNROLL 4
  134. #define GGML_VEC_DOT_UNROLL 2
  135. #define GGML_VEC_MAD_UNROLL 32
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #ifdef GGML_USE_ACCELERATE
  159. // uncomment to use vDSP for soft max computation
  160. // note: not sure if it is actually faster
  161. //#define GGML_SOFT_MAX_ACCELERATE
  162. #endif
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  165. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  166. #else
  167. inline static void * ggml_aligned_malloc(size_t size) {
  168. if (size == 0) {
  169. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  170. return NULL;
  171. }
  172. void * aligned_memory = NULL;
  173. #ifdef GGML_USE_CPU_HBM
  174. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  175. #elif GGML_USE_METAL
  176. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  177. #else
  178. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  179. #endif
  180. if (result != 0) {
  181. // Handle allocation failure
  182. const char *error_desc = "unknown allocation error";
  183. switch (result) {
  184. case EINVAL:
  185. error_desc = "invalid alignment value";
  186. break;
  187. case ENOMEM:
  188. error_desc = "insufficient memory";
  189. break;
  190. }
  191. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  192. GGML_ASSERT(false);
  193. return NULL;
  194. }
  195. return aligned_memory;
  196. }
  197. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  198. #ifdef GGML_USE_CPU_HBM
  199. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  200. #else
  201. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  202. #endif
  203. #endif
  204. inline static void * ggml_malloc(size_t size) {
  205. if (size == 0) {
  206. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  207. return NULL;
  208. }
  209. void * result = malloc(size);
  210. if (result == NULL) {
  211. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  212. GGML_ASSERT(false);
  213. }
  214. return result;
  215. }
  216. // calloc
  217. inline static void * ggml_calloc(size_t num, size_t size) {
  218. if (num == 0 || size == 0) {
  219. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  220. return NULL;
  221. }
  222. void * result = calloc(num, size);
  223. if (result == NULL) {
  224. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  225. GGML_ASSERT(false);
  226. }
  227. return result;
  228. }
  229. #define GGML_MALLOC(size) ggml_malloc(size)
  230. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  231. #define GGML_FREE(ptr) free(ptr)
  232. #define UNUSED GGML_UNUSED
  233. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  234. #if defined(GGML_USE_ACCELERATE)
  235. #include <Accelerate/Accelerate.h>
  236. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  237. #include "ggml-opencl.h"
  238. #elif defined(GGML_USE_VULKAN)
  239. #include "ggml-vulkan.h"
  240. #endif
  241. #elif defined(GGML_USE_OPENBLAS)
  242. #if defined(GGML_BLAS_USE_MKL)
  243. #include <mkl.h>
  244. #else
  245. #include <cblas.h>
  246. #endif
  247. #elif defined(GGML_USE_CLBLAST)
  248. #include "ggml-opencl.h"
  249. #elif defined(GGML_USE_VULKAN)
  250. #include "ggml-vulkan.h"
  251. #endif
  252. // floating point type used to accumulate sums
  253. typedef double ggml_float;
  254. #undef MIN
  255. #undef MAX
  256. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  257. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  258. //
  259. // global data
  260. //
  261. // precomputed gelu table for f16 (128 KB)
  262. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  263. // precomputed quick gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  265. // precomputed silu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  267. // precomputed exp table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  269. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  270. float ggml_table_f32_f16[1 << 16];
  271. const char * ggml_status_to_string(enum ggml_status status) {
  272. switch (status) {
  273. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  274. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  275. case GGML_STATUS_SUCCESS: return "GGML status: success";
  276. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  277. }
  278. return "GGML status: unknown";
  279. }
  280. // note: do not use these inside ggml.c
  281. // these are meant to be used via the ggml.h API
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. return GGML_FP16_TO_FP32(x);
  284. }
  285. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  286. return GGML_FP32_TO_FP16(x);
  287. }
  288. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  289. for (int i = 0; i < n; i++) {
  290. y[i] = GGML_FP16_TO_FP32(x[i]);
  291. }
  292. }
  293. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  294. int i = 0;
  295. #if defined(__F16C__)
  296. for (; i + 7 < n; i += 8) {
  297. __m256 x_vec = _mm256_loadu_ps(x + i);
  298. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  299. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  300. }
  301. for(; i + 3 < n; i += 4) {
  302. __m128 x_vec = _mm_loadu_ps(x + i);
  303. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  304. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  305. }
  306. #endif
  307. for (; i < n; i++) {
  308. y[i] = GGML_FP32_TO_FP16(x[i]);
  309. }
  310. }
  311. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  312. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  313. }
  314. //
  315. // timing
  316. //
  317. #if defined(_MSC_VER) || defined(__MINGW32__)
  318. static int64_t timer_freq, timer_start;
  319. void ggml_time_init(void) {
  320. LARGE_INTEGER t;
  321. QueryPerformanceFrequency(&t);
  322. timer_freq = t.QuadPart;
  323. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  324. // and the uptime is high enough.
  325. // We subtract the program start time to reduce the likelihood of that happening.
  326. QueryPerformanceCounter(&t);
  327. timer_start = t.QuadPart;
  328. }
  329. int64_t ggml_time_ms(void) {
  330. LARGE_INTEGER t;
  331. QueryPerformanceCounter(&t);
  332. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  333. }
  334. int64_t ggml_time_us(void) {
  335. LARGE_INTEGER t;
  336. QueryPerformanceCounter(&t);
  337. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  338. }
  339. #else
  340. void ggml_time_init(void) {}
  341. int64_t ggml_time_ms(void) {
  342. struct timespec ts;
  343. clock_gettime(CLOCK_MONOTONIC, &ts);
  344. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  345. }
  346. int64_t ggml_time_us(void) {
  347. struct timespec ts;
  348. clock_gettime(CLOCK_MONOTONIC, &ts);
  349. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  350. }
  351. #endif
  352. int64_t ggml_cycles(void) {
  353. return clock();
  354. }
  355. int64_t ggml_cycles_per_ms(void) {
  356. return CLOCKS_PER_SEC/1000;
  357. }
  358. #ifdef GGML_PERF
  359. #define ggml_perf_time_ms() ggml_time_ms()
  360. #define ggml_perf_time_us() ggml_time_us()
  361. #define ggml_perf_cycles() ggml_cycles()
  362. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  363. #else
  364. #define ggml_perf_time_ms() 0
  365. #define ggml_perf_time_us() 0
  366. #define ggml_perf_cycles() 0
  367. #define ggml_perf_cycles_per_ms() 0
  368. #endif
  369. //
  370. // cross-platform UTF-8 file paths
  371. //
  372. #ifdef _WIN32
  373. static wchar_t * ggml_mbstowcs(const char * mbs) {
  374. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  375. if (!wlen) {
  376. errno = EINVAL;
  377. return NULL;
  378. }
  379. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  380. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  381. if (!wlen) {
  382. GGML_FREE(wbuf);
  383. errno = EINVAL;
  384. return NULL;
  385. }
  386. return wbuf;
  387. }
  388. #endif
  389. FILE * ggml_fopen(const char * fname, const char * mode) {
  390. #ifdef _WIN32
  391. FILE * file = NULL;
  392. // convert fname (UTF-8)
  393. wchar_t * wfname = ggml_mbstowcs(fname);
  394. if (wfname) {
  395. // convert mode (ANSI)
  396. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  397. wchar_t * wmode_p = wmode;
  398. do {
  399. *wmode_p++ = (wchar_t)*mode;
  400. } while (*mode++);
  401. // open file
  402. file = _wfopen(wfname, wmode);
  403. GGML_FREE(wfname);
  404. GGML_FREE(wmode);
  405. }
  406. return file;
  407. #else
  408. return fopen(fname, mode);
  409. #endif
  410. }
  411. //
  412. // cache line
  413. //
  414. #if defined(__cpp_lib_hardware_interference_size)
  415. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  416. #else
  417. #if defined(__POWER9_VECTOR__)
  418. #define CACHE_LINE_SIZE 128
  419. #else
  420. #define CACHE_LINE_SIZE 64
  421. #endif
  422. #endif
  423. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  424. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  425. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  426. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  427. [GGML_TYPE_I8] = {
  428. .type_name = "i8",
  429. .blck_size = 1,
  430. .type_size = sizeof(int8_t),
  431. .is_quantized = false,
  432. },
  433. [GGML_TYPE_I16] = {
  434. .type_name = "i16",
  435. .blck_size = 1,
  436. .type_size = sizeof(int16_t),
  437. .is_quantized = false,
  438. },
  439. [GGML_TYPE_I32] = {
  440. .type_name = "i32",
  441. .blck_size = 1,
  442. .type_size = sizeof(int32_t),
  443. .is_quantized = false,
  444. },
  445. [GGML_TYPE_I64] = {
  446. .type_name = "i64",
  447. .blck_size = 1,
  448. .type_size = sizeof(int64_t),
  449. .is_quantized = false,
  450. },
  451. [GGML_TYPE_F64] = {
  452. .type_name = "f64",
  453. .blck_size = 1,
  454. .type_size = sizeof(double),
  455. .is_quantized = false,
  456. .nrows = 1,
  457. },
  458. [GGML_TYPE_F32] = {
  459. .type_name = "f32",
  460. .blck_size = 1,
  461. .type_size = sizeof(float),
  462. .is_quantized = false,
  463. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  464. .vec_dot_type = GGML_TYPE_F32,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_F16] = {
  468. .type_name = "f16",
  469. .blck_size = 1,
  470. .type_size = sizeof(ggml_fp16_t),
  471. .is_quantized = false,
  472. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  473. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  474. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  475. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  476. .vec_dot_type = GGML_TYPE_F16,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q4_0] = {
  480. .type_name = "q4_0",
  481. .blck_size = QK4_0,
  482. .type_size = sizeof(block_q4_0),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  485. .from_float = quantize_row_q4_0,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  487. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  488. .vec_dot_type = GGML_TYPE_Q8_0,
  489. #if defined (__ARM_FEATURE_MATMUL_INT8)
  490. .nrows = 2,
  491. #else
  492. .nrows = 1,
  493. #endif
  494. },
  495. [GGML_TYPE_Q4_1] = {
  496. .type_name = "q4_1",
  497. .blck_size = QK4_1,
  498. .type_size = sizeof(block_q4_1),
  499. .is_quantized = true,
  500. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  501. .from_float = quantize_row_q4_1,
  502. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  503. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  504. .vec_dot_type = GGML_TYPE_Q8_1,
  505. #if defined (__ARM_FEATURE_MATMUL_INT8)
  506. .nrows = 2,
  507. #else
  508. .nrows = 1,
  509. #endif
  510. },
  511. [4] = { // GGML_TYPE_Q4_2
  512. .type_name = "DEPRECATED",
  513. .blck_size = 0,
  514. .type_size = 0,
  515. .is_quantized = false,
  516. .to_float = NULL,
  517. .from_float = NULL,
  518. .from_float_reference = NULL,
  519. .vec_dot = NULL,
  520. .vec_dot_type = GGML_TYPE_COUNT,
  521. .nrows = 1,
  522. },
  523. [5] = { // GGML_TYPE_Q4_3
  524. .type_name = "DEPRECATED",
  525. .blck_size = 0,
  526. .type_size = 0,
  527. .is_quantized = false,
  528. .to_float = NULL,
  529. .from_float = NULL,
  530. .from_float_reference = NULL,
  531. .vec_dot = NULL,
  532. .vec_dot_type = GGML_TYPE_COUNT,
  533. .nrows = 1,
  534. },
  535. [GGML_TYPE_Q5_0] = {
  536. .type_name = "q5_0",
  537. .blck_size = QK5_0,
  538. .type_size = sizeof(block_q5_0),
  539. .is_quantized = true,
  540. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  541. .from_float = quantize_row_q5_0,
  542. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  543. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  544. .vec_dot_type = GGML_TYPE_Q8_0,
  545. .nrows = 1,
  546. },
  547. [GGML_TYPE_Q5_1] = {
  548. .type_name = "q5_1",
  549. .blck_size = QK5_1,
  550. .type_size = sizeof(block_q5_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  553. .from_float = quantize_row_q5_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  555. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. .nrows = 1,
  558. },
  559. [GGML_TYPE_Q8_0] = {
  560. .type_name = "q8_0",
  561. .blck_size = QK8_0,
  562. .type_size = sizeof(block_q8_0),
  563. .is_quantized = true,
  564. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  565. .from_float = quantize_row_q8_0,
  566. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  567. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  568. .vec_dot_type = GGML_TYPE_Q8_0,
  569. #if defined (__ARM_FEATURE_MATMUL_INT8)
  570. .nrows = 2,
  571. #else
  572. .nrows = 1,
  573. #endif
  574. },
  575. [GGML_TYPE_Q8_1] = {
  576. .type_name = "q8_1",
  577. .blck_size = QK8_1,
  578. .type_size = sizeof(block_q8_1),
  579. .is_quantized = true,
  580. .from_float = quantize_row_q8_1,
  581. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  582. .vec_dot_type = GGML_TYPE_Q8_1,
  583. .nrows = 1,
  584. },
  585. [GGML_TYPE_Q2_K] = {
  586. .type_name = "q2_K",
  587. .blck_size = QK_K,
  588. .type_size = sizeof(block_q2_K),
  589. .is_quantized = true,
  590. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  591. .from_float = quantize_row_q2_K,
  592. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  593. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  594. .vec_dot_type = GGML_TYPE_Q8_K,
  595. .nrows = 1,
  596. },
  597. [GGML_TYPE_Q3_K] = {
  598. .type_name = "q3_K",
  599. .blck_size = QK_K,
  600. .type_size = sizeof(block_q3_K),
  601. .is_quantized = true,
  602. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  603. .from_float = quantize_row_q3_K,
  604. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  605. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  606. .vec_dot_type = GGML_TYPE_Q8_K,
  607. .nrows = 1,
  608. },
  609. [GGML_TYPE_Q4_K] = {
  610. .type_name = "q4_K",
  611. .blck_size = QK_K,
  612. .type_size = sizeof(block_q4_K),
  613. .is_quantized = true,
  614. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  615. .from_float = quantize_row_q4_K,
  616. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  617. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  618. .vec_dot_type = GGML_TYPE_Q8_K,
  619. .nrows = 1,
  620. },
  621. [GGML_TYPE_Q5_K] = {
  622. .type_name = "q5_K",
  623. .blck_size = QK_K,
  624. .type_size = sizeof(block_q5_K),
  625. .is_quantized = true,
  626. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  627. .from_float = quantize_row_q5_K,
  628. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  629. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  630. .vec_dot_type = GGML_TYPE_Q8_K,
  631. .nrows = 1,
  632. },
  633. [GGML_TYPE_Q6_K] = {
  634. .type_name = "q6_K",
  635. .blck_size = QK_K,
  636. .type_size = sizeof(block_q6_K),
  637. .is_quantized = true,
  638. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  639. .from_float = quantize_row_q6_K,
  640. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  641. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  642. .vec_dot_type = GGML_TYPE_Q8_K,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_IQ2_XXS] = {
  646. .type_name = "iq2_xxs",
  647. .blck_size = QK_K,
  648. .type_size = sizeof(block_iq2_xxs),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  651. .from_float = NULL,
  652. .from_float_reference = NULL,
  653. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  654. .vec_dot_type = GGML_TYPE_Q8_K,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_IQ2_XS] = {
  658. .type_name = "iq2_xs",
  659. .blck_size = QK_K,
  660. .type_size = sizeof(block_iq2_xs),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  663. .from_float = NULL,
  664. .from_float_reference = NULL,
  665. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  666. .vec_dot_type = GGML_TYPE_Q8_K,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_IQ3_XXS] = {
  670. .type_name = "iq3_xxs",
  671. .blck_size = QK_K,
  672. .type_size = sizeof(block_iq3_xxs),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  675. .from_float = quantize_row_iq3_xxs,
  676. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  677. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  678. .vec_dot_type = GGML_TYPE_Q8_K,
  679. .nrows = 1,
  680. },
  681. [GGML_TYPE_IQ3_S] = {
  682. .type_name = "iq3_s",
  683. .blck_size = QK_K,
  684. .type_size = sizeof(block_iq3_s),
  685. .is_quantized = true,
  686. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  687. .from_float = quantize_row_iq3_s,
  688. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  689. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  690. .vec_dot_type = GGML_TYPE_Q8_K,
  691. .nrows = 1,
  692. },
  693. [GGML_TYPE_IQ2_S] = {
  694. .type_name = "iq2_s",
  695. .blck_size = QK_K,
  696. .type_size = sizeof(block_iq2_s),
  697. .is_quantized = true,
  698. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  699. .from_float = quantize_row_iq2_s,
  700. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  701. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. .nrows = 1,
  704. },
  705. [GGML_TYPE_IQ1_S] = {
  706. .type_name = "iq1_s",
  707. .blck_size = QK_K,
  708. .type_size = sizeof(block_iq1_s),
  709. .is_quantized = true,
  710. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  711. .from_float = NULL,
  712. .from_float_reference = NULL,
  713. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  714. .vec_dot_type = GGML_TYPE_Q8_K,
  715. .nrows = 1,
  716. },
  717. [GGML_TYPE_IQ1_M] = {
  718. .type_name = "iq1_m",
  719. .blck_size = QK_K,
  720. .type_size = sizeof(block_iq1_m),
  721. .is_quantized = true,
  722. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  723. .from_float = NULL,
  724. .from_float_reference = NULL,
  725. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  726. .vec_dot_type = GGML_TYPE_Q8_K,
  727. .nrows = 1,
  728. },
  729. [GGML_TYPE_IQ4_NL] = {
  730. .type_name = "iq4_nl",
  731. .blck_size = QK4_NL,
  732. .type_size = sizeof(block_iq4_nl),
  733. .is_quantized = true,
  734. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  735. .from_float = quantize_row_iq4_nl,
  736. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  737. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  738. .vec_dot_type = GGML_TYPE_Q8_0,
  739. .nrows = 1,
  740. },
  741. [GGML_TYPE_IQ4_XS] = {
  742. .type_name = "iq4_xs",
  743. #if QK_K == 64
  744. .blck_size = QK4_NL,
  745. #else
  746. .blck_size = QK_K,
  747. #endif
  748. .type_size = sizeof(block_iq4_xs),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  751. .from_float = quantize_row_iq4_xs,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  753. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  754. #if QK_K == 64
  755. .vec_dot_type = GGML_TYPE_Q8_0,
  756. #else
  757. .vec_dot_type = GGML_TYPE_Q8_K,
  758. #endif
  759. .nrows = 1,
  760. },
  761. [GGML_TYPE_Q8_K] = {
  762. .type_name = "q8_K",
  763. .blck_size = QK_K,
  764. .type_size = sizeof(block_q8_K),
  765. .is_quantized = true,
  766. .from_float = quantize_row_q8_K,
  767. }
  768. };
  769. // For internal test use
  770. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  771. GGML_ASSERT(type < GGML_TYPE_COUNT);
  772. return type_traits[type];
  773. }
  774. //
  775. // simd mappings
  776. //
  777. #if defined(__ARM_NEON)
  778. #if !defined(__aarch64__)
  779. // 64-bit compatibility
  780. inline static float vaddvq_f32(float32x4_t v) {
  781. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  782. }
  783. #endif
  784. #endif
  785. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  786. // we then implement the fundamental computation operations below using only these macros
  787. // adding support for new architectures requires to define the corresponding SIMD macros
  788. //
  789. // GGML_F32_STEP / GGML_F16_STEP
  790. // number of elements to process in a single step
  791. //
  792. // GGML_F32_EPR / GGML_F16_EPR
  793. // number of elements to fit in a single register
  794. //
  795. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  796. #define GGML_SIMD
  797. // F32 NEON
  798. #define GGML_F32_STEP 16
  799. #define GGML_F32_EPR 4
  800. #define GGML_F32x4 float32x4_t
  801. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  802. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  803. #define GGML_F32x4_LOAD vld1q_f32
  804. #define GGML_F32x4_STORE vst1q_f32
  805. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  806. #define GGML_F32x4_ADD vaddq_f32
  807. #define GGML_F32x4_MUL vmulq_f32
  808. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  809. #define GGML_F32x4_REDUCE(res, x) \
  810. { \
  811. int offset = GGML_F32_ARR >> 1; \
  812. for (int i = 0; i < offset; ++i) { \
  813. x[i] = vaddq_f32(x[i], x[offset+i]); \
  814. } \
  815. offset >>= 1; \
  816. for (int i = 0; i < offset; ++i) { \
  817. x[i] = vaddq_f32(x[i], x[offset+i]); \
  818. } \
  819. offset >>= 1; \
  820. for (int i = 0; i < offset; ++i) { \
  821. x[i] = vaddq_f32(x[i], x[offset+i]); \
  822. } \
  823. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  824. }
  825. #define GGML_F32_VEC GGML_F32x4
  826. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  827. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  828. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  829. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  830. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  831. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  832. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  833. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  834. // F16 NEON
  835. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  836. #define GGML_F16_STEP 32
  837. #define GGML_F16_EPR 8
  838. #define GGML_F16x8 float16x8_t
  839. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  840. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  841. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  842. #define GGML_F16x8_STORE vst1q_f16
  843. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  844. #define GGML_F16x8_ADD vaddq_f16
  845. #define GGML_F16x8_MUL vmulq_f16
  846. #define GGML_F16x8_REDUCE(res, x) \
  847. do { \
  848. int offset = GGML_F16_ARR >> 1; \
  849. for (int i = 0; i < offset; ++i) { \
  850. x[i] = vaddq_f16(x[i], x[offset+i]); \
  851. } \
  852. offset >>= 1; \
  853. for (int i = 0; i < offset; ++i) { \
  854. x[i] = vaddq_f16(x[i], x[offset+i]); \
  855. } \
  856. offset >>= 1; \
  857. for (int i = 0; i < offset; ++i) { \
  858. x[i] = vaddq_f16(x[i], x[offset+i]); \
  859. } \
  860. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  861. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  862. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  863. } while (0)
  864. #define GGML_F16_VEC GGML_F16x8
  865. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  866. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  867. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  869. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  870. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  871. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  872. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  873. #else
  874. // if FP16 vector arithmetic is not supported, we use FP32 instead
  875. // and take advantage of the vcvt_ functions to convert to/from FP16
  876. #define GGML_F16_STEP 16
  877. #define GGML_F16_EPR 4
  878. #define GGML_F32Cx4 float32x4_t
  879. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  880. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  881. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  882. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  883. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  884. #define GGML_F32Cx4_ADD vaddq_f32
  885. #define GGML_F32Cx4_MUL vmulq_f32
  886. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx4
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  896. #endif
  897. #elif defined(__AVX512F__)
  898. #define GGML_SIMD
  899. // F32 AVX512
  900. #define GGML_F32_STEP 64
  901. #define GGML_F32_EPR 16
  902. #define GGML_F32x16 __m512
  903. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  904. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  905. #define GGML_F32x16_LOAD _mm512_loadu_ps
  906. #define GGML_F32x16_STORE _mm512_storeu_ps
  907. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  908. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  909. #define GGML_F32x16_ADD _mm512_add_ps
  910. #define GGML_F32x16_MUL _mm512_mul_ps
  911. #define GGML_F32x16_REDUCE(res, x) \
  912. do { \
  913. int offset = GGML_F32_ARR >> 1; \
  914. for (int i = 0; i < offset; ++i) { \
  915. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  916. } \
  917. offset >>= 1; \
  918. for (int i = 0; i < offset; ++i) { \
  919. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  920. } \
  921. offset >>= 1; \
  922. for (int i = 0; i < offset; ++i) { \
  923. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  924. } \
  925. res = _mm512_reduce_add_ps(x[0]); \
  926. } while (0)
  927. // TODO: is this optimal ?
  928. #define GGML_F32_VEC GGML_F32x16
  929. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  937. // F16 AVX512
  938. // F16 AVX
  939. #define GGML_F16_STEP 64
  940. #define GGML_F16_EPR 16
  941. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  942. #define GGML_F32Cx16 __m512
  943. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  944. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  945. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  946. // so F16C guard isn't required
  947. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  948. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  949. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  950. #define GGML_F32Cx16_ADD _mm512_add_ps
  951. #define GGML_F32Cx16_MUL _mm512_mul_ps
  952. #define GGML_F32Cx16_REDUCE(res, x) \
  953. do { \
  954. int offset = GGML_F32_ARR >> 1; \
  955. for (int i = 0; i < offset; ++i) { \
  956. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  957. } \
  958. offset >>= 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  965. } \
  966. res = _mm512_reduce_add_ps(x[0]); \
  967. } while (0)
  968. #define GGML_F16_VEC GGML_F32Cx16
  969. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  970. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  971. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  972. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  973. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  974. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  975. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  976. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  977. #elif defined(__AVX__)
  978. #define GGML_SIMD
  979. // F32 AVX
  980. #define GGML_F32_STEP 32
  981. #define GGML_F32_EPR 8
  982. #define GGML_F32x8 __m256
  983. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  984. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  985. #define GGML_F32x8_LOAD _mm256_loadu_ps
  986. #define GGML_F32x8_STORE _mm256_storeu_ps
  987. #if defined(__FMA__)
  988. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  989. #else
  990. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  991. #endif
  992. #define GGML_F32x8_ADD _mm256_add_ps
  993. #define GGML_F32x8_MUL _mm256_mul_ps
  994. #define GGML_F32x8_REDUCE(res, x) \
  995. do { \
  996. int offset = GGML_F32_ARR >> 1; \
  997. for (int i = 0; i < offset; ++i) { \
  998. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  999. } \
  1000. offset >>= 1; \
  1001. for (int i = 0; i < offset; ++i) { \
  1002. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1003. } \
  1004. offset >>= 1; \
  1005. for (int i = 0; i < offset; ++i) { \
  1006. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1007. } \
  1008. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1009. _mm256_extractf128_ps(x[0], 1)); \
  1010. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1011. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1012. } while (0)
  1013. // TODO: is this optimal ?
  1014. #define GGML_F32_VEC GGML_F32x8
  1015. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1016. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1017. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1018. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1019. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1020. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1021. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1022. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1023. // F16 AVX
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1027. #define GGML_F32Cx8 __m256
  1028. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1029. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1030. #if defined(__F16C__)
  1031. // the _mm256_cvt intrinsics require F16C
  1032. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1033. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1034. #else
  1035. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1036. float tmp[8];
  1037. for (int i = 0; i < 8; i++) {
  1038. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1039. }
  1040. return _mm256_loadu_ps(tmp);
  1041. }
  1042. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1043. float arr[8];
  1044. _mm256_storeu_ps(arr, y);
  1045. for (int i = 0; i < 8; i++)
  1046. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1047. }
  1048. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1049. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1050. #endif
  1051. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1052. #define GGML_F32Cx8_ADD _mm256_add_ps
  1053. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1054. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1055. #define GGML_F16_VEC GGML_F32Cx8
  1056. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1057. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1058. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1059. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1060. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1061. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1062. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1063. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1064. #elif defined(__POWER9_VECTOR__)
  1065. #define GGML_SIMD
  1066. // F32 POWER9
  1067. #define GGML_F32_STEP 32
  1068. #define GGML_F32_EPR 4
  1069. #define GGML_F32x4 vector float
  1070. #define GGML_F32x4_ZERO 0.0f
  1071. #define GGML_F32x4_SET1 vec_splats
  1072. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1073. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1074. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1075. #define GGML_F32x4_ADD vec_add
  1076. #define GGML_F32x4_MUL vec_mul
  1077. #define GGML_F32x4_REDUCE(res, x) \
  1078. { \
  1079. int offset = GGML_F32_ARR >> 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = vec_add(x[i], x[offset+i]); \
  1082. } \
  1083. offset >>= 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = vec_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = vec_add(x[i], x[offset+i]); \
  1090. } \
  1091. res = vec_extract(x[0], 0) + \
  1092. vec_extract(x[0], 1) + \
  1093. vec_extract(x[0], 2) + \
  1094. vec_extract(x[0], 3); \
  1095. }
  1096. #define GGML_F32_VEC GGML_F32x4
  1097. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1098. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1099. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1100. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1101. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1102. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1103. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1104. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1105. // F16 POWER9
  1106. #define GGML_F16_STEP GGML_F32_STEP
  1107. #define GGML_F16_EPR GGML_F32_EPR
  1108. #define GGML_F16_VEC GGML_F32x4
  1109. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1110. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1111. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1112. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1113. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1114. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1115. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1116. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1117. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1118. #define GGML_F16_VEC_STORE(p, r, i) \
  1119. if (i & 0x1) \
  1120. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1121. r[i - GGML_ENDIAN_BYTE(0)]), \
  1122. 0, p - GGML_F16_EPR)
  1123. #elif defined(__wasm_simd128__)
  1124. #define GGML_SIMD
  1125. // F32 WASM
  1126. #define GGML_F32_STEP 16
  1127. #define GGML_F32_EPR 4
  1128. #define GGML_F32x4 v128_t
  1129. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F32x4_LOAD wasm_v128_load
  1132. #define GGML_F32x4_STORE wasm_v128_store
  1133. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1134. #define GGML_F32x4_ADD wasm_f32x4_add
  1135. #define GGML_F32x4_MUL wasm_f32x4_mul
  1136. #define GGML_F32x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F32_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F32_VEC GGML_F32x4
  1156. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1157. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1158. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1159. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1160. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1161. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1162. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1163. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1164. // F16 WASM
  1165. #define GGML_F16_STEP 16
  1166. #define GGML_F16_EPR 4
  1167. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1168. float tmp[4];
  1169. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1170. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1171. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1172. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1173. return wasm_v128_load(tmp);
  1174. }
  1175. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1176. float tmp[4];
  1177. wasm_v128_store(tmp, x);
  1178. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1179. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1180. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1181. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1182. }
  1183. #define GGML_F16x4 v128_t
  1184. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1185. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1186. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1187. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1188. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1189. #define GGML_F16x4_ADD wasm_f32x4_add
  1190. #define GGML_F16x4_MUL wasm_f32x4_mul
  1191. #define GGML_F16x4_REDUCE(res, x) \
  1192. { \
  1193. int offset = GGML_F16_ARR >> 1; \
  1194. for (int i = 0; i < offset; ++i) { \
  1195. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1196. } \
  1197. offset >>= 1; \
  1198. for (int i = 0; i < offset; ++i) { \
  1199. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1200. } \
  1201. offset >>= 1; \
  1202. for (int i = 0; i < offset; ++i) { \
  1203. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1204. } \
  1205. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1206. wasm_f32x4_extract_lane(x[0], 1) + \
  1207. wasm_f32x4_extract_lane(x[0], 2) + \
  1208. wasm_f32x4_extract_lane(x[0], 3); \
  1209. }
  1210. #define GGML_F16_VEC GGML_F16x4
  1211. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1219. #elif defined(__SSE3__)
  1220. #define GGML_SIMD
  1221. // F32 SSE
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 __m128
  1225. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1226. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1227. #define GGML_F32x4_LOAD _mm_loadu_ps
  1228. #define GGML_F32x4_STORE _mm_storeu_ps
  1229. #if defined(__FMA__)
  1230. // TODO: Does this work?
  1231. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1232. #else
  1233. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1234. #endif
  1235. #define GGML_F32x4_ADD _mm_add_ps
  1236. #define GGML_F32x4_MUL _mm_mul_ps
  1237. #define GGML_F32x4_REDUCE(res, x) \
  1238. { \
  1239. int offset = GGML_F32_ARR >> 1; \
  1240. for (int i = 0; i < offset; ++i) { \
  1241. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1242. } \
  1243. offset >>= 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1250. } \
  1251. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1252. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1253. }
  1254. // TODO: is this optimal ?
  1255. #define GGML_F32_VEC GGML_F32x4
  1256. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1257. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1258. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1259. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1260. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1261. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1262. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1263. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1264. // F16 SSE
  1265. #define GGML_F16_STEP 32
  1266. #define GGML_F16_EPR 4
  1267. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1268. float tmp[4];
  1269. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1270. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1271. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1272. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1273. return _mm_loadu_ps(tmp);
  1274. }
  1275. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1276. float arr[4];
  1277. _mm_storeu_ps(arr, y);
  1278. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1279. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1280. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1281. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1282. }
  1283. #define GGML_F32Cx4 __m128
  1284. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1285. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1286. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1287. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1288. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1289. #define GGML_F32Cx4_ADD _mm_add_ps
  1290. #define GGML_F32Cx4_MUL _mm_mul_ps
  1291. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1292. #define GGML_F16_VEC GGML_F32Cx4
  1293. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1294. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1295. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1296. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1297. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1298. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1299. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1300. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1301. #endif
  1302. // GGML_F32_ARR / GGML_F16_ARR
  1303. // number of registers to use per step
  1304. #ifdef GGML_SIMD
  1305. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1306. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1307. #endif
  1308. //
  1309. // fundamental operations
  1310. //
  1311. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1312. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1313. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1314. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1315. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1316. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1317. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1318. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1319. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1320. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1321. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1322. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1323. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1324. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1325. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1326. assert(nrc == 1);
  1327. UNUSED(nrc);
  1328. UNUSED(bx);
  1329. UNUSED(by);
  1330. UNUSED(bs);
  1331. #ifdef GGML_SIMD
  1332. float sumf = 0.0f;
  1333. const int np = (n & ~(GGML_F32_STEP - 1));
  1334. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1335. GGML_F32_VEC ax[GGML_F32_ARR];
  1336. GGML_F32_VEC ay[GGML_F32_ARR];
  1337. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1338. for (int j = 0; j < GGML_F32_ARR; j++) {
  1339. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1340. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1341. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1342. }
  1343. }
  1344. // reduce sum0..sum3 to sum0
  1345. GGML_F32_VEC_REDUCE(sumf, sum);
  1346. // leftovers
  1347. for (int i = np; i < n; ++i) {
  1348. sumf += x[i]*y[i];
  1349. }
  1350. #else
  1351. // scalar
  1352. ggml_float sumf = 0.0;
  1353. for (int i = 0; i < n; ++i) {
  1354. sumf += (ggml_float)(x[i]*y[i]);
  1355. }
  1356. #endif
  1357. *s = sumf;
  1358. }
  1359. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1360. assert(nrc == 1);
  1361. UNUSED(nrc);
  1362. UNUSED(bx);
  1363. UNUSED(by);
  1364. UNUSED(bs);
  1365. ggml_float sumf = 0.0;
  1366. #if defined(GGML_SIMD)
  1367. const int np = (n & ~(GGML_F16_STEP - 1));
  1368. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1369. GGML_F16_VEC ax[GGML_F16_ARR];
  1370. GGML_F16_VEC ay[GGML_F16_ARR];
  1371. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1372. for (int j = 0; j < GGML_F16_ARR; j++) {
  1373. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1374. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1375. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1376. }
  1377. }
  1378. // reduce sum0..sum3 to sum0
  1379. GGML_F16_VEC_REDUCE(sumf, sum);
  1380. // leftovers
  1381. for (int i = np; i < n; ++i) {
  1382. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1383. }
  1384. #else
  1385. for (int i = 0; i < n; ++i) {
  1386. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1387. }
  1388. #endif
  1389. *s = sumf;
  1390. }
  1391. // compute GGML_VEC_DOT_UNROLL dot products at once
  1392. // xs - x row stride in bytes
  1393. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1394. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1395. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1396. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1397. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1398. }
  1399. #if defined(GGML_SIMD)
  1400. const int np = (n & ~(GGML_F16_STEP - 1));
  1401. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1402. GGML_F16_VEC ax[GGML_F16_ARR];
  1403. GGML_F16_VEC ay[GGML_F16_ARR];
  1404. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1405. for (int j = 0; j < GGML_F16_ARR; j++) {
  1406. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1407. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1408. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1409. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1410. }
  1411. }
  1412. }
  1413. // reduce sum0..sum3 to sum0
  1414. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1415. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1416. }
  1417. // leftovers
  1418. for (int i = np; i < n; ++i) {
  1419. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1420. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1421. }
  1422. }
  1423. #else
  1424. for (int i = 0; i < n; ++i) {
  1425. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1426. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1427. }
  1428. }
  1429. #endif
  1430. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1431. s[i] = sumf[i];
  1432. }
  1433. }
  1434. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1435. #if defined(GGML_SIMD)
  1436. const int np = (n & ~(GGML_F32_STEP - 1));
  1437. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1438. GGML_F32_VEC ax[GGML_F32_ARR];
  1439. GGML_F32_VEC ay[GGML_F32_ARR];
  1440. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1441. for (int j = 0; j < GGML_F32_ARR; j++) {
  1442. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1443. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1444. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1445. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1446. }
  1447. }
  1448. // leftovers
  1449. for (int i = np; i < n; ++i) {
  1450. y[i] += x[i]*v;
  1451. }
  1452. #else
  1453. // scalar
  1454. for (int i = 0; i < n; ++i) {
  1455. y[i] += x[i]*v;
  1456. }
  1457. #endif
  1458. }
  1459. // xs and vs are byte strides of x and v
  1460. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1461. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1462. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1463. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1464. x[i] = (const float *) ((const char *) xv + i*xs);
  1465. v[i] = (const float *) ((const char *) vv + i*vs);
  1466. }
  1467. #if defined(GGML_SIMD)
  1468. const int np = (n & ~(GGML_F32_STEP - 1));
  1469. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1470. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1471. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1472. }
  1473. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1474. GGML_F32_VEC ay[GGML_F32_ARR];
  1475. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1476. for (int j = 0; j < GGML_F32_ARR; j++) {
  1477. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1478. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1479. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1480. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1481. }
  1482. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1483. }
  1484. }
  1485. // leftovers
  1486. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1487. for (int i = np; i < n; ++i) {
  1488. y[i] += x[k][i]*v[k][0];
  1489. }
  1490. }
  1491. #else
  1492. // scalar
  1493. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1494. for (int i = 0; i < n; ++i) {
  1495. y[i] += x[k][i]*v[k][0];
  1496. }
  1497. }
  1498. #endif
  1499. }
  1500. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1501. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1502. #if defined(GGML_USE_ACCELERATE)
  1503. vDSP_vsmul(y, 1, &v, y, 1, n);
  1504. #elif defined(GGML_SIMD)
  1505. const int np = (n & ~(GGML_F32_STEP - 1));
  1506. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1507. GGML_F32_VEC ay[GGML_F32_ARR];
  1508. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1509. for (int j = 0; j < GGML_F32_ARR; j++) {
  1510. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1511. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1512. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1513. }
  1514. }
  1515. // leftovers
  1516. for (int i = np; i < n; ++i) {
  1517. y[i] *= v;
  1518. }
  1519. #else
  1520. // scalar
  1521. for (int i = 0; i < n; ++i) {
  1522. y[i] *= v;
  1523. }
  1524. #endif
  1525. }
  1526. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1527. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1528. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1529. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1530. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1531. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1532. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1533. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1534. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1535. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1536. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1537. // TODO: optimize performance
  1538. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1539. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1540. static const float GELU_COEF_A = 0.044715f;
  1541. static const float GELU_QUICK_COEF = -1.702f;
  1542. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1543. inline static float ggml_gelu_f32(float x) {
  1544. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1545. }
  1546. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1547. const uint16_t * i16 = (const uint16_t *) x;
  1548. for (int i = 0; i < n; ++i) {
  1549. y[i] = ggml_table_gelu_f16[i16[i]];
  1550. }
  1551. }
  1552. #ifdef GGML_GELU_FP16
  1553. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1554. uint16_t t;
  1555. for (int i = 0; i < n; ++i) {
  1556. if (x[i] <= -10.0f) {
  1557. y[i] = 0.0f;
  1558. } else if (x[i] >= 10.0f) {
  1559. y[i] = x[i];
  1560. } else {
  1561. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1562. memcpy(&t, &fp16, sizeof(uint16_t));
  1563. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1564. }
  1565. }
  1566. }
  1567. #else
  1568. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1569. for (int i = 0; i < n; ++i) {
  1570. y[i] = ggml_gelu_f32(x[i]);
  1571. }
  1572. }
  1573. #endif
  1574. inline static float ggml_gelu_quick_f32(float x) {
  1575. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1576. }
  1577. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1578. // const uint16_t * i16 = (const uint16_t *) x;
  1579. // for (int i = 0; i < n; ++i) {
  1580. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1581. // }
  1582. //}
  1583. #ifdef GGML_GELU_QUICK_FP16
  1584. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1585. uint16_t t;
  1586. for (int i = 0; i < n; ++i) {
  1587. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1588. memcpy(&t, &fp16, sizeof(uint16_t));
  1589. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1590. }
  1591. }
  1592. #else
  1593. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1594. for (int i = 0; i < n; ++i) {
  1595. y[i] = ggml_gelu_quick_f32(x[i]);
  1596. }
  1597. }
  1598. #endif
  1599. // Sigmoid Linear Unit (SiLU) function
  1600. inline static float ggml_silu_f32(float x) {
  1601. return x/(1.0f + expf(-x));
  1602. }
  1603. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1604. // const uint16_t * i16 = (const uint16_t *) x;
  1605. // for (int i = 0; i < n; ++i) {
  1606. // y[i] = ggml_table_silu_f16[i16[i]];
  1607. // }
  1608. //}
  1609. #ifdef GGML_SILU_FP16
  1610. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1611. uint16_t t;
  1612. for (int i = 0; i < n; ++i) {
  1613. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1614. memcpy(&t, &fp16, sizeof(uint16_t));
  1615. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1616. }
  1617. }
  1618. #else
  1619. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1620. for (int i = 0; i < n; ++i) {
  1621. y[i] = ggml_silu_f32(x[i]);
  1622. }
  1623. }
  1624. #endif
  1625. inline static float ggml_silu_backward_f32(float x, float dy) {
  1626. const float s = 1.0f/(1.0f + expf(-x));
  1627. return dy*s*(1.0f + x*(1.0f - s));
  1628. }
  1629. #ifdef GGML_SILU_FP16
  1630. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1631. for (int i = 0; i < n; ++i) {
  1632. // we did not use x[i] to compute forward silu but its f16 equivalent
  1633. // take derivative at f16 of x[i]:
  1634. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1635. float usedx = GGML_FP16_TO_FP32(fp16);
  1636. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1637. }
  1638. }
  1639. #else
  1640. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1641. for (int i = 0; i < n; ++i) {
  1642. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1643. }
  1644. }
  1645. #endif
  1646. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1647. #ifndef GGML_USE_ACCELERATE
  1648. ggml_float sum = 0.0;
  1649. for (int i = 0; i < n; ++i) {
  1650. sum += (ggml_float)x[i];
  1651. }
  1652. *s = sum;
  1653. #else
  1654. vDSP_sve(x, 1, s, n);
  1655. #endif
  1656. }
  1657. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1658. ggml_float sum = 0.0;
  1659. for (int i = 0; i < n; ++i) {
  1660. sum += (ggml_float)x[i];
  1661. }
  1662. *s = sum;
  1663. }
  1664. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1665. float sum = 0.0f;
  1666. for (int i = 0; i < n; ++i) {
  1667. sum += GGML_FP16_TO_FP32(x[i]);
  1668. }
  1669. *s = sum;
  1670. }
  1671. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1672. #ifndef GGML_USE_ACCELERATE
  1673. float max = -INFINITY;
  1674. for (int i = 0; i < n; ++i) {
  1675. max = MAX(max, x[i]);
  1676. }
  1677. *s = max;
  1678. #else
  1679. vDSP_maxv(x, 1, s, n);
  1680. #endif
  1681. }
  1682. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1683. ggml_vec_norm_f32(n, s, x);
  1684. *s = 1.f/(*s);
  1685. }
  1686. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1687. float max = -INFINITY;
  1688. int idx = 0;
  1689. for (int i = 0; i < n; ++i) {
  1690. max = MAX(max, x[i]);
  1691. if (max == x[i]) { idx = i; }
  1692. }
  1693. *s = idx;
  1694. }
  1695. //
  1696. // data types
  1697. //
  1698. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1699. "NONE",
  1700. "DUP",
  1701. "ADD",
  1702. "ADD1",
  1703. "ACC",
  1704. "SUB",
  1705. "MUL",
  1706. "DIV",
  1707. "SQR",
  1708. "SQRT",
  1709. "LOG",
  1710. "SUM",
  1711. "SUM_ROWS",
  1712. "MEAN",
  1713. "ARGMAX",
  1714. "REPEAT",
  1715. "REPEAT_BACK",
  1716. "CONCAT",
  1717. "SILU_BACK",
  1718. "NORM",
  1719. "RMS_NORM",
  1720. "RMS_NORM_BACK",
  1721. "GROUP_NORM",
  1722. "MUL_MAT",
  1723. "MUL_MAT_ID",
  1724. "OUT_PROD",
  1725. "SCALE",
  1726. "SET",
  1727. "CPY",
  1728. "CONT",
  1729. "RESHAPE",
  1730. "VIEW",
  1731. "PERMUTE",
  1732. "TRANSPOSE",
  1733. "GET_ROWS",
  1734. "GET_ROWS_BACK",
  1735. "DIAG",
  1736. "DIAG_MASK_INF",
  1737. "DIAG_MASK_ZERO",
  1738. "SOFT_MAX",
  1739. "SOFT_MAX_BACK",
  1740. "ROPE",
  1741. "ROPE_BACK",
  1742. "ALIBI",
  1743. "CLAMP",
  1744. "CONV_TRANSPOSE_1D",
  1745. "IM2COL",
  1746. "CONV_TRANSPOSE_2D",
  1747. "POOL_1D",
  1748. "POOL_2D",
  1749. "UPSCALE",
  1750. "PAD",
  1751. "ARANGE",
  1752. "TIMESTEP_EMBEDDING",
  1753. "ARGSORT",
  1754. "LEAKY_RELU",
  1755. "FLASH_ATTN",
  1756. "FLASH_FF",
  1757. "FLASH_ATTN_BACK",
  1758. "SSM_CONV",
  1759. "SSM_SCAN",
  1760. "WIN_PART",
  1761. "WIN_UNPART",
  1762. "GET_REL_POS",
  1763. "ADD_REL_POS",
  1764. "UNARY",
  1765. "MAP_UNARY",
  1766. "MAP_BINARY",
  1767. "MAP_CUSTOM1_F32",
  1768. "MAP_CUSTOM2_F32",
  1769. "MAP_CUSTOM3_F32",
  1770. "MAP_CUSTOM1",
  1771. "MAP_CUSTOM2",
  1772. "MAP_CUSTOM3",
  1773. "CROSS_ENTROPY_LOSS",
  1774. "CROSS_ENTROPY_LOSS_BACK",
  1775. };
  1776. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1777. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1778. "none",
  1779. "x",
  1780. "x+y",
  1781. "x+y",
  1782. "view(x,nb,offset)+=y->x",
  1783. "x-y",
  1784. "x*y",
  1785. "x/y",
  1786. "x^2",
  1787. "√x",
  1788. "log(x)",
  1789. "Σx",
  1790. "Σx_k",
  1791. "Σx/n",
  1792. "argmax(x)",
  1793. "repeat(x)",
  1794. "repeat_back(x)",
  1795. "concat(x, y)",
  1796. "silu_back(x)",
  1797. "norm(x)",
  1798. "rms_norm(x)",
  1799. "rms_norm_back(x)",
  1800. "group_norm(x)",
  1801. "X*Y",
  1802. "X[i]*Y",
  1803. "X*Y",
  1804. "x*v",
  1805. "y-\\>view(x)",
  1806. "x-\\>y",
  1807. "cont(x)",
  1808. "reshape(x)",
  1809. "view(x)",
  1810. "permute(x)",
  1811. "transpose(x)",
  1812. "get_rows(x)",
  1813. "get_rows_back(x)",
  1814. "diag(x)",
  1815. "diag_mask_inf(x)",
  1816. "diag_mask_zero(x)",
  1817. "soft_max(x)",
  1818. "soft_max_back(x)",
  1819. "rope(x)",
  1820. "rope_back(x)",
  1821. "alibi(x)",
  1822. "clamp(x)",
  1823. "conv_transpose_1d(x)",
  1824. "im2col(x)",
  1825. "conv_transpose_2d(x)",
  1826. "pool_1d(x)",
  1827. "pool_2d(x)",
  1828. "upscale(x)",
  1829. "pad(x)",
  1830. "arange(start, stop, step)",
  1831. "timestep_embedding(timesteps, dim, max_period)",
  1832. "argsort(x)",
  1833. "leaky_relu(x)",
  1834. "flash_attn(x)",
  1835. "flash_ff(x)",
  1836. "flash_attn_back(x)",
  1837. "ssm_conv(x)",
  1838. "ssm_scan(x)",
  1839. "win_part(x)",
  1840. "win_unpart(x)",
  1841. "get_rel_pos(x)",
  1842. "add_rel_pos(x)",
  1843. "unary(x)",
  1844. "f(x)",
  1845. "f(x,y)",
  1846. "custom_f32(x)",
  1847. "custom_f32(x,y)",
  1848. "custom_f32(x,y,z)",
  1849. "custom(x)",
  1850. "custom(x,y)",
  1851. "custom(x,y,z)",
  1852. "cross_entropy_loss(x,y)",
  1853. "cross_entropy_loss_back(x,y)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1856. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1857. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1858. "ABS",
  1859. "SGN",
  1860. "NEG",
  1861. "STEP",
  1862. "TANH",
  1863. "ELU",
  1864. "RELU",
  1865. "GELU",
  1866. "GELU_QUICK",
  1867. "SILU",
  1868. "HARDSWISH",
  1869. "HARDSIGMOID",
  1870. };
  1871. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1872. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1873. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1874. // WARN:
  1875. // Mis-configuration can lead to problem that's hard to reason about:
  1876. // * At best it crash or talks nosense.
  1877. // * At worst it talks slightly difference but hard to perceive.
  1878. //
  1879. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1880. // Take care about compile options (e.g., GGML_USE_xxx).
  1881. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1882. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1883. static void ggml_setup_op_has_task_pass(void) {
  1884. { // INIT
  1885. bool * p = GGML_OP_HAS_INIT;
  1886. p[GGML_OP_ACC ] = true;
  1887. p[GGML_OP_MUL_MAT ] = true;
  1888. p[GGML_OP_MUL_MAT_ID ] = true;
  1889. p[GGML_OP_OUT_PROD ] = true;
  1890. p[GGML_OP_SET ] = true;
  1891. p[GGML_OP_GET_ROWS_BACK ] = true;
  1892. p[GGML_OP_DIAG_MASK_INF ] = true;
  1893. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1894. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1895. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1896. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1897. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1898. p[GGML_OP_ADD_REL_POS ] = true;
  1899. }
  1900. { // FINALIZE
  1901. bool * p = GGML_OP_HAS_FINALIZE;
  1902. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1903. }
  1904. }
  1905. //
  1906. // ggml context
  1907. //
  1908. struct ggml_context {
  1909. size_t mem_size;
  1910. void * mem_buffer;
  1911. bool mem_buffer_owned;
  1912. bool no_alloc;
  1913. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1914. int n_objects;
  1915. struct ggml_object * objects_begin;
  1916. struct ggml_object * objects_end;
  1917. struct ggml_scratch scratch;
  1918. struct ggml_scratch scratch_save;
  1919. };
  1920. struct ggml_context_container {
  1921. bool used;
  1922. struct ggml_context context;
  1923. };
  1924. //
  1925. // NUMA support
  1926. //
  1927. #define GGML_NUMA_MAX_NODES 8
  1928. #define GGML_NUMA_MAX_CPUS 512
  1929. struct ggml_numa_node {
  1930. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1931. uint32_t n_cpus;
  1932. };
  1933. struct ggml_numa_nodes {
  1934. enum ggml_numa_strategy numa_strategy;
  1935. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1936. uint32_t n_nodes;
  1937. uint32_t total_cpus; // hardware threads on system
  1938. uint32_t current_node; // node on which main process is execting
  1939. #if defined(__gnu_linux__)
  1940. cpu_set_t cpuset; // cpuset from numactl
  1941. #else
  1942. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1943. #endif
  1944. };
  1945. //
  1946. // ggml state
  1947. //
  1948. struct ggml_state {
  1949. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1950. struct ggml_numa_nodes numa;
  1951. };
  1952. // global state
  1953. static struct ggml_state g_state;
  1954. static atomic_int g_state_barrier = 0;
  1955. // barrier via spin lock
  1956. inline static void ggml_critical_section_start(void) {
  1957. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1958. while (processing > 0) {
  1959. // wait for other threads to finish
  1960. atomic_fetch_sub(&g_state_barrier, 1);
  1961. sched_yield(); // TODO: reconsider this
  1962. processing = atomic_fetch_add(&g_state_barrier, 1);
  1963. }
  1964. }
  1965. // TODO: make this somehow automatically executed
  1966. // some sort of "sentry" mechanism
  1967. inline static void ggml_critical_section_end(void) {
  1968. atomic_fetch_sub(&g_state_barrier, 1);
  1969. }
  1970. #if defined(__gnu_linux__)
  1971. static cpu_set_t ggml_get_numa_affinity(void) {
  1972. cpu_set_t cpuset;
  1973. pthread_t thread;
  1974. thread = pthread_self();
  1975. CPU_ZERO(&cpuset);
  1976. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1977. return cpuset;
  1978. }
  1979. #else
  1980. static uint32_t ggml_get_numa_affinity(void) {
  1981. return 0; // no NUMA support
  1982. }
  1983. #endif
  1984. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1985. if (g_state.numa.n_nodes > 0) {
  1986. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1987. return;
  1988. }
  1989. #if defined(__gnu_linux__)
  1990. struct stat st;
  1991. char path[256];
  1992. int rv;
  1993. // set numa scheme
  1994. g_state.numa.numa_strategy = numa_flag;
  1995. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1996. g_state.numa.cpuset = ggml_get_numa_affinity();
  1997. // enumerate nodes
  1998. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1999. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2000. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2001. if (stat(path, &st) != 0) { break; }
  2002. ++g_state.numa.n_nodes;
  2003. }
  2004. // enumerate CPUs
  2005. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2006. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2007. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2008. if (stat(path, &st) != 0) { break; }
  2009. ++g_state.numa.total_cpus;
  2010. }
  2011. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2012. // figure out which node we're on
  2013. uint current_cpu;
  2014. int getcpu_ret = 0;
  2015. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  2016. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2017. #else
  2018. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2019. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2020. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2021. # endif
  2022. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2023. #endif
  2024. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2025. g_state.numa.n_nodes = 0;
  2026. return;
  2027. }
  2028. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2029. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2030. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2031. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2032. node->n_cpus = 0;
  2033. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2034. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2035. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2036. if (stat(path, &st) == 0) {
  2037. node->cpus[node->n_cpus++] = c;
  2038. GGML_PRINT_DEBUG(" %u", c);
  2039. }
  2040. }
  2041. GGML_PRINT_DEBUG("\n");
  2042. }
  2043. if (ggml_is_numa()) {
  2044. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2045. if (fptr != NULL) {
  2046. char buf[42];
  2047. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2048. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2049. }
  2050. fclose(fptr);
  2051. }
  2052. }
  2053. #else
  2054. GGML_UNUSED(numa_flag);
  2055. // TODO
  2056. #endif
  2057. }
  2058. bool ggml_is_numa(void) {
  2059. return g_state.numa.n_nodes > 1;
  2060. }
  2061. ////////////////////////////////////////////////////////////////////////////////
  2062. void ggml_print_object(const struct ggml_object * obj) {
  2063. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2064. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2065. }
  2066. void ggml_print_objects(const struct ggml_context * ctx) {
  2067. struct ggml_object * obj = ctx->objects_begin;
  2068. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2069. while (obj != NULL) {
  2070. ggml_print_object(obj);
  2071. obj = obj->next;
  2072. }
  2073. GGML_PRINT("%s: --- end ---\n", __func__);
  2074. }
  2075. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2076. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2077. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2078. }
  2079. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2080. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2081. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2082. }
  2083. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2084. size_t nbytes;
  2085. size_t blck_size = ggml_blck_size(tensor->type);
  2086. if (blck_size == 1) {
  2087. nbytes = ggml_type_size(tensor->type);
  2088. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2089. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2090. }
  2091. }
  2092. else {
  2093. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2094. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2095. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2096. }
  2097. }
  2098. return nbytes;
  2099. }
  2100. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2101. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2102. }
  2103. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2104. return type_traits[type].blck_size;
  2105. }
  2106. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2107. return type_traits[type].type_size;
  2108. }
  2109. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2110. assert(ne % ggml_blck_size(type) == 0);
  2111. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2112. }
  2113. double ggml_type_sizef(enum ggml_type type) {
  2114. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2115. }
  2116. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2117. return type_traits[type].type_name;
  2118. }
  2119. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2120. return type_traits[type].is_quantized;
  2121. }
  2122. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2123. return GGML_OP_NAME[op];
  2124. }
  2125. const char * ggml_op_symbol(enum ggml_op op) {
  2126. return GGML_OP_SYMBOL[op];
  2127. }
  2128. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2129. return GGML_UNARY_OP_NAME[op];
  2130. }
  2131. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2132. if (t->op == GGML_OP_UNARY) {
  2133. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2134. return ggml_unary_op_name(uop);
  2135. }
  2136. else {
  2137. return ggml_op_name(t->op);
  2138. }
  2139. }
  2140. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2141. return ggml_type_size(tensor->type);
  2142. }
  2143. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2144. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2145. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2146. }
  2147. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2148. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2149. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2150. }
  2151. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2152. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2153. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2154. }
  2155. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2156. return tensor->ne[3] == 1;
  2157. }
  2158. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2159. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2160. if (tensor->ne[i] > 1) {
  2161. return i + 1;
  2162. }
  2163. }
  2164. return 1;
  2165. }
  2166. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return (t0->ne[0] == t1->ne[0]) &&
  2169. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2170. (t1->ne[3]%t0->ne[3] == 0);
  2171. }
  2172. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2173. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2174. return (t0->ne[1] == t1->ne[1]) &&
  2175. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2176. (t1->ne[3]%t0->ne[3] == 0);
  2177. }
  2178. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2179. enum ggml_type wtype = GGML_TYPE_COUNT;
  2180. switch (ftype) {
  2181. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2182. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2183. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2184. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2185. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2186. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2187. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2188. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2189. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2190. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2191. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2192. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2193. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2194. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2195. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2196. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2197. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2198. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2199. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2200. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2201. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2202. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2203. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2204. }
  2205. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2206. return wtype;
  2207. }
  2208. size_t ggml_tensor_overhead(void) {
  2209. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2210. }
  2211. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2212. return tensor->nb[0] > tensor->nb[1];
  2213. }
  2214. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2215. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2216. return
  2217. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2218. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2219. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2220. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2221. }
  2222. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2223. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2224. return
  2225. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2226. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2227. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2228. }
  2229. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2230. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2231. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2232. }
  2233. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2234. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2235. return
  2236. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2237. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2238. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2239. }
  2240. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2241. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2242. if (tensor->ne[i] == 0) {
  2243. // empty if any dimension has no elements
  2244. return true;
  2245. }
  2246. }
  2247. return false;
  2248. }
  2249. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return
  2252. (t0->ne[0] == t1->ne[0] ) &&
  2253. (t0->ne[1] == t1->ne[1] ) &&
  2254. (t0->ne[2] == t1->ne[2] ) &&
  2255. (t0->ne[3] == t1->ne[3] );
  2256. }
  2257. // check if t1 can be represented as a repeatition of t0
  2258. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2259. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2260. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2261. (t1->ne[0]%t0->ne[0] == 0) &&
  2262. (t1->ne[1]%t0->ne[1] == 0) &&
  2263. (t1->ne[2]%t0->ne[2] == 0) &&
  2264. (t1->ne[3]%t0->ne[3] == 0);
  2265. }
  2266. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2267. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2268. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2269. }
  2270. static inline int ggml_up32(int n) {
  2271. return (n + 31) & ~31;
  2272. }
  2273. //static inline int ggml_up64(int n) {
  2274. // return (n + 63) & ~63;
  2275. //}
  2276. static inline int ggml_up(int n, int m) {
  2277. // assert m is a power of 2
  2278. GGML_ASSERT((m & (m - 1)) == 0);
  2279. return (n + m - 1) & ~(m - 1);
  2280. }
  2281. // assert that pointer is aligned to GGML_MEM_ALIGN
  2282. #define ggml_assert_aligned(ptr) \
  2283. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2284. ////////////////////////////////////////////////////////////////////////////////
  2285. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2286. // make this function thread safe
  2287. ggml_critical_section_start();
  2288. static bool is_first_call = true;
  2289. if (is_first_call) {
  2290. // initialize time system (required on Windows)
  2291. ggml_time_init();
  2292. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2293. {
  2294. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2295. ggml_fp16_t ii;
  2296. for (int i = 0; i < (1 << 16); ++i) {
  2297. uint16_t ui = i;
  2298. memcpy(&ii, &ui, sizeof(ii));
  2299. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2300. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2301. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2302. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2303. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2304. }
  2305. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2306. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2307. }
  2308. // initialize g_state
  2309. {
  2310. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2311. g_state = (struct ggml_state) {
  2312. /*.contexts =*/ { { 0 } },
  2313. /*.numa =*/ {
  2314. .n_nodes = 0,
  2315. .total_cpus = 0,
  2316. },
  2317. };
  2318. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2319. g_state.contexts[i].used = false;
  2320. }
  2321. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2322. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2323. }
  2324. #if defined(GGML_USE_CLBLAST)
  2325. ggml_cl_init();
  2326. #elif defined(GGML_USE_VULKAN)
  2327. ggml_vk_init_cpu_assist();
  2328. #endif
  2329. ggml_setup_op_has_task_pass();
  2330. is_first_call = false;
  2331. }
  2332. // find non-used context in g_state
  2333. struct ggml_context * ctx = NULL;
  2334. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2335. if (!g_state.contexts[i].used) {
  2336. g_state.contexts[i].used = true;
  2337. ctx = &g_state.contexts[i].context;
  2338. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2339. break;
  2340. }
  2341. }
  2342. if (ctx == NULL) {
  2343. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2344. ggml_critical_section_end();
  2345. return NULL;
  2346. }
  2347. // allow to call ggml_init with 0 size
  2348. if (params.mem_size == 0) {
  2349. params.mem_size = GGML_MEM_ALIGN;
  2350. }
  2351. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2352. *ctx = (struct ggml_context) {
  2353. /*.mem_size =*/ mem_size,
  2354. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2355. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2356. /*.no_alloc =*/ params.no_alloc,
  2357. /*.no_alloc_save =*/ params.no_alloc,
  2358. /*.n_objects =*/ 0,
  2359. /*.objects_begin =*/ NULL,
  2360. /*.objects_end =*/ NULL,
  2361. /*.scratch =*/ { 0, 0, NULL, },
  2362. /*.scratch_save =*/ { 0, 0, NULL, },
  2363. };
  2364. GGML_ASSERT(ctx->mem_buffer != NULL);
  2365. ggml_assert_aligned(ctx->mem_buffer);
  2366. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2367. ggml_critical_section_end();
  2368. return ctx;
  2369. }
  2370. void ggml_free(struct ggml_context * ctx) {
  2371. if (ctx == NULL) {
  2372. return;
  2373. }
  2374. // make this function thread safe
  2375. ggml_critical_section_start();
  2376. bool found = false;
  2377. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2378. if (&g_state.contexts[i].context == ctx) {
  2379. g_state.contexts[i].used = false;
  2380. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2381. __func__, i, ggml_used_mem(ctx));
  2382. if (ctx->mem_buffer_owned) {
  2383. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2384. }
  2385. found = true;
  2386. break;
  2387. }
  2388. }
  2389. if (!found) {
  2390. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2391. }
  2392. ggml_critical_section_end();
  2393. }
  2394. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2395. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2396. }
  2397. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2398. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2399. ctx->scratch = scratch;
  2400. return result;
  2401. }
  2402. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2403. return ctx->no_alloc;
  2404. }
  2405. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2406. ctx->no_alloc = no_alloc;
  2407. }
  2408. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2409. return ctx->mem_buffer;
  2410. }
  2411. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2412. return ctx->mem_size;
  2413. }
  2414. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2415. size_t max_size = 0;
  2416. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2417. size_t bytes = ggml_nbytes(tensor);
  2418. max_size = MAX(max_size, bytes);
  2419. }
  2420. return max_size;
  2421. }
  2422. // IMPORTANT:
  2423. // when creating "opt" tensors, always save and load the scratch buffer
  2424. // this is an error prone process, but it is necessary to support inplace
  2425. // operators when using scratch buffers
  2426. // TODO: implement a better way
  2427. static void ggml_scratch_save(struct ggml_context * ctx) {
  2428. // this is needed to allow opt tensors to store their data
  2429. // TODO: again, need to find a better way
  2430. ctx->no_alloc_save = ctx->no_alloc;
  2431. ctx->no_alloc = false;
  2432. ctx->scratch_save = ctx->scratch;
  2433. ctx->scratch.data = NULL;
  2434. }
  2435. static void ggml_scratch_load(struct ggml_context * ctx) {
  2436. ctx->no_alloc = ctx->no_alloc_save;
  2437. ctx->scratch = ctx->scratch_save;
  2438. }
  2439. ////////////////////////////////////////////////////////////////////////////////
  2440. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2441. // always insert objects at the end of the context's memory pool
  2442. struct ggml_object * obj_cur = ctx->objects_end;
  2443. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2444. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2445. const size_t cur_end = cur_offs + cur_size;
  2446. // align to GGML_MEM_ALIGN
  2447. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2448. char * const mem_buffer = ctx->mem_buffer;
  2449. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2450. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2451. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2452. __func__, cur_end + size_needed, ctx->mem_size);
  2453. assert(false);
  2454. return NULL;
  2455. }
  2456. *obj_new = (struct ggml_object) {
  2457. .offs = cur_end + GGML_OBJECT_SIZE,
  2458. .size = size_needed,
  2459. .next = NULL,
  2460. .type = type,
  2461. };
  2462. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2463. if (obj_cur != NULL) {
  2464. obj_cur->next = obj_new;
  2465. } else {
  2466. // this is the first object in this context
  2467. ctx->objects_begin = obj_new;
  2468. }
  2469. ctx->objects_end = obj_new;
  2470. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2471. return obj_new;
  2472. }
  2473. static struct ggml_tensor * ggml_new_tensor_impl(
  2474. struct ggml_context * ctx,
  2475. enum ggml_type type,
  2476. int n_dims,
  2477. const int64_t * ne,
  2478. struct ggml_tensor * view_src,
  2479. size_t view_offs) {
  2480. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2481. // find the base tensor and absolute offset
  2482. if (view_src != NULL && view_src->view_src != NULL) {
  2483. view_offs += view_src->view_offs;
  2484. view_src = view_src->view_src;
  2485. }
  2486. size_t data_size = ggml_row_size(type, ne[0]);
  2487. for (int i = 1; i < n_dims; i++) {
  2488. data_size *= ne[i];
  2489. }
  2490. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2491. void * data = view_src != NULL ? view_src->data : NULL;
  2492. if (data != NULL) {
  2493. data = (char *) data + view_offs;
  2494. }
  2495. size_t obj_alloc_size = 0;
  2496. if (view_src == NULL && !ctx->no_alloc) {
  2497. if (ctx->scratch.data != NULL) {
  2498. // allocate tensor data in the scratch buffer
  2499. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2500. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2501. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2502. assert(false);
  2503. return NULL;
  2504. }
  2505. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2506. ctx->scratch.offs += data_size;
  2507. } else {
  2508. // allocate tensor data in the context's memory pool
  2509. obj_alloc_size = data_size;
  2510. }
  2511. }
  2512. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2513. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2514. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2515. *result = (struct ggml_tensor) {
  2516. /*.type =*/ type,
  2517. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2518. /*.buffer =*/ NULL,
  2519. /*.ne =*/ { 1, 1, 1, 1 },
  2520. /*.nb =*/ { 0, 0, 0, 0 },
  2521. /*.op =*/ GGML_OP_NONE,
  2522. /*.op_params =*/ { 0 },
  2523. /*.flags =*/ 0,
  2524. /*.grad =*/ NULL,
  2525. /*.src =*/ { NULL },
  2526. /*.perf_runs =*/ 0,
  2527. /*.perf_cycles =*/ 0,
  2528. /*.perf_time_us =*/ 0,
  2529. /*.view_src =*/ view_src,
  2530. /*.view_offs =*/ view_offs,
  2531. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2532. /*.name =*/ { 0 },
  2533. /*.extra =*/ NULL,
  2534. /*.padding =*/ { 0 },
  2535. };
  2536. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2537. //ggml_assert_aligned(result->data);
  2538. for (int i = 0; i < n_dims; i++) {
  2539. result->ne[i] = ne[i];
  2540. }
  2541. result->nb[0] = ggml_type_size(type);
  2542. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2543. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2544. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2545. }
  2546. ctx->n_objects++;
  2547. return result;
  2548. }
  2549. struct ggml_tensor * ggml_new_tensor(
  2550. struct ggml_context * ctx,
  2551. enum ggml_type type,
  2552. int n_dims,
  2553. const int64_t * ne) {
  2554. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2555. }
  2556. struct ggml_tensor * ggml_new_tensor_1d(
  2557. struct ggml_context * ctx,
  2558. enum ggml_type type,
  2559. int64_t ne0) {
  2560. return ggml_new_tensor(ctx, type, 1, &ne0);
  2561. }
  2562. struct ggml_tensor * ggml_new_tensor_2d(
  2563. struct ggml_context * ctx,
  2564. enum ggml_type type,
  2565. int64_t ne0,
  2566. int64_t ne1) {
  2567. const int64_t ne[2] = { ne0, ne1 };
  2568. return ggml_new_tensor(ctx, type, 2, ne);
  2569. }
  2570. struct ggml_tensor * ggml_new_tensor_3d(
  2571. struct ggml_context * ctx,
  2572. enum ggml_type type,
  2573. int64_t ne0,
  2574. int64_t ne1,
  2575. int64_t ne2) {
  2576. const int64_t ne[3] = { ne0, ne1, ne2 };
  2577. return ggml_new_tensor(ctx, type, 3, ne);
  2578. }
  2579. struct ggml_tensor * ggml_new_tensor_4d(
  2580. struct ggml_context * ctx,
  2581. enum ggml_type type,
  2582. int64_t ne0,
  2583. int64_t ne1,
  2584. int64_t ne2,
  2585. int64_t ne3) {
  2586. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2587. return ggml_new_tensor(ctx, type, 4, ne);
  2588. }
  2589. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2590. ggml_scratch_save(ctx);
  2591. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2592. ggml_scratch_load(ctx);
  2593. ggml_set_i32(result, value);
  2594. return result;
  2595. }
  2596. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2597. ggml_scratch_save(ctx);
  2598. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2599. ggml_scratch_load(ctx);
  2600. ggml_set_f32(result, value);
  2601. return result;
  2602. }
  2603. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2604. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2605. }
  2606. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2607. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2608. assert(params_size <= GGML_MAX_OP_PARAMS);
  2609. memcpy(tensor->op_params, params, params_size);
  2610. }
  2611. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2612. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2613. return ((const int32_t *)(tensor->op_params))[i];
  2614. }
  2615. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2616. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2617. return ((const float *)(tensor->op_params))[i];
  2618. }
  2619. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2620. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2621. ((int32_t *)(tensor->op_params))[i] = value;
  2622. }
  2623. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2624. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2625. ((float *)(tensor->op_params))[i] = value;
  2626. }
  2627. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2628. memset(tensor->data, 0, ggml_nbytes(tensor));
  2629. return tensor;
  2630. }
  2631. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2632. const int n = ggml_nrows(tensor);
  2633. const int nc = tensor->ne[0];
  2634. const size_t n1 = tensor->nb[1];
  2635. char * const data = tensor->data;
  2636. switch (tensor->type) {
  2637. case GGML_TYPE_I8:
  2638. {
  2639. assert(tensor->nb[0] == sizeof(int8_t));
  2640. for (int i = 0; i < n; i++) {
  2641. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2642. }
  2643. } break;
  2644. case GGML_TYPE_I16:
  2645. {
  2646. assert(tensor->nb[0] == sizeof(int16_t));
  2647. for (int i = 0; i < n; i++) {
  2648. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2649. }
  2650. } break;
  2651. case GGML_TYPE_I32:
  2652. {
  2653. assert(tensor->nb[0] == sizeof(int32_t));
  2654. for (int i = 0; i < n; i++) {
  2655. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2656. }
  2657. } break;
  2658. case GGML_TYPE_F16:
  2659. {
  2660. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2661. for (int i = 0; i < n; i++) {
  2662. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2663. }
  2664. } break;
  2665. case GGML_TYPE_F32:
  2666. {
  2667. assert(tensor->nb[0] == sizeof(float));
  2668. for (int i = 0; i < n; i++) {
  2669. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2670. }
  2671. } break;
  2672. default:
  2673. {
  2674. GGML_ASSERT(false);
  2675. } break;
  2676. }
  2677. return tensor;
  2678. }
  2679. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2680. const int n = ggml_nrows(tensor);
  2681. const int nc = tensor->ne[0];
  2682. const size_t n1 = tensor->nb[1];
  2683. char * const data = tensor->data;
  2684. switch (tensor->type) {
  2685. case GGML_TYPE_I8:
  2686. {
  2687. assert(tensor->nb[0] == sizeof(int8_t));
  2688. for (int i = 0; i < n; i++) {
  2689. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2690. }
  2691. } break;
  2692. case GGML_TYPE_I16:
  2693. {
  2694. assert(tensor->nb[0] == sizeof(int16_t));
  2695. for (int i = 0; i < n; i++) {
  2696. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2697. }
  2698. } break;
  2699. case GGML_TYPE_I32:
  2700. {
  2701. assert(tensor->nb[0] == sizeof(int32_t));
  2702. for (int i = 0; i < n; i++) {
  2703. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2704. }
  2705. } break;
  2706. case GGML_TYPE_F16:
  2707. {
  2708. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2709. for (int i = 0; i < n; i++) {
  2710. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2711. }
  2712. } break;
  2713. case GGML_TYPE_F32:
  2714. {
  2715. assert(tensor->nb[0] == sizeof(float));
  2716. for (int i = 0; i < n; i++) {
  2717. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2718. }
  2719. } break;
  2720. default:
  2721. {
  2722. GGML_ASSERT(false);
  2723. } break;
  2724. }
  2725. return tensor;
  2726. }
  2727. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2728. const int64_t ne2 = tensor->ne[2];
  2729. const int64_t ne1 = tensor->ne[1];
  2730. const int64_t ne0 = tensor->ne[0];
  2731. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2732. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2733. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2734. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2735. if (i0) {
  2736. * i0 = i0_;
  2737. }
  2738. if (i1) {
  2739. * i1 = i1_;
  2740. }
  2741. if (i2) {
  2742. * i2 = i2_;
  2743. }
  2744. if (i3) {
  2745. * i3 = i3_;
  2746. }
  2747. }
  2748. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2749. if (!ggml_is_contiguous(tensor)) {
  2750. int64_t id[4] = { 0, 0, 0, 0 };
  2751. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2752. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2753. }
  2754. switch (tensor->type) {
  2755. case GGML_TYPE_I8:
  2756. {
  2757. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2758. return ((int8_t *)(tensor->data))[i];
  2759. }
  2760. case GGML_TYPE_I16:
  2761. {
  2762. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2763. return ((int16_t *)(tensor->data))[i];
  2764. }
  2765. case GGML_TYPE_I32:
  2766. {
  2767. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2768. return ((int32_t *)(tensor->data))[i];
  2769. }
  2770. case GGML_TYPE_F16:
  2771. {
  2772. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2773. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2774. }
  2775. case GGML_TYPE_F32:
  2776. {
  2777. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2778. return ((float *)(tensor->data))[i];
  2779. }
  2780. default:
  2781. {
  2782. GGML_ASSERT(false);
  2783. }
  2784. }
  2785. return 0.0f;
  2786. }
  2787. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2788. if (!ggml_is_contiguous(tensor)) {
  2789. int64_t id[4] = { 0, 0, 0, 0 };
  2790. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2791. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2792. return;
  2793. }
  2794. switch (tensor->type) {
  2795. case GGML_TYPE_I8:
  2796. {
  2797. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2798. ((int8_t *)(tensor->data))[i] = value;
  2799. } break;
  2800. case GGML_TYPE_I16:
  2801. {
  2802. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2803. ((int16_t *)(tensor->data))[i] = value;
  2804. } break;
  2805. case GGML_TYPE_I32:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2808. ((int32_t *)(tensor->data))[i] = value;
  2809. } break;
  2810. case GGML_TYPE_F16:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2813. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2814. } break;
  2815. case GGML_TYPE_F32:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2818. ((float *)(tensor->data))[i] = value;
  2819. } break;
  2820. default:
  2821. {
  2822. GGML_ASSERT(false);
  2823. } break;
  2824. }
  2825. }
  2826. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2827. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2828. switch (tensor->type) {
  2829. case GGML_TYPE_I8:
  2830. return ((int8_t *) data)[0];
  2831. case GGML_TYPE_I16:
  2832. return ((int16_t *) data)[0];
  2833. case GGML_TYPE_I32:
  2834. return ((int32_t *) data)[0];
  2835. case GGML_TYPE_F16:
  2836. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2837. case GGML_TYPE_F32:
  2838. return ((float *) data)[0];
  2839. default:
  2840. GGML_ASSERT(false);
  2841. }
  2842. return 0.0f;
  2843. }
  2844. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2845. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2846. switch (tensor->type) {
  2847. case GGML_TYPE_I8:
  2848. {
  2849. ((int8_t *)(data))[0] = value;
  2850. } break;
  2851. case GGML_TYPE_I16:
  2852. {
  2853. ((int16_t *)(data))[0] = value;
  2854. } break;
  2855. case GGML_TYPE_I32:
  2856. {
  2857. ((int32_t *)(data))[0] = value;
  2858. } break;
  2859. case GGML_TYPE_F16:
  2860. {
  2861. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2862. } break;
  2863. case GGML_TYPE_F32:
  2864. {
  2865. ((float *)(data))[0] = value;
  2866. } break;
  2867. default:
  2868. {
  2869. GGML_ASSERT(false);
  2870. } break;
  2871. }
  2872. }
  2873. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2874. if (!ggml_is_contiguous(tensor)) {
  2875. int64_t id[4] = { 0, 0, 0, 0 };
  2876. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2877. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2878. }
  2879. switch (tensor->type) {
  2880. case GGML_TYPE_I8:
  2881. {
  2882. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2883. return ((int8_t *)(tensor->data))[i];
  2884. }
  2885. case GGML_TYPE_I16:
  2886. {
  2887. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2888. return ((int16_t *)(tensor->data))[i];
  2889. }
  2890. case GGML_TYPE_I32:
  2891. {
  2892. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2893. return ((int32_t *)(tensor->data))[i];
  2894. }
  2895. case GGML_TYPE_F16:
  2896. {
  2897. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2898. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2899. }
  2900. case GGML_TYPE_F32:
  2901. {
  2902. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2903. return ((float *)(tensor->data))[i];
  2904. }
  2905. default:
  2906. {
  2907. GGML_ASSERT(false);
  2908. }
  2909. }
  2910. return 0.0f;
  2911. }
  2912. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2913. if (!ggml_is_contiguous(tensor)) {
  2914. int64_t id[4] = { 0, 0, 0, 0 };
  2915. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2916. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2917. return;
  2918. }
  2919. switch (tensor->type) {
  2920. case GGML_TYPE_I8:
  2921. {
  2922. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2923. ((int8_t *)(tensor->data))[i] = value;
  2924. } break;
  2925. case GGML_TYPE_I16:
  2926. {
  2927. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2928. ((int16_t *)(tensor->data))[i] = value;
  2929. } break;
  2930. case GGML_TYPE_I32:
  2931. {
  2932. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2933. ((int32_t *)(tensor->data))[i] = value;
  2934. } break;
  2935. case GGML_TYPE_F16:
  2936. {
  2937. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2938. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2939. } break;
  2940. case GGML_TYPE_F32:
  2941. {
  2942. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2943. ((float *)(tensor->data))[i] = value;
  2944. } break;
  2945. default:
  2946. {
  2947. GGML_ASSERT(false);
  2948. } break;
  2949. }
  2950. }
  2951. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2952. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2953. switch (tensor->type) {
  2954. case GGML_TYPE_I8:
  2955. return ((int8_t *) data)[0];
  2956. case GGML_TYPE_I16:
  2957. return ((int16_t *) data)[0];
  2958. case GGML_TYPE_I32:
  2959. return ((int32_t *) data)[0];
  2960. case GGML_TYPE_F16:
  2961. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2962. case GGML_TYPE_F32:
  2963. return ((float *) data)[0];
  2964. default:
  2965. GGML_ASSERT(false);
  2966. }
  2967. return 0.0f;
  2968. }
  2969. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2970. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2971. switch (tensor->type) {
  2972. case GGML_TYPE_I8:
  2973. {
  2974. ((int8_t *)(data))[0] = value;
  2975. } break;
  2976. case GGML_TYPE_I16:
  2977. {
  2978. ((int16_t *)(data))[0] = value;
  2979. } break;
  2980. case GGML_TYPE_I32:
  2981. {
  2982. ((int32_t *)(data))[0] = value;
  2983. } break;
  2984. case GGML_TYPE_F16:
  2985. {
  2986. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2987. } break;
  2988. case GGML_TYPE_F32:
  2989. {
  2990. ((float *)(data))[0] = value;
  2991. } break;
  2992. default:
  2993. {
  2994. GGML_ASSERT(false);
  2995. } break;
  2996. }
  2997. }
  2998. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2999. return tensor->data;
  3000. }
  3001. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3002. assert(tensor->type == GGML_TYPE_F32);
  3003. return (float *)(tensor->data);
  3004. }
  3005. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3006. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3007. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3008. }
  3009. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3010. return tensor->name;
  3011. }
  3012. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3013. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3014. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3015. return tensor;
  3016. }
  3017. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3018. va_list args;
  3019. va_start(args, fmt);
  3020. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3021. va_end(args);
  3022. return tensor;
  3023. }
  3024. struct ggml_tensor * ggml_view_tensor(
  3025. struct ggml_context * ctx,
  3026. struct ggml_tensor * src) {
  3027. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3028. ggml_format_name(result, "%s (view)", src->name);
  3029. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3030. result->nb[i] = src->nb[i];
  3031. }
  3032. return result;
  3033. }
  3034. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3035. struct ggml_object * obj = ctx->objects_begin;
  3036. char * const mem_buffer = ctx->mem_buffer;
  3037. while (obj != NULL) {
  3038. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3039. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3040. }
  3041. obj = obj->next;
  3042. }
  3043. return NULL;
  3044. }
  3045. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3046. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3047. obj = obj->next;
  3048. char * const mem_buffer = ctx->mem_buffer;
  3049. while (obj != NULL) {
  3050. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3051. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3052. }
  3053. obj = obj->next;
  3054. }
  3055. return NULL;
  3056. }
  3057. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3058. struct ggml_object * obj = ctx->objects_begin;
  3059. char * const mem_buffer = ctx->mem_buffer;
  3060. while (obj != NULL) {
  3061. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3062. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3063. if (strcmp(cur->name, name) == 0) {
  3064. return cur;
  3065. }
  3066. }
  3067. obj = obj->next;
  3068. }
  3069. return NULL;
  3070. }
  3071. ////////////////////////////////////////////////////////////////////////////////
  3072. // ggml_dup
  3073. static struct ggml_tensor * ggml_dup_impl(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. bool inplace) {
  3077. bool is_node = false;
  3078. if (!inplace && (a->grad)) {
  3079. is_node = true;
  3080. }
  3081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3082. result->op = GGML_OP_DUP;
  3083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3084. result->src[0] = a;
  3085. return result;
  3086. }
  3087. struct ggml_tensor * ggml_dup(
  3088. struct ggml_context * ctx,
  3089. struct ggml_tensor * a) {
  3090. return ggml_dup_impl(ctx, a, false);
  3091. }
  3092. struct ggml_tensor * ggml_dup_inplace(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a) {
  3095. return ggml_dup_impl(ctx, a, true);
  3096. }
  3097. // ggml_add
  3098. static struct ggml_tensor * ggml_add_impl(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a,
  3101. struct ggml_tensor * b,
  3102. bool inplace) {
  3103. GGML_ASSERT(ggml_can_repeat(b, a));
  3104. bool is_node = false;
  3105. if (!inplace && (a->grad || b->grad)) {
  3106. // TODO: support backward pass for broadcasting
  3107. GGML_ASSERT(ggml_are_same_shape(a, b));
  3108. is_node = true;
  3109. }
  3110. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3111. result->op = GGML_OP_ADD;
  3112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3113. result->src[0] = a;
  3114. result->src[1] = b;
  3115. return result;
  3116. }
  3117. struct ggml_tensor * ggml_add(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. struct ggml_tensor * b) {
  3121. return ggml_add_impl(ctx, a, b, false);
  3122. }
  3123. struct ggml_tensor * ggml_add_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. struct ggml_tensor * b) {
  3127. return ggml_add_impl(ctx, a, b, true);
  3128. }
  3129. // ggml_add_cast
  3130. static struct ggml_tensor * ggml_add_cast_impl(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b,
  3134. enum ggml_type type) {
  3135. // TODO: support less-strict constraint
  3136. // GGML_ASSERT(ggml_can_repeat(b, a));
  3137. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3138. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3139. bool is_node = false;
  3140. if (a->grad || b->grad) {
  3141. // TODO: support backward pass for broadcasting
  3142. GGML_ASSERT(ggml_are_same_shape(a, b));
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3146. result->op = GGML_OP_ADD;
  3147. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3148. result->src[0] = a;
  3149. result->src[1] = b;
  3150. return result;
  3151. }
  3152. struct ggml_tensor * ggml_add_cast(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a,
  3155. struct ggml_tensor * b,
  3156. enum ggml_type type) {
  3157. return ggml_add_cast_impl(ctx, a, b, type);
  3158. }
  3159. // ggml_add1
  3160. static struct ggml_tensor * ggml_add1_impl(
  3161. struct ggml_context * ctx,
  3162. struct ggml_tensor * a,
  3163. struct ggml_tensor * b,
  3164. bool inplace) {
  3165. GGML_ASSERT(ggml_is_scalar(b));
  3166. GGML_ASSERT(ggml_is_padded_1d(a));
  3167. bool is_node = false;
  3168. if (a->grad || b->grad) {
  3169. is_node = true;
  3170. }
  3171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3172. result->op = GGML_OP_ADD1;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src[0] = a;
  3175. result->src[1] = b;
  3176. return result;
  3177. }
  3178. struct ggml_tensor * ggml_add1(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. struct ggml_tensor * b) {
  3182. return ggml_add1_impl(ctx, a, b, false);
  3183. }
  3184. struct ggml_tensor * ggml_add1_inplace(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a,
  3187. struct ggml_tensor * b) {
  3188. return ggml_add1_impl(ctx, a, b, true);
  3189. }
  3190. // ggml_acc
  3191. static struct ggml_tensor * ggml_acc_impl(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a,
  3194. struct ggml_tensor * b,
  3195. size_t nb1,
  3196. size_t nb2,
  3197. size_t nb3,
  3198. size_t offset,
  3199. bool inplace) {
  3200. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3201. GGML_ASSERT(ggml_is_contiguous(a));
  3202. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3203. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3204. bool is_node = false;
  3205. if (!inplace && (a->grad || b->grad)) {
  3206. is_node = true;
  3207. }
  3208. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3209. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3210. ggml_set_op_params(result, params, sizeof(params));
  3211. result->op = GGML_OP_ACC;
  3212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3213. result->src[0] = a;
  3214. result->src[1] = b;
  3215. return result;
  3216. }
  3217. struct ggml_tensor * ggml_acc(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. struct ggml_tensor * b,
  3221. size_t nb1,
  3222. size_t nb2,
  3223. size_t nb3,
  3224. size_t offset) {
  3225. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3226. }
  3227. struct ggml_tensor * ggml_acc_inplace(
  3228. struct ggml_context * ctx,
  3229. struct ggml_tensor * a,
  3230. struct ggml_tensor * b,
  3231. size_t nb1,
  3232. size_t nb2,
  3233. size_t nb3,
  3234. size_t offset) {
  3235. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3236. }
  3237. // ggml_sub
  3238. static struct ggml_tensor * ggml_sub_impl(
  3239. struct ggml_context * ctx,
  3240. struct ggml_tensor * a,
  3241. struct ggml_tensor * b,
  3242. bool inplace) {
  3243. GGML_ASSERT(ggml_are_same_shape(a, b));
  3244. bool is_node = false;
  3245. if (!inplace && (a->grad || b->grad)) {
  3246. is_node = true;
  3247. }
  3248. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3249. result->op = GGML_OP_SUB;
  3250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3251. result->src[0] = a;
  3252. result->src[1] = b;
  3253. return result;
  3254. }
  3255. struct ggml_tensor * ggml_sub(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. struct ggml_tensor * b) {
  3259. return ggml_sub_impl(ctx, a, b, false);
  3260. }
  3261. struct ggml_tensor * ggml_sub_inplace(
  3262. struct ggml_context * ctx,
  3263. struct ggml_tensor * a,
  3264. struct ggml_tensor * b) {
  3265. return ggml_sub_impl(ctx, a, b, true);
  3266. }
  3267. // ggml_mul
  3268. static struct ggml_tensor * ggml_mul_impl(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. struct ggml_tensor * b,
  3272. bool inplace) {
  3273. GGML_ASSERT(ggml_can_repeat(b, a));
  3274. bool is_node = false;
  3275. if (!inplace && (a->grad || b->grad)) {
  3276. // TODO: support backward pass for broadcasting
  3277. GGML_ASSERT(ggml_are_same_shape(a, b));
  3278. is_node = true;
  3279. }
  3280. if (inplace) {
  3281. GGML_ASSERT(!is_node);
  3282. }
  3283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3284. result->op = GGML_OP_MUL;
  3285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3286. result->src[0] = a;
  3287. result->src[1] = b;
  3288. return result;
  3289. }
  3290. struct ggml_tensor * ggml_mul(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. struct ggml_tensor * b) {
  3294. return ggml_mul_impl(ctx, a, b, false);
  3295. }
  3296. struct ggml_tensor * ggml_mul_inplace(
  3297. struct ggml_context * ctx,
  3298. struct ggml_tensor * a,
  3299. struct ggml_tensor * b) {
  3300. return ggml_mul_impl(ctx, a, b, true);
  3301. }
  3302. // ggml_div
  3303. static struct ggml_tensor * ggml_div_impl(
  3304. struct ggml_context * ctx,
  3305. struct ggml_tensor * a,
  3306. struct ggml_tensor * b,
  3307. bool inplace) {
  3308. GGML_ASSERT(ggml_can_repeat(b, a));
  3309. bool is_node = false;
  3310. if (!inplace && (a->grad || b->grad)) {
  3311. is_node = true;
  3312. }
  3313. if (inplace) {
  3314. GGML_ASSERT(!is_node);
  3315. }
  3316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3317. result->op = GGML_OP_DIV;
  3318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3319. result->src[0] = a;
  3320. result->src[1] = b;
  3321. return result;
  3322. }
  3323. struct ggml_tensor * ggml_div(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. struct ggml_tensor * b) {
  3327. return ggml_div_impl(ctx, a, b, false);
  3328. }
  3329. struct ggml_tensor * ggml_div_inplace(
  3330. struct ggml_context * ctx,
  3331. struct ggml_tensor * a,
  3332. struct ggml_tensor * b) {
  3333. return ggml_div_impl(ctx, a, b, true);
  3334. }
  3335. // ggml_sqr
  3336. static struct ggml_tensor * ggml_sqr_impl(
  3337. struct ggml_context * ctx,
  3338. struct ggml_tensor * a,
  3339. bool inplace) {
  3340. bool is_node = false;
  3341. if (!inplace && (a->grad)) {
  3342. is_node = true;
  3343. }
  3344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3345. result->op = GGML_OP_SQR;
  3346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3347. result->src[0] = a;
  3348. return result;
  3349. }
  3350. struct ggml_tensor * ggml_sqr(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. return ggml_sqr_impl(ctx, a, false);
  3354. }
  3355. struct ggml_tensor * ggml_sqr_inplace(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. return ggml_sqr_impl(ctx, a, true);
  3359. }
  3360. // ggml_sqrt
  3361. static struct ggml_tensor * ggml_sqrt_impl(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. bool inplace) {
  3365. bool is_node = false;
  3366. if (!inplace && (a->grad)) {
  3367. is_node = true;
  3368. }
  3369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3370. result->op = GGML_OP_SQRT;
  3371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3372. result->src[0] = a;
  3373. return result;
  3374. }
  3375. struct ggml_tensor * ggml_sqrt(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * a) {
  3378. return ggml_sqrt_impl(ctx, a, false);
  3379. }
  3380. struct ggml_tensor * ggml_sqrt_inplace(
  3381. struct ggml_context * ctx,
  3382. struct ggml_tensor * a) {
  3383. return ggml_sqrt_impl(ctx, a, true);
  3384. }
  3385. // ggml_log
  3386. static struct ggml_tensor * ggml_log_impl(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a,
  3389. bool inplace) {
  3390. bool is_node = false;
  3391. if (!inplace && (a->grad)) {
  3392. is_node = true;
  3393. }
  3394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3395. result->op = GGML_OP_LOG;
  3396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3397. result->src[0] = a;
  3398. return result;
  3399. }
  3400. struct ggml_tensor * ggml_log(
  3401. struct ggml_context * ctx,
  3402. struct ggml_tensor * a) {
  3403. return ggml_log_impl(ctx, a, false);
  3404. }
  3405. struct ggml_tensor * ggml_log_inplace(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a) {
  3408. return ggml_log_impl(ctx, a, true);
  3409. }
  3410. // ggml_sum
  3411. struct ggml_tensor * ggml_sum(
  3412. struct ggml_context * ctx,
  3413. struct ggml_tensor * a) {
  3414. bool is_node = false;
  3415. if (a->grad) {
  3416. is_node = true;
  3417. }
  3418. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3419. result->op = GGML_OP_SUM;
  3420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3421. result->src[0] = a;
  3422. return result;
  3423. }
  3424. // ggml_sum_rows
  3425. struct ggml_tensor * ggml_sum_rows(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a) {
  3428. bool is_node = false;
  3429. if (a->grad) {
  3430. is_node = true;
  3431. }
  3432. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3433. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3434. ne[i] = a->ne[i];
  3435. }
  3436. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3437. result->op = GGML_OP_SUM_ROWS;
  3438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3439. result->src[0] = a;
  3440. return result;
  3441. }
  3442. // ggml_mean
  3443. struct ggml_tensor * ggml_mean(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a) {
  3446. bool is_node = false;
  3447. if (a->grad) {
  3448. GGML_ASSERT(false); // TODO: implement
  3449. is_node = true;
  3450. }
  3451. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3452. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3453. result->op = GGML_OP_MEAN;
  3454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3455. result->src[0] = a;
  3456. return result;
  3457. }
  3458. // ggml_argmax
  3459. struct ggml_tensor * ggml_argmax(
  3460. struct ggml_context * ctx,
  3461. struct ggml_tensor * a) {
  3462. GGML_ASSERT(ggml_is_matrix(a));
  3463. bool is_node = false;
  3464. if (a->grad) {
  3465. GGML_ASSERT(false);
  3466. is_node = true;
  3467. }
  3468. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3469. result->op = GGML_OP_ARGMAX;
  3470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3471. result->src[0] = a;
  3472. return result;
  3473. }
  3474. // ggml_repeat
  3475. struct ggml_tensor * ggml_repeat(
  3476. struct ggml_context * ctx,
  3477. struct ggml_tensor * a,
  3478. struct ggml_tensor * b) {
  3479. GGML_ASSERT(ggml_can_repeat(a, b));
  3480. bool is_node = false;
  3481. if (a->grad) {
  3482. is_node = true;
  3483. }
  3484. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3485. result->op = GGML_OP_REPEAT;
  3486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3487. result->src[0] = a;
  3488. return result;
  3489. }
  3490. // ggml_repeat_back
  3491. struct ggml_tensor * ggml_repeat_back(
  3492. struct ggml_context * ctx,
  3493. struct ggml_tensor * a,
  3494. struct ggml_tensor * b) {
  3495. GGML_ASSERT(ggml_can_repeat(b, a));
  3496. bool is_node = false;
  3497. if (a->grad) {
  3498. is_node = true;
  3499. }
  3500. if (ggml_are_same_shape(a, b) && !is_node) {
  3501. return a;
  3502. }
  3503. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3504. result->op = GGML_OP_REPEAT_BACK;
  3505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3506. result->src[0] = a;
  3507. return result;
  3508. }
  3509. // ggml_concat
  3510. struct ggml_tensor * ggml_concat(
  3511. struct ggml_context* ctx,
  3512. struct ggml_tensor* a,
  3513. struct ggml_tensor* b) {
  3514. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3515. bool is_node = false;
  3516. if (a->grad || b->grad) {
  3517. is_node = true;
  3518. }
  3519. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3520. result->op = GGML_OP_CONCAT;
  3521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3522. result->src[0] = a;
  3523. result->src[1] = b;
  3524. return result;
  3525. }
  3526. // ggml_abs
  3527. struct ggml_tensor * ggml_abs(
  3528. struct ggml_context * ctx,
  3529. struct ggml_tensor * a) {
  3530. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3531. }
  3532. struct ggml_tensor * ggml_abs_inplace(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a) {
  3535. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3536. }
  3537. // ggml_sgn
  3538. struct ggml_tensor * ggml_sgn(
  3539. struct ggml_context * ctx,
  3540. struct ggml_tensor * a) {
  3541. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3542. }
  3543. struct ggml_tensor * ggml_sgn_inplace(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a) {
  3546. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3547. }
  3548. // ggml_neg
  3549. struct ggml_tensor * ggml_neg(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a) {
  3552. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3553. }
  3554. struct ggml_tensor * ggml_neg_inplace(
  3555. struct ggml_context * ctx,
  3556. struct ggml_tensor * a) {
  3557. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3558. }
  3559. // ggml_step
  3560. struct ggml_tensor * ggml_step(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a) {
  3563. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3564. }
  3565. struct ggml_tensor * ggml_step_inplace(
  3566. struct ggml_context * ctx,
  3567. struct ggml_tensor * a) {
  3568. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3569. }
  3570. // ggml_tanh
  3571. struct ggml_tensor * ggml_tanh(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a) {
  3574. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3575. }
  3576. struct ggml_tensor * ggml_tanh_inplace(
  3577. struct ggml_context * ctx,
  3578. struct ggml_tensor * a) {
  3579. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3580. }
  3581. // ggml_elu
  3582. struct ggml_tensor * ggml_elu(
  3583. struct ggml_context * ctx,
  3584. struct ggml_tensor * a) {
  3585. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3586. }
  3587. struct ggml_tensor * ggml_elu_inplace(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a) {
  3590. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3591. }
  3592. // ggml_relu
  3593. struct ggml_tensor * ggml_relu(
  3594. struct ggml_context * ctx,
  3595. struct ggml_tensor * a) {
  3596. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3597. }
  3598. struct ggml_tensor * ggml_relu_inplace(
  3599. struct ggml_context * ctx,
  3600. struct ggml_tensor * a) {
  3601. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3602. }
  3603. // ggml_leaky_relu
  3604. struct ggml_tensor * ggml_leaky_relu(
  3605. struct ggml_context * ctx,
  3606. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3607. bool is_node = false;
  3608. if (!inplace && (a->grad)) {
  3609. is_node = true;
  3610. }
  3611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3612. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3613. result->op = GGML_OP_LEAKY_RELU;
  3614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3615. result->src[0] = a;
  3616. return result;
  3617. }
  3618. // ggml_gelu
  3619. struct ggml_tensor * ggml_gelu(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3623. }
  3624. struct ggml_tensor * ggml_gelu_inplace(
  3625. struct ggml_context * ctx,
  3626. struct ggml_tensor * a) {
  3627. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3628. }
  3629. // ggml_gelu_quick
  3630. struct ggml_tensor * ggml_gelu_quick(
  3631. struct ggml_context * ctx,
  3632. struct ggml_tensor * a) {
  3633. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3634. }
  3635. struct ggml_tensor * ggml_gelu_quick_inplace(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * a) {
  3638. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3639. }
  3640. // ggml_silu
  3641. struct ggml_tensor * ggml_silu(
  3642. struct ggml_context * ctx,
  3643. struct ggml_tensor * a) {
  3644. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3645. }
  3646. struct ggml_tensor * ggml_silu_inplace(
  3647. struct ggml_context * ctx,
  3648. struct ggml_tensor * a) {
  3649. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3650. }
  3651. // ggml_silu_back
  3652. struct ggml_tensor * ggml_silu_back(
  3653. struct ggml_context * ctx,
  3654. struct ggml_tensor * a,
  3655. struct ggml_tensor * b) {
  3656. bool is_node = false;
  3657. if (a->grad || b->grad) {
  3658. // TODO: implement backward
  3659. is_node = true;
  3660. }
  3661. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3662. result->op = GGML_OP_SILU_BACK;
  3663. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3664. result->src[0] = a;
  3665. result->src[1] = b;
  3666. return result;
  3667. }
  3668. // ggml hardswish
  3669. struct ggml_tensor * ggml_hardswish(
  3670. struct ggml_context * ctx,
  3671. struct ggml_tensor * a) {
  3672. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3673. }
  3674. // ggml hardsigmoid
  3675. struct ggml_tensor * ggml_hardsigmoid(
  3676. struct ggml_context * ctx,
  3677. struct ggml_tensor * a) {
  3678. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3679. }
  3680. // ggml_norm
  3681. static struct ggml_tensor * ggml_norm_impl(
  3682. struct ggml_context * ctx,
  3683. struct ggml_tensor * a,
  3684. float eps,
  3685. bool inplace) {
  3686. bool is_node = false;
  3687. if (!inplace && (a->grad)) {
  3688. GGML_ASSERT(false); // TODO: implement backward
  3689. is_node = true;
  3690. }
  3691. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3692. ggml_set_op_params(result, &eps, sizeof(eps));
  3693. result->op = GGML_OP_NORM;
  3694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3695. result->src[0] = a;
  3696. return result;
  3697. }
  3698. struct ggml_tensor * ggml_norm(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. float eps) {
  3702. return ggml_norm_impl(ctx, a, eps, false);
  3703. }
  3704. struct ggml_tensor * ggml_norm_inplace(
  3705. struct ggml_context * ctx,
  3706. struct ggml_tensor * a,
  3707. float eps) {
  3708. return ggml_norm_impl(ctx, a, eps, true);
  3709. }
  3710. // ggml_rms_norm
  3711. static struct ggml_tensor * ggml_rms_norm_impl(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. float eps,
  3715. bool inplace) {
  3716. bool is_node = false;
  3717. if (!inplace && (a->grad)) {
  3718. is_node = true;
  3719. }
  3720. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3721. ggml_set_op_params(result, &eps, sizeof(eps));
  3722. result->op = GGML_OP_RMS_NORM;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src[0] = a;
  3725. return result;
  3726. }
  3727. struct ggml_tensor * ggml_rms_norm(
  3728. struct ggml_context * ctx,
  3729. struct ggml_tensor * a,
  3730. float eps) {
  3731. return ggml_rms_norm_impl(ctx, a, eps, false);
  3732. }
  3733. struct ggml_tensor * ggml_rms_norm_inplace(
  3734. struct ggml_context * ctx,
  3735. struct ggml_tensor * a,
  3736. float eps) {
  3737. return ggml_rms_norm_impl(ctx, a, eps, true);
  3738. }
  3739. // ggml_rms_norm_back
  3740. struct ggml_tensor * ggml_rms_norm_back(
  3741. struct ggml_context * ctx,
  3742. struct ggml_tensor * a,
  3743. struct ggml_tensor * b,
  3744. float eps) {
  3745. bool is_node = false;
  3746. if (a->grad) {
  3747. // TODO: implement backward
  3748. is_node = true;
  3749. }
  3750. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3751. ggml_set_op_params(result, &eps, sizeof(eps));
  3752. result->op = GGML_OP_RMS_NORM_BACK;
  3753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3754. result->src[0] = a;
  3755. result->src[1] = b;
  3756. return result;
  3757. }
  3758. // ggml_group_norm
  3759. static struct ggml_tensor * ggml_group_norm_impl(
  3760. struct ggml_context * ctx,
  3761. struct ggml_tensor * a,
  3762. int n_groups,
  3763. bool inplace) {
  3764. bool is_node = false;
  3765. if (!inplace && (a->grad)) {
  3766. GGML_ASSERT(false); // TODO: implement backward
  3767. is_node = true;
  3768. }
  3769. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3770. result->op_params[0] = n_groups;
  3771. result->op = GGML_OP_GROUP_NORM;
  3772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3773. result->src[0] = a;
  3774. return result;
  3775. }
  3776. struct ggml_tensor * ggml_group_norm(
  3777. struct ggml_context * ctx,
  3778. struct ggml_tensor * a,
  3779. int n_groups) {
  3780. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3781. }
  3782. struct ggml_tensor * ggml_group_norm_inplace(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. int n_groups) {
  3786. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3787. }
  3788. // ggml_mul_mat
  3789. struct ggml_tensor * ggml_mul_mat(
  3790. struct ggml_context * ctx,
  3791. struct ggml_tensor * a,
  3792. struct ggml_tensor * b) {
  3793. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3794. GGML_ASSERT(!ggml_is_transposed(a));
  3795. bool is_node = false;
  3796. if (a->grad || b->grad) {
  3797. is_node = true;
  3798. }
  3799. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3801. result->op = GGML_OP_MUL_MAT;
  3802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3803. result->src[0] = a;
  3804. result->src[1] = b;
  3805. return result;
  3806. }
  3807. void ggml_mul_mat_set_prec(
  3808. struct ggml_tensor * a,
  3809. enum ggml_prec prec) {
  3810. const int32_t prec_i32 = (int32_t) prec;
  3811. ggml_set_op_params_i32(a, 0, prec_i32);
  3812. }
  3813. // ggml_mul_mat_id
  3814. struct ggml_tensor * ggml_mul_mat_id(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * const as[],
  3817. int n_as,
  3818. struct ggml_tensor * ids,
  3819. int id,
  3820. struct ggml_tensor * b) {
  3821. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3822. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3823. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3824. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3825. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3826. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3827. bool is_node = false;
  3828. if (as[0]->grad || b->grad) {
  3829. is_node = true;
  3830. }
  3831. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3832. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3833. ggml_set_op_params_i32(result, 0, id);
  3834. ggml_set_op_params_i32(result, 1, n_as);
  3835. result->op = GGML_OP_MUL_MAT_ID;
  3836. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3837. result->src[0] = ids;
  3838. result->src[1] = b;
  3839. for (int i = 0; i < n_as; i++) {
  3840. struct ggml_tensor * a = as[i];
  3841. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3842. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3843. GGML_ASSERT(!ggml_is_transposed(a));
  3844. result->src[i + 2] = a;
  3845. }
  3846. return result;
  3847. }
  3848. // ggml_out_prod
  3849. struct ggml_tensor * ggml_out_prod(
  3850. struct ggml_context * ctx,
  3851. struct ggml_tensor * a,
  3852. struct ggml_tensor * b) {
  3853. GGML_ASSERT(ggml_can_out_prod(a, b));
  3854. GGML_ASSERT(!ggml_is_transposed(a));
  3855. bool is_node = false;
  3856. if (a->grad || b->grad) {
  3857. is_node = true;
  3858. }
  3859. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3860. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3861. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3862. result->op = GGML_OP_OUT_PROD;
  3863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3864. result->src[0] = a;
  3865. result->src[1] = b;
  3866. return result;
  3867. }
  3868. // ggml_scale
  3869. static struct ggml_tensor * ggml_scale_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. float s,
  3873. bool inplace) {
  3874. GGML_ASSERT(ggml_is_padded_1d(a));
  3875. bool is_node = false;
  3876. if (a->grad) {
  3877. is_node = true;
  3878. }
  3879. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3880. ggml_set_op_params(result, &s, sizeof(s));
  3881. result->op = GGML_OP_SCALE;
  3882. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3883. result->src[0] = a;
  3884. return result;
  3885. }
  3886. struct ggml_tensor * ggml_scale(
  3887. struct ggml_context * ctx,
  3888. struct ggml_tensor * a,
  3889. float s) {
  3890. return ggml_scale_impl(ctx, a, s, false);
  3891. }
  3892. struct ggml_tensor * ggml_scale_inplace(
  3893. struct ggml_context * ctx,
  3894. struct ggml_tensor * a,
  3895. float s) {
  3896. return ggml_scale_impl(ctx, a, s, true);
  3897. }
  3898. // ggml_set
  3899. static struct ggml_tensor * ggml_set_impl(
  3900. struct ggml_context * ctx,
  3901. struct ggml_tensor * a,
  3902. struct ggml_tensor * b,
  3903. size_t nb1,
  3904. size_t nb2,
  3905. size_t nb3,
  3906. size_t offset,
  3907. bool inplace) {
  3908. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3909. bool is_node = false;
  3910. if (a->grad || b->grad) {
  3911. is_node = true;
  3912. }
  3913. // make a view of the destination
  3914. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3915. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3916. ggml_set_op_params(result, params, sizeof(params));
  3917. result->op = GGML_OP_SET;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. result->src[1] = b;
  3921. return result;
  3922. }
  3923. struct ggml_tensor * ggml_set(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b,
  3927. size_t nb1,
  3928. size_t nb2,
  3929. size_t nb3,
  3930. size_t offset) {
  3931. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3932. }
  3933. struct ggml_tensor * ggml_set_inplace(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. struct ggml_tensor * b,
  3937. size_t nb1,
  3938. size_t nb2,
  3939. size_t nb3,
  3940. size_t offset) {
  3941. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3942. }
  3943. struct ggml_tensor * ggml_set_1d(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b,
  3947. size_t offset) {
  3948. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3949. }
  3950. struct ggml_tensor * ggml_set_1d_inplace(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. struct ggml_tensor * b,
  3954. size_t offset) {
  3955. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3956. }
  3957. struct ggml_tensor * ggml_set_2d(
  3958. struct ggml_context * ctx,
  3959. struct ggml_tensor * a,
  3960. struct ggml_tensor * b,
  3961. size_t nb1,
  3962. size_t offset) {
  3963. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3964. }
  3965. struct ggml_tensor * ggml_set_2d_inplace(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. struct ggml_tensor * b,
  3969. size_t nb1,
  3970. size_t offset) {
  3971. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3972. }
  3973. // ggml_cpy
  3974. static struct ggml_tensor * ggml_cpy_impl(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b) {
  3978. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3979. bool is_node = false;
  3980. if (a->grad || b->grad) {
  3981. // inplace is false and either one have a grad
  3982. is_node = true;
  3983. }
  3984. // make a view of the destination
  3985. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3986. if (strlen(b->name) > 0) {
  3987. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3988. } else {
  3989. ggml_format_name(result, "%s (copy)", a->name);
  3990. }
  3991. result->op = GGML_OP_CPY;
  3992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3993. result->src[0] = a;
  3994. result->src[1] = b;
  3995. return result;
  3996. }
  3997. struct ggml_tensor * ggml_cpy(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a,
  4000. struct ggml_tensor * b) {
  4001. return ggml_cpy_impl(ctx, a, b);
  4002. }
  4003. struct ggml_tensor * ggml_cast(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a,
  4006. enum ggml_type type) {
  4007. bool is_node = false;
  4008. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4009. ggml_format_name(result, "%s (copy)", a->name);
  4010. result->op = GGML_OP_CPY;
  4011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4012. result->src[0] = a;
  4013. result->src[1] = result;
  4014. return result;
  4015. }
  4016. // ggml_cont
  4017. static struct ggml_tensor * ggml_cont_impl(
  4018. struct ggml_context * ctx,
  4019. struct ggml_tensor * a) {
  4020. bool is_node = false;
  4021. if (a->grad) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4025. ggml_format_name(result, "%s (cont)", a->name);
  4026. result->op = GGML_OP_CONT;
  4027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4028. result->src[0] = a;
  4029. return result;
  4030. }
  4031. struct ggml_tensor * ggml_cont(
  4032. struct ggml_context * ctx,
  4033. struct ggml_tensor * a) {
  4034. return ggml_cont_impl(ctx, a);
  4035. }
  4036. // make contiguous, with new shape
  4037. GGML_API struct ggml_tensor * ggml_cont_1d(
  4038. struct ggml_context * ctx,
  4039. struct ggml_tensor * a,
  4040. int64_t ne0) {
  4041. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4042. }
  4043. GGML_API struct ggml_tensor * ggml_cont_2d(
  4044. struct ggml_context * ctx,
  4045. struct ggml_tensor * a,
  4046. int64_t ne0,
  4047. int64_t ne1) {
  4048. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4049. }
  4050. GGML_API struct ggml_tensor * ggml_cont_3d(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. int64_t ne0,
  4054. int64_t ne1,
  4055. int64_t ne2) {
  4056. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4057. }
  4058. struct ggml_tensor * ggml_cont_4d(
  4059. struct ggml_context * ctx,
  4060. struct ggml_tensor * a,
  4061. int64_t ne0,
  4062. int64_t ne1,
  4063. int64_t ne2,
  4064. int64_t ne3) {
  4065. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4066. bool is_node = false;
  4067. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4068. ggml_format_name(result, "%s (cont)", a->name);
  4069. result->op = GGML_OP_CONT;
  4070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4071. result->src[0] = a;
  4072. return result;
  4073. }
  4074. // ggml_reshape
  4075. struct ggml_tensor * ggml_reshape(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b) {
  4079. GGML_ASSERT(ggml_is_contiguous(a));
  4080. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4081. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4082. bool is_node = false;
  4083. if (a->grad) {
  4084. is_node = true;
  4085. }
  4086. if (b->grad) {
  4087. // gradient propagation is not supported
  4088. //GGML_ASSERT(false);
  4089. }
  4090. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4091. ggml_format_name(result, "%s (reshaped)", a->name);
  4092. result->op = GGML_OP_RESHAPE;
  4093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4094. result->src[0] = a;
  4095. return result;
  4096. }
  4097. struct ggml_tensor * ggml_reshape_1d(
  4098. struct ggml_context * ctx,
  4099. struct ggml_tensor * a,
  4100. int64_t ne0) {
  4101. GGML_ASSERT(ggml_is_contiguous(a));
  4102. GGML_ASSERT(ggml_nelements(a) == ne0);
  4103. bool is_node = false;
  4104. if (a->grad) {
  4105. is_node = true;
  4106. }
  4107. const int64_t ne[1] = { ne0 };
  4108. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4109. ggml_format_name(result, "%s (reshaped)", a->name);
  4110. result->op = GGML_OP_RESHAPE;
  4111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4112. result->src[0] = a;
  4113. return result;
  4114. }
  4115. struct ggml_tensor * ggml_reshape_2d(
  4116. struct ggml_context * ctx,
  4117. struct ggml_tensor * a,
  4118. int64_t ne0,
  4119. int64_t ne1) {
  4120. GGML_ASSERT(ggml_is_contiguous(a));
  4121. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4122. bool is_node = false;
  4123. if (a->grad) {
  4124. is_node = true;
  4125. }
  4126. const int64_t ne[2] = { ne0, ne1 };
  4127. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4128. ggml_format_name(result, "%s (reshaped)", a->name);
  4129. result->op = GGML_OP_RESHAPE;
  4130. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4131. result->src[0] = a;
  4132. return result;
  4133. }
  4134. struct ggml_tensor * ggml_reshape_3d(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. int64_t ne0,
  4138. int64_t ne1,
  4139. int64_t ne2) {
  4140. GGML_ASSERT(ggml_is_contiguous(a));
  4141. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4142. bool is_node = false;
  4143. if (a->grad) {
  4144. is_node = true;
  4145. }
  4146. const int64_t ne[3] = { ne0, ne1, ne2 };
  4147. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4148. ggml_format_name(result, "%s (reshaped)", a->name);
  4149. result->op = GGML_OP_RESHAPE;
  4150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4151. result->src[0] = a;
  4152. return result;
  4153. }
  4154. struct ggml_tensor * ggml_reshape_4d(
  4155. struct ggml_context * ctx,
  4156. struct ggml_tensor * a,
  4157. int64_t ne0,
  4158. int64_t ne1,
  4159. int64_t ne2,
  4160. int64_t ne3) {
  4161. GGML_ASSERT(ggml_is_contiguous(a));
  4162. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4163. bool is_node = false;
  4164. if (a->grad) {
  4165. is_node = true;
  4166. }
  4167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4168. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4169. ggml_format_name(result, "%s (reshaped)", a->name);
  4170. result->op = GGML_OP_RESHAPE;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src[0] = a;
  4173. return result;
  4174. }
  4175. static struct ggml_tensor * ggml_view_impl(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. int n_dims,
  4179. const int64_t * ne,
  4180. size_t offset) {
  4181. bool is_node = false;
  4182. if (a->grad) {
  4183. is_node = true;
  4184. }
  4185. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4186. ggml_format_name(result, "%s (view)", a->name);
  4187. ggml_set_op_params(result, &offset, sizeof(offset));
  4188. result->op = GGML_OP_VIEW;
  4189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4190. result->src[0] = a;
  4191. return result;
  4192. }
  4193. // ggml_view_1d
  4194. struct ggml_tensor * ggml_view_1d(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. int64_t ne0,
  4198. size_t offset) {
  4199. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4200. return result;
  4201. }
  4202. // ggml_view_2d
  4203. struct ggml_tensor * ggml_view_2d(
  4204. struct ggml_context * ctx,
  4205. struct ggml_tensor * a,
  4206. int64_t ne0,
  4207. int64_t ne1,
  4208. size_t nb1,
  4209. size_t offset) {
  4210. const int64_t ne[2] = { ne0, ne1 };
  4211. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4212. result->nb[1] = nb1;
  4213. result->nb[2] = result->nb[1]*ne1;
  4214. result->nb[3] = result->nb[2];
  4215. return result;
  4216. }
  4217. // ggml_view_3d
  4218. struct ggml_tensor * ggml_view_3d(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. int64_t ne0,
  4222. int64_t ne1,
  4223. int64_t ne2,
  4224. size_t nb1,
  4225. size_t nb2,
  4226. size_t offset) {
  4227. const int64_t ne[3] = { ne0, ne1, ne2 };
  4228. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4229. result->nb[1] = nb1;
  4230. result->nb[2] = nb2;
  4231. result->nb[3] = result->nb[2]*ne2;
  4232. return result;
  4233. }
  4234. // ggml_view_4d
  4235. struct ggml_tensor * ggml_view_4d(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a,
  4238. int64_t ne0,
  4239. int64_t ne1,
  4240. int64_t ne2,
  4241. int64_t ne3,
  4242. size_t nb1,
  4243. size_t nb2,
  4244. size_t nb3,
  4245. size_t offset) {
  4246. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4247. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4248. result->nb[1] = nb1;
  4249. result->nb[2] = nb2;
  4250. result->nb[3] = nb3;
  4251. return result;
  4252. }
  4253. // ggml_permute
  4254. struct ggml_tensor * ggml_permute(
  4255. struct ggml_context * ctx,
  4256. struct ggml_tensor * a,
  4257. int axis0,
  4258. int axis1,
  4259. int axis2,
  4260. int axis3) {
  4261. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4262. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4263. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4264. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4265. GGML_ASSERT(axis0 != axis1);
  4266. GGML_ASSERT(axis0 != axis2);
  4267. GGML_ASSERT(axis0 != axis3);
  4268. GGML_ASSERT(axis1 != axis2);
  4269. GGML_ASSERT(axis1 != axis3);
  4270. GGML_ASSERT(axis2 != axis3);
  4271. bool is_node = false;
  4272. if (a->grad) {
  4273. is_node = true;
  4274. }
  4275. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4276. ggml_format_name(result, "%s (permuted)", a->name);
  4277. int ne[GGML_MAX_DIMS];
  4278. int nb[GGML_MAX_DIMS];
  4279. ne[axis0] = a->ne[0];
  4280. ne[axis1] = a->ne[1];
  4281. ne[axis2] = a->ne[2];
  4282. ne[axis3] = a->ne[3];
  4283. nb[axis0] = a->nb[0];
  4284. nb[axis1] = a->nb[1];
  4285. nb[axis2] = a->nb[2];
  4286. nb[axis3] = a->nb[3];
  4287. result->ne[0] = ne[0];
  4288. result->ne[1] = ne[1];
  4289. result->ne[2] = ne[2];
  4290. result->ne[3] = ne[3];
  4291. result->nb[0] = nb[0];
  4292. result->nb[1] = nb[1];
  4293. result->nb[2] = nb[2];
  4294. result->nb[3] = nb[3];
  4295. result->op = GGML_OP_PERMUTE;
  4296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4297. result->src[0] = a;
  4298. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4299. ggml_set_op_params(result, params, sizeof(params));
  4300. return result;
  4301. }
  4302. // ggml_transpose
  4303. struct ggml_tensor * ggml_transpose(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a) {
  4306. bool is_node = false;
  4307. if (a->grad) {
  4308. is_node = true;
  4309. }
  4310. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4311. ggml_format_name(result, "%s (transposed)", a->name);
  4312. result->ne[0] = a->ne[1];
  4313. result->ne[1] = a->ne[0];
  4314. result->nb[0] = a->nb[1];
  4315. result->nb[1] = a->nb[0];
  4316. result->op = GGML_OP_TRANSPOSE;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src[0] = a;
  4319. return result;
  4320. }
  4321. // ggml_get_rows
  4322. struct ggml_tensor * ggml_get_rows(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4327. GGML_ASSERT(b->ne[3] == 1);
  4328. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4329. bool is_node = false;
  4330. if (a->grad || b->grad) {
  4331. is_node = true;
  4332. }
  4333. // TODO: implement non F32 return
  4334. enum ggml_type type = GGML_TYPE_F32;
  4335. if (a->type == GGML_TYPE_I32) {
  4336. type = a->type;
  4337. }
  4338. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4339. result->op = GGML_OP_GET_ROWS;
  4340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4341. result->src[0] = a;
  4342. result->src[1] = b;
  4343. return result;
  4344. }
  4345. // ggml_get_rows_back
  4346. struct ggml_tensor * ggml_get_rows_back(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. struct ggml_tensor * b,
  4350. struct ggml_tensor * c) {
  4351. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4352. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4353. bool is_node = false;
  4354. if (a->grad || b->grad) {
  4355. is_node = true;
  4356. }
  4357. // TODO: implement non F32 return
  4358. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4359. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4360. result->op = GGML_OP_GET_ROWS_BACK;
  4361. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4362. result->src[0] = a;
  4363. result->src[1] = b;
  4364. return result;
  4365. }
  4366. // ggml_diag
  4367. struct ggml_tensor * ggml_diag(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a) {
  4370. GGML_ASSERT(a->ne[1] == 1);
  4371. bool is_node = false;
  4372. if (a->grad) {
  4373. is_node = true;
  4374. }
  4375. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4376. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4377. result->op = GGML_OP_DIAG;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src[0] = a;
  4380. return result;
  4381. }
  4382. // ggml_diag_mask_inf
  4383. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a,
  4386. int n_past,
  4387. bool inplace) {
  4388. bool is_node = false;
  4389. if (a->grad) {
  4390. is_node = true;
  4391. }
  4392. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4393. int32_t params[] = { n_past };
  4394. ggml_set_op_params(result, params, sizeof(params));
  4395. result->op = GGML_OP_DIAG_MASK_INF;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. return result;
  4399. }
  4400. struct ggml_tensor * ggml_diag_mask_inf(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. int n_past) {
  4404. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4405. }
  4406. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. int n_past) {
  4410. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4411. }
  4412. // ggml_diag_mask_zero
  4413. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. int n_past,
  4417. bool inplace) {
  4418. bool is_node = false;
  4419. if (a->grad) {
  4420. is_node = true;
  4421. }
  4422. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4423. int32_t params[] = { n_past };
  4424. ggml_set_op_params(result, params, sizeof(params));
  4425. result->op = GGML_OP_DIAG_MASK_ZERO;
  4426. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4427. result->src[0] = a;
  4428. return result;
  4429. }
  4430. struct ggml_tensor * ggml_diag_mask_zero(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. int n_past) {
  4434. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4435. }
  4436. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a,
  4439. int n_past) {
  4440. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4441. }
  4442. // ggml_soft_max
  4443. static struct ggml_tensor * ggml_soft_max_impl(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a,
  4446. struct ggml_tensor * mask,
  4447. struct ggml_tensor * pos,
  4448. float scale,
  4449. float max_bias,
  4450. bool inplace) {
  4451. GGML_ASSERT(ggml_is_contiguous(a));
  4452. if (mask) {
  4453. GGML_ASSERT(ggml_is_contiguous(mask));
  4454. GGML_ASSERT(ggml_is_matrix(mask));
  4455. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4456. }
  4457. if (pos) {
  4458. GGML_ASSERT(ggml_is_vector(pos));
  4459. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4460. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4461. }
  4462. if (max_bias > 0.0f) {
  4463. GGML_ASSERT(pos);
  4464. }
  4465. bool is_node = false;
  4466. if (a->grad) {
  4467. is_node = true;
  4468. }
  4469. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4470. float params[] = { scale, max_bias };
  4471. ggml_set_op_params(result, params, sizeof(params));
  4472. result->op = GGML_OP_SOFT_MAX;
  4473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4474. result->src[0] = a;
  4475. result->src[1] = mask;
  4476. result->src[2] = pos;
  4477. return result;
  4478. }
  4479. struct ggml_tensor * ggml_soft_max(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a) {
  4482. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4483. }
  4484. struct ggml_tensor * ggml_soft_max_inplace(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a) {
  4487. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4488. }
  4489. struct ggml_tensor * ggml_soft_max_ext(
  4490. struct ggml_context * ctx,
  4491. struct ggml_tensor * a,
  4492. struct ggml_tensor * mask,
  4493. struct ggml_tensor * pos,
  4494. float scale,
  4495. float max_bias) {
  4496. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4497. }
  4498. // ggml_soft_max_back
  4499. static struct ggml_tensor * ggml_soft_max_back_impl(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. struct ggml_tensor * b,
  4503. bool inplace) {
  4504. bool is_node = false;
  4505. if (a->grad || b->grad) {
  4506. is_node = true; // TODO : implement backward pass
  4507. }
  4508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4509. result->op = GGML_OP_SOFT_MAX_BACK;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. struct ggml_tensor * ggml_soft_max_back(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. struct ggml_tensor * b) {
  4519. return ggml_soft_max_back_impl(ctx, a, b, false);
  4520. }
  4521. struct ggml_tensor * ggml_soft_max_back_inplace(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a,
  4524. struct ggml_tensor * b) {
  4525. return ggml_soft_max_back_impl(ctx, a, b, true);
  4526. }
  4527. // ggml_rope
  4528. static struct ggml_tensor * ggml_rope_impl(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a,
  4531. struct ggml_tensor * b,
  4532. int n_dims,
  4533. int mode,
  4534. int n_ctx,
  4535. int n_orig_ctx,
  4536. float freq_base,
  4537. float freq_scale,
  4538. float ext_factor,
  4539. float attn_factor,
  4540. float beta_fast,
  4541. float beta_slow,
  4542. float xpos_base,
  4543. bool xpos_down,
  4544. bool inplace) {
  4545. GGML_ASSERT(ggml_is_vector(b));
  4546. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4547. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4548. bool is_node = false;
  4549. if (a->grad) {
  4550. is_node = true;
  4551. }
  4552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4553. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4554. memcpy(params + 5, &freq_base, sizeof(float));
  4555. memcpy(params + 6, &freq_scale, sizeof(float));
  4556. memcpy(params + 7, &ext_factor, sizeof(float));
  4557. memcpy(params + 8, &attn_factor, sizeof(float));
  4558. memcpy(params + 9, &beta_fast, sizeof(float));
  4559. memcpy(params + 10, &beta_slow, sizeof(float));
  4560. memcpy(params + 11, &xpos_base, sizeof(float));
  4561. memcpy(params + 12, &xpos_down, sizeof(bool));
  4562. ggml_set_op_params(result, params, sizeof(params));
  4563. result->op = GGML_OP_ROPE;
  4564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4565. result->src[0] = a;
  4566. result->src[1] = b;
  4567. return result;
  4568. }
  4569. struct ggml_tensor * ggml_rope(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. struct ggml_tensor * b,
  4573. int n_dims,
  4574. int mode,
  4575. int n_ctx) {
  4576. return ggml_rope_impl(
  4577. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4578. );
  4579. }
  4580. struct ggml_tensor * ggml_rope_inplace(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a,
  4583. struct ggml_tensor * b,
  4584. int n_dims,
  4585. int mode,
  4586. int n_ctx) {
  4587. return ggml_rope_impl(
  4588. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4589. );
  4590. }
  4591. struct ggml_tensor * ggml_rope_custom(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a,
  4594. struct ggml_tensor * b,
  4595. int n_dims,
  4596. int mode,
  4597. int n_ctx,
  4598. int n_orig_ctx,
  4599. float freq_base,
  4600. float freq_scale,
  4601. float ext_factor,
  4602. float attn_factor,
  4603. float beta_fast,
  4604. float beta_slow) {
  4605. return ggml_rope_impl(
  4606. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4607. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4608. );
  4609. }
  4610. struct ggml_tensor * ggml_rope_custom_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a,
  4613. struct ggml_tensor * b,
  4614. int n_dims,
  4615. int mode,
  4616. int n_ctx,
  4617. int n_orig_ctx,
  4618. float freq_base,
  4619. float freq_scale,
  4620. float ext_factor,
  4621. float attn_factor,
  4622. float beta_fast,
  4623. float beta_slow) {
  4624. return ggml_rope_impl(
  4625. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4626. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4627. );
  4628. }
  4629. struct ggml_tensor * ggml_rope_xpos_inplace(
  4630. struct ggml_context * ctx,
  4631. struct ggml_tensor * a,
  4632. struct ggml_tensor * b,
  4633. int n_dims,
  4634. float base,
  4635. bool down) {
  4636. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4637. }
  4638. // ggml_rope_back
  4639. struct ggml_tensor * ggml_rope_back(
  4640. struct ggml_context * ctx,
  4641. struct ggml_tensor * a,
  4642. struct ggml_tensor * b,
  4643. int n_dims,
  4644. int mode,
  4645. int n_ctx,
  4646. int n_orig_ctx,
  4647. float freq_base,
  4648. float freq_scale,
  4649. float ext_factor,
  4650. float attn_factor,
  4651. float beta_fast,
  4652. float beta_slow,
  4653. float xpos_base,
  4654. bool xpos_down) {
  4655. GGML_ASSERT(ggml_is_vector(b));
  4656. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4657. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4658. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4659. bool is_node = false;
  4660. if (a->grad) {
  4661. is_node = false; // TODO: implement backward
  4662. }
  4663. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4664. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4665. memcpy(params + 5, &freq_base, sizeof(float));
  4666. memcpy(params + 6, &freq_scale, sizeof(float));
  4667. memcpy(params + 7, &ext_factor, sizeof(float));
  4668. memcpy(params + 8, &attn_factor, sizeof(float));
  4669. memcpy(params + 9, &beta_fast, sizeof(float));
  4670. memcpy(params + 10, &beta_slow, sizeof(float));
  4671. memcpy(params + 11, &xpos_base, sizeof(float));
  4672. memcpy(params + 12, &xpos_down, sizeof(bool));
  4673. ggml_set_op_params(result, params, sizeof(params));
  4674. result->op = GGML_OP_ROPE_BACK;
  4675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4676. result->src[0] = a;
  4677. result->src[1] = b;
  4678. return result;
  4679. }
  4680. // ggml_alibi
  4681. struct ggml_tensor * ggml_alibi(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int n_past,
  4685. int n_head,
  4686. float bias_max) {
  4687. GGML_ASSERT(n_past >= 0);
  4688. bool is_node = false;
  4689. if (a->grad) {
  4690. GGML_ASSERT(false); // TODO: implement backward
  4691. is_node = true;
  4692. }
  4693. // TODO: when implement backward, fix this:
  4694. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4695. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4696. int32_t op_params[3] = { n_past, n_head };
  4697. memcpy(op_params + 2, &bias_max, sizeof(float));
  4698. ggml_set_op_params(result, op_params, sizeof(op_params));
  4699. result->op = GGML_OP_ALIBI;
  4700. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4701. result->src[0] = a;
  4702. return result;
  4703. }
  4704. // ggml_clamp
  4705. struct ggml_tensor * ggml_clamp(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. float min,
  4709. float max) {
  4710. bool is_node = false;
  4711. if (a->grad) {
  4712. GGML_ASSERT(false); // TODO: implement backward
  4713. is_node = true;
  4714. }
  4715. // TODO: when implement backward, fix this:
  4716. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4717. float params[] = { min, max };
  4718. ggml_set_op_params(result, params, sizeof(params));
  4719. result->op = GGML_OP_CLAMP;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. return result;
  4723. }
  4724. // ggml_conv_1d
  4725. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4726. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4727. }
  4728. GGML_API struct ggml_tensor * ggml_conv_1d(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. struct ggml_tensor * b,
  4732. int s0,
  4733. int p0,
  4734. int d0) {
  4735. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4736. struct ggml_tensor * result =
  4737. ggml_mul_mat(ctx,
  4738. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4739. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4740. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4741. return result;
  4742. }
  4743. // ggml_conv_1d_ph
  4744. struct ggml_tensor* ggml_conv_1d_ph(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. int s,
  4749. int d) {
  4750. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4751. }
  4752. // ggml_conv_transpose_1d
  4753. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4754. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4755. }
  4756. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4757. struct ggml_context * ctx,
  4758. struct ggml_tensor * a,
  4759. struct ggml_tensor * b,
  4760. int s0,
  4761. int p0,
  4762. int d0) {
  4763. GGML_ASSERT(ggml_is_matrix(b));
  4764. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4765. GGML_ASSERT(a->ne[3] == 1);
  4766. GGML_ASSERT(p0 == 0);
  4767. GGML_ASSERT(d0 == 1);
  4768. bool is_node = false;
  4769. if (a->grad || b->grad) {
  4770. GGML_ASSERT(false); // TODO: implement backward
  4771. is_node = true;
  4772. }
  4773. const int64_t ne[4] = {
  4774. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4775. a->ne[1], b->ne[2], 1,
  4776. };
  4777. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4778. int32_t params[] = { s0, p0, d0 };
  4779. ggml_set_op_params(result, params, sizeof(params));
  4780. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4781. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4782. result->src[0] = a;
  4783. result->src[1] = b;
  4784. return result;
  4785. }
  4786. // ggml_conv_depthwise
  4787. struct ggml_tensor * ggml_conv_depthwise_2d(
  4788. struct ggml_context * ctx,
  4789. struct ggml_tensor * a,
  4790. struct ggml_tensor * b,
  4791. int s0,
  4792. int s1,
  4793. int p0,
  4794. int p1,
  4795. int d0,
  4796. int d1) {
  4797. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4798. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4799. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4800. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4801. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4802. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4803. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4804. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4805. return result;
  4806. }
  4807. // ggml_conv_2d
  4808. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4809. // a: [OC,IC, KH, KW]
  4810. // b: [N, IC, IH, IW]
  4811. // result: [N, OH, OW, IC*KH*KW]
  4812. struct ggml_tensor * ggml_im2col(
  4813. struct ggml_context * ctx,
  4814. struct ggml_tensor * a,
  4815. struct ggml_tensor * b,
  4816. int s0,
  4817. int s1,
  4818. int p0,
  4819. int p1,
  4820. int d0,
  4821. int d1,
  4822. bool is_2D,
  4823. enum ggml_type dst_type) {
  4824. if(is_2D) {
  4825. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4826. } else {
  4827. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4828. }
  4829. bool is_node = false;
  4830. if (a->grad || b->grad) {
  4831. GGML_ASSERT(false); // TODO: implement backward
  4832. is_node = true;
  4833. }
  4834. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4835. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4836. const int64_t ne[4] = {
  4837. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4838. OW,
  4839. is_2D ? OH : b->ne[2],
  4840. is_2D ? b->ne[3] : 1,
  4841. };
  4842. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4843. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4844. ggml_set_op_params(result, params, sizeof(params));
  4845. result->op = GGML_OP_IM2COL;
  4846. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4847. result->src[0] = a;
  4848. result->src[1] = b;
  4849. return result;
  4850. }
  4851. // a: [OC,IC, KH, KW]
  4852. // b: [N, IC, IH, IW]
  4853. // result: [N, OC, OH, OW]
  4854. struct ggml_tensor * ggml_conv_2d(
  4855. struct ggml_context * ctx,
  4856. struct ggml_tensor * a,
  4857. struct ggml_tensor * b,
  4858. int s0,
  4859. int s1,
  4860. int p0,
  4861. int p1,
  4862. int d0,
  4863. int d1) {
  4864. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4865. struct ggml_tensor * result =
  4866. ggml_mul_mat(ctx,
  4867. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4868. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4869. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4870. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4871. return result;
  4872. }
  4873. // ggml_conv_2d_sk_p0
  4874. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4875. struct ggml_context * ctx,
  4876. struct ggml_tensor * a,
  4877. struct ggml_tensor * b) {
  4878. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4879. }
  4880. // ggml_conv_2d_s1_ph
  4881. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b) {
  4885. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4886. }
  4887. // ggml_conv_transpose_2d_p0
  4888. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4889. return (ins - 1) * s - 2 * p + ks;
  4890. }
  4891. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4892. struct ggml_context * ctx,
  4893. struct ggml_tensor * a,
  4894. struct ggml_tensor * b,
  4895. int stride) {
  4896. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4897. bool is_node = false;
  4898. if (a->grad || b->grad) {
  4899. GGML_ASSERT(false); // TODO: implement backward
  4900. is_node = true;
  4901. }
  4902. const int64_t ne[4] = {
  4903. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4904. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4905. a->ne[2], b->ne[3],
  4906. };
  4907. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4908. ggml_set_op_params_i32(result, 0, stride);
  4909. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4911. result->src[0] = a;
  4912. result->src[1] = b;
  4913. return result;
  4914. }
  4915. // ggml_pool_*
  4916. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4917. return (ins + 2 * p - ks) / s + 1;
  4918. }
  4919. // ggml_pool_1d
  4920. struct ggml_tensor * ggml_pool_1d(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. enum ggml_op_pool op,
  4924. int k0,
  4925. int s0,
  4926. int p0) {
  4927. bool is_node = false;
  4928. if (a->grad) {
  4929. GGML_ASSERT(false); // TODO: implement backward
  4930. is_node = true;
  4931. }
  4932. const int64_t ne[4] = {
  4933. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4934. a->ne[1],
  4935. a->ne[2],
  4936. a->ne[3],
  4937. };
  4938. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4939. int32_t params[] = { op, k0, s0, p0 };
  4940. ggml_set_op_params(result, params, sizeof(params));
  4941. result->op = GGML_OP_POOL_1D;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. return result;
  4945. }
  4946. // ggml_pool_2d
  4947. struct ggml_tensor * ggml_pool_2d(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. enum ggml_op_pool op,
  4951. int k0,
  4952. int k1,
  4953. int s0,
  4954. int s1,
  4955. float p0,
  4956. float p1) {
  4957. bool is_node = false;
  4958. if (a->grad) {
  4959. GGML_ASSERT(false); // TODO: implement backward
  4960. is_node = true;
  4961. }
  4962. struct ggml_tensor * result;
  4963. const int64_t ne[3] = {
  4964. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4965. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4966. a->ne[2],
  4967. };
  4968. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4969. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4970. ggml_set_op_params(result, params, sizeof(params));
  4971. result->op = GGML_OP_POOL_2D;
  4972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4973. result->src[0] = a;
  4974. return result;
  4975. }
  4976. // ggml_upscale
  4977. static struct ggml_tensor * ggml_upscale_impl(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. int scale_factor) {
  4981. bool is_node = false;
  4982. if (a->grad) {
  4983. GGML_ASSERT(false); // TODO: implement backward
  4984. is_node = true;
  4985. }
  4986. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4987. a->ne[0] * scale_factor,
  4988. a->ne[1] * scale_factor,
  4989. a->ne[2], a->ne[3]);
  4990. result->op = GGML_OP_UPSCALE;
  4991. result->op_params[0] = scale_factor;
  4992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4993. result->src[0] = a;
  4994. return result;
  4995. }
  4996. struct ggml_tensor * ggml_pad(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. int p0, int p1, int p2, int p3) {
  5000. bool is_node = false;
  5001. if (a->grad) {
  5002. GGML_ASSERT(false); // TODO: implement backward
  5003. is_node = true;
  5004. }
  5005. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5006. a->ne[0] + p0,
  5007. a->ne[1] + p1,
  5008. a->ne[2] + p2,
  5009. a->ne[3] + p3);
  5010. result->op = GGML_OP_PAD;
  5011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5012. result->src[0] = a;
  5013. return result;
  5014. }
  5015. struct ggml_tensor * ggml_upscale(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * a,
  5018. int scale_factor) {
  5019. return ggml_upscale_impl(ctx, a, scale_factor);
  5020. }
  5021. struct ggml_tensor * ggml_arange(
  5022. struct ggml_context * ctx,
  5023. float start,
  5024. float stop,
  5025. float step) {
  5026. GGML_ASSERT(stop > start);
  5027. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5028. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5029. result->op = GGML_OP_ARANGE;
  5030. ggml_set_op_params_f32(result, 0, start);
  5031. ggml_set_op_params_f32(result, 1, stop);
  5032. ggml_set_op_params_f32(result, 2, step);
  5033. return result;
  5034. }
  5035. struct ggml_tensor * ggml_timestep_embedding(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * timesteps,
  5038. int dim,
  5039. int max_period) {
  5040. bool is_node = false;
  5041. if (timesteps->grad) {
  5042. GGML_ASSERT(false); // TODO: implement backward
  5043. is_node = true;
  5044. }
  5045. int actual_dim = dim;
  5046. if (dim % 2 != 0) {
  5047. actual_dim = dim + 1;
  5048. }
  5049. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5050. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5051. ggml_set_op_params_i32(result, 0, dim);
  5052. ggml_set_op_params_i32(result, 1, max_period);
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src[0] = timesteps;
  5055. return result;
  5056. }
  5057. // ggml_argsort
  5058. struct ggml_tensor * ggml_argsort(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a,
  5061. enum ggml_sort_order order) {
  5062. bool is_node = false;
  5063. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5064. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5065. result->op = GGML_OP_ARGSORT;
  5066. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5067. result->src[0] = a;
  5068. return result;
  5069. }
  5070. // ggml_top_k
  5071. struct ggml_tensor * ggml_top_k(
  5072. struct ggml_context * ctx,
  5073. struct ggml_tensor * a,
  5074. int k) {
  5075. GGML_ASSERT(a->ne[0] >= k);
  5076. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5077. result = ggml_view_4d(ctx, result,
  5078. k, result->ne[1], result->ne[2], result->ne[3],
  5079. result->nb[1], result->nb[2], result->nb[3],
  5080. 0);
  5081. return result;
  5082. }
  5083. // ggml_flash_attn
  5084. struct ggml_tensor * ggml_flash_attn(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * q,
  5087. struct ggml_tensor * k,
  5088. struct ggml_tensor * v,
  5089. bool masked) {
  5090. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5091. // TODO: check if vT can be multiplied by (k*qT)
  5092. bool is_node = false;
  5093. if (q->grad || k->grad || v->grad) {
  5094. is_node = true;
  5095. }
  5096. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5097. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5098. int32_t t = masked ? 1 : 0;
  5099. ggml_set_op_params(result, &t, sizeof(t));
  5100. result->op = GGML_OP_FLASH_ATTN;
  5101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5102. result->src[0] = q;
  5103. result->src[1] = k;
  5104. result->src[2] = v;
  5105. return result;
  5106. }
  5107. // ggml_flash_ff
  5108. struct ggml_tensor * ggml_flash_ff(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. struct ggml_tensor * b0,
  5112. struct ggml_tensor * b1,
  5113. struct ggml_tensor * c0,
  5114. struct ggml_tensor * c1) {
  5115. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5116. // TODO: more checks
  5117. bool is_node = false;
  5118. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5119. is_node = true;
  5120. }
  5121. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5122. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5123. result->op = GGML_OP_FLASH_FF;
  5124. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5125. result->src[0] = a;
  5126. result->src[1] = b0;
  5127. result->src[2] = b1;
  5128. result->src[3] = c0;
  5129. result->src[4] = c1;
  5130. return result;
  5131. }
  5132. // ggml_flash_attn_back
  5133. struct ggml_tensor * ggml_flash_attn_back(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * q,
  5136. struct ggml_tensor * k,
  5137. struct ggml_tensor * v,
  5138. struct ggml_tensor * d,
  5139. bool masked) {
  5140. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5141. // TODO: check if vT can be multiplied by (k*qT)
  5142. // d shape [D,N,ne2,ne3]
  5143. // q shape [D,N,ne2,ne3]
  5144. // k shape [D,M,kvne2,ne3]
  5145. // v shape [M,D,kvne2,ne3]
  5146. const int64_t D = q->ne[0];
  5147. const int64_t N = q->ne[1];
  5148. const int64_t M = k->ne[1];
  5149. const int64_t ne2 = q->ne[2];
  5150. const int64_t ne3 = q->ne[3];
  5151. const int64_t kvne2 = k->ne[2];
  5152. GGML_ASSERT(k->ne[0] == D);
  5153. GGML_ASSERT(v->ne[0] == M);
  5154. GGML_ASSERT(v->ne[1] == D);
  5155. GGML_ASSERT(d->ne[0] == D);
  5156. GGML_ASSERT(d->ne[1] == N);
  5157. GGML_ASSERT(k->ne[2] == kvne2);
  5158. GGML_ASSERT(k->ne[3] == ne3);
  5159. GGML_ASSERT(v->ne[2] == kvne2);
  5160. GGML_ASSERT(v->ne[3] == ne3);
  5161. GGML_ASSERT(d->ne[2] == ne2);
  5162. GGML_ASSERT(d->ne[3] == ne3);
  5163. GGML_ASSERT(ne2 % kvne2 == 0);
  5164. bool is_node = false;
  5165. if (q->grad || k->grad || v->grad) {
  5166. // when using this operation (in backwards pass) these grads are set.
  5167. // we don't want to create (big) grad of our result, so is_node is false.
  5168. is_node = false;
  5169. }
  5170. // store gradients of q, k and v as continuous tensors concatenated in result.
  5171. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5172. const int64_t elem_q = ggml_nelements(q);
  5173. const int64_t elem_k = ggml_nelements(k);
  5174. const int64_t elem_v = ggml_nelements(v);
  5175. enum ggml_type result_type = GGML_TYPE_F32;
  5176. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5177. const size_t tsize = ggml_type_size(result_type);
  5178. const size_t offs_q = 0;
  5179. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5180. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5181. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5182. const size_t nelements = (end + tsize - 1)/tsize;
  5183. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5184. int32_t masked_i = masked ? 1 : 0;
  5185. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5186. result->op = GGML_OP_FLASH_ATTN_BACK;
  5187. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5188. result->src[0] = q;
  5189. result->src[1] = k;
  5190. result->src[2] = v;
  5191. result->src[3] = d;
  5192. return result;
  5193. }
  5194. // ggml_ssm_conv
  5195. struct ggml_tensor * ggml_ssm_conv(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * s,
  5198. struct ggml_tensor * x,
  5199. struct ggml_tensor * c,
  5200. struct ggml_tensor * sq) {
  5201. GGML_ASSERT(ggml_is_3d(s));
  5202. GGML_ASSERT(ggml_is_matrix(x));
  5203. GGML_ASSERT(ggml_is_matrix(c));
  5204. GGML_ASSERT(ggml_is_matrix(sq));
  5205. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5206. const int64_t d_conv = c->ne[0];
  5207. const int64_t d_inner = c->ne[1];
  5208. const int64_t n_tokens = x->ne[1];
  5209. const int64_t n_kv = s->ne[2];
  5210. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5211. GGML_ASSERT( s->ne[1] == d_inner);
  5212. GGML_ASSERT( x->ne[0] == d_inner);
  5213. GGML_ASSERT(sq->ne[0] == n_kv);
  5214. GGML_ASSERT(sq->ne[1] == n_tokens);
  5215. bool is_node = false;
  5216. if (s->grad || x->grad || c->grad || sq->grad) {
  5217. GGML_ASSERT(false); // TODO: implement
  5218. is_node = true;
  5219. }
  5220. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5221. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5222. result->op = GGML_OP_SSM_CONV;
  5223. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5224. result->src[0] = s;
  5225. result->src[1] = x;
  5226. result->src[2] = c;
  5227. result->src[3] = sq;
  5228. return result;
  5229. }
  5230. // ggml_ssm_scan
  5231. struct ggml_tensor * ggml_ssm_scan(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * s,
  5234. struct ggml_tensor * x,
  5235. struct ggml_tensor * dt,
  5236. struct ggml_tensor * A,
  5237. struct ggml_tensor * B,
  5238. struct ggml_tensor * C,
  5239. struct ggml_tensor * sq) {
  5240. GGML_ASSERT(ggml_is_contiguous(s));
  5241. GGML_ASSERT(ggml_is_contiguous(x));
  5242. GGML_ASSERT(ggml_is_contiguous(dt));
  5243. GGML_ASSERT(ggml_is_contiguous(A));
  5244. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5245. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5246. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5247. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5248. {
  5249. const int64_t d_state = s->ne[0];
  5250. const int64_t d_inner = s->ne[1];
  5251. const int64_t n_tokens = x->ne[1];
  5252. GGML_ASSERT(x->ne[0] == d_inner);
  5253. GGML_ASSERT(A->ne[0] == d_state);
  5254. GGML_ASSERT(A->ne[1] == d_inner);
  5255. GGML_ASSERT(B->ne[0] == d_state);
  5256. GGML_ASSERT(B->ne[1] == n_tokens);
  5257. GGML_ASSERT(C->ne[0] == d_state);
  5258. GGML_ASSERT(C->ne[1] == n_tokens);
  5259. }
  5260. bool is_node = false;
  5261. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5262. GGML_ASSERT(false); // TODO: implement
  5263. is_node = true;
  5264. }
  5265. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5266. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5267. result->op = GGML_OP_SSM_SCAN;
  5268. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5269. result->src[0] = s;
  5270. result->src[1] = x;
  5271. result->src[2] = dt;
  5272. result->src[3] = A;
  5273. result->src[4] = B;
  5274. result->src[5] = C;
  5275. result->src[6] = sq;
  5276. return result;
  5277. }
  5278. // ggml_win_part
  5279. struct ggml_tensor * ggml_win_part(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. int w) {
  5283. GGML_ASSERT(a->ne[3] == 1);
  5284. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. GGML_ASSERT(false); // TODO: implement backward
  5288. is_node = true;
  5289. }
  5290. // padding
  5291. const int px = (w - a->ne[1]%w)%w;
  5292. const int py = (w - a->ne[2]%w)%w;
  5293. const int npx = (px + a->ne[1])/w;
  5294. const int npy = (py + a->ne[2])/w;
  5295. const int np = npx*npy;
  5296. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5297. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5298. int32_t params[] = { npx, npy, w };
  5299. ggml_set_op_params(result, params, sizeof(params));
  5300. result->op = GGML_OP_WIN_PART;
  5301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5302. result->src[0] = a;
  5303. return result;
  5304. }
  5305. // ggml_win_unpart
  5306. struct ggml_tensor * ggml_win_unpart(
  5307. struct ggml_context * ctx,
  5308. struct ggml_tensor * a,
  5309. int w0,
  5310. int h0,
  5311. int w) {
  5312. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5313. bool is_node = false;
  5314. if (a->grad) {
  5315. GGML_ASSERT(false); // TODO: implement backward
  5316. is_node = true;
  5317. }
  5318. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5319. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5320. int32_t params[] = { w };
  5321. ggml_set_op_params(result, params, sizeof(params));
  5322. result->op = GGML_OP_WIN_UNPART;
  5323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5324. result->src[0] = a;
  5325. return result;
  5326. }
  5327. // ggml_get_rel_pos
  5328. struct ggml_tensor * ggml_get_rel_pos(
  5329. struct ggml_context * ctx,
  5330. struct ggml_tensor * a,
  5331. int qh,
  5332. int kh) {
  5333. GGML_ASSERT(qh == kh);
  5334. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5335. bool is_node = false;
  5336. if (a->grad) {
  5337. GGML_ASSERT(false); // TODO: implement backward
  5338. is_node = true;
  5339. }
  5340. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5341. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5342. result->op = GGML_OP_GET_REL_POS;
  5343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5344. result->src[0] = a;
  5345. return result;
  5346. }
  5347. // ggml_add_rel_pos
  5348. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * a,
  5351. struct ggml_tensor * pw,
  5352. struct ggml_tensor * ph,
  5353. bool inplace) {
  5354. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5355. GGML_ASSERT(ggml_is_contiguous(a));
  5356. GGML_ASSERT(ggml_is_contiguous(pw));
  5357. GGML_ASSERT(ggml_is_contiguous(ph));
  5358. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5359. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5360. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5361. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5362. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5363. bool is_node = false;
  5364. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5365. is_node = true;
  5366. }
  5367. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5368. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5369. result->op = GGML_OP_ADD_REL_POS;
  5370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5371. result->src[0] = a;
  5372. result->src[1] = pw;
  5373. result->src[2] = ph;
  5374. return result;
  5375. }
  5376. struct ggml_tensor * ggml_add_rel_pos(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * pw,
  5380. struct ggml_tensor * ph) {
  5381. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5382. }
  5383. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * pw,
  5387. struct ggml_tensor * ph) {
  5388. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5389. }
  5390. // gmml_unary
  5391. static struct ggml_tensor * ggml_unary_impl(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. enum ggml_unary_op op,
  5395. bool inplace) {
  5396. bool is_node = false;
  5397. if (!inplace && (a->grad)) {
  5398. is_node = true;
  5399. }
  5400. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5401. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5402. result->op = GGML_OP_UNARY;
  5403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5404. result->src[0] = a;
  5405. return result;
  5406. }
  5407. struct ggml_tensor * ggml_unary(
  5408. struct ggml_context * ctx,
  5409. struct ggml_tensor * a,
  5410. enum ggml_unary_op op) {
  5411. return ggml_unary_impl(ctx, a, op, false);
  5412. }
  5413. struct ggml_tensor * ggml_unary_inplace(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a,
  5416. enum ggml_unary_op op) {
  5417. return ggml_unary_impl(ctx, a, op, true);
  5418. }
  5419. // ggml_map_unary
  5420. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a,
  5423. const ggml_unary_op_f32_t fun,
  5424. bool inplace) {
  5425. bool is_node = false;
  5426. if (!inplace && a->grad) {
  5427. is_node = true;
  5428. }
  5429. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5430. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5431. result->op = GGML_OP_MAP_UNARY;
  5432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5433. result->src[0] = a;
  5434. return result;
  5435. }
  5436. struct ggml_tensor * ggml_map_unary_f32(
  5437. struct ggml_context * ctx,
  5438. struct ggml_tensor * a,
  5439. const ggml_unary_op_f32_t fun) {
  5440. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5441. }
  5442. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5443. struct ggml_context * ctx,
  5444. struct ggml_tensor * a,
  5445. const ggml_unary_op_f32_t fun) {
  5446. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5447. }
  5448. // ggml_map_binary
  5449. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5450. struct ggml_context * ctx,
  5451. struct ggml_tensor * a,
  5452. struct ggml_tensor * b,
  5453. const ggml_binary_op_f32_t fun,
  5454. bool inplace) {
  5455. GGML_ASSERT(ggml_are_same_shape(a, b));
  5456. bool is_node = false;
  5457. if (!inplace && (a->grad || b->grad)) {
  5458. is_node = true;
  5459. }
  5460. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5461. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5462. result->op = GGML_OP_MAP_BINARY;
  5463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5464. result->src[0] = a;
  5465. result->src[1] = b;
  5466. return result;
  5467. }
  5468. struct ggml_tensor * ggml_map_binary_f32(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. struct ggml_tensor * b,
  5472. const ggml_binary_op_f32_t fun) {
  5473. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5474. }
  5475. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5476. struct ggml_context * ctx,
  5477. struct ggml_tensor * a,
  5478. struct ggml_tensor * b,
  5479. const ggml_binary_op_f32_t fun) {
  5480. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5481. }
  5482. // ggml_map_custom1_f32
  5483. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * a,
  5486. const ggml_custom1_op_f32_t fun,
  5487. bool inplace) {
  5488. bool is_node = false;
  5489. if (!inplace && a->grad) {
  5490. is_node = true;
  5491. }
  5492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5493. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5494. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5496. result->src[0] = a;
  5497. return result;
  5498. }
  5499. struct ggml_tensor * ggml_map_custom1_f32(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. const ggml_custom1_op_f32_t fun) {
  5503. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5504. }
  5505. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5506. struct ggml_context * ctx,
  5507. struct ggml_tensor * a,
  5508. const ggml_custom1_op_f32_t fun) {
  5509. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5510. }
  5511. // ggml_map_custom2_f32
  5512. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. const ggml_custom2_op_f32_t fun,
  5517. bool inplace) {
  5518. bool is_node = false;
  5519. if (!inplace && (a->grad || b->grad)) {
  5520. is_node = true;
  5521. }
  5522. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5523. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5524. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5526. result->src[0] = a;
  5527. result->src[1] = b;
  5528. return result;
  5529. }
  5530. struct ggml_tensor * ggml_map_custom2_f32(
  5531. struct ggml_context * ctx,
  5532. struct ggml_tensor * a,
  5533. struct ggml_tensor * b,
  5534. const ggml_custom2_op_f32_t fun) {
  5535. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5536. }
  5537. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5538. struct ggml_context * ctx,
  5539. struct ggml_tensor * a,
  5540. struct ggml_tensor * b,
  5541. const ggml_custom2_op_f32_t fun) {
  5542. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5543. }
  5544. // ggml_map_custom3_f32
  5545. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5546. struct ggml_context * ctx,
  5547. struct ggml_tensor * a,
  5548. struct ggml_tensor * b,
  5549. struct ggml_tensor * c,
  5550. const ggml_custom3_op_f32_t fun,
  5551. bool inplace) {
  5552. bool is_node = false;
  5553. if (!inplace && (a->grad || b->grad || c->grad)) {
  5554. is_node = true;
  5555. }
  5556. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5557. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5558. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5559. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5560. result->src[0] = a;
  5561. result->src[1] = b;
  5562. result->src[2] = c;
  5563. return result;
  5564. }
  5565. struct ggml_tensor * ggml_map_custom3_f32(
  5566. struct ggml_context * ctx,
  5567. struct ggml_tensor * a,
  5568. struct ggml_tensor * b,
  5569. struct ggml_tensor * c,
  5570. const ggml_custom3_op_f32_t fun) {
  5571. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5572. }
  5573. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5574. struct ggml_context * ctx,
  5575. struct ggml_tensor * a,
  5576. struct ggml_tensor * b,
  5577. struct ggml_tensor * c,
  5578. const ggml_custom3_op_f32_t fun) {
  5579. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5580. }
  5581. // ggml_map_custom1
  5582. struct ggml_map_custom1_op_params {
  5583. ggml_custom1_op_t fun;
  5584. int n_tasks;
  5585. void * userdata;
  5586. };
  5587. static struct ggml_tensor * ggml_map_custom1_impl(
  5588. struct ggml_context * ctx,
  5589. struct ggml_tensor * a,
  5590. const ggml_custom1_op_t fun,
  5591. int n_tasks,
  5592. void * userdata,
  5593. bool inplace) {
  5594. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5595. bool is_node = false;
  5596. if (!inplace && a->grad) {
  5597. is_node = true;
  5598. }
  5599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5600. struct ggml_map_custom1_op_params params = {
  5601. /*.fun =*/ fun,
  5602. /*.n_tasks =*/ n_tasks,
  5603. /*.userdata =*/ userdata
  5604. };
  5605. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5606. result->op = GGML_OP_MAP_CUSTOM1;
  5607. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5608. result->src[0] = a;
  5609. return result;
  5610. }
  5611. struct ggml_tensor * ggml_map_custom1(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. const ggml_custom1_op_t fun,
  5615. int n_tasks,
  5616. void * userdata) {
  5617. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5618. }
  5619. struct ggml_tensor * ggml_map_custom1_inplace(
  5620. struct ggml_context * ctx,
  5621. struct ggml_tensor * a,
  5622. const ggml_custom1_op_t fun,
  5623. int n_tasks,
  5624. void * userdata) {
  5625. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5626. }
  5627. // ggml_map_custom2
  5628. struct ggml_map_custom2_op_params {
  5629. ggml_custom2_op_t fun;
  5630. int n_tasks;
  5631. void * userdata;
  5632. };
  5633. static struct ggml_tensor * ggml_map_custom2_impl(
  5634. struct ggml_context * ctx,
  5635. struct ggml_tensor * a,
  5636. struct ggml_tensor * b,
  5637. const ggml_custom2_op_t fun,
  5638. int n_tasks,
  5639. void * userdata,
  5640. bool inplace) {
  5641. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5642. bool is_node = false;
  5643. if (!inplace && (a->grad || b->grad)) {
  5644. is_node = true;
  5645. }
  5646. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5647. struct ggml_map_custom2_op_params params = {
  5648. /*.fun =*/ fun,
  5649. /*.n_tasks =*/ n_tasks,
  5650. /*.userdata =*/ userdata
  5651. };
  5652. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5653. result->op = GGML_OP_MAP_CUSTOM2;
  5654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5655. result->src[0] = a;
  5656. result->src[1] = b;
  5657. return result;
  5658. }
  5659. struct ggml_tensor * ggml_map_custom2(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. struct ggml_tensor * b,
  5663. const ggml_custom2_op_t fun,
  5664. int n_tasks,
  5665. void * userdata) {
  5666. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5667. }
  5668. struct ggml_tensor * ggml_map_custom2_inplace(
  5669. struct ggml_context * ctx,
  5670. struct ggml_tensor * a,
  5671. struct ggml_tensor * b,
  5672. const ggml_custom2_op_t fun,
  5673. int n_tasks,
  5674. void * userdata) {
  5675. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5676. }
  5677. // ggml_map_custom3
  5678. struct ggml_map_custom3_op_params {
  5679. ggml_custom3_op_t fun;
  5680. int n_tasks;
  5681. void * userdata;
  5682. };
  5683. static struct ggml_tensor * ggml_map_custom3_impl(
  5684. struct ggml_context * ctx,
  5685. struct ggml_tensor * a,
  5686. struct ggml_tensor * b,
  5687. struct ggml_tensor * c,
  5688. const ggml_custom3_op_t fun,
  5689. int n_tasks,
  5690. void * userdata,
  5691. bool inplace) {
  5692. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5693. bool is_node = false;
  5694. if (!inplace && (a->grad || b->grad || c->grad)) {
  5695. is_node = true;
  5696. }
  5697. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5698. struct ggml_map_custom3_op_params params = {
  5699. /*.fun =*/ fun,
  5700. /*.n_tasks =*/ n_tasks,
  5701. /*.userdata =*/ userdata
  5702. };
  5703. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5704. result->op = GGML_OP_MAP_CUSTOM3;
  5705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5706. result->src[0] = a;
  5707. result->src[1] = b;
  5708. result->src[2] = c;
  5709. return result;
  5710. }
  5711. struct ggml_tensor * ggml_map_custom3(
  5712. struct ggml_context * ctx,
  5713. struct ggml_tensor * a,
  5714. struct ggml_tensor * b,
  5715. struct ggml_tensor * c,
  5716. const ggml_custom3_op_t fun,
  5717. int n_tasks,
  5718. void * userdata) {
  5719. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5720. }
  5721. struct ggml_tensor * ggml_map_custom3_inplace(
  5722. struct ggml_context * ctx,
  5723. struct ggml_tensor * a,
  5724. struct ggml_tensor * b,
  5725. struct ggml_tensor * c,
  5726. const ggml_custom3_op_t fun,
  5727. int n_tasks,
  5728. void * userdata) {
  5729. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5730. }
  5731. // ggml_cross_entropy_loss
  5732. struct ggml_tensor * ggml_cross_entropy_loss(
  5733. struct ggml_context * ctx,
  5734. struct ggml_tensor * a,
  5735. struct ggml_tensor * b) {
  5736. GGML_ASSERT(ggml_are_same_shape(a, b));
  5737. bool is_node = false;
  5738. if (a->grad || b->grad) {
  5739. is_node = true;
  5740. }
  5741. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5742. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5744. result->src[0] = a;
  5745. result->src[1] = b;
  5746. return result;
  5747. }
  5748. // ggml_cross_entropy_loss_back
  5749. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5750. struct ggml_context * ctx,
  5751. struct ggml_tensor * a,
  5752. struct ggml_tensor * b,
  5753. struct ggml_tensor * c) {
  5754. GGML_ASSERT(ggml_are_same_shape(a, b));
  5755. GGML_ASSERT(ggml_is_scalar(c));
  5756. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5757. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5758. result->grad = NULL;
  5759. result->src[0] = a;
  5760. result->src[1] = b;
  5761. result->src[2] = c;
  5762. return result;
  5763. }
  5764. ////////////////////////////////////////////////////////////////////////////////
  5765. void ggml_set_param(
  5766. struct ggml_context * ctx,
  5767. struct ggml_tensor * tensor) {
  5768. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5769. GGML_ASSERT(tensor->grad == NULL);
  5770. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5771. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5772. }
  5773. // ggml_compute_forward_dup
  5774. static void ggml_compute_forward_dup_same_cont(
  5775. const struct ggml_compute_params * params,
  5776. struct ggml_tensor * dst) {
  5777. const struct ggml_tensor * src0 = dst->src[0];
  5778. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5779. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5780. GGML_ASSERT(src0->type == dst->type);
  5781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5782. return;
  5783. }
  5784. const size_t nb00 = src0->nb[0];
  5785. const size_t nb0 = dst->nb[0];
  5786. const int ith = params->ith; // thread index
  5787. const int nth = params->nth; // number of threads
  5788. // parallelize by elements
  5789. const int ne = ggml_nelements(dst);
  5790. const int dr = (ne + nth - 1) / nth;
  5791. const int ie0 = dr * ith;
  5792. const int ie1 = MIN(ie0 + dr, ne);
  5793. if (ie0 < ie1) {
  5794. memcpy(
  5795. ((char *) dst->data + ie0*nb0),
  5796. ((char *) src0->data + ie0*nb00),
  5797. (ie1 - ie0) * ggml_type_size(src0->type));
  5798. }
  5799. }
  5800. static void ggml_compute_forward_dup_f16(
  5801. const struct ggml_compute_params * params,
  5802. struct ggml_tensor * dst) {
  5803. const struct ggml_tensor * src0 = dst->src[0];
  5804. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5806. return;
  5807. }
  5808. GGML_TENSOR_UNARY_OP_LOCALS
  5809. const int ith = params->ith; // thread index
  5810. const int nth = params->nth; // number of threads
  5811. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5812. ggml_compute_forward_dup_same_cont(params, dst);
  5813. return;
  5814. }
  5815. // parallelize by rows
  5816. const int nr = ne01;
  5817. // number of rows per thread
  5818. const int dr = (nr + nth - 1) / nth;
  5819. // row range for this thread
  5820. const int ir0 = dr * ith;
  5821. const int ir1 = MIN(ir0 + dr, nr);
  5822. if (src0->type == dst->type &&
  5823. ne00 == ne0 &&
  5824. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5825. // copy by rows
  5826. const size_t rs = ne00*nb00;
  5827. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5828. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5829. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5830. memcpy(
  5831. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5832. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5833. rs);
  5834. }
  5835. }
  5836. }
  5837. return;
  5838. }
  5839. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5840. if (ggml_is_contiguous(dst)) {
  5841. if (nb00 == sizeof(ggml_fp16_t)) {
  5842. if (dst->type == GGML_TYPE_F16) {
  5843. size_t id = 0;
  5844. const size_t rs = ne00 * nb00;
  5845. char * dst_ptr = (char *) dst->data;
  5846. for (int i03 = 0; i03 < ne03; i03++) {
  5847. for (int i02 = 0; i02 < ne02; i02++) {
  5848. id += rs * ir0;
  5849. for (int i01 = ir0; i01 < ir1; i01++) {
  5850. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5851. memcpy(dst_ptr + id, src0_ptr, rs);
  5852. id += rs;
  5853. }
  5854. id += rs * (ne01 - ir1);
  5855. }
  5856. }
  5857. } else if (dst->type == GGML_TYPE_F32) {
  5858. size_t id = 0;
  5859. float * dst_ptr = (float *) dst->data;
  5860. for (int i03 = 0; i03 < ne03; i03++) {
  5861. for (int i02 = 0; i02 < ne02; i02++) {
  5862. id += ne00 * ir0;
  5863. for (int i01 = ir0; i01 < ir1; i01++) {
  5864. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5865. for (int i00 = 0; i00 < ne00; i00++) {
  5866. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5867. id++;
  5868. }
  5869. }
  5870. id += ne00 * (ne01 - ir1);
  5871. }
  5872. }
  5873. } else if (type_traits[dst->type].from_float) {
  5874. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5875. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5876. size_t id = 0;
  5877. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5878. char * dst_ptr = (char *) dst->data;
  5879. for (int i03 = 0; i03 < ne03; i03++) {
  5880. for (int i02 = 0; i02 < ne02; i02++) {
  5881. id += rs * ir0;
  5882. for (int i01 = ir0; i01 < ir1; i01++) {
  5883. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5884. for (int i00 = 0; i00 < ne00; i00++) {
  5885. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5886. }
  5887. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5888. id += rs;
  5889. }
  5890. id += rs * (ne01 - ir1);
  5891. }
  5892. }
  5893. } else {
  5894. GGML_ASSERT(false); // TODO: implement
  5895. }
  5896. } else {
  5897. //printf("%s: this is not optimal - fix me\n", __func__);
  5898. if (dst->type == GGML_TYPE_F32) {
  5899. size_t id = 0;
  5900. float * dst_ptr = (float *) dst->data;
  5901. for (int i03 = 0; i03 < ne03; i03++) {
  5902. for (int i02 = 0; i02 < ne02; i02++) {
  5903. id += ne00 * ir0;
  5904. for (int i01 = ir0; i01 < ir1; i01++) {
  5905. for (int i00 = 0; i00 < ne00; i00++) {
  5906. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5907. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5908. id++;
  5909. }
  5910. }
  5911. id += ne00 * (ne01 - ir1);
  5912. }
  5913. }
  5914. } else if (dst->type == GGML_TYPE_F16) {
  5915. size_t id = 0;
  5916. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5917. for (int i03 = 0; i03 < ne03; i03++) {
  5918. for (int i02 = 0; i02 < ne02; i02++) {
  5919. id += ne00 * ir0;
  5920. for (int i01 = ir0; i01 < ir1; i01++) {
  5921. for (int i00 = 0; i00 < ne00; i00++) {
  5922. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5923. dst_ptr[id] = *src0_ptr;
  5924. id++;
  5925. }
  5926. }
  5927. id += ne00 * (ne01 - ir1);
  5928. }
  5929. }
  5930. } else {
  5931. GGML_ASSERT(false); // TODO: implement
  5932. }
  5933. }
  5934. return;
  5935. }
  5936. // dst counters
  5937. int64_t i10 = 0;
  5938. int64_t i11 = 0;
  5939. int64_t i12 = 0;
  5940. int64_t i13 = 0;
  5941. if (dst->type == GGML_TYPE_F16) {
  5942. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5943. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5944. i10 += ne00 * ir0;
  5945. while (i10 >= ne0) {
  5946. i10 -= ne0;
  5947. if (++i11 == ne1) {
  5948. i11 = 0;
  5949. if (++i12 == ne2) {
  5950. i12 = 0;
  5951. if (++i13 == ne3) {
  5952. i13 = 0;
  5953. }
  5954. }
  5955. }
  5956. }
  5957. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5958. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5959. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5960. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5961. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5962. if (++i10 == ne00) {
  5963. i10 = 0;
  5964. if (++i11 == ne01) {
  5965. i11 = 0;
  5966. if (++i12 == ne02) {
  5967. i12 = 0;
  5968. if (++i13 == ne03) {
  5969. i13 = 0;
  5970. }
  5971. }
  5972. }
  5973. }
  5974. }
  5975. }
  5976. i10 += ne00 * (ne01 - ir1);
  5977. while (i10 >= ne0) {
  5978. i10 -= ne0;
  5979. if (++i11 == ne1) {
  5980. i11 = 0;
  5981. if (++i12 == ne2) {
  5982. i12 = 0;
  5983. if (++i13 == ne3) {
  5984. i13 = 0;
  5985. }
  5986. }
  5987. }
  5988. }
  5989. }
  5990. }
  5991. } else if (dst->type == GGML_TYPE_F32) {
  5992. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5993. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5994. i10 += ne00 * ir0;
  5995. while (i10 >= ne0) {
  5996. i10 -= ne0;
  5997. if (++i11 == ne1) {
  5998. i11 = 0;
  5999. if (++i12 == ne2) {
  6000. i12 = 0;
  6001. if (++i13 == ne3) {
  6002. i13 = 0;
  6003. }
  6004. }
  6005. }
  6006. }
  6007. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6008. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6009. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6010. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6011. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6012. if (++i10 == ne0) {
  6013. i10 = 0;
  6014. if (++i11 == ne1) {
  6015. i11 = 0;
  6016. if (++i12 == ne2) {
  6017. i12 = 0;
  6018. if (++i13 == ne3) {
  6019. i13 = 0;
  6020. }
  6021. }
  6022. }
  6023. }
  6024. }
  6025. }
  6026. i10 += ne00 * (ne01 - ir1);
  6027. while (i10 >= ne0) {
  6028. i10 -= ne0;
  6029. if (++i11 == ne1) {
  6030. i11 = 0;
  6031. if (++i12 == ne2) {
  6032. i12 = 0;
  6033. if (++i13 == ne3) {
  6034. i13 = 0;
  6035. }
  6036. }
  6037. }
  6038. }
  6039. }
  6040. }
  6041. } else {
  6042. GGML_ASSERT(false); // TODO: implement
  6043. }
  6044. }
  6045. static void ggml_compute_forward_dup_f32(
  6046. const struct ggml_compute_params * params,
  6047. struct ggml_tensor * dst) {
  6048. const struct ggml_tensor * src0 = dst->src[0];
  6049. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6051. return;
  6052. }
  6053. GGML_TENSOR_UNARY_OP_LOCALS
  6054. const int ith = params->ith; // thread index
  6055. const int nth = params->nth; // number of threads
  6056. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6057. ggml_compute_forward_dup_same_cont(params, dst);
  6058. return;
  6059. }
  6060. // parallelize by rows
  6061. const int nr = ne01;
  6062. // number of rows per thread
  6063. const int dr = (nr + nth - 1) / nth;
  6064. // row range for this thread
  6065. const int ir0 = dr * ith;
  6066. const int ir1 = MIN(ir0 + dr, nr);
  6067. if (src0->type == dst->type &&
  6068. ne00 == ne0 &&
  6069. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6070. // copy by rows
  6071. const size_t rs = ne00*nb00;
  6072. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6074. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6075. memcpy(
  6076. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6077. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6078. rs);
  6079. }
  6080. }
  6081. }
  6082. return;
  6083. }
  6084. if (ggml_is_contiguous(dst)) {
  6085. // TODO: simplify
  6086. if (nb00 == sizeof(float)) {
  6087. if (dst->type == GGML_TYPE_F32) {
  6088. size_t id = 0;
  6089. const size_t rs = ne00 * nb00;
  6090. char * dst_ptr = (char *) dst->data;
  6091. for (int i03 = 0; i03 < ne03; i03++) {
  6092. for (int i02 = 0; i02 < ne02; i02++) {
  6093. id += rs * ir0;
  6094. for (int i01 = ir0; i01 < ir1; i01++) {
  6095. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6096. memcpy(dst_ptr + id, src0_ptr, rs);
  6097. id += rs;
  6098. }
  6099. id += rs * (ne01 - ir1);
  6100. }
  6101. }
  6102. } else if (type_traits[dst->type].from_float) {
  6103. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6104. size_t id = 0;
  6105. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6106. char * dst_ptr = (char *) dst->data;
  6107. for (int i03 = 0; i03 < ne03; i03++) {
  6108. for (int i02 = 0; i02 < ne02; i02++) {
  6109. id += rs * ir0;
  6110. for (int i01 = ir0; i01 < ir1; i01++) {
  6111. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6112. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6113. id += rs;
  6114. }
  6115. id += rs * (ne01 - ir1);
  6116. }
  6117. }
  6118. } else {
  6119. GGML_ASSERT(false); // TODO: implement
  6120. }
  6121. } else {
  6122. //printf("%s: this is not optimal - fix me\n", __func__);
  6123. if (dst->type == GGML_TYPE_F32) {
  6124. size_t id = 0;
  6125. float * dst_ptr = (float *) dst->data;
  6126. for (int i03 = 0; i03 < ne03; i03++) {
  6127. for (int i02 = 0; i02 < ne02; i02++) {
  6128. id += ne00 * ir0;
  6129. for (int i01 = ir0; i01 < ir1; i01++) {
  6130. for (int i00 = 0; i00 < ne00; i00++) {
  6131. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6132. dst_ptr[id] = *src0_ptr;
  6133. id++;
  6134. }
  6135. }
  6136. id += ne00 * (ne01 - ir1);
  6137. }
  6138. }
  6139. } else if (dst->type == GGML_TYPE_F16) {
  6140. size_t id = 0;
  6141. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6142. for (int i03 = 0; i03 < ne03; i03++) {
  6143. for (int i02 = 0; i02 < ne02; i02++) {
  6144. id += ne00 * ir0;
  6145. for (int i01 = ir0; i01 < ir1; i01++) {
  6146. for (int i00 = 0; i00 < ne00; i00++) {
  6147. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6148. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6149. id++;
  6150. }
  6151. }
  6152. id += ne00 * (ne01 - ir1);
  6153. }
  6154. }
  6155. } else {
  6156. GGML_ASSERT(false); // TODO: implement
  6157. }
  6158. }
  6159. return;
  6160. }
  6161. // dst counters
  6162. int64_t i10 = 0;
  6163. int64_t i11 = 0;
  6164. int64_t i12 = 0;
  6165. int64_t i13 = 0;
  6166. if (dst->type == GGML_TYPE_F32) {
  6167. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6168. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6169. i10 += ne00 * ir0;
  6170. while (i10 >= ne0) {
  6171. i10 -= ne0;
  6172. if (++i11 == ne1) {
  6173. i11 = 0;
  6174. if (++i12 == ne2) {
  6175. i12 = 0;
  6176. if (++i13 == ne3) {
  6177. i13 = 0;
  6178. }
  6179. }
  6180. }
  6181. }
  6182. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6183. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6184. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6185. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6186. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6187. if (++i10 == ne0) {
  6188. i10 = 0;
  6189. if (++i11 == ne1) {
  6190. i11 = 0;
  6191. if (++i12 == ne2) {
  6192. i12 = 0;
  6193. if (++i13 == ne3) {
  6194. i13 = 0;
  6195. }
  6196. }
  6197. }
  6198. }
  6199. }
  6200. }
  6201. i10 += ne00 * (ne01 - ir1);
  6202. while (i10 >= ne0) {
  6203. i10 -= ne0;
  6204. if (++i11 == ne1) {
  6205. i11 = 0;
  6206. if (++i12 == ne2) {
  6207. i12 = 0;
  6208. if (++i13 == ne3) {
  6209. i13 = 0;
  6210. }
  6211. }
  6212. }
  6213. }
  6214. }
  6215. }
  6216. } else if (dst->type == GGML_TYPE_F16) {
  6217. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6218. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6219. i10 += ne00 * ir0;
  6220. while (i10 >= ne0) {
  6221. i10 -= ne0;
  6222. if (++i11 == ne1) {
  6223. i11 = 0;
  6224. if (++i12 == ne2) {
  6225. i12 = 0;
  6226. if (++i13 == ne3) {
  6227. i13 = 0;
  6228. }
  6229. }
  6230. }
  6231. }
  6232. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6233. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6234. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6235. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6236. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6237. if (++i10 == ne0) {
  6238. i10 = 0;
  6239. if (++i11 == ne1) {
  6240. i11 = 0;
  6241. if (++i12 == ne2) {
  6242. i12 = 0;
  6243. if (++i13 == ne3) {
  6244. i13 = 0;
  6245. }
  6246. }
  6247. }
  6248. }
  6249. }
  6250. }
  6251. i10 += ne00 * (ne01 - ir1);
  6252. while (i10 >= ne0) {
  6253. i10 -= ne0;
  6254. if (++i11 == ne1) {
  6255. i11 = 0;
  6256. if (++i12 == ne2) {
  6257. i12 = 0;
  6258. if (++i13 == ne3) {
  6259. i13 = 0;
  6260. }
  6261. }
  6262. }
  6263. }
  6264. }
  6265. }
  6266. } else {
  6267. GGML_ASSERT(false); // TODO: implement
  6268. }
  6269. }
  6270. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6271. static void ggml_compute_forward_dup_bytes(
  6272. const struct ggml_compute_params * params,
  6273. struct ggml_tensor * dst) {
  6274. const struct ggml_tensor * src0 = dst->src[0];
  6275. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6276. GGML_ASSERT(src0->type == dst->type);
  6277. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6278. return;
  6279. }
  6280. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6281. ggml_compute_forward_dup_same_cont(params, dst);
  6282. return;
  6283. }
  6284. GGML_TENSOR_UNARY_OP_LOCALS;
  6285. const size_t type_size = ggml_type_size(src0->type);
  6286. const int ith = params->ith; // thread index
  6287. const int nth = params->nth; // number of threads
  6288. // parallelize by rows
  6289. const int nr = ne01;
  6290. // number of rows per thread
  6291. const int dr = (nr + nth - 1) / nth;
  6292. // row range for this thread
  6293. const int ir0 = dr * ith;
  6294. const int ir1 = MIN(ir0 + dr, nr);
  6295. if (src0->type == dst->type &&
  6296. ne00 == ne0 &&
  6297. nb00 == type_size && nb0 == type_size) {
  6298. // copy by rows
  6299. const size_t rs = ne00 * type_size;
  6300. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6301. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6302. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6303. memcpy(
  6304. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6305. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6306. rs);
  6307. }
  6308. }
  6309. }
  6310. return;
  6311. }
  6312. if (ggml_is_contiguous(dst)) {
  6313. size_t id = 0;
  6314. char * dst_ptr = (char *) dst->data;
  6315. const size_t rs = ne00 * type_size;
  6316. if (nb00 == type_size) {
  6317. // src0 is contigous on first dimension, copy by rows
  6318. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6319. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6320. id += rs * ir0;
  6321. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6322. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6323. memcpy(dst_ptr + id, src0_ptr, rs);
  6324. id += rs;
  6325. }
  6326. id += rs * (ne01 - ir1);
  6327. }
  6328. }
  6329. } else {
  6330. //printf("%s: this is not optimal - fix me\n", __func__);
  6331. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6332. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6333. id += rs * ir0;
  6334. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6335. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6336. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6337. memcpy(dst_ptr + id, src0_ptr, type_size);
  6338. id += type_size;
  6339. }
  6340. }
  6341. id += rs * (ne01 - ir1);
  6342. }
  6343. }
  6344. }
  6345. return;
  6346. }
  6347. // dst counters
  6348. int64_t i10 = 0;
  6349. int64_t i11 = 0;
  6350. int64_t i12 = 0;
  6351. int64_t i13 = 0;
  6352. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6353. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6354. i10 += ne00 * ir0;
  6355. while (i10 >= ne0) {
  6356. i10 -= ne0;
  6357. if (++i11 == ne1) {
  6358. i11 = 0;
  6359. if (++i12 == ne2) {
  6360. i12 = 0;
  6361. if (++i13 == ne3) {
  6362. i13 = 0;
  6363. }
  6364. }
  6365. }
  6366. }
  6367. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6368. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6369. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6370. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6371. memcpy(dst_ptr, src0_ptr, type_size);
  6372. if (++i10 == ne0) {
  6373. i10 = 0;
  6374. if (++i11 == ne1) {
  6375. i11 = 0;
  6376. if (++i12 == ne2) {
  6377. i12 = 0;
  6378. if (++i13 == ne3) {
  6379. i13 = 0;
  6380. }
  6381. }
  6382. }
  6383. }
  6384. }
  6385. }
  6386. i10 += ne00 * (ne01 - ir1);
  6387. while (i10 >= ne0) {
  6388. i10 -= ne0;
  6389. if (++i11 == ne1) {
  6390. i11 = 0;
  6391. if (++i12 == ne2) {
  6392. i12 = 0;
  6393. if (++i13 == ne3) {
  6394. i13 = 0;
  6395. }
  6396. }
  6397. }
  6398. }
  6399. }
  6400. }
  6401. }
  6402. static void ggml_compute_forward_dup(
  6403. const struct ggml_compute_params * params,
  6404. struct ggml_tensor * dst) {
  6405. const struct ggml_tensor * src0 = dst->src[0];
  6406. if (src0->type == dst->type) {
  6407. ggml_compute_forward_dup_bytes(params, dst);
  6408. return;
  6409. }
  6410. switch (src0->type) {
  6411. case GGML_TYPE_F16:
  6412. {
  6413. ggml_compute_forward_dup_f16(params, dst);
  6414. } break;
  6415. case GGML_TYPE_F32:
  6416. {
  6417. ggml_compute_forward_dup_f32(params, dst);
  6418. } break;
  6419. default:
  6420. {
  6421. GGML_ASSERT(false);
  6422. } break;
  6423. }
  6424. }
  6425. // ggml_compute_forward_add
  6426. static void ggml_compute_forward_add_f32(
  6427. const struct ggml_compute_params * params,
  6428. struct ggml_tensor * dst) {
  6429. const struct ggml_tensor * src0 = dst->src[0];
  6430. const struct ggml_tensor * src1 = dst->src[1];
  6431. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6432. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6433. return;
  6434. }
  6435. const int ith = params->ith;
  6436. const int nth = params->nth;
  6437. #ifdef GGML_USE_CLBLAST
  6438. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6439. // TODO: OpenCL kernel support full broadcast
  6440. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6441. if (ith == 0) {
  6442. ggml_cl_add(src0, src1, dst);
  6443. }
  6444. return;
  6445. }
  6446. #endif
  6447. const int nr = ggml_nrows(src0);
  6448. GGML_TENSOR_BINARY_OP_LOCALS
  6449. GGML_ASSERT( nb0 == sizeof(float));
  6450. GGML_ASSERT(nb00 == sizeof(float));
  6451. // rows per thread
  6452. const int dr = (nr + nth - 1)/nth;
  6453. // row range for this thread
  6454. const int ir0 = dr*ith;
  6455. const int ir1 = MIN(ir0 + dr, nr);
  6456. if (nb10 == sizeof(float)) {
  6457. for (int ir = ir0; ir < ir1; ++ir) {
  6458. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6459. const int64_t i03 = ir/(ne02*ne01);
  6460. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6461. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6462. const int64_t i13 = i03 % ne13;
  6463. const int64_t i12 = i02 % ne12;
  6464. const int64_t i11 = i01 % ne11;
  6465. const int64_t nr0 = ne00 / ne10;
  6466. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6467. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6468. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6469. for (int64_t r = 0; r < nr0; ++r) {
  6470. #ifdef GGML_USE_ACCELERATE
  6471. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6472. #else
  6473. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6474. #endif
  6475. }
  6476. }
  6477. } else {
  6478. // src1 is not contiguous
  6479. for (int ir = ir0; ir < ir1; ++ir) {
  6480. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6481. const int64_t i03 = ir/(ne02*ne01);
  6482. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6483. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6484. const int64_t i13 = i03 % ne13;
  6485. const int64_t i12 = i02 % ne12;
  6486. const int64_t i11 = i01 % ne11;
  6487. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6488. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6489. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6490. const int64_t i10 = i0 % ne10;
  6491. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6492. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6493. }
  6494. }
  6495. }
  6496. }
  6497. static void ggml_compute_forward_add_f16_f32(
  6498. const struct ggml_compute_params * params,
  6499. struct ggml_tensor * dst) {
  6500. const struct ggml_tensor * src0 = dst->src[0];
  6501. const struct ggml_tensor * src1 = dst->src[1];
  6502. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6503. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6504. return;
  6505. }
  6506. const int ith = params->ith;
  6507. const int nth = params->nth;
  6508. const int nr = ggml_nrows(src0);
  6509. GGML_TENSOR_BINARY_OP_LOCALS
  6510. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6511. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6512. if (dst->type == GGML_TYPE_F32) {
  6513. GGML_ASSERT( nb0 == sizeof(float));
  6514. }
  6515. else {
  6516. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6517. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6518. }
  6519. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6520. // rows per thread
  6521. const int dr = (nr + nth - 1)/nth;
  6522. // row range for this thread
  6523. const int ir0 = dr*ith;
  6524. const int ir1 = MIN(ir0 + dr, nr);
  6525. if (nb10 == sizeof(float)) {
  6526. if (dst->type == GGML_TYPE_F16) {
  6527. for (int ir = ir0; ir < ir1; ++ir) {
  6528. // src0, src1 and dst are same shape => same indices
  6529. const int i3 = ir/(ne2*ne1);
  6530. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6531. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6532. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6533. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6534. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6535. for (int i = 0; i < ne0; i++) {
  6536. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6537. }
  6538. }
  6539. } else {
  6540. for (int ir = ir0; ir < ir1; ++ir) {
  6541. // src0, src1 and dst are same shape => same indices
  6542. const int i3 = ir/(ne2*ne1);
  6543. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6544. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6545. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6546. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6547. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6548. for (int i = 0; i < ne0; i++) {
  6549. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6550. }
  6551. }
  6552. }
  6553. }
  6554. else {
  6555. // src1 is not contiguous
  6556. GGML_ASSERT(false);
  6557. }
  6558. }
  6559. static void ggml_compute_forward_add_f16_f16(
  6560. const struct ggml_compute_params * params,
  6561. struct ggml_tensor * dst) {
  6562. const struct ggml_tensor * src0 = dst->src[0];
  6563. const struct ggml_tensor * src1 = dst->src[1];
  6564. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6565. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6566. return;
  6567. }
  6568. const int ith = params->ith;
  6569. const int nth = params->nth;
  6570. const int nr = ggml_nrows(src0);
  6571. GGML_TENSOR_BINARY_OP_LOCALS
  6572. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6573. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6574. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6575. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6576. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6577. // rows per thread
  6578. const int dr = (nr + nth - 1)/nth;
  6579. // row range for this thread
  6580. const int ir0 = dr*ith;
  6581. const int ir1 = MIN(ir0 + dr, nr);
  6582. if (nb10 == sizeof(ggml_fp16_t)) {
  6583. for (int ir = ir0; ir < ir1; ++ir) {
  6584. // src0, src1 and dst are same shape => same indices
  6585. const int i3 = ir/(ne2*ne1);
  6586. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6587. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6588. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6589. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6590. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6591. for (int i = 0; i < ne0; i++) {
  6592. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6593. }
  6594. }
  6595. }
  6596. else {
  6597. // src1 is not contiguous
  6598. GGML_ASSERT(false);
  6599. }
  6600. }
  6601. static void ggml_compute_forward_add_q_f32(
  6602. const struct ggml_compute_params * params,
  6603. struct ggml_tensor * dst) {
  6604. const struct ggml_tensor * src0 = dst->src[0];
  6605. const struct ggml_tensor * src1 = dst->src[1];
  6606. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6607. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6608. return;
  6609. }
  6610. const int nr = ggml_nrows(src0);
  6611. GGML_TENSOR_BINARY_OP_LOCALS
  6612. const int ith = params->ith;
  6613. const int nth = params->nth;
  6614. const enum ggml_type type = src0->type;
  6615. const enum ggml_type dtype = dst->type;
  6616. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6617. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6618. // we don't support permuted src0 or src1
  6619. GGML_ASSERT(nb00 == ggml_type_size(type));
  6620. GGML_ASSERT(nb10 == sizeof(float));
  6621. // dst cannot be transposed or permuted
  6622. GGML_ASSERT(nb0 <= nb1);
  6623. GGML_ASSERT(nb1 <= nb2);
  6624. GGML_ASSERT(nb2 <= nb3);
  6625. GGML_ASSERT(ggml_is_quantized(src0->type));
  6626. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6627. // rows per thread
  6628. const int dr = (nr + nth - 1)/nth;
  6629. // row range for this thread
  6630. const int ir0 = dr*ith;
  6631. const int ir1 = MIN(ir0 + dr, nr);
  6632. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6633. for (int ir = ir0; ir < ir1; ++ir) {
  6634. // src0 indices
  6635. const int i03 = ir/(ne02*ne01);
  6636. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6637. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6638. // src1 and dst are same shape as src0 => same indices
  6639. const int i13 = i03;
  6640. const int i12 = i02;
  6641. const int i11 = i01;
  6642. const int i3 = i03;
  6643. const int i2 = i02;
  6644. const int i1 = i01;
  6645. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6646. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6647. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6648. assert(ne00 % 32 == 0);
  6649. // unquantize row from src0 to temp buffer
  6650. dequantize_row_q(src0_row, wdata, ne00);
  6651. // add src1
  6652. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6653. // quantize row to dst
  6654. if (quantize_row_q != NULL) {
  6655. quantize_row_q(wdata, dst_row, ne00);
  6656. } else {
  6657. memcpy(dst_row, wdata, ne0*nb0);
  6658. }
  6659. }
  6660. }
  6661. static void ggml_compute_forward_add(
  6662. const struct ggml_compute_params * params,
  6663. struct ggml_tensor * dst) {
  6664. const struct ggml_tensor * src0 = dst->src[0];
  6665. const struct ggml_tensor * src1 = dst->src[1];
  6666. switch (src0->type) {
  6667. case GGML_TYPE_F32:
  6668. {
  6669. if (src1->type == GGML_TYPE_F32) {
  6670. ggml_compute_forward_add_f32(params, dst);
  6671. }
  6672. else {
  6673. GGML_ASSERT(false);
  6674. }
  6675. } break;
  6676. case GGML_TYPE_F16:
  6677. {
  6678. if (src1->type == GGML_TYPE_F16) {
  6679. ggml_compute_forward_add_f16_f16(params, dst);
  6680. }
  6681. else if (src1->type == GGML_TYPE_F32) {
  6682. ggml_compute_forward_add_f16_f32(params, dst);
  6683. }
  6684. else {
  6685. GGML_ASSERT(false);
  6686. }
  6687. } break;
  6688. case GGML_TYPE_Q4_0:
  6689. case GGML_TYPE_Q4_1:
  6690. case GGML_TYPE_Q5_0:
  6691. case GGML_TYPE_Q5_1:
  6692. case GGML_TYPE_Q8_0:
  6693. case GGML_TYPE_Q2_K:
  6694. case GGML_TYPE_Q3_K:
  6695. case GGML_TYPE_Q4_K:
  6696. case GGML_TYPE_Q5_K:
  6697. case GGML_TYPE_Q6_K:
  6698. case GGML_TYPE_IQ2_XXS:
  6699. case GGML_TYPE_IQ2_XS:
  6700. case GGML_TYPE_IQ3_XXS:
  6701. case GGML_TYPE_IQ1_S:
  6702. case GGML_TYPE_IQ1_M:
  6703. case GGML_TYPE_IQ4_NL:
  6704. case GGML_TYPE_IQ4_XS:
  6705. case GGML_TYPE_IQ3_S:
  6706. case GGML_TYPE_IQ2_S:
  6707. {
  6708. ggml_compute_forward_add_q_f32(params, dst);
  6709. } break;
  6710. default:
  6711. {
  6712. GGML_ASSERT(false);
  6713. } break;
  6714. }
  6715. }
  6716. // ggml_compute_forward_add1
  6717. static void ggml_compute_forward_add1_f32(
  6718. const struct ggml_compute_params * params,
  6719. struct ggml_tensor * dst) {
  6720. const struct ggml_tensor * src0 = dst->src[0];
  6721. const struct ggml_tensor * src1 = dst->src[1];
  6722. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6723. GGML_ASSERT(ggml_is_scalar(src1));
  6724. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6725. return;
  6726. }
  6727. const int ith = params->ith;
  6728. const int nth = params->nth;
  6729. const int nr = ggml_nrows(src0);
  6730. GGML_TENSOR_UNARY_OP_LOCALS
  6731. GGML_ASSERT( nb0 == sizeof(float));
  6732. GGML_ASSERT(nb00 == sizeof(float));
  6733. // rows per thread
  6734. const int dr = (nr + nth - 1)/nth;
  6735. // row range for this thread
  6736. const int ir0 = dr*ith;
  6737. const int ir1 = MIN(ir0 + dr, nr);
  6738. for (int ir = ir0; ir < ir1; ++ir) {
  6739. // src0 and dst are same shape => same indices
  6740. const int i3 = ir/(ne2*ne1);
  6741. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6742. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6743. #ifdef GGML_USE_ACCELERATE
  6744. UNUSED(ggml_vec_add1_f32);
  6745. vDSP_vadd(
  6746. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6747. (float *) ((char *) src1->data), 0,
  6748. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6749. ne0);
  6750. #else
  6751. ggml_vec_add1_f32(ne0,
  6752. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6753. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6754. *(float *) src1->data);
  6755. #endif
  6756. }
  6757. }
  6758. static void ggml_compute_forward_add1_f16_f32(
  6759. const struct ggml_compute_params * params,
  6760. struct ggml_tensor * dst) {
  6761. const struct ggml_tensor * src0 = dst->src[0];
  6762. const struct ggml_tensor * src1 = dst->src[1];
  6763. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6764. GGML_ASSERT(ggml_is_scalar(src1));
  6765. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6766. return;
  6767. }
  6768. // scalar to add
  6769. const float v = *(float *) src1->data;
  6770. const int ith = params->ith;
  6771. const int nth = params->nth;
  6772. const int nr = ggml_nrows(src0);
  6773. GGML_TENSOR_UNARY_OP_LOCALS
  6774. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6775. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6776. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6777. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6778. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6779. // rows per thread
  6780. const int dr = (nr + nth - 1)/nth;
  6781. // row range for this thread
  6782. const int ir0 = dr*ith;
  6783. const int ir1 = MIN(ir0 + dr, nr);
  6784. for (int ir = ir0; ir < ir1; ++ir) {
  6785. // src0 and dst are same shape => same indices
  6786. const int i3 = ir/(ne2*ne1);
  6787. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6788. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6789. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6790. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6791. for (int i = 0; i < ne0; i++) {
  6792. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6793. }
  6794. }
  6795. }
  6796. static void ggml_compute_forward_add1_f16_f16(
  6797. const struct ggml_compute_params * params,
  6798. struct ggml_tensor * dst) {
  6799. const struct ggml_tensor * src0 = dst->src[0];
  6800. const struct ggml_tensor * src1 = dst->src[1];
  6801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6802. GGML_ASSERT(ggml_is_scalar(src1));
  6803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6804. return;
  6805. }
  6806. // scalar to add
  6807. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6808. const int ith = params->ith;
  6809. const int nth = params->nth;
  6810. const int nr = ggml_nrows(src0);
  6811. GGML_TENSOR_UNARY_OP_LOCALS
  6812. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6813. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6814. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6815. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6816. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6817. // rows per thread
  6818. const int dr = (nr + nth - 1)/nth;
  6819. // row range for this thread
  6820. const int ir0 = dr*ith;
  6821. const int ir1 = MIN(ir0 + dr, nr);
  6822. for (int ir = ir0; ir < ir1; ++ir) {
  6823. // src0 and dst are same shape => same indices
  6824. const int i3 = ir/(ne2*ne1);
  6825. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6826. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6827. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6828. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6829. for (int i = 0; i < ne0; i++) {
  6830. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6831. }
  6832. }
  6833. }
  6834. static void ggml_compute_forward_add1_q_f32(
  6835. const struct ggml_compute_params * params,
  6836. struct ggml_tensor * dst) {
  6837. const struct ggml_tensor * src0 = dst->src[0];
  6838. const struct ggml_tensor * src1 = dst->src[1];
  6839. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6840. GGML_ASSERT(ggml_is_scalar(src1));
  6841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6842. return;
  6843. }
  6844. // scalar to add
  6845. const float v = *(float *) src1->data;
  6846. const int ith = params->ith;
  6847. const int nth = params->nth;
  6848. const int nr = ggml_nrows(src0);
  6849. GGML_TENSOR_UNARY_OP_LOCALS
  6850. const enum ggml_type type = src0->type;
  6851. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6852. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6853. // we don't support permuted src0
  6854. GGML_ASSERT(nb00 == ggml_type_size(type));
  6855. // dst cannot be transposed or permuted
  6856. GGML_ASSERT(nb0 <= nb1);
  6857. GGML_ASSERT(nb1 <= nb2);
  6858. GGML_ASSERT(nb2 <= nb3);
  6859. GGML_ASSERT(ggml_is_quantized(src0->type));
  6860. GGML_ASSERT(dst->type == src0->type);
  6861. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6862. // rows per thread
  6863. const int dr = (nr + nth - 1)/nth;
  6864. // row range for this thread
  6865. const int ir0 = dr*ith;
  6866. const int ir1 = MIN(ir0 + dr, nr);
  6867. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6868. for (int ir = ir0; ir < ir1; ++ir) {
  6869. // src0 and dst are same shape => same indices
  6870. const int i3 = ir/(ne2*ne1);
  6871. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6872. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6873. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6874. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6875. assert(ne0 % 32 == 0);
  6876. // unquantize row from src0 to temp buffer
  6877. dequantize_row_q(src0_row, wdata, ne0);
  6878. // add src1
  6879. ggml_vec_acc1_f32(ne0, wdata, v);
  6880. // quantize row to dst
  6881. quantize_row_q(wdata, dst_row, ne0);
  6882. }
  6883. }
  6884. static void ggml_compute_forward_add1(
  6885. const struct ggml_compute_params * params,
  6886. struct ggml_tensor * dst) {
  6887. const struct ggml_tensor * src0 = dst->src[0];
  6888. const struct ggml_tensor * src1 = dst->src[1];
  6889. switch (src0->type) {
  6890. case GGML_TYPE_F32:
  6891. {
  6892. ggml_compute_forward_add1_f32(params, dst);
  6893. } break;
  6894. case GGML_TYPE_F16:
  6895. {
  6896. if (src1->type == GGML_TYPE_F16) {
  6897. ggml_compute_forward_add1_f16_f16(params, dst);
  6898. }
  6899. else if (src1->type == GGML_TYPE_F32) {
  6900. ggml_compute_forward_add1_f16_f32(params, dst);
  6901. }
  6902. else {
  6903. GGML_ASSERT(false);
  6904. }
  6905. } break;
  6906. case GGML_TYPE_Q4_0:
  6907. case GGML_TYPE_Q4_1:
  6908. case GGML_TYPE_Q5_0:
  6909. case GGML_TYPE_Q5_1:
  6910. case GGML_TYPE_Q8_0:
  6911. case GGML_TYPE_Q8_1:
  6912. case GGML_TYPE_Q2_K:
  6913. case GGML_TYPE_Q3_K:
  6914. case GGML_TYPE_Q4_K:
  6915. case GGML_TYPE_Q5_K:
  6916. case GGML_TYPE_Q6_K:
  6917. case GGML_TYPE_IQ2_XXS:
  6918. case GGML_TYPE_IQ2_XS:
  6919. case GGML_TYPE_IQ3_XXS:
  6920. case GGML_TYPE_IQ1_S:
  6921. case GGML_TYPE_IQ1_M:
  6922. case GGML_TYPE_IQ4_NL:
  6923. case GGML_TYPE_IQ4_XS:
  6924. case GGML_TYPE_IQ3_S:
  6925. case GGML_TYPE_IQ2_S:
  6926. {
  6927. ggml_compute_forward_add1_q_f32(params, dst);
  6928. } break;
  6929. default:
  6930. {
  6931. GGML_ASSERT(false);
  6932. } break;
  6933. }
  6934. }
  6935. // ggml_compute_forward_acc
  6936. static void ggml_compute_forward_acc_f32(
  6937. const struct ggml_compute_params * params,
  6938. struct ggml_tensor * dst) {
  6939. const struct ggml_tensor * src0 = dst->src[0];
  6940. const struct ggml_tensor * src1 = dst->src[1];
  6941. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6942. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6943. // view src0 and dst with these strides and data offset inbytes during acc
  6944. // nb0 is implicitly element_size because src0 and dst are contiguous
  6945. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6946. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6947. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6948. size_t offset = ((int32_t *) dst->op_params)[3];
  6949. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6950. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6951. if (params->ith != 0) {
  6952. return;
  6953. }
  6954. // memcpy needs to be synchronized across threads to avoid race conditions.
  6955. // => do it in INIT phase
  6956. memcpy(
  6957. ((char *) dst->data),
  6958. ((char *) src0->data),
  6959. ggml_nbytes(dst));
  6960. }
  6961. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6962. return;
  6963. }
  6964. const int ith = params->ith;
  6965. const int nth = params->nth;
  6966. const int nr = ggml_nrows(src1);
  6967. const int nc = src1->ne[0];
  6968. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6969. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6970. // src0 and dst as viewed during acc
  6971. const size_t nb0 = ggml_element_size(src0);
  6972. const size_t nb00 = nb0;
  6973. const size_t nb01 = nb1;
  6974. const size_t nb02 = nb2;
  6975. const size_t nb03 = nb3;
  6976. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6977. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6978. GGML_ASSERT(nb10 == sizeof(float));
  6979. // rows per thread
  6980. const int dr = (nr + nth - 1)/nth;
  6981. // row range for this thread
  6982. const int ir0 = dr*ith;
  6983. const int ir1 = MIN(ir0 + dr, nr);
  6984. for (int ir = ir0; ir < ir1; ++ir) {
  6985. // src0 and dst are viewed with shape of src1 and offset
  6986. // => same indices
  6987. const int i3 = ir/(ne12*ne11);
  6988. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6989. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6990. #ifdef GGML_USE_ACCELERATE
  6991. vDSP_vadd(
  6992. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6993. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6994. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6995. #else
  6996. ggml_vec_add_f32(nc,
  6997. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6998. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6999. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7000. #endif
  7001. }
  7002. }
  7003. static void ggml_compute_forward_acc(
  7004. const struct ggml_compute_params * params,
  7005. struct ggml_tensor * dst) {
  7006. const struct ggml_tensor * src0 = dst->src[0];
  7007. switch (src0->type) {
  7008. case GGML_TYPE_F32:
  7009. {
  7010. ggml_compute_forward_acc_f32(params, dst);
  7011. } break;
  7012. case GGML_TYPE_F16:
  7013. case GGML_TYPE_Q4_0:
  7014. case GGML_TYPE_Q4_1:
  7015. case GGML_TYPE_Q5_0:
  7016. case GGML_TYPE_Q5_1:
  7017. case GGML_TYPE_Q8_0:
  7018. case GGML_TYPE_Q8_1:
  7019. case GGML_TYPE_Q2_K:
  7020. case GGML_TYPE_Q3_K:
  7021. case GGML_TYPE_Q4_K:
  7022. case GGML_TYPE_Q5_K:
  7023. case GGML_TYPE_Q6_K:
  7024. case GGML_TYPE_IQ2_XXS:
  7025. case GGML_TYPE_IQ2_XS:
  7026. case GGML_TYPE_IQ3_XXS:
  7027. case GGML_TYPE_IQ1_S:
  7028. case GGML_TYPE_IQ1_M:
  7029. case GGML_TYPE_IQ4_NL:
  7030. case GGML_TYPE_IQ4_XS:
  7031. case GGML_TYPE_IQ3_S:
  7032. case GGML_TYPE_IQ2_S:
  7033. default:
  7034. {
  7035. GGML_ASSERT(false);
  7036. } break;
  7037. }
  7038. }
  7039. // ggml_compute_forward_sub
  7040. static void ggml_compute_forward_sub_f32(
  7041. const struct ggml_compute_params * params,
  7042. struct ggml_tensor * dst) {
  7043. const struct ggml_tensor * src0 = dst->src[0];
  7044. const struct ggml_tensor * src1 = dst->src[1];
  7045. assert(params->ith == 0);
  7046. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7047. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7048. return;
  7049. }
  7050. const int nr = ggml_nrows(src0);
  7051. GGML_TENSOR_BINARY_OP_LOCALS
  7052. GGML_ASSERT( nb0 == sizeof(float));
  7053. GGML_ASSERT(nb00 == sizeof(float));
  7054. if (nb10 == sizeof(float)) {
  7055. for (int ir = 0; ir < nr; ++ir) {
  7056. // src0, src1 and dst are same shape => same indices
  7057. const int i3 = ir/(ne2*ne1);
  7058. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7059. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7060. #ifdef GGML_USE_ACCELERATE
  7061. vDSP_vsub(
  7062. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7063. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7064. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7065. ne0);
  7066. #else
  7067. ggml_vec_sub_f32(ne0,
  7068. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7069. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7070. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7071. #endif
  7072. // }
  7073. // }
  7074. }
  7075. } else {
  7076. // src1 is not contiguous
  7077. for (int ir = 0; ir < nr; ++ir) {
  7078. // src0, src1 and dst are same shape => same indices
  7079. const int i3 = ir/(ne2*ne1);
  7080. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7081. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7082. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7083. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7084. for (int i0 = 0; i0 < ne0; i0++) {
  7085. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7086. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7087. }
  7088. }
  7089. }
  7090. }
  7091. static void ggml_compute_forward_sub(
  7092. const struct ggml_compute_params * params,
  7093. struct ggml_tensor * dst) {
  7094. const struct ggml_tensor * src0 = dst->src[0];
  7095. switch (src0->type) {
  7096. case GGML_TYPE_F32:
  7097. {
  7098. ggml_compute_forward_sub_f32(params, dst);
  7099. } break;
  7100. default:
  7101. {
  7102. GGML_ASSERT(false);
  7103. } break;
  7104. }
  7105. }
  7106. // ggml_compute_forward_mul
  7107. static void ggml_compute_forward_mul_f32(
  7108. const struct ggml_compute_params * params,
  7109. struct ggml_tensor * dst) {
  7110. const struct ggml_tensor * src0 = dst->src[0];
  7111. const struct ggml_tensor * src1 = dst->src[1];
  7112. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7113. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7114. return;
  7115. }
  7116. const int ith = params->ith;
  7117. const int nth = params->nth;
  7118. #if defined(GGML_USE_CLBLAST)
  7119. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7120. // TODO: OpenCL kernel support full broadcast
  7121. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7122. if (ith == 0) {
  7123. ggml_cl_mul(src0, src1, dst);
  7124. }
  7125. return;
  7126. }
  7127. #endif
  7128. const int64_t nr = ggml_nrows(src0);
  7129. GGML_TENSOR_BINARY_OP_LOCALS
  7130. GGML_ASSERT( nb0 == sizeof(float));
  7131. GGML_ASSERT(nb00 == sizeof(float));
  7132. if (nb10 == sizeof(float)) {
  7133. for (int64_t ir = ith; ir < nr; ir += nth) {
  7134. // src0 and dst are same shape => same indices
  7135. const int64_t i03 = ir/(ne02*ne01);
  7136. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7137. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7138. const int64_t i13 = i03 % ne13;
  7139. const int64_t i12 = i02 % ne12;
  7140. const int64_t i11 = i01 % ne11;
  7141. const int64_t nr0 = ne00 / ne10;
  7142. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7143. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7144. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7145. for (int64_t r = 0 ; r < nr0; ++r) {
  7146. #ifdef GGML_USE_ACCELERATE
  7147. UNUSED(ggml_vec_mul_f32);
  7148. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7149. #else
  7150. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7151. #endif
  7152. }
  7153. }
  7154. } else {
  7155. // src1 is not contiguous
  7156. for (int64_t ir = ith; ir < nr; ir += nth) {
  7157. // src0 and dst are same shape => same indices
  7158. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7159. const int64_t i03 = ir/(ne02*ne01);
  7160. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7161. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7162. const int64_t i13 = i03 % ne13;
  7163. const int64_t i12 = i02 % ne12;
  7164. const int64_t i11 = i01 % ne11;
  7165. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7166. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7167. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7168. const int64_t i10 = i0 % ne10;
  7169. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7170. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7171. }
  7172. }
  7173. }
  7174. }
  7175. static void ggml_compute_forward_mul(
  7176. const struct ggml_compute_params * params,
  7177. struct ggml_tensor * dst) {
  7178. const struct ggml_tensor * src0 = dst->src[0];
  7179. const struct ggml_tensor * src1 = dst->src[1];
  7180. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F32:
  7183. {
  7184. ggml_compute_forward_mul_f32(params, dst);
  7185. } break;
  7186. default:
  7187. {
  7188. GGML_ASSERT(false);
  7189. } break;
  7190. }
  7191. }
  7192. // ggml_compute_forward_div
  7193. static void ggml_compute_forward_div_f32(
  7194. const struct ggml_compute_params * params,
  7195. struct ggml_tensor * dst) {
  7196. const struct ggml_tensor * src0 = dst->src[0];
  7197. const struct ggml_tensor * src1 = dst->src[1];
  7198. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7199. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7200. return;
  7201. }
  7202. const int ith = params->ith;
  7203. const int nth = params->nth;
  7204. const int64_t nr = ggml_nrows(src0);
  7205. GGML_TENSOR_BINARY_OP_LOCALS
  7206. GGML_ASSERT( nb0 == sizeof(float));
  7207. GGML_ASSERT(nb00 == sizeof(float));
  7208. if (nb10 == sizeof(float)) {
  7209. for (int64_t ir = ith; ir < nr; ir += nth) {
  7210. // src0 and dst are same shape => same indices
  7211. const int64_t i03 = ir/(ne02*ne01);
  7212. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7213. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7214. const int64_t i13 = i03 % ne13;
  7215. const int64_t i12 = i02 % ne12;
  7216. const int64_t i11 = i01 % ne11;
  7217. const int64_t nr0 = ne00 / ne10;
  7218. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7219. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7220. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7221. for (int64_t r = 0; r < nr0; ++r) {
  7222. #ifdef GGML_USE_ACCELERATE
  7223. UNUSED(ggml_vec_div_f32);
  7224. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7225. #else
  7226. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7227. #endif
  7228. }
  7229. }
  7230. } else {
  7231. // src1 is not contiguous
  7232. for (int64_t ir = ith; ir < nr; ir += nth) {
  7233. // src0 and dst are same shape => same indices
  7234. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7235. const int64_t i03 = ir/(ne02*ne01);
  7236. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7237. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7238. const int64_t i13 = i03 % ne13;
  7239. const int64_t i12 = i02 % ne12;
  7240. const int64_t i11 = i01 % ne11;
  7241. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7242. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7243. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7244. const int64_t i10 = i0 % ne10;
  7245. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7246. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7247. }
  7248. }
  7249. }
  7250. }
  7251. static void ggml_compute_forward_div(
  7252. const struct ggml_compute_params * params,
  7253. struct ggml_tensor * dst) {
  7254. const struct ggml_tensor * src0 = dst->src[0];
  7255. switch (src0->type) {
  7256. case GGML_TYPE_F32:
  7257. {
  7258. ggml_compute_forward_div_f32(params, dst);
  7259. } break;
  7260. default:
  7261. {
  7262. GGML_ASSERT(false);
  7263. } break;
  7264. }
  7265. }
  7266. // ggml_compute_forward_sqr
  7267. static void ggml_compute_forward_sqr_f32(
  7268. const struct ggml_compute_params * params,
  7269. struct ggml_tensor * dst) {
  7270. const struct ggml_tensor * src0 = dst->src[0];
  7271. assert(params->ith == 0);
  7272. assert(ggml_are_same_shape(src0, dst));
  7273. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7274. return;
  7275. }
  7276. const int n = ggml_nrows(src0);
  7277. const int nc = src0->ne[0];
  7278. assert( dst->nb[0] == sizeof(float));
  7279. assert(src0->nb[0] == sizeof(float));
  7280. for (int i = 0; i < n; i++) {
  7281. ggml_vec_sqr_f32(nc,
  7282. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7283. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7284. }
  7285. }
  7286. static void ggml_compute_forward_sqr(
  7287. const struct ggml_compute_params * params,
  7288. struct ggml_tensor * dst) {
  7289. const struct ggml_tensor * src0 = dst->src[0];
  7290. switch (src0->type) {
  7291. case GGML_TYPE_F32:
  7292. {
  7293. ggml_compute_forward_sqr_f32(params, dst);
  7294. } break;
  7295. default:
  7296. {
  7297. GGML_ASSERT(false);
  7298. } break;
  7299. }
  7300. }
  7301. // ggml_compute_forward_sqrt
  7302. static void ggml_compute_forward_sqrt_f32(
  7303. const struct ggml_compute_params * params,
  7304. struct ggml_tensor * dst) {
  7305. const struct ggml_tensor * src0 = dst->src[0];
  7306. assert(params->ith == 0);
  7307. assert(ggml_are_same_shape(src0, dst));
  7308. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7309. return;
  7310. }
  7311. const int n = ggml_nrows(src0);
  7312. const int nc = src0->ne[0];
  7313. assert( dst->nb[0] == sizeof(float));
  7314. assert(src0->nb[0] == sizeof(float));
  7315. for (int i = 0; i < n; i++) {
  7316. ggml_vec_sqrt_f32(nc,
  7317. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7318. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7319. }
  7320. }
  7321. static void ggml_compute_forward_sqrt(
  7322. const struct ggml_compute_params * params,
  7323. struct ggml_tensor * dst) {
  7324. const struct ggml_tensor * src0 = dst->src[0];
  7325. switch (src0->type) {
  7326. case GGML_TYPE_F32:
  7327. {
  7328. ggml_compute_forward_sqrt_f32(params, dst);
  7329. } break;
  7330. default:
  7331. {
  7332. GGML_ASSERT(false);
  7333. } break;
  7334. }
  7335. }
  7336. // ggml_compute_forward_log
  7337. static void ggml_compute_forward_log_f32(
  7338. const struct ggml_compute_params * params,
  7339. struct ggml_tensor * dst) {
  7340. const struct ggml_tensor * src0 = dst->src[0];
  7341. GGML_ASSERT(params->ith == 0);
  7342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7343. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7344. return;
  7345. }
  7346. const int n = ggml_nrows(src0);
  7347. const int nc = src0->ne[0];
  7348. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7349. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7350. for (int i = 0; i < n; i++) {
  7351. ggml_vec_log_f32(nc,
  7352. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7353. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7354. }
  7355. }
  7356. static void ggml_compute_forward_log(
  7357. const struct ggml_compute_params * params,
  7358. struct ggml_tensor * dst) {
  7359. const struct ggml_tensor * src0 = dst->src[0];
  7360. switch (src0->type) {
  7361. case GGML_TYPE_F32:
  7362. {
  7363. ggml_compute_forward_log_f32(params, dst);
  7364. } break;
  7365. default:
  7366. {
  7367. GGML_ASSERT(false);
  7368. } break;
  7369. }
  7370. }
  7371. // ggml_compute_forward_sum
  7372. static void ggml_compute_forward_sum_f32(
  7373. const struct ggml_compute_params * params,
  7374. struct ggml_tensor * dst) {
  7375. const struct ggml_tensor * src0 = dst->src[0];
  7376. assert(params->ith == 0);
  7377. assert(ggml_is_scalar(dst));
  7378. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7379. return;
  7380. }
  7381. assert(ggml_is_scalar(dst));
  7382. assert(src0->nb[0] == sizeof(float));
  7383. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7384. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7385. ggml_float sum = 0;
  7386. ggml_float row_sum = 0;
  7387. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7388. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7389. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7390. ggml_vec_sum_f32_ggf(ne00,
  7391. &row_sum,
  7392. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7393. sum += row_sum;
  7394. }
  7395. }
  7396. }
  7397. ((float *) dst->data)[0] = sum;
  7398. }
  7399. static void ggml_compute_forward_sum_f16(
  7400. const struct ggml_compute_params * params,
  7401. struct ggml_tensor * dst) {
  7402. const struct ggml_tensor * src0 = dst->src[0];
  7403. assert(params->ith == 0);
  7404. assert(ggml_is_scalar(dst));
  7405. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7406. return;
  7407. }
  7408. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7409. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7410. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7411. float sum = 0;
  7412. float row_sum = 0;
  7413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7415. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7416. ggml_vec_sum_f16_ggf(ne00,
  7417. &row_sum,
  7418. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7419. sum += row_sum;
  7420. }
  7421. }
  7422. }
  7423. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7424. }
  7425. static void ggml_compute_forward_sum(
  7426. const struct ggml_compute_params * params,
  7427. struct ggml_tensor * dst) {
  7428. const struct ggml_tensor * src0 = dst->src[0];
  7429. switch (src0->type) {
  7430. case GGML_TYPE_F32:
  7431. {
  7432. ggml_compute_forward_sum_f32(params, dst);
  7433. } break;
  7434. case GGML_TYPE_F16:
  7435. {
  7436. ggml_compute_forward_sum_f16(params, dst);
  7437. } break;
  7438. default:
  7439. {
  7440. GGML_ASSERT(false);
  7441. } break;
  7442. }
  7443. }
  7444. // ggml_compute_forward_sum_rows
  7445. static void ggml_compute_forward_sum_rows_f32(
  7446. const struct ggml_compute_params * params,
  7447. struct ggml_tensor * dst) {
  7448. const struct ggml_tensor * src0 = dst->src[0];
  7449. GGML_ASSERT(params->ith == 0);
  7450. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7451. return;
  7452. }
  7453. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7454. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7455. GGML_TENSOR_UNARY_OP_LOCALS
  7456. GGML_ASSERT(ne0 == 1);
  7457. GGML_ASSERT(ne1 == ne01);
  7458. GGML_ASSERT(ne2 == ne02);
  7459. GGML_ASSERT(ne3 == ne03);
  7460. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7461. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7462. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7463. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7464. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7465. float row_sum = 0;
  7466. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7467. dst_row[0] = row_sum;
  7468. }
  7469. }
  7470. }
  7471. }
  7472. static void ggml_compute_forward_sum_rows(
  7473. const struct ggml_compute_params * params,
  7474. struct ggml_tensor * dst) {
  7475. const struct ggml_tensor * src0 = dst->src[0];
  7476. switch (src0->type) {
  7477. case GGML_TYPE_F32:
  7478. {
  7479. ggml_compute_forward_sum_rows_f32(params, dst);
  7480. } break;
  7481. default:
  7482. {
  7483. GGML_ASSERT(false);
  7484. } break;
  7485. }
  7486. }
  7487. // ggml_compute_forward_mean
  7488. static void ggml_compute_forward_mean_f32(
  7489. const struct ggml_compute_params * params,
  7490. struct ggml_tensor * dst) {
  7491. const struct ggml_tensor * src0 = dst->src[0];
  7492. assert(params->ith == 0);
  7493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7494. return;
  7495. }
  7496. assert(src0->nb[0] == sizeof(float));
  7497. GGML_TENSOR_UNARY_OP_LOCALS
  7498. assert(ne0 == 1);
  7499. assert(ne1 == ne01);
  7500. assert(ne2 == ne02);
  7501. assert(ne3 == ne03);
  7502. UNUSED(ne0);
  7503. UNUSED(ne1);
  7504. UNUSED(ne2);
  7505. UNUSED(ne3);
  7506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7508. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7509. ggml_vec_sum_f32(ne00,
  7510. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7511. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7512. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7513. }
  7514. }
  7515. }
  7516. }
  7517. static void ggml_compute_forward_mean(
  7518. const struct ggml_compute_params * params,
  7519. struct ggml_tensor * dst) {
  7520. const struct ggml_tensor * src0 = dst->src[0];
  7521. switch (src0->type) {
  7522. case GGML_TYPE_F32:
  7523. {
  7524. ggml_compute_forward_mean_f32(params, dst);
  7525. } break;
  7526. default:
  7527. {
  7528. GGML_ASSERT(false);
  7529. } break;
  7530. }
  7531. }
  7532. // ggml_compute_forward_argmax
  7533. static void ggml_compute_forward_argmax_f32(
  7534. const struct ggml_compute_params * params,
  7535. struct ggml_tensor * dst) {
  7536. const struct ggml_tensor * src0 = dst->src[0];
  7537. assert(params->ith == 0);
  7538. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7539. return;
  7540. }
  7541. assert(src0->nb[0] == sizeof(float));
  7542. assert(dst->nb[0] == sizeof(float));
  7543. const int64_t ne00 = src0->ne[0];
  7544. const int64_t ne01 = src0->ne[1];
  7545. const size_t nb01 = src0->nb[1];
  7546. const size_t nb0 = dst->nb[0];
  7547. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7548. float * src = (float *) ((char *) src0->data + i1*nb01);
  7549. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7550. int v = 0;
  7551. ggml_vec_argmax_f32(ne00, &v, src);
  7552. dst_[0] = v;
  7553. }
  7554. }
  7555. static void ggml_compute_forward_argmax(
  7556. const struct ggml_compute_params * params,
  7557. struct ggml_tensor * dst) {
  7558. const struct ggml_tensor * src0 = dst->src[0];
  7559. switch (src0->type) {
  7560. case GGML_TYPE_F32:
  7561. {
  7562. ggml_compute_forward_argmax_f32(params, dst);
  7563. } break;
  7564. default:
  7565. {
  7566. GGML_ASSERT(false);
  7567. } break;
  7568. }
  7569. }
  7570. // ggml_compute_forward_repeat
  7571. static void ggml_compute_forward_repeat_f32(
  7572. const struct ggml_compute_params * params,
  7573. struct ggml_tensor * dst) {
  7574. const struct ggml_tensor * src0 = dst->src[0];
  7575. GGML_ASSERT(params->ith == 0);
  7576. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7577. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7578. return;
  7579. }
  7580. GGML_TENSOR_UNARY_OP_LOCALS
  7581. // guaranteed to be an integer due to the check in ggml_can_repeat
  7582. const int nr0 = (int)(ne0/ne00);
  7583. const int nr1 = (int)(ne1/ne01);
  7584. const int nr2 = (int)(ne2/ne02);
  7585. const int nr3 = (int)(ne3/ne03);
  7586. // TODO: support for transposed / permuted tensors
  7587. GGML_ASSERT(nb0 == sizeof(float));
  7588. GGML_ASSERT(nb00 == sizeof(float));
  7589. // TODO: maybe this is not optimal?
  7590. for (int i3 = 0; i3 < nr3; i3++) {
  7591. for (int k3 = 0; k3 < ne03; k3++) {
  7592. for (int i2 = 0; i2 < nr2; i2++) {
  7593. for (int k2 = 0; k2 < ne02; k2++) {
  7594. for (int i1 = 0; i1 < nr1; i1++) {
  7595. for (int k1 = 0; k1 < ne01; k1++) {
  7596. for (int i0 = 0; i0 < nr0; i0++) {
  7597. ggml_vec_cpy_f32(ne00,
  7598. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7599. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7600. }
  7601. }
  7602. }
  7603. }
  7604. }
  7605. }
  7606. }
  7607. }
  7608. static void ggml_compute_forward_repeat_f16(
  7609. const struct ggml_compute_params * params,
  7610. struct ggml_tensor * dst) {
  7611. const struct ggml_tensor * src0 = dst->src[0];
  7612. GGML_ASSERT(params->ith == 0);
  7613. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7614. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7615. return;
  7616. }
  7617. GGML_TENSOR_UNARY_OP_LOCALS
  7618. // guaranteed to be an integer due to the check in ggml_can_repeat
  7619. const int nr0 = (int)(ne0/ne00);
  7620. const int nr1 = (int)(ne1/ne01);
  7621. const int nr2 = (int)(ne2/ne02);
  7622. const int nr3 = (int)(ne3/ne03);
  7623. // TODO: support for transposed / permuted tensors
  7624. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7625. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7626. // TODO: maybe this is not optimal?
  7627. for (int i3 = 0; i3 < nr3; i3++) {
  7628. for (int k3 = 0; k3 < ne03; k3++) {
  7629. for (int i2 = 0; i2 < nr2; i2++) {
  7630. for (int k2 = 0; k2 < ne02; k2++) {
  7631. for (int i1 = 0; i1 < nr1; i1++) {
  7632. for (int k1 = 0; k1 < ne01; k1++) {
  7633. for (int i0 = 0; i0 < nr0; i0++) {
  7634. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7635. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7636. // ggml_vec_cpy_f16(ne00, y, x)
  7637. for (int i = 0; i < ne00; ++i) {
  7638. y[i] = x[i];
  7639. }
  7640. }
  7641. }
  7642. }
  7643. }
  7644. }
  7645. }
  7646. }
  7647. }
  7648. static void ggml_compute_forward_repeat(
  7649. const struct ggml_compute_params * params,
  7650. struct ggml_tensor * dst) {
  7651. const struct ggml_tensor * src0 = dst->src[0];
  7652. switch (src0->type) {
  7653. case GGML_TYPE_F16:
  7654. case GGML_TYPE_I16:
  7655. {
  7656. ggml_compute_forward_repeat_f16(params, dst);
  7657. } break;
  7658. case GGML_TYPE_F32:
  7659. case GGML_TYPE_I32:
  7660. {
  7661. ggml_compute_forward_repeat_f32(params, dst);
  7662. } break;
  7663. default:
  7664. {
  7665. GGML_ASSERT(false);
  7666. } break;
  7667. }
  7668. }
  7669. // ggml_compute_forward_repeat_back
  7670. static void ggml_compute_forward_repeat_back_f32(
  7671. const struct ggml_compute_params * params,
  7672. struct ggml_tensor * dst) {
  7673. const struct ggml_tensor * src0 = dst->src[0];
  7674. GGML_ASSERT(params->ith == 0);
  7675. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7676. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7677. return;
  7678. }
  7679. GGML_TENSOR_UNARY_OP_LOCALS
  7680. // guaranteed to be an integer due to the check in ggml_can_repeat
  7681. const int nr0 = (int)(ne00/ne0);
  7682. const int nr1 = (int)(ne01/ne1);
  7683. const int nr2 = (int)(ne02/ne2);
  7684. const int nr3 = (int)(ne03/ne3);
  7685. // TODO: support for transposed / permuted tensors
  7686. GGML_ASSERT(nb0 == sizeof(float));
  7687. GGML_ASSERT(nb00 == sizeof(float));
  7688. if (ggml_is_contiguous(dst)) {
  7689. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7690. } else {
  7691. for (int k3 = 0; k3 < ne3; k3++) {
  7692. for (int k2 = 0; k2 < ne2; k2++) {
  7693. for (int k1 = 0; k1 < ne1; k1++) {
  7694. ggml_vec_set_f32(ne0,
  7695. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7696. 0);
  7697. }
  7698. }
  7699. }
  7700. }
  7701. // TODO: maybe this is not optimal?
  7702. for (int i3 = 0; i3 < nr3; i3++) {
  7703. for (int k3 = 0; k3 < ne3; k3++) {
  7704. for (int i2 = 0; i2 < nr2; i2++) {
  7705. for (int k2 = 0; k2 < ne2; k2++) {
  7706. for (int i1 = 0; i1 < nr1; i1++) {
  7707. for (int k1 = 0; k1 < ne1; k1++) {
  7708. for (int i0 = 0; i0 < nr0; i0++) {
  7709. ggml_vec_acc_f32(ne0,
  7710. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7711. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7712. }
  7713. }
  7714. }
  7715. }
  7716. }
  7717. }
  7718. }
  7719. }
  7720. static void ggml_compute_forward_repeat_back(
  7721. const struct ggml_compute_params * params,
  7722. struct ggml_tensor * dst) {
  7723. const struct ggml_tensor * src0 = dst->src[0];
  7724. switch (src0->type) {
  7725. case GGML_TYPE_F32:
  7726. {
  7727. ggml_compute_forward_repeat_back_f32(params, dst);
  7728. } break;
  7729. default:
  7730. {
  7731. GGML_ASSERT(false);
  7732. } break;
  7733. }
  7734. }
  7735. // ggml_compute_forward_concat
  7736. static void ggml_compute_forward_concat_f32(
  7737. const struct ggml_compute_params * params,
  7738. struct ggml_tensor * dst) {
  7739. const struct ggml_tensor * src0 = dst->src[0];
  7740. const struct ggml_tensor * src1 = dst->src[1];
  7741. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7742. return;
  7743. }
  7744. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7745. const int ith = params->ith;
  7746. const int nth = params->nth;
  7747. GGML_TENSOR_BINARY_OP_LOCALS
  7748. // TODO: support for transposed / permuted tensors
  7749. GGML_ASSERT(nb0 == sizeof(float));
  7750. GGML_ASSERT(nb00 == sizeof(float));
  7751. GGML_ASSERT(nb10 == sizeof(float));
  7752. for (int i3 = 0; i3 < ne3; i3++) {
  7753. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7754. if (i2 < ne02) { // src0
  7755. for (int i1 = 0; i1 < ne1; i1++) {
  7756. for (int i0 = 0; i0 < ne0; i0++) {
  7757. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7758. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7759. *y = *x;
  7760. }
  7761. }
  7762. } // src1
  7763. else {
  7764. for (int i1 = 0; i1 < ne1; i1++) {
  7765. for (int i0 = 0; i0 < ne0; i0++) {
  7766. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7767. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7768. *y = *x;
  7769. }
  7770. }
  7771. }
  7772. }
  7773. }
  7774. }
  7775. static void ggml_compute_forward_concat(
  7776. const struct ggml_compute_params* params,
  7777. struct ggml_tensor* dst) {
  7778. const struct ggml_tensor * src0 = dst->src[0];
  7779. switch (src0->type) {
  7780. case GGML_TYPE_F32:
  7781. case GGML_TYPE_I32:
  7782. {
  7783. ggml_compute_forward_concat_f32(params, dst);
  7784. } break;
  7785. default:
  7786. {
  7787. GGML_ASSERT(false);
  7788. } break;
  7789. }
  7790. }
  7791. // ggml_compute_forward_abs
  7792. static void ggml_compute_forward_abs_f32(
  7793. const struct ggml_compute_params * params,
  7794. struct ggml_tensor * dst) {
  7795. const struct ggml_tensor * src0 = dst->src[0];
  7796. assert(params->ith == 0);
  7797. assert(ggml_are_same_shape(src0, dst));
  7798. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7799. return;
  7800. }
  7801. const int n = ggml_nrows(src0);
  7802. const int nc = src0->ne[0];
  7803. assert(dst->nb[0] == sizeof(float));
  7804. assert(src0->nb[0] == sizeof(float));
  7805. for (int i = 0; i < n; i++) {
  7806. ggml_vec_abs_f32(nc,
  7807. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7808. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7809. }
  7810. }
  7811. static void ggml_compute_forward_abs(
  7812. const struct ggml_compute_params * params,
  7813. struct ggml_tensor * dst) {
  7814. const struct ggml_tensor * src0 = dst->src[0];
  7815. switch (src0->type) {
  7816. case GGML_TYPE_F32:
  7817. {
  7818. ggml_compute_forward_abs_f32(params, dst);
  7819. } break;
  7820. default:
  7821. {
  7822. GGML_ASSERT(false);
  7823. } break;
  7824. }
  7825. }
  7826. // ggml_compute_forward_sgn
  7827. static void ggml_compute_forward_sgn_f32(
  7828. const struct ggml_compute_params * params,
  7829. struct ggml_tensor * dst) {
  7830. const struct ggml_tensor * src0 = dst->src[0];
  7831. assert(params->ith == 0);
  7832. assert(ggml_are_same_shape(src0, dst));
  7833. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7834. return;
  7835. }
  7836. const int n = ggml_nrows(src0);
  7837. const int nc = src0->ne[0];
  7838. assert(dst->nb[0] == sizeof(float));
  7839. assert(src0->nb[0] == sizeof(float));
  7840. for (int i = 0; i < n; i++) {
  7841. ggml_vec_sgn_f32(nc,
  7842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7843. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7844. }
  7845. }
  7846. static void ggml_compute_forward_sgn(
  7847. const struct ggml_compute_params * params,
  7848. struct ggml_tensor * dst) {
  7849. const struct ggml_tensor * src0 = dst->src[0];
  7850. switch (src0->type) {
  7851. case GGML_TYPE_F32:
  7852. {
  7853. ggml_compute_forward_sgn_f32(params, dst);
  7854. } break;
  7855. default:
  7856. {
  7857. GGML_ASSERT(false);
  7858. } break;
  7859. }
  7860. }
  7861. // ggml_compute_forward_neg
  7862. static void ggml_compute_forward_neg_f32(
  7863. const struct ggml_compute_params * params,
  7864. struct ggml_tensor * dst) {
  7865. const struct ggml_tensor * src0 = dst->src[0];
  7866. assert(params->ith == 0);
  7867. assert(ggml_are_same_shape(src0, dst));
  7868. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7869. return;
  7870. }
  7871. const int n = ggml_nrows(src0);
  7872. const int nc = src0->ne[0];
  7873. assert(dst->nb[0] == sizeof(float));
  7874. assert(src0->nb[0] == sizeof(float));
  7875. for (int i = 0; i < n; i++) {
  7876. ggml_vec_neg_f32(nc,
  7877. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7878. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7879. }
  7880. }
  7881. static void ggml_compute_forward_neg(
  7882. const struct ggml_compute_params * params,
  7883. struct ggml_tensor * dst) {
  7884. const struct ggml_tensor * src0 = dst->src[0];
  7885. switch (src0->type) {
  7886. case GGML_TYPE_F32:
  7887. {
  7888. ggml_compute_forward_neg_f32(params, dst);
  7889. } break;
  7890. default:
  7891. {
  7892. GGML_ASSERT(false);
  7893. } break;
  7894. }
  7895. }
  7896. // ggml_compute_forward_step
  7897. static void ggml_compute_forward_step_f32(
  7898. const struct ggml_compute_params * params,
  7899. struct ggml_tensor * dst) {
  7900. const struct ggml_tensor * src0 = dst->src[0];
  7901. assert(params->ith == 0);
  7902. assert(ggml_are_same_shape(src0, dst));
  7903. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7904. return;
  7905. }
  7906. const int n = ggml_nrows(src0);
  7907. const int nc = src0->ne[0];
  7908. assert(dst->nb[0] == sizeof(float));
  7909. assert(src0->nb[0] == sizeof(float));
  7910. for (int i = 0; i < n; i++) {
  7911. ggml_vec_step_f32(nc,
  7912. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7913. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7914. }
  7915. }
  7916. static void ggml_compute_forward_step(
  7917. const struct ggml_compute_params * params,
  7918. struct ggml_tensor * dst) {
  7919. const struct ggml_tensor * src0 = dst->src[0];
  7920. switch (src0->type) {
  7921. case GGML_TYPE_F32:
  7922. {
  7923. ggml_compute_forward_step_f32(params, dst);
  7924. } break;
  7925. default:
  7926. {
  7927. GGML_ASSERT(false);
  7928. } break;
  7929. }
  7930. }
  7931. // ggml_compute_forward_tanh
  7932. static void ggml_compute_forward_tanh_f32(
  7933. const struct ggml_compute_params * params,
  7934. struct ggml_tensor * dst) {
  7935. const struct ggml_tensor * src0 = dst->src[0];
  7936. assert(params->ith == 0);
  7937. assert(ggml_are_same_shape(src0, dst));
  7938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7939. return;
  7940. }
  7941. const int n = ggml_nrows(src0);
  7942. const int nc = src0->ne[0];
  7943. assert(dst->nb[0] == sizeof(float));
  7944. assert(src0->nb[0] == sizeof(float));
  7945. for (int i = 0; i < n; i++) {
  7946. ggml_vec_tanh_f32(nc,
  7947. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7948. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7949. }
  7950. }
  7951. static void ggml_compute_forward_tanh(
  7952. const struct ggml_compute_params * params,
  7953. struct ggml_tensor * dst) {
  7954. const struct ggml_tensor * src0 = dst->src[0];
  7955. switch (src0->type) {
  7956. case GGML_TYPE_F32:
  7957. {
  7958. ggml_compute_forward_tanh_f32(params, dst);
  7959. } break;
  7960. default:
  7961. {
  7962. GGML_ASSERT(false);
  7963. } break;
  7964. }
  7965. }
  7966. // ggml_compute_forward_elu
  7967. static void ggml_compute_forward_elu_f32(
  7968. const struct ggml_compute_params * params,
  7969. struct ggml_tensor * dst) {
  7970. const struct ggml_tensor * src0 = dst->src[0];
  7971. assert(params->ith == 0);
  7972. assert(ggml_are_same_shape(src0, dst));
  7973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7974. return;
  7975. }
  7976. const int n = ggml_nrows(src0);
  7977. const int nc = src0->ne[0];
  7978. assert(dst->nb[0] == sizeof(float));
  7979. assert(src0->nb[0] == sizeof(float));
  7980. for (int i = 0; i < n; i++) {
  7981. ggml_vec_elu_f32(nc,
  7982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7984. }
  7985. }
  7986. static void ggml_compute_forward_elu(
  7987. const struct ggml_compute_params * params,
  7988. struct ggml_tensor * dst) {
  7989. const struct ggml_tensor * src0 = dst->src[0];
  7990. switch (src0->type) {
  7991. case GGML_TYPE_F32:
  7992. {
  7993. ggml_compute_forward_elu_f32(params, dst);
  7994. } break;
  7995. default:
  7996. {
  7997. GGML_ASSERT(false);
  7998. } break;
  7999. }
  8000. }
  8001. // ggml_compute_forward_relu
  8002. static void ggml_compute_forward_relu_f32(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. assert(params->ith == 0);
  8007. assert(ggml_are_same_shape(src0, dst));
  8008. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8009. return;
  8010. }
  8011. const int n = ggml_nrows(src0);
  8012. const int nc = src0->ne[0];
  8013. assert(dst->nb[0] == sizeof(float));
  8014. assert(src0->nb[0] == sizeof(float));
  8015. for (int i = 0; i < n; i++) {
  8016. ggml_vec_relu_f32(nc,
  8017. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8018. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8019. }
  8020. }
  8021. static void ggml_compute_forward_relu(
  8022. const struct ggml_compute_params * params,
  8023. struct ggml_tensor * dst) {
  8024. const struct ggml_tensor * src0 = dst->src[0];
  8025. switch (src0->type) {
  8026. case GGML_TYPE_F32:
  8027. {
  8028. ggml_compute_forward_relu_f32(params, dst);
  8029. } break;
  8030. default:
  8031. {
  8032. GGML_ASSERT(false);
  8033. } break;
  8034. }
  8035. }
  8036. // ggml_compute_forward_gelu
  8037. static void ggml_compute_forward_gelu_f32(
  8038. const struct ggml_compute_params * params,
  8039. struct ggml_tensor * dst) {
  8040. const struct ggml_tensor * src0 = dst->src[0];
  8041. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8042. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8043. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8044. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8045. return;
  8046. }
  8047. const int ith = params->ith;
  8048. const int nth = params->nth;
  8049. const int nc = src0->ne[0];
  8050. const int nr = ggml_nrows(src0);
  8051. // rows per thread
  8052. const int dr = (nr + nth - 1)/nth;
  8053. // row range for this thread
  8054. const int ir0 = dr*ith;
  8055. const int ir1 = MIN(ir0 + dr, nr);
  8056. for (int i1 = ir0; i1 < ir1; i1++) {
  8057. ggml_vec_gelu_f32(nc,
  8058. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8059. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8060. #ifndef NDEBUG
  8061. for (int k = 0; k < nc; k++) {
  8062. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8063. UNUSED(x);
  8064. assert(!isnan(x));
  8065. assert(!isinf(x));
  8066. }
  8067. #endif
  8068. }
  8069. }
  8070. static void ggml_compute_forward_gelu(
  8071. const struct ggml_compute_params * params,
  8072. struct ggml_tensor * dst) {
  8073. const struct ggml_tensor * src0 = dst->src[0];
  8074. switch (src0->type) {
  8075. case GGML_TYPE_F32:
  8076. {
  8077. ggml_compute_forward_gelu_f32(params, dst);
  8078. } break;
  8079. default:
  8080. {
  8081. GGML_ASSERT(false);
  8082. } break;
  8083. }
  8084. }
  8085. // ggml_compute_forward_gelu_quick
  8086. static void ggml_compute_forward_gelu_quick_f32(
  8087. const struct ggml_compute_params * params,
  8088. struct ggml_tensor * dst) {
  8089. const struct ggml_tensor * src0 = dst->src[0];
  8090. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8091. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8093. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8094. return;
  8095. }
  8096. const int ith = params->ith;
  8097. const int nth = params->nth;
  8098. const int nc = src0->ne[0];
  8099. const int nr = ggml_nrows(src0);
  8100. // rows per thread
  8101. const int dr = (nr + nth - 1)/nth;
  8102. // row range for this thread
  8103. const int ir0 = dr*ith;
  8104. const int ir1 = MIN(ir0 + dr, nr);
  8105. for (int i1 = ir0; i1 < ir1; i1++) {
  8106. ggml_vec_gelu_quick_f32(nc,
  8107. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8108. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8109. #ifndef NDEBUG
  8110. for (int k = 0; k < nc; k++) {
  8111. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8112. UNUSED(x);
  8113. assert(!isnan(x));
  8114. assert(!isinf(x));
  8115. }
  8116. #endif
  8117. }
  8118. }
  8119. static void ggml_compute_forward_gelu_quick(
  8120. const struct ggml_compute_params * params,
  8121. struct ggml_tensor * dst) {
  8122. const struct ggml_tensor * src0 = dst->src[0];
  8123. switch (src0->type) {
  8124. case GGML_TYPE_F32:
  8125. {
  8126. ggml_compute_forward_gelu_quick_f32(params, dst);
  8127. } break;
  8128. default:
  8129. {
  8130. GGML_ASSERT(false);
  8131. } break;
  8132. }
  8133. }
  8134. // ggml_compute_forward_silu
  8135. static void ggml_compute_forward_silu_f32(
  8136. const struct ggml_compute_params * params,
  8137. struct ggml_tensor * dst) {
  8138. const struct ggml_tensor * src0 = dst->src[0];
  8139. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8140. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8141. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8142. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8143. return;
  8144. }
  8145. const int ith = params->ith;
  8146. const int nth = params->nth;
  8147. const int nc = src0->ne[0];
  8148. const int nr = ggml_nrows(src0);
  8149. // rows per thread
  8150. const int dr = (nr + nth - 1)/nth;
  8151. // row range for this thread
  8152. const int ir0 = dr*ith;
  8153. const int ir1 = MIN(ir0 + dr, nr);
  8154. for (int i1 = ir0; i1 < ir1; i1++) {
  8155. ggml_vec_silu_f32(nc,
  8156. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8157. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8158. #ifndef NDEBUG
  8159. for (int k = 0; k < nc; k++) {
  8160. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8161. UNUSED(x);
  8162. assert(!isnan(x));
  8163. assert(!isinf(x));
  8164. }
  8165. #endif
  8166. }
  8167. }
  8168. static void ggml_compute_forward_silu(
  8169. const struct ggml_compute_params * params,
  8170. struct ggml_tensor * dst) {
  8171. const struct ggml_tensor * src0 = dst->src[0];
  8172. switch (src0->type) {
  8173. case GGML_TYPE_F32:
  8174. {
  8175. ggml_compute_forward_silu_f32(params, dst);
  8176. } break;
  8177. default:
  8178. {
  8179. GGML_ASSERT(false);
  8180. } break;
  8181. }
  8182. }
  8183. // ggml_compute_forward_leaky_relu
  8184. static void ggml_compute_forward_leaky_relu_f32(
  8185. const struct ggml_compute_params * params,
  8186. struct ggml_tensor * dst) {
  8187. const struct ggml_tensor * src0 = dst->src[0];
  8188. assert(params->ith == 0);
  8189. assert(ggml_are_same_shape(src0, dst));
  8190. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8191. return;
  8192. }
  8193. const int n = ggml_nrows(src0);
  8194. const int nc = src0->ne[0];
  8195. float negative_slope;
  8196. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8197. assert(dst->nb[0] == sizeof(float));
  8198. assert(src0->nb[0] == sizeof(float));
  8199. for (int i = 0; i < n; i++) {
  8200. ggml_vec_leaky_relu_f32(nc,
  8201. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8202. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8203. }
  8204. }
  8205. static void ggml_compute_forward_leaky_relu(
  8206. const struct ggml_compute_params * params,
  8207. struct ggml_tensor * dst) {
  8208. const struct ggml_tensor * src0 = dst->src[0];
  8209. switch (src0->type) {
  8210. case GGML_TYPE_F32:
  8211. {
  8212. ggml_compute_forward_leaky_relu_f32(params, dst);
  8213. } break;
  8214. default:
  8215. {
  8216. GGML_ASSERT(false);
  8217. } break;
  8218. }
  8219. }
  8220. // ggml_compute_forward_silu_back
  8221. static void ggml_compute_forward_silu_back_f32(
  8222. const struct ggml_compute_params * params,
  8223. struct ggml_tensor * dst) {
  8224. const struct ggml_tensor * src0 = dst->src[0];
  8225. const struct ggml_tensor * grad = dst->src[1];
  8226. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8227. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8228. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8230. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8232. return;
  8233. }
  8234. const int ith = params->ith;
  8235. const int nth = params->nth;
  8236. const int nc = src0->ne[0];
  8237. const int nr = ggml_nrows(src0);
  8238. // rows per thread
  8239. const int dr = (nr + nth - 1)/nth;
  8240. // row range for this thread
  8241. const int ir0 = dr*ith;
  8242. const int ir1 = MIN(ir0 + dr, nr);
  8243. for (int i1 = ir0; i1 < ir1; i1++) {
  8244. ggml_vec_silu_backward_f32(nc,
  8245. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8246. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8247. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8248. #ifndef NDEBUG
  8249. for (int k = 0; k < nc; k++) {
  8250. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8251. UNUSED(x);
  8252. assert(!isnan(x));
  8253. assert(!isinf(x));
  8254. }
  8255. #endif
  8256. }
  8257. }
  8258. static void ggml_compute_forward_silu_back(
  8259. const struct ggml_compute_params * params,
  8260. struct ggml_tensor * dst) {
  8261. const struct ggml_tensor * src0 = dst->src[0];
  8262. switch (src0->type) {
  8263. case GGML_TYPE_F32:
  8264. {
  8265. ggml_compute_forward_silu_back_f32(params, dst);
  8266. } break;
  8267. default:
  8268. {
  8269. GGML_ASSERT(false);
  8270. } break;
  8271. }
  8272. }
  8273. static void ggml_compute_forward_hardswish_f32(
  8274. const struct ggml_compute_params * params,
  8275. struct ggml_tensor * dst) {
  8276. const struct ggml_tensor * src0 = dst->src[0];
  8277. assert(params->ith == 0);
  8278. assert(ggml_are_same_shape(src0, dst));
  8279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8280. return;
  8281. }
  8282. const int n = ggml_nrows(src0);
  8283. const int nc = src0->ne[0];
  8284. assert(dst->nb[0] == sizeof(float));
  8285. assert(src0->nb[0] == sizeof(float));
  8286. for (int i = 0; i < n; i++) {
  8287. ggml_vec_hardswish_f32(nc,
  8288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8290. }
  8291. }
  8292. static void ggml_compute_forward_hardswish(
  8293. const struct ggml_compute_params * params,
  8294. struct ggml_tensor * dst) {
  8295. const struct ggml_tensor * src0 = dst->src[0];
  8296. switch (src0->type) {
  8297. case GGML_TYPE_F32:
  8298. {
  8299. ggml_compute_forward_hardswish_f32(params, dst);
  8300. } break;
  8301. default:
  8302. {
  8303. GGML_ASSERT(false);
  8304. } break;
  8305. }
  8306. }
  8307. static void ggml_compute_forward_hardsigmoid_f32(
  8308. const struct ggml_compute_params * params,
  8309. struct ggml_tensor * dst) {
  8310. const struct ggml_tensor * src0 = dst->src[0];
  8311. assert(params->ith == 0);
  8312. assert(ggml_are_same_shape(src0, dst));
  8313. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8314. return;
  8315. }
  8316. const int n = ggml_nrows(src0);
  8317. const int nc = src0->ne[0];
  8318. assert(dst->nb[0] == sizeof(float));
  8319. assert(src0->nb[0] == sizeof(float));
  8320. for (int i = 0; i < n; i++) {
  8321. ggml_vec_hardsigmoid_f32(nc,
  8322. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8323. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8324. }
  8325. }
  8326. static void ggml_compute_forward_hardsigmoid(
  8327. const struct ggml_compute_params * params,
  8328. struct ggml_tensor * dst) {
  8329. const struct ggml_tensor * src0 = dst->src[0];
  8330. switch (src0->type) {
  8331. case GGML_TYPE_F32:
  8332. {
  8333. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8334. } break;
  8335. default:
  8336. {
  8337. GGML_ASSERT(false);
  8338. } break;
  8339. }
  8340. }
  8341. // ggml_compute_forward_norm
  8342. static void ggml_compute_forward_norm_f32(
  8343. const struct ggml_compute_params * params,
  8344. struct ggml_tensor * dst) {
  8345. const struct ggml_tensor * src0 = dst->src[0];
  8346. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8347. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8348. return;
  8349. }
  8350. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8351. const int ith = params->ith;
  8352. const int nth = params->nth;
  8353. GGML_TENSOR_UNARY_OP_LOCALS
  8354. float eps;
  8355. memcpy(&eps, dst->op_params, sizeof(float));
  8356. GGML_ASSERT(eps > 0.0f);
  8357. // TODO: optimize
  8358. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8359. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8360. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8361. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8362. ggml_float sum = 0.0;
  8363. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8364. sum += (ggml_float)x[i00];
  8365. }
  8366. float mean = sum/ne00;
  8367. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8368. ggml_float sum2 = 0.0;
  8369. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8370. float v = x[i00] - mean;
  8371. y[i00] = v;
  8372. sum2 += (ggml_float)(v*v);
  8373. }
  8374. float variance = sum2/ne00;
  8375. const float scale = 1.0f/sqrtf(variance + eps);
  8376. ggml_vec_scale_f32(ne00, y, scale);
  8377. }
  8378. }
  8379. }
  8380. }
  8381. static void ggml_compute_forward_norm(
  8382. const struct ggml_compute_params * params,
  8383. struct ggml_tensor * dst) {
  8384. const struct ggml_tensor * src0 = dst->src[0];
  8385. switch (src0->type) {
  8386. case GGML_TYPE_F32:
  8387. {
  8388. ggml_compute_forward_norm_f32(params, dst);
  8389. } break;
  8390. default:
  8391. {
  8392. GGML_ASSERT(false);
  8393. } break;
  8394. }
  8395. }
  8396. // ggml_compute_forward_group_rms_norm
  8397. static void ggml_compute_forward_rms_norm_f32(
  8398. const struct ggml_compute_params * params,
  8399. struct ggml_tensor * dst) {
  8400. const struct ggml_tensor * src0 = dst->src[0];
  8401. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8402. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8403. return;
  8404. }
  8405. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8406. const int ith = params->ith;
  8407. const int nth = params->nth;
  8408. GGML_TENSOR_UNARY_OP_LOCALS
  8409. float eps;
  8410. memcpy(&eps, dst->op_params, sizeof(float));
  8411. GGML_ASSERT(eps > 0.0f);
  8412. // TODO: optimize
  8413. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8414. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8415. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8416. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8417. ggml_float sum = 0.0;
  8418. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8419. sum += (ggml_float)(x[i00] * x[i00]);
  8420. }
  8421. const float mean = sum/ne00;
  8422. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8423. memcpy(y, x, ne00 * sizeof(float));
  8424. // for (int i00 = 0; i00 < ne00; i00++) {
  8425. // y[i00] = x[i00];
  8426. // }
  8427. const float scale = 1.0f/sqrtf(mean + eps);
  8428. ggml_vec_scale_f32(ne00, y, scale);
  8429. }
  8430. }
  8431. }
  8432. }
  8433. static void ggml_compute_forward_rms_norm(
  8434. const struct ggml_compute_params * params,
  8435. struct ggml_tensor * dst) {
  8436. const struct ggml_tensor * src0 = dst->src[0];
  8437. switch (src0->type) {
  8438. case GGML_TYPE_F32:
  8439. {
  8440. ggml_compute_forward_rms_norm_f32(params, dst);
  8441. } break;
  8442. default:
  8443. {
  8444. GGML_ASSERT(false);
  8445. } break;
  8446. }
  8447. }
  8448. static void ggml_compute_forward_rms_norm_back_f32(
  8449. const struct ggml_compute_params * params,
  8450. struct ggml_tensor * dst) {
  8451. const struct ggml_tensor * src0 = dst->src[0];
  8452. const struct ggml_tensor * src1 = dst->src[1];
  8453. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8454. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8455. return;
  8456. }
  8457. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8458. const int ith = params->ith;
  8459. const int nth = params->nth;
  8460. GGML_TENSOR_BINARY_OP_LOCALS
  8461. float eps;
  8462. memcpy(&eps, dst->op_params, sizeof(float));
  8463. // TODO: optimize
  8464. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8465. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8466. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8467. // src1 is same shape as src0 => same indices
  8468. const int64_t i11 = i01;
  8469. const int64_t i12 = i02;
  8470. const int64_t i13 = i03;
  8471. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8472. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8473. ggml_float sum_xx = 0.0;
  8474. ggml_float sum_xdz = 0.0;
  8475. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8476. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8477. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8478. }
  8479. //const float mean = (float)(sum_xx)/ne00;
  8480. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8481. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8482. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8483. // we could cache rms from forward pass to improve performance.
  8484. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8485. //const float rms = sqrtf(mean_eps);
  8486. const float rrms = 1.0f / sqrtf(mean_eps);
  8487. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8488. {
  8489. // z = rms_norm(x)
  8490. //
  8491. // rms_norm(src0) =
  8492. // scale(
  8493. // src0,
  8494. // div(
  8495. // 1,
  8496. // sqrt(
  8497. // add(
  8498. // scale(
  8499. // sum(
  8500. // sqr(
  8501. // src0)),
  8502. // (1.0/N)),
  8503. // eps))));
  8504. // postorder:
  8505. // ## op args grad
  8506. // 00 param src0 grad[#00]
  8507. // 01 const 1
  8508. // 02 sqr (#00) grad[#02]
  8509. // 03 sum (#02) grad[#03]
  8510. // 04 const 1/N
  8511. // 05 scale (#03, #04) grad[#05]
  8512. // 06 const eps
  8513. // 07 add (#05, #06) grad[#07]
  8514. // 08 sqrt (#07) grad[#08]
  8515. // 09 div (#01,#08) grad[#09]
  8516. // 10 scale (#00,#09) grad[#10]
  8517. //
  8518. // backward pass, given grad[#10]
  8519. // #10: scale
  8520. // grad[#00] += scale(grad[#10],#09)
  8521. // grad[#09] += sum(mul(grad[#10],#00))
  8522. // #09: div
  8523. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8524. // #08: sqrt
  8525. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8526. // #07: add
  8527. // grad[#05] += grad[#07]
  8528. // #05: scale
  8529. // grad[#03] += scale(grad[#05],#04)
  8530. // #03: sum
  8531. // grad[#02] += repeat(grad[#03], #02)
  8532. // #02:
  8533. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8534. //
  8535. // substitute and simplify:
  8536. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8537. // grad[#02] = repeat(grad[#03], #02)
  8538. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8539. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8540. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8541. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8542. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8543. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8544. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8545. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8546. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8547. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8548. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8549. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8550. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8551. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8552. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8553. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8554. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8555. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8556. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8557. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8558. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8559. // a = b*c + d*e
  8560. // a = b*c*f/f + d*e*f/f
  8561. // a = (b*c*f + d*e*f)*(1/f)
  8562. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8563. // a = (b + d*e/c)*c
  8564. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8565. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8566. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8567. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8568. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8569. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8570. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8571. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8572. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8573. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8574. }
  8575. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8576. // post-order:
  8577. // dx := x
  8578. // dx := scale(dx,-mean_xdz/mean_eps)
  8579. // dx := add(dx, dz)
  8580. // dx := scale(dx, rrms)
  8581. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8582. ggml_vec_cpy_f32 (ne00, dx, x);
  8583. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8584. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8585. ggml_vec_acc_f32 (ne00, dx, dz);
  8586. ggml_vec_scale_f32(ne00, dx, rrms);
  8587. }
  8588. }
  8589. }
  8590. }
  8591. static void ggml_compute_forward_rms_norm_back(
  8592. const struct ggml_compute_params * params,
  8593. struct ggml_tensor * dst) {
  8594. const struct ggml_tensor * src0 = dst->src[0];
  8595. switch (src0->type) {
  8596. case GGML_TYPE_F32:
  8597. {
  8598. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8599. } break;
  8600. default:
  8601. {
  8602. GGML_ASSERT(false);
  8603. } break;
  8604. }
  8605. }
  8606. // ggml_compute_forward_group_norm
  8607. static void ggml_compute_forward_group_norm_f32(
  8608. const struct ggml_compute_params * params,
  8609. struct ggml_tensor * dst) {
  8610. const struct ggml_tensor * src0 = dst->src[0];
  8611. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8612. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8613. return;
  8614. }
  8615. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8616. const int ith = params->ith;
  8617. const int nth = params->nth;
  8618. GGML_TENSOR_UNARY_OP_LOCALS
  8619. const float eps = 1e-6f; // TODO: make this a parameter
  8620. // TODO: optimize
  8621. int n_channels = src0->ne[2];
  8622. int n_groups = dst->op_params[0];
  8623. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8624. for (int i = ith; i < n_groups; i += nth) {
  8625. int start = i * n_channels_per_group;
  8626. int end = start + n_channels_per_group;
  8627. if (end > n_channels) {
  8628. end = n_channels;
  8629. }
  8630. int step = end - start;
  8631. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8632. ggml_float sum = 0.0;
  8633. for (int64_t i02 = start; i02 < end; i02++) {
  8634. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8635. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8636. ggml_float sumr = 0.0;
  8637. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8638. sumr += (ggml_float)x[i00];
  8639. }
  8640. sum += sumr;
  8641. }
  8642. }
  8643. const float mean = sum / (ne00 * ne01 * step);
  8644. ggml_float sum2 = 0.0;
  8645. for (int64_t i02 = start; i02 < end; i02++) {
  8646. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8647. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8648. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8649. ggml_float sumr = 0.0;
  8650. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8651. float v = x[i00] - mean;
  8652. y[i00] = v;
  8653. sumr += (ggml_float)(v * v);
  8654. }
  8655. sum2 += sumr;
  8656. }
  8657. }
  8658. const float variance = sum2 / (ne00 * ne01 * step);
  8659. const float scale = 1.0f / sqrtf(variance + eps);
  8660. for (int64_t i02 = start; i02 < end; i02++) {
  8661. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8662. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8663. ggml_vec_scale_f32(ne00, y, scale);
  8664. }
  8665. }
  8666. }
  8667. }
  8668. }
  8669. static void ggml_compute_forward_group_norm(
  8670. const struct ggml_compute_params * params,
  8671. struct ggml_tensor * dst) {
  8672. const struct ggml_tensor * src0 = dst->src[0];
  8673. switch (src0->type) {
  8674. case GGML_TYPE_F32:
  8675. {
  8676. ggml_compute_forward_group_norm_f32(params, dst);
  8677. } break;
  8678. default:
  8679. {
  8680. GGML_ASSERT(false);
  8681. } break;
  8682. }
  8683. }
  8684. // ggml_compute_forward_mul_mat
  8685. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8686. // helper function to determine if it is better to use BLAS or not
  8687. // for large matrices, BLAS is faster
  8688. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8689. const struct ggml_tensor * src0 = dst->src[0];
  8690. const struct ggml_tensor * src1 = dst->src[1];
  8691. //const int64_t ne00 = src0->ne[0];
  8692. //const int64_t ne01 = src0->ne[1];
  8693. const int64_t ne10 = src1->ne[0];
  8694. const int64_t ne0 = dst->ne[0];
  8695. const int64_t ne1 = dst->ne[1];
  8696. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8697. // all the experts for each batch element and the processing would become incredibly slow
  8698. // TODO: find the optimal values for these
  8699. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8700. ggml_is_contiguous(src0) &&
  8701. ggml_is_contiguous(src1) &&
  8702. //src0->type == GGML_TYPE_F32 &&
  8703. src1->type == GGML_TYPE_F32 &&
  8704. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8705. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8706. return true;
  8707. }
  8708. return false;
  8709. }
  8710. #endif
  8711. static void ggml_compute_forward_mul_mat(
  8712. const struct ggml_compute_params * params,
  8713. struct ggml_tensor * dst) {
  8714. const struct ggml_tensor * src0 = dst->src[0];
  8715. const struct ggml_tensor * src1 = dst->src[1];
  8716. int64_t t0 = ggml_perf_time_us();
  8717. UNUSED(t0);
  8718. GGML_TENSOR_BINARY_OP_LOCALS
  8719. const int ith = params->ith;
  8720. const int nth = params->nth;
  8721. const enum ggml_type type = src0->type;
  8722. const bool src1_cont = ggml_is_contiguous(src1);
  8723. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8724. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8725. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8726. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8727. GGML_ASSERT(ne0 == ne01);
  8728. GGML_ASSERT(ne1 == ne11);
  8729. GGML_ASSERT(ne2 == ne12);
  8730. GGML_ASSERT(ne3 == ne13);
  8731. // we don't support permuted src0 or src1
  8732. GGML_ASSERT(nb00 == ggml_type_size(type));
  8733. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8734. // dst cannot be transposed or permuted
  8735. GGML_ASSERT(nb0 == sizeof(float));
  8736. GGML_ASSERT(nb0 <= nb1);
  8737. GGML_ASSERT(nb1 <= nb2);
  8738. GGML_ASSERT(nb2 <= nb3);
  8739. // broadcast factors
  8740. const int64_t r2 = ne12/ne02;
  8741. const int64_t r3 = ne13/ne03;
  8742. // nb01 >= nb00 - src0 is not transposed
  8743. // compute by src0 rows
  8744. #if defined(GGML_USE_CLBLAST)
  8745. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8746. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8747. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8748. }
  8749. return;
  8750. }
  8751. #endif
  8752. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8753. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8754. const int64_t ne_plane = ne01*ne00;
  8755. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8756. UNUSED(desired_wsize);
  8757. if (params->type == GGML_TASK_TYPE_INIT) {
  8758. if (type != GGML_TYPE_F32) {
  8759. assert(params->wsize >= desired_wsize);
  8760. // parallelize by src0 rows
  8761. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8762. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8763. // broadcast src0 into src1 across 2nd,3rd dimension
  8764. const int64_t i03 = i13/r3;
  8765. const int64_t i02 = i12/r2;
  8766. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8767. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8768. ggml_to_float_t const to_float = type_traits[type].to_float;
  8769. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8770. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8771. }
  8772. }
  8773. }
  8774. }
  8775. return;
  8776. }
  8777. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8778. return;
  8779. }
  8780. // perform sgemm, parallelization controlled by blas lib
  8781. if (ith != 0) {
  8782. return;
  8783. }
  8784. //const int64_t tgemm0 = ggml_perf_time_us();
  8785. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8786. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8787. const int64_t i03 = i13/r3;
  8788. const int64_t i02 = i12/r2;
  8789. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8790. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8791. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8792. if (type != GGML_TYPE_F32) {
  8793. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8794. }
  8795. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8796. ne1, ne01, ne10,
  8797. 1.0f, y, ne10,
  8798. x, ne00,
  8799. 0.0f, d, ne01);
  8800. }
  8801. }
  8802. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8803. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8804. return;
  8805. }
  8806. #endif
  8807. if (params->type == GGML_TASK_TYPE_INIT) {
  8808. if (ith != 0) {
  8809. return;
  8810. }
  8811. if (src1->type != vec_dot_type) {
  8812. char * wdata = params->wdata;
  8813. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8814. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8815. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8816. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8817. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8818. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8819. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8820. wdata += row_size;
  8821. }
  8822. }
  8823. }
  8824. }
  8825. return;
  8826. }
  8827. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8828. return;
  8829. }
  8830. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8831. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8832. const int64_t nr0 = ne01; // src0 rows
  8833. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8834. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8835. // distribute the thread work across the inner or outer loop based on which one is larger
  8836. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8837. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8838. const int64_t ith0 = ith % nth0;
  8839. const int64_t ith1 = ith / nth0;
  8840. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8841. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8842. const int64_t ir010 = dr0*ith0;
  8843. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8844. const int64_t ir110 = dr1*ith1;
  8845. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8846. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8847. // threads with no work simply yield (not sure if it helps)
  8848. if (ir010 >= ir011 || ir110 >= ir111) {
  8849. sched_yield();
  8850. return;
  8851. }
  8852. assert(ne12 % ne02 == 0);
  8853. assert(ne13 % ne03 == 0);
  8854. // block-tiling attempt
  8855. const int64_t blck_0 = 16;
  8856. const int64_t blck_1 = 16;
  8857. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8858. int64_t nrc = vec_dot_num_rows;
  8859. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8860. // this check can be removed once they are extended to support odd numbered rows/cols too
  8861. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8862. nrc = 1;
  8863. }
  8864. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8865. // attempt to reduce false-sharing (does not seem to make a difference)
  8866. // 16 * 2, accounting for mmla kernels
  8867. float tmp[32];
  8868. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8869. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8870. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8871. const int64_t i13 = (ir1/(ne12*ne1));
  8872. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8873. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8874. // broadcast src0 into src1
  8875. const int64_t i03 = i13/r3;
  8876. const int64_t i02 = i12/r2;
  8877. const int64_t i1 = i11;
  8878. const int64_t i2 = i12;
  8879. const int64_t i3 = i13;
  8880. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8881. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8882. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8883. // the original src1 data pointer, so we should index using the indices directly
  8884. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8885. const char * src1_col = (const char *) wdata +
  8886. (src1_cont || src1->type != vec_dot_type
  8887. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8888. : (i11*nb11 + i12*nb12 + i13*nb13));
  8889. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8890. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8891. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8892. //}
  8893. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8894. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8895. }
  8896. for (int cn = 0; cn < nrc; ++cn) {
  8897. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8898. }
  8899. }
  8900. }
  8901. }
  8902. }
  8903. // ggml_compute_forward_mul_mat_id
  8904. static void ggml_compute_forward_mul_mat_id(
  8905. const struct ggml_compute_params * params,
  8906. struct ggml_tensor * dst) {
  8907. const struct ggml_tensor * ids = dst->src[0];
  8908. const struct ggml_tensor * src1 = dst->src[1];
  8909. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8910. GGML_TENSOR_BINARY_OP_LOCALS
  8911. const int ith = params->ith;
  8912. const int nth = params->nth;
  8913. const enum ggml_type type = src0->type;
  8914. const bool src1_cont = ggml_is_contiguous(src1);
  8915. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8916. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8917. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8918. GGML_ASSERT(ne0 == ne01);
  8919. GGML_ASSERT(ne1 == ne11);
  8920. GGML_ASSERT(ne2 == ne12);
  8921. GGML_ASSERT(ne3 == ne13);
  8922. // we don't support permuted src0 or src1
  8923. GGML_ASSERT(nb00 == ggml_type_size(type));
  8924. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8925. // dst cannot be transposed or permuted
  8926. GGML_ASSERT(nb0 == sizeof(float));
  8927. GGML_ASSERT(nb0 <= nb1);
  8928. GGML_ASSERT(nb1 <= nb2);
  8929. GGML_ASSERT(nb2 <= nb3);
  8930. // broadcast factors
  8931. const int64_t r2 = ne12/ne02;
  8932. const int64_t r3 = ne13/ne03;
  8933. // row groups
  8934. const int id = ggml_get_op_params_i32(dst, 0);
  8935. const int n_as = ggml_get_op_params_i32(dst, 1);
  8936. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8937. (char *) params->wdata :
  8938. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8939. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8940. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8941. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8942. if (params->type == GGML_TASK_TYPE_INIT) {
  8943. if (ith != 0) {
  8944. return;
  8945. }
  8946. char * wdata = params->wdata;
  8947. if (src1->type != vec_dot_type) {
  8948. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8949. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8950. assert(src1->type == GGML_TYPE_F32);
  8951. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8952. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8953. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8954. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8955. wdata += row_size;
  8956. }
  8957. }
  8958. }
  8959. }
  8960. // initialize matrix_row_counts
  8961. GGML_ASSERT(wdata == wdata_src1_end);
  8962. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8963. // group rows by src0 matrix
  8964. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8965. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8966. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8967. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8968. matrix_row_counts[row_id] += 1;
  8969. }
  8970. return;
  8971. }
  8972. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8973. return;
  8974. }
  8975. // compute each matrix multiplication in sequence
  8976. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8977. const int64_t cne1 = matrix_row_counts[cur_a];
  8978. if (cne1 == 0) {
  8979. continue;
  8980. }
  8981. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8982. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8983. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8984. const int64_t nr0 = ne01; // src0 rows
  8985. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8986. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8987. // distribute the thread work across the inner or outer loop based on which one is larger
  8988. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8989. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8990. const int64_t ith0 = ith % nth0;
  8991. const int64_t ith1 = ith / nth0;
  8992. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8993. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8994. const int64_t ir010 = dr0*ith0;
  8995. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8996. const int64_t ir110 = dr1*ith1;
  8997. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8998. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8999. // threads with no work simply yield (not sure if it helps)
  9000. if (ir010 >= ir011 || ir110 >= ir111) {
  9001. sched_yield();
  9002. continue;
  9003. }
  9004. assert(ne12 % ne02 == 0);
  9005. assert(ne13 % ne03 == 0);
  9006. // block-tiling attempt
  9007. const int64_t blck_0 = 16;
  9008. const int64_t blck_1 = 16;
  9009. // attempt to reduce false-sharing (does not seem to make a difference)
  9010. float tmp[16];
  9011. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9012. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9013. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9014. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  9015. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  9016. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  9017. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  9018. // broadcast src0 into src1
  9019. const int64_t i03 = i13/r3;
  9020. const int64_t i02 = i12/r2;
  9021. const int64_t i1 = i11;
  9022. const int64_t i2 = i12;
  9023. const int64_t i3 = i13;
  9024. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  9025. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9026. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9027. // the original src1 data pointer, so we should index using the indices directly
  9028. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9029. const char * src1_col = (const char *) wdata +
  9030. (src1_cont || src1->type != vec_dot_type
  9031. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9032. : (i11*nb11 + i12*nb12 + i13*nb13));
  9033. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9034. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9035. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9036. //}
  9037. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9038. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  9039. }
  9040. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9041. }
  9042. }
  9043. }
  9044. }
  9045. #undef MMID_MATRIX_ROW
  9046. }
  9047. // ggml_compute_forward_out_prod
  9048. static void ggml_compute_forward_out_prod_f32(
  9049. const struct ggml_compute_params * params,
  9050. struct ggml_tensor * dst) {
  9051. const struct ggml_tensor * src0 = dst->src[0];
  9052. const struct ggml_tensor * src1 = dst->src[1];
  9053. // int64_t t0 = ggml_perf_time_us();
  9054. // UNUSED(t0);
  9055. GGML_TENSOR_BINARY_OP_LOCALS
  9056. const int ith = params->ith;
  9057. const int nth = params->nth;
  9058. GGML_ASSERT(ne0 == ne00);
  9059. GGML_ASSERT(ne1 == ne10);
  9060. GGML_ASSERT(ne2 == ne02);
  9061. GGML_ASSERT(ne02 == ne12);
  9062. GGML_ASSERT(ne3 == ne13);
  9063. GGML_ASSERT(ne03 == ne13);
  9064. // we don't support permuted src0 or src1
  9065. GGML_ASSERT(nb00 == sizeof(float));
  9066. // dst cannot be transposed or permuted
  9067. GGML_ASSERT(nb0 == sizeof(float));
  9068. // GGML_ASSERT(nb0 <= nb1);
  9069. // GGML_ASSERT(nb1 <= nb2);
  9070. // GGML_ASSERT(nb2 <= nb3);
  9071. // nb01 >= nb00 - src0 is not transposed
  9072. // compute by src0 rows
  9073. // TODO: #if defined(GGML_USE_CLBLAST)
  9074. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9075. bool use_blas = ggml_is_matrix(src0) &&
  9076. ggml_is_matrix(src1) &&
  9077. ggml_is_contiguous(src0) &&
  9078. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9079. #endif
  9080. if (params->type == GGML_TASK_TYPE_INIT) {
  9081. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9082. if (use_blas) {
  9083. return;
  9084. }
  9085. #endif
  9086. if (ith != 0) {
  9087. return;
  9088. }
  9089. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9090. return;
  9091. }
  9092. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9093. return;
  9094. }
  9095. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9096. if (use_blas) {
  9097. if (params->ith != 0) { // All threads other than the first do no work.
  9098. return;
  9099. }
  9100. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9101. // src0: (k,n)
  9102. // src1: (k,m)
  9103. // dst: (m,n)
  9104. //
  9105. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9106. // Also expressed as (major,minor)
  9107. // a: (m,k): so src1 transposed
  9108. // b: (k,n): so src0
  9109. // c: (m,n)
  9110. //
  9111. // However, if ggml_is_transposed(src1) is true, then
  9112. // src1->data already contains a transposed version, so sgemm mustn't
  9113. // transpose it further.
  9114. int n = src0->ne[0];
  9115. int k = src0->ne[1];
  9116. int m = src1->ne[0];
  9117. int transposeA, lda;
  9118. if (!ggml_is_transposed(src1)) {
  9119. transposeA = CblasTrans;
  9120. lda = m;
  9121. } else {
  9122. transposeA = CblasNoTrans;
  9123. lda = k;
  9124. }
  9125. float * a = (float *) ((char *) src1->data);
  9126. float * b = (float *) ((char *) src0->data);
  9127. float * c = (float *) ((char *) dst->data);
  9128. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9129. return;
  9130. }
  9131. #endif
  9132. // dst[:,:,:,:] = 0
  9133. // for i2,i3:
  9134. // for i1:
  9135. // for i01:
  9136. // for i0:
  9137. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9138. // parallelize by last three dimensions
  9139. // total rows in dst
  9140. const int64_t nr = ne1*ne2*ne3;
  9141. // rows per thread
  9142. const int64_t dr = (nr + nth - 1)/nth;
  9143. // row range for this thread
  9144. const int64_t ir0 = dr*ith;
  9145. const int64_t ir1 = MIN(ir0 + dr, nr);
  9146. // block-tiling attempt
  9147. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9148. const int64_t blck_1 = 16;
  9149. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9150. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9151. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9152. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9153. for (int64_t ir = bir; ir < bir1; ++ir) {
  9154. // dst indices
  9155. const int64_t i3 = ir/(ne2*ne1);
  9156. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9157. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9158. const int64_t i02 = i2;
  9159. const int64_t i03 = i3;
  9160. //const int64_t i10 = i1;
  9161. const int64_t i12 = i2;
  9162. const int64_t i13 = i3;
  9163. #if GGML_VEC_MAD_UNROLL > 2
  9164. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9165. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9166. const int64_t i11 = i01;
  9167. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9168. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9169. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9170. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9171. }
  9172. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9173. const int64_t i11 = i01;
  9174. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9175. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9176. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9177. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9178. }
  9179. #else
  9180. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9181. const int64_t i11 = i01;
  9182. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9183. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9184. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9185. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9186. }
  9187. #endif
  9188. }
  9189. }
  9190. }
  9191. //int64_t t1 = ggml_perf_time_us();
  9192. //static int64_t acc = 0;
  9193. //acc += t1 - t0;
  9194. //if (t1 - t0 > 10) {
  9195. // printf("\n");
  9196. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9197. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9198. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9199. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9200. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9201. //}
  9202. }
  9203. static void ggml_compute_forward_out_prod_q_f32(
  9204. const struct ggml_compute_params * params,
  9205. struct ggml_tensor * dst) {
  9206. const struct ggml_tensor * src0 = dst->src[0];
  9207. const struct ggml_tensor * src1 = dst->src[1];
  9208. // int64_t t0 = ggml_perf_time_us();
  9209. // UNUSED(t0);
  9210. GGML_TENSOR_BINARY_OP_LOCALS;
  9211. const int ith = params->ith;
  9212. const int nth = params->nth;
  9213. const enum ggml_type type = src0->type;
  9214. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9215. GGML_ASSERT(ne02 == ne12);
  9216. GGML_ASSERT(ne03 == ne13);
  9217. GGML_ASSERT(ne2 == ne12);
  9218. GGML_ASSERT(ne3 == ne13);
  9219. // we don't support permuted src0 dim0
  9220. GGML_ASSERT(nb00 == ggml_type_size(type));
  9221. // dst dim0 cannot be transposed or permuted
  9222. GGML_ASSERT(nb0 == sizeof(float));
  9223. // GGML_ASSERT(nb0 <= nb1);
  9224. // GGML_ASSERT(nb1 <= nb2);
  9225. // GGML_ASSERT(nb2 <= nb3);
  9226. GGML_ASSERT(ne0 == ne00);
  9227. GGML_ASSERT(ne1 == ne10);
  9228. GGML_ASSERT(ne2 == ne02);
  9229. GGML_ASSERT(ne3 == ne03);
  9230. // nb01 >= nb00 - src0 is not transposed
  9231. // compute by src0 rows
  9232. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9233. if (params->type == GGML_TASK_TYPE_INIT) {
  9234. if (ith != 0) {
  9235. return;
  9236. }
  9237. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9238. return;
  9239. }
  9240. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9241. return;
  9242. }
  9243. // parallelize by last three dimensions
  9244. // total rows in dst
  9245. const int64_t nr = ne1*ne2*ne3;
  9246. // rows per thread
  9247. const int64_t dr = (nr + nth - 1)/nth;
  9248. // row range for this thread
  9249. const int64_t ir0 = dr*ith;
  9250. const int64_t ir1 = MIN(ir0 + dr, nr);
  9251. // dst[:,:,:,:] = 0
  9252. // for i2,i3:
  9253. // for i1:
  9254. // for i01:
  9255. // for i0:
  9256. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9257. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9258. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9259. // dst indices
  9260. const int64_t i3 = ir/(ne2*ne1);
  9261. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9262. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9263. const int64_t i02 = i2;
  9264. const int64_t i03 = i3;
  9265. //const int64_t i10 = i1;
  9266. const int64_t i12 = i2;
  9267. const int64_t i13 = i3;
  9268. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9269. const int64_t i11 = i01;
  9270. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9271. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9272. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9273. dequantize_row_q(s0, wdata, ne0);
  9274. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9275. }
  9276. }
  9277. //int64_t t1 = ggml_perf_time_us();
  9278. //static int64_t acc = 0;
  9279. //acc += t1 - t0;
  9280. //if (t1 - t0 > 10) {
  9281. // printf("\n");
  9282. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9283. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9284. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9285. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9286. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9287. //}
  9288. }
  9289. static void ggml_compute_forward_out_prod(
  9290. const struct ggml_compute_params * params,
  9291. struct ggml_tensor * dst) {
  9292. const struct ggml_tensor * src0 = dst->src[0];
  9293. switch (src0->type) {
  9294. case GGML_TYPE_Q4_0:
  9295. case GGML_TYPE_Q4_1:
  9296. case GGML_TYPE_Q5_0:
  9297. case GGML_TYPE_Q5_1:
  9298. case GGML_TYPE_Q8_0:
  9299. case GGML_TYPE_Q2_K:
  9300. case GGML_TYPE_Q3_K:
  9301. case GGML_TYPE_Q4_K:
  9302. case GGML_TYPE_Q5_K:
  9303. case GGML_TYPE_Q6_K:
  9304. case GGML_TYPE_IQ2_XXS:
  9305. case GGML_TYPE_IQ2_XS:
  9306. case GGML_TYPE_IQ3_XXS:
  9307. case GGML_TYPE_IQ1_S:
  9308. case GGML_TYPE_IQ1_M:
  9309. case GGML_TYPE_IQ4_NL:
  9310. case GGML_TYPE_IQ4_XS:
  9311. case GGML_TYPE_IQ3_S:
  9312. case GGML_TYPE_IQ2_S:
  9313. {
  9314. ggml_compute_forward_out_prod_q_f32(params, dst);
  9315. } break;
  9316. case GGML_TYPE_F16:
  9317. {
  9318. GGML_ASSERT(false); // todo
  9319. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9320. } break;
  9321. case GGML_TYPE_F32:
  9322. {
  9323. ggml_compute_forward_out_prod_f32(params, dst);
  9324. } break;
  9325. default:
  9326. {
  9327. GGML_ASSERT(false);
  9328. } break;
  9329. }
  9330. }
  9331. // ggml_compute_forward_scale
  9332. static void ggml_compute_forward_scale_f32(
  9333. const struct ggml_compute_params * params,
  9334. struct ggml_tensor * dst) {
  9335. const struct ggml_tensor * src0 = dst->src[0];
  9336. GGML_ASSERT(ggml_is_contiguous(src0));
  9337. GGML_ASSERT(ggml_is_contiguous(dst));
  9338. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9339. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9340. return;
  9341. }
  9342. // scale factor
  9343. float v;
  9344. memcpy(&v, dst->op_params, sizeof(float));
  9345. const int ith = params->ith;
  9346. const int nth = params->nth;
  9347. const int nc = src0->ne[0];
  9348. const int nr = ggml_nrows(src0);
  9349. // rows per thread
  9350. const int dr = (nr + nth - 1)/nth;
  9351. // row range for this thread
  9352. const int ir0 = dr*ith;
  9353. const int ir1 = MIN(ir0 + dr, nr);
  9354. const size_t nb01 = src0->nb[1];
  9355. const size_t nb1 = dst->nb[1];
  9356. for (int i1 = ir0; i1 < ir1; i1++) {
  9357. if (dst->data != src0->data) {
  9358. // src0 is same shape as dst => same indices
  9359. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9360. }
  9361. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9362. }
  9363. }
  9364. static void ggml_compute_forward_scale(
  9365. const struct ggml_compute_params * params,
  9366. struct ggml_tensor * dst) {
  9367. const struct ggml_tensor * src0 = dst->src[0];
  9368. switch (src0->type) {
  9369. case GGML_TYPE_F32:
  9370. {
  9371. ggml_compute_forward_scale_f32(params, dst);
  9372. } break;
  9373. default:
  9374. {
  9375. GGML_ASSERT(false);
  9376. } break;
  9377. }
  9378. }
  9379. // ggml_compute_forward_set
  9380. static void ggml_compute_forward_set_f32(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. const struct ggml_tensor * src0 = dst->src[0];
  9384. const struct ggml_tensor * src1 = dst->src[1];
  9385. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9386. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9387. // view src0 and dst with these strides and data offset inbytes during set
  9388. // nb0 is implicitly element_size because src0 and dst are contiguous
  9389. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9390. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9391. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9392. size_t offset = ((int32_t *) dst->op_params)[3];
  9393. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9394. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9395. if (params->ith != 0) {
  9396. return;
  9397. }
  9398. // memcpy needs to be synchronized across threads to avoid race conditions.
  9399. // => do it in INIT phase
  9400. memcpy(
  9401. ((char *) dst->data),
  9402. ((char *) src0->data),
  9403. ggml_nbytes(dst));
  9404. }
  9405. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9406. return;
  9407. }
  9408. const int ith = params->ith;
  9409. const int nth = params->nth;
  9410. const int nr = ggml_nrows(src1);
  9411. const int nc = src1->ne[0];
  9412. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9413. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9414. // src0 and dst as viewed during set
  9415. const size_t nb0 = ggml_element_size(src0);
  9416. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9417. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9418. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9419. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9420. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9421. GGML_ASSERT(nb10 == sizeof(float));
  9422. // rows per thread
  9423. const int dr = (nr + nth - 1)/nth;
  9424. // row range for this thread
  9425. const int ir0 = dr*ith;
  9426. const int ir1 = MIN(ir0 + dr, nr);
  9427. for (int ir = ir0; ir < ir1; ++ir) {
  9428. // src0 and dst are viewed with shape of src1 and offset
  9429. // => same indices
  9430. const int i3 = ir/(ne12*ne11);
  9431. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9432. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9433. ggml_vec_cpy_f32(nc,
  9434. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9435. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9436. }
  9437. }
  9438. static void ggml_compute_forward_set(
  9439. const struct ggml_compute_params * params,
  9440. struct ggml_tensor * dst) {
  9441. const struct ggml_tensor * src0 = dst->src[0];
  9442. switch (src0->type) {
  9443. case GGML_TYPE_F32:
  9444. {
  9445. ggml_compute_forward_set_f32(params, dst);
  9446. } break;
  9447. case GGML_TYPE_F16:
  9448. case GGML_TYPE_Q4_0:
  9449. case GGML_TYPE_Q4_1:
  9450. case GGML_TYPE_Q5_0:
  9451. case GGML_TYPE_Q5_1:
  9452. case GGML_TYPE_Q8_0:
  9453. case GGML_TYPE_Q8_1:
  9454. case GGML_TYPE_Q2_K:
  9455. case GGML_TYPE_Q3_K:
  9456. case GGML_TYPE_Q4_K:
  9457. case GGML_TYPE_Q5_K:
  9458. case GGML_TYPE_Q6_K:
  9459. case GGML_TYPE_IQ2_XXS:
  9460. case GGML_TYPE_IQ2_XS:
  9461. case GGML_TYPE_IQ3_XXS:
  9462. case GGML_TYPE_IQ1_S:
  9463. case GGML_TYPE_IQ1_M:
  9464. case GGML_TYPE_IQ4_NL:
  9465. case GGML_TYPE_IQ4_XS:
  9466. case GGML_TYPE_IQ3_S:
  9467. case GGML_TYPE_IQ2_S:
  9468. default:
  9469. {
  9470. GGML_ASSERT(false);
  9471. } break;
  9472. }
  9473. }
  9474. // ggml_compute_forward_cpy
  9475. static void ggml_compute_forward_cpy(
  9476. const struct ggml_compute_params * params,
  9477. struct ggml_tensor * dst) {
  9478. ggml_compute_forward_dup(params, dst);
  9479. }
  9480. // ggml_compute_forward_cont
  9481. static void ggml_compute_forward_cont(
  9482. const struct ggml_compute_params * params,
  9483. struct ggml_tensor * dst) {
  9484. ggml_compute_forward_dup(params, dst);
  9485. }
  9486. // ggml_compute_forward_reshape
  9487. static void ggml_compute_forward_reshape(
  9488. const struct ggml_compute_params * params,
  9489. struct ggml_tensor * dst) {
  9490. // NOP
  9491. UNUSED(params);
  9492. UNUSED(dst);
  9493. }
  9494. // ggml_compute_forward_view
  9495. static void ggml_compute_forward_view(
  9496. const struct ggml_compute_params * params,
  9497. const struct ggml_tensor * dst) {
  9498. // NOP
  9499. UNUSED(params);
  9500. UNUSED(dst);
  9501. }
  9502. // ggml_compute_forward_permute
  9503. static void ggml_compute_forward_permute(
  9504. const struct ggml_compute_params * params,
  9505. const struct ggml_tensor * dst) {
  9506. // NOP
  9507. UNUSED(params);
  9508. UNUSED(dst);
  9509. }
  9510. // ggml_compute_forward_transpose
  9511. static void ggml_compute_forward_transpose(
  9512. const struct ggml_compute_params * params,
  9513. const struct ggml_tensor * dst) {
  9514. // NOP
  9515. UNUSED(params);
  9516. UNUSED(dst);
  9517. }
  9518. // ggml_compute_forward_get_rows
  9519. static void ggml_compute_forward_get_rows_q(
  9520. const struct ggml_compute_params * params,
  9521. struct ggml_tensor * dst) {
  9522. const struct ggml_tensor * src0 = dst->src[0];
  9523. const struct ggml_tensor * src1 = dst->src[1];
  9524. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9525. return;
  9526. }
  9527. GGML_TENSOR_BINARY_OP_LOCALS
  9528. const int64_t nc = ne00;
  9529. const int64_t nr = ggml_nelements(src1);
  9530. const enum ggml_type type = src0->type;
  9531. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9532. assert(ne0 == nc);
  9533. assert(ne02 == ne11);
  9534. assert(nb00 == ggml_type_size(type));
  9535. assert(ggml_nrows(dst) == nr);
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. // rows per thread
  9539. const int dr = (nr + nth - 1)/nth;
  9540. // row range for this thread
  9541. const int ir0 = dr*ith;
  9542. const int ir1 = MIN(ir0 + dr, nr);
  9543. for (int64_t i = ir0; i < ir1; ++i) {
  9544. const int64_t i12 = i/(ne11*ne10);
  9545. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9546. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9547. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9548. dequantize_row_q(
  9549. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9550. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9551. }
  9552. }
  9553. static void ggml_compute_forward_get_rows_f16(
  9554. const struct ggml_compute_params * params,
  9555. struct ggml_tensor * dst) {
  9556. const struct ggml_tensor * src0 = dst->src[0];
  9557. const struct ggml_tensor * src1 = dst->src[1];
  9558. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9559. return;
  9560. }
  9561. GGML_TENSOR_BINARY_OP_LOCALS
  9562. const int64_t nc = ne00;
  9563. const int64_t nr = ggml_nelements(src1);
  9564. assert(ne0 == nc);
  9565. assert(ne02 == ne11);
  9566. assert(nb00 == sizeof(ggml_fp16_t));
  9567. assert(ggml_nrows(dst) == nr);
  9568. const int ith = params->ith;
  9569. const int nth = params->nth;
  9570. // rows per thread
  9571. const int dr = (nr + nth - 1)/nth;
  9572. // row range for this thread
  9573. const int ir0 = dr*ith;
  9574. const int ir1 = MIN(ir0 + dr, nr);
  9575. for (int64_t i = ir0; i < ir1; ++i) {
  9576. const int64_t i12 = i/(ne11*ne10);
  9577. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9578. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9579. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9580. ggml_fp16_to_fp32_row(
  9581. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9582. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9583. }
  9584. }
  9585. static void ggml_compute_forward_get_rows_f32(
  9586. const struct ggml_compute_params * params,
  9587. struct ggml_tensor * dst) {
  9588. const struct ggml_tensor * src0 = dst->src[0];
  9589. const struct ggml_tensor * src1 = dst->src[1];
  9590. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9591. return;
  9592. }
  9593. GGML_TENSOR_BINARY_OP_LOCALS
  9594. const int64_t nc = ne00;
  9595. const int64_t nr = ggml_nelements(src1);
  9596. assert(ne0 == nc);
  9597. assert(ne02 == ne11);
  9598. assert(nb00 == sizeof(float));
  9599. assert(ggml_nrows(dst) == nr);
  9600. const int ith = params->ith;
  9601. const int nth = params->nth;
  9602. // rows per thread
  9603. const int dr = (nr + nth - 1)/nth;
  9604. // row range for this thread
  9605. const int ir0 = dr*ith;
  9606. const int ir1 = MIN(ir0 + dr, nr);
  9607. for (int64_t i = ir0; i < ir1; ++i) {
  9608. const int64_t i12 = i/(ne11*ne10);
  9609. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9610. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9611. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9612. ggml_vec_cpy_f32(nc,
  9613. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9614. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9615. }
  9616. }
  9617. static void ggml_compute_forward_get_rows(
  9618. const struct ggml_compute_params * params,
  9619. struct ggml_tensor * dst) {
  9620. const struct ggml_tensor * src0 = dst->src[0];
  9621. switch (src0->type) {
  9622. case GGML_TYPE_Q4_0:
  9623. case GGML_TYPE_Q4_1:
  9624. case GGML_TYPE_Q5_0:
  9625. case GGML_TYPE_Q5_1:
  9626. case GGML_TYPE_Q8_0:
  9627. case GGML_TYPE_Q8_1:
  9628. case GGML_TYPE_Q2_K:
  9629. case GGML_TYPE_Q3_K:
  9630. case GGML_TYPE_Q4_K:
  9631. case GGML_TYPE_Q5_K:
  9632. case GGML_TYPE_Q6_K:
  9633. case GGML_TYPE_IQ2_XXS:
  9634. case GGML_TYPE_IQ2_XS:
  9635. case GGML_TYPE_IQ3_XXS:
  9636. case GGML_TYPE_IQ1_S:
  9637. case GGML_TYPE_IQ1_M:
  9638. case GGML_TYPE_IQ4_NL:
  9639. case GGML_TYPE_IQ4_XS:
  9640. case GGML_TYPE_IQ3_S:
  9641. case GGML_TYPE_IQ2_S:
  9642. {
  9643. ggml_compute_forward_get_rows_q(params, dst);
  9644. } break;
  9645. case GGML_TYPE_F16:
  9646. {
  9647. ggml_compute_forward_get_rows_f16(params, dst);
  9648. } break;
  9649. case GGML_TYPE_F32:
  9650. case GGML_TYPE_I32:
  9651. {
  9652. ggml_compute_forward_get_rows_f32(params, dst);
  9653. } break;
  9654. default:
  9655. {
  9656. GGML_ASSERT(false);
  9657. } break;
  9658. }
  9659. //static bool first = true;
  9660. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9661. //if (first) {
  9662. // first = false;
  9663. //} else {
  9664. // for (int k = 0; k < dst->ne[1]; ++k) {
  9665. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9666. // for (int i = 0; i < 16; ++i) {
  9667. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9668. // }
  9669. // printf("\n");
  9670. // }
  9671. // printf("\n");
  9672. // }
  9673. // printf("\n");
  9674. // exit(0);
  9675. //}
  9676. }
  9677. // ggml_compute_forward_get_rows_back
  9678. static void ggml_compute_forward_get_rows_back_f32_f16(
  9679. const struct ggml_compute_params * params,
  9680. struct ggml_tensor * dst) {
  9681. const struct ggml_tensor * src0 = dst->src[0];
  9682. const struct ggml_tensor * src1 = dst->src[1];
  9683. GGML_ASSERT(params->ith == 0);
  9684. GGML_ASSERT(ggml_is_contiguous(dst));
  9685. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9686. if (params->type == GGML_TASK_TYPE_INIT) {
  9687. if (params->ith != 0) {
  9688. return;
  9689. }
  9690. memset(dst->data, 0, ggml_nbytes(dst));
  9691. }
  9692. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9693. return;
  9694. }
  9695. const int nc = src0->ne[0];
  9696. const int nr = ggml_nelements(src1);
  9697. GGML_ASSERT( dst->ne[0] == nc);
  9698. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9699. for (int i = 0; i < nr; ++i) {
  9700. const int r = ((int32_t *) src1->data)[i];
  9701. for (int j = 0; j < nc; ++j) {
  9702. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9703. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9704. }
  9705. }
  9706. }
  9707. static void ggml_compute_forward_get_rows_back_f32(
  9708. const struct ggml_compute_params * params,
  9709. struct ggml_tensor * dst) {
  9710. const struct ggml_tensor * src0 = dst->src[0];
  9711. const struct ggml_tensor * src1 = dst->src[1];
  9712. GGML_ASSERT(params->ith == 0);
  9713. GGML_ASSERT(ggml_is_contiguous(dst));
  9714. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9715. if (params->type == GGML_TASK_TYPE_INIT) {
  9716. if (params->ith != 0) {
  9717. return;
  9718. }
  9719. memset(dst->data, 0, ggml_nbytes(dst));
  9720. }
  9721. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9722. return;
  9723. }
  9724. const int nc = src0->ne[0];
  9725. const int nr = ggml_nelements(src1);
  9726. GGML_ASSERT( dst->ne[0] == nc);
  9727. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9728. for (int i = 0; i < nr; ++i) {
  9729. const int r = ((int32_t *) src1->data)[i];
  9730. ggml_vec_add_f32(nc,
  9731. (float *) ((char *) dst->data + r*dst->nb[1]),
  9732. (float *) ((char *) dst->data + r*dst->nb[1]),
  9733. (float *) ((char *) src0->data + i*src0->nb[1]));
  9734. }
  9735. }
  9736. static void ggml_compute_forward_get_rows_back(
  9737. const struct ggml_compute_params * params,
  9738. struct ggml_tensor * dst) {
  9739. const struct ggml_tensor * src0 = dst->src[0];
  9740. switch (src0->type) {
  9741. case GGML_TYPE_F16:
  9742. {
  9743. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9744. } break;
  9745. case GGML_TYPE_F32:
  9746. {
  9747. ggml_compute_forward_get_rows_back_f32(params, dst);
  9748. } break;
  9749. default:
  9750. {
  9751. GGML_ASSERT(false);
  9752. } break;
  9753. }
  9754. //static bool first = true;
  9755. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9756. //if (first) {
  9757. // first = false;
  9758. //} else {
  9759. // for (int k = 0; k < dst->ne[1]; ++k) {
  9760. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9761. // for (int i = 0; i < 16; ++i) {
  9762. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9763. // }
  9764. // printf("\n");
  9765. // }
  9766. // printf("\n");
  9767. // }
  9768. // printf("\n");
  9769. // exit(0);
  9770. //}
  9771. }
  9772. // ggml_compute_forward_diag
  9773. static void ggml_compute_forward_diag_f32(
  9774. const struct ggml_compute_params * params,
  9775. struct ggml_tensor * dst) {
  9776. const struct ggml_tensor * src0 = dst->src[0];
  9777. GGML_ASSERT(params->ith == 0);
  9778. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9779. return;
  9780. }
  9781. // TODO: handle transposed/permuted matrices
  9782. GGML_TENSOR_UNARY_OP_LOCALS
  9783. GGML_ASSERT(ne00 == ne0);
  9784. GGML_ASSERT(ne00 == ne1);
  9785. GGML_ASSERT(ne01 == 1);
  9786. GGML_ASSERT(ne02 == ne2);
  9787. GGML_ASSERT(ne03 == ne3);
  9788. GGML_ASSERT(nb00 == sizeof(float));
  9789. GGML_ASSERT(nb0 == sizeof(float));
  9790. for (int i3 = 0; i3 < ne3; i3++) {
  9791. for (int i2 = 0; i2 < ne2; i2++) {
  9792. for (int i1 = 0; i1 < ne1; i1++) {
  9793. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9794. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9795. for (int i0 = 0; i0 < i1; i0++) {
  9796. d[i0] = 0;
  9797. }
  9798. d[i1] = s[i1];
  9799. for (int i0 = i1+1; i0 < ne0; i0++) {
  9800. d[i0] = 0;
  9801. }
  9802. }
  9803. }
  9804. }
  9805. }
  9806. static void ggml_compute_forward_diag(
  9807. const struct ggml_compute_params * params,
  9808. struct ggml_tensor * dst) {
  9809. const struct ggml_tensor * src0 = dst->src[0];
  9810. switch (src0->type) {
  9811. case GGML_TYPE_F32:
  9812. {
  9813. ggml_compute_forward_diag_f32(params, dst);
  9814. } break;
  9815. default:
  9816. {
  9817. GGML_ASSERT(false);
  9818. } break;
  9819. }
  9820. }
  9821. // ggml_compute_forward_diag_mask_inf
  9822. static void ggml_compute_forward_diag_mask_f32(
  9823. const struct ggml_compute_params * params,
  9824. struct ggml_tensor * dst,
  9825. const float value) {
  9826. const struct ggml_tensor * src0 = dst->src[0];
  9827. const int ith = params->ith;
  9828. const int nth = params->nth;
  9829. const int n_past = ((int32_t *) dst->op_params)[0];
  9830. const bool inplace = src0->data == dst->data;
  9831. GGML_ASSERT(n_past >= 0);
  9832. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9833. if (ith != 0) {
  9834. return;
  9835. }
  9836. // memcpy needs to be synchronized across threads to avoid race conditions.
  9837. // => do it in INIT phase
  9838. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9839. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9840. memcpy(
  9841. ((char *) dst->data),
  9842. ((char *) src0->data),
  9843. ggml_nbytes(dst));
  9844. }
  9845. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9846. return;
  9847. }
  9848. // TODO: handle transposed/permuted matrices
  9849. const int n = ggml_nrows(src0);
  9850. const int nc = src0->ne[0];
  9851. const int nr = src0->ne[1];
  9852. const int nz = n/nr;
  9853. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9854. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9855. for (int k = 0; k < nz; k++) {
  9856. for (int j = ith; j < nr; j += nth) {
  9857. for (int i = n_past; i < nc; i++) {
  9858. if (i > n_past + j) {
  9859. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9860. }
  9861. }
  9862. }
  9863. }
  9864. }
  9865. static void ggml_compute_forward_diag_mask_inf(
  9866. const struct ggml_compute_params * params,
  9867. struct ggml_tensor * dst) {
  9868. const struct ggml_tensor * src0 = dst->src[0];
  9869. switch (src0->type) {
  9870. case GGML_TYPE_F32:
  9871. {
  9872. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9873. } break;
  9874. default:
  9875. {
  9876. GGML_ASSERT(false);
  9877. } break;
  9878. }
  9879. }
  9880. static void ggml_compute_forward_diag_mask_zero(
  9881. const struct ggml_compute_params * params,
  9882. struct ggml_tensor * dst) {
  9883. const struct ggml_tensor * src0 = dst->src[0];
  9884. switch (src0->type) {
  9885. case GGML_TYPE_F32:
  9886. {
  9887. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9888. } break;
  9889. default:
  9890. {
  9891. GGML_ASSERT(false);
  9892. } break;
  9893. }
  9894. }
  9895. // ggml_compute_forward_soft_max
  9896. static void ggml_compute_forward_soft_max_f32(
  9897. const struct ggml_compute_params * params,
  9898. struct ggml_tensor * dst) {
  9899. const struct ggml_tensor * src0 = dst->src[0];
  9900. const struct ggml_tensor * src1 = dst->src[1];
  9901. const struct ggml_tensor * src2 = dst->src[2];
  9902. assert(ggml_is_contiguous(dst));
  9903. assert(ggml_are_same_shape(src0, dst));
  9904. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9905. return;
  9906. }
  9907. float scale = 1.0f;
  9908. float max_bias = 0.0f;
  9909. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9910. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9911. // TODO: handle transposed/permuted matrices
  9912. const int ith = params->ith;
  9913. const int nth = params->nth;
  9914. GGML_TENSOR_UNARY_OP_LOCALS
  9915. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9916. // TODO: is this supposed to be ceil instead of floor?
  9917. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9918. const uint32_t n_head_kv = ne02;
  9919. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9920. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9921. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9922. const int nc = src0->ne[0];
  9923. const int nr = ggml_nrows(src0);
  9924. // rows per thread
  9925. const int dr = (nr + nth - 1)/nth;
  9926. // row range for this thread
  9927. const int ir0 = dr*ith;
  9928. const int ir1 = MIN(ir0 + dr, nr);
  9929. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9930. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9931. float * pos = src2 ? (float *) src2->data : src0->data;
  9932. for (int i1 = ir0; i1 < ir1; i1++) {
  9933. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9934. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9935. // broadcast the mask across rows
  9936. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9937. ggml_vec_cpy_f32 (nc, wp, sp);
  9938. ggml_vec_scale_f32(nc, wp, scale);
  9939. if (mp) {
  9940. ggml_vec_acc_f32(nc, wp, mp);
  9941. }
  9942. // ALiBi bias
  9943. if (max_bias > 0.0f) {
  9944. const uint32_t h = (i1/ne01)%ne02; // head
  9945. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9946. for (int i = 0; i < nc; i++) {
  9947. wp[i] = wp[i] + slope*pos[i];
  9948. }
  9949. }
  9950. #ifndef NDEBUG
  9951. for (int i = 0; i < nc; ++i) {
  9952. //printf("p[%d] = %f\n", i, p[i]);
  9953. assert(!isnan(wp[i]));
  9954. }
  9955. #endif
  9956. float max = -INFINITY;
  9957. ggml_vec_max_f32(nc, &max, wp);
  9958. ggml_float sum = 0.0;
  9959. uint16_t scvt;
  9960. for (int i = 0; i < nc; i++) {
  9961. if (wp[i] == -INFINITY) {
  9962. dp[i] = 0.0f;
  9963. } else {
  9964. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9965. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9966. memcpy(&scvt, &s, sizeof(scvt));
  9967. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9968. sum += (ggml_float)val;
  9969. dp[i] = val;
  9970. }
  9971. }
  9972. assert(sum > 0.0);
  9973. sum = 1.0/sum;
  9974. ggml_vec_scale_f32(nc, dp, sum);
  9975. #ifndef NDEBUG
  9976. for (int i = 0; i < nc; ++i) {
  9977. assert(!isnan(dp[i]));
  9978. assert(!isinf(dp[i]));
  9979. }
  9980. #endif
  9981. }
  9982. }
  9983. static void ggml_compute_forward_soft_max(
  9984. const struct ggml_compute_params * params,
  9985. struct ggml_tensor * dst) {
  9986. const struct ggml_tensor * src0 = dst->src[0];
  9987. switch (src0->type) {
  9988. case GGML_TYPE_F32:
  9989. {
  9990. ggml_compute_forward_soft_max_f32(params, dst);
  9991. } break;
  9992. default:
  9993. {
  9994. GGML_ASSERT(false);
  9995. } break;
  9996. }
  9997. }
  9998. // ggml_compute_forward_soft_max_back
  9999. static void ggml_compute_forward_soft_max_back_f32(
  10000. const struct ggml_compute_params * params,
  10001. struct ggml_tensor * dst) {
  10002. const struct ggml_tensor * src0 = dst->src[0];
  10003. const struct ggml_tensor * src1 = dst->src[1];
  10004. GGML_ASSERT(ggml_is_contiguous(src0));
  10005. GGML_ASSERT(ggml_is_contiguous(src1));
  10006. GGML_ASSERT(ggml_is_contiguous(dst));
  10007. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10008. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10009. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10010. return;
  10011. }
  10012. // TODO: handle transposed/permuted matrices
  10013. const int ith = params->ith;
  10014. const int nth = params->nth;
  10015. const int nc = src0->ne[0];
  10016. const int nr = ggml_nrows(src0);
  10017. // rows per thread
  10018. const int dr = (nr + nth - 1)/nth;
  10019. // row range for this thread
  10020. const int ir0 = dr*ith;
  10021. const int ir1 = MIN(ir0 + dr, nr);
  10022. for (int i1 = ir0; i1 < ir1; i1++) {
  10023. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10024. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10025. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10026. #ifndef NDEBUG
  10027. for (int i = 0; i < nc; ++i) {
  10028. //printf("p[%d] = %f\n", i, p[i]);
  10029. assert(!isnan(dy[i]));
  10030. assert(!isnan(y[i]));
  10031. }
  10032. #endif
  10033. // Jii = yi - yi*yi
  10034. // Jij = -yi*yj
  10035. // J = diag(y)-y.T*y
  10036. // dx = J * dy
  10037. // dxk = sum_i(Jki * dyi)
  10038. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10039. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10040. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10041. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10042. // dxk = -yk * dot(y, dy) + yk*dyk
  10043. // dxk = yk * (- dot(y, dy) + dyk)
  10044. // dxk = yk * (dyk - dot(y, dy))
  10045. //
  10046. // post-order:
  10047. // dot_y_dy := dot(y, dy)
  10048. // dx := dy
  10049. // dx := dx - dot_y_dy
  10050. // dx := dx * y
  10051. // linear runtime, no additional memory
  10052. float dot_y_dy = 0;
  10053. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  10054. ggml_vec_cpy_f32 (nc, dx, dy);
  10055. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10056. ggml_vec_mul_f32 (nc, dx, dx, y);
  10057. #ifndef NDEBUG
  10058. for (int i = 0; i < nc; ++i) {
  10059. assert(!isnan(dx[i]));
  10060. assert(!isinf(dx[i]));
  10061. }
  10062. #endif
  10063. }
  10064. }
  10065. static void ggml_compute_forward_soft_max_back(
  10066. const struct ggml_compute_params * params,
  10067. struct ggml_tensor * dst) {
  10068. const struct ggml_tensor * src0 = dst->src[0];
  10069. switch (src0->type) {
  10070. case GGML_TYPE_F32:
  10071. {
  10072. ggml_compute_forward_soft_max_back_f32(params, dst);
  10073. } break;
  10074. default:
  10075. {
  10076. GGML_ASSERT(false);
  10077. } break;
  10078. }
  10079. }
  10080. // ggml_compute_forward_alibi
  10081. static void ggml_compute_forward_alibi_f32(
  10082. const struct ggml_compute_params * params,
  10083. struct ggml_tensor * dst) {
  10084. const struct ggml_tensor * src0 = dst->src[0];
  10085. assert(params->ith == 0);
  10086. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10087. return;
  10088. }
  10089. //const int n_past = ((int32_t *) dst->op_params)[0];
  10090. const int n_head = ((int32_t *) dst->op_params)[1];
  10091. float max_bias;
  10092. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10093. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10094. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10095. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10096. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10097. const int64_t n = ggml_nrows(src0);
  10098. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10099. const size_t nb0 = src0->nb[0];
  10100. const size_t nb1 = src0->nb[1];
  10101. const size_t nb2 = src0->nb[2];
  10102. //const int nb3 = src0->nb[3];
  10103. GGML_ASSERT(nb0 == sizeof(float));
  10104. GGML_ASSERT(n_head == ne2);
  10105. // add alibi to src0 (KQ_scaled)
  10106. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10107. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10108. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10109. for (int64_t k = 0; k < ne2_ne3; k++) {
  10110. // TODO: k*nb2 or k*nb3
  10111. float m_k;
  10112. if (k < n_heads_log2_floor) {
  10113. m_k = powf(m0, k + 1);
  10114. } else {
  10115. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10116. }
  10117. for (int64_t i = 0; i < ne0; i++) {
  10118. for (int64_t j = 0; j < ne1; j++) {
  10119. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10120. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10121. pdst[0] = i * m_k + src[0];
  10122. }
  10123. }
  10124. }
  10125. }
  10126. static void ggml_compute_forward_alibi_f16(
  10127. const struct ggml_compute_params * params,
  10128. struct ggml_tensor * dst) {
  10129. const struct ggml_tensor * src0 = dst->src[0];
  10130. assert(params->ith == 0);
  10131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10132. return;
  10133. }
  10134. //const int n_past = ((int32_t *) dst->op_params)[0];
  10135. const int n_head = ((int32_t *) dst->op_params)[1];
  10136. float max_bias;
  10137. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10138. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10139. const int ne1 = src0->ne[1]; // seq_len_without_past
  10140. const int ne2 = src0->ne[2]; // n_head -> this is k
  10141. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10142. const int n = ggml_nrows(src0);
  10143. const int ne2_ne3 = n/ne1; // ne2*ne3
  10144. const int nb0 = src0->nb[0];
  10145. const int nb1 = src0->nb[1];
  10146. const int nb2 = src0->nb[2];
  10147. //const int nb3 = src0->nb[3];
  10148. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10149. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10150. GGML_ASSERT(n_head == ne2);
  10151. // add alibi to src0 (KQ_scaled)
  10152. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10153. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10154. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10155. for (int k = 0; k < ne2_ne3; k++) {
  10156. // TODO: k*nb2 or k*nb3
  10157. float m_k;
  10158. if (k < n_heads_log2_floor) {
  10159. m_k = powf(m0, k + 1);
  10160. } else {
  10161. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10162. }
  10163. for (int i = 0; i < ne0; i++) {
  10164. for (int j = 0; j < ne1; j++) {
  10165. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10166. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10167. // we return F32
  10168. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10169. }
  10170. }
  10171. }
  10172. }
  10173. static void ggml_compute_forward_alibi(
  10174. const struct ggml_compute_params * params,
  10175. struct ggml_tensor * dst) {
  10176. const struct ggml_tensor * src0 = dst->src[0];
  10177. switch (src0->type) {
  10178. case GGML_TYPE_F16:
  10179. {
  10180. ggml_compute_forward_alibi_f16(params, dst);
  10181. } break;
  10182. case GGML_TYPE_F32:
  10183. {
  10184. ggml_compute_forward_alibi_f32(params, dst);
  10185. } break;
  10186. case GGML_TYPE_Q4_0:
  10187. case GGML_TYPE_Q4_1:
  10188. case GGML_TYPE_Q5_0:
  10189. case GGML_TYPE_Q5_1:
  10190. case GGML_TYPE_Q8_0:
  10191. case GGML_TYPE_Q8_1:
  10192. case GGML_TYPE_Q2_K:
  10193. case GGML_TYPE_Q3_K:
  10194. case GGML_TYPE_Q4_K:
  10195. case GGML_TYPE_Q5_K:
  10196. case GGML_TYPE_Q6_K:
  10197. case GGML_TYPE_IQ2_XXS:
  10198. case GGML_TYPE_IQ2_XS:
  10199. case GGML_TYPE_IQ3_XXS:
  10200. case GGML_TYPE_IQ1_S:
  10201. case GGML_TYPE_IQ1_M:
  10202. case GGML_TYPE_IQ4_NL:
  10203. case GGML_TYPE_IQ4_XS:
  10204. case GGML_TYPE_IQ3_S:
  10205. case GGML_TYPE_IQ2_S:
  10206. case GGML_TYPE_Q8_K:
  10207. case GGML_TYPE_I8:
  10208. case GGML_TYPE_I16:
  10209. case GGML_TYPE_I32:
  10210. case GGML_TYPE_I64:
  10211. case GGML_TYPE_F64:
  10212. case GGML_TYPE_COUNT:
  10213. {
  10214. GGML_ASSERT(false);
  10215. } break;
  10216. }
  10217. }
  10218. // ggml_compute_forward_clamp
  10219. static void ggml_compute_forward_clamp_f32(
  10220. const struct ggml_compute_params * params,
  10221. struct ggml_tensor * dst) {
  10222. const struct ggml_tensor * src0 = dst->src[0];
  10223. assert(params->ith == 0);
  10224. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10225. return;
  10226. }
  10227. float min;
  10228. float max;
  10229. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10230. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10231. const int ith = params->ith;
  10232. const int nth = params->nth;
  10233. const int n = ggml_nrows(src0);
  10234. const int nc = src0->ne[0];
  10235. const size_t nb00 = src0->nb[0];
  10236. const size_t nb01 = src0->nb[1];
  10237. const size_t nb0 = dst->nb[0];
  10238. const size_t nb1 = dst->nb[1];
  10239. GGML_ASSERT( nb0 == sizeof(float));
  10240. GGML_ASSERT(nb00 == sizeof(float));
  10241. for (int j = ith; j < n; j += nth) {
  10242. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10243. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10244. for (int i = 0; i < nc; i++) {
  10245. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10246. }
  10247. }
  10248. }
  10249. static void ggml_compute_forward_clamp(
  10250. const struct ggml_compute_params * params,
  10251. struct ggml_tensor * dst) {
  10252. const struct ggml_tensor * src0 = dst->src[0];
  10253. switch (src0->type) {
  10254. case GGML_TYPE_F32:
  10255. {
  10256. ggml_compute_forward_clamp_f32(params, dst);
  10257. } break;
  10258. case GGML_TYPE_F16:
  10259. case GGML_TYPE_Q4_0:
  10260. case GGML_TYPE_Q4_1:
  10261. case GGML_TYPE_Q5_0:
  10262. case GGML_TYPE_Q5_1:
  10263. case GGML_TYPE_Q8_0:
  10264. case GGML_TYPE_Q8_1:
  10265. case GGML_TYPE_Q2_K:
  10266. case GGML_TYPE_Q3_K:
  10267. case GGML_TYPE_Q4_K:
  10268. case GGML_TYPE_Q5_K:
  10269. case GGML_TYPE_Q6_K:
  10270. case GGML_TYPE_IQ2_XXS:
  10271. case GGML_TYPE_IQ2_XS:
  10272. case GGML_TYPE_IQ3_XXS:
  10273. case GGML_TYPE_IQ1_S:
  10274. case GGML_TYPE_IQ1_M:
  10275. case GGML_TYPE_IQ4_NL:
  10276. case GGML_TYPE_IQ4_XS:
  10277. case GGML_TYPE_IQ3_S:
  10278. case GGML_TYPE_IQ2_S:
  10279. case GGML_TYPE_Q8_K:
  10280. case GGML_TYPE_I8:
  10281. case GGML_TYPE_I16:
  10282. case GGML_TYPE_I32:
  10283. case GGML_TYPE_I64:
  10284. case GGML_TYPE_F64:
  10285. case GGML_TYPE_COUNT:
  10286. {
  10287. GGML_ASSERT(false);
  10288. } break;
  10289. }
  10290. }
  10291. // ggml_compute_forward_rope
  10292. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10293. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10294. return 1 - MIN(1, MAX(0, y));
  10295. }
  10296. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10297. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10298. static void rope_yarn(
  10299. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10300. float * cos_theta, float * sin_theta
  10301. ) {
  10302. // Get n-d rotational scaling corrected for extrapolation
  10303. float theta_interp = freq_scale * theta_extrap;
  10304. float theta = theta_interp;
  10305. if (ext_factor != 0.0f) {
  10306. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10307. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10308. // Get n-d magnitude scaling corrected for interpolation
  10309. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10310. }
  10311. *cos_theta = cosf(theta) * mscale;
  10312. *sin_theta = sinf(theta) * mscale;
  10313. }
  10314. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10315. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10316. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10317. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10318. }
  10319. static void ggml_rope_cache_init(
  10320. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10321. float * cache, float sin_sign, float theta_scale
  10322. ) {
  10323. float theta = theta_base;
  10324. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10325. rope_yarn(
  10326. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10327. );
  10328. cache[i0 + 1] *= sin_sign;
  10329. theta *= theta_scale;
  10330. }
  10331. }
  10332. GGML_CALL void ggml_rope_yarn_corr_dims(
  10333. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10334. ) {
  10335. // start and end correction dims
  10336. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10337. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10338. dims[0] = MAX(0, start);
  10339. dims[1] = MIN(n_dims - 1, end);
  10340. }
  10341. static void ggml_compute_forward_rope_f32(
  10342. const struct ggml_compute_params * params,
  10343. struct ggml_tensor * dst,
  10344. const bool forward) {
  10345. const struct ggml_tensor * src0 = dst->src[0];
  10346. const struct ggml_tensor * src1 = dst->src[1];
  10347. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10348. return;
  10349. }
  10350. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10351. // these two only relevant for xPos RoPE:
  10352. float xpos_base;
  10353. bool xpos_down;
  10354. //const int n_past = ((int32_t *) dst->op_params)[0];
  10355. const int n_dims = ((int32_t *) dst->op_params)[1];
  10356. const int mode = ((int32_t *) dst->op_params)[2];
  10357. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10358. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10359. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10360. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10361. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10362. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10363. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10364. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10365. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10366. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10367. GGML_TENSOR_UNARY_OP_LOCALS
  10368. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10369. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10370. GGML_ASSERT(nb00 == sizeof(float));
  10371. const int ith = params->ith;
  10372. const int nth = params->nth;
  10373. const int nr = ggml_nrows(dst);
  10374. GGML_ASSERT(n_dims <= ne0);
  10375. GGML_ASSERT(n_dims % 2 == 0);
  10376. // rows per thread
  10377. const int dr = (nr + nth - 1)/nth;
  10378. // row range for this thread
  10379. const int ir0 = dr*ith;
  10380. const int ir1 = MIN(ir0 + dr, nr);
  10381. // row index used to determine which thread to use
  10382. int ir = 0;
  10383. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10384. const float inv_ndims = -1.f/n_dims;
  10385. float corr_dims[2];
  10386. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10387. const bool is_neox = mode & 2;
  10388. const bool is_glm = mode & 4;
  10389. // backward process uses inverse rotation by cos and sin.
  10390. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10391. // this essentially just switches the sign of sin.
  10392. const float sin_sign = forward ? 1.0f : -1.0f;
  10393. const int32_t * pos = (const int32_t *) src1->data;
  10394. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10395. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10396. const int64_t p = pos[i2];
  10397. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10398. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10399. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10400. }
  10401. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10402. if (ir++ < ir0) continue;
  10403. if (ir > ir1) break;
  10404. float theta_base = (float)p;
  10405. if (is_glm) {
  10406. theta_base = MIN(p, n_ctx - 2);
  10407. float block_theta = MAX(p - (n_ctx - 2), 0);
  10408. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10409. const float cos_theta = cosf(theta_base);
  10410. const float sin_theta = sinf(theta_base) * sin_sign;
  10411. const float cos_block_theta = cosf(block_theta);
  10412. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10413. theta_base *= theta_scale;
  10414. block_theta *= theta_scale;
  10415. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10416. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10417. const float x0 = src[0];
  10418. const float x1 = src[n_dims/2];
  10419. const float x2 = src[n_dims];
  10420. const float x3 = src[n_dims/2*3];
  10421. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10422. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10423. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10424. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10425. }
  10426. } else if (!is_neox) {
  10427. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10428. const float cos_theta = cache[i0 + 0];
  10429. const float sin_theta = cache[i0 + 1];
  10430. // zeta scaling for xPos only:
  10431. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10432. if (xpos_down) zeta = 1.0f / zeta;
  10433. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10434. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10435. const float x0 = src[0];
  10436. const float x1 = src[1];
  10437. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10438. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10439. }
  10440. } else {
  10441. // TODO: this might be wrong for ne0 != n_dims - need double check
  10442. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10443. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10444. theta_base *= freq_scale;
  10445. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10446. if (ic < n_dims) {
  10447. const int64_t ib = 0;
  10448. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10449. float cur_rot = inv_ndims * ic - ib;
  10450. float cos_theta, sin_theta;
  10451. rope_yarn(
  10452. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10453. &cos_theta, &sin_theta
  10454. );
  10455. sin_theta *= sin_sign;
  10456. theta_base *= theta_scale;
  10457. const int64_t i0 = ib*n_dims + ic/2;
  10458. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10459. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10460. const float x0 = src[0];
  10461. const float x1 = src[n_dims/2];
  10462. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10463. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10464. } else {
  10465. const int64_t i0 = ic;
  10466. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10467. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10468. dst_data[0] = src[0];
  10469. dst_data[1] = src[1];
  10470. }
  10471. }
  10472. }
  10473. }
  10474. }
  10475. }
  10476. }
  10477. static void ggml_compute_forward_rope_f16(
  10478. const struct ggml_compute_params * params,
  10479. struct ggml_tensor * dst,
  10480. const bool forward) {
  10481. const struct ggml_tensor * src0 = dst->src[0];
  10482. const struct ggml_tensor * src1 = dst->src[1];
  10483. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10484. return;
  10485. }
  10486. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10487. //const int n_past = ((int32_t *) dst->op_params)[0];
  10488. const int n_dims = ((int32_t *) dst->op_params)[1];
  10489. const int mode = ((int32_t *) dst->op_params)[2];
  10490. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10491. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10492. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10493. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10494. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10495. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10496. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10497. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10498. GGML_TENSOR_UNARY_OP_LOCALS
  10499. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10500. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10501. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10502. const int ith = params->ith;
  10503. const int nth = params->nth;
  10504. const int nr = ggml_nrows(dst);
  10505. GGML_ASSERT(n_dims <= ne0);
  10506. GGML_ASSERT(n_dims % 2 == 0);
  10507. // rows per thread
  10508. const int dr = (nr + nth - 1)/nth;
  10509. // row range for this thread
  10510. const int ir0 = dr*ith;
  10511. const int ir1 = MIN(ir0 + dr, nr);
  10512. // row index used to determine which thread to use
  10513. int ir = 0;
  10514. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10515. const float inv_ndims = -1.f/n_dims;
  10516. float corr_dims[2];
  10517. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10518. const bool is_neox = mode & 2;
  10519. const bool is_glm = mode & 4;
  10520. // backward process uses inverse rotation by cos and sin.
  10521. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10522. // this essentially just switches the sign of sin.
  10523. const float sin_sign = forward ? 1.0f : -1.0f;
  10524. const int32_t * pos = (const int32_t *) src1->data;
  10525. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10526. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10527. const int64_t p = pos[i2];
  10528. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10529. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10530. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10531. }
  10532. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10533. if (ir++ < ir0) continue;
  10534. if (ir > ir1) break;
  10535. float theta_base = (float)p;
  10536. if (is_glm) {
  10537. theta_base = MIN(p, n_ctx - 2);
  10538. float block_theta = MAX(p - (n_ctx - 2), 0);
  10539. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10540. const float cos_theta = cosf(theta_base);
  10541. const float sin_theta = sinf(theta_base) * sin_sign;
  10542. const float cos_block_theta = cosf(block_theta);
  10543. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10544. theta_base *= theta_scale;
  10545. block_theta *= theta_scale;
  10546. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10547. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10548. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10549. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10550. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10551. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10552. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10553. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10554. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10555. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10556. }
  10557. } else if (!is_neox) {
  10558. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10559. const float cos_theta = cache[i0 + 0];
  10560. const float sin_theta = cache[i0 + 1];
  10561. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10562. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10563. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10564. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10565. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10566. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10567. }
  10568. } else {
  10569. // TODO: this might be wrong for ne0 != n_dims - need double check
  10570. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10571. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10572. theta_base *= freq_scale;
  10573. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10574. if (ic < n_dims) {
  10575. const int64_t ib = 0;
  10576. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10577. float cur_rot = inv_ndims * ic - ib;
  10578. float cos_theta, sin_theta;
  10579. rope_yarn(
  10580. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10581. &cos_theta, &sin_theta
  10582. );
  10583. sin_theta *= sin_sign;
  10584. theta_base *= theta_scale;
  10585. const int64_t i0 = ib*n_dims + ic/2;
  10586. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10587. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10588. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10589. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10590. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10591. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10592. } else {
  10593. const int64_t i0 = ic;
  10594. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10595. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10596. dst_data[0] = src[0];
  10597. dst_data[1] = src[1];
  10598. }
  10599. }
  10600. }
  10601. }
  10602. }
  10603. }
  10604. }
  10605. static void ggml_compute_forward_rope(
  10606. const struct ggml_compute_params * params,
  10607. struct ggml_tensor * dst) {
  10608. const struct ggml_tensor * src0 = dst->src[0];
  10609. switch (src0->type) {
  10610. case GGML_TYPE_F16:
  10611. {
  10612. ggml_compute_forward_rope_f16(params, dst, true);
  10613. } break;
  10614. case GGML_TYPE_F32:
  10615. {
  10616. ggml_compute_forward_rope_f32(params, dst, true);
  10617. } break;
  10618. default:
  10619. {
  10620. GGML_ASSERT(false);
  10621. } break;
  10622. }
  10623. }
  10624. // ggml_compute_forward_rope_back
  10625. static void ggml_compute_forward_rope_back(
  10626. const struct ggml_compute_params * params,
  10627. struct ggml_tensor * dst) {
  10628. const struct ggml_tensor * src0 = dst->src[0];
  10629. switch (src0->type) {
  10630. case GGML_TYPE_F16:
  10631. {
  10632. ggml_compute_forward_rope_f16(params, dst, false);
  10633. } break;
  10634. case GGML_TYPE_F32:
  10635. {
  10636. ggml_compute_forward_rope_f32(params, dst, false);
  10637. } break;
  10638. default:
  10639. {
  10640. GGML_ASSERT(false);
  10641. } break;
  10642. }
  10643. }
  10644. // ggml_compute_forward_conv_transpose_1d
  10645. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10646. const struct ggml_compute_params * params,
  10647. struct ggml_tensor * dst) {
  10648. const struct ggml_tensor * src0 = dst->src[0];
  10649. const struct ggml_tensor * src1 = dst->src[1];
  10650. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10651. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10652. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10653. int64_t t0 = ggml_perf_time_us();
  10654. UNUSED(t0);
  10655. GGML_TENSOR_BINARY_OP_LOCALS
  10656. const int ith = params->ith;
  10657. const int nth = params->nth;
  10658. const int nk = ne00*ne01*ne02;
  10659. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10660. GGML_ASSERT(nb10 == sizeof(float));
  10661. if (params->type == GGML_TASK_TYPE_INIT) {
  10662. if (ith != 0) {
  10663. return;
  10664. }
  10665. memset(params->wdata, 0, params->wsize);
  10666. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10667. {
  10668. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10669. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10670. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10671. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10672. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10673. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10674. dst_data[i00*ne02 + i02] = src[i00];
  10675. }
  10676. }
  10677. }
  10678. }
  10679. // permute source data (src1) from (L x Cin) to (Cin x L)
  10680. {
  10681. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10682. ggml_fp16_t * dst_data = wdata;
  10683. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10684. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10685. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10686. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10687. }
  10688. }
  10689. }
  10690. // need to zero dst since we are accumulating into it
  10691. memset(dst->data, 0, ggml_nbytes(dst));
  10692. return;
  10693. }
  10694. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10695. return;
  10696. }
  10697. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10698. // total rows in dst
  10699. const int nr = ne1;
  10700. // rows per thread
  10701. const int dr = (nr + nth - 1)/nth;
  10702. // row range for this thread
  10703. const int ir0 = dr*ith;
  10704. const int ir1 = MIN(ir0 + dr, nr);
  10705. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10706. ggml_fp16_t * const wdata_src = wdata + nk;
  10707. for (int i1 = ir0; i1 < ir1; i1++) {
  10708. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10709. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10710. for (int i10 = 0; i10 < ne10; i10++) {
  10711. const int i1n = i10*ne11;
  10712. for (int i00 = 0; i00 < ne00; i00++) {
  10713. float v = 0;
  10714. ggml_vec_dot_f16(ne02, &v, 0,
  10715. (ggml_fp16_t *) wdata_src + i1n, 0,
  10716. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10717. dst_data[i10*s0 + i00] += v;
  10718. }
  10719. }
  10720. }
  10721. }
  10722. static void ggml_compute_forward_conv_transpose_1d_f32(
  10723. const struct ggml_compute_params * params,
  10724. struct ggml_tensor * dst) {
  10725. const struct ggml_tensor * src0 = dst->src[0];
  10726. const struct ggml_tensor * src1 = dst->src[1];
  10727. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10728. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10729. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10730. int64_t t0 = ggml_perf_time_us();
  10731. UNUSED(t0);
  10732. GGML_TENSOR_BINARY_OP_LOCALS
  10733. const int ith = params->ith;
  10734. const int nth = params->nth;
  10735. const int nk = ne00*ne01*ne02;
  10736. GGML_ASSERT(nb00 == sizeof(float));
  10737. GGML_ASSERT(nb10 == sizeof(float));
  10738. if (params->type == GGML_TASK_TYPE_INIT) {
  10739. if (ith != 0) {
  10740. return;
  10741. }
  10742. memset(params->wdata, 0, params->wsize);
  10743. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10744. {
  10745. float * const wdata = (float *) params->wdata + 0;
  10746. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10747. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10748. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10749. float * dst_data = wdata + i01*ne00*ne02;
  10750. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10751. dst_data[i00*ne02 + i02] = src[i00];
  10752. }
  10753. }
  10754. }
  10755. }
  10756. // prepare source data (src1)
  10757. {
  10758. float * const wdata = (float *) params->wdata + nk;
  10759. float * dst_data = wdata;
  10760. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10761. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10762. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10763. dst_data[i10*ne11 + i11] = src[i10];
  10764. }
  10765. }
  10766. }
  10767. // need to zero dst since we are accumulating into it
  10768. memset(dst->data, 0, ggml_nbytes(dst));
  10769. return;
  10770. }
  10771. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10772. return;
  10773. }
  10774. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10775. // total rows in dst
  10776. const int nr = ne1;
  10777. // rows per thread
  10778. const int dr = (nr + nth - 1)/nth;
  10779. // row range for this thread
  10780. const int ir0 = dr*ith;
  10781. const int ir1 = MIN(ir0 + dr, nr);
  10782. float * const wdata = (float *) params->wdata + 0;
  10783. float * const wdata_src = wdata + nk;
  10784. for (int i1 = ir0; i1 < ir1; i1++) {
  10785. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10786. float * wdata_kernel = wdata + i1*ne02*ne00;
  10787. for (int i10 = 0; i10 < ne10; i10++) {
  10788. const int i1n = i10*ne11;
  10789. for (int i00 = 0; i00 < ne00; i00++) {
  10790. float v = 0;
  10791. ggml_vec_dot_f32(ne02, &v, 0,
  10792. wdata_src + i1n, 0,
  10793. wdata_kernel + i00*ne02, 0, 1);
  10794. dst_data[i10*s0 + i00] += v;
  10795. }
  10796. }
  10797. }
  10798. }
  10799. static void ggml_compute_forward_conv_transpose_1d(
  10800. const struct ggml_compute_params * params,
  10801. struct ggml_tensor * dst) {
  10802. const struct ggml_tensor * src0 = dst->src[0];
  10803. switch (src0->type) {
  10804. case GGML_TYPE_F16:
  10805. {
  10806. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10807. } break;
  10808. case GGML_TYPE_F32:
  10809. {
  10810. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10811. } break;
  10812. default:
  10813. {
  10814. GGML_ASSERT(false);
  10815. } break;
  10816. }
  10817. }
  10818. // src0: kernel [OC, IC, KH, KW]
  10819. // src1: image [N, IC, IH, IW]
  10820. // dst: result [N, OH, OW, IC*KH*KW]
  10821. static void ggml_compute_forward_im2col_f32(
  10822. const struct ggml_compute_params * params,
  10823. struct ggml_tensor * dst) {
  10824. const struct ggml_tensor * src0 = dst->src[0];
  10825. const struct ggml_tensor * src1 = dst->src[1];
  10826. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10827. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10828. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10829. int64_t t0 = ggml_perf_time_us();
  10830. UNUSED(t0);
  10831. GGML_TENSOR_BINARY_OP_LOCALS;
  10832. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10833. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10834. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10835. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10836. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10837. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10838. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10839. const int ith = params->ith;
  10840. const int nth = params->nth;
  10841. const int64_t N = is_2D ? ne13 : ne12;
  10842. const int64_t IC = is_2D ? ne12 : ne11;
  10843. const int64_t IH = is_2D ? ne11 : 1;
  10844. const int64_t IW = ne10;
  10845. const int64_t KH = is_2D ? ne01 : 1;
  10846. const int64_t KW = ne00;
  10847. const int64_t OH = is_2D ? ne2 : 1;
  10848. const int64_t OW = ne1;
  10849. int ofs0 = is_2D ? nb13 : nb12;
  10850. int ofs1 = is_2D ? nb12 : nb11;
  10851. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10852. GGML_ASSERT(nb10 == sizeof(float));
  10853. if (params->type == GGML_TASK_TYPE_INIT) {
  10854. return;
  10855. }
  10856. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10857. return;
  10858. }
  10859. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10860. {
  10861. float * const wdata = (float *) dst->data;
  10862. for (int64_t in = 0; in < N; in++) {
  10863. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10864. for (int64_t iow = 0; iow < OW; iow++) {
  10865. for (int64_t iic = ith; iic < IC; iic += nth) {
  10866. // micro kernel
  10867. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10868. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10869. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10870. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10871. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10872. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10873. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10874. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10875. } else {
  10876. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10877. }
  10878. }
  10879. }
  10880. }
  10881. }
  10882. }
  10883. }
  10884. }
  10885. }
  10886. // src0: kernel [OC, IC, KH, KW]
  10887. // src1: image [N, IC, IH, IW]
  10888. // dst: result [N, OH, OW, IC*KH*KW]
  10889. static void ggml_compute_forward_im2col_f16(
  10890. const struct ggml_compute_params * params,
  10891. struct ggml_tensor * dst) {
  10892. const struct ggml_tensor * src0 = dst->src[0];
  10893. const struct ggml_tensor * src1 = dst->src[1];
  10894. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10895. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10896. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10897. int64_t t0 = ggml_perf_time_us();
  10898. UNUSED(t0);
  10899. GGML_TENSOR_BINARY_OP_LOCALS;
  10900. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10901. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10902. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10903. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10904. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10905. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10906. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10907. const int ith = params->ith;
  10908. const int nth = params->nth;
  10909. const int64_t N = is_2D ? ne13 : ne12;
  10910. const int64_t IC = is_2D ? ne12 : ne11;
  10911. const int64_t IH = is_2D ? ne11 : 1;
  10912. const int64_t IW = ne10;
  10913. const int64_t KH = is_2D ? ne01 : 1;
  10914. const int64_t KW = ne00;
  10915. const int64_t OH = is_2D ? ne2 : 1;
  10916. const int64_t OW = ne1;
  10917. int ofs0 = is_2D ? nb13 : nb12;
  10918. int ofs1 = is_2D ? nb12 : nb11;
  10919. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10920. GGML_ASSERT(nb10 == sizeof(float));
  10921. if (params->type == GGML_TASK_TYPE_INIT) {
  10922. return;
  10923. }
  10924. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10925. return;
  10926. }
  10927. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10928. {
  10929. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10930. for (int64_t in = 0; in < N; in++) {
  10931. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10932. for (int64_t iow = 0; iow < OW; iow++) {
  10933. for (int64_t iic = ith; iic < IC; iic += nth) {
  10934. // micro kernel
  10935. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10936. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10937. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10938. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10939. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10940. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10941. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10942. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10943. } else {
  10944. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10945. }
  10946. }
  10947. }
  10948. }
  10949. }
  10950. }
  10951. }
  10952. }
  10953. }
  10954. static void ggml_compute_forward_im2col(
  10955. const struct ggml_compute_params * params,
  10956. struct ggml_tensor * dst) {
  10957. switch (dst->type) {
  10958. case GGML_TYPE_F16:
  10959. {
  10960. ggml_compute_forward_im2col_f16(params, dst);
  10961. } break;
  10962. case GGML_TYPE_F32:
  10963. {
  10964. ggml_compute_forward_im2col_f32(params, dst);
  10965. } break;
  10966. default:
  10967. {
  10968. GGML_ASSERT(false);
  10969. } break;
  10970. }
  10971. }
  10972. // ggml_compute_forward_conv_transpose_2d
  10973. static void ggml_compute_forward_conv_transpose_2d(
  10974. const struct ggml_compute_params * params,
  10975. struct ggml_tensor * dst) {
  10976. const struct ggml_tensor * src0 = dst->src[0];
  10977. const struct ggml_tensor * src1 = dst->src[1];
  10978. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10979. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10980. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10981. int64_t t0 = ggml_perf_time_us();
  10982. UNUSED(t0);
  10983. GGML_TENSOR_BINARY_OP_LOCALS
  10984. const int ith = params->ith;
  10985. const int nth = params->nth;
  10986. const int nk = ne00*ne01*ne02*ne03;
  10987. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10988. GGML_ASSERT(nb10 == sizeof(float));
  10989. if (params->type == GGML_TASK_TYPE_INIT) {
  10990. if (ith != 0) {
  10991. return;
  10992. }
  10993. memset(params->wdata, 0, params->wsize);
  10994. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10995. {
  10996. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10999. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11000. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11001. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11002. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11003. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11004. }
  11005. }
  11006. }
  11007. }
  11008. }
  11009. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11010. {
  11011. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11012. for (int i12 = 0; i12 < ne12; i12++) {
  11013. for (int i11 = 0; i11 < ne11; i11++) {
  11014. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11015. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11016. for (int i10 = 0; i10 < ne10; i10++) {
  11017. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11018. }
  11019. }
  11020. }
  11021. }
  11022. memset(dst->data, 0, ggml_nbytes(dst));
  11023. return;
  11024. }
  11025. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11026. return;
  11027. }
  11028. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11029. // total patches in dst
  11030. const int np = ne2;
  11031. // patches per thread
  11032. const int dp = (np + nth - 1)/nth;
  11033. // patch range for this thread
  11034. const int ip0 = dp*ith;
  11035. const int ip1 = MIN(ip0 + dp, np);
  11036. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11037. ggml_fp16_t * const wdata_src = wdata + nk;
  11038. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11039. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11040. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11041. for (int i11 = 0; i11 < ne11; i11++) {
  11042. for (int i10 = 0; i10 < ne10; i10++) {
  11043. const int i1n = i11*ne10*ne12 + i10*ne12;
  11044. for (int i01 = 0; i01 < ne01; i01++) {
  11045. for (int i00 = 0; i00 < ne00; i00++) {
  11046. float v = 0;
  11047. ggml_vec_dot_f16(ne03, &v, 0,
  11048. wdata_src + i1n, 0,
  11049. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11050. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11051. }
  11052. }
  11053. }
  11054. }
  11055. }
  11056. }
  11057. // ggml_compute_forward_pool_1d_sk_p0
  11058. static void ggml_compute_forward_pool_1d_sk_p0(
  11059. const struct ggml_compute_params * params,
  11060. const enum ggml_op_pool op,
  11061. const int k,
  11062. struct ggml_tensor * dst) {
  11063. const struct ggml_tensor * src = dst->src[0];
  11064. assert(src->type == GGML_TYPE_F32);
  11065. assert(params->ith == 0);
  11066. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11067. return;
  11068. }
  11069. const char * cdata = (const char *)src->data;
  11070. const char * const data_end = cdata + ggml_nbytes(src);
  11071. float * drow = (float *)dst->data;
  11072. const int64_t rs = dst->ne[0];
  11073. while (cdata < data_end) {
  11074. const float * const srow = (const float *)cdata;
  11075. int j = 0;
  11076. for (int64_t i = 0; i < rs; ++i) {
  11077. switch (op) {
  11078. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11079. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11080. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11081. }
  11082. for (int ki = 0; ki < k; ++ki) {
  11083. switch (op) {
  11084. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11085. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11086. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11087. }
  11088. ++j;
  11089. }
  11090. switch (op) {
  11091. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11092. case GGML_OP_POOL_MAX: break;
  11093. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11094. }
  11095. }
  11096. cdata += src->nb[1];
  11097. drow += rs;
  11098. }
  11099. }
  11100. // ggml_compute_forward_pool_1d
  11101. static void ggml_compute_forward_pool_1d(
  11102. const struct ggml_compute_params * params,
  11103. struct ggml_tensor * dst) {
  11104. const int32_t * opts = (const int32_t *)dst->op_params;
  11105. enum ggml_op_pool op = opts[0];
  11106. const int k0 = opts[1];
  11107. const int s0 = opts[2];
  11108. const int p0 = opts[3];
  11109. GGML_ASSERT(p0 == 0); // padding not supported
  11110. GGML_ASSERT(k0 == s0); // only s = k supported
  11111. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11112. }
  11113. // ggml_compute_forward_pool_2d
  11114. static void ggml_compute_forward_pool_2d(
  11115. const struct ggml_compute_params * params,
  11116. struct ggml_tensor * dst) {
  11117. const struct ggml_tensor * src = dst->src[0];
  11118. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11119. GGML_ASSERT(params->ith == 0);
  11120. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11121. return;
  11122. }
  11123. const int32_t * opts = (const int32_t *)dst->op_params;
  11124. enum ggml_op_pool op = opts[0];
  11125. const int k0 = opts[1];
  11126. const int k1 = opts[2];
  11127. const int s0 = opts[3];
  11128. const int s1 = opts[4];
  11129. const int p0 = opts[5];
  11130. const int p1 = opts[6];
  11131. const char * cdata = (const char*)src->data;
  11132. const char * const data_end = cdata + ggml_nbytes(src);
  11133. const int64_t px = dst->ne[0];
  11134. const int64_t py = dst->ne[1];
  11135. const int64_t pa = px * py;
  11136. float * dplane = (float *)dst->data;
  11137. const int ka = k0 * k1;
  11138. const int offset0 = -p0;
  11139. const int offset1 = -p1;
  11140. while (cdata < data_end) {
  11141. for (int oy = 0; oy < py; ++oy) {
  11142. float * const drow = dplane + oy * px;
  11143. for (int ox = 0; ox < px; ++ox) {
  11144. float * const out = drow + ox;
  11145. switch (op) {
  11146. case GGML_OP_POOL_AVG: *out = 0; break;
  11147. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11148. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11149. }
  11150. const int ix = offset0 + ox * s0;
  11151. const int iy = offset1 + oy * s1;
  11152. for (int ky = 0; ky < k1; ++ky) {
  11153. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11154. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11155. for (int kx = 0; kx < k0; ++kx) {
  11156. int j = ix + kx;
  11157. if (j < 0 || j >= src->ne[0]) continue;
  11158. switch (op) {
  11159. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11160. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11161. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11162. }
  11163. }
  11164. }
  11165. switch (op) {
  11166. case GGML_OP_POOL_AVG: *out /= ka; break;
  11167. case GGML_OP_POOL_MAX: break;
  11168. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11169. }
  11170. }
  11171. }
  11172. cdata += src->nb[2];
  11173. dplane += pa;
  11174. }
  11175. }
  11176. // ggml_compute_forward_upscale
  11177. static void ggml_compute_forward_upscale_f32(
  11178. const struct ggml_compute_params * params,
  11179. struct ggml_tensor * dst) {
  11180. const struct ggml_tensor * src0 = dst->src[0];
  11181. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11182. return;
  11183. }
  11184. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11185. const int ith = params->ith;
  11186. const int nth = params->nth;
  11187. GGML_TENSOR_UNARY_OP_LOCALS
  11188. const int scale_factor = dst->op_params[0];
  11189. // TODO: optimize
  11190. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11191. const int64_t i03 = i3;
  11192. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11193. const int64_t i02 = i2;
  11194. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11195. const int64_t i01 = i1 / scale_factor;
  11196. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11197. const int64_t i00 = i0 / scale_factor;
  11198. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11199. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11200. *y = *x;
  11201. }
  11202. }
  11203. }
  11204. }
  11205. }
  11206. static void ggml_compute_forward_upscale(
  11207. const struct ggml_compute_params * params,
  11208. struct ggml_tensor * dst) {
  11209. const struct ggml_tensor * src0 = dst->src[0];
  11210. switch (src0->type) {
  11211. case GGML_TYPE_F32:
  11212. {
  11213. ggml_compute_forward_upscale_f32(params, dst);
  11214. } break;
  11215. default:
  11216. {
  11217. GGML_ASSERT(false);
  11218. } break;
  11219. }
  11220. }
  11221. // ggml_compute_forward_pad
  11222. static void ggml_compute_forward_pad_f32(
  11223. const struct ggml_compute_params * params,
  11224. struct ggml_tensor * dst) {
  11225. const struct ggml_tensor * src0 = dst->src[0];
  11226. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11227. return;
  11228. }
  11229. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11230. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11231. const int ith = params->ith;
  11232. const int nth = params->nth;
  11233. GGML_TENSOR_UNARY_OP_LOCALS
  11234. float * dst_ptr = (float *) dst->data;
  11235. // TODO: optimize
  11236. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11237. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11238. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11239. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11240. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11241. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11242. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11243. dst_ptr[dst_idx] = *src_ptr;
  11244. } else {
  11245. dst_ptr[dst_idx] = 0;
  11246. }
  11247. }
  11248. }
  11249. }
  11250. }
  11251. }
  11252. static void ggml_compute_forward_pad(
  11253. const struct ggml_compute_params * params,
  11254. struct ggml_tensor * dst) {
  11255. const struct ggml_tensor * src0 = dst->src[0];
  11256. switch (src0->type) {
  11257. case GGML_TYPE_F32:
  11258. {
  11259. ggml_compute_forward_pad_f32(params, dst);
  11260. } break;
  11261. default:
  11262. {
  11263. GGML_ASSERT(false);
  11264. } break;
  11265. }
  11266. }
  11267. // ggml_compute_forward_arange
  11268. static void ggml_compute_forward_arange_f32(
  11269. const struct ggml_compute_params * params,
  11270. struct ggml_tensor * dst) {
  11271. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11272. return;
  11273. }
  11274. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11275. const int ith = params->ith;
  11276. const int nth = params->nth;
  11277. const float start = ggml_get_op_params_f32(dst, 0);
  11278. const float stop = ggml_get_op_params_f32(dst, 1);
  11279. const float step = ggml_get_op_params_f32(dst, 2);
  11280. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11281. GGML_ASSERT(ggml_nelements(dst) == steps);
  11282. for (int64_t i = ith; i < steps; i+= nth) {
  11283. float value = start + step * i;
  11284. ((float *)dst->data)[i] = value;
  11285. }
  11286. }
  11287. static void ggml_compute_forward_arange(
  11288. const struct ggml_compute_params * params,
  11289. struct ggml_tensor * dst) {
  11290. switch (dst->type) {
  11291. case GGML_TYPE_F32:
  11292. {
  11293. ggml_compute_forward_arange_f32(params, dst);
  11294. } break;
  11295. default:
  11296. {
  11297. GGML_ASSERT(false);
  11298. } break;
  11299. }
  11300. }
  11301. static void ggml_compute_forward_timestep_embedding_f32(
  11302. const struct ggml_compute_params * params,
  11303. struct ggml_tensor * dst) {
  11304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11305. return;
  11306. }
  11307. const struct ggml_tensor * src0 = dst->src[0];
  11308. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11309. const int ith = params->ith;
  11310. const int nth = params->nth;
  11311. GGML_TENSOR_UNARY_OP_LOCALS
  11312. const int dim = ggml_get_op_params_i32(dst, 0);
  11313. const int max_period = ggml_get_op_params_i32(dst, 1);
  11314. int half = dim / 2;
  11315. for (int64_t i = 0; i < ne00; i++) {
  11316. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11317. for (int64_t j = ith; j < half; j += nth) {
  11318. float timestep = ((float *)src0->data)[i];
  11319. float freq = (float)expf(-logf(max_period) * j / half);
  11320. float arg = timestep * freq;
  11321. embed_data[j] = cosf(arg);
  11322. embed_data[j + half] = sinf(arg);
  11323. }
  11324. if (dim % 2 != 0 && ith == 0) {
  11325. embed_data[dim] = 0.f;
  11326. }
  11327. }
  11328. }
  11329. static void ggml_compute_forward_timestep_embedding(
  11330. const struct ggml_compute_params * params,
  11331. struct ggml_tensor * dst) {
  11332. const struct ggml_tensor * src0 = dst->src[0];
  11333. switch (src0->type) {
  11334. case GGML_TYPE_F32:
  11335. {
  11336. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11337. } break;
  11338. default:
  11339. {
  11340. GGML_ASSERT(false);
  11341. } break;
  11342. }
  11343. }
  11344. // ggml_compute_forward_argsort
  11345. static void ggml_compute_forward_argsort_f32(
  11346. const struct ggml_compute_params * params,
  11347. struct ggml_tensor * dst) {
  11348. const struct ggml_tensor * src0 = dst->src[0];
  11349. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11350. return;
  11351. }
  11352. GGML_TENSOR_UNARY_OP_LOCALS
  11353. GGML_ASSERT(nb0 == sizeof(float));
  11354. const int ith = params->ith;
  11355. const int nth = params->nth;
  11356. const int64_t nr = ggml_nrows(src0);
  11357. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11358. for (int64_t i = ith; i < nr; i += nth) {
  11359. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11360. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11361. for (int64_t j = 0; j < ne0; j++) {
  11362. dst_data[j] = j;
  11363. }
  11364. // C doesn't have a functional sort, so we do a bubble sort instead
  11365. for (int64_t j = 0; j < ne0; j++) {
  11366. for (int64_t k = j + 1; k < ne0; k++) {
  11367. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11368. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11369. int32_t tmp = dst_data[j];
  11370. dst_data[j] = dst_data[k];
  11371. dst_data[k] = tmp;
  11372. }
  11373. }
  11374. }
  11375. }
  11376. }
  11377. static void ggml_compute_forward_argsort(
  11378. const struct ggml_compute_params * params,
  11379. struct ggml_tensor * dst) {
  11380. const struct ggml_tensor * src0 = dst->src[0];
  11381. switch (src0->type) {
  11382. case GGML_TYPE_F32:
  11383. {
  11384. ggml_compute_forward_argsort_f32(params, dst);
  11385. } break;
  11386. default:
  11387. {
  11388. GGML_ASSERT(false);
  11389. } break;
  11390. }
  11391. }
  11392. // ggml_compute_forward_flash_attn
  11393. static void ggml_compute_forward_flash_attn_f32(
  11394. const struct ggml_compute_params * params,
  11395. const bool masked,
  11396. struct ggml_tensor * dst) {
  11397. const struct ggml_tensor * q = dst->src[0];
  11398. const struct ggml_tensor * k = dst->src[1];
  11399. const struct ggml_tensor * v = dst->src[2];
  11400. int64_t t0 = ggml_perf_time_us();
  11401. UNUSED(t0);
  11402. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11403. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11404. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11405. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11406. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11407. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11408. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11409. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11410. const int ith = params->ith;
  11411. const int nth = params->nth;
  11412. const int64_t D = neq0;
  11413. const int64_t N = neq1;
  11414. const int64_t P = nek1 - N;
  11415. const int64_t M = P + N;
  11416. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11417. GGML_ASSERT(ne0 == D);
  11418. GGML_ASSERT(ne1 == N);
  11419. GGML_ASSERT(P >= 0);
  11420. GGML_ASSERT(nbq0 == sizeof(float));
  11421. GGML_ASSERT(nbk0 == sizeof(float));
  11422. GGML_ASSERT(nbv0 == sizeof(float));
  11423. GGML_ASSERT(neq0 == D);
  11424. GGML_ASSERT(nek0 == D);
  11425. GGML_ASSERT(nev1 == D);
  11426. GGML_ASSERT(neq1 == N);
  11427. GGML_ASSERT(nek1 == N + P);
  11428. GGML_ASSERT(nev1 == D);
  11429. // dst cannot be transposed or permuted
  11430. GGML_ASSERT(nb0 == sizeof(float));
  11431. GGML_ASSERT(nb0 <= nb1);
  11432. GGML_ASSERT(nb1 <= nb2);
  11433. GGML_ASSERT(nb2 <= nb3);
  11434. if (params->type == GGML_TASK_TYPE_INIT) {
  11435. return;
  11436. }
  11437. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11438. return;
  11439. }
  11440. // parallelize by q rows using ggml_vec_dot_f32
  11441. // total rows in q
  11442. const int nr = neq1*neq2*neq3;
  11443. // rows per thread
  11444. const int dr = (nr + nth - 1)/nth;
  11445. // row range for this thread
  11446. const int ir0 = dr*ith;
  11447. const int ir1 = MIN(ir0 + dr, nr);
  11448. const float scale = 1.0f/sqrtf(D);
  11449. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11450. for (int ir = ir0; ir < ir1; ++ir) {
  11451. // q indices
  11452. const int iq3 = ir/(neq2*neq1);
  11453. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11454. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11455. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11456. for (int i = M; i < Mup; ++i) {
  11457. S[i] = -INFINITY;
  11458. }
  11459. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11460. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11461. // k indices
  11462. const int ik3 = iq3;
  11463. const int ik2 = iq2 % nek2;
  11464. const int ik1 = ic;
  11465. // S indices
  11466. const int i1 = ik1;
  11467. ggml_vec_dot_f32(neq0,
  11468. S + i1, 0,
  11469. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11470. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11471. }
  11472. // scale
  11473. ggml_vec_scale_f32(masked_begin, S, scale);
  11474. for (int64_t i = masked_begin; i < M; i++) {
  11475. S[i] = -INFINITY;
  11476. }
  11477. // softmax
  11478. // exclude known -INF S[..] values from max and loop
  11479. // dont forget to set their SW values to zero
  11480. {
  11481. float max = -INFINITY;
  11482. ggml_vec_max_f32(masked_begin, &max, S);
  11483. ggml_float sum = 0.0;
  11484. {
  11485. #ifdef GGML_SOFT_MAX_ACCELERATE
  11486. max = -max;
  11487. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11488. vvexpf(S, S, &Mup);
  11489. ggml_vec_sum_f32(Mup, &sum, S);
  11490. #else
  11491. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11492. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11493. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11494. if (i >= masked_begin) {
  11495. break;
  11496. }
  11497. float * SS = S + i;
  11498. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11499. if (i + j >= masked_begin) {
  11500. break;
  11501. } else if (SS[j] == -INFINITY) {
  11502. SS[j] = 0.0f;
  11503. } else {
  11504. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11505. const float val = expf(SS[j] - max);
  11506. #else
  11507. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11508. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11509. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11510. #endif
  11511. sump[j] += (ggml_float)val;
  11512. SS[j] = val;
  11513. }
  11514. }
  11515. }
  11516. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11517. sum += sump[i];
  11518. }
  11519. #endif
  11520. }
  11521. assert(sum > 0.0);
  11522. sum = 1.0/sum;
  11523. ggml_vec_scale_f32(masked_begin, S, sum);
  11524. #ifndef NDEBUG
  11525. for (int i = 0; i < masked_begin; ++i) {
  11526. assert(!isnan(S[i]));
  11527. assert(!isinf(S[i]));
  11528. }
  11529. #endif
  11530. }
  11531. for (int64_t ic = 0; ic < nev1; ++ic) {
  11532. // dst indices
  11533. const int i1 = iq1;
  11534. const int i2 = iq2;
  11535. const int i3 = iq3;
  11536. // v indices
  11537. const int iv2 = iq2 % nev2;
  11538. const int iv3 = iq3;
  11539. ggml_vec_dot_f32(masked_begin,
  11540. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11541. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11542. S, 0, 1);
  11543. }
  11544. }
  11545. }
  11546. static void ggml_compute_forward_flash_attn_f16(
  11547. const struct ggml_compute_params * params,
  11548. const bool masked,
  11549. struct ggml_tensor * dst) {
  11550. const struct ggml_tensor * q = dst->src[0];
  11551. const struct ggml_tensor * k = dst->src[1];
  11552. const struct ggml_tensor * v = dst->src[2];
  11553. int64_t t0 = ggml_perf_time_us();
  11554. UNUSED(t0);
  11555. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11556. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11557. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11558. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11559. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11560. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11561. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11562. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11563. const int ith = params->ith;
  11564. const int nth = params->nth;
  11565. const int64_t D = neq0;
  11566. const int64_t N = neq1;
  11567. const int64_t P = nek1 - N;
  11568. const int64_t M = P + N;
  11569. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11570. GGML_ASSERT(ne0 == D);
  11571. GGML_ASSERT(ne1 == N);
  11572. GGML_ASSERT(P >= 0);
  11573. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11574. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11575. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11576. GGML_ASSERT(neq0 == D);
  11577. GGML_ASSERT(nek0 == D);
  11578. GGML_ASSERT(nev1 == D);
  11579. GGML_ASSERT(neq1 == N);
  11580. GGML_ASSERT(nek1 == N + P);
  11581. GGML_ASSERT(nev1 == D);
  11582. // dst cannot be transposed or permuted
  11583. GGML_ASSERT(nb0 == sizeof(float));
  11584. GGML_ASSERT(nb0 <= nb1);
  11585. GGML_ASSERT(nb1 <= nb2);
  11586. GGML_ASSERT(nb2 <= nb3);
  11587. if (params->type == GGML_TASK_TYPE_INIT) {
  11588. return;
  11589. }
  11590. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11591. return;
  11592. }
  11593. // parallelize by q rows using ggml_vec_dot_f32
  11594. // total rows in q
  11595. const int nr = neq1*neq2*neq3;
  11596. // rows per thread
  11597. const int dr = (nr + nth - 1)/nth;
  11598. // row range for this thread
  11599. const int ir0 = dr*ith;
  11600. const int ir1 = MIN(ir0 + dr, nr);
  11601. const float scale = 1.0f/sqrtf(D);
  11602. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11603. for (int ir = ir0; ir < ir1; ++ir) {
  11604. // q indices
  11605. const int iq3 = ir/(neq2*neq1);
  11606. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11607. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11608. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11609. for (int i = M; i < Mup; ++i) {
  11610. S[i] = -INFINITY;
  11611. }
  11612. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11613. for (int64_t ic = 0; ic < nek1; ++ic) {
  11614. // k indices
  11615. const int ik3 = iq3;
  11616. const int ik2 = iq2 % nek2;
  11617. const int ik1 = ic;
  11618. // S indices
  11619. const int i1 = ik1;
  11620. ggml_vec_dot_f16(neq0,
  11621. S + i1, 0,
  11622. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11623. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11624. }
  11625. } else {
  11626. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11627. // k indices
  11628. const int ik3 = iq3;
  11629. const int ik2 = iq2 % nek2;
  11630. const int ik1 = ic;
  11631. // S indices
  11632. const int i1 = ik1;
  11633. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11634. S + i1,
  11635. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11636. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11637. }
  11638. }
  11639. // scale
  11640. ggml_vec_scale_f32(nek1, S, scale);
  11641. if (masked) {
  11642. for (int64_t i = P; i < M; i++) {
  11643. if (i > P + iq1) {
  11644. S[i] = -INFINITY;
  11645. }
  11646. }
  11647. }
  11648. // softmax
  11649. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11650. // dont forget to set their S values to zero
  11651. {
  11652. float max = -INFINITY;
  11653. ggml_vec_max_f32(M, &max, S);
  11654. ggml_float sum = 0.0;
  11655. {
  11656. #ifdef GGML_SOFT_MAX_ACCELERATE
  11657. max = -max;
  11658. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11659. vvexpf(S, S, &Mup);
  11660. ggml_vec_sum_f32(Mup, &sum, S);
  11661. #else
  11662. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11663. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11664. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11665. float * SS = S + i;
  11666. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11667. if (SS[j] == -INFINITY) {
  11668. SS[j] = 0.0f;
  11669. } else {
  11670. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11671. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11672. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11673. sump[j] += (ggml_float)val;
  11674. SS[j] = val;
  11675. }
  11676. }
  11677. }
  11678. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11679. sum += sump[i];
  11680. }
  11681. #endif
  11682. }
  11683. assert(sum > 0.0);
  11684. sum = 1.0/sum;
  11685. ggml_vec_scale_f32(M, S, sum);
  11686. #ifndef NDEBUG
  11687. for (int i = 0; i < M; ++i) {
  11688. assert(!isnan(S[i]));
  11689. assert(!isinf(S[i]));
  11690. }
  11691. #endif
  11692. }
  11693. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11694. for (int64_t i = 0; i < M; i++) {
  11695. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11696. }
  11697. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11698. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11699. for (int64_t ic = 0; ic < nev1; ++ic) {
  11700. // dst indices
  11701. const int i1 = iq1;
  11702. const int i2 = iq2;
  11703. const int i3 = iq3;
  11704. // v indices
  11705. const int iv2 = iq2 % nev2;
  11706. const int iv3 = iq3;
  11707. ggml_vec_dot_f16(nev0,
  11708. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11709. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11710. S16, 0, 1);
  11711. }
  11712. } else {
  11713. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11714. // dst indices
  11715. const int i1 = iq1;
  11716. const int i2 = iq2;
  11717. const int i3 = iq3;
  11718. // v indices
  11719. const int iv2 = iq2 % nev2;
  11720. const int iv3 = iq3;
  11721. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11722. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11723. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11724. S16);
  11725. }
  11726. }
  11727. }
  11728. }
  11729. static void ggml_compute_forward_flash_attn(
  11730. const struct ggml_compute_params * params,
  11731. const bool masked,
  11732. struct ggml_tensor * dst) {
  11733. const struct ggml_tensor * q = dst->src[0];
  11734. switch (q->type) {
  11735. case GGML_TYPE_F16:
  11736. {
  11737. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11738. } break;
  11739. case GGML_TYPE_F32:
  11740. {
  11741. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11742. } break;
  11743. default:
  11744. {
  11745. GGML_ASSERT(false);
  11746. } break;
  11747. }
  11748. }
  11749. // ggml_compute_forward_flash_ff
  11750. static void ggml_compute_forward_flash_ff_f16(
  11751. const struct ggml_compute_params * params,
  11752. struct ggml_tensor * dst) {
  11753. const struct ggml_tensor * a = dst->src[0]; // F16
  11754. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11755. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11756. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11757. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11758. int64_t t0 = ggml_perf_time_us();
  11759. UNUSED(t0);
  11760. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11761. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11762. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11763. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11764. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11765. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11766. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11767. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11768. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11769. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11770. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11771. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11772. const int ith = params->ith;
  11773. const int nth = params->nth;
  11774. const int64_t D = nea0;
  11775. //const int64_t N = nea1;
  11776. const int64_t M = neb01;
  11777. GGML_ASSERT(ne0 == nea0);
  11778. GGML_ASSERT(ne1 == nea1);
  11779. GGML_ASSERT(ne2 == nea2);
  11780. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11781. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11782. GGML_ASSERT(nbb10 == sizeof(float));
  11783. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11784. GGML_ASSERT(nbc10 == sizeof(float));
  11785. GGML_ASSERT(neb00 == D);
  11786. GGML_ASSERT(neb01 == M);
  11787. GGML_ASSERT(neb10 == M);
  11788. GGML_ASSERT(neb11 == 1);
  11789. GGML_ASSERT(nec00 == M);
  11790. GGML_ASSERT(nec01 == D);
  11791. GGML_ASSERT(nec10 == D);
  11792. GGML_ASSERT(nec11 == 1);
  11793. // dst cannot be transposed or permuted
  11794. GGML_ASSERT(nb0 == sizeof(float));
  11795. GGML_ASSERT(nb0 <= nb1);
  11796. GGML_ASSERT(nb1 <= nb2);
  11797. GGML_ASSERT(nb2 <= nb3);
  11798. if (params->type == GGML_TASK_TYPE_INIT) {
  11799. return;
  11800. }
  11801. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11802. return;
  11803. }
  11804. // parallelize by a rows using ggml_vec_dot_f32
  11805. // total rows in a
  11806. const int nr = nea1*nea2*nea3;
  11807. // rows per thread
  11808. const int dr = (nr + nth - 1)/nth;
  11809. // row range for this thread
  11810. const int ir0 = dr*ith;
  11811. const int ir1 = MIN(ir0 + dr, nr);
  11812. for (int ir = ir0; ir < ir1; ++ir) {
  11813. // a indices
  11814. const int ia3 = ir/(nea2*nea1);
  11815. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11816. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11817. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11818. for (int64_t ic = 0; ic < neb01; ++ic) {
  11819. // b0 indices
  11820. const int ib03 = ia3;
  11821. const int ib02 = ia2;
  11822. const int ib01 = ic;
  11823. // S indices
  11824. const int i1 = ib01;
  11825. ggml_vec_dot_f16(nea0,
  11826. S + i1, 0,
  11827. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11828. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11829. }
  11830. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11831. //ggml_vec_gelu_f32(neb01, S, S);
  11832. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11833. for (int64_t i = 0; i < M; i++) {
  11834. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11835. }
  11836. ggml_vec_gelu_f16(neb01, S16, S16);
  11837. {
  11838. // dst indices
  11839. const int i1 = ia1;
  11840. const int i2 = ia2;
  11841. const int i3 = ia3;
  11842. for (int64_t ic = 0; ic < nec01; ++ic) {
  11843. ggml_vec_dot_f16(neb01,
  11844. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11845. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11846. S16, 0, 1);
  11847. }
  11848. ggml_vec_add_f32(nec01,
  11849. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11850. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11851. (float *) c1->data);
  11852. }
  11853. }
  11854. }
  11855. static void ggml_compute_forward_flash_ff(
  11856. const struct ggml_compute_params * params,
  11857. struct ggml_tensor * dst) {
  11858. const struct ggml_tensor * b0 = dst->src[1];
  11859. switch (b0->type) {
  11860. case GGML_TYPE_F16:
  11861. {
  11862. ggml_compute_forward_flash_ff_f16(params, dst);
  11863. } break;
  11864. case GGML_TYPE_F32:
  11865. {
  11866. GGML_ASSERT(false); // TODO
  11867. } break;
  11868. default:
  11869. {
  11870. GGML_ASSERT(false);
  11871. } break;
  11872. }
  11873. }
  11874. // ggml_compute_forward_flash_attn_back
  11875. static void ggml_compute_forward_flash_attn_back_f32(
  11876. const struct ggml_compute_params * params,
  11877. const bool masked,
  11878. struct ggml_tensor * dst) {
  11879. const struct ggml_tensor * q = dst->src[0];
  11880. const struct ggml_tensor * k = dst->src[1];
  11881. const struct ggml_tensor * v = dst->src[2];
  11882. const struct ggml_tensor * d = dst->src[3];
  11883. int64_t t0 = ggml_perf_time_us();
  11884. UNUSED(t0);
  11885. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11886. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11887. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11888. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11889. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11890. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11891. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11892. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11893. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11894. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11895. const int ith = params->ith;
  11896. const int nth = params->nth;
  11897. const int64_t D = neq0;
  11898. const int64_t N = neq1;
  11899. const int64_t P = nek1 - N;
  11900. const int64_t M = P + N;
  11901. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11902. const int mxDM = MAX(D, Mup);
  11903. // GGML_ASSERT(ne0 == D);
  11904. // GGML_ASSERT(ne1 == N);
  11905. GGML_ASSERT(P >= 0);
  11906. GGML_ASSERT(nbq0 == sizeof(float));
  11907. GGML_ASSERT(nbk0 == sizeof(float));
  11908. GGML_ASSERT(nbv0 == sizeof(float));
  11909. GGML_ASSERT(neq0 == D);
  11910. GGML_ASSERT(nek0 == D);
  11911. GGML_ASSERT(nev1 == D);
  11912. GGML_ASSERT(ned0 == D);
  11913. GGML_ASSERT(neq1 == N);
  11914. GGML_ASSERT(nek1 == N + P);
  11915. GGML_ASSERT(nev1 == D);
  11916. GGML_ASSERT(ned1 == N);
  11917. // dst cannot be transposed or permuted
  11918. GGML_ASSERT(nb0 == sizeof(float));
  11919. GGML_ASSERT(nb0 <= nb1);
  11920. GGML_ASSERT(nb1 <= nb2);
  11921. GGML_ASSERT(nb2 <= nb3);
  11922. if (params->type == GGML_TASK_TYPE_INIT) {
  11923. if (ith == 0) {
  11924. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11925. }
  11926. return;
  11927. }
  11928. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11929. return;
  11930. }
  11931. const int64_t elem_q = ggml_nelements(q);
  11932. const int64_t elem_k = ggml_nelements(k);
  11933. enum ggml_type result_type = dst->type;
  11934. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11935. const size_t tsize = ggml_type_size(result_type);
  11936. const size_t offs_q = 0;
  11937. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11938. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11939. void * grad_q = (char *) dst->data;
  11940. void * grad_k = (char *) dst->data + offs_k;
  11941. void * grad_v = (char *) dst->data + offs_v;
  11942. const size_t nbgq1 = nb0*neq0;
  11943. const size_t nbgq2 = nb0*neq0*neq1;
  11944. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11945. const size_t nbgk1 = nb0*nek0;
  11946. const size_t nbgk2 = nb0*nek0*nek1;
  11947. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11948. const size_t nbgv1 = nb0*nev0;
  11949. const size_t nbgv2 = nb0*nev0*nev1;
  11950. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11951. // parallelize by k rows using ggml_vec_dot_f32
  11952. // total rows in k
  11953. const int nr = nek2*nek3;
  11954. // rows per thread
  11955. const int dr = (nr + nth - 1)/nth;
  11956. // row range for this thread
  11957. const int ir0 = dr*ith;
  11958. const int ir1 = MIN(ir0 + dr, nr);
  11959. const float scale = 1.0f/sqrtf(D);
  11960. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11961. // how often k2 (and v2) is repeated in q2
  11962. int nrep = neq2/nek2;
  11963. for (int ir = ir0; ir < ir1; ++ir) {
  11964. // q indices
  11965. const int ik3 = ir/(nek2);
  11966. const int ik2 = ir - ik3*nek2;
  11967. const int iq3 = ik3;
  11968. const int id3 = ik3;
  11969. const int iv3 = ik3;
  11970. const int iv2 = ik2;
  11971. for (int irep = 0; irep < nrep; ++irep) {
  11972. const int iq2 = ik2 + irep*nek2;
  11973. const int id2 = iq2;
  11974. // (ik2 + irep*nek2) % nek2 == ik2
  11975. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11976. const int id1 = iq1;
  11977. // not sure about CACHE_LINE_SIZE_F32..
  11978. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11979. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11980. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11981. for (int i = M; i < Mup; ++i) {
  11982. S[i] = -INFINITY;
  11983. }
  11984. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11985. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11986. // k indices
  11987. const int ik1 = ic;
  11988. // S indices
  11989. const int i1 = ik1;
  11990. ggml_vec_dot_f32(neq0,
  11991. S + i1, 0,
  11992. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11993. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11994. }
  11995. // scale
  11996. ggml_vec_scale_f32(masked_begin, S, scale);
  11997. for (int64_t i = masked_begin; i < M; i++) {
  11998. S[i] = -INFINITY;
  11999. }
  12000. // softmax
  12001. // exclude known -INF S[..] values from max and loop
  12002. // dont forget to set their SM values to zero
  12003. {
  12004. float max = -INFINITY;
  12005. ggml_vec_max_f32(masked_begin, &max, S);
  12006. ggml_float sum = 0.0;
  12007. {
  12008. #ifdef GGML_SOFT_MAX_ACCELERATE
  12009. max = -max;
  12010. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12011. vvexpf(SM, SM, &Mup);
  12012. ggml_vec_sum_f32(Mup, &sum, SM);
  12013. #else
  12014. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12015. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12016. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12017. if (i >= masked_begin) {
  12018. break;
  12019. }
  12020. float * SR = S + i;
  12021. float * SW = SM + i;
  12022. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12023. if (i + j >= masked_begin) {
  12024. break;
  12025. } else if (SR[j] == -INFINITY) {
  12026. SW[j] = 0.0f;
  12027. } else {
  12028. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12029. const float val = expf(SR[j] - max);
  12030. #else
  12031. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12032. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12033. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12034. #endif
  12035. sump[j] += (ggml_float)val;
  12036. SW[j] = val;
  12037. }
  12038. }
  12039. }
  12040. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12041. sum += sump[i];
  12042. }
  12043. #endif
  12044. }
  12045. assert(sum > 0.0);
  12046. sum = 1.0/sum;
  12047. ggml_vec_scale_f32(masked_begin, SM, sum);
  12048. }
  12049. // step-by-step explanation
  12050. {
  12051. // forward-process shape grads from backward process
  12052. // parallel_for ik2,ik3:
  12053. // for irep:
  12054. // iq2 = ik2 + irep*nek2
  12055. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12056. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12057. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12058. // for iq1:
  12059. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12060. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12061. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12062. // S0 = -Inf [D,1,1,1]
  12063. // ~S1[i] = dot(kcur[:D,i], qcur)
  12064. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12065. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12066. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12067. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12068. // ~S5[i] = dot(vcur[:,i], S4)
  12069. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12070. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12071. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12072. // dst backward-/ grad[dst] = d
  12073. //
  12074. // output gradients with their dependencies:
  12075. //
  12076. // grad[kcur] = grad[S1].T @ qcur
  12077. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12078. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12079. // grad[S4] = grad[S5] @ vcur
  12080. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12081. // grad[qcur] = grad[S1] @ kcur
  12082. // grad[vcur] = grad[S5].T @ S4
  12083. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12084. //
  12085. // in post-order:
  12086. //
  12087. // S1 = qcur @ kcur.T
  12088. // S2 = S1 * scale
  12089. // S3 = diag_mask_inf(S2, P)
  12090. // S4 = softmax(S3)
  12091. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12092. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12093. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12094. // grad[qcur] = grad[S1] @ kcur
  12095. // grad[kcur] = grad[S1].T @ qcur
  12096. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12097. //
  12098. // using less variables (SM=S4):
  12099. //
  12100. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12101. // SM = softmax(S)
  12102. // S = d[:D,iq1,iq2,iq3] @ vcur
  12103. // dot_SM_gradSM = dot(SM, S)
  12104. // S = SM * (S - dot(SM, S))
  12105. // S = diag_mask_zero(S, P) * scale
  12106. //
  12107. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12108. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12109. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12110. }
  12111. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12112. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12113. // for ic:
  12114. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12115. // exclude known future zero S[..] values from operation
  12116. ggml_vec_set_f32(masked_begin, S, 0);
  12117. for (int64_t ic = 0; ic < D; ++ic) {
  12118. ggml_vec_mad_f32(masked_begin,
  12119. S,
  12120. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12121. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12122. }
  12123. // S = SM * (S - dot(SM, S))
  12124. float dot_SM_gradSM = 0;
  12125. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12126. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12127. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12128. // S = diag_mask_zero(S, P) * scale
  12129. // already done by above ggml_vec_set_f32
  12130. // exclude known zero S[..] values from operation
  12131. ggml_vec_scale_f32(masked_begin, S, scale);
  12132. // S shape [M,1]
  12133. // SM shape [M,1]
  12134. // kcur shape [D,M]
  12135. // qcur shape [D,1]
  12136. // vcur shape [M,D]
  12137. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12138. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12139. // for ic:
  12140. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12141. // exclude known zero S[..] values from loop
  12142. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12143. ggml_vec_mad_f32(D,
  12144. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12145. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12146. S[ic]);
  12147. }
  12148. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12149. // for ic:
  12150. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12151. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12152. // exclude known zero S[..] values from loop
  12153. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12154. ggml_vec_mad_f32(D,
  12155. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12156. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12157. S[ic]);
  12158. }
  12159. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12160. // for ic:
  12161. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12162. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12163. // exclude known zero SM[..] values from mad
  12164. for (int64_t ic = 0; ic < D; ++ic) {
  12165. ggml_vec_mad_f32(masked_begin,
  12166. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12167. SM,
  12168. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12169. }
  12170. }
  12171. }
  12172. }
  12173. }
  12174. static void ggml_compute_forward_flash_attn_back(
  12175. const struct ggml_compute_params * params,
  12176. const bool masked,
  12177. struct ggml_tensor * dst) {
  12178. const struct ggml_tensor * q = dst->src[0];
  12179. switch (q->type) {
  12180. case GGML_TYPE_F32:
  12181. {
  12182. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12183. } break;
  12184. default:
  12185. {
  12186. GGML_ASSERT(false);
  12187. } break;
  12188. }
  12189. }
  12190. // ggml_compute_forward_ssm_conv
  12191. static void ggml_compute_forward_ssm_conv_f32(
  12192. const struct ggml_compute_params * params,
  12193. struct ggml_tensor * dst) {
  12194. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12195. return;
  12196. }
  12197. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12198. const struct ggml_tensor * src1 = dst->src[1]; // x
  12199. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12200. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12201. const int ith = params->ith;
  12202. const int nth = params->nth;
  12203. const int nc = src2->ne[0]; // d_conv
  12204. const int nr = src0->ne[1]; // d_inner
  12205. const int n_t = src1->ne[1]; // n_tokens
  12206. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12207. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12208. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12209. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12210. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12211. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12212. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12213. // for use with the destination state offset between sequences
  12214. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12215. // rows per thread
  12216. const int dr = (nr + nth - 1)/nth;
  12217. // row range for this thread
  12218. const int ir0 = dr*ith;
  12219. const int ir1 = MIN(ir0 + dr, nr);
  12220. const int ir = ir1 - ir0;
  12221. if (n_kv > 1) {
  12222. // multiple sequences means it's hard to know when it's the first time a state is read,
  12223. // so copy them all over to the destination, just to be sure.
  12224. for (int i3 = 0; i3 < n_kv; ++i3) {
  12225. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12226. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12227. // can't use memcpy because of d_conv vs d_conv - 1
  12228. for (int i1 = 0; i1 < ir; ++i1) {
  12229. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12230. // copy s0 to last (d_conv - 1) columns of s
  12231. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12232. }
  12233. }
  12234. }
  12235. }
  12236. for (int i2 = 0; i2 < n_t; ++i2) {
  12237. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12238. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12239. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12240. float * s0; // {d_conv - 1, d_inner, n_kv}
  12241. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12242. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12243. int ne0s0;
  12244. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12245. // avoid needing to copy the state for the first token
  12246. if (i2 == 0) {
  12247. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12248. ne0s0 = src0->ne[0];
  12249. } else {
  12250. // the source is the last (d_conv - 1) columns of the destination
  12251. s0 = s + 1;
  12252. ne0s0 = nc;
  12253. }
  12254. // d_inner
  12255. for (int i1 = 0; i1 < ir; ++i1) {
  12256. // shift state left
  12257. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12258. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12259. }
  12260. // insert x on the last column
  12261. s[(nc - 1) + i1*nc] = x0[i1];
  12262. }
  12263. // handle copies when there are multiple output states
  12264. for (int i3 = 1; i3 < n_kv; ++i3) {
  12265. int32_t seq = sq[i3];
  12266. if (0 <= seq && seq < n_kv) {
  12267. float * s1 = s + (seq - sq[0])*nc*nr;
  12268. memcpy(s1, s, nc*ir*sizeof(float));
  12269. } else {
  12270. // stop at negative or too big seq_ids
  12271. break;
  12272. }
  12273. }
  12274. // it seems a little faster when this is separate from the state shift
  12275. for (int i1 = 0; i1 < ir; ++i1) {
  12276. // rowwise dot product
  12277. float sumf = 0.0f;
  12278. for (int i0 = 0; i0 < nc; ++i0) {
  12279. int i = i0 + i1*nc;
  12280. sumf += s[i] * c[i];
  12281. }
  12282. x[i1] = sumf;
  12283. }
  12284. }
  12285. }
  12286. static void ggml_compute_forward_ssm_conv(
  12287. const struct ggml_compute_params * params,
  12288. struct ggml_tensor * dst) {
  12289. switch (dst->src[0]->type) {
  12290. case GGML_TYPE_F32:
  12291. {
  12292. ggml_compute_forward_ssm_conv_f32(params, dst);
  12293. } break;
  12294. default:
  12295. {
  12296. GGML_ASSERT(false);
  12297. } break;
  12298. }
  12299. }
  12300. // ggml_compute_forward_ssm_scan
  12301. static void ggml_compute_forward_ssm_scan_f32(
  12302. const struct ggml_compute_params * params,
  12303. struct ggml_tensor * dst) {
  12304. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12305. return;
  12306. }
  12307. const struct ggml_tensor * src0 = dst->src[0]; // s
  12308. const struct ggml_tensor * src1 = dst->src[1]; // x
  12309. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12310. const struct ggml_tensor * src3 = dst->src[3]; // A
  12311. const struct ggml_tensor * src4 = dst->src[4]; // B
  12312. const struct ggml_tensor * src5 = dst->src[5]; // C
  12313. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12314. const int ith = params->ith;
  12315. const int nth = params->nth;
  12316. const int64_t nc = src0->ne[0]; // d_state
  12317. const int64_t nr = src0->ne[1]; // d_inner
  12318. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12319. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12320. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12321. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12322. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12323. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12324. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12325. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12326. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12327. // required for the dot product between s and C, and when copying the states
  12328. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12329. // required for per-sequence offsets for states
  12330. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12331. // required to get correct offset for state destination (i.e. src1->nb[2])
  12332. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12333. // rows per thread
  12334. const int dr = (nr + nth - 1)/nth;
  12335. // row range for this thread
  12336. const int ir0 = dr*ith;
  12337. const int ir1 = MIN(ir0 + dr, nr);
  12338. const int ir = ir1 - ir0;
  12339. if (n_kv > 1) {
  12340. // it's hard to know if the source states have already been copied
  12341. // when there are multiple, so copy them already.
  12342. for (int i3 = 0; i3 < n_kv; ++i3) {
  12343. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12344. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12345. memcpy(s, s0, nc*ir*sizeof(float));
  12346. }
  12347. }
  12348. for (int i2 = 0; i2 < n_t; ++i2) {
  12349. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12350. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12351. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12352. float * s0;
  12353. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12354. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12355. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12356. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12357. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12358. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12359. // avoid needing to copy the state for the first token
  12360. if (i2 == 0) {
  12361. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12362. } else {
  12363. // otherwise the source is the same as the destination
  12364. s0 = s;
  12365. }
  12366. // d_inner
  12367. for (int i1 = 0; i1 < ir; ++i1) {
  12368. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12369. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12370. float x_dt = x[i1] * dt_soft_plus;
  12371. float sumf = 0.0f;
  12372. // d_state
  12373. for (int i0 = 0; i0 < nc; ++i0) {
  12374. int i = i0 + i1*nc;
  12375. // state = prev_state * dA + dB * x
  12376. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12377. // y = rowwise_dotprod(state, C)
  12378. sumf += state * C[i0];
  12379. s[i] = state;
  12380. }
  12381. y[i1] = sumf;
  12382. }
  12383. // handle copies when there are multiple output states
  12384. for (int i3 = 1; i3 < n_kv; ++i3) {
  12385. int32_t seq = sq[i3];
  12386. if (0 <= seq && seq < n_kv) {
  12387. float * s1 = s + (seq - sq[0])*nc*nr;
  12388. memcpy(s1, s, nc*ir*sizeof(float));
  12389. } else {
  12390. // stop at negative or too big seq_ids
  12391. break;
  12392. }
  12393. }
  12394. }
  12395. }
  12396. static void ggml_compute_forward_ssm_scan(
  12397. const struct ggml_compute_params * params,
  12398. struct ggml_tensor * dst) {
  12399. switch (dst->src[0]->type) {
  12400. case GGML_TYPE_F32:
  12401. {
  12402. ggml_compute_forward_ssm_scan_f32(params, dst);
  12403. } break;
  12404. default:
  12405. {
  12406. GGML_ASSERT(false);
  12407. } break;
  12408. }
  12409. }
  12410. // ggml_compute_forward_win_part
  12411. static void ggml_compute_forward_win_part_f32(
  12412. const struct ggml_compute_params * params,
  12413. struct ggml_tensor * dst) {
  12414. const struct ggml_tensor * src0 = dst->src[0];
  12415. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12416. return;
  12417. }
  12418. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12419. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12420. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12421. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12422. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12423. assert(ne00 == ne0);
  12424. assert(ne3 == nep0*nep1);
  12425. // TODO: optimize / multi-thread
  12426. for (int py = 0; py < nep1; ++py) {
  12427. for (int px = 0; px < nep0; ++px) {
  12428. const int64_t i3 = py*nep0 + px;
  12429. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12430. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12431. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12432. const int64_t i02 = py*w + i2;
  12433. const int64_t i01 = px*w + i1;
  12434. const int64_t i00 = i0;
  12435. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12436. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12437. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12438. ((float *) dst->data)[i] = 0.0f;
  12439. } else {
  12440. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12441. }
  12442. }
  12443. }
  12444. }
  12445. }
  12446. }
  12447. }
  12448. static void ggml_compute_forward_win_part(
  12449. const struct ggml_compute_params * params,
  12450. struct ggml_tensor * dst) {
  12451. const struct ggml_tensor * src0 = dst->src[0];
  12452. switch (src0->type) {
  12453. case GGML_TYPE_F32:
  12454. {
  12455. ggml_compute_forward_win_part_f32(params, dst);
  12456. } break;
  12457. default:
  12458. {
  12459. GGML_ASSERT(false);
  12460. } break;
  12461. }
  12462. }
  12463. // ggml_compute_forward_win_unpart
  12464. static void ggml_compute_forward_win_unpart_f32(
  12465. const struct ggml_compute_params * params,
  12466. struct ggml_tensor * dst) {
  12467. const struct ggml_tensor * src0 = dst->src[0];
  12468. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12469. return;
  12470. }
  12471. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12472. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12473. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12474. // padding
  12475. const int px = (w - ne1%w)%w;
  12476. //const int py = (w - ne2%w)%w;
  12477. const int npx = (px + ne1)/w;
  12478. //const int npy = (py + ne2)/w;
  12479. assert(ne0 == ne00);
  12480. // TODO: optimize / multi-thread
  12481. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12482. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12483. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12484. const int ip2 = i2/w;
  12485. const int ip1 = i1/w;
  12486. const int64_t i02 = i2%w;
  12487. const int64_t i01 = i1%w;
  12488. const int64_t i00 = i0;
  12489. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12490. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12491. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12492. }
  12493. }
  12494. }
  12495. }
  12496. static void ggml_compute_forward_win_unpart(
  12497. const struct ggml_compute_params * params,
  12498. struct ggml_tensor * dst) {
  12499. const struct ggml_tensor * src0 = dst->src[0];
  12500. switch (src0->type) {
  12501. case GGML_TYPE_F32:
  12502. {
  12503. ggml_compute_forward_win_unpart_f32(params, dst);
  12504. } break;
  12505. default:
  12506. {
  12507. GGML_ASSERT(false);
  12508. } break;
  12509. }
  12510. }
  12511. //gmml_compute_forward_unary
  12512. static void ggml_compute_forward_unary(
  12513. const struct ggml_compute_params * params,
  12514. struct ggml_tensor * dst) {
  12515. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12516. switch (op) {
  12517. case GGML_UNARY_OP_ABS:
  12518. {
  12519. ggml_compute_forward_abs(params, dst);
  12520. } break;
  12521. case GGML_UNARY_OP_SGN:
  12522. {
  12523. ggml_compute_forward_sgn(params, dst);
  12524. } break;
  12525. case GGML_UNARY_OP_NEG:
  12526. {
  12527. ggml_compute_forward_neg(params, dst);
  12528. } break;
  12529. case GGML_UNARY_OP_STEP:
  12530. {
  12531. ggml_compute_forward_step(params, dst);
  12532. } break;
  12533. case GGML_UNARY_OP_TANH:
  12534. {
  12535. ggml_compute_forward_tanh(params, dst);
  12536. } break;
  12537. case GGML_UNARY_OP_ELU:
  12538. {
  12539. ggml_compute_forward_elu(params, dst);
  12540. } break;
  12541. case GGML_UNARY_OP_RELU:
  12542. {
  12543. ggml_compute_forward_relu(params, dst);
  12544. } break;
  12545. case GGML_UNARY_OP_GELU:
  12546. {
  12547. ggml_compute_forward_gelu(params, dst);
  12548. } break;
  12549. case GGML_UNARY_OP_GELU_QUICK:
  12550. {
  12551. ggml_compute_forward_gelu_quick(params, dst);
  12552. } break;
  12553. case GGML_UNARY_OP_SILU:
  12554. {
  12555. ggml_compute_forward_silu(params, dst);
  12556. } break;
  12557. case GGML_UNARY_OP_HARDSWISH:
  12558. {
  12559. ggml_compute_forward_hardswish(params, dst);
  12560. } break;
  12561. case GGML_UNARY_OP_HARDSIGMOID:
  12562. {
  12563. ggml_compute_forward_hardsigmoid(params, dst);
  12564. } break;
  12565. default:
  12566. {
  12567. GGML_ASSERT(false);
  12568. } break;
  12569. }
  12570. }
  12571. // ggml_compute_forward_get_rel_pos
  12572. static void ggml_compute_forward_get_rel_pos_f16(
  12573. const struct ggml_compute_params * params,
  12574. struct ggml_tensor * dst) {
  12575. const struct ggml_tensor * src0 = dst->src[0];
  12576. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12577. return;
  12578. }
  12579. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12580. GGML_TENSOR_UNARY_OP_LOCALS
  12581. const int64_t w = ne1;
  12582. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12583. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12584. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12585. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12586. const int64_t pos = (w - i1 - 1) + i2;
  12587. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12588. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12589. }
  12590. }
  12591. }
  12592. }
  12593. static void ggml_compute_forward_get_rel_pos(
  12594. const struct ggml_compute_params * params,
  12595. struct ggml_tensor * dst) {
  12596. const struct ggml_tensor * src0 = dst->src[0];
  12597. switch (src0->type) {
  12598. case GGML_TYPE_F16:
  12599. {
  12600. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12601. } break;
  12602. default:
  12603. {
  12604. GGML_ASSERT(false);
  12605. } break;
  12606. }
  12607. }
  12608. // ggml_compute_forward_add_rel_pos
  12609. static void ggml_compute_forward_add_rel_pos_f32(
  12610. const struct ggml_compute_params * params,
  12611. struct ggml_tensor * dst) {
  12612. const struct ggml_tensor * src0 = dst->src[0];
  12613. const struct ggml_tensor * src1 = dst->src[1];
  12614. const struct ggml_tensor * src2 = dst->src[2];
  12615. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12616. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12617. if (params->ith != 0) {
  12618. return;
  12619. }
  12620. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12621. return;
  12622. }
  12623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12624. return;
  12625. }
  12626. int64_t t0 = ggml_perf_time_us();
  12627. UNUSED(t0);
  12628. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12629. float * src1_data = (float *) src1->data;
  12630. float * src2_data = (float *) src2->data;
  12631. float * dst_data = (float *) dst->data;
  12632. const int64_t ne10 = src1->ne[0];
  12633. const int64_t ne11 = src1->ne[1];
  12634. const int64_t ne12 = src1->ne[2];
  12635. const int64_t ne13 = src1->ne[3];
  12636. const int ith = params->ith;
  12637. const int nth = params->nth;
  12638. // total patches in dst
  12639. const int np = ne13;
  12640. // patches per thread
  12641. const int dp = (np + nth - 1)/nth;
  12642. // patch range for this thread
  12643. const int ip0 = dp*ith;
  12644. const int ip1 = MIN(ip0 + dp, np);
  12645. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12646. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12647. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12648. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12649. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12650. const int64_t jp0 = jp1 + i10;
  12651. const float src1_e = src1_data[jp0];
  12652. const float src2_e = src2_data[jp0];
  12653. const int64_t jdh = jp0 * ne10;
  12654. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12655. for (int64_t j = 0; j < ne10; ++j) {
  12656. dst_data[jdh + j ] += src2_e;
  12657. dst_data[jdw + j*ne10] += src1_e;
  12658. }
  12659. }
  12660. }
  12661. }
  12662. }
  12663. }
  12664. static void ggml_compute_forward_add_rel_pos(
  12665. const struct ggml_compute_params * params,
  12666. struct ggml_tensor * dst) {
  12667. const struct ggml_tensor * src0 = dst->src[0];
  12668. switch (src0->type) {
  12669. case GGML_TYPE_F32:
  12670. {
  12671. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12672. } break;
  12673. default:
  12674. {
  12675. GGML_ASSERT(false);
  12676. } break;
  12677. }
  12678. }
  12679. // ggml_compute_forward_map_unary
  12680. static void ggml_compute_forward_map_unary_f32(
  12681. const struct ggml_compute_params * params,
  12682. struct ggml_tensor * dst,
  12683. const ggml_unary_op_f32_t fun) {
  12684. const struct ggml_tensor * src0 = dst->src[0];
  12685. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12686. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12687. return;
  12688. }
  12689. const int n = ggml_nrows(src0);
  12690. const int nc = src0->ne[0];
  12691. assert( dst->nb[0] == sizeof(float));
  12692. assert(src0->nb[0] == sizeof(float));
  12693. for (int i = 0; i < n; i++) {
  12694. fun(nc,
  12695. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12696. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12697. }
  12698. }
  12699. static void ggml_compute_forward_map_unary(
  12700. const struct ggml_compute_params * params,
  12701. struct ggml_tensor * dst,
  12702. const ggml_unary_op_f32_t fun) {
  12703. const struct ggml_tensor * src0 = dst->src[0];
  12704. switch (src0->type) {
  12705. case GGML_TYPE_F32:
  12706. {
  12707. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12708. } break;
  12709. default:
  12710. {
  12711. GGML_ASSERT(false);
  12712. } break;
  12713. }
  12714. }
  12715. // ggml_compute_forward_map_binary
  12716. static void ggml_compute_forward_map_binary_f32(
  12717. const struct ggml_compute_params * params,
  12718. struct ggml_tensor * dst,
  12719. const ggml_binary_op_f32_t fun) {
  12720. const struct ggml_tensor * src0 = dst->src[0];
  12721. const struct ggml_tensor * src1 = dst->src[1];
  12722. assert(params->ith == 0);
  12723. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12724. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12725. return;
  12726. }
  12727. const int n = ggml_nrows(src0);
  12728. const int nc = src0->ne[0];
  12729. assert( dst->nb[0] == sizeof(float));
  12730. assert(src0->nb[0] == sizeof(float));
  12731. assert(src1->nb[0] == sizeof(float));
  12732. for (int i = 0; i < n; i++) {
  12733. fun(nc,
  12734. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12735. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12736. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12737. }
  12738. }
  12739. static void ggml_compute_forward_map_binary(
  12740. const struct ggml_compute_params * params,
  12741. struct ggml_tensor * dst,
  12742. const ggml_binary_op_f32_t fun) {
  12743. const struct ggml_tensor * src0 = dst->src[0];
  12744. switch (src0->type) {
  12745. case GGML_TYPE_F32:
  12746. {
  12747. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12748. } break;
  12749. default:
  12750. {
  12751. GGML_ASSERT(false);
  12752. } break;
  12753. }
  12754. }
  12755. // ggml_compute_forward_map_custom1
  12756. static void ggml_compute_forward_map_custom1_f32(
  12757. const struct ggml_compute_params * params,
  12758. struct ggml_tensor * dst,
  12759. const ggml_custom1_op_f32_t fun) {
  12760. const struct ggml_tensor * a = dst->src[0];
  12761. assert(params->ith == 0);
  12762. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12763. return;
  12764. }
  12765. fun(dst, a);
  12766. }
  12767. // ggml_compute_forward_map_custom2
  12768. static void ggml_compute_forward_map_custom2_f32(
  12769. const struct ggml_compute_params * params,
  12770. struct ggml_tensor * dst,
  12771. const ggml_custom2_op_f32_t fun) {
  12772. const struct ggml_tensor * a = dst->src[0];
  12773. const struct ggml_tensor * b = dst->src[1];
  12774. assert(params->ith == 0);
  12775. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12776. return;
  12777. }
  12778. fun(dst, a, b);
  12779. }
  12780. // ggml_compute_forward_map_custom3
  12781. static void ggml_compute_forward_map_custom3_f32(
  12782. const struct ggml_compute_params * params,
  12783. struct ggml_tensor * dst,
  12784. const ggml_custom3_op_f32_t fun) {
  12785. const struct ggml_tensor * a = dst->src[0];
  12786. const struct ggml_tensor * b = dst->src[1];
  12787. const struct ggml_tensor * c = dst->src[1];
  12788. assert(params->ith == 0);
  12789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12790. return;
  12791. }
  12792. fun(dst, a, b, c);
  12793. }
  12794. // ggml_compute_forward_map_custom1
  12795. static void ggml_compute_forward_map_custom1(
  12796. const struct ggml_compute_params * params,
  12797. struct ggml_tensor * dst) {
  12798. const struct ggml_tensor * a = dst->src[0];
  12799. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12800. return;
  12801. }
  12802. struct ggml_map_custom1_op_params p;
  12803. memcpy(&p, dst->op_params, sizeof(p));
  12804. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12805. }
  12806. // ggml_compute_forward_map_custom2
  12807. static void ggml_compute_forward_map_custom2(
  12808. const struct ggml_compute_params * params,
  12809. struct ggml_tensor * dst) {
  12810. const struct ggml_tensor * a = dst->src[0];
  12811. const struct ggml_tensor * b = dst->src[1];
  12812. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12813. return;
  12814. }
  12815. struct ggml_map_custom2_op_params p;
  12816. memcpy(&p, dst->op_params, sizeof(p));
  12817. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12818. }
  12819. // ggml_compute_forward_map_custom3
  12820. static void ggml_compute_forward_map_custom3(
  12821. const struct ggml_compute_params * params,
  12822. struct ggml_tensor * dst) {
  12823. const struct ggml_tensor * a = dst->src[0];
  12824. const struct ggml_tensor * b = dst->src[1];
  12825. const struct ggml_tensor * c = dst->src[2];
  12826. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12827. return;
  12828. }
  12829. struct ggml_map_custom3_op_params p;
  12830. memcpy(&p, dst->op_params, sizeof(p));
  12831. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12832. }
  12833. // ggml_compute_forward_cross_entropy_loss
  12834. static void ggml_compute_forward_cross_entropy_loss_f32(
  12835. const struct ggml_compute_params * params,
  12836. struct ggml_tensor * dst) {
  12837. const struct ggml_tensor * src0 = dst->src[0];
  12838. const struct ggml_tensor * src1 = dst->src[1];
  12839. GGML_ASSERT(ggml_is_contiguous(src0));
  12840. GGML_ASSERT(ggml_is_contiguous(src1));
  12841. GGML_ASSERT(ggml_is_scalar(dst));
  12842. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12843. const int ith = params->ith;
  12844. const int nth = params->nth;
  12845. float * sums = (float *) params->wdata;
  12846. // TODO: handle transposed/permuted matrices
  12847. const int nc = src0->ne[0];
  12848. const int nr = ggml_nrows(src0);
  12849. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12850. if (params->type == GGML_TASK_TYPE_INIT) {
  12851. if (ith == 0) {
  12852. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12853. }
  12854. return;
  12855. }
  12856. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12857. if (ith == 0) {
  12858. float * dp = (float *) dst->data;
  12859. ggml_vec_sum_f32(nth, dp, sums);
  12860. dp[0] *= -1.0f / (float) nr;
  12861. }
  12862. return;
  12863. }
  12864. const double eps = 1e-9;
  12865. // rows per thread
  12866. const int dr = (nr + nth - 1)/nth;
  12867. // row range for this thread
  12868. const int ir0 = dr*ith;
  12869. const int ir1 = MIN(ir0 + dr, nr);
  12870. for (int i1 = ir0; i1 < ir1; i1++) {
  12871. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12872. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12873. float * st = ((float *) params->wdata) + nth + ith*nc;
  12874. #ifndef NDEBUG
  12875. for (int i = 0; i < nc; ++i) {
  12876. //printf("p[%d] = %f\n", i, p[i]);
  12877. assert(!isnan(s0[i]));
  12878. assert(!isnan(s1[i]));
  12879. }
  12880. #endif
  12881. // soft_max
  12882. ggml_float sum = 0.0;
  12883. {
  12884. float max = -INFINITY;
  12885. ggml_vec_max_f32(nc, &max, s0);
  12886. uint16_t scvt; UNUSED(scvt);
  12887. for (int i = 0; i < nc; i++) {
  12888. if (s0[i] == -INFINITY) {
  12889. st[i] = 0.0f;
  12890. } else {
  12891. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12892. const float s = s0[i] - max;
  12893. const float val = expf(s);
  12894. #else
  12895. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12896. memcpy(&scvt, &s, sizeof(scvt));
  12897. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12898. #endif
  12899. sum += (ggml_float)val;
  12900. st[i] = val;
  12901. }
  12902. }
  12903. assert(sum > 0.0);
  12904. // sum = 1.0/sum;
  12905. }
  12906. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12907. sum = (1.0 - eps) / sum;
  12908. ggml_vec_scale_f32(nc, st, sum);
  12909. ggml_vec_add1_f32(nc, st, st, eps);
  12910. ggml_vec_log_f32(nc, st, st);
  12911. ggml_vec_mul_f32(nc, st, st, s1);
  12912. float st_sum = 0;
  12913. ggml_vec_sum_f32(nc, &st_sum, st);
  12914. sums[ith] += st_sum;
  12915. #ifndef NDEBUG
  12916. for (int i = 0; i < nc; ++i) {
  12917. assert(!isnan(st[i]));
  12918. assert(!isinf(st[i]));
  12919. }
  12920. #endif
  12921. }
  12922. }
  12923. static void ggml_compute_forward_cross_entropy_loss(
  12924. const struct ggml_compute_params * params,
  12925. struct ggml_tensor * dst) {
  12926. const struct ggml_tensor * src0 = dst->src[0];
  12927. switch (src0->type) {
  12928. case GGML_TYPE_F32:
  12929. {
  12930. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12931. } break;
  12932. default:
  12933. {
  12934. GGML_ASSERT(false);
  12935. } break;
  12936. }
  12937. }
  12938. // ggml_compute_forward_cross_entropy_loss_back
  12939. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12940. const struct ggml_compute_params * params,
  12941. struct ggml_tensor * dst) {
  12942. const struct ggml_tensor * src0 = dst->src[0];
  12943. const struct ggml_tensor * src1 = dst->src[1];
  12944. const struct ggml_tensor * opt0 = dst->src[2];
  12945. GGML_ASSERT(ggml_is_contiguous(dst));
  12946. GGML_ASSERT(ggml_is_contiguous(src0));
  12947. GGML_ASSERT(ggml_is_contiguous(src1));
  12948. GGML_ASSERT(ggml_is_contiguous(opt0));
  12949. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12950. const int64_t ith = params->ith;
  12951. const int64_t nth = params->nth;
  12952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12953. return;
  12954. }
  12955. const double eps = 1e-9;
  12956. // TODO: handle transposed/permuted matrices
  12957. const int64_t nc = src0->ne[0];
  12958. const int64_t nr = ggml_nrows(src0);
  12959. // rows per thread
  12960. const int64_t dr = (nr + nth - 1)/nth;
  12961. // row range for this thread
  12962. const int64_t ir0 = dr*ith;
  12963. const int64_t ir1 = MIN(ir0 + dr, nr);
  12964. float * d = (float *) opt0->data;
  12965. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12966. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12967. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12968. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12969. #ifndef NDEBUG
  12970. for (int i = 0; i < nc; ++i) {
  12971. //printf("p[%d] = %f\n", i, p[i]);
  12972. assert(!isnan(s0[i]));
  12973. assert(!isnan(s1[i]));
  12974. }
  12975. #endif
  12976. // soft_max
  12977. ggml_float sum = 0.0;
  12978. {
  12979. float max = -INFINITY;
  12980. ggml_vec_max_f32(nc, &max, s0);
  12981. uint16_t scvt; UNUSED(scvt);
  12982. for (int i = 0; i < nc; i++) {
  12983. if (s0[i] == -INFINITY) {
  12984. ds0[i] = 0.0f;
  12985. } else {
  12986. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12987. const float s = s0[i] - max;
  12988. const float val = expf(s);
  12989. #else
  12990. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12991. memcpy(&scvt, &s, sizeof(scvt));
  12992. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12993. #endif
  12994. sum += (ggml_float)val;
  12995. ds0[i] = val;
  12996. }
  12997. }
  12998. assert(sum > 0.0);
  12999. sum = (1.0 - eps)/sum;
  13000. }
  13001. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13002. ggml_vec_scale_f32(nc, ds0, sum);
  13003. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13004. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13005. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13006. #ifndef NDEBUG
  13007. for (int i = 0; i < nc; ++i) {
  13008. assert(!isnan(ds0[i]));
  13009. assert(!isinf(ds0[i]));
  13010. }
  13011. #endif
  13012. }
  13013. }
  13014. static void ggml_compute_forward_cross_entropy_loss_back(
  13015. const struct ggml_compute_params * params,
  13016. struct ggml_tensor * dst) {
  13017. const struct ggml_tensor * src0 = dst->src[0];
  13018. switch (src0->type) {
  13019. case GGML_TYPE_F32:
  13020. {
  13021. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13022. } break;
  13023. default:
  13024. {
  13025. GGML_ASSERT(false);
  13026. } break;
  13027. }
  13028. }
  13029. /////////////////////////////////
  13030. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13031. GGML_ASSERT(params);
  13032. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13033. return;
  13034. }
  13035. #if defined(GGML_USE_VULKAN)
  13036. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  13037. #ifdef GGML_VULKAN_CHECK_RESULTS
  13038. if (skip_cpu) {
  13039. ggml_vk_check_results_1_cpu_assist(params, tensor);
  13040. }
  13041. #endif
  13042. if (skip_cpu) {
  13043. return;
  13044. }
  13045. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  13046. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  13047. #endif // GGML_USE_VULKAN
  13048. switch (tensor->op) {
  13049. case GGML_OP_DUP:
  13050. {
  13051. ggml_compute_forward_dup(params, tensor);
  13052. } break;
  13053. case GGML_OP_ADD:
  13054. {
  13055. ggml_compute_forward_add(params, tensor);
  13056. } break;
  13057. case GGML_OP_ADD1:
  13058. {
  13059. ggml_compute_forward_add1(params, tensor);
  13060. } break;
  13061. case GGML_OP_ACC:
  13062. {
  13063. ggml_compute_forward_acc(params, tensor);
  13064. } break;
  13065. case GGML_OP_SUB:
  13066. {
  13067. ggml_compute_forward_sub(params, tensor);
  13068. } break;
  13069. case GGML_OP_MUL:
  13070. {
  13071. ggml_compute_forward_mul(params, tensor);
  13072. } break;
  13073. case GGML_OP_DIV:
  13074. {
  13075. ggml_compute_forward_div(params, tensor);
  13076. } break;
  13077. case GGML_OP_SQR:
  13078. {
  13079. ggml_compute_forward_sqr(params, tensor);
  13080. } break;
  13081. case GGML_OP_SQRT:
  13082. {
  13083. ggml_compute_forward_sqrt(params, tensor);
  13084. } break;
  13085. case GGML_OP_LOG:
  13086. {
  13087. ggml_compute_forward_log(params, tensor);
  13088. } break;
  13089. case GGML_OP_SUM:
  13090. {
  13091. ggml_compute_forward_sum(params, tensor);
  13092. } break;
  13093. case GGML_OP_SUM_ROWS:
  13094. {
  13095. ggml_compute_forward_sum_rows(params, tensor);
  13096. } break;
  13097. case GGML_OP_MEAN:
  13098. {
  13099. ggml_compute_forward_mean(params, tensor);
  13100. } break;
  13101. case GGML_OP_ARGMAX:
  13102. {
  13103. ggml_compute_forward_argmax(params, tensor);
  13104. } break;
  13105. case GGML_OP_REPEAT:
  13106. {
  13107. ggml_compute_forward_repeat(params, tensor);
  13108. } break;
  13109. case GGML_OP_REPEAT_BACK:
  13110. {
  13111. ggml_compute_forward_repeat_back(params, tensor);
  13112. } break;
  13113. case GGML_OP_CONCAT:
  13114. {
  13115. ggml_compute_forward_concat(params, tensor);
  13116. } break;
  13117. case GGML_OP_SILU_BACK:
  13118. {
  13119. ggml_compute_forward_silu_back(params, tensor);
  13120. } break;
  13121. case GGML_OP_NORM:
  13122. {
  13123. ggml_compute_forward_norm(params, tensor);
  13124. } break;
  13125. case GGML_OP_RMS_NORM:
  13126. {
  13127. ggml_compute_forward_rms_norm(params, tensor);
  13128. } break;
  13129. case GGML_OP_RMS_NORM_BACK:
  13130. {
  13131. ggml_compute_forward_rms_norm_back(params, tensor);
  13132. } break;
  13133. case GGML_OP_GROUP_NORM:
  13134. {
  13135. ggml_compute_forward_group_norm(params, tensor);
  13136. } break;
  13137. case GGML_OP_MUL_MAT:
  13138. {
  13139. ggml_compute_forward_mul_mat(params, tensor);
  13140. } break;
  13141. case GGML_OP_MUL_MAT_ID:
  13142. {
  13143. ggml_compute_forward_mul_mat_id(params, tensor);
  13144. } break;
  13145. case GGML_OP_OUT_PROD:
  13146. {
  13147. ggml_compute_forward_out_prod(params, tensor);
  13148. } break;
  13149. case GGML_OP_SCALE:
  13150. {
  13151. ggml_compute_forward_scale(params, tensor);
  13152. } break;
  13153. case GGML_OP_SET:
  13154. {
  13155. ggml_compute_forward_set(params, tensor);
  13156. } break;
  13157. case GGML_OP_CPY:
  13158. {
  13159. ggml_compute_forward_cpy(params, tensor);
  13160. } break;
  13161. case GGML_OP_CONT:
  13162. {
  13163. ggml_compute_forward_cont(params, tensor);
  13164. } break;
  13165. case GGML_OP_RESHAPE:
  13166. {
  13167. ggml_compute_forward_reshape(params, tensor);
  13168. } break;
  13169. case GGML_OP_VIEW:
  13170. {
  13171. ggml_compute_forward_view(params, tensor);
  13172. } break;
  13173. case GGML_OP_PERMUTE:
  13174. {
  13175. ggml_compute_forward_permute(params, tensor);
  13176. } break;
  13177. case GGML_OP_TRANSPOSE:
  13178. {
  13179. ggml_compute_forward_transpose(params, tensor);
  13180. } break;
  13181. case GGML_OP_GET_ROWS:
  13182. {
  13183. ggml_compute_forward_get_rows(params, tensor);
  13184. } break;
  13185. case GGML_OP_GET_ROWS_BACK:
  13186. {
  13187. ggml_compute_forward_get_rows_back(params, tensor);
  13188. } break;
  13189. case GGML_OP_DIAG:
  13190. {
  13191. ggml_compute_forward_diag(params, tensor);
  13192. } break;
  13193. case GGML_OP_DIAG_MASK_INF:
  13194. {
  13195. ggml_compute_forward_diag_mask_inf(params, tensor);
  13196. } break;
  13197. case GGML_OP_DIAG_MASK_ZERO:
  13198. {
  13199. ggml_compute_forward_diag_mask_zero(params, tensor);
  13200. } break;
  13201. case GGML_OP_SOFT_MAX:
  13202. {
  13203. ggml_compute_forward_soft_max(params, tensor);
  13204. } break;
  13205. case GGML_OP_SOFT_MAX_BACK:
  13206. {
  13207. ggml_compute_forward_soft_max_back(params, tensor);
  13208. } break;
  13209. case GGML_OP_ROPE:
  13210. {
  13211. ggml_compute_forward_rope(params, tensor);
  13212. } break;
  13213. case GGML_OP_ROPE_BACK:
  13214. {
  13215. ggml_compute_forward_rope_back(params, tensor);
  13216. } break;
  13217. case GGML_OP_ALIBI:
  13218. {
  13219. ggml_compute_forward_alibi(params, tensor);
  13220. } break;
  13221. case GGML_OP_CLAMP:
  13222. {
  13223. ggml_compute_forward_clamp(params, tensor);
  13224. } break;
  13225. case GGML_OP_CONV_TRANSPOSE_1D:
  13226. {
  13227. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13228. } break;
  13229. case GGML_OP_IM2COL:
  13230. {
  13231. ggml_compute_forward_im2col(params, tensor);
  13232. } break;
  13233. case GGML_OP_CONV_TRANSPOSE_2D:
  13234. {
  13235. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13236. } break;
  13237. case GGML_OP_POOL_1D:
  13238. {
  13239. ggml_compute_forward_pool_1d(params, tensor);
  13240. } break;
  13241. case GGML_OP_POOL_2D:
  13242. {
  13243. ggml_compute_forward_pool_2d(params, tensor);
  13244. } break;
  13245. case GGML_OP_UPSCALE:
  13246. {
  13247. ggml_compute_forward_upscale(params, tensor);
  13248. } break;
  13249. case GGML_OP_PAD:
  13250. {
  13251. ggml_compute_forward_pad(params, tensor);
  13252. } break;
  13253. case GGML_OP_ARANGE:
  13254. {
  13255. ggml_compute_forward_arange(params, tensor);
  13256. } break;
  13257. case GGML_OP_TIMESTEP_EMBEDDING:
  13258. {
  13259. ggml_compute_forward_timestep_embedding(params, tensor);
  13260. } break;
  13261. case GGML_OP_ARGSORT:
  13262. {
  13263. ggml_compute_forward_argsort(params, tensor);
  13264. } break;
  13265. case GGML_OP_LEAKY_RELU:
  13266. {
  13267. ggml_compute_forward_leaky_relu(params, tensor);
  13268. } break;
  13269. case GGML_OP_FLASH_ATTN:
  13270. {
  13271. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13272. GGML_ASSERT(t == 0 || t == 1);
  13273. const bool masked = t != 0;
  13274. ggml_compute_forward_flash_attn(params, masked, tensor);
  13275. } break;
  13276. case GGML_OP_FLASH_FF:
  13277. {
  13278. ggml_compute_forward_flash_ff(params, tensor);
  13279. } break;
  13280. case GGML_OP_FLASH_ATTN_BACK:
  13281. {
  13282. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13283. GGML_ASSERT(t == 0 || t == 1);
  13284. bool masked = t != 0;
  13285. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13286. } break;
  13287. case GGML_OP_SSM_CONV:
  13288. {
  13289. ggml_compute_forward_ssm_conv(params, tensor);
  13290. } break;
  13291. case GGML_OP_SSM_SCAN:
  13292. {
  13293. ggml_compute_forward_ssm_scan(params, tensor);
  13294. } break;
  13295. case GGML_OP_WIN_PART:
  13296. {
  13297. ggml_compute_forward_win_part(params, tensor);
  13298. } break;
  13299. case GGML_OP_WIN_UNPART:
  13300. {
  13301. ggml_compute_forward_win_unpart(params, tensor);
  13302. } break;
  13303. case GGML_OP_UNARY:
  13304. {
  13305. ggml_compute_forward_unary(params, tensor);
  13306. } break;
  13307. case GGML_OP_GET_REL_POS:
  13308. {
  13309. ggml_compute_forward_get_rel_pos(params, tensor);
  13310. } break;
  13311. case GGML_OP_ADD_REL_POS:
  13312. {
  13313. ggml_compute_forward_add_rel_pos(params, tensor);
  13314. } break;
  13315. case GGML_OP_MAP_UNARY:
  13316. {
  13317. ggml_unary_op_f32_t fun;
  13318. memcpy(&fun, tensor->op_params, sizeof(fun));
  13319. ggml_compute_forward_map_unary(params, tensor, fun);
  13320. }
  13321. break;
  13322. case GGML_OP_MAP_BINARY:
  13323. {
  13324. ggml_binary_op_f32_t fun;
  13325. memcpy(&fun, tensor->op_params, sizeof(fun));
  13326. ggml_compute_forward_map_binary(params, tensor, fun);
  13327. }
  13328. break;
  13329. case GGML_OP_MAP_CUSTOM1_F32:
  13330. {
  13331. ggml_custom1_op_f32_t fun;
  13332. memcpy(&fun, tensor->op_params, sizeof(fun));
  13333. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13334. }
  13335. break;
  13336. case GGML_OP_MAP_CUSTOM2_F32:
  13337. {
  13338. ggml_custom2_op_f32_t fun;
  13339. memcpy(&fun, tensor->op_params, sizeof(fun));
  13340. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13341. }
  13342. break;
  13343. case GGML_OP_MAP_CUSTOM3_F32:
  13344. {
  13345. ggml_custom3_op_f32_t fun;
  13346. memcpy(&fun, tensor->op_params, sizeof(fun));
  13347. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13348. }
  13349. break;
  13350. case GGML_OP_MAP_CUSTOM1:
  13351. {
  13352. ggml_compute_forward_map_custom1(params, tensor);
  13353. }
  13354. break;
  13355. case GGML_OP_MAP_CUSTOM2:
  13356. {
  13357. ggml_compute_forward_map_custom2(params, tensor);
  13358. }
  13359. break;
  13360. case GGML_OP_MAP_CUSTOM3:
  13361. {
  13362. ggml_compute_forward_map_custom3(params, tensor);
  13363. }
  13364. break;
  13365. case GGML_OP_CROSS_ENTROPY_LOSS:
  13366. {
  13367. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13368. }
  13369. break;
  13370. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13371. {
  13372. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13373. }
  13374. break;
  13375. case GGML_OP_NONE:
  13376. {
  13377. // nop
  13378. } break;
  13379. case GGML_OP_COUNT:
  13380. {
  13381. GGML_ASSERT(false);
  13382. } break;
  13383. }
  13384. }
  13385. ////////////////////////////////////////////////////////////////////////////////
  13386. static size_t ggml_hash_size(size_t min_sz) {
  13387. // next primes after powers of two
  13388. static const size_t primes[] = {
  13389. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13390. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13391. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13392. 16777259, 33554467, 67108879, 134217757, 268435459,
  13393. 536870923, 1073741827, 2147483659
  13394. };
  13395. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13396. // find the smallest prime that is larger or equal to min_sz
  13397. size_t l = 0;
  13398. size_t r = n_primes;
  13399. while (l < r) {
  13400. size_t m = (l + r)/2;
  13401. if (primes[m] < min_sz) {
  13402. l = m + 1;
  13403. } else {
  13404. r = m;
  13405. }
  13406. }
  13407. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13408. return sz;
  13409. }
  13410. static size_t ggml_hash(const void * p) {
  13411. return (size_t)p;
  13412. }
  13413. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13414. size_t h = ggml_hash(key) % hash_set.size;
  13415. // linear probing
  13416. size_t i = h;
  13417. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13418. i = (i + 1) % hash_set.size;
  13419. if (i == h) {
  13420. // visited all hash table entries -> not found
  13421. return GGML_HASHTABLE_FULL;
  13422. }
  13423. }
  13424. return i;
  13425. }
  13426. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13427. size_t i = ggml_hash_find(hash_set, key);
  13428. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13429. }
  13430. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13431. size_t i = ggml_hash_find(hash_set, key);
  13432. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13433. if (hash_set.keys[i] == key) {
  13434. return GGML_HASHTABLE_ALREADY_EXISTS;
  13435. }
  13436. // insert
  13437. GGML_ASSERT(hash_set.keys[i] == NULL);
  13438. hash_set.keys[i] = key;
  13439. return i;
  13440. }
  13441. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13442. size_t i = ggml_hash_find(hash_set, key);
  13443. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13444. hash_set.keys[i] = key;
  13445. return i;
  13446. }
  13447. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13448. size = ggml_hash_size(size);
  13449. struct ggml_hash_set result;
  13450. result.size = size;
  13451. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13452. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13453. return result;
  13454. }
  13455. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13456. GGML_FREE(hash_set.keys);
  13457. }
  13458. struct hash_map {
  13459. struct ggml_hash_set set;
  13460. struct ggml_tensor ** vals;
  13461. };
  13462. static struct hash_map * ggml_new_hash_map(size_t size) {
  13463. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13464. result->set = ggml_hash_set_new(size);
  13465. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13466. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13467. return result;
  13468. }
  13469. static void ggml_hash_map_free(struct hash_map * map) {
  13470. ggml_hash_set_free(map->set);
  13471. GGML_FREE(map->vals);
  13472. GGML_FREE(map);
  13473. }
  13474. // gradient checkpointing
  13475. static struct ggml_tensor * ggml_recompute_graph_node(
  13476. struct ggml_context * ctx,
  13477. struct ggml_cgraph * graph,
  13478. struct hash_map * replacements,
  13479. struct ggml_tensor * node) {
  13480. if (node == NULL) {
  13481. return NULL;
  13482. }
  13483. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13484. return node;
  13485. }
  13486. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13487. return node;
  13488. }
  13489. int count_children = 0;
  13490. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13491. if (node->src[k]) {
  13492. ++count_children;
  13493. }
  13494. }
  13495. if (count_children == 0) {
  13496. return node;
  13497. }
  13498. size_t i = ggml_hash_find(replacements->set, node);
  13499. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13500. if (replacements->set.keys[i] == node) {
  13501. return replacements->vals[i];
  13502. }
  13503. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13504. // insert clone into replacements
  13505. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13506. replacements->set.keys[i] = node;
  13507. replacements->vals[i] = clone;
  13508. clone->op = node->op;
  13509. clone->grad = node->grad;
  13510. clone->flags = node->flags;
  13511. clone->extra = node->extra;
  13512. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13513. clone->nb[k] = node->nb[k];
  13514. }
  13515. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13516. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13517. }
  13518. if (node->view_src != NULL) {
  13519. clone->data = (node->view_src->data == NULL)
  13520. ? NULL // view_src not yet allocated
  13521. : (char *) node->view_src->data // view_src already allocated
  13522. + node->view_offs;
  13523. clone->view_src = node->view_src;
  13524. clone->view_offs = node->view_offs;
  13525. }
  13526. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13527. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13528. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13529. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13530. return clone;
  13531. }
  13532. void ggml_build_backward_gradient_checkpointing(
  13533. struct ggml_context * ctx,
  13534. struct ggml_cgraph * gf,
  13535. struct ggml_cgraph * gb,
  13536. struct ggml_cgraph * gb_tmp,
  13537. struct ggml_tensor * * checkpoints,
  13538. int n_checkpoints) {
  13539. ggml_graph_cpy(gf, gb_tmp);
  13540. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13541. if (n_checkpoints <= 0) {
  13542. ggml_graph_cpy(gb_tmp, gb);
  13543. return;
  13544. }
  13545. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13546. // insert checkpoints in replacements
  13547. for (int i = 0; i < n_checkpoints; ++i) {
  13548. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13549. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13550. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13551. replacements->set.keys[k] = checkpoints[i];
  13552. replacements->vals[k] = checkpoints[i];
  13553. }
  13554. ggml_graph_cpy(gf, gb);
  13555. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13556. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13557. // by recomputing them from checkpoints
  13558. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13559. struct ggml_tensor * node = gb_tmp->nodes[i];
  13560. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13561. // insert new tensors recomputing src, reusing already made replacements,
  13562. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13563. // recurse for input tensors,
  13564. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13565. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13566. }
  13567. // insert rewritten backward node with replacements made into resulting backward graph gb
  13568. ggml_build_forward_expand(gb, node);
  13569. }
  13570. ggml_hash_map_free(replacements);
  13571. }
  13572. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13573. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13574. if (ggml_hash_contains(zero_table, a)) {
  13575. return b;
  13576. } else {
  13577. return ggml_add_impl(ctx, a, b, false);
  13578. }
  13579. }
  13580. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13581. if (ggml_hash_contains(zero_table, a)) {
  13582. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13583. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13584. } else {
  13585. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13586. }
  13587. }
  13588. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13589. if (ggml_hash_contains(zero_table, a)) {
  13590. return ggml_repeat(ctx, b, a);
  13591. } else {
  13592. return ggml_add1_impl(ctx, a, b, false);
  13593. }
  13594. }
  13595. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13596. if (ggml_hash_contains(zero_table, a)) {
  13597. return ggml_neg(ctx, b);
  13598. } else {
  13599. return ggml_sub_impl(ctx, a, b, false);
  13600. }
  13601. }
  13602. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13603. struct ggml_tensor * src0 = tensor->src[0];
  13604. struct ggml_tensor * src1 = tensor->src[1];
  13605. switch (tensor->op) {
  13606. case GGML_OP_DUP:
  13607. {
  13608. if (src0->grad) {
  13609. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13610. }
  13611. } break;
  13612. case GGML_OP_ADD:
  13613. {
  13614. if (src0->grad) {
  13615. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13616. }
  13617. if (src1->grad) {
  13618. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13619. }
  13620. } break;
  13621. case GGML_OP_ADD1:
  13622. {
  13623. if (src0->grad) {
  13624. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13625. }
  13626. if (src1->grad) {
  13627. src1->grad = ggml_add_or_set(ctx,
  13628. src1->grad,
  13629. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13630. zero_table);
  13631. }
  13632. } break;
  13633. case GGML_OP_ACC:
  13634. {
  13635. if (src0->grad) {
  13636. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13637. }
  13638. if (src1->grad) {
  13639. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13640. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13641. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13642. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13643. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13644. tensor->grad,
  13645. src1->grad->ne[0],
  13646. src1->grad->ne[1],
  13647. src1->grad->ne[2],
  13648. src1->grad->ne[3],
  13649. nb1, nb2, nb3, offset);
  13650. src1->grad =
  13651. ggml_add_or_set(ctx,
  13652. src1->grad,
  13653. ggml_reshape(ctx,
  13654. ggml_cont(ctx, tensor_grad_view),
  13655. src1->grad),
  13656. zero_table);
  13657. }
  13658. } break;
  13659. case GGML_OP_SUB:
  13660. {
  13661. if (src0->grad) {
  13662. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13663. }
  13664. if (src1->grad) {
  13665. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13666. }
  13667. } break;
  13668. case GGML_OP_MUL:
  13669. {
  13670. if (src0->grad) {
  13671. src0->grad =
  13672. ggml_add_or_set(ctx,
  13673. src0->grad,
  13674. ggml_mul(ctx, src1, tensor->grad),
  13675. zero_table);
  13676. }
  13677. if (src1->grad) {
  13678. src1->grad =
  13679. ggml_add_or_set(ctx,
  13680. src1->grad,
  13681. ggml_mul(ctx, src0, tensor->grad),
  13682. zero_table);
  13683. }
  13684. } break;
  13685. case GGML_OP_DIV:
  13686. {
  13687. if (src0->grad) {
  13688. src0->grad =
  13689. ggml_add_or_set(ctx,
  13690. src0->grad,
  13691. ggml_div(ctx, tensor->grad, src1),
  13692. zero_table);
  13693. }
  13694. if (src1->grad) {
  13695. src1->grad =
  13696. ggml_sub_or_set(ctx,
  13697. src1->grad,
  13698. ggml_mul(ctx,
  13699. tensor->grad,
  13700. ggml_div(ctx, tensor, src1)),
  13701. zero_table);
  13702. }
  13703. } break;
  13704. case GGML_OP_SQR:
  13705. {
  13706. if (src0->grad) {
  13707. src0->grad =
  13708. ggml_add_or_set(ctx,
  13709. src0->grad,
  13710. ggml_scale(ctx,
  13711. ggml_mul(ctx, src0, tensor->grad),
  13712. 2.0f),
  13713. zero_table);
  13714. }
  13715. } break;
  13716. case GGML_OP_SQRT:
  13717. {
  13718. if (src0->grad) {
  13719. src0->grad =
  13720. ggml_add_or_set(ctx,
  13721. src0->grad,
  13722. ggml_scale(ctx,
  13723. ggml_div(ctx,
  13724. tensor->grad,
  13725. tensor),
  13726. 0.5f),
  13727. zero_table);
  13728. }
  13729. } break;
  13730. case GGML_OP_LOG:
  13731. {
  13732. if (src0->grad) {
  13733. src0->grad =
  13734. ggml_add_or_set(ctx,
  13735. src0->grad,
  13736. ggml_div(ctx,
  13737. tensor->grad,
  13738. src0),
  13739. zero_table);
  13740. }
  13741. } break;
  13742. case GGML_OP_SUM:
  13743. {
  13744. if (src0->grad) {
  13745. src0->grad =
  13746. ggml_add1_or_set(ctx,
  13747. src0->grad,
  13748. tensor->grad,
  13749. zero_table);
  13750. }
  13751. } break;
  13752. case GGML_OP_SUM_ROWS:
  13753. {
  13754. if (src0->grad) {
  13755. src0->grad =
  13756. ggml_add_or_set(ctx,
  13757. src0->grad,
  13758. ggml_repeat(ctx,
  13759. tensor->grad,
  13760. src0->grad),
  13761. zero_table);
  13762. }
  13763. } break;
  13764. case GGML_OP_MEAN:
  13765. case GGML_OP_ARGMAX:
  13766. {
  13767. GGML_ASSERT(false); // TODO: implement
  13768. } break;
  13769. case GGML_OP_REPEAT:
  13770. {
  13771. // necessary for llama
  13772. if (src0->grad) {
  13773. src0->grad = ggml_add_or_set(ctx,
  13774. src0->grad,
  13775. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13776. zero_table);
  13777. }
  13778. } break;
  13779. case GGML_OP_REPEAT_BACK:
  13780. {
  13781. if (src0->grad) {
  13782. // TODO: test this
  13783. src0->grad = ggml_add_or_set(ctx,
  13784. src0->grad,
  13785. ggml_repeat(ctx, tensor->grad, src0->grad),
  13786. zero_table);
  13787. }
  13788. } break;
  13789. case GGML_OP_CONCAT:
  13790. {
  13791. GGML_ASSERT(false); // TODO: implement
  13792. } break;
  13793. case GGML_OP_SILU_BACK:
  13794. {
  13795. GGML_ASSERT(false); // TODO: not implemented
  13796. } break;
  13797. case GGML_OP_NORM:
  13798. {
  13799. GGML_ASSERT(false); // TODO: not implemented
  13800. } break;
  13801. case GGML_OP_RMS_NORM:
  13802. {
  13803. // necessary for llama
  13804. if (src0->grad) {
  13805. float eps;
  13806. memcpy(&eps, tensor->op_params, sizeof(float));
  13807. src0->grad = ggml_add_or_set(ctx,
  13808. src0->grad,
  13809. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13810. zero_table);
  13811. }
  13812. } break;
  13813. case GGML_OP_RMS_NORM_BACK:
  13814. {
  13815. GGML_ASSERT(false); // TODO: not implemented
  13816. } break;
  13817. case GGML_OP_GROUP_NORM:
  13818. {
  13819. GGML_ASSERT(false); // TODO: not implemented
  13820. } break;
  13821. case GGML_OP_MUL_MAT:
  13822. {
  13823. // https://cs231n.github.io/optimization-2/#staged
  13824. // # forward pass
  13825. // s0 = np.random.randn(5, 10)
  13826. // s1 = np.random.randn(10, 3)
  13827. // t = s0.dot(s1)
  13828. // # now suppose we had the gradient on t from above in the circuit
  13829. // dt = np.random.randn(*t.shape) # same shape as t
  13830. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13831. // ds1 = t.T.dot(dt)
  13832. // tensor.shape [m,p,qq,rr]
  13833. // src0.shape [n,m,q1,r1]
  13834. // src1.shape [n,p,qq,rr]
  13835. // necessary for llama
  13836. if (src0->grad) {
  13837. struct ggml_tensor * s1_tg =
  13838. ggml_out_prod(ctx, // [n,m,qq,rr]
  13839. src1, // [n,p,qq,rr]
  13840. tensor->grad); // [m,p,qq,rr]
  13841. const int64_t qq = s1_tg->ne[2];
  13842. const int64_t rr = s1_tg->ne[3];
  13843. const int64_t q1 = src0->ne[2];
  13844. const int64_t r1 = src0->ne[3];
  13845. const bool ne2_broadcasted = qq > q1;
  13846. const bool ne3_broadcasted = rr > r1;
  13847. if (ne2_broadcasted || ne3_broadcasted) {
  13848. // sum broadcast repetitions of s1_tg into shape of src0
  13849. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13850. }
  13851. src0->grad =
  13852. ggml_add_or_set(ctx,
  13853. src0->grad, // [n,m,q1,r1]
  13854. s1_tg, // [n,m,q1,r1]
  13855. zero_table);
  13856. }
  13857. if (src1->grad) {
  13858. src1->grad =
  13859. ggml_add_or_set(ctx,
  13860. src1->grad, // [n,p,qq,rr]
  13861. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13862. // ggml_cont(ctx, // [m,n,q1,r1]
  13863. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13864. // tensor->grad), // [m,p,qq,rr]
  13865. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13866. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13867. // // and then use ggml_out_prod
  13868. ggml_out_prod(ctx, // [n,p,qq,rr]
  13869. src0, // [n,m,q1,r1]
  13870. ggml_transpose(ctx, // [p,m,qq,rr]
  13871. tensor->grad)), // [m,p,qq,rr]
  13872. zero_table);
  13873. }
  13874. } break;
  13875. case GGML_OP_MUL_MAT_ID:
  13876. {
  13877. GGML_ASSERT(false); // TODO: not implemented
  13878. } break;
  13879. case GGML_OP_OUT_PROD:
  13880. {
  13881. GGML_ASSERT(false); // TODO: not implemented
  13882. } break;
  13883. case GGML_OP_SCALE:
  13884. {
  13885. // necessary for llama
  13886. if (src0->grad) {
  13887. float s;
  13888. memcpy(&s, tensor->op_params, sizeof(float));
  13889. src0->grad =
  13890. ggml_add_or_set(ctx,
  13891. src0->grad,
  13892. ggml_scale_impl(ctx, tensor->grad, s, false),
  13893. zero_table);
  13894. }
  13895. } break;
  13896. case GGML_OP_SET:
  13897. {
  13898. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13899. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13900. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13901. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13902. struct ggml_tensor * tensor_grad_view = NULL;
  13903. if (src0->grad || src1->grad) {
  13904. GGML_ASSERT(src0->type == tensor->type);
  13905. GGML_ASSERT(tensor->grad->type == tensor->type);
  13906. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13907. tensor_grad_view = ggml_view_4d(ctx,
  13908. tensor->grad,
  13909. src1->grad->ne[0],
  13910. src1->grad->ne[1],
  13911. src1->grad->ne[2],
  13912. src1->grad->ne[3],
  13913. nb1, nb2, nb3, offset);
  13914. }
  13915. if (src0->grad) {
  13916. src0->grad = ggml_add_or_set(ctx,
  13917. src0->grad,
  13918. ggml_acc_impl(ctx,
  13919. tensor->grad,
  13920. ggml_neg(ctx, tensor_grad_view),
  13921. nb1, nb2, nb3, offset, false),
  13922. zero_table);
  13923. }
  13924. if (src1->grad) {
  13925. src1->grad =
  13926. ggml_add_or_set(ctx,
  13927. src1->grad,
  13928. ggml_reshape(ctx,
  13929. ggml_cont(ctx, tensor_grad_view),
  13930. src1->grad),
  13931. zero_table);
  13932. }
  13933. } break;
  13934. case GGML_OP_CPY:
  13935. {
  13936. // necessary for llama
  13937. // cpy overwrites value of src1 by src0 and returns view(src1)
  13938. // the overwriting is mathematically equivalent to:
  13939. // tensor = src0 * 1 + src1 * 0
  13940. if (src0->grad) {
  13941. // dsrc0 = dtensor * 1
  13942. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13943. }
  13944. if (src1->grad) {
  13945. // dsrc1 = dtensor * 0 -> noop
  13946. }
  13947. } break;
  13948. case GGML_OP_CONT:
  13949. {
  13950. // same as cpy
  13951. if (src0->grad) {
  13952. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13953. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13954. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13955. }
  13956. } break;
  13957. case GGML_OP_RESHAPE:
  13958. {
  13959. // necessary for llama
  13960. if (src0->grad) {
  13961. src0->grad =
  13962. ggml_add_or_set(ctx, src0->grad,
  13963. ggml_reshape(ctx,
  13964. ggml_is_contiguous(tensor->grad)
  13965. ? tensor->grad
  13966. : ggml_cont(ctx, tensor->grad),
  13967. src0->grad),
  13968. zero_table);
  13969. }
  13970. } break;
  13971. case GGML_OP_VIEW:
  13972. {
  13973. // necessary for llama
  13974. if (src0->grad) {
  13975. size_t offset;
  13976. memcpy(&offset, tensor->op_params, sizeof(offset));
  13977. size_t nb1 = tensor->nb[1];
  13978. size_t nb2 = tensor->nb[2];
  13979. size_t nb3 = tensor->nb[3];
  13980. if (src0->type != src0->grad->type) {
  13981. // gradient is typically F32, but src0 could be other type
  13982. size_t ng = ggml_element_size(src0->grad);
  13983. size_t n0 = ggml_element_size(src0);
  13984. GGML_ASSERT(offset % n0 == 0);
  13985. GGML_ASSERT(nb1 % n0 == 0);
  13986. GGML_ASSERT(nb2 % n0 == 0);
  13987. GGML_ASSERT(nb3 % n0 == 0);
  13988. offset = (offset / n0) * ng;
  13989. nb1 = (nb1 / n0) * ng;
  13990. nb2 = (nb2 / n0) * ng;
  13991. nb3 = (nb3 / n0) * ng;
  13992. }
  13993. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13994. }
  13995. } break;
  13996. case GGML_OP_PERMUTE:
  13997. {
  13998. // necessary for llama
  13999. if (src0->grad) {
  14000. int32_t * axes = (int32_t *) tensor->op_params;
  14001. int axis0 = axes[0] & 0x3;
  14002. int axis1 = axes[1] & 0x3;
  14003. int axis2 = axes[2] & 0x3;
  14004. int axis3 = axes[3] & 0x3;
  14005. int axes_backward[4] = {0,0,0,0};
  14006. axes_backward[axis0] = 0;
  14007. axes_backward[axis1] = 1;
  14008. axes_backward[axis2] = 2;
  14009. axes_backward[axis3] = 3;
  14010. src0->grad =
  14011. ggml_add_or_set(ctx, src0->grad,
  14012. ggml_permute(ctx,
  14013. tensor->grad,
  14014. axes_backward[0],
  14015. axes_backward[1],
  14016. axes_backward[2],
  14017. axes_backward[3]),
  14018. zero_table);
  14019. }
  14020. } break;
  14021. case GGML_OP_TRANSPOSE:
  14022. {
  14023. // necessary for llama
  14024. if (src0->grad) {
  14025. src0->grad =
  14026. ggml_add_or_set(ctx, src0->grad,
  14027. ggml_transpose(ctx, tensor->grad),
  14028. zero_table);
  14029. }
  14030. } break;
  14031. case GGML_OP_GET_ROWS:
  14032. {
  14033. // necessary for llama (only for tokenizer)
  14034. if (src0->grad) {
  14035. src0->grad =
  14036. ggml_add_or_set(ctx, src0->grad,
  14037. // last ggml_get_rows_back argument src0->grad is only
  14038. // necessary to setup correct output shape
  14039. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14040. zero_table);
  14041. }
  14042. if (src1->grad) {
  14043. // noop
  14044. }
  14045. } break;
  14046. case GGML_OP_GET_ROWS_BACK:
  14047. {
  14048. GGML_ASSERT(false); // TODO: not implemented
  14049. } break;
  14050. case GGML_OP_DIAG:
  14051. {
  14052. GGML_ASSERT(false); // TODO: not implemented
  14053. } break;
  14054. case GGML_OP_DIAG_MASK_INF:
  14055. {
  14056. // necessary for llama
  14057. if (src0->grad) {
  14058. const int n_past = ((int32_t *) tensor->op_params)[0];
  14059. src0->grad =
  14060. ggml_add_or_set(ctx, src0->grad,
  14061. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14062. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14063. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14064. zero_table);
  14065. }
  14066. } break;
  14067. case GGML_OP_DIAG_MASK_ZERO:
  14068. {
  14069. // necessary for llama
  14070. if (src0->grad) {
  14071. const int n_past = ((int32_t *) tensor->op_params)[0];
  14072. src0->grad =
  14073. ggml_add_or_set(ctx, src0->grad,
  14074. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14075. zero_table);
  14076. }
  14077. } break;
  14078. case GGML_OP_SOFT_MAX:
  14079. {
  14080. // necessary for llama
  14081. if (src0->grad) {
  14082. src0->grad =
  14083. ggml_add_or_set(ctx, src0->grad,
  14084. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14085. zero_table);
  14086. }
  14087. } break;
  14088. case GGML_OP_SOFT_MAX_BACK:
  14089. {
  14090. GGML_ASSERT(false); // TODO: not implemented
  14091. } break;
  14092. case GGML_OP_ROPE:
  14093. {
  14094. // necessary for llama
  14095. if (src0->grad) {
  14096. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14097. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14098. const int mode = ((int32_t *) tensor->op_params)[2];
  14099. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14100. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14101. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14102. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14103. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14104. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14105. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14106. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14107. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14108. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14109. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14110. src0->grad = ggml_add_or_set(ctx,
  14111. src0->grad,
  14112. ggml_rope_back(ctx,
  14113. tensor->grad,
  14114. src1,
  14115. n_dims,
  14116. mode,
  14117. n_ctx,
  14118. n_orig_ctx,
  14119. freq_base,
  14120. freq_scale,
  14121. ext_factor,
  14122. attn_factor,
  14123. beta_fast,
  14124. beta_slow,
  14125. xpos_base,
  14126. xpos_down),
  14127. zero_table);
  14128. }
  14129. } break;
  14130. case GGML_OP_ROPE_BACK:
  14131. {
  14132. if (src0->grad) {
  14133. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14134. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14135. const int mode = ((int32_t *) tensor->op_params)[2];
  14136. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14137. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14138. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14139. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14140. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14141. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14142. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14143. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14144. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14145. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14146. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14147. src0->grad = ggml_add_or_set(ctx,
  14148. src0->grad,
  14149. ggml_rope_impl(ctx,
  14150. tensor->grad,
  14151. src1,
  14152. n_dims,
  14153. mode,
  14154. n_ctx,
  14155. n_orig_ctx,
  14156. freq_base,
  14157. freq_scale,
  14158. ext_factor,
  14159. attn_factor,
  14160. beta_fast,
  14161. beta_slow,
  14162. xpos_base,
  14163. xpos_down,
  14164. false),
  14165. zero_table);
  14166. }
  14167. } break;
  14168. case GGML_OP_ALIBI:
  14169. {
  14170. GGML_ASSERT(false); // TODO: not implemented
  14171. } break;
  14172. case GGML_OP_CLAMP:
  14173. {
  14174. GGML_ASSERT(false); // TODO: not implemented
  14175. } break;
  14176. case GGML_OP_CONV_TRANSPOSE_1D:
  14177. {
  14178. GGML_ASSERT(false); // TODO: not implemented
  14179. } break;
  14180. case GGML_OP_IM2COL:
  14181. {
  14182. GGML_ASSERT(false); // TODO: not implemented
  14183. } break;
  14184. case GGML_OP_CONV_TRANSPOSE_2D:
  14185. {
  14186. GGML_ASSERT(false); // TODO: not implemented
  14187. } break;
  14188. case GGML_OP_POOL_1D:
  14189. {
  14190. GGML_ASSERT(false); // TODO: not implemented
  14191. } break;
  14192. case GGML_OP_POOL_2D:
  14193. {
  14194. GGML_ASSERT(false); // TODO: not implemented
  14195. } break;
  14196. case GGML_OP_UPSCALE:
  14197. {
  14198. GGML_ASSERT(false); // TODO: not implemented
  14199. } break;
  14200. case GGML_OP_PAD:
  14201. {
  14202. GGML_ASSERT(false); // TODO: not implemented
  14203. } break;
  14204. case GGML_OP_ARANGE:
  14205. {
  14206. GGML_ASSERT(false); // TODO: not implemented
  14207. } break;
  14208. case GGML_OP_TIMESTEP_EMBEDDING:
  14209. {
  14210. GGML_ASSERT(false); // TODO: not implemented
  14211. } break;
  14212. case GGML_OP_ARGSORT:
  14213. {
  14214. GGML_ASSERT(false); // TODO: not implemented
  14215. } break;
  14216. case GGML_OP_LEAKY_RELU:
  14217. {
  14218. GGML_ASSERT(false); // TODO: not implemented
  14219. } break;
  14220. case GGML_OP_FLASH_ATTN:
  14221. {
  14222. struct ggml_tensor * flash_grad = NULL;
  14223. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14224. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14225. GGML_ASSERT(t == 0 || t == 1);
  14226. bool masked = t != 0;
  14227. flash_grad =
  14228. ggml_flash_attn_back(ctx,
  14229. src0,
  14230. src1,
  14231. tensor->src[2],
  14232. tensor->grad,
  14233. masked);
  14234. }
  14235. struct ggml_tensor * src2 = tensor->src[2];
  14236. const int64_t elem_q = ggml_nelements(src0);
  14237. const int64_t elem_k = ggml_nelements(src1);
  14238. const int64_t elem_v = ggml_nelements(src2);
  14239. enum ggml_type result_type = flash_grad->type;
  14240. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14241. const size_t tsize = ggml_type_size(result_type);
  14242. const size_t offs_q = 0;
  14243. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14244. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14245. if (src0->grad) {
  14246. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14247. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14248. src0->grad = ggml_add_or_set(ctx,
  14249. src0->grad,
  14250. grad_q,
  14251. zero_table);
  14252. }
  14253. if (src1->grad) {
  14254. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14255. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14256. src1->grad = ggml_add_or_set(ctx,
  14257. src1->grad,
  14258. grad_k,
  14259. zero_table);
  14260. }
  14261. if (src2->grad) {
  14262. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14263. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14264. src2->grad = ggml_add_or_set(ctx,
  14265. src2->grad,
  14266. grad_v,
  14267. zero_table);
  14268. }
  14269. } break;
  14270. case GGML_OP_FLASH_FF:
  14271. {
  14272. GGML_ASSERT(false); // not supported
  14273. } break;
  14274. case GGML_OP_FLASH_ATTN_BACK:
  14275. {
  14276. GGML_ASSERT(false); // not supported
  14277. } break;
  14278. case GGML_OP_SSM_CONV:
  14279. case GGML_OP_SSM_SCAN:
  14280. {
  14281. GGML_ASSERT(false); // TODO: not implemented
  14282. } break;
  14283. case GGML_OP_WIN_PART:
  14284. case GGML_OP_WIN_UNPART:
  14285. case GGML_OP_UNARY:
  14286. {
  14287. switch (ggml_get_unary_op(tensor)) {
  14288. case GGML_UNARY_OP_ABS:
  14289. {
  14290. if (src0->grad) {
  14291. src0->grad =
  14292. ggml_add_or_set(ctx,
  14293. src0->grad,
  14294. ggml_mul(ctx,
  14295. ggml_sgn(ctx, src0),
  14296. tensor->grad),
  14297. zero_table);
  14298. }
  14299. } break;
  14300. case GGML_UNARY_OP_SGN:
  14301. {
  14302. if (src0->grad) {
  14303. // noop
  14304. }
  14305. } break;
  14306. case GGML_UNARY_OP_NEG:
  14307. {
  14308. if (src0->grad) {
  14309. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14310. }
  14311. } break;
  14312. case GGML_UNARY_OP_STEP:
  14313. {
  14314. if (src0->grad) {
  14315. // noop
  14316. }
  14317. } break;
  14318. case GGML_UNARY_OP_TANH:
  14319. {
  14320. GGML_ASSERT(false); // TODO: not implemented
  14321. } break;
  14322. case GGML_UNARY_OP_ELU:
  14323. {
  14324. GGML_ASSERT(false); // TODO: not implemented
  14325. } break;
  14326. case GGML_UNARY_OP_RELU:
  14327. {
  14328. if (src0->grad) {
  14329. src0->grad = ggml_add_or_set(ctx,
  14330. src0->grad,
  14331. ggml_mul(ctx,
  14332. ggml_step(ctx, src0),
  14333. tensor->grad),
  14334. zero_table);
  14335. }
  14336. } break;
  14337. case GGML_UNARY_OP_GELU:
  14338. {
  14339. GGML_ASSERT(false); // TODO: not implemented
  14340. } break;
  14341. case GGML_UNARY_OP_GELU_QUICK:
  14342. {
  14343. GGML_ASSERT(false); // TODO: not implemented
  14344. } break;
  14345. case GGML_UNARY_OP_SILU:
  14346. {
  14347. // necessary for llama
  14348. if (src0->grad) {
  14349. src0->grad = ggml_add_or_set(ctx,
  14350. src0->grad,
  14351. ggml_silu_back(ctx, src0, tensor->grad),
  14352. zero_table);
  14353. }
  14354. } break;
  14355. default:
  14356. GGML_ASSERT(false);
  14357. }
  14358. } break;
  14359. case GGML_OP_GET_REL_POS:
  14360. case GGML_OP_ADD_REL_POS:
  14361. case GGML_OP_MAP_UNARY:
  14362. case GGML_OP_MAP_BINARY:
  14363. case GGML_OP_MAP_CUSTOM1_F32:
  14364. case GGML_OP_MAP_CUSTOM2_F32:
  14365. case GGML_OP_MAP_CUSTOM3_F32:
  14366. case GGML_OP_MAP_CUSTOM1:
  14367. case GGML_OP_MAP_CUSTOM2:
  14368. case GGML_OP_MAP_CUSTOM3:
  14369. {
  14370. GGML_ASSERT(false); // not supported
  14371. } break;
  14372. case GGML_OP_CROSS_ENTROPY_LOSS:
  14373. {
  14374. if (src0->grad) {
  14375. src0->grad = ggml_add_or_set(ctx,
  14376. src0->grad,
  14377. ggml_cross_entropy_loss_back(ctx,
  14378. src0,
  14379. src1,
  14380. tensor->grad),
  14381. zero_table);
  14382. }
  14383. } break;
  14384. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14385. {
  14386. GGML_ASSERT(false); // not supported
  14387. } break;
  14388. case GGML_OP_NONE:
  14389. {
  14390. // nop
  14391. } break;
  14392. case GGML_OP_COUNT:
  14393. {
  14394. GGML_ASSERT(false);
  14395. } break;
  14396. }
  14397. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14398. if (tensor->src[i] && tensor->src[i]->grad) {
  14399. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14400. }
  14401. }
  14402. }
  14403. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14404. if (node->grad == NULL) {
  14405. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14406. // it can also happen during forward pass, if the user performs computations with constants
  14407. if (node->op != GGML_OP_NONE) {
  14408. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14409. }
  14410. }
  14411. // check if already visited
  14412. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14413. return;
  14414. }
  14415. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14416. const int k =
  14417. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14418. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14419. /* unknown order, just fall back to using i*/ i;
  14420. if (node->src[k]) {
  14421. ggml_visit_parents(cgraph, node->src[k]);
  14422. }
  14423. }
  14424. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14425. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14426. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14427. if (strlen(node->name) == 0) {
  14428. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14429. }
  14430. cgraph->leafs[cgraph->n_leafs] = node;
  14431. cgraph->n_leafs++;
  14432. } else {
  14433. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14434. if (strlen(node->name) == 0) {
  14435. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14436. }
  14437. cgraph->nodes[cgraph->n_nodes] = node;
  14438. if (cgraph->grads) {
  14439. cgraph->grads[cgraph->n_nodes] = node->grad;
  14440. }
  14441. cgraph->n_nodes++;
  14442. }
  14443. }
  14444. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14445. if (!expand) {
  14446. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14447. ggml_graph_clear(cgraph);
  14448. }
  14449. const int n0 = cgraph->n_nodes;
  14450. UNUSED(n0);
  14451. ggml_visit_parents(cgraph, tensor);
  14452. const int n_new = cgraph->n_nodes - n0;
  14453. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14454. if (n_new > 0) {
  14455. // the last added node should always be starting point
  14456. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14457. }
  14458. }
  14459. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14460. ggml_build_forward_impl(cgraph, tensor, true);
  14461. }
  14462. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14463. GGML_ASSERT(gf->n_nodes > 0);
  14464. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14465. if (keep) {
  14466. for (int i = 0; i < gf->n_nodes; i++) {
  14467. struct ggml_tensor * node = gf->nodes[i];
  14468. if (node->grad) {
  14469. node->grad = ggml_dup_tensor(ctx, node);
  14470. gf->grads[i] = node->grad;
  14471. }
  14472. }
  14473. }
  14474. // remember original gradients which start with zero values
  14475. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14476. for (int i = 0; i < gf->n_nodes; i++) {
  14477. if (gf->grads[i]) {
  14478. ggml_hash_insert(zero_table, gf->grads[i]);
  14479. }
  14480. }
  14481. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14482. struct ggml_tensor * node = gf->nodes[i];
  14483. // inplace operations to add gradients are not created by ggml_compute_backward
  14484. // use allocator to automatically make inplace operations
  14485. if (node->grad) {
  14486. ggml_compute_backward(ctx, node, zero_table);
  14487. }
  14488. }
  14489. for (int i = 0; i < gf->n_nodes; i++) {
  14490. struct ggml_tensor * node = gf->nodes[i];
  14491. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14492. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14493. ggml_build_forward_expand(gb, node->grad);
  14494. }
  14495. }
  14496. ggml_hash_set_free(zero_table);
  14497. }
  14498. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14499. size_t nbytes = sizeof(struct ggml_cgraph);
  14500. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14501. if (grads) {
  14502. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14503. }
  14504. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14505. return nbytes;
  14506. }
  14507. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14508. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14509. }
  14510. size_t ggml_graph_overhead(void) {
  14511. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14512. }
  14513. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14514. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14515. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14516. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14517. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14518. size_t hash_size = ggml_hash_size(size * 2);
  14519. struct ggml_tensor ** nodes_ptr = data_start;
  14520. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14521. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14522. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14523. // check that we allocated the correct amount of memory
  14524. assert(obj_size == (size_t) (
  14525. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14526. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14527. *cgraph = (struct ggml_cgraph) {
  14528. /*.size =*/ size,
  14529. /*.n_nodes =*/ 0,
  14530. /*.n_leafs =*/ 0,
  14531. /*.nodes =*/ nodes_ptr,
  14532. /*.grads =*/ grads_ptr,
  14533. /*.leafs =*/ leafs_ptr,
  14534. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14535. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14536. /*.perf_runs =*/ 0,
  14537. /*.perf_cycles =*/ 0,
  14538. /*.perf_time_us =*/ 0,
  14539. };
  14540. return cgraph;
  14541. }
  14542. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14543. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14544. }
  14545. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14546. struct ggml_cgraph cgraph = {
  14547. /*.size =*/ 0,
  14548. /*.n_nodes =*/ i1 - i0,
  14549. /*.n_leafs =*/ 0,
  14550. /*.nodes =*/ cgraph0->nodes + i0,
  14551. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14552. /*.leafs =*/ NULL,
  14553. /*.hash_table =*/ { 0, NULL },
  14554. /*.order =*/ cgraph0->order,
  14555. /*.perf_runs =*/ 0,
  14556. /*.perf_cycles =*/ 0,
  14557. /*.perf_time_us =*/ 0,
  14558. };
  14559. return cgraph;
  14560. }
  14561. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14562. GGML_ASSERT(dst->size >= src->n_leafs);
  14563. GGML_ASSERT(dst->size >= src->n_nodes);
  14564. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14565. dst->n_leafs = src->n_leafs;
  14566. dst->n_nodes = src->n_nodes;
  14567. dst->order = src->order;
  14568. for (int i = 0; i < src->n_leafs; ++i) {
  14569. dst->leafs[i] = src->leafs[i];
  14570. }
  14571. for (int i = 0; i < src->n_nodes; ++i) {
  14572. dst->nodes[i] = src->nodes[i];
  14573. }
  14574. if (src->grads) {
  14575. GGML_ASSERT(dst->grads != NULL);
  14576. for (int i = 0; i < src->n_nodes; ++i) {
  14577. dst->grads[i] = src->grads[i];
  14578. }
  14579. }
  14580. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14581. if (src->visited_hash_table.keys[i]) {
  14582. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14583. }
  14584. }
  14585. }
  14586. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14587. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14588. ggml_graph_cpy(cgraph, result);
  14589. return result;
  14590. }
  14591. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14592. GGML_ASSERT(cgraph->grads != NULL);
  14593. for (int i = 0; i < cgraph->n_nodes; i++) {
  14594. struct ggml_tensor * grad = cgraph->grads[i];
  14595. if (grad) {
  14596. ggml_set_zero(grad);
  14597. }
  14598. }
  14599. }
  14600. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14601. cgraph->n_leafs = 0;
  14602. cgraph->n_nodes = 0;
  14603. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14604. }
  14605. //
  14606. // thread data
  14607. //
  14608. // synchronization is done via busy loops
  14609. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14610. //
  14611. #ifdef __APPLE__
  14612. //#include <os/lock.h>
  14613. //
  14614. //typedef os_unfair_lock ggml_lock_t;
  14615. //
  14616. //#define ggml_lock_init(x) UNUSED(x)
  14617. //#define ggml_lock_destroy(x) UNUSED(x)
  14618. //#define ggml_lock_lock os_unfair_lock_lock
  14619. //#define ggml_lock_unlock os_unfair_lock_unlock
  14620. //
  14621. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14622. typedef int ggml_lock_t;
  14623. #define ggml_lock_init(x) UNUSED(x)
  14624. #define ggml_lock_destroy(x) UNUSED(x)
  14625. #define ggml_lock_lock(x) UNUSED(x)
  14626. #define ggml_lock_unlock(x) UNUSED(x)
  14627. #define GGML_LOCK_INITIALIZER 0
  14628. typedef pthread_t ggml_thread_t;
  14629. #define ggml_thread_create pthread_create
  14630. #define ggml_thread_join pthread_join
  14631. #else
  14632. //typedef pthread_spinlock_t ggml_lock_t;
  14633. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14634. //#define ggml_lock_destroy pthread_spin_destroy
  14635. //#define ggml_lock_lock pthread_spin_lock
  14636. //#define ggml_lock_unlock pthread_spin_unlock
  14637. typedef int ggml_lock_t;
  14638. #define ggml_lock_init(x) UNUSED(x)
  14639. #define ggml_lock_destroy(x) UNUSED(x)
  14640. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14641. #define ggml_lock_lock(x) _mm_pause()
  14642. #else
  14643. #define ggml_lock_lock(x) UNUSED(x)
  14644. #endif
  14645. #define ggml_lock_unlock(x) UNUSED(x)
  14646. #define GGML_LOCK_INITIALIZER 0
  14647. typedef pthread_t ggml_thread_t;
  14648. #define ggml_thread_create pthread_create
  14649. #define ggml_thread_join pthread_join
  14650. #endif
  14651. // Android's libc implementation "bionic" does not support setting affinity
  14652. #if defined(__gnu_linux__)
  14653. static void set_numa_thread_affinity(int thread_n) {
  14654. if (!ggml_is_numa()) {
  14655. return;
  14656. }
  14657. int node_num;
  14658. int rv;
  14659. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14660. switch(g_state.numa.numa_strategy) {
  14661. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14662. // run thread on node_num thread_n / (threads per node)
  14663. node_num = thread_n % g_state.numa.n_nodes;
  14664. break;
  14665. case GGML_NUMA_STRATEGY_ISOLATE:
  14666. // run thread on current_node
  14667. node_num = g_state.numa.current_node;
  14668. break;
  14669. case GGML_NUMA_STRATEGY_NUMACTL:
  14670. // use the cpuset that numactl gave us
  14671. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14672. if (rv) {
  14673. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14674. }
  14675. return;
  14676. default:
  14677. return;
  14678. }
  14679. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14680. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14681. CPU_ZERO_S(setsize, cpus);
  14682. for (size_t i = 0; i < node->n_cpus; ++i) {
  14683. CPU_SET_S(node->cpus[i], setsize, cpus);
  14684. }
  14685. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14686. if (rv) {
  14687. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14688. }
  14689. CPU_FREE(cpus);
  14690. }
  14691. static void clear_numa_thread_affinity(void) {
  14692. if (!ggml_is_numa()) {
  14693. return;
  14694. }
  14695. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14696. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14697. CPU_ZERO_S(setsize, cpus);
  14698. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14699. CPU_SET_S(i, setsize, cpus);
  14700. }
  14701. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14702. if (rv) {
  14703. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14704. }
  14705. CPU_FREE(cpus);
  14706. }
  14707. #else
  14708. // TODO: Windows etc.
  14709. // (the linux implementation may also work on BSD, someone should test)
  14710. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14711. static void clear_numa_thread_affinity(void) {}
  14712. #endif
  14713. struct ggml_compute_state_shared {
  14714. const struct ggml_cgraph * cgraph;
  14715. const struct ggml_cplan * cplan;
  14716. int64_t perf_node_start_cycles;
  14717. int64_t perf_node_start_time_us;
  14718. const int n_threads;
  14719. // synchronization primitives
  14720. atomic_int n_active; // num active threads
  14721. atomic_int node_n; // active graph node
  14722. atomic_int node_task; // active graph node task phase
  14723. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14724. void * abort_callback_data;
  14725. };
  14726. struct ggml_compute_state {
  14727. ggml_thread_t thrd;
  14728. int ith;
  14729. struct ggml_compute_state_shared * shared;
  14730. enum ggml_status ec;
  14731. };
  14732. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14733. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14734. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14735. node->perf_runs++;
  14736. node->perf_cycles += cycles_cur;
  14737. node->perf_time_us += time_us_cur;
  14738. }
  14739. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14740. int n_tasks = 0;
  14741. if (ggml_is_empty(node)) {
  14742. // no need to multi-thread a no-op
  14743. n_tasks = 1;
  14744. return n_tasks;
  14745. }
  14746. switch (node->op) {
  14747. case GGML_OP_CPY:
  14748. case GGML_OP_DUP:
  14749. case GGML_OP_ADD:
  14750. case GGML_OP_ADD1:
  14751. case GGML_OP_ACC:
  14752. {
  14753. n_tasks = n_threads;
  14754. } break;
  14755. case GGML_OP_SUB:
  14756. case GGML_OP_SQR:
  14757. case GGML_OP_SQRT:
  14758. case GGML_OP_LOG:
  14759. case GGML_OP_SUM:
  14760. case GGML_OP_SUM_ROWS:
  14761. case GGML_OP_MEAN:
  14762. case GGML_OP_ARGMAX:
  14763. case GGML_OP_REPEAT:
  14764. case GGML_OP_REPEAT_BACK:
  14765. case GGML_OP_LEAKY_RELU:
  14766. {
  14767. n_tasks = 1;
  14768. } break;
  14769. case GGML_OP_UNARY:
  14770. switch (ggml_get_unary_op(node)) {
  14771. case GGML_UNARY_OP_ABS:
  14772. case GGML_UNARY_OP_SGN:
  14773. case GGML_UNARY_OP_NEG:
  14774. case GGML_UNARY_OP_STEP:
  14775. case GGML_UNARY_OP_TANH:
  14776. case GGML_UNARY_OP_ELU:
  14777. case GGML_UNARY_OP_RELU:
  14778. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14779. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14780. {
  14781. n_tasks = 1;
  14782. } break;
  14783. case GGML_UNARY_OP_GELU:
  14784. case GGML_UNARY_OP_GELU_QUICK:
  14785. case GGML_UNARY_OP_SILU:
  14786. {
  14787. n_tasks = n_threads;
  14788. } break;
  14789. default:
  14790. GGML_ASSERT(false);
  14791. }
  14792. break;
  14793. case GGML_OP_SILU_BACK:
  14794. case GGML_OP_MUL:
  14795. case GGML_OP_DIV:
  14796. case GGML_OP_NORM:
  14797. case GGML_OP_RMS_NORM:
  14798. case GGML_OP_RMS_NORM_BACK:
  14799. case GGML_OP_GROUP_NORM:
  14800. case GGML_OP_CONCAT:
  14801. {
  14802. n_tasks = n_threads;
  14803. } break;
  14804. case GGML_OP_MUL_MAT:
  14805. {
  14806. n_tasks = n_threads;
  14807. // TODO: use different scheduling for different matrix sizes
  14808. //const int nr0 = ggml_nrows(node->src[0]);
  14809. //const int nr1 = ggml_nrows(node->src[1]);
  14810. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14811. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14812. } break;
  14813. case GGML_OP_MUL_MAT_ID:
  14814. {
  14815. n_tasks = n_threads;
  14816. } break;
  14817. case GGML_OP_OUT_PROD:
  14818. {
  14819. n_tasks = n_threads;
  14820. } break;
  14821. case GGML_OP_GET_ROWS:
  14822. {
  14823. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14824. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14825. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14826. } break;
  14827. case GGML_OP_SCALE:
  14828. case GGML_OP_SET:
  14829. case GGML_OP_CONT:
  14830. case GGML_OP_RESHAPE:
  14831. case GGML_OP_VIEW:
  14832. case GGML_OP_PERMUTE:
  14833. case GGML_OP_TRANSPOSE:
  14834. case GGML_OP_GET_ROWS_BACK:
  14835. case GGML_OP_DIAG:
  14836. {
  14837. n_tasks = 1;
  14838. } break;
  14839. case GGML_OP_DIAG_MASK_ZERO:
  14840. case GGML_OP_DIAG_MASK_INF:
  14841. case GGML_OP_SOFT_MAX_BACK:
  14842. case GGML_OP_ROPE:
  14843. case GGML_OP_ROPE_BACK:
  14844. case GGML_OP_ADD_REL_POS:
  14845. {
  14846. n_tasks = n_threads;
  14847. } break;
  14848. case GGML_OP_ALIBI:
  14849. {
  14850. n_tasks = 1; //TODO
  14851. } break;
  14852. case GGML_OP_CLAMP:
  14853. {
  14854. n_tasks = 1; //TODO
  14855. } break;
  14856. case GGML_OP_SOFT_MAX:
  14857. {
  14858. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14859. } break;
  14860. case GGML_OP_CONV_TRANSPOSE_1D:
  14861. {
  14862. n_tasks = n_threads;
  14863. } break;
  14864. case GGML_OP_IM2COL:
  14865. {
  14866. n_tasks = n_threads;
  14867. } break;
  14868. case GGML_OP_CONV_TRANSPOSE_2D:
  14869. {
  14870. n_tasks = n_threads;
  14871. } break;
  14872. case GGML_OP_POOL_1D:
  14873. case GGML_OP_POOL_2D:
  14874. {
  14875. n_tasks = 1;
  14876. } break;
  14877. case GGML_OP_UPSCALE:
  14878. {
  14879. n_tasks = n_threads;
  14880. } break;
  14881. case GGML_OP_PAD:
  14882. {
  14883. n_tasks = n_threads;
  14884. } break;
  14885. case GGML_OP_ARANGE:
  14886. {
  14887. n_tasks = n_threads;
  14888. } break;
  14889. case GGML_OP_TIMESTEP_EMBEDDING:
  14890. {
  14891. n_tasks = n_threads;
  14892. } break;
  14893. case GGML_OP_ARGSORT:
  14894. {
  14895. n_tasks = n_threads;
  14896. } break;
  14897. case GGML_OP_FLASH_ATTN:
  14898. {
  14899. n_tasks = n_threads;
  14900. } break;
  14901. case GGML_OP_FLASH_FF:
  14902. {
  14903. n_tasks = n_threads;
  14904. } break;
  14905. case GGML_OP_FLASH_ATTN_BACK:
  14906. {
  14907. n_tasks = n_threads;
  14908. } break;
  14909. case GGML_OP_SSM_CONV:
  14910. case GGML_OP_SSM_SCAN:
  14911. {
  14912. n_tasks = n_threads;
  14913. } break;
  14914. case GGML_OP_WIN_PART:
  14915. case GGML_OP_WIN_UNPART:
  14916. case GGML_OP_GET_REL_POS:
  14917. case GGML_OP_MAP_UNARY:
  14918. case GGML_OP_MAP_BINARY:
  14919. case GGML_OP_MAP_CUSTOM1_F32:
  14920. case GGML_OP_MAP_CUSTOM2_F32:
  14921. case GGML_OP_MAP_CUSTOM3_F32:
  14922. {
  14923. n_tasks = 1;
  14924. } break;
  14925. case GGML_OP_MAP_CUSTOM1:
  14926. {
  14927. struct ggml_map_custom1_op_params p;
  14928. memcpy(&p, node->op_params, sizeof(p));
  14929. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14930. n_tasks = n_threads;
  14931. } else {
  14932. n_tasks = MIN(p.n_tasks, n_threads);
  14933. }
  14934. } break;
  14935. case GGML_OP_MAP_CUSTOM2:
  14936. {
  14937. struct ggml_map_custom2_op_params p;
  14938. memcpy(&p, node->op_params, sizeof(p));
  14939. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14940. n_tasks = n_threads;
  14941. } else {
  14942. n_tasks = MIN(p.n_tasks, n_threads);
  14943. }
  14944. } break;
  14945. case GGML_OP_MAP_CUSTOM3:
  14946. {
  14947. struct ggml_map_custom3_op_params p;
  14948. memcpy(&p, node->op_params, sizeof(p));
  14949. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14950. n_tasks = n_threads;
  14951. } else {
  14952. n_tasks = MIN(p.n_tasks, n_threads);
  14953. }
  14954. } break;
  14955. case GGML_OP_CROSS_ENTROPY_LOSS:
  14956. {
  14957. n_tasks = n_threads;
  14958. } break;
  14959. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14960. {
  14961. n_tasks = n_threads;
  14962. } break;
  14963. case GGML_OP_NONE:
  14964. {
  14965. n_tasks = 1;
  14966. } break;
  14967. case GGML_OP_COUNT:
  14968. {
  14969. GGML_ASSERT(false);
  14970. } break;
  14971. default:
  14972. {
  14973. fprintf(stderr, "%s: op not implemented: ", __func__);
  14974. if (node->op < GGML_OP_COUNT) {
  14975. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14976. } else {
  14977. fprintf(stderr, "%d\n", node->op);
  14978. }
  14979. GGML_ASSERT(false);
  14980. } break;
  14981. }
  14982. assert(n_tasks > 0);
  14983. return n_tasks;
  14984. }
  14985. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14986. // wait for other threads to finish
  14987. const int last_node_n = * node_n;
  14988. while (true) {
  14989. if (do_yield) {
  14990. sched_yield();
  14991. }
  14992. * node_n = atomic_load(&state->shared->node_n);
  14993. if (* node_n != last_node_n) break;
  14994. }
  14995. }
  14996. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14997. // wait for other threads to finish
  14998. const int last_task_phase = * task_phase;
  14999. while (true) {
  15000. if (do_yield) {
  15001. sched_yield();
  15002. }
  15003. * task_phase = atomic_load(&state->shared->node_task);
  15004. if (* task_phase != last_task_phase) break;
  15005. }
  15006. }
  15007. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15008. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15009. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15010. const struct ggml_cplan * cplan = state->shared->cplan;
  15011. const int n_threads = state->shared->n_threads;
  15012. set_numa_thread_affinity(state->ith);
  15013. int node_n = -1;
  15014. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15015. while (true) {
  15016. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15017. state->shared->node_n += 1;
  15018. state->ec = GGML_STATUS_ABORTED;
  15019. return 0;
  15020. }
  15021. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15022. // all other threads are finished and spinning
  15023. // do finalize and init here so we don't have synchronize again
  15024. struct ggml_compute_params params = {
  15025. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15026. /*.ith =*/ 0,
  15027. /*.nth =*/ 0,
  15028. /*.wsize =*/ cplan->work_size,
  15029. /*.wdata =*/ cplan->work_data,
  15030. };
  15031. if (node_n != -1) {
  15032. /* FINALIZE */
  15033. struct ggml_tensor * node = cgraph->nodes[node_n];
  15034. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15035. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15036. ggml_compute_forward(&params, node);
  15037. }
  15038. ggml_graph_compute_perf_stats_node(node, state->shared);
  15039. }
  15040. // distribute new work or execute it direct if 1T
  15041. while (++node_n < cgraph->n_nodes) {
  15042. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15043. struct ggml_tensor * node = cgraph->nodes[node_n];
  15044. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15045. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15046. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15047. params.nth = n_tasks;
  15048. if (n_tasks == 1) {
  15049. /* INIT */
  15050. if (GGML_OP_HAS_INIT[node->op]) {
  15051. params.type = GGML_TASK_TYPE_INIT;
  15052. ggml_compute_forward(&params, node);
  15053. }
  15054. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15055. // they do something more efficient than spinning (?)
  15056. params.type = GGML_TASK_TYPE_COMPUTE;
  15057. ggml_compute_forward(&params, node);
  15058. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15059. params.type = GGML_TASK_TYPE_FINALIZE;
  15060. ggml_compute_forward(&params, node);
  15061. }
  15062. ggml_graph_compute_perf_stats_node(node, state->shared);
  15063. } else {
  15064. break;
  15065. }
  15066. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15067. break;
  15068. }
  15069. }
  15070. task_phase = GGML_TASK_TYPE_INIT;
  15071. atomic_store(&state->shared->n_active, n_threads);
  15072. atomic_store(&state->shared->node_n, node_n);
  15073. atomic_store(&state->shared->node_task, task_phase);
  15074. } else {
  15075. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15076. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15077. }
  15078. // check if we should stop
  15079. if (node_n >= cgraph->n_nodes) break;
  15080. /* INIT & COMPUTE */
  15081. struct ggml_tensor * node = cgraph->nodes[node_n];
  15082. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15083. struct ggml_compute_params params = {
  15084. /*.type =*/ GGML_TASK_TYPE_INIT,
  15085. /*.ith =*/ state->ith,
  15086. /*.nth =*/ n_tasks,
  15087. /*.wsize =*/ cplan->work_size,
  15088. /*.wdata =*/ cplan->work_data,
  15089. };
  15090. if (state->ith < n_tasks) {
  15091. if (GGML_OP_HAS_INIT[node->op]) {
  15092. ggml_compute_forward(&params, node);
  15093. }
  15094. }
  15095. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15096. task_phase = GGML_TASK_TYPE_COMPUTE;
  15097. atomic_store(&state->shared->n_active, n_threads);
  15098. atomic_store(&state->shared->node_task, task_phase);
  15099. }
  15100. else {
  15101. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15102. // depending on the workload and the operating system.
  15103. // since it is not clear what is the best approach, it should potentially become user-configurable
  15104. // ref: https://github.com/ggerganov/ggml/issues/291
  15105. // UPD: adding the do_yield flag seems to resolve the issue universally
  15106. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15107. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15108. }
  15109. if (state->ith < n_tasks) {
  15110. params.type = GGML_TASK_TYPE_COMPUTE;
  15111. ggml_compute_forward(&params, node);
  15112. }
  15113. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15114. task_phase = GGML_TASK_TYPE_FINALIZE;
  15115. atomic_store(&state->shared->n_active, n_threads);
  15116. atomic_store(&state->shared->node_task, task_phase);
  15117. }
  15118. else {
  15119. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15120. }
  15121. }
  15122. return 0;
  15123. }
  15124. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15125. if (n_threads <= 0) {
  15126. n_threads = GGML_DEFAULT_N_THREADS;
  15127. }
  15128. size_t work_size = 0;
  15129. struct ggml_cplan cplan;
  15130. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15131. int max_tasks = 1;
  15132. // thread scheduling for the different operations + work buffer size estimation
  15133. for (int i = 0; i < cgraph->n_nodes; i++) {
  15134. struct ggml_tensor * node = cgraph->nodes[i];
  15135. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15136. max_tasks = MAX(max_tasks, n_tasks);
  15137. size_t cur = 0;
  15138. switch (node->op) {
  15139. case GGML_OP_CPY:
  15140. case GGML_OP_DUP:
  15141. {
  15142. if (ggml_is_quantized(node->type)) {
  15143. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15144. }
  15145. } break;
  15146. case GGML_OP_ADD:
  15147. case GGML_OP_ADD1:
  15148. {
  15149. if (ggml_is_quantized(node->src[0]->type)) {
  15150. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15151. }
  15152. } break;
  15153. case GGML_OP_ACC:
  15154. {
  15155. if (ggml_is_quantized(node->src[0]->type)) {
  15156. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15157. }
  15158. } break;
  15159. case GGML_OP_MUL_MAT:
  15160. {
  15161. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15162. #if defined(GGML_USE_CLBLAST)
  15163. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15164. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15165. } else
  15166. #endif
  15167. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15168. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15169. if (node->src[0]->type != GGML_TYPE_F32) {
  15170. // here we need memory for fully dequantized matrix from src0
  15171. // take into account that src0 can be broadcasted into src1[2,3]
  15172. cur = ggml_type_size(GGML_TYPE_F32)
  15173. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15174. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15175. }
  15176. } else
  15177. #endif
  15178. if (node->src[1]->type != vec_dot_type) {
  15179. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15180. }
  15181. } break;
  15182. case GGML_OP_MUL_MAT_ID:
  15183. {
  15184. cur = 0;
  15185. const struct ggml_tensor * src0 = node->src[2];
  15186. const struct ggml_tensor * src1 = node->src[1];
  15187. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15188. if (src1->type != vec_dot_type) {
  15189. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15190. }
  15191. const int n_as = ggml_get_op_params_i32(node, 1);
  15192. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15193. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15194. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15195. } break;
  15196. case GGML_OP_OUT_PROD:
  15197. {
  15198. if (ggml_is_quantized(node->src[0]->type)) {
  15199. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15200. }
  15201. } break;
  15202. case GGML_OP_SOFT_MAX:
  15203. case GGML_OP_ROPE:
  15204. {
  15205. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15206. } break;
  15207. case GGML_OP_CONV_TRANSPOSE_1D:
  15208. {
  15209. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15210. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15211. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15212. const int64_t ne00 = node->src[0]->ne[0]; // K
  15213. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15214. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15215. const int64_t ne10 = node->src[1]->ne[0]; // L
  15216. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15217. if (node->src[0]->type == GGML_TYPE_F16 &&
  15218. node->src[1]->type == GGML_TYPE_F32) {
  15219. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15220. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15221. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15222. node->src[1]->type == GGML_TYPE_F32) {
  15223. cur += sizeof(float)*ne00*ne01*ne02;
  15224. cur += sizeof(float)*ne10*ne11;
  15225. } else {
  15226. GGML_ASSERT(false);
  15227. }
  15228. } break;
  15229. case GGML_OP_CONV_TRANSPOSE_2D:
  15230. {
  15231. const int64_t ne00 = node->src[0]->ne[0]; // W
  15232. const int64_t ne01 = node->src[0]->ne[1]; // H
  15233. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15234. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15235. const int64_t ne10 = node->src[1]->ne[0]; // W
  15236. const int64_t ne11 = node->src[1]->ne[1]; // H
  15237. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15238. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15239. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15240. } break;
  15241. case GGML_OP_FLASH_ATTN:
  15242. {
  15243. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15244. if (node->src[1]->type == GGML_TYPE_F32) {
  15245. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15246. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15247. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15248. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15249. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15250. }
  15251. } break;
  15252. case GGML_OP_FLASH_FF:
  15253. {
  15254. if (node->src[1]->type == GGML_TYPE_F32) {
  15255. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15256. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15257. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15258. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15259. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15260. }
  15261. } break;
  15262. case GGML_OP_FLASH_ATTN_BACK:
  15263. {
  15264. const int64_t D = node->src[0]->ne[0];
  15265. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15266. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15267. if (node->src[1]->type == GGML_TYPE_F32) {
  15268. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15269. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15270. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15271. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15272. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15273. }
  15274. } break;
  15275. case GGML_OP_CROSS_ENTROPY_LOSS:
  15276. {
  15277. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15278. } break;
  15279. case GGML_OP_COUNT:
  15280. {
  15281. GGML_ASSERT(false);
  15282. } break;
  15283. default:
  15284. break;
  15285. }
  15286. work_size = MAX(work_size, cur);
  15287. }
  15288. if (work_size > 0) {
  15289. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15290. }
  15291. cplan.n_threads = MIN(max_tasks, n_threads);
  15292. cplan.work_size = work_size;
  15293. cplan.work_data = NULL;
  15294. return cplan;
  15295. }
  15296. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15297. {
  15298. GGML_ASSERT(cplan);
  15299. GGML_ASSERT(cplan->n_threads > 0);
  15300. if (cplan->work_size > 0) {
  15301. GGML_ASSERT(cplan->work_data);
  15302. }
  15303. }
  15304. #ifdef GGML_USE_VULKAN
  15305. for (int i = 0; i < cgraph->n_nodes; i++) {
  15306. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15307. }
  15308. ggml_vk_preallocate_buffers_cpu_assist();
  15309. for (int i = 0; i < cgraph->n_nodes; i++) {
  15310. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15311. }
  15312. #endif
  15313. const int n_threads = cplan->n_threads;
  15314. struct ggml_compute_state_shared state_shared = {
  15315. /*.cgraph =*/ cgraph,
  15316. /*.cgraph_plan =*/ cplan,
  15317. /*.perf_node_start_cycles =*/ 0,
  15318. /*.perf_node_start_time_us =*/ 0,
  15319. /*.n_threads =*/ n_threads,
  15320. /*.n_active =*/ n_threads,
  15321. /*.node_n =*/ -1,
  15322. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15323. /*.abort_callback =*/ NULL,
  15324. /*.abort_callback_data =*/ NULL,
  15325. };
  15326. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15327. // create thread pool
  15328. if (n_threads > 1) {
  15329. for (int j = 1; j < n_threads; ++j) {
  15330. workers[j] = (struct ggml_compute_state) {
  15331. .thrd = 0,
  15332. .ith = j,
  15333. .shared = &state_shared,
  15334. .ec = GGML_STATUS_SUCCESS,
  15335. };
  15336. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15337. GGML_ASSERT(rc == 0);
  15338. UNUSED(rc);
  15339. }
  15340. }
  15341. workers[0].ith = 0;
  15342. workers[0].shared = &state_shared;
  15343. workers[0].ec = GGML_STATUS_SUCCESS;
  15344. const int64_t perf_start_cycles = ggml_perf_cycles();
  15345. const int64_t perf_start_time_us = ggml_perf_time_us();
  15346. // this is a work thread too
  15347. ggml_graph_compute_thread(&workers[0]);
  15348. enum ggml_status compute_status = workers[0].ec;
  15349. // don't leave affinity set on the main thread
  15350. clear_numa_thread_affinity();
  15351. // join or kill thread pool
  15352. if (n_threads > 1) {
  15353. for (int j = 1; j < n_threads; j++) {
  15354. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15355. GGML_ASSERT(rc == 0);
  15356. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15357. compute_status = workers[j].ec;
  15358. }
  15359. }
  15360. #ifdef GGML_USE_VULKAN
  15361. ggml_vk_graph_cleanup_cpu_assist();
  15362. #endif
  15363. // performance stats (graph)
  15364. {
  15365. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15366. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15367. cgraph->perf_runs++;
  15368. cgraph->perf_cycles += perf_cycles_cur;
  15369. cgraph->perf_time_us += perf_time_us_cur;
  15370. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15371. __func__, cgraph->perf_runs,
  15372. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15373. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15374. (double) perf_time_us_cur / 1000.0,
  15375. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15376. }
  15377. return compute_status;
  15378. }
  15379. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15380. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15381. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15382. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15383. return ggml_graph_compute(cgraph, &cplan);
  15384. }
  15385. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15386. for (int i = 0; i < cgraph->n_leafs; i++) {
  15387. struct ggml_tensor * leaf = cgraph->leafs[i];
  15388. if (strcmp(leaf->name, name) == 0) {
  15389. return leaf;
  15390. }
  15391. }
  15392. for (int i = 0; i < cgraph->n_nodes; i++) {
  15393. struct ggml_tensor * node = cgraph->nodes[i];
  15394. if (strcmp(node->name, name) == 0) {
  15395. return node;
  15396. }
  15397. }
  15398. return NULL;
  15399. }
  15400. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15401. const int64_t * ne = tensor->ne;
  15402. const size_t * nb = tensor->nb;
  15403. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15404. ggml_type_name(tensor->type),
  15405. ggml_op_name (tensor->op),
  15406. ggml_n_dims(tensor),
  15407. ne[0], ne[1], ne[2], ne[3],
  15408. nb[0], nb[1], nb[2], nb[3],
  15409. tensor->data,
  15410. tensor->name);
  15411. }
  15412. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15413. const int64_t * ne = tensor->ne;
  15414. const size_t * nb = tensor->nb;
  15415. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15416. arg,
  15417. ggml_type_name(tensor->type),
  15418. ggml_op_name (tensor->op),
  15419. ggml_n_dims(tensor),
  15420. ne[0], ne[1], ne[2], ne[3],
  15421. nb[0], nb[1], nb[2], nb[3],
  15422. tensor->data,
  15423. tensor->name);
  15424. }
  15425. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15426. uint64_t size_eval = 0;
  15427. // compute size of intermediate results
  15428. // TODO: does not take into account scratch buffers !!!!
  15429. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15430. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15431. }
  15432. // print
  15433. {
  15434. FILE * fout = stdout;
  15435. fprintf(fout, "\n");
  15436. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15437. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15438. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15439. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15440. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15441. // header
  15442. fprintf(fout, "\n");
  15443. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15444. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15445. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15446. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15447. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15448. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15449. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15450. }
  15451. // header
  15452. fprintf(fout, "\n");
  15453. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15454. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15455. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15456. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15457. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15458. if (cgraph->nodes[i]->src[j]) {
  15459. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15460. }
  15461. }
  15462. fprintf(fout, "\n");
  15463. }
  15464. fprintf(fout, "\n");
  15465. }
  15466. // write binary data
  15467. {
  15468. FILE * fout = ggml_fopen(fname, "wb");
  15469. if (!fout) {
  15470. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15471. return;
  15472. }
  15473. // header
  15474. {
  15475. const uint32_t magic = GGML_FILE_MAGIC;
  15476. const uint32_t version = GGML_FILE_VERSION;
  15477. const uint32_t n_leafs = cgraph->n_leafs;
  15478. const uint32_t n_nodes = cgraph->n_nodes;
  15479. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15480. fwrite(&version, sizeof(uint32_t), 1, fout);
  15481. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15482. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15483. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15484. }
  15485. // leafs
  15486. {
  15487. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15488. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15489. const uint32_t type = tensor->type;
  15490. const uint32_t op = tensor->op;
  15491. fwrite(&type, sizeof(uint32_t), 1, fout);
  15492. fwrite(&op, sizeof(uint32_t), 1, fout);
  15493. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15494. const uint64_t ne = tensor->ne[j];
  15495. const uint64_t nb = tensor->nb[j];
  15496. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15497. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15498. }
  15499. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15500. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15501. // dump the data
  15502. // TODO: pad this to 32 byte boundary
  15503. {
  15504. const size_t size = ggml_nbytes(tensor);
  15505. fwrite(tensor->data, sizeof(char), size, fout);
  15506. }
  15507. }
  15508. }
  15509. // nodes
  15510. {
  15511. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15512. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15513. const uint32_t type = tensor->type;
  15514. const uint32_t op = tensor->op;
  15515. fwrite(&type, sizeof(uint32_t), 1, fout);
  15516. fwrite(&op, sizeof(uint32_t), 1, fout);
  15517. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15518. const uint64_t ne = tensor->ne[j];
  15519. const uint64_t nb = tensor->nb[j];
  15520. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15521. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15522. }
  15523. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15524. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15525. // output the op arguments
  15526. {
  15527. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15528. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15529. args[j] = tensor->src[j];
  15530. }
  15531. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15532. if (args[j]) {
  15533. int32_t idx = -1;
  15534. // check if leaf
  15535. {
  15536. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15537. if (args[j] == cgraph->leafs[k]) {
  15538. idx = k;
  15539. break;
  15540. }
  15541. }
  15542. }
  15543. // check if node
  15544. if (idx == -1) {
  15545. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15546. if (args[j] == cgraph->nodes[k]) {
  15547. idx = cgraph->n_leafs + k;
  15548. break;
  15549. }
  15550. }
  15551. }
  15552. if (idx == -1) {
  15553. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15554. fclose(fout);
  15555. return;
  15556. }
  15557. fwrite(&idx, sizeof(int32_t), 1, fout);
  15558. } else {
  15559. const int32_t nul = -1;
  15560. fwrite(&nul, sizeof(int32_t), 1, fout);
  15561. }
  15562. }
  15563. }
  15564. }
  15565. }
  15566. fclose(fout);
  15567. }
  15568. }
  15569. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15570. assert(*ctx_data == NULL);
  15571. assert(*ctx_eval == NULL);
  15572. struct ggml_cgraph * result = NULL;
  15573. struct ggml_tensor * data = NULL;
  15574. // read file into data
  15575. {
  15576. FILE * fin = ggml_fopen(fname, "rb");
  15577. if (!fin) {
  15578. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15579. return result;
  15580. }
  15581. size_t fsize = 0;
  15582. fseek(fin, 0, SEEK_END);
  15583. fsize = ftell(fin);
  15584. fseek(fin, 0, SEEK_SET);
  15585. // create the data context
  15586. {
  15587. const size_t overhead = 1*ggml_tensor_overhead();
  15588. struct ggml_init_params params = {
  15589. .mem_size = fsize + overhead,
  15590. .mem_buffer = NULL,
  15591. .no_alloc = false,
  15592. };
  15593. *ctx_data = ggml_init(params);
  15594. if (!*ctx_data) {
  15595. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15596. fclose(fin);
  15597. return result;
  15598. }
  15599. }
  15600. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15601. {
  15602. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15603. if (ret != fsize) {
  15604. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15605. fclose(fin);
  15606. return result;
  15607. }
  15608. }
  15609. fclose(fin);
  15610. }
  15611. // populate result
  15612. {
  15613. char * ptr = (char *) data->data;
  15614. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15615. if (magic != GGML_FILE_MAGIC) {
  15616. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15617. return result;
  15618. }
  15619. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15620. if (version != GGML_FILE_VERSION) {
  15621. fprintf(stderr, "%s: invalid version number\n", __func__);
  15622. return result;
  15623. }
  15624. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15625. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15626. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15627. const int graph_size = MAX(n_leafs, n_nodes);
  15628. // create the data context
  15629. {
  15630. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15631. struct ggml_init_params params = {
  15632. .mem_size = size_eval + overhead,
  15633. .mem_buffer = NULL,
  15634. .no_alloc = true,
  15635. };
  15636. *ctx_eval = ggml_init(params);
  15637. if (!*ctx_eval) {
  15638. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15639. return result;
  15640. }
  15641. }
  15642. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15643. result->n_leafs = n_leafs;
  15644. result->n_nodes = n_nodes;
  15645. // leafs
  15646. {
  15647. uint32_t type;
  15648. uint32_t op;
  15649. for (uint32_t i = 0; i < n_leafs; ++i) {
  15650. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15651. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15652. int64_t ne[GGML_MAX_DIMS];
  15653. size_t nb[GGML_MAX_DIMS];
  15654. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15655. uint64_t ne_cur;
  15656. uint64_t nb_cur;
  15657. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15658. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15659. ne[j] = ne_cur;
  15660. nb[j] = nb_cur;
  15661. }
  15662. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15663. tensor->op = (enum ggml_op) op;
  15664. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15665. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15666. tensor->data = (void *) ptr;
  15667. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15668. tensor->nb[j] = nb[j];
  15669. }
  15670. result->leafs[i] = tensor;
  15671. ptr += ggml_nbytes(tensor);
  15672. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15673. }
  15674. }
  15675. ggml_set_no_alloc(*ctx_eval, false);
  15676. // nodes
  15677. {
  15678. uint32_t type;
  15679. uint32_t op;
  15680. for (uint32_t i = 0; i < n_nodes; ++i) {
  15681. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15682. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15683. enum ggml_op eop = (enum ggml_op) op;
  15684. int64_t ne[GGML_MAX_DIMS];
  15685. size_t nb[GGML_MAX_DIMS];
  15686. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15687. uint64_t ne_cur;
  15688. uint64_t nb_cur;
  15689. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15690. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15691. ne[j] = ne_cur;
  15692. nb[j] = nb_cur;
  15693. }
  15694. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15695. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15696. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15697. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15698. // parse args
  15699. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15700. const int32_t arg_idx = ptr_arg_idx[j];
  15701. if (arg_idx == -1) {
  15702. continue;
  15703. }
  15704. if (arg_idx < result->n_leafs) {
  15705. args[j] = result->leafs[arg_idx];
  15706. } else {
  15707. args[j] = result->nodes[arg_idx - result->n_leafs];
  15708. }
  15709. }
  15710. // create the tensor
  15711. // "view" operations are handled differently
  15712. // TODO: handle inplace ops - currently a copy is always made
  15713. struct ggml_tensor * tensor = NULL;
  15714. switch (eop) {
  15715. // TODO: implement other view ops
  15716. case GGML_OP_RESHAPE:
  15717. {
  15718. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15719. } break;
  15720. case GGML_OP_VIEW:
  15721. {
  15722. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15723. size_t offs;
  15724. memcpy(&offs, ptr_op_params, sizeof(offs));
  15725. tensor->data = ((char *) tensor->data) + offs;
  15726. } break;
  15727. case GGML_OP_TRANSPOSE:
  15728. {
  15729. tensor = ggml_transpose(*ctx_eval, args[0]);
  15730. } break;
  15731. case GGML_OP_PERMUTE:
  15732. {
  15733. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15734. } break;
  15735. default:
  15736. {
  15737. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15738. tensor->op = eop;
  15739. } break;
  15740. }
  15741. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15742. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15743. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15744. tensor->nb[j] = nb[j];
  15745. }
  15746. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15747. tensor->src[j] = args[j];
  15748. }
  15749. result->nodes[i] = tensor;
  15750. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15751. }
  15752. }
  15753. }
  15754. return result;
  15755. }
  15756. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15757. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15758. GGML_PRINT("=== GRAPH ===\n");
  15759. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15760. for (int i = 0; i < cgraph->n_nodes; i++) {
  15761. struct ggml_tensor * node = cgraph->nodes[i];
  15762. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15763. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15764. i,
  15765. node->ne[0], node->ne[1], node->ne[2],
  15766. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15767. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15768. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15769. (double) node->perf_time_us / 1000.0,
  15770. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15771. }
  15772. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15773. for (int i = 0; i < cgraph->n_leafs; i++) {
  15774. struct ggml_tensor * node = cgraph->leafs[i];
  15775. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15776. i,
  15777. node->ne[0], node->ne[1],
  15778. ggml_op_name(node->op),
  15779. ggml_get_name(node));
  15780. }
  15781. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15782. if (perf_total_per_op_us[i] == 0) {
  15783. continue;
  15784. }
  15785. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15786. }
  15787. GGML_PRINT("========================================\n");
  15788. }
  15789. // check if node is part of the graph
  15790. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15791. if (cgraph == NULL) {
  15792. return true;
  15793. }
  15794. for (int i = 0; i < cgraph->n_nodes; i++) {
  15795. if (cgraph->nodes[i] == node) {
  15796. return true;
  15797. }
  15798. }
  15799. return false;
  15800. }
  15801. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15802. for (int i = 0; i < cgraph->n_nodes; i++) {
  15803. struct ggml_tensor * parent = cgraph->nodes[i];
  15804. if (parent->grad == node) {
  15805. return parent;
  15806. }
  15807. }
  15808. return NULL;
  15809. }
  15810. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15811. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15812. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15813. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15814. gparent0 ? (void *) gparent0 : (void *) parent,
  15815. gparent0 ? "g" : "x",
  15816. gparent ? (void *) gparent : (void *) node,
  15817. gparent ? "g" : "x",
  15818. gparent ? "empty" : "vee",
  15819. gparent ? "dashed" : "solid",
  15820. label);
  15821. }
  15822. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15823. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15824. (void *) parent, "x",
  15825. (void *) node, "x",
  15826. label);
  15827. }
  15828. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15829. char color[16];
  15830. FILE * fp = ggml_fopen(filename, "w");
  15831. GGML_ASSERT(fp);
  15832. fprintf(fp, "digraph G {\n");
  15833. fprintf(fp, " newrank = true;\n");
  15834. fprintf(fp, " rankdir = LR;\n");
  15835. for (int i = 0; i < gb->n_nodes; i++) {
  15836. struct ggml_tensor * node = gb->nodes[i];
  15837. if (ggml_graph_get_parent(gb, node) != NULL) {
  15838. continue;
  15839. }
  15840. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15841. snprintf(color, sizeof(color), "yellow");
  15842. } else if (node->grad) {
  15843. if (ggml_graph_find(gf, node)) {
  15844. snprintf(color, sizeof(color), "green");
  15845. } else {
  15846. snprintf(color, sizeof(color), "lightblue");
  15847. }
  15848. } else {
  15849. snprintf(color, sizeof(color), "white");
  15850. }
  15851. fprintf(fp, " \"%p\" [ "
  15852. "style = filled; fillcolor = %s; shape = record; "
  15853. "label=\"",
  15854. (void *) node, color);
  15855. if (strlen(node->name) > 0) {
  15856. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15857. } else {
  15858. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15859. }
  15860. if (ggml_is_matrix(node)) {
  15861. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15862. } else {
  15863. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15864. }
  15865. if (node->grad) {
  15866. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15867. } else {
  15868. fprintf(fp, "\"; ]\n");
  15869. }
  15870. }
  15871. for (int i = 0; i < gb->n_leafs; i++) {
  15872. struct ggml_tensor * node = gb->leafs[i];
  15873. snprintf(color, sizeof(color), "pink");
  15874. fprintf(fp, " \"%p\" [ "
  15875. "style = filled; fillcolor = %s; shape = record; "
  15876. "label=\"<x>",
  15877. (void *) node, color);
  15878. if (strlen(node->name) > 0) {
  15879. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15880. } else {
  15881. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15882. }
  15883. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15884. if (ggml_nelements(node) < 5) {
  15885. fprintf(fp, " | (");
  15886. for (int j = 0; j < ggml_nelements(node); j++) {
  15887. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15888. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15889. }
  15890. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15891. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15892. }
  15893. else {
  15894. fprintf(fp, "#");
  15895. }
  15896. if (j < ggml_nelements(node) - 1) {
  15897. fprintf(fp, ", ");
  15898. }
  15899. }
  15900. fprintf(fp, ")");
  15901. }
  15902. fprintf(fp, "\"; ]\n");
  15903. }
  15904. for (int i = 0; i < gb->n_nodes; i++) {
  15905. struct ggml_tensor * node = gb->nodes[i];
  15906. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15907. if (node->src[j]) {
  15908. char label[16];
  15909. snprintf(label, sizeof(label), "src %d", j);
  15910. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15911. }
  15912. }
  15913. }
  15914. for (int i = 0; i < gb->n_leafs; i++) {
  15915. struct ggml_tensor * node = gb->leafs[i];
  15916. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15917. if (node->src[j]) {
  15918. char label[16];
  15919. snprintf(label, sizeof(label), "src %d", j);
  15920. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15921. }
  15922. }
  15923. }
  15924. fprintf(fp, "}\n");
  15925. fclose(fp);
  15926. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15927. }
  15928. ////////////////////////////////////////////////////////////////////////////////
  15929. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15930. int i = 0;
  15931. for (int p = 0; p < np; ++p) {
  15932. const int64_t ne = ggml_nelements(ps[p]) ;
  15933. // TODO: add function to set tensor from array
  15934. for (int64_t j = 0; j < ne; ++j) {
  15935. ggml_set_f32_1d(ps[p], j, x[i++]);
  15936. }
  15937. }
  15938. }
  15939. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15940. int i = 0;
  15941. for (int p = 0; p < np; ++p) {
  15942. const int64_t ne = ggml_nelements(ps[p]) ;
  15943. // TODO: add function to get all elements at once
  15944. for (int64_t j = 0; j < ne; ++j) {
  15945. x[i++] = ggml_get_f32_1d(ps[p], j);
  15946. }
  15947. }
  15948. }
  15949. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15950. int64_t i = 0;
  15951. for (int p = 0; p < np; ++p) {
  15952. const int64_t ne = ggml_nelements(ps[p]) ;
  15953. // TODO: add function to get all elements at once
  15954. for (int64_t j = 0; j < ne; ++j) {
  15955. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15956. }
  15957. }
  15958. }
  15959. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15960. int64_t i = 0;
  15961. for (int p = 0; p < np; ++p) {
  15962. const int64_t ne = ggml_nelements(ps[p]) ;
  15963. // TODO: add function to get all elements at once
  15964. for (int64_t j = 0; j < ne; ++j) {
  15965. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15966. }
  15967. }
  15968. }
  15969. //
  15970. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15971. //
  15972. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15973. //
  15974. static enum ggml_opt_result ggml_opt_adam(
  15975. struct ggml_context * ctx,
  15976. struct ggml_opt_context * opt,
  15977. struct ggml_opt_params params,
  15978. struct ggml_tensor * f,
  15979. struct ggml_cgraph * gf,
  15980. struct ggml_cgraph * gb,
  15981. ggml_opt_callback callback,
  15982. void * callback_data) {
  15983. GGML_ASSERT(ggml_is_scalar(f));
  15984. // these will store the parameters we want to optimize
  15985. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15986. int np = 0;
  15987. int64_t nx = 0;
  15988. for (int i = 0; i < gf->n_nodes; ++i) {
  15989. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15990. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15991. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15992. ps[np++] = gf->nodes[i];
  15993. nx += ggml_nelements(gf->nodes[i]);
  15994. }
  15995. }
  15996. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15997. int iter = opt->iter;
  15998. ggml_opt_init(opt->ctx, opt, params, nx);
  15999. opt->iter = iter;
  16000. }
  16001. // constants
  16002. float sched = params.adam.sched;
  16003. const float alpha = params.adam.alpha;
  16004. const float decay = params.adam.decay * alpha;
  16005. const float beta1 = params.adam.beta1;
  16006. const float beta2 = params.adam.beta2;
  16007. const float eps = params.adam.eps;
  16008. const float gclip = params.adam.gclip;
  16009. const int decay_min_ndim = params.adam.decay_min_ndim;
  16010. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16011. const float accum_norm = 1.0f / (float) n_accum;
  16012. float * g = opt->adam.g->data; // gradients
  16013. float * m = opt->adam.m->data; // first moment
  16014. float * v = opt->adam.v->data; // second moment
  16015. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16016. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16017. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16018. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16019. bool cancel = false;
  16020. // compute the function value
  16021. float fx = 0;
  16022. ggml_set_zero(opt->adam.g);
  16023. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16024. if (callback) {
  16025. callback(callback_data, accum_step, &sched, &cancel);
  16026. if (cancel) {
  16027. return GGML_OPT_RESULT_CANCEL;
  16028. }
  16029. }
  16030. // ggml_graph_reset (gf);
  16031. ggml_set_f32 (f->grad, 1.0f);
  16032. ggml_graph_compute(gb, &cplan);
  16033. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16034. fx += ggml_get_f32_1d(f, 0);
  16035. }
  16036. fx *= accum_norm;
  16037. opt->adam.fx_prev = fx;
  16038. opt->adam.fx_best = opt->adam.fx_prev;
  16039. if (pf) {
  16040. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16041. }
  16042. opt->loss_before = opt->adam.fx_prev;
  16043. opt->loss_after = opt->adam.fx_prev;
  16044. // initialize
  16045. if (opt->just_initialized) {
  16046. opt->adam.n_no_improvement = 0;
  16047. opt->just_initialized = false;
  16048. }
  16049. float * fx_best = &opt->adam.fx_best;
  16050. float * fx_prev = &opt->adam.fx_prev;
  16051. int * n_no_improvement = &opt->adam.n_no_improvement;
  16052. int iter0 = opt->iter;
  16053. // run the optimizer
  16054. for (int t = 0; t < params.adam.n_iter; ++t) {
  16055. opt->iter = iter0 + t + 1;
  16056. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16057. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16058. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16059. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16060. for (int i = 0; i < np; ++i) {
  16061. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16062. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16063. }
  16064. const int64_t t_start_wall = ggml_time_us();
  16065. const int64_t t_start_cpu = ggml_cycles();
  16066. UNUSED(t_start_wall);
  16067. UNUSED(t_start_cpu);
  16068. {
  16069. float gnorm = 1.0f;
  16070. if (gclip > 0.0f) {
  16071. // gradient clipping
  16072. ggml_float sum = 0.0;
  16073. for (int64_t i = 0; i < nx; ++i) {
  16074. sum += (ggml_float)(g[i]*g[i]);
  16075. }
  16076. ggml_float norm = sqrt(sum);
  16077. if (norm > (ggml_float) gclip) {
  16078. gnorm = (float) ((ggml_float) gclip / norm);
  16079. }
  16080. }
  16081. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16082. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16083. int64_t i = 0;
  16084. for (int p = 0; p < np; ++p) {
  16085. const int64_t ne = ggml_nelements(ps[p]);
  16086. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16087. for (int64_t j = 0; j < ne; ++j) {
  16088. float x = ggml_get_f32_1d(ps[p], j);
  16089. float g_ = g[i]*gnorm;
  16090. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16091. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16092. float mh = m[i]*beta1h;
  16093. float vh = v[i]*beta2h;
  16094. vh = sqrtf(vh) + eps;
  16095. x = x*(1.0f - p_decay) - mh/vh;
  16096. ggml_set_f32_1d(ps[p], j, x);
  16097. ++i;
  16098. }
  16099. }
  16100. }
  16101. fx = 0;
  16102. ggml_set_zero(opt->adam.g);
  16103. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16104. if (callback) {
  16105. callback(callback_data, accum_step, &sched, &cancel);
  16106. if (cancel) {
  16107. return GGML_OPT_RESULT_CANCEL;;
  16108. }
  16109. }
  16110. // ggml_graph_reset (gf);
  16111. ggml_set_f32 (f->grad, 1.0f);
  16112. ggml_graph_compute(gb, &cplan);
  16113. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16114. fx += ggml_get_f32_1d(f, 0);
  16115. }
  16116. fx *= accum_norm;
  16117. opt->loss_after = fx;
  16118. // check convergence
  16119. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16120. GGML_PRINT_DEBUG("converged\n");
  16121. return GGML_OPT_RESULT_OK;
  16122. }
  16123. // delta-based convergence test
  16124. if (pf != NULL) {
  16125. // need at least params.past iterations to start checking for convergence
  16126. if (params.past <= iter0 + t) {
  16127. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16128. if (fabsf(rate) < params.delta) {
  16129. return GGML_OPT_RESULT_OK;
  16130. }
  16131. }
  16132. pf[(iter0 + t)%params.past] = fx;
  16133. }
  16134. // check for improvement
  16135. if (params.max_no_improvement > 0) {
  16136. if (fx_best[0] > fx) {
  16137. fx_best[0] = fx;
  16138. n_no_improvement[0] = 0;
  16139. } else {
  16140. ++n_no_improvement[0];
  16141. if (n_no_improvement[0] >= params.max_no_improvement) {
  16142. return GGML_OPT_RESULT_OK;
  16143. }
  16144. }
  16145. }
  16146. fx_prev[0] = fx;
  16147. {
  16148. const int64_t t_end_cpu = ggml_cycles();
  16149. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16150. UNUSED(t_end_cpu);
  16151. const int64_t t_end_wall = ggml_time_us();
  16152. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16153. UNUSED(t_end_wall);
  16154. }
  16155. }
  16156. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16157. }
  16158. //
  16159. // L-BFGS
  16160. //
  16161. // the L-BFGS implementation below is based on the following implementation:
  16162. //
  16163. // https://github.com/chokkan/liblbfgs
  16164. //
  16165. struct ggml_lbfgs_iteration_data {
  16166. float alpha;
  16167. float ys;
  16168. float * s;
  16169. float * y;
  16170. };
  16171. static enum ggml_opt_result linesearch_backtracking(
  16172. const struct ggml_opt_params * params,
  16173. int nx,
  16174. float * x,
  16175. float * fx,
  16176. float * g,
  16177. float * d,
  16178. float * step,
  16179. const float * xp,
  16180. struct ggml_tensor * f,
  16181. struct ggml_cgraph * gb,
  16182. struct ggml_cplan * cplan,
  16183. const int np,
  16184. struct ggml_tensor * ps[],
  16185. bool * cancel,
  16186. ggml_opt_callback callback,
  16187. void * callback_data) {
  16188. int count = 0;
  16189. float width = 0.0f;
  16190. float dg = 0.0f;
  16191. float finit = 0.0f;
  16192. float dginit = 0.0f;
  16193. float dgtest = 0.0f;
  16194. const float dec = 0.5f;
  16195. const float inc = 2.1f;
  16196. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16197. const float accum_norm = 1.0f / (float) n_accum;
  16198. if (*step <= 0.f) {
  16199. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16200. }
  16201. // compute the initial gradient in the search direction
  16202. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16203. // make sure that d points to a descent direction
  16204. if (0 < dginit) {
  16205. return GGML_LINESEARCH_FAIL;
  16206. }
  16207. // initialize local variables
  16208. finit = *fx;
  16209. dgtest = params->lbfgs.ftol*dginit;
  16210. while (true) {
  16211. ggml_vec_cpy_f32(nx, x, xp);
  16212. ggml_vec_mad_f32(nx, x, d, *step);
  16213. // evaluate the function and gradient values
  16214. {
  16215. ggml_opt_set_params(np, ps, x);
  16216. *fx = 0;
  16217. memset(g, 0, sizeof(float)*nx);
  16218. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16219. if (callback) {
  16220. // LBFG-S does not support learning rate -> ignore learning schedule
  16221. float sched = 0;
  16222. callback(callback_data, accum_step, &sched, cancel);
  16223. if (*cancel) {
  16224. return GGML_OPT_RESULT_CANCEL;
  16225. }
  16226. }
  16227. // ggml_graph_reset (gf);
  16228. ggml_set_f32 (f->grad, 1.0f);
  16229. ggml_graph_compute(gb, cplan);
  16230. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16231. *fx += ggml_get_f32_1d(f, 0);
  16232. }
  16233. *fx *= accum_norm;
  16234. }
  16235. ++count;
  16236. if (*fx > finit + (*step)*dgtest) {
  16237. width = dec;
  16238. } else {
  16239. // Armijo condition is satisfied
  16240. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16241. return count;
  16242. }
  16243. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16244. // check the Wolfe condition
  16245. if (dg < params->lbfgs.wolfe * dginit) {
  16246. width = inc;
  16247. } else {
  16248. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16249. // regular Wolfe conditions
  16250. return count;
  16251. }
  16252. if(dg > -params->lbfgs.wolfe*dginit) {
  16253. width = dec;
  16254. } else {
  16255. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16256. return count;
  16257. }
  16258. }
  16259. }
  16260. if (*step < params->lbfgs.min_step) {
  16261. return GGML_LINESEARCH_MINIMUM_STEP;
  16262. }
  16263. if (*step > params->lbfgs.max_step) {
  16264. return GGML_LINESEARCH_MAXIMUM_STEP;
  16265. }
  16266. if (params->lbfgs.max_linesearch <= count) {
  16267. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16268. }
  16269. (*step) *= width;
  16270. }
  16271. GGML_ASSERT(false && "line search failed");
  16272. return GGML_LINESEARCH_FAIL;
  16273. }
  16274. static enum ggml_opt_result ggml_opt_lbfgs(
  16275. struct ggml_context * ctx,
  16276. struct ggml_opt_context * opt,
  16277. struct ggml_opt_params params,
  16278. struct ggml_tensor * f,
  16279. struct ggml_cgraph * gf,
  16280. struct ggml_cgraph * gb,
  16281. ggml_opt_callback callback,
  16282. void * callback_data) {
  16283. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16284. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16285. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16286. return GGML_OPT_RESULT_INVALID_WOLFE;
  16287. }
  16288. }
  16289. const int m = params.lbfgs.m;
  16290. // these will store the parameters we want to optimize
  16291. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16292. int np = 0;
  16293. int nx = 0;
  16294. for (int i = 0; i < gf->n_nodes; ++i) {
  16295. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16296. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16297. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16298. ps[np++] = gf->nodes[i];
  16299. nx += ggml_nelements(gf->nodes[i]);
  16300. }
  16301. }
  16302. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16303. int iter = opt->iter;
  16304. ggml_opt_init(ctx, opt, params, nx);
  16305. opt->iter = iter;
  16306. }
  16307. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16308. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16309. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16310. float * x = opt->lbfgs.x->data; // current parameters
  16311. float * xp = opt->lbfgs.xp->data; // previous parameters
  16312. float * g = opt->lbfgs.g->data; // current gradient
  16313. float * gp = opt->lbfgs.gp->data; // previous gradient
  16314. float * d = opt->lbfgs.d->data; // search direction
  16315. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16316. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16317. const float accum_norm = 1.0f / (float) n_accum;
  16318. float fx = 0.0f; // cost function value
  16319. float xnorm = 0.0f; // ||x||
  16320. float gnorm = 0.0f; // ||g||
  16321. // initialize x from the graph nodes
  16322. ggml_opt_get_params(np, ps, x);
  16323. // the L-BFGS memory
  16324. float * lm_alpha = opt->lbfgs.lmal->data;
  16325. float * lm_ys = opt->lbfgs.lmys->data;
  16326. float * lm_s = opt->lbfgs.lms->data;
  16327. float * lm_y = opt->lbfgs.lmy->data;
  16328. bool cancel = false;
  16329. // evaluate the function value and its gradient
  16330. {
  16331. ggml_opt_set_params(np, ps, x);
  16332. fx = 0;
  16333. memset(g, 0, sizeof(float)*nx);
  16334. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16335. if (callback) {
  16336. // LBFG-S does not support learning rate -> ignore learning schedule
  16337. float sched = 0;
  16338. callback(callback_data, accum_step, &sched, &cancel);
  16339. if (cancel) {
  16340. return GGML_OPT_RESULT_CANCEL;
  16341. }
  16342. }
  16343. // ggml_graph_reset (gf);
  16344. ggml_set_f32 (f->grad, 1.0f);
  16345. ggml_graph_compute(gb, &cplan);
  16346. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16347. fx += ggml_get_f32_1d(f, 0);
  16348. }
  16349. fx *= accum_norm;
  16350. opt->loss_before = fx;
  16351. opt->loss_after = fx;
  16352. }
  16353. // search direction = -gradient
  16354. ggml_vec_neg_f32(nx, d, g);
  16355. // ||x||, ||g||
  16356. ggml_vec_norm_f32(nx, &xnorm, x);
  16357. ggml_vec_norm_f32(nx, &gnorm, g);
  16358. if (xnorm < 1.0f) {
  16359. xnorm = 1.0f;
  16360. }
  16361. // already optimized
  16362. if (gnorm/xnorm <= params.lbfgs.eps) {
  16363. return GGML_OPT_RESULT_OK;
  16364. }
  16365. if (opt->just_initialized) {
  16366. if (pf) {
  16367. pf[0] = fx;
  16368. }
  16369. opt->lbfgs.fx_best = fx;
  16370. // initial step
  16371. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16372. opt->lbfgs.j = 0;
  16373. opt->lbfgs.k = 1;
  16374. opt->lbfgs.end = 0;
  16375. opt->lbfgs.n_no_improvement = 0;
  16376. opt->just_initialized = false;
  16377. }
  16378. float * fx_best = &opt->lbfgs.fx_best;
  16379. float * step = &opt->lbfgs.step;
  16380. int * j = &opt->lbfgs.j;
  16381. int * k = &opt->lbfgs.k;
  16382. int * end = &opt->lbfgs.end;
  16383. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16384. int ls = 0;
  16385. int bound = 0;
  16386. float ys = 0.0f;
  16387. float yy = 0.0f;
  16388. float beta = 0.0f;
  16389. int it = 0;
  16390. while (true) {
  16391. // store the current position and gradient vectors
  16392. ggml_vec_cpy_f32(nx, xp, x);
  16393. ggml_vec_cpy_f32(nx, gp, g);
  16394. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16395. // to determine if the optimization should be cancelled
  16396. // this is a simple change, but not doing this atm, since I don't have a nice
  16397. // way to test and don't want to break something with so many changes lined up
  16398. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16399. if (cancel) {
  16400. return GGML_OPT_RESULT_CANCEL;
  16401. }
  16402. if (ls < 0) {
  16403. // linesearch failed - go back to the previous point and return
  16404. ggml_vec_cpy_f32(nx, x, xp);
  16405. ggml_vec_cpy_f32(nx, g, gp);
  16406. return ls;
  16407. }
  16408. opt->loss_after = fx;
  16409. ggml_vec_norm_f32(nx, &xnorm, x);
  16410. ggml_vec_norm_f32(nx, &gnorm, g);
  16411. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16412. if (xnorm < 1.0f) {
  16413. xnorm = 1.0f;
  16414. }
  16415. if (gnorm/xnorm <= params.lbfgs.eps) {
  16416. // converged
  16417. return GGML_OPT_RESULT_OK;
  16418. }
  16419. // delta-based convergence test
  16420. if (pf != NULL) {
  16421. // need at least params.past iterations to start checking for convergence
  16422. if (params.past <= k[0]) {
  16423. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16424. if (fabsf(rate) < params.delta) {
  16425. return GGML_OPT_RESULT_OK;
  16426. }
  16427. }
  16428. pf[k[0]%params.past] = fx;
  16429. }
  16430. // check for improvement
  16431. if (params.max_no_improvement > 0) {
  16432. if (fx < fx_best[0]) {
  16433. fx_best[0] = fx;
  16434. n_no_improvement[0] = 0;
  16435. } else {
  16436. n_no_improvement[0]++;
  16437. if (n_no_improvement[0] >= params.max_no_improvement) {
  16438. return GGML_OPT_RESULT_OK;
  16439. }
  16440. }
  16441. }
  16442. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16443. // reached the maximum number of iterations
  16444. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16445. }
  16446. // update vectors s and y:
  16447. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16448. // y_{k+1} = g_{k+1} - g_{k}.
  16449. //
  16450. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16451. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16452. // compute scalars ys and yy:
  16453. // ys = y^t \cdot s -> 1 / \rho.
  16454. // yy = y^t \cdot y.
  16455. //
  16456. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16457. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16458. lm_ys[end[0]] = ys;
  16459. // find new search direction
  16460. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16461. bound = (m <= k[0]) ? m : k[0];
  16462. k[0]++;
  16463. it++;
  16464. end[0] = (end[0] + 1)%m;
  16465. // initialize search direction with -g
  16466. ggml_vec_neg_f32(nx, d, g);
  16467. j[0] = end[0];
  16468. for (int i = 0; i < bound; ++i) {
  16469. j[0] = (j[0] + m - 1) % m;
  16470. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16471. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16472. lm_alpha[j[0]] /= lm_ys[j[0]];
  16473. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16474. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16475. }
  16476. ggml_vec_scale_f32(nx, d, ys/yy);
  16477. for (int i = 0; i < bound; ++i) {
  16478. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16479. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16480. beta /= lm_ys[j[0]];
  16481. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16482. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16483. j[0] = (j[0] + 1)%m;
  16484. }
  16485. step[0] = 1.0;
  16486. }
  16487. GGML_ASSERT(false && "lbfgs failed");
  16488. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16489. }
  16490. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16491. struct ggml_opt_params result;
  16492. switch (type) {
  16493. case GGML_OPT_TYPE_ADAM:
  16494. {
  16495. result = (struct ggml_opt_params) {
  16496. .type = GGML_OPT_TYPE_ADAM,
  16497. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16498. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16499. .past = 0,
  16500. .delta = 1e-5f,
  16501. .max_no_improvement = 100,
  16502. .print_forward_graph = true,
  16503. .print_backward_graph = true,
  16504. .n_gradient_accumulation = 1,
  16505. .adam = {
  16506. .n_iter = 10000,
  16507. .sched = 1.000f,
  16508. .decay = 0.0f,
  16509. .decay_min_ndim = 2,
  16510. .alpha = 0.001f,
  16511. .beta1 = 0.9f,
  16512. .beta2 = 0.999f,
  16513. .eps = 1e-8f,
  16514. .eps_f = 1e-5f,
  16515. .eps_g = 1e-3f,
  16516. .gclip = 0.0f,
  16517. },
  16518. };
  16519. } break;
  16520. case GGML_OPT_TYPE_LBFGS:
  16521. {
  16522. result = (struct ggml_opt_params) {
  16523. .type = GGML_OPT_TYPE_LBFGS,
  16524. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16525. .n_threads = 1,
  16526. .past = 0,
  16527. .delta = 1e-5f,
  16528. .max_no_improvement = 0,
  16529. .print_forward_graph = true,
  16530. .print_backward_graph = true,
  16531. .n_gradient_accumulation = 1,
  16532. .lbfgs = {
  16533. .m = 6,
  16534. .n_iter = 100,
  16535. .max_linesearch = 20,
  16536. .eps = 1e-5f,
  16537. .ftol = 1e-4f,
  16538. .wolfe = 0.9f,
  16539. .min_step = 1e-20f,
  16540. .max_step = 1e+20f,
  16541. .linesearch = GGML_LINESEARCH_DEFAULT,
  16542. },
  16543. };
  16544. } break;
  16545. }
  16546. return result;
  16547. }
  16548. GGML_API void ggml_opt_init(
  16549. struct ggml_context * ctx,
  16550. struct ggml_opt_context * opt,
  16551. struct ggml_opt_params params,
  16552. int64_t nx) {
  16553. opt->ctx = ctx;
  16554. opt->params = params;
  16555. opt->iter = 0;
  16556. opt->nx = nx;
  16557. opt->just_initialized = true;
  16558. if (opt->ctx == NULL) {
  16559. struct ggml_init_params ctx_opt_params;
  16560. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16561. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16562. if (opt->params.past > 0) {
  16563. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16564. }
  16565. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16566. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16567. if (opt->params.past > 0) {
  16568. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16569. }
  16570. }
  16571. ctx_opt_params.mem_buffer = NULL;
  16572. ctx_opt_params.no_alloc = false;
  16573. opt->ctx = ggml_init(ctx_opt_params);
  16574. }
  16575. switch (opt->params.type) {
  16576. case GGML_OPT_TYPE_ADAM:
  16577. {
  16578. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16579. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16580. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16581. opt->adam.pf = params.past > 0
  16582. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16583. : NULL;
  16584. ggml_set_zero(opt->adam.m);
  16585. ggml_set_zero(opt->adam.v);
  16586. if (opt->adam.pf) {
  16587. ggml_set_zero(opt->adam.pf);
  16588. }
  16589. } break;
  16590. case GGML_OPT_TYPE_LBFGS:
  16591. {
  16592. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16593. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16594. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16595. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16596. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16597. opt->lbfgs.pf = params.past > 0
  16598. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16599. : NULL;
  16600. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16601. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16602. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16603. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16604. ggml_set_zero(opt->lbfgs.x);
  16605. ggml_set_zero(opt->lbfgs.xp);
  16606. ggml_set_zero(opt->lbfgs.g);
  16607. ggml_set_zero(opt->lbfgs.gp);
  16608. ggml_set_zero(opt->lbfgs.d);
  16609. if (opt->lbfgs.pf) {
  16610. ggml_set_zero(opt->lbfgs.pf);
  16611. }
  16612. ggml_set_zero(opt->lbfgs.lmal);
  16613. ggml_set_zero(opt->lbfgs.lmys);
  16614. ggml_set_zero(opt->lbfgs.lms);
  16615. ggml_set_zero(opt->lbfgs.lmy);
  16616. } break;
  16617. }
  16618. }
  16619. enum ggml_opt_result ggml_opt(
  16620. struct ggml_context * ctx,
  16621. struct ggml_opt_params params,
  16622. struct ggml_tensor * f) {
  16623. bool free_ctx = false;
  16624. if (ctx == NULL) {
  16625. struct ggml_init_params params_ctx = {
  16626. .mem_size = 16*1024*1024,
  16627. .mem_buffer = NULL,
  16628. .no_alloc = false,
  16629. };
  16630. ctx = ggml_init(params_ctx);
  16631. if (ctx == NULL) {
  16632. return GGML_OPT_RESULT_NO_CONTEXT;
  16633. }
  16634. free_ctx = true;
  16635. }
  16636. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16637. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16638. ggml_opt_init(ctx, opt, params, 0);
  16639. result = ggml_opt_resume(ctx, opt, f);
  16640. if (free_ctx) {
  16641. ggml_free(ctx);
  16642. }
  16643. return result;
  16644. }
  16645. enum ggml_opt_result ggml_opt_resume(
  16646. struct ggml_context * ctx,
  16647. struct ggml_opt_context * opt,
  16648. struct ggml_tensor * f) {
  16649. // build forward + backward compute graphs
  16650. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16651. ggml_build_forward_expand(gf, f);
  16652. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16653. ggml_build_backward_expand(ctx, gf, gb, true);
  16654. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16655. }
  16656. enum ggml_opt_result ggml_opt_resume_g(
  16657. struct ggml_context * ctx,
  16658. struct ggml_opt_context * opt,
  16659. struct ggml_tensor * f,
  16660. struct ggml_cgraph * gf,
  16661. struct ggml_cgraph * gb,
  16662. ggml_opt_callback callback,
  16663. void * callback_data) {
  16664. // build forward + backward compute graphs
  16665. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16666. switch (opt->params.type) {
  16667. case GGML_OPT_TYPE_ADAM:
  16668. {
  16669. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16670. } break;
  16671. case GGML_OPT_TYPE_LBFGS:
  16672. {
  16673. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16674. } break;
  16675. }
  16676. if (opt->params.print_forward_graph) {
  16677. ggml_graph_print (gf);
  16678. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16679. }
  16680. if (opt->params.print_backward_graph) {
  16681. ggml_graph_print (gb);
  16682. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16683. }
  16684. return result;
  16685. }
  16686. ////////////////////////////////////////////////////////////////////////////////
  16687. void ggml_set_input(struct ggml_tensor * tensor) {
  16688. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16689. }
  16690. void ggml_set_output(struct ggml_tensor * tensor) {
  16691. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16692. }
  16693. ////////////////////////////////////////////////////////////////////////////////
  16694. void ggml_quantize_init(enum ggml_type type) {
  16695. ggml_critical_section_start();
  16696. switch (type) {
  16697. case GGML_TYPE_IQ2_XXS:
  16698. case GGML_TYPE_IQ2_XS:
  16699. case GGML_TYPE_IQ2_S:
  16700. case GGML_TYPE_IQ1_S:
  16701. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16702. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16703. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16704. default: // nothing
  16705. break;
  16706. }
  16707. ggml_critical_section_end();
  16708. }
  16709. void ggml_quantize_free(void) {
  16710. ggml_critical_section_start();
  16711. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16712. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16713. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16714. iq3xs_free_impl(256);
  16715. ggml_critical_section_end();
  16716. }
  16717. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16718. return
  16719. type == GGML_TYPE_IQ2_XXS ||
  16720. type == GGML_TYPE_IQ2_XS ||
  16721. type == GGML_TYPE_IQ1_S;// ||
  16722. //type == GGML_TYPE_IQ1_M;
  16723. }
  16724. size_t ggml_quantize_chunk(
  16725. enum ggml_type type,
  16726. const float * src,
  16727. void * dst,
  16728. int start,
  16729. int nrows,
  16730. int n_per_row,
  16731. const float * imatrix) {
  16732. const int n = nrows * n_per_row;
  16733. if (ggml_quantize_requires_imatrix(type)) {
  16734. GGML_ASSERT(imatrix != NULL);
  16735. }
  16736. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16737. GGML_ASSERT(start % n_per_row == 0);
  16738. ggml_quantize_init(type); // this is noop if already initialized
  16739. const size_t start_row = start / n_per_row;
  16740. const size_t row_size = ggml_row_size(type, n_per_row);
  16741. size_t result = 0;
  16742. switch (type) {
  16743. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16744. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16745. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16746. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16747. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16748. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16749. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16750. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16751. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16752. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16753. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16754. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16755. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16756. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16757. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16758. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16759. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16760. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16761. #if QK_K == 64
  16762. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16763. #else
  16764. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16765. #endif
  16766. case GGML_TYPE_F16:
  16767. {
  16768. size_t elemsize = sizeof(ggml_fp16_t);
  16769. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16770. result = n * elemsize;
  16771. } break;
  16772. case GGML_TYPE_F32:
  16773. {
  16774. size_t elemsize = sizeof(float);
  16775. result = n * elemsize;
  16776. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16777. } break;
  16778. default:
  16779. assert(false);
  16780. }
  16781. GGML_ASSERT(result == nrows * row_size);
  16782. return result;
  16783. }
  16784. ////////////////////////////////////////////////////////////////////////////////
  16785. struct gguf_str {
  16786. uint64_t n; // GGUFv2
  16787. char * data;
  16788. };
  16789. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16790. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16791. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16792. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16793. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16794. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16795. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16796. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16797. [GGUF_TYPE_BOOL] = sizeof(bool),
  16798. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16799. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16800. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16801. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16802. [GGUF_TYPE_ARRAY] = 0, // undefined
  16803. };
  16804. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16805. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16806. [GGUF_TYPE_UINT8] = "u8",
  16807. [GGUF_TYPE_INT8] = "i8",
  16808. [GGUF_TYPE_UINT16] = "u16",
  16809. [GGUF_TYPE_INT16] = "i16",
  16810. [GGUF_TYPE_UINT32] = "u32",
  16811. [GGUF_TYPE_INT32] = "i32",
  16812. [GGUF_TYPE_FLOAT32] = "f32",
  16813. [GGUF_TYPE_BOOL] = "bool",
  16814. [GGUF_TYPE_STRING] = "str",
  16815. [GGUF_TYPE_ARRAY] = "arr",
  16816. [GGUF_TYPE_UINT64] = "u64",
  16817. [GGUF_TYPE_INT64] = "i64",
  16818. [GGUF_TYPE_FLOAT64] = "f64",
  16819. };
  16820. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16821. union gguf_value {
  16822. uint8_t uint8;
  16823. int8_t int8;
  16824. uint16_t uint16;
  16825. int16_t int16;
  16826. uint32_t uint32;
  16827. int32_t int32;
  16828. float float32;
  16829. uint64_t uint64;
  16830. int64_t int64;
  16831. double float64;
  16832. bool bool_;
  16833. struct gguf_str str;
  16834. struct {
  16835. enum gguf_type type;
  16836. uint64_t n; // GGUFv2
  16837. void * data;
  16838. } arr;
  16839. };
  16840. struct gguf_kv {
  16841. struct gguf_str key;
  16842. enum gguf_type type;
  16843. union gguf_value value;
  16844. };
  16845. struct gguf_header {
  16846. char magic[4];
  16847. uint32_t version;
  16848. uint64_t n_tensors; // GGUFv2
  16849. uint64_t n_kv; // GGUFv2
  16850. };
  16851. struct gguf_tensor_info {
  16852. struct gguf_str name;
  16853. uint32_t n_dims;
  16854. uint64_t ne[GGML_MAX_DIMS];
  16855. enum ggml_type type;
  16856. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16857. // for writing API
  16858. const void * data;
  16859. size_t size;
  16860. };
  16861. struct gguf_context {
  16862. struct gguf_header header;
  16863. struct gguf_kv * kv;
  16864. struct gguf_tensor_info * infos;
  16865. size_t alignment;
  16866. size_t offset; // offset of `data` from beginning of file
  16867. size_t size; // size of `data` in bytes
  16868. //uint8_t * padding;
  16869. void * data;
  16870. };
  16871. static size_t gguf_type_size(enum gguf_type type) {
  16872. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16873. return GGUF_TYPE_SIZE[type];
  16874. }
  16875. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16876. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16877. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16878. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16879. GGML_ASSERT(info->ne[i] > 0);
  16880. }
  16881. // prevent overflow for total number of elements
  16882. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16883. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16884. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16885. }
  16886. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16887. const size_t n = fread(dst, 1, size, file);
  16888. *offset += n;
  16889. return n == size;
  16890. }
  16891. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16892. p->n = 0;
  16893. p->data = NULL;
  16894. bool ok = true;
  16895. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16896. // early exit if string length is invalid, prevents from integer overflow
  16897. if (p->n == SIZE_MAX) {
  16898. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16899. return false;
  16900. }
  16901. p->data = GGML_CALLOC(p->n + 1, 1);
  16902. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16903. return ok;
  16904. }
  16905. struct gguf_context * gguf_init_empty(void) {
  16906. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16907. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16908. ctx->header.version = GGUF_VERSION;
  16909. ctx->header.n_tensors = 0;
  16910. ctx->header.n_kv = 0;
  16911. ctx->kv = NULL;
  16912. ctx->infos = NULL;
  16913. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16914. ctx->offset = 0;
  16915. ctx->size = 0;
  16916. ctx->data = NULL;
  16917. return ctx;
  16918. }
  16919. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16920. FILE * file = ggml_fopen(fname, "rb");
  16921. if (!file) {
  16922. return NULL;
  16923. }
  16924. // offset from start of file
  16925. size_t offset = 0;
  16926. char magic[4];
  16927. // check the magic before making allocations
  16928. {
  16929. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16930. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16931. if (magic[i] != GGUF_MAGIC[i]) {
  16932. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16933. fclose(file);
  16934. return NULL;
  16935. }
  16936. }
  16937. }
  16938. bool ok = true;
  16939. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16940. // read the header
  16941. {
  16942. strncpy(ctx->header.magic, magic, 4);
  16943. ctx->kv = NULL;
  16944. ctx->infos = NULL;
  16945. ctx->data = NULL;
  16946. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16947. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16948. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16949. if (ctx->header.version == 1) {
  16950. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16951. fclose(file);
  16952. gguf_free(ctx);
  16953. return NULL;
  16954. }
  16955. // sanity-checks to prevent from integer/buffer overflows
  16956. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16957. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16958. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16959. if (!ok) {
  16960. fprintf(stderr, "%s: failed to read header\n", __func__);
  16961. fclose(file);
  16962. gguf_free(ctx);
  16963. return NULL;
  16964. }
  16965. }
  16966. // read the kv pairs
  16967. {
  16968. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16969. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16970. struct gguf_kv * kv = &ctx->kv[i];
  16971. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16972. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16973. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16974. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16975. switch (kv->type) {
  16976. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16977. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16978. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16979. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16980. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16981. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16982. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16983. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16984. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16985. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16986. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16987. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16988. case GGUF_TYPE_ARRAY:
  16989. {
  16990. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16991. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16992. switch (kv->value.arr.type) {
  16993. case GGUF_TYPE_UINT8:
  16994. case GGUF_TYPE_INT8:
  16995. case GGUF_TYPE_UINT16:
  16996. case GGUF_TYPE_INT16:
  16997. case GGUF_TYPE_UINT32:
  16998. case GGUF_TYPE_INT32:
  16999. case GGUF_TYPE_FLOAT32:
  17000. case GGUF_TYPE_UINT64:
  17001. case GGUF_TYPE_INT64:
  17002. case GGUF_TYPE_FLOAT64:
  17003. case GGUF_TYPE_BOOL:
  17004. {
  17005. // prevent from integer overflow in the malloc below
  17006. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17007. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17008. fclose(file);
  17009. gguf_free(ctx);
  17010. return NULL;
  17011. }
  17012. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17013. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17014. } break;
  17015. case GGUF_TYPE_STRING:
  17016. {
  17017. // prevent from integer overflow in the malloc below
  17018. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17019. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17020. fclose(file);
  17021. gguf_free(ctx);
  17022. return NULL;
  17023. }
  17024. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  17025. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17026. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17027. }
  17028. } break;
  17029. case GGUF_TYPE_ARRAY:
  17030. default: GGML_ASSERT(false && "invalid type"); break;
  17031. }
  17032. } break;
  17033. default: GGML_ASSERT(false && "invalid type");
  17034. }
  17035. if (!ok) {
  17036. break;
  17037. }
  17038. }
  17039. if (!ok) {
  17040. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17041. fclose(file);
  17042. gguf_free(ctx);
  17043. return NULL;
  17044. }
  17045. }
  17046. // read the tensor infos
  17047. {
  17048. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17049. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17050. struct gguf_tensor_info * info = &ctx->infos[i];
  17051. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17052. info->ne[j] = 1;
  17053. }
  17054. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17055. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17056. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17057. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17058. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17059. }
  17060. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17061. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17062. gguf_tensor_info_sanitize(info);
  17063. if (!ok) {
  17064. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17065. fclose(file);
  17066. gguf_free(ctx);
  17067. return NULL;
  17068. }
  17069. }
  17070. }
  17071. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17072. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17073. if (alignment_idx != -1) {
  17074. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17075. }
  17076. // we require the data section to be aligned, so take into account any padding
  17077. {
  17078. const size_t offset_pad = offset % ctx->alignment;
  17079. if (offset_pad != 0) {
  17080. offset += ctx->alignment - offset_pad;
  17081. fseek(file, offset, SEEK_SET);
  17082. }
  17083. }
  17084. // store the current file offset - this is where the data section starts
  17085. ctx->offset = offset;
  17086. // compute the total size of the data section, taking into account the alignment
  17087. {
  17088. ctx->size = 0;
  17089. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17090. struct gguf_tensor_info * info = &ctx->infos[i];
  17091. const int64_t ne =
  17092. (int64_t) info->ne[0] *
  17093. (int64_t) info->ne[1] *
  17094. (int64_t) info->ne[2] *
  17095. (int64_t) info->ne[3];
  17096. if (ne % ggml_blck_size(info->type) != 0) {
  17097. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17098. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17099. fclose(file);
  17100. gguf_free(ctx);
  17101. return NULL;
  17102. }
  17103. const size_t size_cur = ggml_row_size(info->type, ne);
  17104. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17105. }
  17106. }
  17107. // load the tensor data only if requested
  17108. if (params.ctx != NULL) {
  17109. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17110. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17111. // the ggml_tensor structs to the appropriate locations in the binary blob
  17112. // compute the exact size needed for the new ggml_context
  17113. const size_t mem_size =
  17114. params.no_alloc ?
  17115. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17116. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17117. struct ggml_init_params pdata = {
  17118. .mem_size = mem_size,
  17119. .mem_buffer = NULL,
  17120. .no_alloc = params.no_alloc,
  17121. };
  17122. *params.ctx = ggml_init(pdata);
  17123. struct ggml_context * ctx_data = *params.ctx;
  17124. struct ggml_tensor * data = NULL;
  17125. if (!params.no_alloc) {
  17126. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17127. ok = ok && data != NULL;
  17128. // read the binary blob with the tensor data
  17129. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17130. if (!ok) {
  17131. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17132. fclose(file);
  17133. ggml_free(ctx_data);
  17134. gguf_free(ctx);
  17135. return NULL;
  17136. }
  17137. ctx->data = data->data;
  17138. }
  17139. ggml_set_no_alloc(ctx_data, true);
  17140. // create the tensors
  17141. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17142. const int64_t ne[GGML_MAX_DIMS] = {
  17143. ctx->infos[i].ne[0],
  17144. ctx->infos[i].ne[1],
  17145. ctx->infos[i].ne[2],
  17146. ctx->infos[i].ne[3],
  17147. };
  17148. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17149. ok = ok && cur != NULL;
  17150. ggml_set_name(cur, ctx->infos[i].name.data);
  17151. if (!ok) {
  17152. break;
  17153. }
  17154. // point the data member to the appropriate location in the binary blob using the tensor infos
  17155. if (!params.no_alloc) {
  17156. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17157. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17158. }
  17159. }
  17160. if (!ok) {
  17161. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17162. fclose(file);
  17163. ggml_free(ctx_data);
  17164. gguf_free(ctx);
  17165. return NULL;
  17166. }
  17167. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17168. }
  17169. fclose(file);
  17170. return ctx;
  17171. }
  17172. void gguf_free(struct gguf_context * ctx) {
  17173. if (ctx == NULL) {
  17174. return;
  17175. }
  17176. if (ctx->kv) {
  17177. // free string memory - not great..
  17178. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17179. struct gguf_kv * kv = &ctx->kv[i];
  17180. if (kv->key.data) {
  17181. GGML_FREE(kv->key.data);
  17182. }
  17183. if (kv->type == GGUF_TYPE_STRING) {
  17184. if (kv->value.str.data) {
  17185. GGML_FREE(kv->value.str.data);
  17186. }
  17187. }
  17188. if (kv->type == GGUF_TYPE_ARRAY) {
  17189. if (kv->value.arr.data) {
  17190. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17191. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17192. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17193. if (str->data) {
  17194. GGML_FREE(str->data);
  17195. }
  17196. }
  17197. }
  17198. GGML_FREE(kv->value.arr.data);
  17199. }
  17200. }
  17201. }
  17202. GGML_FREE(ctx->kv);
  17203. }
  17204. if (ctx->infos) {
  17205. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17206. struct gguf_tensor_info * info = &ctx->infos[i];
  17207. if (info->name.data) {
  17208. GGML_FREE(info->name.data);
  17209. }
  17210. }
  17211. GGML_FREE(ctx->infos);
  17212. }
  17213. GGML_ALIGNED_FREE(ctx);
  17214. }
  17215. const char * gguf_type_name(enum gguf_type type) {
  17216. return GGUF_TYPE_NAME[type];
  17217. }
  17218. int gguf_get_version(const struct gguf_context * ctx) {
  17219. return ctx->header.version;
  17220. }
  17221. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17222. return ctx->alignment;
  17223. }
  17224. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17225. return ctx->offset;
  17226. }
  17227. void * gguf_get_data(const struct gguf_context * ctx) {
  17228. return ctx->data;
  17229. }
  17230. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17231. return ctx->header.n_kv;
  17232. }
  17233. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17234. // return -1 if key not found
  17235. int keyfound = -1;
  17236. const int n_kv = gguf_get_n_kv(ctx);
  17237. for (int i = 0; i < n_kv; ++i) {
  17238. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17239. keyfound = i;
  17240. break;
  17241. }
  17242. }
  17243. return keyfound;
  17244. }
  17245. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17246. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17247. return ctx->kv[key_id].key.data;
  17248. }
  17249. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17250. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17251. return ctx->kv[key_id].type;
  17252. }
  17253. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17256. return ctx->kv[key_id].value.arr.type;
  17257. }
  17258. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17261. return ctx->kv[key_id].value.arr.data;
  17262. }
  17263. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17266. struct gguf_kv * kv = &ctx->kv[key_id];
  17267. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17268. return str->data;
  17269. }
  17270. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17271. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17272. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17273. return ctx->kv[key_id].value.arr.n;
  17274. }
  17275. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17276. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17277. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17278. return ctx->kv[key_id].value.uint8;
  17279. }
  17280. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17281. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17282. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17283. return ctx->kv[key_id].value.int8;
  17284. }
  17285. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17286. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17287. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17288. return ctx->kv[key_id].value.uint16;
  17289. }
  17290. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17291. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17292. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17293. return ctx->kv[key_id].value.int16;
  17294. }
  17295. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17296. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17297. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17298. return ctx->kv[key_id].value.uint32;
  17299. }
  17300. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17301. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17302. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17303. return ctx->kv[key_id].value.int32;
  17304. }
  17305. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17306. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17307. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17308. return ctx->kv[key_id].value.float32;
  17309. }
  17310. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17311. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17312. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17313. return ctx->kv[key_id].value.uint64;
  17314. }
  17315. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17316. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17317. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17318. return ctx->kv[key_id].value.int64;
  17319. }
  17320. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17321. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17322. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17323. return ctx->kv[key_id].value.float64;
  17324. }
  17325. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17326. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17327. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17328. return ctx->kv[key_id].value.bool_;
  17329. }
  17330. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17331. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17332. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17333. return ctx->kv[key_id].value.str.data;
  17334. }
  17335. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17336. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17337. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17338. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17339. return &ctx->kv[key_id].value;
  17340. }
  17341. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17342. return ctx->header.n_tensors;
  17343. }
  17344. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17345. // return -1 if tensor not found
  17346. int tensorfound = -1;
  17347. const int n_tensors = gguf_get_n_tensors(ctx);
  17348. for (int i = 0; i < n_tensors; ++i) {
  17349. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17350. tensorfound = i;
  17351. break;
  17352. }
  17353. }
  17354. return tensorfound;
  17355. }
  17356. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17357. return ctx->infos[i].offset;
  17358. }
  17359. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17360. return ctx->infos[i].name.data;
  17361. }
  17362. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17363. return ctx->infos[i].type;
  17364. }
  17365. // returns the index
  17366. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17367. const int idx = gguf_find_key(ctx, key);
  17368. if (idx >= 0) {
  17369. return idx;
  17370. }
  17371. const int n_kv = gguf_get_n_kv(ctx);
  17372. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17373. ctx->kv[n_kv].key.n = strlen(key);
  17374. ctx->kv[n_kv].key.data = strdup(key);
  17375. ctx->header.n_kv++;
  17376. return n_kv;
  17377. }
  17378. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17379. const int idx = gguf_get_or_add_key(ctx, key);
  17380. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17381. ctx->kv[idx].value.uint8 = val;
  17382. }
  17383. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17384. const int idx = gguf_get_or_add_key(ctx, key);
  17385. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17386. ctx->kv[idx].value.int8 = val;
  17387. }
  17388. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17389. const int idx = gguf_get_or_add_key(ctx, key);
  17390. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17391. ctx->kv[idx].value.uint16 = val;
  17392. }
  17393. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17394. const int idx = gguf_get_or_add_key(ctx, key);
  17395. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17396. ctx->kv[idx].value.int16 = val;
  17397. }
  17398. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17399. const int idx = gguf_get_or_add_key(ctx, key);
  17400. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17401. ctx->kv[idx].value.uint32 = val;
  17402. }
  17403. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17404. const int idx = gguf_get_or_add_key(ctx, key);
  17405. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17406. ctx->kv[idx].value.int32 = val;
  17407. }
  17408. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17409. const int idx = gguf_get_or_add_key(ctx, key);
  17410. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17411. ctx->kv[idx].value.float32 = val;
  17412. }
  17413. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17414. const int idx = gguf_get_or_add_key(ctx, key);
  17415. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17416. ctx->kv[idx].value.uint64 = val;
  17417. }
  17418. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17419. const int idx = gguf_get_or_add_key(ctx, key);
  17420. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17421. ctx->kv[idx].value.int64 = val;
  17422. }
  17423. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17424. const int idx = gguf_get_or_add_key(ctx, key);
  17425. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17426. ctx->kv[idx].value.float64 = val;
  17427. }
  17428. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17429. const int idx = gguf_get_or_add_key(ctx, key);
  17430. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17431. ctx->kv[idx].value.bool_ = val;
  17432. }
  17433. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17434. const int idx = gguf_get_or_add_key(ctx, key);
  17435. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17436. ctx->kv[idx].value.str.n = strlen(val);
  17437. ctx->kv[idx].value.str.data = strdup(val);
  17438. }
  17439. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17440. const int idx = gguf_get_or_add_key(ctx, key);
  17441. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17442. ctx->kv[idx].value.arr.type = type;
  17443. ctx->kv[idx].value.arr.n = n;
  17444. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17445. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17446. }
  17447. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17448. const int idx = gguf_get_or_add_key(ctx, key);
  17449. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17450. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17451. ctx->kv[idx].value.arr.n = n;
  17452. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17453. for (int i = 0; i < n; i++) {
  17454. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17455. str->n = strlen(data[i]);
  17456. str->data = strdup(data[i]);
  17457. }
  17458. }
  17459. // set or add KV pairs from another context
  17460. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17461. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17462. switch (src->kv[i].type) {
  17463. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17464. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17465. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17466. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17467. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17468. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17469. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17470. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17471. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17472. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17473. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17474. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17475. case GGUF_TYPE_ARRAY:
  17476. {
  17477. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17478. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17479. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17480. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17481. }
  17482. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17483. GGML_FREE((void *)data);
  17484. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17485. GGML_ASSERT(false && "nested arrays not supported");
  17486. } else {
  17487. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17488. }
  17489. } break;
  17490. default: GGML_ASSERT(false && "invalid type"); break;
  17491. }
  17492. }
  17493. }
  17494. void gguf_add_tensor(
  17495. struct gguf_context * ctx,
  17496. const struct ggml_tensor * tensor) {
  17497. const int idx = ctx->header.n_tensors;
  17498. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17499. ctx->infos[idx].name.n = strlen(tensor->name);
  17500. ctx->infos[idx].name.data = strdup(tensor->name);
  17501. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17502. ctx->infos[idx].ne[i] = 1;
  17503. }
  17504. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17505. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17506. ctx->infos[idx].ne[i] = tensor->ne[i];
  17507. }
  17508. ctx->infos[idx].type = tensor->type;
  17509. ctx->infos[idx].offset = 0;
  17510. ctx->infos[idx].data = tensor->data;
  17511. ctx->infos[idx].size = ggml_nbytes(tensor);
  17512. if (ctx->header.n_tensors > 0) {
  17513. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17514. }
  17515. ctx->header.n_tensors++;
  17516. }
  17517. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17518. const int idx = gguf_find_tensor(ctx, name);
  17519. if (idx < 0) {
  17520. GGML_ASSERT(false && "tensor not found");
  17521. }
  17522. ctx->infos[idx].type = type;
  17523. }
  17524. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17525. const int idx = gguf_find_tensor(ctx, name);
  17526. if (idx < 0) {
  17527. GGML_ASSERT(false && "tensor not found");
  17528. }
  17529. ctx->infos[idx].data = data;
  17530. ctx->infos[idx].size = size;
  17531. // update offsets
  17532. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17533. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17534. }
  17535. }
  17536. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17537. // fwrite(&val->n, sizeof(val->n), 1, file);
  17538. // fwrite(val->data, sizeof(char), val->n, file);
  17539. //}
  17540. //
  17541. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17542. // fwrite(val, sizeof(char), size, file);
  17543. //}
  17544. struct gguf_buf {
  17545. void * data;
  17546. size_t size;
  17547. size_t offset;
  17548. };
  17549. static struct gguf_buf gguf_buf_init(size_t size) {
  17550. struct gguf_buf buf = {
  17551. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17552. /*buf.size =*/ size,
  17553. /*buf.offset =*/ 0,
  17554. };
  17555. return buf;
  17556. }
  17557. static void gguf_buf_free(struct gguf_buf buf) {
  17558. if (buf.data) {
  17559. GGML_FREE(buf.data);
  17560. }
  17561. }
  17562. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17563. if (buf->offset + size > buf->size) {
  17564. buf->size = 1.5*(buf->offset + size);
  17565. if (buf->data) {
  17566. buf->data = realloc(buf->data, buf->size);
  17567. }
  17568. }
  17569. }
  17570. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17571. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17572. if (buf->data) {
  17573. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17574. }
  17575. buf->offset += sizeof(val->n);
  17576. if (buf->data) {
  17577. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17578. }
  17579. buf->offset += val->n;
  17580. }
  17581. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17582. gguf_buf_grow(buf, el_size);
  17583. if (buf->data) {
  17584. memcpy((char *) buf->data + buf->offset, val, el_size);
  17585. }
  17586. buf->offset += el_size;
  17587. }
  17588. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17589. // write header
  17590. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17591. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17592. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17593. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17594. // write key-value pairs
  17595. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17596. struct gguf_kv * kv = &ctx->kv[i];
  17597. gguf_bwrite_str(buf, &kv->key);
  17598. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17599. switch (kv->type) {
  17600. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17601. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17602. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17603. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17604. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17605. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17606. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17607. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17608. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17609. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17610. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17611. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17612. case GGUF_TYPE_ARRAY:
  17613. {
  17614. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17615. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17616. switch (kv->value.arr.type) {
  17617. case GGUF_TYPE_UINT8:
  17618. case GGUF_TYPE_INT8:
  17619. case GGUF_TYPE_UINT16:
  17620. case GGUF_TYPE_INT16:
  17621. case GGUF_TYPE_UINT32:
  17622. case GGUF_TYPE_INT32:
  17623. case GGUF_TYPE_FLOAT32:
  17624. case GGUF_TYPE_UINT64:
  17625. case GGUF_TYPE_INT64:
  17626. case GGUF_TYPE_FLOAT64:
  17627. case GGUF_TYPE_BOOL:
  17628. {
  17629. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17630. } break;
  17631. case GGUF_TYPE_STRING:
  17632. {
  17633. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17634. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17635. }
  17636. } break;
  17637. case GGUF_TYPE_ARRAY:
  17638. default: GGML_ASSERT(false && "invalid type"); break;
  17639. }
  17640. } break;
  17641. default: GGML_ASSERT(false && "invalid type");
  17642. }
  17643. }
  17644. // write tensor infos
  17645. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17646. struct gguf_tensor_info * info = &ctx->infos[i];
  17647. gguf_bwrite_str(buf, &info->name);
  17648. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17649. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17650. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17651. }
  17652. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17653. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17654. }
  17655. // we require the data section to be aligned, so take into account any padding
  17656. {
  17657. const size_t offset = buf->offset;
  17658. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17659. if (offset_pad != offset) {
  17660. uint8_t pad = 0;
  17661. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17662. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17663. }
  17664. }
  17665. }
  17666. if (only_meta) {
  17667. return;
  17668. }
  17669. size_t offset = 0;
  17670. // write tensor data
  17671. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17672. struct gguf_tensor_info * info = &ctx->infos[i];
  17673. const size_t size = info->size;
  17674. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17675. gguf_bwrite_el(buf, info->data, size);
  17676. if (size_pad != size) {
  17677. uint8_t pad = 0;
  17678. for (size_t j = 0; j < size_pad - size; ++j) {
  17679. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17680. }
  17681. }
  17682. GGML_ASSERT(offset == info->offset);
  17683. offset += size_pad;
  17684. }
  17685. }
  17686. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17687. FILE * file = ggml_fopen(fname, "wb");
  17688. if (!file) {
  17689. GGML_ASSERT(false && "failed to open file for writing");
  17690. }
  17691. struct gguf_buf buf = gguf_buf_init(16*1024);
  17692. gguf_write_to_buf(ctx, &buf, only_meta);
  17693. fwrite(buf.data, 1, buf.offset, file);
  17694. gguf_buf_free(buf);
  17695. fclose(file);
  17696. }
  17697. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17698. // no allocs - only compute size
  17699. struct gguf_buf buf = gguf_buf_init(0);
  17700. gguf_write_to_buf(ctx, &buf, true);
  17701. return buf.offset;
  17702. }
  17703. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17704. struct gguf_buf buf = gguf_buf_init(16*1024);
  17705. gguf_write_to_buf(ctx, &buf, true);
  17706. memcpy(data, buf.data, buf.offset);
  17707. gguf_buf_free(buf);
  17708. }
  17709. ////////////////////////////////////////////////////////////////////////////////
  17710. int ggml_cpu_has_avx(void) {
  17711. #if defined(__AVX__)
  17712. return 1;
  17713. #else
  17714. return 0;
  17715. #endif
  17716. }
  17717. int ggml_cpu_has_avx_vnni(void) {
  17718. #if defined(__AVXVNNI__)
  17719. return 1;
  17720. #else
  17721. return 0;
  17722. #endif
  17723. }
  17724. int ggml_cpu_has_avx2(void) {
  17725. #if defined(__AVX2__)
  17726. return 1;
  17727. #else
  17728. return 0;
  17729. #endif
  17730. }
  17731. int ggml_cpu_has_avx512(void) {
  17732. #if defined(__AVX512F__)
  17733. return 1;
  17734. #else
  17735. return 0;
  17736. #endif
  17737. }
  17738. int ggml_cpu_has_avx512_vbmi(void) {
  17739. #if defined(__AVX512VBMI__)
  17740. return 1;
  17741. #else
  17742. return 0;
  17743. #endif
  17744. }
  17745. int ggml_cpu_has_avx512_vnni(void) {
  17746. #if defined(__AVX512VNNI__)
  17747. return 1;
  17748. #else
  17749. return 0;
  17750. #endif
  17751. }
  17752. int ggml_cpu_has_fma(void) {
  17753. #if defined(__FMA__)
  17754. return 1;
  17755. #else
  17756. return 0;
  17757. #endif
  17758. }
  17759. int ggml_cpu_has_neon(void) {
  17760. #if defined(__ARM_NEON)
  17761. return 1;
  17762. #else
  17763. return 0;
  17764. #endif
  17765. }
  17766. int ggml_cpu_has_arm_fma(void) {
  17767. #if defined(__ARM_FEATURE_FMA)
  17768. return 1;
  17769. #else
  17770. return 0;
  17771. #endif
  17772. }
  17773. int ggml_cpu_has_metal(void) {
  17774. #if defined(GGML_USE_METAL)
  17775. return 1;
  17776. #else
  17777. return 0;
  17778. #endif
  17779. }
  17780. int ggml_cpu_has_f16c(void) {
  17781. #if defined(__F16C__)
  17782. return 1;
  17783. #else
  17784. return 0;
  17785. #endif
  17786. }
  17787. int ggml_cpu_has_fp16_va(void) {
  17788. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17789. return 1;
  17790. #else
  17791. return 0;
  17792. #endif
  17793. }
  17794. int ggml_cpu_has_wasm_simd(void) {
  17795. #if defined(__wasm_simd128__)
  17796. return 1;
  17797. #else
  17798. return 0;
  17799. #endif
  17800. }
  17801. int ggml_cpu_has_blas(void) {
  17802. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17803. return 1;
  17804. #else
  17805. return 0;
  17806. #endif
  17807. }
  17808. int ggml_cpu_has_cuda(void) {
  17809. #if defined(GGML_USE_CUDA)
  17810. return 1;
  17811. #else
  17812. return 0;
  17813. #endif
  17814. }
  17815. int ggml_cpu_has_clblast(void) {
  17816. #if defined(GGML_USE_CLBLAST)
  17817. return 1;
  17818. #else
  17819. return 0;
  17820. #endif
  17821. }
  17822. int ggml_cpu_has_vulkan(void) {
  17823. #if defined(GGML_USE_VULKAN)
  17824. return 1;
  17825. #else
  17826. return 0;
  17827. #endif
  17828. }
  17829. int ggml_cpu_has_kompute(void) {
  17830. #if defined(GGML_USE_KOMPUTE)
  17831. return 1;
  17832. #else
  17833. return 0;
  17834. #endif
  17835. }
  17836. int ggml_cpu_has_sycl(void) {
  17837. #if defined(GGML_USE_SYCL)
  17838. return 1;
  17839. #else
  17840. return 0;
  17841. #endif
  17842. }
  17843. int ggml_cpu_has_gpublas(void) {
  17844. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17845. ggml_cpu_has_sycl();
  17846. }
  17847. int ggml_cpu_has_sse3(void) {
  17848. #if defined(__SSE3__)
  17849. return 1;
  17850. #else
  17851. return 0;
  17852. #endif
  17853. }
  17854. int ggml_cpu_has_ssse3(void) {
  17855. #if defined(__SSSE3__)
  17856. return 1;
  17857. #else
  17858. return 0;
  17859. #endif
  17860. }
  17861. int ggml_cpu_has_vsx(void) {
  17862. #if defined(__POWER9_VECTOR__)
  17863. return 1;
  17864. #else
  17865. return 0;
  17866. #endif
  17867. }
  17868. int ggml_cpu_has_matmul_int8(void) {
  17869. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17870. return 1;
  17871. #else
  17872. return 0;
  17873. #endif
  17874. }
  17875. ////////////////////////////////////////////////////////////////////////////////