llama-bench.cpp 83 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include <unordered_set>
  21. #include "common.h"
  22. #include "ggml.h"
  23. #include "llama.h"
  24. #ifdef _WIN32
  25. # define WIN32_LEAN_AND_MEAN
  26. # ifndef NOMINMAX
  27. # define NOMINMAX
  28. # endif
  29. # include <windows.h>
  30. #endif
  31. // utils
  32. static uint64_t get_time_ns() {
  33. using clock = std::chrono::high_resolution_clock;
  34. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  35. }
  36. static bool tensor_buft_override_equal(const llama_model_tensor_buft_override& a, const llama_model_tensor_buft_override& b) {
  37. if (a.pattern != b.pattern) {
  38. // cString comparison that may be null
  39. if (a.pattern == nullptr || b.pattern == nullptr) {
  40. return false;
  41. }
  42. if (strcmp(a.pattern, b.pattern) != 0) {
  43. return false;
  44. }
  45. }
  46. if (a.buft != b.buft) {
  47. return false;
  48. }
  49. return true;
  50. }
  51. static bool vec_tensor_buft_override_equal(const std::vector<llama_model_tensor_buft_override>& a, const std::vector<llama_model_tensor_buft_override>& b) {
  52. if (a.size() != b.size()) {
  53. return false;
  54. }
  55. for (size_t i = 0; i < a.size(); i++) {
  56. if (!tensor_buft_override_equal(a[i], b[i])) {
  57. return false;
  58. }
  59. }
  60. return true;
  61. }
  62. static bool vec_vec_tensor_buft_override_equal(const std::vector<std::vector<llama_model_tensor_buft_override>>& a, const std::vector<std::vector<llama_model_tensor_buft_override>>& b) {
  63. if (a.size() != b.size()) {
  64. return false;
  65. }
  66. for (size_t i = 0; i < a.size(); i++) {
  67. if (!vec_tensor_buft_override_equal(a[i], b[i])) {
  68. return false;
  69. }
  70. }
  71. return true;
  72. }
  73. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  74. std::ostringstream str;
  75. for (size_t i = 0; i < values.size(); i++) {
  76. str << values[i];
  77. if (i < values.size() - 1) {
  78. str << delim;
  79. }
  80. }
  81. return str.str();
  82. }
  83. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  84. std::vector<std::string> str_values;
  85. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  86. return str_values;
  87. }
  88. template <typename T> static T avg(const std::vector<T> & v) {
  89. if (v.empty()) {
  90. return 0;
  91. }
  92. T sum = std::accumulate(v.begin(), v.end(), T(0));
  93. return sum / (T) v.size();
  94. }
  95. template <typename T> static T stdev(const std::vector<T> & v) {
  96. if (v.size() <= 1) {
  97. return 0;
  98. }
  99. T mean = avg(v);
  100. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  101. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  102. return stdev;
  103. }
  104. static std::string get_cpu_info() {
  105. std::vector<std::string> cpu_list;
  106. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  107. auto * dev = ggml_backend_dev_get(i);
  108. auto dev_type = ggml_backend_dev_type(dev);
  109. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  110. cpu_list.push_back(ggml_backend_dev_description(dev));
  111. }
  112. }
  113. return join(cpu_list, ", ");
  114. }
  115. static std::string get_gpu_info() {
  116. std::vector<std::string> gpu_list;
  117. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  118. auto * dev = ggml_backend_dev_get(i);
  119. auto dev_type = ggml_backend_dev_type(dev);
  120. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU || dev_type == GGML_BACKEND_DEVICE_TYPE_IGPU) {
  121. gpu_list.push_back(ggml_backend_dev_description(dev));
  122. }
  123. }
  124. return join(gpu_list, ", ");
  125. }
  126. static std::vector<ggml_backend_dev_t> parse_devices_arg(const std::string & value) {
  127. std::vector<ggml_backend_dev_t> devices;
  128. std::string trimmed = string_strip(value);
  129. if (trimmed.empty()) {
  130. throw std::invalid_argument("no devices specified");
  131. }
  132. if (trimmed == "auto") {
  133. return devices;
  134. }
  135. auto dev_names = string_split<std::string>(trimmed, '/');
  136. if (dev_names.size() == 1 && string_strip(dev_names[0]) == "none") {
  137. devices.push_back(nullptr);
  138. return devices;
  139. }
  140. for (auto & name : dev_names) {
  141. std::string dev_name = string_strip(name);
  142. if (dev_name.empty()) {
  143. throw std::invalid_argument("invalid device specification");
  144. }
  145. auto * dev = ggml_backend_dev_by_name(dev_name.c_str());
  146. if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  147. throw std::invalid_argument(string_format("invalid device: %s", dev_name.c_str()));
  148. }
  149. devices.push_back(dev);
  150. }
  151. devices.push_back(nullptr);
  152. return devices;
  153. }
  154. static std::vector<ggml_backend_dev_t> register_rpc_device_list(const std::string & servers) {
  155. auto rpc_servers = string_split<std::string>(servers, ',');
  156. if (rpc_servers.empty()) {
  157. throw std::invalid_argument("no RPC servers specified");
  158. }
  159. auto * rpc_reg = ggml_backend_reg_by_name("RPC");
  160. if (!rpc_reg) {
  161. throw std::invalid_argument("failed to find RPC backend");
  162. }
  163. using add_rpc_device_fn = ggml_backend_dev_t (*)(const char * endpoint);
  164. auto * ggml_backend_rpc_add_device_fn = (add_rpc_device_fn) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  165. if (!ggml_backend_rpc_add_device_fn) {
  166. throw std::invalid_argument("failed to find RPC device add function");
  167. }
  168. static std::unordered_set<std::string> registered;
  169. std::vector<ggml_backend_dev_t> devices;
  170. for (const auto & server : rpc_servers) {
  171. ggml_backend_dev_t dev = nullptr;
  172. std::string name = string_format("RPC[%s]", server.c_str());
  173. if (registered.find(server) != registered.end()) {
  174. dev = ggml_backend_dev_by_name(name.c_str());
  175. }
  176. if (!dev) {
  177. dev = ggml_backend_rpc_add_device_fn(server.c_str());
  178. if (!dev) {
  179. throw std::invalid_argument(string_format("failed to add RPC device for server '%s'", server.c_str()));
  180. }
  181. ggml_backend_device_register(dev);
  182. registered.insert(server);
  183. }
  184. devices.push_back(dev);
  185. }
  186. return devices;
  187. }
  188. static std::string devices_to_string(const std::vector<ggml_backend_dev_t> & devices) {
  189. if (devices.empty()) {
  190. return "auto";
  191. }
  192. if (devices.size() == 1 && devices[0] == nullptr) {
  193. return "none";
  194. }
  195. std::vector<std::string> names;
  196. for (auto * dev : devices) {
  197. if (dev == nullptr) {
  198. break;
  199. }
  200. names.push_back(ggml_backend_dev_name(dev));
  201. }
  202. return join(names, "/");
  203. }
  204. // command line params
  205. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  206. static const char * output_format_str(output_formats format) {
  207. switch (format) {
  208. case NONE:
  209. return "none";
  210. case CSV:
  211. return "csv";
  212. case JSON:
  213. return "json";
  214. case JSONL:
  215. return "jsonl";
  216. case MARKDOWN:
  217. return "md";
  218. case SQL:
  219. return "sql";
  220. default:
  221. GGML_ABORT("invalid output format");
  222. }
  223. }
  224. static bool output_format_from_str(const std::string & s, output_formats & format) {
  225. if (s == "none") {
  226. format = NONE;
  227. } else if (s == "csv") {
  228. format = CSV;
  229. } else if (s == "json") {
  230. format = JSON;
  231. } else if (s == "jsonl") {
  232. format = JSONL;
  233. } else if (s == "md") {
  234. format = MARKDOWN;
  235. } else if (s == "sql") {
  236. format = SQL;
  237. } else {
  238. return false;
  239. }
  240. return true;
  241. }
  242. static const char * split_mode_str(llama_split_mode mode) {
  243. switch (mode) {
  244. case LLAMA_SPLIT_MODE_NONE:
  245. return "none";
  246. case LLAMA_SPLIT_MODE_LAYER:
  247. return "layer";
  248. case LLAMA_SPLIT_MODE_ROW:
  249. return "row";
  250. default:
  251. GGML_ABORT("invalid split mode");
  252. }
  253. }
  254. static std::string pair_str(const std::pair<int, int> & p) {
  255. static char buf[32];
  256. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  257. return buf;
  258. }
  259. static std::vector<int> parse_int_range(const std::string & s) {
  260. // first[-last[(+|*)step]]
  261. std::regex range_regex(R"(^(\d+)(?:-(\d+)(?:([\+|\*])(\d+))?)?(?:,|$))");
  262. std::smatch match;
  263. std::string::const_iterator search_start(s.cbegin());
  264. std::vector<int> result;
  265. while (std::regex_search(search_start, s.cend(), match, range_regex)) {
  266. int first = std::stoi(match[1]);
  267. int last = match[2].matched ? std::stoi(match[2]) : first;
  268. char op = match[3].matched ? match[3].str()[0] : '+';
  269. int step = match[4].matched ? std::stoi(match[4]) : 1;
  270. for (int i = first; i <= last;) {
  271. result.push_back(i);
  272. int prev_i = i;
  273. if (op == '+') {
  274. i += step;
  275. } else if (op == '*') {
  276. i *= step;
  277. } else {
  278. throw std::invalid_argument("invalid range format");
  279. }
  280. if (i <= prev_i) {
  281. throw std::invalid_argument("invalid range");
  282. }
  283. }
  284. search_start = match.suffix().first;
  285. }
  286. if (search_start != s.cend()) {
  287. throw std::invalid_argument("invalid range format");
  288. }
  289. return result;
  290. }
  291. struct cmd_params {
  292. std::vector<std::string> model;
  293. std::vector<int> n_prompt;
  294. std::vector<int> n_gen;
  295. std::vector<std::pair<int, int>> n_pg;
  296. std::vector<int> n_depth;
  297. std::vector<int> n_batch;
  298. std::vector<int> n_ubatch;
  299. std::vector<ggml_type> type_k;
  300. std::vector<ggml_type> type_v;
  301. std::vector<int> n_threads;
  302. std::vector<std::string> cpu_mask;
  303. std::vector<bool> cpu_strict;
  304. std::vector<int> poll;
  305. std::vector<int> n_gpu_layers;
  306. std::vector<int> n_cpu_moe;
  307. std::vector<llama_split_mode> split_mode;
  308. std::vector<int> main_gpu;
  309. std::vector<bool> no_kv_offload;
  310. std::vector<bool> flash_attn;
  311. std::vector<std::vector<ggml_backend_dev_t>> devices;
  312. std::vector<std::vector<float>> tensor_split;
  313. std::vector<std::vector<llama_model_tensor_buft_override>> tensor_buft_overrides;
  314. std::vector<bool> use_mmap;
  315. std::vector<bool> embeddings;
  316. std::vector<bool> no_op_offload;
  317. ggml_numa_strategy numa;
  318. int reps;
  319. ggml_sched_priority prio;
  320. int delay;
  321. bool verbose;
  322. bool progress;
  323. bool no_warmup;
  324. output_formats output_format;
  325. output_formats output_format_stderr;
  326. };
  327. static const cmd_params cmd_params_defaults = {
  328. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  329. /* n_prompt */ { 512 },
  330. /* n_gen */ { 128 },
  331. /* n_pg */ {},
  332. /* n_depth */ { 0 },
  333. /* n_batch */ { 2048 },
  334. /* n_ubatch */ { 512 },
  335. /* type_k */ { GGML_TYPE_F16 },
  336. /* type_v */ { GGML_TYPE_F16 },
  337. /* n_threads */ { cpu_get_num_math() },
  338. /* cpu_mask */ { "0x0" },
  339. /* cpu_strict */ { false },
  340. /* poll */ { 50 },
  341. /* n_gpu_layers */ { 99 },
  342. /* n_cpu_moe */ { 0 },
  343. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  344. /* main_gpu */ { 0 },
  345. /* no_kv_offload */ { false },
  346. /* flash_attn */ { false },
  347. /* devices */ { {} },
  348. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  349. /* tensor_buft_overrides*/ { std::vector<llama_model_tensor_buft_override>{ { nullptr, nullptr } } },
  350. /* use_mmap */ { true },
  351. /* embeddings */ { false },
  352. /* no_op_offload */ { false },
  353. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  354. /* reps */ 5,
  355. /* prio */ GGML_SCHED_PRIO_NORMAL,
  356. /* delay */ 0,
  357. /* verbose */ false,
  358. /* progress */ false,
  359. /* no_warmup */ false,
  360. /* output_format */ MARKDOWN,
  361. /* output_format_stderr */ NONE,
  362. };
  363. static void print_usage(int /* argc */, char ** argv) {
  364. printf("usage: %s [options]\n", argv[0]);
  365. printf("\n");
  366. printf("options:\n");
  367. printf(" -h, --help\n");
  368. printf(" --numa <distribute|isolate|numactl> numa mode (default: disabled)\n");
  369. printf(" -r, --repetitions <n> number of times to repeat each test (default: %d)\n",
  370. cmd_params_defaults.reps);
  371. printf(" --prio <-1|0|1|2|3> process/thread priority (default: %d)\n",
  372. cmd_params_defaults.prio);
  373. printf(" --delay <0...N> (seconds) delay between each test (default: %d)\n",
  374. cmd_params_defaults.delay);
  375. printf(" -o, --output <csv|json|jsonl|md|sql> output format printed to stdout (default: %s)\n",
  376. output_format_str(cmd_params_defaults.output_format));
  377. printf(" -oe, --output-err <csv|json|jsonl|md|sql> output format printed to stderr (default: %s)\n",
  378. output_format_str(cmd_params_defaults.output_format_stderr));
  379. printf(" --list-devices list available devices and exit\n");
  380. printf(" -v, --verbose verbose output\n");
  381. printf(" --progress print test progress indicators\n");
  382. printf(" --no-warmup skip warmup runs before benchmarking\n");
  383. if (llama_supports_rpc()) {
  384. printf(" -rpc, --rpc <rpc_servers> register RPC devices (comma separated)\n");
  385. }
  386. printf("\n");
  387. printf("test parameters:\n");
  388. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  389. printf(" -p, --n-prompt <n> (default: %s)\n",
  390. join(cmd_params_defaults.n_prompt, ",").c_str());
  391. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  392. printf(" -pg <pp,tg> (default: %s)\n",
  393. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  394. printf(" -d, --n-depth <n> (default: %s)\n",
  395. join(cmd_params_defaults.n_depth, ",").c_str());
  396. printf(" -b, --batch-size <n> (default: %s)\n",
  397. join(cmd_params_defaults.n_batch, ",").c_str());
  398. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  399. join(cmd_params_defaults.n_ubatch, ",").c_str());
  400. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  401. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  402. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  403. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  404. printf(" -t, --threads <n> (default: %s)\n",
  405. join(cmd_params_defaults.n_threads, ",").c_str());
  406. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  407. join(cmd_params_defaults.cpu_mask, ",").c_str());
  408. printf(" --cpu-strict <0|1> (default: %s)\n",
  409. join(cmd_params_defaults.cpu_strict, ",").c_str());
  410. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  411. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  412. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  413. printf(" -ncmoe, --n-cpu-moe <n> (default: %s)\n",
  414. join(cmd_params_defaults.n_cpu_moe, ",").c_str());
  415. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  416. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  417. printf(" -mg, --main-gpu <i> (default: %s)\n",
  418. join(cmd_params_defaults.main_gpu, ",").c_str());
  419. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  420. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  421. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  422. join(cmd_params_defaults.flash_attn, ",").c_str());
  423. printf(" -dev, --device <dev0/dev1/...> (default: auto)\n");
  424. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  425. join(cmd_params_defaults.use_mmap, ",").c_str());
  426. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  427. join(cmd_params_defaults.embeddings, ",").c_str());
  428. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  429. printf(" -ot --override-tensor <tensor name pattern>=<buffer type>;...\n");
  430. printf(" (default: disabled)\n");
  431. printf(" -nopo, --no-op-offload <0|1> (default: 0)\n");
  432. printf("\n");
  433. printf(
  434. "Multiple values can be given for each parameter by separating them with ','\n"
  435. "or by specifying the parameter multiple times. Ranges can be given as\n"
  436. "'first-last' or 'first-last+step' or 'first-last*mult'.\n");
  437. }
  438. static ggml_type ggml_type_from_name(const std::string & s) {
  439. if (s == "f16") {
  440. return GGML_TYPE_F16;
  441. }
  442. if (s == "bf16") {
  443. return GGML_TYPE_BF16;
  444. }
  445. if (s == "q8_0") {
  446. return GGML_TYPE_Q8_0;
  447. }
  448. if (s == "q4_0") {
  449. return GGML_TYPE_Q4_0;
  450. }
  451. if (s == "q4_1") {
  452. return GGML_TYPE_Q4_1;
  453. }
  454. if (s == "q5_0") {
  455. return GGML_TYPE_Q5_0;
  456. }
  457. if (s == "q5_1") {
  458. return GGML_TYPE_Q5_1;
  459. }
  460. if (s == "iq4_nl") {
  461. return GGML_TYPE_IQ4_NL;
  462. }
  463. return GGML_TYPE_COUNT;
  464. }
  465. static cmd_params parse_cmd_params(int argc, char ** argv) {
  466. cmd_params params;
  467. std::string arg;
  468. bool invalid_param = false;
  469. const std::string arg_prefix = "--";
  470. const char split_delim = ',';
  471. params.verbose = cmd_params_defaults.verbose;
  472. params.output_format = cmd_params_defaults.output_format;
  473. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  474. params.reps = cmd_params_defaults.reps;
  475. params.numa = cmd_params_defaults.numa;
  476. params.prio = cmd_params_defaults.prio;
  477. params.delay = cmd_params_defaults.delay;
  478. params.progress = cmd_params_defaults.progress;
  479. params.no_warmup = cmd_params_defaults.no_warmup;
  480. for (int i = 1; i < argc; i++) {
  481. arg = argv[i];
  482. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  483. std::replace(arg.begin(), arg.end(), '_', '-');
  484. }
  485. try {
  486. if (arg == "-h" || arg == "--help") {
  487. print_usage(argc, argv);
  488. exit(0);
  489. } else if (arg == "-m" || arg == "--model") {
  490. if (++i >= argc) {
  491. invalid_param = true;
  492. break;
  493. }
  494. auto p = string_split<std::string>(argv[i], split_delim);
  495. params.model.insert(params.model.end(), p.begin(), p.end());
  496. } else if (arg == "-p" || arg == "--n-prompt") {
  497. if (++i >= argc) {
  498. invalid_param = true;
  499. break;
  500. }
  501. auto p = parse_int_range(argv[i]);
  502. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  503. } else if (arg == "-n" || arg == "--n-gen") {
  504. if (++i >= argc) {
  505. invalid_param = true;
  506. break;
  507. }
  508. auto p = parse_int_range(argv[i]);
  509. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  510. } else if (arg == "-pg") {
  511. if (++i >= argc) {
  512. invalid_param = true;
  513. break;
  514. }
  515. auto p = string_split<std::string>(argv[i], ',');
  516. if (p.size() != 2) {
  517. invalid_param = true;
  518. break;
  519. }
  520. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  521. } else if (arg == "-d" || arg == "--n-depth") {
  522. if (++i >= argc) {
  523. invalid_param = true;
  524. break;
  525. }
  526. auto p = parse_int_range(argv[i]);
  527. params.n_depth.insert(params.n_depth.end(), p.begin(), p.end());
  528. } else if (arg == "-b" || arg == "--batch-size") {
  529. if (++i >= argc) {
  530. invalid_param = true;
  531. break;
  532. }
  533. auto p = parse_int_range(argv[i]);
  534. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  535. } else if (arg == "-ub" || arg == "--ubatch-size") {
  536. if (++i >= argc) {
  537. invalid_param = true;
  538. break;
  539. }
  540. auto p = parse_int_range(argv[i]);
  541. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  542. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. break;
  546. }
  547. auto p = string_split<std::string>(argv[i], split_delim);
  548. std::vector<ggml_type> types;
  549. for (const auto & t : p) {
  550. ggml_type gt = ggml_type_from_name(t);
  551. if (gt == GGML_TYPE_COUNT) {
  552. invalid_param = true;
  553. break;
  554. }
  555. types.push_back(gt);
  556. }
  557. if (invalid_param) {
  558. break;
  559. }
  560. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  561. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  562. if (++i >= argc) {
  563. invalid_param = true;
  564. break;
  565. }
  566. auto p = string_split<std::string>(argv[i], split_delim);
  567. std::vector<ggml_type> types;
  568. for (const auto & t : p) {
  569. ggml_type gt = ggml_type_from_name(t);
  570. if (gt == GGML_TYPE_COUNT) {
  571. invalid_param = true;
  572. break;
  573. }
  574. types.push_back(gt);
  575. }
  576. if (invalid_param) {
  577. break;
  578. }
  579. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  580. } else if (arg == "-dev" || arg == "--device") {
  581. if (++i >= argc) {
  582. invalid_param = true;
  583. break;
  584. }
  585. auto combos = string_split<std::string>(argv[i], split_delim);
  586. for (const auto & combo : combos) {
  587. try {
  588. params.devices.push_back(parse_devices_arg(combo));
  589. } catch (const std::exception & e) {
  590. fprintf(stderr, "error: %s\n", e.what());
  591. invalid_param = true;
  592. break;
  593. }
  594. }
  595. if (invalid_param) {
  596. break;
  597. }
  598. } else if (arg == "--list-devices") {
  599. std::vector<ggml_backend_dev_t> devices;
  600. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  601. auto * dev = ggml_backend_dev_get(i);
  602. if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
  603. devices.push_back(dev);
  604. }
  605. }
  606. printf("Available devices:\n");
  607. if (devices.empty()) {
  608. printf(" (none)\n");
  609. }
  610. for (auto * dev : devices) {
  611. size_t free, total;
  612. ggml_backend_dev_memory(dev, &free, &total);
  613. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  614. }
  615. exit(0);
  616. } else if (arg == "-t" || arg == "--threads") {
  617. if (++i >= argc) {
  618. invalid_param = true;
  619. break;
  620. }
  621. auto p = parse_int_range(argv[i]);
  622. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  623. } else if (arg == "-C" || arg == "--cpu-mask") {
  624. if (++i >= argc) {
  625. invalid_param = true;
  626. break;
  627. }
  628. auto p = string_split<std::string>(argv[i], split_delim);
  629. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  630. } else if (arg == "--cpu-strict") {
  631. if (++i >= argc) {
  632. invalid_param = true;
  633. break;
  634. }
  635. auto p = string_split<bool>(argv[i], split_delim);
  636. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  637. } else if (arg == "--poll") {
  638. if (++i >= argc) {
  639. invalid_param = true;
  640. break;
  641. }
  642. auto p = parse_int_range(argv[i]);
  643. params.poll.insert(params.poll.end(), p.begin(), p.end());
  644. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  645. if (++i >= argc) {
  646. invalid_param = true;
  647. break;
  648. }
  649. auto p = parse_int_range(argv[i]);
  650. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  651. } else if (arg == "-ncmoe" || arg == "--n-cpu-moe") {
  652. if (++i >= argc) {
  653. invalid_param = true;
  654. break;
  655. }
  656. auto p = parse_int_range(argv[i]);
  657. params.n_cpu_moe.insert(params.n_cpu_moe.end(), p.begin(), p.end());
  658. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  659. if (++i >= argc) {
  660. invalid_param = true;
  661. break;
  662. }
  663. try {
  664. register_rpc_device_list(argv[i]);
  665. } catch (const std::exception & e) {
  666. fprintf(stderr, "error: %s\n", e.what());
  667. invalid_param = true;
  668. break;
  669. }
  670. } else if (arg == "-sm" || arg == "--split-mode") {
  671. if (++i >= argc) {
  672. invalid_param = true;
  673. break;
  674. }
  675. auto p = string_split<std::string>(argv[i], split_delim);
  676. std::vector<llama_split_mode> modes;
  677. for (const auto & m : p) {
  678. llama_split_mode mode;
  679. if (m == "none") {
  680. mode = LLAMA_SPLIT_MODE_NONE;
  681. } else if (m == "layer") {
  682. mode = LLAMA_SPLIT_MODE_LAYER;
  683. } else if (m == "row") {
  684. mode = LLAMA_SPLIT_MODE_ROW;
  685. } else {
  686. invalid_param = true;
  687. break;
  688. }
  689. modes.push_back(mode);
  690. }
  691. if (invalid_param) {
  692. break;
  693. }
  694. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  695. } else if (arg == "-mg" || arg == "--main-gpu") {
  696. if (++i >= argc) {
  697. invalid_param = true;
  698. break;
  699. }
  700. params.main_gpu = parse_int_range(argv[i]);
  701. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  702. if (++i >= argc) {
  703. invalid_param = true;
  704. break;
  705. }
  706. auto p = string_split<bool>(argv[i], split_delim);
  707. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  708. } else if (arg == "--numa") {
  709. if (++i >= argc) {
  710. invalid_param = true;
  711. break;
  712. }
  713. std::string value(argv[i]);
  714. if (value == "distribute" || value == "") {
  715. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  716. } else if (value == "isolate") {
  717. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  718. } else if (value == "numactl") {
  719. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  720. } else {
  721. invalid_param = true;
  722. break;
  723. }
  724. } else if (arg == "-fa" || arg == "--flash-attn") {
  725. if (++i >= argc) {
  726. invalid_param = true;
  727. break;
  728. }
  729. auto p = string_split<bool>(argv[i], split_delim);
  730. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  731. } else if (arg == "-mmp" || arg == "--mmap") {
  732. if (++i >= argc) {
  733. invalid_param = true;
  734. break;
  735. }
  736. auto p = string_split<bool>(argv[i], split_delim);
  737. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  738. } else if (arg == "-embd" || arg == "--embeddings") {
  739. if (++i >= argc) {
  740. invalid_param = true;
  741. break;
  742. }
  743. auto p = string_split<bool>(argv[i], split_delim);
  744. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  745. } else if (arg == "-nopo" || arg == "--no-op-offload") {
  746. if (++i >= argc) {
  747. invalid_param = true;
  748. break;
  749. }
  750. auto p = string_split<bool>(argv[i], split_delim);
  751. params.no_op_offload.insert(params.no_op_offload.end(), p.begin(), p.end());
  752. } else if (arg == "-ts" || arg == "--tensor-split") {
  753. if (++i >= argc) {
  754. invalid_param = true;
  755. break;
  756. }
  757. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  758. // split string by ; and /
  759. const std::regex regex{ R"([;/]+)" };
  760. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  761. std::vector<std::string> split_arg{ it, {} };
  762. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  763. std::vector<float> tensor_split(llama_max_devices());
  764. for (size_t i = 0; i < llama_max_devices(); ++i) {
  765. if (i < split_arg.size()) {
  766. tensor_split[i] = std::stof(split_arg[i]);
  767. } else {
  768. tensor_split[i] = 0.0f;
  769. }
  770. }
  771. params.tensor_split.push_back(tensor_split);
  772. }
  773. } else if (arg == "-ot" || arg == "--override-tensor") {
  774. if (++i >= argc) {
  775. invalid_param = true;
  776. break;
  777. }
  778. auto * value = argv[i];
  779. /* static */ std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  780. if (buft_list.empty()) {
  781. // enumerate all the devices and add their buffer types to the list
  782. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  783. auto * dev = ggml_backend_dev_get(i);
  784. auto * buft = ggml_backend_dev_buffer_type(dev);
  785. if (buft) {
  786. buft_list[ggml_backend_buft_name(buft)] = buft;
  787. }
  788. }
  789. }
  790. auto override_group_span_len = std::strcspn(value, ",");
  791. bool last_group = false;
  792. do {
  793. if (override_group_span_len == 0) {
  794. // Adds an empty override-tensors for an empty span
  795. params.tensor_buft_overrides.push_back({{}});
  796. if (value[override_group_span_len] == '\0') {
  797. value = &value[override_group_span_len];
  798. last_group = true;
  799. } else {
  800. value = &value[override_group_span_len + 1];
  801. override_group_span_len = std::strcspn(value, ",");
  802. }
  803. continue;
  804. }
  805. // Stamps null terminators into the argv
  806. // value for this option to avoid the
  807. // memory leak present in the implementation
  808. // over in arg.cpp. Acceptable because we
  809. // only parse these args once in this program.
  810. auto * override_group = value;
  811. if (value[override_group_span_len] == '\0') {
  812. value = &value[override_group_span_len];
  813. last_group = true;
  814. } else {
  815. value[override_group_span_len] = '\0';
  816. value = &value[override_group_span_len + 1];
  817. }
  818. std::vector<llama_model_tensor_buft_override> group_tensor_buft_overrides{};
  819. auto override_span_len = std::strcspn(override_group, ";");
  820. while (override_span_len > 0) {
  821. auto * override = override_group;
  822. if (override_group[override_span_len] != '\0') {
  823. override_group[override_span_len] = '\0';
  824. override_group = &override_group[override_span_len + 1];
  825. } else {
  826. override_group = &override_group[override_span_len];
  827. }
  828. auto tensor_name_span_len = std::strcspn(override, "=");
  829. if (tensor_name_span_len >= override_span_len) {
  830. invalid_param = true;
  831. break;
  832. }
  833. override[tensor_name_span_len] = '\0';
  834. auto * tensor_name = override;
  835. auto * buffer_type = &override[tensor_name_span_len + 1];
  836. if (buft_list.find(buffer_type) == buft_list.end()) {
  837. printf("error: unrecognized buffer type '%s'\n", buffer_type);
  838. printf("Available buffer types:\n");
  839. for (const auto & it : buft_list) {
  840. printf(" %s\n", ggml_backend_buft_name(it.second));
  841. }
  842. invalid_param = true;
  843. break;
  844. }
  845. group_tensor_buft_overrides.push_back({tensor_name, buft_list.at(buffer_type)});
  846. override_span_len = std::strcspn(override_group, ";");
  847. }
  848. if (invalid_param) {
  849. break;
  850. }
  851. group_tensor_buft_overrides.push_back({nullptr,nullptr});
  852. params.tensor_buft_overrides.push_back(group_tensor_buft_overrides);
  853. override_group_span_len = std::strcspn(value, ",");
  854. } while (!last_group);
  855. } else if (arg == "-r" || arg == "--repetitions") {
  856. if (++i >= argc) {
  857. invalid_param = true;
  858. break;
  859. }
  860. params.reps = std::stoi(argv[i]);
  861. } else if (arg == "--prio") {
  862. if (++i >= argc) {
  863. invalid_param = true;
  864. break;
  865. }
  866. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  867. } else if (arg == "--delay") {
  868. if (++i >= argc) {
  869. invalid_param = true;
  870. break;
  871. }
  872. params.delay = std::stoi(argv[i]);
  873. } else if (arg == "-o" || arg == "--output") {
  874. if (++i >= argc) {
  875. invalid_param = true;
  876. break;
  877. }
  878. invalid_param = !output_format_from_str(argv[i], params.output_format);
  879. } else if (arg == "-oe" || arg == "--output-err") {
  880. if (++i >= argc) {
  881. invalid_param = true;
  882. break;
  883. }
  884. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  885. } else if (arg == "-v" || arg == "--verbose") {
  886. params.verbose = true;
  887. } else if (arg == "--progress") {
  888. params.progress = true;
  889. } else if (arg == "--no-warmup") {
  890. params.no_warmup = true;
  891. } else {
  892. invalid_param = true;
  893. break;
  894. }
  895. } catch (const std::exception & e) {
  896. fprintf(stderr, "error: %s\n", e.what());
  897. invalid_param = true;
  898. break;
  899. }
  900. }
  901. if (invalid_param) {
  902. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  903. print_usage(argc, argv);
  904. exit(1);
  905. }
  906. // set defaults
  907. if (params.model.empty()) {
  908. params.model = cmd_params_defaults.model;
  909. }
  910. if (params.n_prompt.empty()) {
  911. params.n_prompt = cmd_params_defaults.n_prompt;
  912. }
  913. if (params.n_gen.empty()) {
  914. params.n_gen = cmd_params_defaults.n_gen;
  915. }
  916. if (params.n_pg.empty()) {
  917. params.n_pg = cmd_params_defaults.n_pg;
  918. }
  919. if (params.n_depth.empty()) {
  920. params.n_depth = cmd_params_defaults.n_depth;
  921. }
  922. if (params.n_batch.empty()) {
  923. params.n_batch = cmd_params_defaults.n_batch;
  924. }
  925. if (params.n_ubatch.empty()) {
  926. params.n_ubatch = cmd_params_defaults.n_ubatch;
  927. }
  928. if (params.type_k.empty()) {
  929. params.type_k = cmd_params_defaults.type_k;
  930. }
  931. if (params.type_v.empty()) {
  932. params.type_v = cmd_params_defaults.type_v;
  933. }
  934. if (params.n_gpu_layers.empty()) {
  935. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  936. }
  937. if (params.n_cpu_moe.empty()) {
  938. params.n_cpu_moe = cmd_params_defaults.n_cpu_moe;
  939. }
  940. if (params.split_mode.empty()) {
  941. params.split_mode = cmd_params_defaults.split_mode;
  942. }
  943. if (params.main_gpu.empty()) {
  944. params.main_gpu = cmd_params_defaults.main_gpu;
  945. }
  946. if (params.no_kv_offload.empty()) {
  947. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  948. }
  949. if (params.flash_attn.empty()) {
  950. params.flash_attn = cmd_params_defaults.flash_attn;
  951. }
  952. if (params.devices.empty()) {
  953. params.devices = cmd_params_defaults.devices;
  954. }
  955. if (params.tensor_split.empty()) {
  956. params.tensor_split = cmd_params_defaults.tensor_split;
  957. }
  958. if (params.tensor_buft_overrides.empty()) {
  959. params.tensor_buft_overrides = cmd_params_defaults.tensor_buft_overrides;
  960. }
  961. if (params.use_mmap.empty()) {
  962. params.use_mmap = cmd_params_defaults.use_mmap;
  963. }
  964. if (params.embeddings.empty()) {
  965. params.embeddings = cmd_params_defaults.embeddings;
  966. }
  967. if (params.no_op_offload.empty()) {
  968. params.no_op_offload = cmd_params_defaults.no_op_offload;
  969. }
  970. if (params.n_threads.empty()) {
  971. params.n_threads = cmd_params_defaults.n_threads;
  972. }
  973. if (params.cpu_mask.empty()) {
  974. params.cpu_mask = cmd_params_defaults.cpu_mask;
  975. }
  976. if (params.cpu_strict.empty()) {
  977. params.cpu_strict = cmd_params_defaults.cpu_strict;
  978. }
  979. if (params.poll.empty()) {
  980. params.poll = cmd_params_defaults.poll;
  981. }
  982. return params;
  983. }
  984. struct cmd_params_instance {
  985. std::string model;
  986. int n_prompt;
  987. int n_gen;
  988. int n_depth;
  989. int n_batch;
  990. int n_ubatch;
  991. ggml_type type_k;
  992. ggml_type type_v;
  993. int n_threads;
  994. std::string cpu_mask;
  995. bool cpu_strict;
  996. int poll;
  997. int n_gpu_layers;
  998. int n_cpu_moe;
  999. llama_split_mode split_mode;
  1000. int main_gpu;
  1001. bool no_kv_offload;
  1002. bool flash_attn;
  1003. std::vector<ggml_backend_dev_t> devices;
  1004. std::vector<float> tensor_split;
  1005. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1006. bool use_mmap;
  1007. bool embeddings;
  1008. bool no_op_offload;
  1009. llama_model_params to_llama_mparams() const {
  1010. llama_model_params mparams = llama_model_default_params();
  1011. mparams.n_gpu_layers = n_gpu_layers;
  1012. if (!devices.empty()) {
  1013. mparams.devices = const_cast<ggml_backend_dev_t *>(devices.data());
  1014. }
  1015. mparams.split_mode = split_mode;
  1016. mparams.main_gpu = main_gpu;
  1017. mparams.tensor_split = tensor_split.data();
  1018. mparams.use_mmap = use_mmap;
  1019. if (n_cpu_moe <= 0) {
  1020. if (tensor_buft_overrides.empty()) {
  1021. mparams.tensor_buft_overrides = nullptr;
  1022. } else {
  1023. GGML_ASSERT(tensor_buft_overrides.back().pattern == nullptr &&
  1024. "Tensor buffer overrides not terminated with empty pattern");
  1025. mparams.tensor_buft_overrides = tensor_buft_overrides.data();
  1026. }
  1027. } else {
  1028. static std::vector<llama_model_tensor_buft_override> merged;
  1029. static std::vector<std::string> patterns;
  1030. merged.clear();
  1031. patterns.clear();
  1032. auto first = tensor_buft_overrides.begin();
  1033. auto last = tensor_buft_overrides.end();
  1034. if (first != last && (last - 1)->pattern == nullptr) {
  1035. --last;
  1036. }
  1037. merged.insert(merged.end(), first, last);
  1038. patterns.reserve((size_t) n_cpu_moe);
  1039. merged.reserve(merged.size() + (size_t) n_cpu_moe + 1);
  1040. for (int i = 0; i < n_cpu_moe; ++i) {
  1041. patterns.push_back(llm_ffn_exps_block_regex(i));
  1042. merged.push_back({ patterns.back().c_str(),
  1043. ggml_backend_cpu_buffer_type() });
  1044. }
  1045. merged.push_back({ nullptr, nullptr });
  1046. mparams.tensor_buft_overrides = merged.data();
  1047. }
  1048. return mparams;
  1049. }
  1050. bool equal_mparams(const cmd_params_instance & other) const {
  1051. return model == other.model && n_gpu_layers == other.n_gpu_layers && n_cpu_moe == other.n_cpu_moe &&
  1052. split_mode == other.split_mode &&
  1053. main_gpu == other.main_gpu && use_mmap == other.use_mmap && tensor_split == other.tensor_split &&
  1054. devices == other.devices &&
  1055. vec_tensor_buft_override_equal(tensor_buft_overrides, other.tensor_buft_overrides);
  1056. }
  1057. llama_context_params to_llama_cparams() const {
  1058. llama_context_params cparams = llama_context_default_params();
  1059. cparams.n_ctx = n_prompt + n_gen + n_depth;
  1060. cparams.n_batch = n_batch;
  1061. cparams.n_ubatch = n_ubatch;
  1062. cparams.type_k = type_k;
  1063. cparams.type_v = type_v;
  1064. cparams.offload_kqv = !no_kv_offload;
  1065. cparams.flash_attn_type = flash_attn ? LLAMA_FLASH_ATTN_TYPE_ENABLED : LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1066. cparams.embeddings = embeddings;
  1067. cparams.op_offload = !no_op_offload;
  1068. cparams.swa_full = false;
  1069. return cparams;
  1070. }
  1071. };
  1072. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  1073. std::vector<cmd_params_instance> instances;
  1074. // this ordering minimizes the number of times that each model needs to be reloaded
  1075. // clang-format off
  1076. for (const auto & m : params.model)
  1077. for (const auto & nl : params.n_gpu_layers)
  1078. for (const auto & ncmoe : params.n_cpu_moe)
  1079. for (const auto & sm : params.split_mode)
  1080. for (const auto & mg : params.main_gpu)
  1081. for (const auto & devs : params.devices)
  1082. for (const auto & ts : params.tensor_split)
  1083. for (const auto & ot : params.tensor_buft_overrides)
  1084. for (const auto & mmp : params.use_mmap)
  1085. for (const auto & embd : params.embeddings)
  1086. for (const auto & nopo : params.no_op_offload)
  1087. for (const auto & nb : params.n_batch)
  1088. for (const auto & nub : params.n_ubatch)
  1089. for (const auto & tk : params.type_k)
  1090. for (const auto & tv : params.type_v)
  1091. for (const auto & nkvo : params.no_kv_offload)
  1092. for (const auto & fa : params.flash_attn)
  1093. for (const auto & nt : params.n_threads)
  1094. for (const auto & cm : params.cpu_mask)
  1095. for (const auto & cs : params.cpu_strict)
  1096. for (const auto & nd : params.n_depth)
  1097. for (const auto & pl : params.poll) {
  1098. for (const auto & n_prompt : params.n_prompt) {
  1099. if (n_prompt == 0) {
  1100. continue;
  1101. }
  1102. cmd_params_instance instance = {
  1103. /* .model = */ m,
  1104. /* .n_prompt = */ n_prompt,
  1105. /* .n_gen = */ 0,
  1106. /* .n_depth = */ nd,
  1107. /* .n_batch = */ nb,
  1108. /* .n_ubatch = */ nub,
  1109. /* .type_k = */ tk,
  1110. /* .type_v = */ tv,
  1111. /* .n_threads = */ nt,
  1112. /* .cpu_mask = */ cm,
  1113. /* .cpu_strict = */ cs,
  1114. /* .poll = */ pl,
  1115. /* .n_gpu_layers = */ nl,
  1116. /* .n_cpu_moe = */ ncmoe,
  1117. /* .split_mode = */ sm,
  1118. /* .main_gpu = */ mg,
  1119. /* .no_kv_offload= */ nkvo,
  1120. /* .flash_attn = */ fa,
  1121. /* .devices = */ devs,
  1122. /* .tensor_split = */ ts,
  1123. /* .tensor_buft_overrides = */ ot,
  1124. /* .use_mmap = */ mmp,
  1125. /* .embeddings = */ embd,
  1126. /* .no_op_offload= */ nopo,
  1127. };
  1128. instances.push_back(instance);
  1129. }
  1130. for (const auto & n_gen : params.n_gen) {
  1131. if (n_gen == 0) {
  1132. continue;
  1133. }
  1134. cmd_params_instance instance = {
  1135. /* .model = */ m,
  1136. /* .n_prompt = */ 0,
  1137. /* .n_gen = */ n_gen,
  1138. /* .n_depth = */ nd,
  1139. /* .n_batch = */ nb,
  1140. /* .n_ubatch = */ nub,
  1141. /* .type_k = */ tk,
  1142. /* .type_v = */ tv,
  1143. /* .n_threads = */ nt,
  1144. /* .cpu_mask = */ cm,
  1145. /* .cpu_strict = */ cs,
  1146. /* .poll = */ pl,
  1147. /* .n_gpu_layers = */ nl,
  1148. /* .n_cpu_moe = */ ncmoe,
  1149. /* .split_mode = */ sm,
  1150. /* .main_gpu = */ mg,
  1151. /* .no_kv_offload= */ nkvo,
  1152. /* .flash_attn = */ fa,
  1153. /* .devices = */ devs,
  1154. /* .tensor_split = */ ts,
  1155. /* .tensor_buft_overrides = */ ot,
  1156. /* .use_mmap = */ mmp,
  1157. /* .embeddings = */ embd,
  1158. /* .no_op_offload= */ nopo,
  1159. };
  1160. instances.push_back(instance);
  1161. }
  1162. for (const auto & n_pg : params.n_pg) {
  1163. if (n_pg.first == 0 && n_pg.second == 0) {
  1164. continue;
  1165. }
  1166. cmd_params_instance instance = {
  1167. /* .model = */ m,
  1168. /* .n_prompt = */ n_pg.first,
  1169. /* .n_gen = */ n_pg.second,
  1170. /* .n_depth = */ nd,
  1171. /* .n_batch = */ nb,
  1172. /* .n_ubatch = */ nub,
  1173. /* .type_k = */ tk,
  1174. /* .type_v = */ tv,
  1175. /* .n_threads = */ nt,
  1176. /* .cpu_mask = */ cm,
  1177. /* .cpu_strict = */ cs,
  1178. /* .poll = */ pl,
  1179. /* .n_gpu_layers = */ nl,
  1180. /* .n_cpu_moe = */ ncmoe,
  1181. /* .split_mode = */ sm,
  1182. /* .main_gpu = */ mg,
  1183. /* .no_kv_offload= */ nkvo,
  1184. /* .flash_attn = */ fa,
  1185. /* .devices = */ devs,
  1186. /* .tensor_split = */ ts,
  1187. /* .tensor_buft_overrides = */ ot,
  1188. /* .use_mmap = */ mmp,
  1189. /* .embeddings = */ embd,
  1190. /* .no_op_offload= */ nopo,
  1191. };
  1192. instances.push_back(instance);
  1193. }
  1194. }
  1195. // clang-format on
  1196. return instances;
  1197. }
  1198. struct test {
  1199. static const std::string build_commit;
  1200. static const int build_number;
  1201. const std::string cpu_info;
  1202. const std::string gpu_info;
  1203. std::string model_filename;
  1204. std::string model_type;
  1205. uint64_t model_size;
  1206. uint64_t model_n_params;
  1207. int n_batch;
  1208. int n_ubatch;
  1209. int n_threads;
  1210. std::string cpu_mask;
  1211. bool cpu_strict;
  1212. int poll;
  1213. ggml_type type_k;
  1214. ggml_type type_v;
  1215. int n_gpu_layers;
  1216. int n_cpu_moe;
  1217. llama_split_mode split_mode;
  1218. int main_gpu;
  1219. bool no_kv_offload;
  1220. bool flash_attn;
  1221. std::vector<ggml_backend_dev_t> devices;
  1222. std::vector<float> tensor_split;
  1223. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  1224. bool use_mmap;
  1225. bool embeddings;
  1226. bool no_op_offload;
  1227. int n_prompt;
  1228. int n_gen;
  1229. int n_depth;
  1230. std::string test_time;
  1231. std::vector<uint64_t> samples_ns;
  1232. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) :
  1233. cpu_info(get_cpu_info()),
  1234. gpu_info(get_gpu_info()) {
  1235. model_filename = inst.model;
  1236. char buf[128];
  1237. llama_model_desc(lmodel, buf, sizeof(buf));
  1238. model_type = buf;
  1239. model_size = llama_model_size(lmodel);
  1240. model_n_params = llama_model_n_params(lmodel);
  1241. n_batch = inst.n_batch;
  1242. n_ubatch = inst.n_ubatch;
  1243. n_threads = inst.n_threads;
  1244. cpu_mask = inst.cpu_mask;
  1245. cpu_strict = inst.cpu_strict;
  1246. poll = inst.poll;
  1247. type_k = inst.type_k;
  1248. type_v = inst.type_v;
  1249. n_gpu_layers = inst.n_gpu_layers;
  1250. n_cpu_moe = inst.n_cpu_moe;
  1251. split_mode = inst.split_mode;
  1252. main_gpu = inst.main_gpu;
  1253. no_kv_offload = inst.no_kv_offload;
  1254. flash_attn = inst.flash_attn;
  1255. devices = inst.devices;
  1256. tensor_split = inst.tensor_split;
  1257. tensor_buft_overrides = inst.tensor_buft_overrides;
  1258. use_mmap = inst.use_mmap;
  1259. embeddings = inst.embeddings;
  1260. no_op_offload = inst.no_op_offload;
  1261. n_prompt = inst.n_prompt;
  1262. n_gen = inst.n_gen;
  1263. n_depth = inst.n_depth;
  1264. // RFC 3339 date-time format
  1265. time_t t = time(NULL);
  1266. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  1267. test_time = buf;
  1268. (void) ctx;
  1269. }
  1270. uint64_t avg_ns() const { return ::avg(samples_ns); }
  1271. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  1272. std::vector<double> get_ts() const {
  1273. int n_tokens = n_prompt + n_gen;
  1274. std::vector<double> ts;
  1275. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  1276. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  1277. return ts;
  1278. }
  1279. double avg_ts() const { return ::avg(get_ts()); }
  1280. double stdev_ts() const { return ::stdev(get_ts()); }
  1281. static std::string get_backend() {
  1282. std::vector<std::string> backends;
  1283. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  1284. auto * reg = ggml_backend_reg_get(i);
  1285. std::string name = ggml_backend_reg_name(reg);
  1286. if (name != "CPU") {
  1287. backends.push_back(ggml_backend_reg_name(reg));
  1288. }
  1289. }
  1290. return backends.empty() ? "CPU" : join(backends, ",");
  1291. }
  1292. static const std::vector<std::string> & get_fields() {
  1293. static const std::vector<std::string> fields = {
  1294. "build_commit", "build_number", "cpu_info", "gpu_info", "backends",
  1295. "model_filename", "model_type", "model_size", "model_n_params", "n_batch",
  1296. "n_ubatch", "n_threads", "cpu_mask", "cpu_strict", "poll",
  1297. "type_k", "type_v", "n_gpu_layers", "n_cpu_moe", "split_mode",
  1298. "main_gpu", "no_kv_offload", "flash_attn", "devices", "tensor_split",
  1299. "tensor_buft_overrides", "use_mmap", "embeddings", "no_op_offload",
  1300. "n_prompt", "n_gen", "n_depth", "test_time", "avg_ns",
  1301. "stddev_ns", "avg_ts", "stddev_ts"
  1302. };
  1303. return fields;
  1304. }
  1305. enum field_type { STRING, BOOL, INT, FLOAT };
  1306. static field_type get_field_type(const std::string & field) {
  1307. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  1308. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  1309. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "n_depth" || field == "avg_ns" ||
  1310. field == "stddev_ns" || field == "no_op_offload" || field == "n_cpu_moe") {
  1311. return INT;
  1312. }
  1313. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  1314. field == "use_mmap" || field == "embeddings") {
  1315. return BOOL;
  1316. }
  1317. if (field == "avg_ts" || field == "stddev_ts") {
  1318. return FLOAT;
  1319. }
  1320. return STRING;
  1321. }
  1322. std::vector<std::string> get_values() const {
  1323. std::string tensor_split_str;
  1324. std::string tensor_buft_overrides_str;
  1325. int max_nonzero = 0;
  1326. for (size_t i = 0; i < llama_max_devices(); i++) {
  1327. if (tensor_split[i] > 0) {
  1328. max_nonzero = i;
  1329. }
  1330. }
  1331. for (int i = 0; i <= max_nonzero; i++) {
  1332. char buf[32];
  1333. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  1334. tensor_split_str += buf;
  1335. if (i < max_nonzero) {
  1336. tensor_split_str += "/";
  1337. }
  1338. }
  1339. if (tensor_buft_overrides.size() == 1) {
  1340. // Last element of tensor_buft_overrides is always a null pattern
  1341. // so if it is only one element long, it must be a null pattern.
  1342. GGML_ASSERT(tensor_buft_overrides[0].pattern == nullptr);
  1343. tensor_buft_overrides_str += "none";
  1344. } else {
  1345. for (size_t i = 0; i < tensor_buft_overrides.size()-1; i++) {
  1346. // Last element of tensor_buft_overrides is always a null pattern
  1347. if (tensor_buft_overrides[i].pattern == nullptr) {
  1348. tensor_buft_overrides_str += "none";
  1349. } else {
  1350. tensor_buft_overrides_str += tensor_buft_overrides[i].pattern;
  1351. tensor_buft_overrides_str += "=";
  1352. tensor_buft_overrides_str += ggml_backend_buft_name(tensor_buft_overrides[i].buft);
  1353. }
  1354. if (i + 2 < tensor_buft_overrides.size()) {
  1355. tensor_buft_overrides_str += ";";
  1356. }
  1357. }
  1358. }
  1359. std::vector<std::string> values = { build_commit,
  1360. std::to_string(build_number),
  1361. cpu_info,
  1362. gpu_info,
  1363. get_backend(),
  1364. model_filename,
  1365. model_type,
  1366. std::to_string(model_size),
  1367. std::to_string(model_n_params),
  1368. std::to_string(n_batch),
  1369. std::to_string(n_ubatch),
  1370. std::to_string(n_threads),
  1371. cpu_mask,
  1372. std::to_string(cpu_strict),
  1373. std::to_string(poll),
  1374. ggml_type_name(type_k),
  1375. ggml_type_name(type_v),
  1376. std::to_string(n_gpu_layers),
  1377. std::to_string(n_cpu_moe),
  1378. split_mode_str(split_mode),
  1379. std::to_string(main_gpu),
  1380. std::to_string(no_kv_offload),
  1381. std::to_string(flash_attn),
  1382. devices_to_string(devices),
  1383. tensor_split_str,
  1384. tensor_buft_overrides_str,
  1385. std::to_string(use_mmap),
  1386. std::to_string(embeddings),
  1387. std::to_string(no_op_offload),
  1388. std::to_string(n_prompt),
  1389. std::to_string(n_gen),
  1390. std::to_string(n_depth),
  1391. test_time,
  1392. std::to_string(avg_ns()),
  1393. std::to_string(stdev_ns()),
  1394. std::to_string(avg_ts()),
  1395. std::to_string(stdev_ts()) };
  1396. return values;
  1397. }
  1398. std::map<std::string, std::string> get_map() const {
  1399. std::map<std::string, std::string> map;
  1400. auto fields = get_fields();
  1401. auto values = get_values();
  1402. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  1403. std::make_pair<const std::string &, const std::string &>);
  1404. return map;
  1405. }
  1406. };
  1407. const std::string test::build_commit = LLAMA_COMMIT;
  1408. const int test::build_number = LLAMA_BUILD_NUMBER;
  1409. struct printer {
  1410. virtual ~printer() {}
  1411. FILE * fout;
  1412. virtual void print_header(const cmd_params & params) { (void) params; }
  1413. virtual void print_test(const test & t) = 0;
  1414. virtual void print_footer() {}
  1415. };
  1416. struct csv_printer : public printer {
  1417. static std::string escape_csv(const std::string & field) {
  1418. std::string escaped = "\"";
  1419. for (auto c : field) {
  1420. if (c == '"') {
  1421. escaped += "\"";
  1422. }
  1423. escaped += c;
  1424. }
  1425. escaped += "\"";
  1426. return escaped;
  1427. }
  1428. void print_header(const cmd_params & params) override {
  1429. std::vector<std::string> fields = test::get_fields();
  1430. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1431. (void) params;
  1432. }
  1433. void print_test(const test & t) override {
  1434. std::vector<std::string> values = t.get_values();
  1435. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1436. fprintf(fout, "%s\n", join(values, ",").c_str());
  1437. }
  1438. };
  1439. static std::string escape_json(const std::string & value) {
  1440. std::string escaped;
  1441. for (auto c : value) {
  1442. if (c == '"') {
  1443. escaped += "\\\"";
  1444. } else if (c == '\\') {
  1445. escaped += "\\\\";
  1446. } else if (c <= 0x1f) {
  1447. char buf[8];
  1448. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1449. escaped += buf;
  1450. } else {
  1451. escaped += c;
  1452. }
  1453. }
  1454. return escaped;
  1455. }
  1456. static std::string format_json_value(const std::string & field, const std::string & value) {
  1457. switch (test::get_field_type(field)) {
  1458. case test::STRING:
  1459. return "\"" + escape_json(value) + "\"";
  1460. case test::BOOL:
  1461. return value == "0" ? "false" : "true";
  1462. default:
  1463. return value;
  1464. }
  1465. }
  1466. struct json_printer : public printer {
  1467. bool first = true;
  1468. void print_header(const cmd_params & params) override {
  1469. fprintf(fout, "[\n");
  1470. (void) params;
  1471. }
  1472. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1473. assert(fields.size() == values.size());
  1474. for (size_t i = 0; i < fields.size(); i++) {
  1475. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1476. format_json_value(fields.at(i), values.at(i)).c_str());
  1477. }
  1478. }
  1479. void print_test(const test & t) override {
  1480. if (first) {
  1481. first = false;
  1482. } else {
  1483. fprintf(fout, ",\n");
  1484. }
  1485. fprintf(fout, " {\n");
  1486. print_fields(test::get_fields(), t.get_values());
  1487. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1488. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1489. fprintf(fout, " }");
  1490. fflush(fout);
  1491. }
  1492. void print_footer() override { fprintf(fout, "\n]\n"); }
  1493. };
  1494. struct jsonl_printer : public printer {
  1495. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1496. assert(fields.size() == values.size());
  1497. for (size_t i = 0; i < fields.size(); i++) {
  1498. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1499. }
  1500. }
  1501. void print_test(const test & t) override {
  1502. fprintf(fout, "{");
  1503. print_fields(test::get_fields(), t.get_values());
  1504. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1505. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1506. fprintf(fout, "}\n");
  1507. fflush(fout);
  1508. }
  1509. };
  1510. struct markdown_printer : public printer {
  1511. std::vector<std::string> fields;
  1512. static int get_field_width(const std::string & field) {
  1513. if (field == "model") {
  1514. return -30;
  1515. }
  1516. if (field == "t/s") {
  1517. return 20;
  1518. }
  1519. if (field == "size" || field == "params") {
  1520. return 10;
  1521. }
  1522. if (field == "n_gpu_layers") {
  1523. return 3;
  1524. }
  1525. if (field == "n_threads") {
  1526. return 7;
  1527. }
  1528. if (field == "n_batch") {
  1529. return 7;
  1530. }
  1531. if (field == "n_ubatch") {
  1532. return 8;
  1533. }
  1534. if (field == "type_k" || field == "type_v") {
  1535. return 6;
  1536. }
  1537. if (field == "split_mode") {
  1538. return 5;
  1539. }
  1540. if (field == "flash_attn") {
  1541. return 2;
  1542. }
  1543. if (field == "devices") {
  1544. return -12;
  1545. }
  1546. if (field == "use_mmap") {
  1547. return 4;
  1548. }
  1549. if (field == "test") {
  1550. return 15;
  1551. }
  1552. if (field == "no_op_offload") {
  1553. return 4;
  1554. }
  1555. int width = std::max((int) field.length(), 10);
  1556. if (test::get_field_type(field) == test::STRING) {
  1557. return -width;
  1558. }
  1559. return width;
  1560. }
  1561. static std::string get_field_display_name(const std::string & field) {
  1562. if (field == "n_gpu_layers") {
  1563. return "ngl";
  1564. }
  1565. if (field == "split_mode") {
  1566. return "sm";
  1567. }
  1568. if (field == "n_threads") {
  1569. return "threads";
  1570. }
  1571. if (field == "no_kv_offload") {
  1572. return "nkvo";
  1573. }
  1574. if (field == "flash_attn") {
  1575. return "fa";
  1576. }
  1577. if (field == "use_mmap") {
  1578. return "mmap";
  1579. }
  1580. if (field == "embeddings") {
  1581. return "embd";
  1582. }
  1583. if (field == "no_op_offload") {
  1584. return "nopo";
  1585. }
  1586. if (field == "devices") {
  1587. return "dev";
  1588. }
  1589. if (field == "tensor_split") {
  1590. return "ts";
  1591. }
  1592. if (field == "tensor_buft_overrides") {
  1593. return "ot";
  1594. }
  1595. return field;
  1596. }
  1597. void print_header(const cmd_params & params) override {
  1598. // select fields to print
  1599. fields.emplace_back("model");
  1600. fields.emplace_back("size");
  1601. fields.emplace_back("params");
  1602. fields.emplace_back("backend");
  1603. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1604. test::get_backend().find("BLAS") != std::string::npos;
  1605. if (!is_cpu_backend) {
  1606. fields.emplace_back("n_gpu_layers");
  1607. }
  1608. if (params.n_cpu_moe.size() > 1) {
  1609. fields.emplace_back("n_cpu_moe");
  1610. }
  1611. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1612. fields.emplace_back("n_threads");
  1613. }
  1614. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1615. fields.emplace_back("cpu_mask");
  1616. }
  1617. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1618. fields.emplace_back("cpu_strict");
  1619. }
  1620. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1621. fields.emplace_back("poll");
  1622. }
  1623. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1624. fields.emplace_back("n_batch");
  1625. }
  1626. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1627. fields.emplace_back("n_ubatch");
  1628. }
  1629. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1630. fields.emplace_back("type_k");
  1631. }
  1632. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1633. fields.emplace_back("type_v");
  1634. }
  1635. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1636. fields.emplace_back("main_gpu");
  1637. }
  1638. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1639. fields.emplace_back("split_mode");
  1640. }
  1641. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1642. fields.emplace_back("no_kv_offload");
  1643. }
  1644. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1645. fields.emplace_back("flash_attn");
  1646. }
  1647. if (params.devices.size() > 1 || params.devices != cmd_params_defaults.devices) {
  1648. fields.emplace_back("devices");
  1649. }
  1650. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1651. fields.emplace_back("tensor_split");
  1652. }
  1653. if (params.tensor_buft_overrides.size() > 1 || !vec_vec_tensor_buft_override_equal(params.tensor_buft_overrides, cmd_params_defaults.tensor_buft_overrides)) {
  1654. fields.emplace_back("tensor_buft_overrides");
  1655. }
  1656. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1657. fields.emplace_back("use_mmap");
  1658. }
  1659. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1660. fields.emplace_back("embeddings");
  1661. }
  1662. if (params.no_op_offload.size() > 1 || params.no_op_offload != cmd_params_defaults.no_op_offload) {
  1663. fields.emplace_back("no_op_offload");
  1664. }
  1665. fields.emplace_back("test");
  1666. fields.emplace_back("t/s");
  1667. fprintf(fout, "|");
  1668. for (const auto & field : fields) {
  1669. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1670. }
  1671. fprintf(fout, "\n");
  1672. fprintf(fout, "|");
  1673. for (const auto & field : fields) {
  1674. int width = get_field_width(field);
  1675. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1676. }
  1677. fprintf(fout, "\n");
  1678. }
  1679. void print_test(const test & t) override {
  1680. std::map<std::string, std::string> vmap = t.get_map();
  1681. fprintf(fout, "|");
  1682. for (const auto & field : fields) {
  1683. std::string value;
  1684. char buf[128];
  1685. if (field == "model") {
  1686. value = t.model_type;
  1687. } else if (field == "size") {
  1688. if (t.model_size < 1024 * 1024 * 1024) {
  1689. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1690. } else {
  1691. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1692. }
  1693. value = buf;
  1694. } else if (field == "params") {
  1695. if (t.model_n_params < 1000 * 1000 * 1000) {
  1696. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1697. } else {
  1698. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1699. }
  1700. value = buf;
  1701. } else if (field == "backend") {
  1702. value = test::get_backend();
  1703. } else if (field == "test") {
  1704. if (t.n_prompt > 0 && t.n_gen == 0) {
  1705. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1706. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1707. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1708. } else {
  1709. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1710. }
  1711. if (t.n_depth > 0) {
  1712. int len = strlen(buf);
  1713. snprintf(buf + len, sizeof(buf) - len, " @ d%d", t.n_depth);
  1714. }
  1715. value = buf;
  1716. } else if (field == "t/s") {
  1717. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1718. value = buf;
  1719. } else if (vmap.find(field) != vmap.end()) {
  1720. value = vmap.at(field);
  1721. } else {
  1722. assert(false);
  1723. exit(1);
  1724. }
  1725. int width = get_field_width(field);
  1726. if (field == "t/s") {
  1727. // HACK: the utf-8 character is 2 bytes
  1728. width += 1;
  1729. }
  1730. fprintf(fout, " %*s |", width, value.c_str());
  1731. }
  1732. fprintf(fout, "\n");
  1733. }
  1734. void print_footer() override {
  1735. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1736. }
  1737. };
  1738. struct sql_printer : public printer {
  1739. static std::string get_sql_field_type(const std::string & field) {
  1740. switch (test::get_field_type(field)) {
  1741. case test::STRING:
  1742. return "TEXT";
  1743. case test::BOOL:
  1744. case test::INT:
  1745. return "INTEGER";
  1746. case test::FLOAT:
  1747. return "REAL";
  1748. default:
  1749. assert(false);
  1750. exit(1);
  1751. }
  1752. }
  1753. void print_header(const cmd_params & params) override {
  1754. std::vector<std::string> fields = test::get_fields();
  1755. fprintf(fout, "CREATE TABLE IF NOT EXISTS llama_bench (\n");
  1756. for (size_t i = 0; i < fields.size(); i++) {
  1757. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1758. i < fields.size() - 1 ? "," : "");
  1759. }
  1760. fprintf(fout, ");\n");
  1761. fprintf(fout, "\n");
  1762. (void) params;
  1763. }
  1764. void print_test(const test & t) override {
  1765. fprintf(fout, "INSERT INTO llama_bench (%s) ", join(test::get_fields(), ", ").c_str());
  1766. fprintf(fout, "VALUES (");
  1767. std::vector<std::string> values = t.get_values();
  1768. for (size_t i = 0; i < values.size(); i++) {
  1769. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1770. }
  1771. fprintf(fout, ");\n");
  1772. }
  1773. };
  1774. static bool test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1775. llama_set_n_threads(ctx, n_threads, n_threads);
  1776. const llama_model * model = llama_get_model(ctx);
  1777. const llama_vocab * vocab = llama_model_get_vocab(model);
  1778. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1779. std::vector<llama_token> tokens(n_batch);
  1780. int n_processed = 0;
  1781. while (n_processed < n_prompt) {
  1782. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1783. tokens[0] = n_processed == 0 && llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1784. for (int i = 1; i < n_tokens; i++) {
  1785. tokens[i] = std::rand() % n_vocab;
  1786. }
  1787. int res = llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1788. if (res != 0) {
  1789. fprintf(stderr, "%s: failed to decode prompt batch, res = %d\n", __func__, res);
  1790. return false;
  1791. }
  1792. n_processed += n_tokens;
  1793. }
  1794. llama_synchronize(ctx);
  1795. return true;
  1796. }
  1797. static bool test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1798. llama_set_n_threads(ctx, n_threads, n_threads);
  1799. const llama_model * model = llama_get_model(ctx);
  1800. const llama_vocab * vocab = llama_model_get_vocab(model);
  1801. const int32_t n_vocab = llama_vocab_n_tokens(vocab);
  1802. llama_token token = llama_vocab_get_add_bos(vocab) ? llama_vocab_bos(vocab) : std::rand() % n_vocab;
  1803. for (int i = 0; i < n_gen; i++) {
  1804. int res = llama_decode(ctx, llama_batch_get_one(&token, 1));
  1805. if (res != 0) {
  1806. fprintf(stderr, "%s: failed to decode generation batch, res = %d\n", __func__, res);
  1807. return false;
  1808. }
  1809. llama_synchronize(ctx);
  1810. token = std::rand() % n_vocab;
  1811. }
  1812. return true;
  1813. }
  1814. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1815. (void) level;
  1816. (void) text;
  1817. (void) user_data;
  1818. }
  1819. static std::unique_ptr<printer> create_printer(output_formats format) {
  1820. switch (format) {
  1821. case NONE:
  1822. return nullptr;
  1823. case CSV:
  1824. return std::unique_ptr<printer>(new csv_printer());
  1825. case JSON:
  1826. return std::unique_ptr<printer>(new json_printer());
  1827. case JSONL:
  1828. return std::unique_ptr<printer>(new jsonl_printer());
  1829. case MARKDOWN:
  1830. return std::unique_ptr<printer>(new markdown_printer());
  1831. case SQL:
  1832. return std::unique_ptr<printer>(new sql_printer());
  1833. }
  1834. GGML_ABORT("fatal error");
  1835. }
  1836. int main(int argc, char ** argv) {
  1837. // try to set locale for unicode characters in markdown
  1838. setlocale(LC_CTYPE, ".UTF-8");
  1839. #if !defined(NDEBUG)
  1840. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1841. #endif
  1842. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1843. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1844. #endif
  1845. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1846. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1847. #endif
  1848. // initialize backends
  1849. ggml_backend_load_all();
  1850. cmd_params params = parse_cmd_params(argc, argv);
  1851. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1852. if (!cpu_dev) {
  1853. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1854. return 1;
  1855. }
  1856. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1857. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1858. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1859. // initialize llama.cpp
  1860. if (!params.verbose) {
  1861. llama_log_set(llama_null_log_callback, NULL);
  1862. }
  1863. llama_backend_init();
  1864. llama_numa_init(params.numa);
  1865. set_process_priority(params.prio);
  1866. // initialize printer
  1867. std::unique_ptr<printer> p = create_printer(params.output_format);
  1868. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1869. if (p) {
  1870. p->fout = stdout;
  1871. p->print_header(params);
  1872. }
  1873. if (p_err) {
  1874. p_err->fout = stderr;
  1875. p_err->print_header(params);
  1876. }
  1877. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1878. llama_model * lmodel = nullptr;
  1879. const cmd_params_instance * prev_inst = nullptr;
  1880. int params_idx = 0;
  1881. auto params_count = params_instances.size();
  1882. for (const auto & inst : params_instances) {
  1883. params_idx++;
  1884. if (params.progress) {
  1885. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1886. }
  1887. // keep the same model between tests when possible
  1888. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1889. if (lmodel) {
  1890. llama_model_free(lmodel);
  1891. }
  1892. lmodel = llama_model_load_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1893. if (lmodel == NULL) {
  1894. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1895. return 1;
  1896. }
  1897. prev_inst = &inst;
  1898. }
  1899. llama_context * ctx = llama_init_from_model(lmodel, inst.to_llama_cparams());
  1900. if (ctx == NULL) {
  1901. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1902. llama_model_free(lmodel);
  1903. return 1;
  1904. }
  1905. test t(inst, lmodel, ctx);
  1906. llama_memory_clear(llama_get_memory(ctx), false);
  1907. // cool off before the test
  1908. if (params.delay) {
  1909. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1910. }
  1911. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1912. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1913. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1914. exit(1);
  1915. }
  1916. tpp.strict_cpu = t.cpu_strict;
  1917. tpp.poll = t.poll;
  1918. tpp.prio = params.prio;
  1919. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1920. if (!threadpool) {
  1921. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1922. exit(1);
  1923. }
  1924. llama_attach_threadpool(ctx, threadpool, NULL);
  1925. // warmup run
  1926. if (!params.no_warmup) {
  1927. if (t.n_prompt > 0) {
  1928. if (params.progress) {
  1929. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1930. }
  1931. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1932. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1933. if (!res) {
  1934. fprintf(stderr, "%s: error: failed to run prompt warmup\n", __func__);
  1935. exit(1);
  1936. }
  1937. }
  1938. if (t.n_gen > 0) {
  1939. if (params.progress) {
  1940. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1941. }
  1942. bool res = test_gen(ctx, 1, t.n_threads);
  1943. if (!res) {
  1944. fprintf(stderr, "%s: error: failed to run gen warmup\n", __func__);
  1945. exit(1);
  1946. }
  1947. }
  1948. }
  1949. for (int i = 0; i < params.reps; i++) {
  1950. llama_memory_clear(llama_get_memory(ctx), false);
  1951. if (t.n_depth > 0) {
  1952. if (params.progress) {
  1953. fprintf(stderr, "llama-bench: benchmark %d/%zu: depth run %d/%d\n", params_idx, params_count,
  1954. i + 1, params.reps);
  1955. }
  1956. bool res = test_prompt(ctx, t.n_depth, t.n_batch, t.n_threads);
  1957. if (!res) {
  1958. fprintf(stderr, "%s: error: failed to run depth\n", __func__);
  1959. exit(1);
  1960. }
  1961. }
  1962. uint64_t t_start = get_time_ns();
  1963. if (t.n_prompt > 0) {
  1964. if (params.progress) {
  1965. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1966. i + 1, params.reps);
  1967. }
  1968. bool res = test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1969. if (!res) {
  1970. fprintf(stderr, "%s: error: failed to run prompt\n", __func__);
  1971. exit(1);
  1972. }
  1973. }
  1974. if (t.n_gen > 0) {
  1975. if (params.progress) {
  1976. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1977. i + 1, params.reps);
  1978. }
  1979. bool res = test_gen(ctx, t.n_gen, t.n_threads);
  1980. if (!res) {
  1981. fprintf(stderr, "%s: error: failed to run gen\n", __func__);
  1982. exit(1);
  1983. }
  1984. }
  1985. uint64_t t_ns = get_time_ns() - t_start;
  1986. t.samples_ns.push_back(t_ns);
  1987. }
  1988. if (p) {
  1989. p->print_test(t);
  1990. fflush(p->fout);
  1991. }
  1992. if (p_err) {
  1993. p_err->print_test(t);
  1994. fflush(p_err->fout);
  1995. }
  1996. llama_perf_context_print(ctx);
  1997. llama_free(ctx);
  1998. ggml_threadpool_free_fn(threadpool);
  1999. }
  2000. llama_model_free(lmodel);
  2001. if (p) {
  2002. p->print_footer();
  2003. }
  2004. if (p_err) {
  2005. p_err->print_footer();
  2006. }
  2007. llama_backend_free();
  2008. return 0;
  2009. }