llama.cpp 703 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 60
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_QWEN2MOE,
  188. LLM_ARCH_PHI2,
  189. LLM_ARCH_PHI3,
  190. LLM_ARCH_PLAMO,
  191. LLM_ARCH_CODESHELL,
  192. LLM_ARCH_ORION,
  193. LLM_ARCH_INTERNLM2,
  194. LLM_ARCH_MINICPM,
  195. LLM_ARCH_GEMMA,
  196. LLM_ARCH_STARCODER2,
  197. LLM_ARCH_MAMBA,
  198. LLM_ARCH_XVERSE,
  199. LLM_ARCH_COMMAND_R,
  200. LLM_ARCH_DBRX,
  201. LLM_ARCH_OLMO,
  202. LLM_ARCH_UNKNOWN,
  203. };
  204. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  205. { LLM_ARCH_LLAMA, "llama" },
  206. { LLM_ARCH_FALCON, "falcon" },
  207. { LLM_ARCH_GROK, "grok" },
  208. { LLM_ARCH_GPT2, "gpt2" },
  209. { LLM_ARCH_GPTJ, "gptj" },
  210. { LLM_ARCH_GPTNEOX, "gptneox" },
  211. { LLM_ARCH_MPT, "mpt" },
  212. { LLM_ARCH_BAICHUAN, "baichuan" },
  213. { LLM_ARCH_STARCODER, "starcoder" },
  214. { LLM_ARCH_PERSIMMON, "persimmon" },
  215. { LLM_ARCH_REFACT, "refact" },
  216. { LLM_ARCH_BERT, "bert" },
  217. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  218. { LLM_ARCH_BLOOM, "bloom" },
  219. { LLM_ARCH_STABLELM, "stablelm" },
  220. { LLM_ARCH_QWEN, "qwen" },
  221. { LLM_ARCH_QWEN2, "qwen2" },
  222. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  223. { LLM_ARCH_PHI2, "phi2" },
  224. { LLM_ARCH_PHI3, "phi3" },
  225. { LLM_ARCH_PLAMO, "plamo" },
  226. { LLM_ARCH_CODESHELL, "codeshell" },
  227. { LLM_ARCH_ORION, "orion" },
  228. { LLM_ARCH_INTERNLM2, "internlm2" },
  229. { LLM_ARCH_MINICPM, "minicpm" },
  230. { LLM_ARCH_GEMMA, "gemma" },
  231. { LLM_ARCH_STARCODER2, "starcoder2" },
  232. { LLM_ARCH_MAMBA, "mamba" },
  233. { LLM_ARCH_XVERSE, "xverse" },
  234. { LLM_ARCH_COMMAND_R, "command-r" },
  235. { LLM_ARCH_DBRX, "dbrx" },
  236. { LLM_ARCH_OLMO, "olmo" },
  237. { LLM_ARCH_UNKNOWN, "(unknown)" },
  238. };
  239. enum llm_kv {
  240. LLM_KV_GENERAL_ARCHITECTURE,
  241. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  242. LLM_KV_GENERAL_ALIGNMENT,
  243. LLM_KV_GENERAL_NAME,
  244. LLM_KV_GENERAL_AUTHOR,
  245. LLM_KV_GENERAL_VERSION,
  246. LLM_KV_GENERAL_URL,
  247. LLM_KV_GENERAL_DESCRIPTION,
  248. LLM_KV_GENERAL_LICENSE,
  249. LLM_KV_GENERAL_SOURCE_URL,
  250. LLM_KV_GENERAL_SOURCE_HF_REPO,
  251. LLM_KV_VOCAB_SIZE,
  252. LLM_KV_CONTEXT_LENGTH,
  253. LLM_KV_EMBEDDING_LENGTH,
  254. LLM_KV_BLOCK_COUNT,
  255. LLM_KV_FEED_FORWARD_LENGTH,
  256. LLM_KV_USE_PARALLEL_RESIDUAL,
  257. LLM_KV_TENSOR_DATA_LAYOUT,
  258. LLM_KV_EXPERT_COUNT,
  259. LLM_KV_EXPERT_USED_COUNT,
  260. LLM_KV_POOLING_TYPE,
  261. LLM_KV_LOGIT_SCALE,
  262. LLM_KV_ATTENTION_HEAD_COUNT,
  263. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  264. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  265. LLM_KV_ATTENTION_CLAMP_KQV,
  266. LLM_KV_ATTENTION_KEY_LENGTH,
  267. LLM_KV_ATTENTION_VALUE_LENGTH,
  268. LLM_KV_ATTENTION_LAYERNORM_EPS,
  269. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  270. LLM_KV_ATTENTION_CAUSAL,
  271. LLM_KV_ROPE_DIMENSION_COUNT,
  272. LLM_KV_ROPE_FREQ_BASE,
  273. LLM_KV_ROPE_SCALE_LINEAR,
  274. LLM_KV_ROPE_SCALING_TYPE,
  275. LLM_KV_ROPE_SCALING_FACTOR,
  276. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  277. LLM_KV_ROPE_SCALING_FINETUNED,
  278. LLM_KV_SPLIT_NO,
  279. LLM_KV_SPLIT_COUNT,
  280. LLM_KV_SPLIT_TENSORS_COUNT,
  281. LLM_KV_SSM_INNER_SIZE,
  282. LLM_KV_SSM_CONV_KERNEL,
  283. LLM_KV_SSM_STATE_SIZE,
  284. LLM_KV_SSM_TIME_STEP_RANK,
  285. LLM_KV_TOKENIZER_MODEL,
  286. LLM_KV_TOKENIZER_LIST,
  287. LLM_KV_TOKENIZER_TOKEN_TYPE,
  288. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  289. LLM_KV_TOKENIZER_SCORES,
  290. LLM_KV_TOKENIZER_MERGES,
  291. LLM_KV_TOKENIZER_BOS_ID,
  292. LLM_KV_TOKENIZER_EOS_ID,
  293. LLM_KV_TOKENIZER_UNK_ID,
  294. LLM_KV_TOKENIZER_SEP_ID,
  295. LLM_KV_TOKENIZER_PAD_ID,
  296. LLM_KV_TOKENIZER_CLS_ID,
  297. LLM_KV_TOKENIZER_MASK_ID,
  298. LLM_KV_TOKENIZER_ADD_BOS,
  299. LLM_KV_TOKENIZER_ADD_EOS,
  300. LLM_KV_TOKENIZER_ADD_PREFIX,
  301. LLM_KV_TOKENIZER_HF_JSON,
  302. LLM_KV_TOKENIZER_RWKV,
  303. LLM_KV_TOKENIZER_PREFIX_ID,
  304. LLM_KV_TOKENIZER_SUFFIX_ID,
  305. LLM_KV_TOKENIZER_MIDDLE_ID,
  306. LLM_KV_TOKENIZER_EOT_ID,
  307. };
  308. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  309. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  310. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  311. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  312. { LLM_KV_GENERAL_NAME, "general.name" },
  313. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  314. { LLM_KV_GENERAL_VERSION, "general.version" },
  315. { LLM_KV_GENERAL_URL, "general.url" },
  316. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  317. { LLM_KV_GENERAL_LICENSE, "general.license" },
  318. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  319. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  320. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  321. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  322. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  323. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  324. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  325. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  326. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  327. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  328. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  329. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  330. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  331. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  332. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  333. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  334. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  335. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  336. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  337. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  338. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  339. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  340. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  341. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  342. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  343. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  344. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  345. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  346. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  347. { LLM_KV_SPLIT_NO, "split.no" },
  348. { LLM_KV_SPLIT_COUNT, "split.count" },
  349. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  350. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  351. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  352. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  353. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  354. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  355. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  356. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  357. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  358. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  359. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  360. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  361. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  362. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  363. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  364. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  365. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  366. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  367. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  368. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  369. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  370. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  371. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  372. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  373. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  374. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  375. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  376. };
  377. struct LLM_KV {
  378. LLM_KV(llm_arch arch) : arch(arch) {}
  379. llm_arch arch;
  380. std::string operator()(llm_kv kv) const {
  381. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  382. }
  383. };
  384. enum llm_tensor {
  385. LLM_TENSOR_TOKEN_EMBD,
  386. LLM_TENSOR_TOKEN_EMBD_NORM,
  387. LLM_TENSOR_TOKEN_TYPES,
  388. LLM_TENSOR_POS_EMBD,
  389. LLM_TENSOR_OUTPUT,
  390. LLM_TENSOR_OUTPUT_NORM,
  391. LLM_TENSOR_ROPE_FREQS,
  392. LLM_TENSOR_ATTN_Q,
  393. LLM_TENSOR_ATTN_K,
  394. LLM_TENSOR_ATTN_V,
  395. LLM_TENSOR_ATTN_QKV,
  396. LLM_TENSOR_ATTN_OUT,
  397. LLM_TENSOR_ATTN_NORM,
  398. LLM_TENSOR_ATTN_NORM_2,
  399. LLM_TENSOR_ATTN_OUT_NORM,
  400. LLM_TENSOR_ATTN_ROT_EMBD,
  401. LLM_TENSOR_FFN_GATE_INP,
  402. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  403. LLM_TENSOR_FFN_NORM,
  404. LLM_TENSOR_FFN_GATE,
  405. LLM_TENSOR_FFN_DOWN,
  406. LLM_TENSOR_FFN_UP,
  407. LLM_TENSOR_FFN_ACT,
  408. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  409. LLM_TENSOR_FFN_GATE_EXP,
  410. LLM_TENSOR_FFN_UP_EXP,
  411. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  412. LLM_TENSOR_FFN_GATE_EXPS,
  413. LLM_TENSOR_FFN_UP_EXPS,
  414. LLM_TENSOR_FFN_DOWN_SHEXP,
  415. LLM_TENSOR_FFN_GATE_SHEXP,
  416. LLM_TENSOR_FFN_UP_SHEXP,
  417. LLM_TENSOR_ATTN_Q_NORM,
  418. LLM_TENSOR_ATTN_K_NORM,
  419. LLM_TENSOR_LAYER_OUT_NORM,
  420. LLM_TENSOR_SSM_IN,
  421. LLM_TENSOR_SSM_CONV1D,
  422. LLM_TENSOR_SSM_X,
  423. LLM_TENSOR_SSM_DT,
  424. LLM_TENSOR_SSM_A,
  425. LLM_TENSOR_SSM_D,
  426. LLM_TENSOR_SSM_OUT,
  427. };
  428. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  429. {
  430. LLM_ARCH_LLAMA,
  431. {
  432. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  433. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  434. { LLM_TENSOR_OUTPUT, "output" },
  435. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  436. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  437. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  438. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  439. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  442. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  443. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  444. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  445. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  446. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  447. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  448. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  449. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  450. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  451. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  452. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  453. },
  454. },
  455. {
  456. LLM_ARCH_BAICHUAN,
  457. {
  458. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  459. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  460. { LLM_TENSOR_OUTPUT, "output" },
  461. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  462. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  463. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  464. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  465. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  466. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  467. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  468. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  469. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  470. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  471. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  472. },
  473. },
  474. {
  475. LLM_ARCH_FALCON,
  476. {
  477. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  478. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  479. { LLM_TENSOR_OUTPUT, "output" },
  480. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  481. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  482. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  483. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  484. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  485. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  486. },
  487. },
  488. {
  489. LLM_ARCH_GROK,
  490. {
  491. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  492. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  493. { LLM_TENSOR_OUTPUT, "output" },
  494. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  495. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  496. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  497. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  498. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  499. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  500. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  501. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  502. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  503. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  504. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  505. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  506. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  507. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  508. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  509. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  510. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  511. },
  512. },
  513. {
  514. LLM_ARCH_GPT2,
  515. {
  516. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  517. { LLM_TENSOR_POS_EMBD, "position_embd" },
  518. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  519. { LLM_TENSOR_OUTPUT, "output" },
  520. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  521. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  522. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  523. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  524. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  525. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  526. },
  527. },
  528. {
  529. LLM_ARCH_GPTJ,
  530. {
  531. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  532. },
  533. },
  534. {
  535. LLM_ARCH_GPTNEOX,
  536. {
  537. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  538. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  539. { LLM_TENSOR_OUTPUT, "output" },
  540. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  541. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  542. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  543. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  544. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  545. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  546. },
  547. },
  548. {
  549. LLM_ARCH_PERSIMMON,
  550. {
  551. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  552. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  553. { LLM_TENSOR_OUTPUT, "output"},
  554. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  555. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  556. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  557. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  558. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  559. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  560. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  561. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  562. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  563. },
  564. },
  565. {
  566. LLM_ARCH_MPT,
  567. {
  568. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  569. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  570. { LLM_TENSOR_OUTPUT, "output"},
  571. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  572. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  573. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  574. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  575. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  576. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  577. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  578. { LLM_TENSOR_POS_EMBD, "position_embd" },
  579. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  580. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  581. },
  582. },
  583. {
  584. LLM_ARCH_STARCODER,
  585. {
  586. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  587. { LLM_TENSOR_POS_EMBD, "position_embd" },
  588. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  589. { LLM_TENSOR_OUTPUT, "output" },
  590. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  591. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  592. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  593. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  594. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  595. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  596. },
  597. },
  598. {
  599. LLM_ARCH_REFACT,
  600. {
  601. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  602. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  603. { LLM_TENSOR_OUTPUT, "output" },
  604. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  605. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  606. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  607. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  608. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  609. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  610. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  611. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  612. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  613. },
  614. },
  615. {
  616. LLM_ARCH_BERT,
  617. {
  618. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  619. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  620. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  621. { LLM_TENSOR_POS_EMBD, "position_embd" },
  622. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  623. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  624. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  625. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  626. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  627. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  628. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. },
  631. },
  632. {
  633. LLM_ARCH_NOMIC_BERT,
  634. {
  635. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  636. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  637. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  638. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  639. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  640. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  641. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  642. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  643. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  644. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  645. },
  646. },
  647. {
  648. LLM_ARCH_BLOOM,
  649. {
  650. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  651. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  652. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  653. { LLM_TENSOR_OUTPUT, "output" },
  654. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  655. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  656. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  657. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  658. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  659. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  660. },
  661. },
  662. {
  663. LLM_ARCH_STABLELM,
  664. {
  665. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  666. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  667. { LLM_TENSOR_OUTPUT, "output" },
  668. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  669. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  670. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  671. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  672. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  673. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  674. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  675. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  676. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  677. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  678. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  679. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  680. },
  681. },
  682. {
  683. LLM_ARCH_QWEN,
  684. {
  685. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  686. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  687. { LLM_TENSOR_OUTPUT, "output" },
  688. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  689. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  690. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  691. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  692. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  693. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  694. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  695. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  696. },
  697. },
  698. {
  699. LLM_ARCH_QWEN2,
  700. {
  701. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  702. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  703. { LLM_TENSOR_OUTPUT, "output" },
  704. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  705. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  706. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  707. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  708. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  709. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  710. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  711. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  712. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  713. },
  714. },
  715. {
  716. LLM_ARCH_QWEN2MOE,
  717. {
  718. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  719. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  720. { LLM_TENSOR_OUTPUT, "output" },
  721. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  722. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  723. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  724. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  725. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  726. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  727. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  728. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  729. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  730. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  731. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  732. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  733. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  734. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  735. },
  736. },
  737. {
  738. LLM_ARCH_PHI2,
  739. {
  740. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  741. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  742. { LLM_TENSOR_OUTPUT, "output" },
  743. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  744. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  745. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  746. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  747. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  748. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  749. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  750. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  751. },
  752. },
  753. {
  754. LLM_ARCH_PHI3,
  755. {
  756. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  757. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  758. { LLM_TENSOR_OUTPUT, "output" },
  759. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  760. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  761. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  762. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  763. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  764. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  765. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  766. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  767. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  768. },
  769. },
  770. {
  771. LLM_ARCH_PLAMO,
  772. {
  773. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  774. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  775. { LLM_TENSOR_OUTPUT, "output" },
  776. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  777. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  778. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  779. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  780. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  781. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  782. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  783. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  784. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  785. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  786. },
  787. },
  788. {
  789. LLM_ARCH_CODESHELL,
  790. {
  791. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  792. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  793. { LLM_TENSOR_OUTPUT, "output" },
  794. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  795. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  796. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  797. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  798. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  799. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  800. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  801. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  802. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  803. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  804. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  805. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  806. },
  807. },
  808. {
  809. LLM_ARCH_ORION,
  810. {
  811. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  812. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  813. { LLM_TENSOR_OUTPUT, "output" },
  814. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  815. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  816. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  817. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  818. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  819. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  820. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  821. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  822. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  823. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  824. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  825. },
  826. },
  827. {
  828. LLM_ARCH_INTERNLM2,
  829. {
  830. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  831. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  832. { LLM_TENSOR_OUTPUT, "output" },
  833. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  834. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  835. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  836. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  837. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  838. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  839. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  840. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  841. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  842. },
  843. },
  844. {
  845. LLM_ARCH_MINICPM,
  846. {
  847. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  848. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  849. { LLM_TENSOR_OUTPUT, "output" },
  850. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  851. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  852. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  853. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  854. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  855. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  856. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  857. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  858. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  859. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  860. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  861. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  862. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  863. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  864. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  865. },
  866. },
  867. {
  868. LLM_ARCH_GEMMA,
  869. {
  870. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  871. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  872. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  873. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  874. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  875. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  876. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  877. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  878. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  879. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  880. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  881. },
  882. },
  883. {
  884. LLM_ARCH_STARCODER2,
  885. {
  886. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  887. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  888. { LLM_TENSOR_OUTPUT, "output" },
  889. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  890. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  891. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  892. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  893. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  894. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  895. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  896. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  897. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  898. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  899. },
  900. },
  901. {
  902. LLM_ARCH_MAMBA,
  903. {
  904. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  905. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  906. { LLM_TENSOR_OUTPUT, "output" },
  907. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  908. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  909. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  910. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  911. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  912. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  913. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  914. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  915. },
  916. },
  917. {
  918. LLM_ARCH_XVERSE,
  919. {
  920. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  921. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  922. { LLM_TENSOR_OUTPUT, "output" },
  923. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  924. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  925. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  926. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  927. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  928. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  929. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  930. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  931. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  932. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  933. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  934. },
  935. },
  936. {
  937. LLM_ARCH_COMMAND_R,
  938. {
  939. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  940. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  941. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  942. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  943. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  944. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  945. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  946. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  947. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  948. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  949. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  950. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  951. },
  952. },
  953. {
  954. LLM_ARCH_DBRX,
  955. {
  956. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  957. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  958. { LLM_TENSOR_OUTPUT, "output" },
  959. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  960. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  961. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  962. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  963. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  964. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  965. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  966. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  967. },
  968. },
  969. {
  970. LLM_ARCH_OLMO,
  971. {
  972. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  973. { LLM_TENSOR_OUTPUT, "output" },
  974. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  975. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  976. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  977. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  978. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  979. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  980. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  981. },
  982. },
  983. {
  984. LLM_ARCH_UNKNOWN,
  985. {
  986. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  987. },
  988. },
  989. };
  990. static llm_arch llm_arch_from_string(const std::string & name) {
  991. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  992. if (kv.second == name) {
  993. return kv.first;
  994. }
  995. }
  996. return LLM_ARCH_UNKNOWN;
  997. }
  998. // helper to handle gguf constants
  999. // usage:
  1000. //
  1001. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1002. //
  1003. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1004. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1005. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1006. //
  1007. struct LLM_TN {
  1008. LLM_TN(llm_arch arch) : arch(arch) {}
  1009. llm_arch arch;
  1010. std::string operator()(llm_tensor tensor) const {
  1011. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1012. return "__missing__";
  1013. }
  1014. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1015. }
  1016. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1017. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1018. return "__missing__";
  1019. }
  1020. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1021. }
  1022. std::string operator()(llm_tensor tensor, int bid) const {
  1023. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1024. return "__missing__";
  1025. }
  1026. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1027. }
  1028. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1029. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1030. return "__missing__";
  1031. }
  1032. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1033. }
  1034. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1035. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1036. return "__missing__";
  1037. }
  1038. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1039. }
  1040. };
  1041. //
  1042. // gguf helpers
  1043. //
  1044. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1045. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1046. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1047. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1048. };
  1049. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1050. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1051. if (kv.second == name) {
  1052. return (llama_rope_scaling_type) kv.first;
  1053. }
  1054. }
  1055. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1056. }
  1057. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1058. switch (type) {
  1059. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1060. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1061. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1062. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1063. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1064. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1065. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1066. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1067. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1068. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1069. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1070. default: return format("unknown type %d", type);
  1071. }
  1072. }
  1073. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1074. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1075. switch (type) {
  1076. case GGUF_TYPE_STRING:
  1077. return gguf_get_val_str(ctx_gguf, i);
  1078. case GGUF_TYPE_ARRAY:
  1079. {
  1080. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1081. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1082. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1083. std::stringstream ss;
  1084. ss << "[";
  1085. for (int j = 0; j < arr_n; j++) {
  1086. if (arr_type == GGUF_TYPE_STRING) {
  1087. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1088. // escape quotes
  1089. replace_all(val, "\\", "\\\\");
  1090. replace_all(val, "\"", "\\\"");
  1091. ss << '"' << val << '"';
  1092. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1093. ss << "???";
  1094. } else {
  1095. ss << gguf_data_to_str(arr_type, data, j);
  1096. }
  1097. if (j < arr_n - 1) {
  1098. ss << ", ";
  1099. }
  1100. }
  1101. ss << "]";
  1102. return ss.str();
  1103. }
  1104. default:
  1105. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1106. }
  1107. }
  1108. //
  1109. // llama helpers
  1110. //
  1111. #if defined(_WIN32)
  1112. static std::string llama_format_win_err(DWORD err) {
  1113. LPSTR buf;
  1114. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1115. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1116. if (!size) {
  1117. return "FormatMessageA failed";
  1118. }
  1119. std::string ret(buf, size);
  1120. LocalFree(buf);
  1121. return ret;
  1122. }
  1123. #endif
  1124. template <typename T>
  1125. struct no_init {
  1126. T value;
  1127. no_init() { /* do nothing */ }
  1128. };
  1129. struct llama_file {
  1130. // use FILE * so we don't have to re-open the file to mmap
  1131. FILE * fp;
  1132. size_t size;
  1133. llama_file(const char * fname, const char * mode) {
  1134. fp = ggml_fopen(fname, mode);
  1135. if (fp == NULL) {
  1136. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1137. }
  1138. seek(0, SEEK_END);
  1139. size = tell();
  1140. seek(0, SEEK_SET);
  1141. }
  1142. size_t tell() const {
  1143. #ifdef _WIN32
  1144. __int64 ret = _ftelli64(fp);
  1145. #else
  1146. long ret = std::ftell(fp);
  1147. #endif
  1148. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1149. return (size_t) ret;
  1150. }
  1151. void seek(size_t offset, int whence) const {
  1152. #ifdef _WIN32
  1153. int ret = _fseeki64(fp, (__int64) offset, whence);
  1154. #else
  1155. int ret = std::fseek(fp, (long) offset, whence);
  1156. #endif
  1157. GGML_ASSERT(ret == 0); // same
  1158. }
  1159. void read_raw(void * ptr, size_t len) const {
  1160. if (len == 0) {
  1161. return;
  1162. }
  1163. errno = 0;
  1164. std::size_t ret = std::fread(ptr, len, 1, fp);
  1165. if (ferror(fp)) {
  1166. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1167. }
  1168. if (ret != 1) {
  1169. throw std::runtime_error("unexpectedly reached end of file");
  1170. }
  1171. }
  1172. uint32_t read_u32() const {
  1173. uint32_t ret;
  1174. read_raw(&ret, sizeof(ret));
  1175. return ret;
  1176. }
  1177. void write_raw(const void * ptr, size_t len) const {
  1178. if (len == 0) {
  1179. return;
  1180. }
  1181. errno = 0;
  1182. size_t ret = std::fwrite(ptr, len, 1, fp);
  1183. if (ret != 1) {
  1184. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1185. }
  1186. }
  1187. void write_u32(std::uint32_t val) const {
  1188. write_raw(&val, sizeof(val));
  1189. }
  1190. ~llama_file() {
  1191. if (fp) {
  1192. std::fclose(fp);
  1193. }
  1194. }
  1195. };
  1196. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1197. struct llama_mmap {
  1198. void * addr;
  1199. size_t size;
  1200. llama_mmap(const llama_mmap &) = delete;
  1201. #ifdef _POSIX_MAPPED_FILES
  1202. static constexpr bool SUPPORTED = true;
  1203. // list of mapped fragments (first_offset, last_offset)
  1204. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1205. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1206. size = file->size;
  1207. int fd = fileno(file->fp);
  1208. int flags = MAP_SHARED;
  1209. // prefetch/readahead impairs performance on NUMA systems
  1210. if (numa) { prefetch = 0; }
  1211. #ifdef __linux__
  1212. // advise the kernel to read the file sequentially (increases readahead)
  1213. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1214. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1215. strerror(errno));
  1216. }
  1217. if (prefetch) { flags |= MAP_POPULATE; }
  1218. #endif
  1219. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1220. if (addr == MAP_FAILED) { // NOLINT
  1221. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1222. }
  1223. if (prefetch > 0) {
  1224. // advise the kernel to preload the mapped memory
  1225. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1226. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1227. strerror(errno));
  1228. }
  1229. }
  1230. if (numa) {
  1231. // advise the kernel not to use readahead
  1232. // (because the next page might not belong on the same node)
  1233. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1234. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1235. strerror(errno));
  1236. }
  1237. }
  1238. // initialize list of mapped_fragments
  1239. mapped_fragments.emplace_back(0, file->size);
  1240. }
  1241. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1242. // align first to the next page
  1243. size_t offset_in_page = *first & (page_size - 1);
  1244. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1245. *first += offset_to_page;
  1246. // align last to the previous page
  1247. *last = *last & ~(page_size - 1);
  1248. if (*last <= *first) {
  1249. *last = *first;
  1250. }
  1251. }
  1252. // partially unmap the file in the range [first, last)
  1253. void unmap_fragment(size_t first, size_t last) {
  1254. // note: this function must not be called multiple times with overlapping ranges
  1255. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1256. int page_size = sysconf(_SC_PAGESIZE);
  1257. align_range(&first, &last, page_size);
  1258. size_t len = last - first;
  1259. if (len == 0) {
  1260. return;
  1261. }
  1262. GGML_ASSERT(first % page_size == 0);
  1263. GGML_ASSERT(last % page_size == 0);
  1264. GGML_ASSERT(last > first);
  1265. void * next_page_start = (uint8_t *) addr + first;
  1266. // unmap the range
  1267. if (munmap(next_page_start, len)) {
  1268. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1269. }
  1270. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1271. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1272. for (const auto & frag : mapped_fragments) {
  1273. if (frag.first < first && frag.second > last) {
  1274. // the range is in the middle of the fragment, split it
  1275. new_mapped_fragments.emplace_back(frag.first, first);
  1276. new_mapped_fragments.emplace_back(last, frag.second);
  1277. } else if (frag.first < first && frag.second > first) {
  1278. // the range starts in the middle of the fragment
  1279. new_mapped_fragments.emplace_back(frag.first, first);
  1280. } else if (frag.first < last && frag.second > last) {
  1281. // the range ends in the middle of the fragment
  1282. new_mapped_fragments.emplace_back(last, frag.second);
  1283. } else if (frag.first >= first && frag.second <= last) {
  1284. // the range covers the entire fragment
  1285. } else {
  1286. // the range is outside the fragment
  1287. new_mapped_fragments.push_back(frag);
  1288. }
  1289. }
  1290. mapped_fragments = std::move(new_mapped_fragments);
  1291. }
  1292. ~llama_mmap() {
  1293. for (const auto & frag : mapped_fragments) {
  1294. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1295. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1296. }
  1297. }
  1298. }
  1299. #elif defined(_WIN32)
  1300. static constexpr bool SUPPORTED = true;
  1301. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1302. GGML_UNUSED(numa);
  1303. size = file->size;
  1304. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1305. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1306. if (hMapping == NULL) {
  1307. DWORD error = GetLastError();
  1308. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1309. }
  1310. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1311. DWORD error = GetLastError();
  1312. CloseHandle(hMapping);
  1313. if (addr == NULL) {
  1314. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1315. }
  1316. if (prefetch > 0) {
  1317. #if _WIN32_WINNT >= 0x602
  1318. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1319. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1320. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1321. // may fail on pre-Windows 8 systems
  1322. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1323. if (pPrefetchVirtualMemory) {
  1324. // advise the kernel to preload the mapped memory
  1325. WIN32_MEMORY_RANGE_ENTRY range;
  1326. range.VirtualAddress = addr;
  1327. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1328. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1329. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1330. llama_format_win_err(GetLastError()).c_str());
  1331. }
  1332. }
  1333. #else
  1334. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1335. #endif
  1336. }
  1337. }
  1338. void unmap_fragment(size_t first, size_t last) {
  1339. // not supported
  1340. GGML_UNUSED(first);
  1341. GGML_UNUSED(last);
  1342. }
  1343. ~llama_mmap() {
  1344. if (!UnmapViewOfFile(addr)) {
  1345. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1346. llama_format_win_err(GetLastError()).c_str());
  1347. }
  1348. }
  1349. #else
  1350. static constexpr bool SUPPORTED = false;
  1351. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1352. GGML_UNUSED(file);
  1353. GGML_UNUSED(prefetch);
  1354. GGML_UNUSED(numa);
  1355. throw std::runtime_error("mmap not supported");
  1356. }
  1357. void unmap_fragment(size_t first, size_t last) {
  1358. GGML_UNUSED(first);
  1359. GGML_UNUSED(last);
  1360. throw std::runtime_error("mmap not supported");
  1361. }
  1362. #endif
  1363. };
  1364. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1365. // Represents some region of memory being locked using mlock or VirtualLock;
  1366. // will automatically unlock on destruction.
  1367. struct llama_mlock {
  1368. void * addr = NULL;
  1369. size_t size = 0;
  1370. bool failed_already = false;
  1371. llama_mlock() {}
  1372. llama_mlock(const llama_mlock &) = delete;
  1373. ~llama_mlock() {
  1374. if (size) {
  1375. raw_unlock(addr, size);
  1376. }
  1377. }
  1378. void init(void * ptr) {
  1379. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1380. addr = ptr;
  1381. }
  1382. void grow_to(size_t target_size) {
  1383. GGML_ASSERT(addr);
  1384. if (failed_already) {
  1385. return;
  1386. }
  1387. size_t granularity = lock_granularity();
  1388. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1389. if (target_size > size) {
  1390. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1391. size = target_size;
  1392. } else {
  1393. failed_already = true;
  1394. }
  1395. }
  1396. }
  1397. #ifdef _POSIX_MEMLOCK_RANGE
  1398. static constexpr bool SUPPORTED = true;
  1399. static size_t lock_granularity() {
  1400. return (size_t) sysconf(_SC_PAGESIZE);
  1401. }
  1402. #ifdef __APPLE__
  1403. #define MLOCK_SUGGESTION \
  1404. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1405. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1406. #else
  1407. #define MLOCK_SUGGESTION \
  1408. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1409. #endif
  1410. bool raw_lock(const void * addr, size_t size) const {
  1411. if (!mlock(addr, size)) {
  1412. return true;
  1413. }
  1414. char* errmsg = std::strerror(errno);
  1415. bool suggest = (errno == ENOMEM);
  1416. // Check if the resource limit is fine after all
  1417. struct rlimit lock_limit;
  1418. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1419. suggest = false;
  1420. }
  1421. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1422. suggest = false;
  1423. }
  1424. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1425. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1426. return false;
  1427. }
  1428. #undef MLOCK_SUGGESTION
  1429. static void raw_unlock(void * addr, size_t size) {
  1430. if (munlock(addr, size)) {
  1431. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1432. }
  1433. }
  1434. #elif defined(_WIN32)
  1435. static constexpr bool SUPPORTED = true;
  1436. static size_t lock_granularity() {
  1437. SYSTEM_INFO si;
  1438. GetSystemInfo(&si);
  1439. return (size_t) si.dwPageSize;
  1440. }
  1441. bool raw_lock(void * ptr, size_t len) const {
  1442. for (int tries = 1; ; tries++) {
  1443. if (VirtualLock(ptr, len)) {
  1444. return true;
  1445. }
  1446. if (tries == 2) {
  1447. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1448. len, size, llama_format_win_err(GetLastError()).c_str());
  1449. return false;
  1450. }
  1451. // It failed but this was only the first try; increase the working
  1452. // set size and try again.
  1453. SIZE_T min_ws_size, max_ws_size;
  1454. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1455. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1456. llama_format_win_err(GetLastError()).c_str());
  1457. return false;
  1458. }
  1459. // Per MSDN: "The maximum number of pages that a process can lock
  1460. // is equal to the number of pages in its minimum working set minus
  1461. // a small overhead."
  1462. // Hopefully a megabyte is enough overhead:
  1463. size_t increment = len + 1048576;
  1464. // The minimum must be <= the maximum, so we need to increase both:
  1465. min_ws_size += increment;
  1466. max_ws_size += increment;
  1467. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1468. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1469. llama_format_win_err(GetLastError()).c_str());
  1470. return false;
  1471. }
  1472. }
  1473. }
  1474. static void raw_unlock(void * ptr, size_t len) {
  1475. if (!VirtualUnlock(ptr, len)) {
  1476. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1477. llama_format_win_err(GetLastError()).c_str());
  1478. }
  1479. }
  1480. #else
  1481. static constexpr bool SUPPORTED = false;
  1482. static size_t lock_granularity() {
  1483. return (size_t) 65536;
  1484. }
  1485. bool raw_lock(const void * addr, size_t len) const {
  1486. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1487. return false;
  1488. }
  1489. static void raw_unlock(const void * addr, size_t len) {}
  1490. #endif
  1491. };
  1492. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1493. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
  1494. std::vector<char> result(8, 0);
  1495. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1496. if (n_tokens < 0) {
  1497. result.resize(-n_tokens);
  1498. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
  1499. GGML_ASSERT(check == -n_tokens);
  1500. }
  1501. else {
  1502. result.resize(n_tokens);
  1503. }
  1504. return std::string(result.data(), result.size());
  1505. }
  1506. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1507. ggml_backend_buffer_type_t buft = nullptr;
  1508. #if defined(GGML_USE_CUDA)
  1509. // host buffers should only be used when data is expected to be copied to/from the GPU
  1510. if (host_buffer) {
  1511. buft = ggml_backend_cuda_host_buffer_type();
  1512. }
  1513. #elif defined(GGML_USE_SYCL)
  1514. if (host_buffer) {
  1515. buft = ggml_backend_sycl_host_buffer_type();
  1516. }
  1517. #elif defined(GGML_USE_CPU_HBM)
  1518. buft = ggml_backend_cpu_hbm_buffer_type();
  1519. #elif defined(GGML_USE_VULKAN)
  1520. if (host_buffer) {
  1521. buft = ggml_backend_vk_host_buffer_type();
  1522. }
  1523. #endif
  1524. if (buft == nullptr) {
  1525. buft = ggml_backend_cpu_buffer_type();
  1526. }
  1527. return buft;
  1528. GGML_UNUSED(host_buffer);
  1529. }
  1530. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1531. ggml_backend_buffer_type_t buft = nullptr;
  1532. #ifdef GGML_USE_METAL
  1533. buft = ggml_backend_metal_buffer_type();
  1534. #elif defined(GGML_USE_CUDA)
  1535. buft = ggml_backend_cuda_buffer_type(gpu);
  1536. #elif defined(GGML_USE_VULKAN)
  1537. buft = ggml_backend_vk_buffer_type(gpu);
  1538. #elif defined(GGML_USE_SYCL)
  1539. buft = ggml_backend_sycl_buffer_type(gpu);
  1540. #elif defined(GGML_USE_CLBLAST)
  1541. buft = ggml_backend_opencl_buffer_type();
  1542. #elif defined(GGML_USE_KOMPUTE)
  1543. buft = ggml_backend_kompute_buffer_type(gpu);
  1544. if (buft == nullptr) {
  1545. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1546. }
  1547. #endif
  1548. if (buft == nullptr) {
  1549. buft = llama_default_buffer_type_cpu(true);
  1550. }
  1551. return buft;
  1552. GGML_UNUSED(gpu);
  1553. }
  1554. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1555. ggml_backend_buffer_type_t buft = nullptr;
  1556. #ifdef GGML_USE_CUDA
  1557. if (ggml_backend_cuda_get_device_count() > 1) {
  1558. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1559. }
  1560. #endif
  1561. #ifdef GGML_USE_SYCL
  1562. if (ggml_backend_sycl_get_device_count() > 1) {
  1563. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1564. }
  1565. #endif
  1566. if (buft == nullptr) {
  1567. buft = llama_default_buffer_type_offload(fallback_gpu);
  1568. }
  1569. return buft;
  1570. GGML_UNUSED(tensor_split);
  1571. }
  1572. static size_t llama_get_device_count() {
  1573. #if defined(GGML_USE_CUDA)
  1574. return ggml_backend_cuda_get_device_count();
  1575. #elif defined(GGML_USE_SYCL)
  1576. return ggml_backend_sycl_get_device_count();
  1577. #elif defined(GGML_USE_VULKAN)
  1578. return ggml_backend_vk_get_device_count();
  1579. #else
  1580. return 1;
  1581. #endif
  1582. }
  1583. static size_t llama_get_device_memory(int device) {
  1584. #if defined(GGML_USE_CUDA)
  1585. size_t total;
  1586. size_t free;
  1587. ggml_backend_cuda_get_device_memory(device, &free, &total);
  1588. return free;
  1589. #elif defined(GGML_USE_SYCL)
  1590. size_t total;
  1591. size_t free;
  1592. ggml_backend_sycl_get_device_memory(device, &free, &total);
  1593. return free;
  1594. #elif defined(GGML_USE_VULKAN)
  1595. size_t total;
  1596. size_t free;
  1597. ggml_backend_vk_get_device_memory(device, &free, &total);
  1598. return free;
  1599. #else
  1600. return 1;
  1601. GGML_UNUSED(device);
  1602. #endif
  1603. }
  1604. //
  1605. // globals
  1606. //
  1607. struct llama_state {
  1608. llama_state() {
  1609. #ifdef GGML_USE_METAL
  1610. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1611. #endif
  1612. }
  1613. // We save the log callback globally
  1614. ggml_log_callback log_callback = llama_log_callback_default;
  1615. void * log_callback_user_data = nullptr;
  1616. };
  1617. static llama_state g_state;
  1618. // available llama models
  1619. enum e_model {
  1620. MODEL_UNKNOWN,
  1621. MODEL_17M,
  1622. MODEL_22M,
  1623. MODEL_33M,
  1624. MODEL_109M,
  1625. MODEL_137M,
  1626. MODEL_335M,
  1627. MODEL_0_5B,
  1628. MODEL_1B,
  1629. MODEL_2B,
  1630. MODEL_3B,
  1631. MODEL_4B,
  1632. MODEL_7B,
  1633. MODEL_8B,
  1634. MODEL_12B,
  1635. MODEL_13B,
  1636. MODEL_14B,
  1637. MODEL_15B,
  1638. MODEL_20B,
  1639. MODEL_30B,
  1640. MODEL_34B,
  1641. MODEL_35B,
  1642. MODEL_40B,
  1643. MODEL_65B,
  1644. MODEL_70B,
  1645. MODEL_314B,
  1646. MODEL_SMALL,
  1647. MODEL_MEDIUM,
  1648. MODEL_LARGE,
  1649. MODEL_XL,
  1650. MODEL_A2_7B,
  1651. MODEL_8x7B,
  1652. MODEL_8x22B,
  1653. MODEL_16x12B,
  1654. };
  1655. static const size_t kiB = 1024;
  1656. static const size_t MiB = 1024*kiB;
  1657. static const size_t GiB = 1024*MiB;
  1658. struct llama_hparams {
  1659. bool vocab_only;
  1660. bool rope_finetuned;
  1661. uint32_t n_vocab;
  1662. uint32_t n_ctx_train; // context size the model was trained on
  1663. uint32_t n_embd;
  1664. uint32_t n_head;
  1665. uint32_t n_head_kv;
  1666. uint32_t n_layer;
  1667. uint32_t n_rot;
  1668. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1669. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1670. uint32_t n_ff;
  1671. uint32_t n_expert = 0;
  1672. uint32_t n_expert_used = 0;
  1673. uint32_t n_vocab_type = 0; // for BERT-style token types
  1674. float f_norm_eps;
  1675. float f_norm_rms_eps;
  1676. float rope_freq_base_train;
  1677. float rope_freq_scale_train;
  1678. uint32_t n_yarn_orig_ctx;
  1679. // for State Space Models
  1680. uint32_t ssm_d_conv = 0;
  1681. uint32_t ssm_d_inner = 0;
  1682. uint32_t ssm_d_state = 0;
  1683. uint32_t ssm_dt_rank = 0;
  1684. float f_clamp_kqv = 0.0f;
  1685. float f_max_alibi_bias = 0.0f;
  1686. float f_logit_scale = 0.0f;
  1687. bool causal_attn = true;
  1688. bool need_kq_pos = false;
  1689. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1690. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1691. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1692. bool operator!=(const llama_hparams & other) const {
  1693. if (this->vocab_only != other.vocab_only) return true;
  1694. if (this->n_vocab != other.n_vocab) return true;
  1695. if (this->n_ctx_train != other.n_ctx_train) return true;
  1696. if (this->n_embd != other.n_embd) return true;
  1697. if (this->n_head != other.n_head) return true;
  1698. if (this->n_head_kv != other.n_head_kv) return true;
  1699. if (this->n_layer != other.n_layer) return true;
  1700. if (this->n_rot != other.n_rot) return true;
  1701. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1702. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1703. if (this->n_ff != other.n_ff) return true;
  1704. if (this->n_expert != other.n_expert) return true;
  1705. if (this->n_expert_used != other.n_expert_used) return true;
  1706. if (this->rope_finetuned != other.rope_finetuned) return true;
  1707. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1708. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1709. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1710. if (this->ssm_d_state != other.ssm_d_state) return true;
  1711. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1712. const float EPSILON = 1e-9f;
  1713. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1714. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1715. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1716. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1717. return false;
  1718. }
  1719. uint32_t n_gqa() const {
  1720. if (n_head_kv == 0) {
  1721. return 0;
  1722. }
  1723. return n_head/n_head_kv;
  1724. }
  1725. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1726. return n_embd_head_k * n_head_kv;
  1727. }
  1728. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1729. return n_embd_head_v * n_head_kv;
  1730. }
  1731. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1732. // corresponds to Mamba's conv_states size
  1733. // TODO: maybe support other convolution strides than 1
  1734. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1735. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1736. }
  1737. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1738. // corresponds to Mamba's ssm_states size
  1739. return ssm_d_state * ssm_d_inner;
  1740. }
  1741. };
  1742. struct llama_cparams {
  1743. uint32_t n_ctx; // context size used during inference
  1744. uint32_t n_batch;
  1745. uint32_t n_ubatch;
  1746. uint32_t n_seq_max;
  1747. uint32_t n_threads; // number of threads to use for generation
  1748. uint32_t n_threads_batch; // number of threads to use for batch processing
  1749. float rope_freq_base;
  1750. float rope_freq_scale;
  1751. uint32_t n_yarn_orig_ctx;
  1752. // These hyperparameters are not exposed in GGUF, because all
  1753. // existing YaRN models use the same values for them.
  1754. float yarn_ext_factor;
  1755. float yarn_attn_factor;
  1756. float yarn_beta_fast;
  1757. float yarn_beta_slow;
  1758. float defrag_thold;
  1759. bool embeddings;
  1760. bool causal_attn;
  1761. bool offload_kqv;
  1762. enum llama_pooling_type pooling_type;
  1763. ggml_backend_sched_eval_callback cb_eval;
  1764. void * cb_eval_user_data;
  1765. };
  1766. struct llama_layer {
  1767. // normalization
  1768. struct ggml_tensor * attn_norm;
  1769. struct ggml_tensor * attn_norm_b;
  1770. struct ggml_tensor * attn_norm_2;
  1771. struct ggml_tensor * attn_norm_2_b;
  1772. struct ggml_tensor * attn_q_norm;
  1773. struct ggml_tensor * attn_q_norm_b;
  1774. struct ggml_tensor * attn_k_norm;
  1775. struct ggml_tensor * attn_k_norm_b;
  1776. struct ggml_tensor * attn_out_norm;
  1777. struct ggml_tensor * attn_out_norm_b;
  1778. // attention
  1779. struct ggml_tensor * wq;
  1780. struct ggml_tensor * wk;
  1781. struct ggml_tensor * wv;
  1782. struct ggml_tensor * wo;
  1783. struct ggml_tensor * wqkv;
  1784. // attention bias
  1785. struct ggml_tensor * bq;
  1786. struct ggml_tensor * bk;
  1787. struct ggml_tensor * bv;
  1788. struct ggml_tensor * bo;
  1789. struct ggml_tensor * bqkv;
  1790. // normalization
  1791. struct ggml_tensor * ffn_norm;
  1792. struct ggml_tensor * ffn_norm_b;
  1793. struct ggml_tensor * layer_out_norm;
  1794. struct ggml_tensor * layer_out_norm_b;
  1795. // ff
  1796. struct ggml_tensor * ffn_gate; // w1
  1797. struct ggml_tensor * ffn_down; // w2
  1798. struct ggml_tensor * ffn_up; // w3
  1799. // ff MoE
  1800. struct ggml_tensor * ffn_gate_inp;
  1801. struct ggml_tensor * ffn_gate_exps;
  1802. struct ggml_tensor * ffn_down_exps;
  1803. struct ggml_tensor * ffn_up_exps ;
  1804. // ff shared expert (shexp)
  1805. struct ggml_tensor * ffn_gate_inp_shexp;
  1806. struct ggml_tensor * ffn_gate_shexp;
  1807. struct ggml_tensor * ffn_down_shexp;
  1808. struct ggml_tensor * ffn_up_shexp;
  1809. // ff bias
  1810. struct ggml_tensor * ffn_down_b; // b2
  1811. struct ggml_tensor * ffn_up_b; // b3
  1812. struct ggml_tensor * ffn_act;
  1813. // mamba proj
  1814. struct ggml_tensor * ssm_in;
  1815. struct ggml_tensor * ssm_x;
  1816. struct ggml_tensor * ssm_dt;
  1817. struct ggml_tensor * ssm_out;
  1818. // mamba
  1819. struct ggml_tensor * ssm_conv1d;
  1820. struct ggml_tensor * ssm_a;
  1821. struct ggml_tensor * ssm_d;
  1822. // mamba bias
  1823. struct ggml_tensor * ssm_conv1d_b;
  1824. struct ggml_tensor * ssm_dt_b;
  1825. };
  1826. struct llama_kv_cell {
  1827. llama_pos pos = -1;
  1828. llama_pos delta = 0;
  1829. int32_t src = 0; // used by recurrent state models to copy states
  1830. std::set<llama_seq_id> seq_id;
  1831. bool has_seq_id(const llama_seq_id & id) const {
  1832. return seq_id.find(id) != seq_id.end();
  1833. }
  1834. bool is_empty() const {
  1835. return seq_id.empty();
  1836. }
  1837. bool is_same_seq(const llama_kv_cell & other) const {
  1838. return seq_id == other.seq_id;
  1839. }
  1840. };
  1841. // ring-buffer of cached KV data
  1842. struct llama_kv_cache {
  1843. bool has_shift = false;
  1844. bool do_defrag = false;
  1845. bool do_copy = false;
  1846. // with recurrent state models, a cell can hold the state for more than one past token
  1847. bool recurrent = false;
  1848. // Note: The value of head isn't only used to optimize searching
  1849. // for a free KV slot. llama_decode_internal also uses it, so it
  1850. // cannot be freely changed after a slot has been allocated.
  1851. uint32_t head = 0;
  1852. uint32_t size = 0;
  1853. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1854. // computed before each graph build
  1855. uint32_t n = 0;
  1856. ggml_type type_k = GGML_TYPE_F16;
  1857. ggml_type type_v = GGML_TYPE_F16;
  1858. std::vector<llama_kv_cell> cells;
  1859. std::vector<struct ggml_tensor *> k_l; // per layer
  1860. std::vector<struct ggml_tensor *> v_l;
  1861. std::vector<struct ggml_context *> ctxs;
  1862. std::vector<ggml_backend_buffer_t> bufs;
  1863. size_t total_size() const {
  1864. size_t size = 0;
  1865. for (ggml_backend_buffer_t buf : bufs) {
  1866. size += ggml_backend_buffer_get_size(buf);
  1867. }
  1868. return size;
  1869. }
  1870. ~llama_kv_cache() {
  1871. for (struct ggml_context * ctx : ctxs) {
  1872. ggml_free(ctx);
  1873. }
  1874. for (ggml_backend_buffer_t buf : bufs) {
  1875. ggml_backend_buffer_free(buf);
  1876. }
  1877. }
  1878. };
  1879. struct llama_control_vector {
  1880. std::vector<struct ggml_tensor *> tensors; // per layer
  1881. std::vector<struct ggml_context *> ctxs;
  1882. std::vector<ggml_backend_buffer_t> bufs;
  1883. int32_t layer_start = -1;
  1884. int32_t layer_end = -1;
  1885. ggml_tensor * tensor_for(int il) const {
  1886. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1887. return nullptr;
  1888. }
  1889. return tensors[il];
  1890. }
  1891. ~llama_control_vector() {
  1892. for (struct ggml_context * ctx : ctxs) {
  1893. ggml_free(ctx);
  1894. }
  1895. for (ggml_backend_buffer_t buf : bufs) {
  1896. ggml_backend_buffer_free(buf);
  1897. }
  1898. }
  1899. };
  1900. struct llama_vocab {
  1901. using id = int32_t;
  1902. using token = std::string;
  1903. using ttype = llama_token_type;
  1904. struct token_data {
  1905. token text;
  1906. float score;
  1907. ttype type;
  1908. };
  1909. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1910. std::unordered_map<token, id> token_to_id;
  1911. std::vector<token_data> id_to_token;
  1912. std::unordered_map<token, id> special_tokens_cache;
  1913. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1914. // default LLaMA special tokens
  1915. id special_bos_id = 1;
  1916. id special_eos_id = 2;
  1917. id special_unk_id = 0;
  1918. id special_sep_id = -1;
  1919. id special_pad_id = -1;
  1920. id special_cls_id = -1;
  1921. id special_mask_id = -1;
  1922. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1923. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1924. id linefeed_id = 13;
  1925. id special_prefix_id = -1;
  1926. id special_suffix_id = -1;
  1927. id special_middle_id = -1;
  1928. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1929. bool add_space_prefix = true;
  1930. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1931. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1932. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1933. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1934. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1935. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1936. if (it == bpe_ranks.end()) {
  1937. return -1;
  1938. }
  1939. return it->second;
  1940. }
  1941. };
  1942. struct llama_model {
  1943. e_model type = MODEL_UNKNOWN;
  1944. llm_arch arch = LLM_ARCH_UNKNOWN;
  1945. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1946. std::string name = "n/a";
  1947. llama_hparams hparams = {};
  1948. llama_vocab vocab;
  1949. struct ggml_tensor * tok_embd;
  1950. struct ggml_tensor * type_embd;
  1951. struct ggml_tensor * pos_embd;
  1952. struct ggml_tensor * tok_norm;
  1953. struct ggml_tensor * tok_norm_b;
  1954. struct ggml_tensor * output_norm;
  1955. struct ggml_tensor * output_norm_b;
  1956. struct ggml_tensor * output;
  1957. struct ggml_tensor * output_b;
  1958. std::vector<llama_layer> layers;
  1959. llama_split_mode split_mode;
  1960. int main_gpu;
  1961. int n_gpu_layers;
  1962. // gguf metadata
  1963. std::unordered_map<std::string, std::string> gguf_kv;
  1964. // layer -> buffer type mapping
  1965. struct layer_buft {
  1966. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1967. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1968. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1969. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1970. ggml_backend_buffer_type_t buft; // everything else
  1971. };
  1972. layer_buft buft_input;
  1973. layer_buft buft_output;
  1974. std::vector<layer_buft> buft_layer;
  1975. // contexts where the model tensors metadata is stored
  1976. std::vector<struct ggml_context *> ctxs;
  1977. // the model memory buffers for the tensor data
  1978. std::vector<ggml_backend_buffer_t> bufs;
  1979. // model memory mapped files
  1980. llama_mmaps mappings;
  1981. // objects representing data potentially being locked in memory
  1982. llama_mlocks mlock_bufs;
  1983. llama_mlocks mlock_mmaps;
  1984. // for quantize-stats only
  1985. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1986. int64_t t_load_us = 0;
  1987. int64_t t_start_us = 0;
  1988. ~llama_model() {
  1989. for (struct ggml_context * ctx : ctxs) {
  1990. ggml_free(ctx);
  1991. }
  1992. for (ggml_backend_buffer_t buf : bufs) {
  1993. #ifdef GGML_USE_CUDA
  1994. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1995. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1996. }
  1997. #endif
  1998. ggml_backend_buffer_free(buf);
  1999. }
  2000. }
  2001. };
  2002. struct llama_context {
  2003. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2004. ~llama_context() {
  2005. ggml_backend_sched_free(sched);
  2006. for (ggml_backend_t backend : backends) {
  2007. ggml_backend_free(backend);
  2008. }
  2009. ggml_backend_buffer_free(buf_output);
  2010. }
  2011. llama_cparams cparams;
  2012. std::vector<ggml_backend_t> backends;
  2013. #ifdef GGML_USE_METAL
  2014. ggml_backend_t backend_metal = nullptr;
  2015. #endif
  2016. ggml_backend_t backend_cpu = nullptr;
  2017. const llama_model & model;
  2018. // key + value cache for the self attention
  2019. struct llama_kv_cache kv_self;
  2020. std::mt19937 rng;
  2021. bool has_evaluated_once = false;
  2022. int64_t t_start_us;
  2023. int64_t t_load_us;
  2024. int64_t t_sample_us = 0;
  2025. int64_t t_p_eval_us = 0;
  2026. int64_t t_eval_us = 0;
  2027. int64_t t_compute_start_us = 0;
  2028. int64_t n_queued_tokens = 0;
  2029. int32_t n_sample = 0; // number of tokens sampled
  2030. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2031. int32_t n_eval = 0; // number of eval calls
  2032. // host buffer for the model output (logits and embeddings)
  2033. ggml_backend_buffer_t buf_output = nullptr;
  2034. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2035. size_t logits_size = 0; // capacity (of floats) for logits
  2036. float * logits = nullptr;
  2037. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2038. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2039. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2040. bool logits_all = false;
  2041. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2042. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2043. size_t embd_size = 0; // capacity (of floats) for embeddings
  2044. float * embd = nullptr;
  2045. // sequence embeddings output (map of [n_embd] vectors)
  2046. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2047. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2048. // memory buffers used to evaluate the model
  2049. std::vector<uint8_t> buf_compute_meta;
  2050. ggml_backend_sched_t sched = nullptr;
  2051. ggml_abort_callback abort_callback = nullptr;
  2052. void * abort_callback_data = nullptr;
  2053. // input tensors
  2054. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2055. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2056. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2057. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2058. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2059. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  2060. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2061. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2062. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2063. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2064. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2065. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2066. // control vectors
  2067. struct llama_control_vector cvec;
  2068. #ifdef GGML_USE_MPI
  2069. ggml_mpi_context * ctx_mpi = NULL;
  2070. #endif
  2071. };
  2072. //
  2073. // kv cache helpers
  2074. //
  2075. static bool llama_kv_cache_init(
  2076. struct llama_kv_cache & cache,
  2077. const llama_model & model,
  2078. ggml_type type_k,
  2079. ggml_type type_v,
  2080. uint32_t kv_size,
  2081. bool offload) {
  2082. const struct llama_hparams & hparams = model.hparams;
  2083. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2084. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2085. const int64_t n_layer = hparams.n_layer;
  2086. cache.has_shift = false;
  2087. // TODO: find a nicer way to add other recurrent model architectures
  2088. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2089. // TODO: support mixed reccurent Transformer architectues
  2090. // NOTE: (!a || b) is a logical implication (a -> b)
  2091. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2092. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2093. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2094. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2095. cache.head = 0;
  2096. cache.size = kv_size;
  2097. cache.used = 0;
  2098. cache.type_k = type_k;
  2099. cache.type_v = type_v;
  2100. cache.cells.clear();
  2101. cache.cells.resize(kv_size);
  2102. if (cache.recurrent) {
  2103. // init state copy sources
  2104. for (uint32_t i = 0; i < cache.size; ++i) {
  2105. cache.cells[i].src = i;
  2106. }
  2107. }
  2108. #ifdef GGML_USE_CLBLAST
  2109. offload = false;
  2110. #endif
  2111. // count used buffer types
  2112. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2113. if (offload) {
  2114. for (int64_t i = 0; i < n_layer; ++i) {
  2115. buft_layer_count[model.buft_layer[i].buft]++;
  2116. }
  2117. } else {
  2118. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2119. }
  2120. // create a context for each buffer type
  2121. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2122. for (auto & it : buft_layer_count) {
  2123. int n_layers = it.second;
  2124. struct ggml_init_params params = {
  2125. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2126. /*.mem_buffer =*/ NULL,
  2127. /*.no_alloc =*/ true,
  2128. };
  2129. ggml_context * ctx = ggml_init(params);
  2130. if (!ctx) {
  2131. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2132. return false;
  2133. }
  2134. ctx_map[it.first] = ctx;
  2135. cache.ctxs.push_back(ctx);
  2136. }
  2137. cache.k_l.reserve(n_layer);
  2138. cache.v_l.reserve(n_layer);
  2139. for (int i = 0; i < (int) n_layer; i++) {
  2140. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2141. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2142. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2143. ggml_format_name(k, "cache_k_l%d", i);
  2144. ggml_format_name(v, "cache_v_l%d", i);
  2145. cache.k_l.push_back(k);
  2146. cache.v_l.push_back(v);
  2147. }
  2148. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2149. for (auto it : ctx_map) {
  2150. ggml_backend_buffer_type_t buft = it.first;
  2151. ggml_context * ctx = it.second;
  2152. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2153. if (!buf) {
  2154. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2155. return false;
  2156. }
  2157. ggml_backend_buffer_clear(buf, 0);
  2158. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2159. cache.bufs.push_back(buf);
  2160. }
  2161. return true;
  2162. }
  2163. // find an empty slot of size "n_tokens" in the cache
  2164. // updates the cache head
  2165. // Note: On success, it's important that cache.head points
  2166. // to the first cell of the slot.
  2167. static bool llama_kv_cache_find_slot(
  2168. struct llama_kv_cache & cache,
  2169. const struct llama_batch & batch) {
  2170. const uint32_t n_ctx = cache.size;
  2171. const uint32_t n_tokens = batch.n_tokens;
  2172. if (cache.recurrent) {
  2173. // For recurrent state architectures (like Mamba),
  2174. // each KV cache cell can store the state for a whole sequence.
  2175. llama_seq_id min = cache.size - 1;
  2176. llama_seq_id max = 0;
  2177. for (uint32_t i = 0; i < n_tokens; ++i) {
  2178. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2179. llama_seq_id seq_id = batch.seq_id[i][j];
  2180. // make sure it's a valid seq_id
  2181. if ((uint32_t) seq_id < cache.size) {
  2182. if (seq_id > max) {
  2183. max = seq_id;
  2184. }
  2185. if (seq_id < min) {
  2186. min = seq_id;
  2187. }
  2188. // Assuming the tokens are in-order
  2189. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2190. // What should happen when the pos backtracks or skips a value?
  2191. // Clearing the state mid-batch would require special-casing which isn't done.
  2192. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2193. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2194. }
  2195. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2196. cache.used += 1;
  2197. }
  2198. cache.cells[seq_id].pos = batch.pos[i];
  2199. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2200. } else {
  2201. // too big seq_id
  2202. // TODO: would it be possible to resize the KV cache size instead?
  2203. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2204. return false;
  2205. }
  2206. }
  2207. }
  2208. // allow getting the range of used cells, from head to head + n
  2209. cache.head = min;
  2210. cache.n = max - min + 1;
  2211. // sanity check
  2212. return max >= min;
  2213. }
  2214. // otherwise, one cell per token.
  2215. if (n_tokens > n_ctx) {
  2216. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2217. return false;
  2218. }
  2219. uint32_t n_tested = 0;
  2220. while (true) {
  2221. if (cache.head + n_tokens > n_ctx) {
  2222. n_tested += n_ctx - cache.head;
  2223. cache.head = 0;
  2224. continue;
  2225. }
  2226. bool found = true;
  2227. for (uint32_t i = 0; i < n_tokens; i++) {
  2228. if (cache.cells[cache.head + i].pos >= 0) {
  2229. found = false;
  2230. cache.head += i + 1;
  2231. n_tested += i + 1;
  2232. break;
  2233. }
  2234. }
  2235. if (found) {
  2236. break;
  2237. }
  2238. if (n_tested >= n_ctx) {
  2239. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2240. return false;
  2241. }
  2242. }
  2243. for (uint32_t i = 0; i < n_tokens; i++) {
  2244. cache.cells[cache.head + i].pos = batch.pos[i];
  2245. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2246. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2247. }
  2248. }
  2249. cache.used += n_tokens;
  2250. return true;
  2251. }
  2252. // find how many cells are currently in use
  2253. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2254. for (uint32_t i = cache.size; i > 0; --i) {
  2255. const llama_kv_cell & cell = cache.cells[i - 1];
  2256. if (cell.pos >= 0 && !cell.is_empty()) {
  2257. return i;
  2258. }
  2259. }
  2260. return 0;
  2261. }
  2262. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2263. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2264. cache.cells[i].pos = -1;
  2265. cache.cells[i].seq_id.clear();
  2266. }
  2267. cache.head = 0;
  2268. cache.used = 0;
  2269. }
  2270. static bool llama_kv_cache_seq_rm(
  2271. struct llama_kv_cache & cache,
  2272. llama_seq_id seq_id,
  2273. llama_pos p0,
  2274. llama_pos p1) {
  2275. uint32_t new_head = cache.size;
  2276. if (p0 < 0) p0 = 0;
  2277. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2278. // models like Mamba can't have a state partially erased
  2279. if (cache.recurrent) {
  2280. if (seq_id >= (int64_t) cache.size) {
  2281. // could be fatal
  2282. return false;
  2283. }
  2284. if (0 <= seq_id) {
  2285. // partial intersection is invalid
  2286. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2287. return false;
  2288. }
  2289. } else {
  2290. // seq_id is negative, then the range should include everything or nothing
  2291. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2292. return false;
  2293. }
  2294. }
  2295. }
  2296. for (uint32_t i = 0; i < cache.size; ++i) {
  2297. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2298. if (seq_id < 0) {
  2299. cache.cells[i].seq_id.clear();
  2300. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2301. cache.cells[i].seq_id.erase(seq_id);
  2302. } else {
  2303. continue;
  2304. }
  2305. if (cache.cells[i].is_empty()) {
  2306. // keep count of the number of used cells
  2307. if (cache.cells[i].pos >= 0) cache.used--;
  2308. cache.cells[i].pos = -1;
  2309. if (new_head == cache.size) new_head = i;
  2310. }
  2311. }
  2312. }
  2313. // If we freed up a slot, set head to it so searching can start there.
  2314. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2315. return true;
  2316. }
  2317. static void llama_kv_cache_seq_cp(
  2318. struct llama_kv_cache & cache,
  2319. llama_seq_id seq_id_src,
  2320. llama_seq_id seq_id_dst,
  2321. llama_pos p0,
  2322. llama_pos p1) {
  2323. if (p0 < 0) p0 = 0;
  2324. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2325. if (cache.recurrent) {
  2326. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2327. seq_id_src = cache.cells[seq_id_src].src;
  2328. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2329. // intent to "copy from"
  2330. // supports copy chains thanks to taking the source of the source
  2331. cache.cells[seq_id_dst].src = seq_id_src;
  2332. // preserve the "keep or clear" status of the copied sequence
  2333. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2334. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2335. } else {
  2336. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2337. }
  2338. cache.do_copy = true;
  2339. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2340. }
  2341. return;
  2342. }
  2343. // otherwise, this is the KV cache of a Transformer-like model
  2344. cache.head = 0;
  2345. for (uint32_t i = 0; i < cache.size; ++i) {
  2346. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2347. cache.cells[i].seq_id.insert(seq_id_dst);
  2348. }
  2349. }
  2350. }
  2351. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2352. uint32_t new_head = cache.size;
  2353. for (uint32_t i = 0; i < cache.size; ++i) {
  2354. if (!cache.cells[i].has_seq_id(seq_id)) {
  2355. if (cache.cells[i].pos >= 0) cache.used--;
  2356. cache.cells[i].pos = -1;
  2357. cache.cells[i].seq_id.clear();
  2358. if (new_head == cache.size) new_head = i;
  2359. } else {
  2360. cache.cells[i].seq_id.clear();
  2361. cache.cells[i].seq_id.insert(seq_id);
  2362. }
  2363. }
  2364. // If we freed up a slot, set head to it so searching can start there.
  2365. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2366. }
  2367. static void llama_kv_cache_seq_add(
  2368. struct llama_kv_cache & cache,
  2369. llama_seq_id seq_id,
  2370. llama_pos p0,
  2371. llama_pos p1,
  2372. llama_pos delta) {
  2373. uint32_t new_head = cache.size;
  2374. if (p0 < 0) p0 = 0;
  2375. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2376. if (cache.recurrent) {
  2377. // for Mamba-like models, only the pos needs to be shifted
  2378. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2379. llama_kv_cell & cell = cache.cells[seq_id];
  2380. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2381. cell.pos += delta;
  2382. }
  2383. }
  2384. return;
  2385. }
  2386. for (uint32_t i = 0; i < cache.size; ++i) {
  2387. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2388. cache.has_shift = true;
  2389. cache.cells[i].pos += delta;
  2390. cache.cells[i].delta += delta;
  2391. if (cache.cells[i].pos < 0) {
  2392. if (!cache.cells[i].is_empty()) {
  2393. cache.used--;
  2394. }
  2395. cache.cells[i].pos = -1;
  2396. cache.cells[i].seq_id.clear();
  2397. if (new_head == cache.size) {
  2398. new_head = i;
  2399. }
  2400. }
  2401. }
  2402. }
  2403. // If we freed up a slot, set head to it so searching can start there.
  2404. // Otherwise we just start the next search from the beginning.
  2405. cache.head = new_head != cache.size ? new_head : 0;
  2406. }
  2407. static void llama_kv_cache_seq_div(
  2408. struct llama_kv_cache & cache,
  2409. llama_seq_id seq_id,
  2410. llama_pos p0,
  2411. llama_pos p1,
  2412. int d) {
  2413. if (p0 < 0) p0 = 0;
  2414. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2415. if (cache.recurrent) {
  2416. // for Mamba-like models, only the pos needs to be changed
  2417. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2418. llama_kv_cell & cell = cache.cells[seq_id];
  2419. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2420. cell.pos /= d;
  2421. }
  2422. }
  2423. return;
  2424. }
  2425. for (uint32_t i = 0; i < cache.size; ++i) {
  2426. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2427. cache.has_shift = true;
  2428. {
  2429. llama_pos p_old = cache.cells[i].pos;
  2430. cache.cells[i].pos /= d;
  2431. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2432. }
  2433. }
  2434. }
  2435. }
  2436. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2437. llama_pos result = 0;
  2438. for (uint32_t i = 0; i < cache.size; ++i) {
  2439. if (cache.cells[i].has_seq_id(seq_id)) {
  2440. result = std::max(result, cache.cells[i].pos);
  2441. }
  2442. }
  2443. return result;
  2444. }
  2445. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2446. cache.do_defrag = true;
  2447. }
  2448. //
  2449. // model loading and saving
  2450. //
  2451. enum llama_fver {
  2452. GGUF_FILE_VERSION_V1 = 1,
  2453. GGUF_FILE_VERSION_V2 = 2,
  2454. GGUF_FILE_VERSION_V3 = 3,
  2455. };
  2456. static const char * llama_file_version_name(llama_fver version) {
  2457. switch (version) {
  2458. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2459. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2460. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2461. }
  2462. return "unknown";
  2463. }
  2464. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2465. char buf[256];
  2466. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2467. for (size_t i = 1; i < ne.size(); i++) {
  2468. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2469. }
  2470. return buf;
  2471. }
  2472. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2473. char buf[256];
  2474. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2475. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2476. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2477. }
  2478. return buf;
  2479. }
  2480. namespace GGUFMeta {
  2481. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2482. struct GKV_Base_Type {
  2483. static constexpr gguf_type gt = gt_;
  2484. static T getter(const gguf_context * ctx, const int kid) {
  2485. return gfun(ctx, kid);
  2486. }
  2487. };
  2488. template<typename T> struct GKV_Base;
  2489. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2490. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2491. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2492. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2493. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2494. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2495. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2496. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2497. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2498. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2499. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2500. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2501. template<> struct GKV_Base<std::string> {
  2502. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2503. static std::string getter(const gguf_context * ctx, const int kid) {
  2504. return gguf_get_val_str(ctx, kid);
  2505. }
  2506. };
  2507. struct ArrayInfo {
  2508. const gguf_type gt;
  2509. const size_t length;
  2510. const void * data;
  2511. };
  2512. template<> struct GKV_Base<ArrayInfo> {
  2513. public:
  2514. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2515. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2516. return ArrayInfo {
  2517. gguf_get_arr_type(ctx, k),
  2518. size_t(gguf_get_arr_n(ctx, k)),
  2519. gguf_get_arr_data(ctx, k),
  2520. };
  2521. }
  2522. };
  2523. template<typename T>
  2524. class GKV : public GKV_Base<T> {
  2525. GKV() = delete;
  2526. public:
  2527. static T get_kv(const gguf_context * ctx, const int k) {
  2528. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2529. if (kt != GKV::gt) {
  2530. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2531. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2532. }
  2533. return GKV::getter(ctx, k);
  2534. }
  2535. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2536. switch (ty) {
  2537. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2538. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2539. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2540. }
  2541. return "unknown";
  2542. }
  2543. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2544. if (!ovrd) { return false; }
  2545. if (ovrd->tag == expected_type) {
  2546. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2547. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2548. switch (ovrd->tag) {
  2549. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2550. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2551. } break;
  2552. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2553. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2554. } break;
  2555. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2556. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2557. } break;
  2558. default:
  2559. // Shouldn't be possible to end up here, but just in case...
  2560. throw std::runtime_error(
  2561. format("Unsupported attempt to override %s type for metadata key %s\n",
  2562. override_type_to_str(ovrd->tag), ovrd->key));
  2563. }
  2564. return true;
  2565. }
  2566. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2567. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2568. return false;
  2569. }
  2570. template<typename OT>
  2571. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2572. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2573. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2574. target = ovrd->bool_value;
  2575. return true;
  2576. }
  2577. return false;
  2578. }
  2579. template<typename OT>
  2580. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2581. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2582. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2583. target = ovrd->int_value;
  2584. return true;
  2585. }
  2586. return false;
  2587. }
  2588. template<typename OT>
  2589. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2590. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2591. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2592. target = ovrd->float_value;
  2593. return true;
  2594. }
  2595. return false;
  2596. }
  2597. template<typename OT>
  2598. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2599. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2600. (void)target;
  2601. (void)ovrd;
  2602. if (!ovrd) { return false; }
  2603. // Currently, we should never end up here so it would be a bug if we do.
  2604. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2605. ovrd ? ovrd->key : "NULL"));
  2606. }
  2607. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2608. if (try_override<T>(target, ovrd)) {
  2609. return true;
  2610. }
  2611. if (k < 0) { return false; }
  2612. target = get_kv(ctx, k);
  2613. return true;
  2614. }
  2615. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2616. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2617. }
  2618. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2619. return set(ctx, key.c_str(), target, ovrd);
  2620. }
  2621. };
  2622. }
  2623. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2624. struct llama_model_loader {
  2625. int n_kv = 0;
  2626. int n_tensors = 0;
  2627. int n_created = 0;
  2628. int64_t n_elements = 0;
  2629. size_t n_bytes = 0;
  2630. bool use_mmap = false;
  2631. llama_files files;
  2632. llama_ftype ftype;
  2633. llama_fver fver;
  2634. llama_mmaps mappings;
  2635. // Holds information on a model weight
  2636. struct llama_tensor_weight {
  2637. uint16_t idx; // source file index
  2638. size_t offs; // tensor data offset in the original file
  2639. ggml_tensor * tensor;
  2640. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2641. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2642. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2643. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2644. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2645. }
  2646. }
  2647. };
  2648. std::vector<llama_tensor_weight> weights;
  2649. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2650. struct gguf_context * meta = NULL;
  2651. std::vector<ggml_context *> contexts;
  2652. std::string arch_name;
  2653. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2654. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2655. int trace = 0;
  2656. if (getenv("LLAMA_TRACE")) {
  2657. trace = atoi(getenv("LLAMA_TRACE"));
  2658. }
  2659. if (param_overrides_p != nullptr) {
  2660. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2661. kv_overrides.insert({std::string(p->key), *p});
  2662. }
  2663. }
  2664. struct ggml_context * ctx = NULL;
  2665. struct gguf_init_params params = {
  2666. /*.no_alloc = */ true,
  2667. /*.ctx = */ &ctx,
  2668. };
  2669. meta = gguf_init_from_file(fname.c_str(), params);
  2670. if (!meta) {
  2671. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2672. }
  2673. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2674. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2675. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2676. contexts.emplace_back(ctx);
  2677. // Save tensors data offset of the main file.
  2678. // For subsidiary files, `meta` tensor data offset must not be used,
  2679. // so we build a unified tensors index for weights.
  2680. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2681. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2682. }
  2683. uint16_t n_split = 0;
  2684. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2685. // Load additional GGML contexts
  2686. if (n_split > 1) {
  2687. uint16_t idx = 0;
  2688. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2689. if (idx != 0) {
  2690. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2691. }
  2692. char split_prefix[PATH_MAX] = {0};
  2693. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2694. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2695. }
  2696. if (trace > 0) {
  2697. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2698. }
  2699. char split_path[PATH_MAX] = {0};
  2700. for (idx = 1; idx < n_split; idx++) {
  2701. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2702. struct gguf_init_params split_params = {
  2703. /*.no_alloc = */ true,
  2704. /*.ctx = */ &ctx,
  2705. };
  2706. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2707. if (!ctx_gguf) {
  2708. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2709. }
  2710. files.emplace_back(new llama_file(split_path, "rb"));
  2711. contexts.emplace_back(ctx);
  2712. // Save tensors data offset info of the shard.
  2713. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2714. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2715. }
  2716. gguf_free(ctx_gguf);
  2717. }
  2718. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2719. // sanity check
  2720. {
  2721. const int n_tensors_loaded = (int) weights.size();
  2722. if (n_tensors != n_tensors_loaded) {
  2723. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2724. }
  2725. }
  2726. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2727. }
  2728. n_kv = gguf_get_n_kv(meta);
  2729. n_tensors = weights.size();
  2730. fver = (enum llama_fver) gguf_get_version(meta);
  2731. for (auto & w : weights) {
  2732. n_elements += ggml_nelements(w.tensor);
  2733. n_bytes += ggml_nbytes(w.tensor);
  2734. }
  2735. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2736. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2737. // determine file type based on the number of tensors for each quantization and print meta data
  2738. // TODO: make optional
  2739. {
  2740. std::map<enum ggml_type, uint32_t> n_type;
  2741. uint32_t n_type_max = 0;
  2742. enum ggml_type type_max = GGML_TYPE_F32;
  2743. for (int i = 0; i < n_tensors; i++) {
  2744. const ggml_tensor * tensor = weights.at(i).tensor;
  2745. enum ggml_type type = tensor->type;
  2746. n_type[type]++;
  2747. if (n_type_max < n_type[type]) {
  2748. n_type_max = n_type[type];
  2749. type_max = type;
  2750. }
  2751. if (trace > 0) {
  2752. const uint16_t sid = weights.at(i).idx;
  2753. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2754. }
  2755. }
  2756. switch (type_max) {
  2757. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2758. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2759. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2760. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2761. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2762. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2763. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2764. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2765. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2766. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2767. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2768. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2769. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2770. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2771. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2772. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2773. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2774. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2775. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2776. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2777. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2778. default:
  2779. {
  2780. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2781. ftype = LLAMA_FTYPE_ALL_F32;
  2782. } break;
  2783. }
  2784. // this is a way to mark that we have "guessed" the file type
  2785. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2786. {
  2787. const int kid = gguf_find_key(meta, "general.file_type");
  2788. if (kid >= 0) {
  2789. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2790. }
  2791. }
  2792. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2793. for (int i = 0; i < n_kv; i++) {
  2794. const char * name = gguf_get_key(meta, i);
  2795. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2796. const std::string type_name =
  2797. type == GGUF_TYPE_ARRAY
  2798. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2799. : gguf_type_name(type);
  2800. std::string value = gguf_kv_to_str(meta, i);
  2801. const size_t MAX_VALUE_LEN = 40;
  2802. if (value.size() > MAX_VALUE_LEN) {
  2803. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2804. }
  2805. replace_all(value, "\n", "\\n");
  2806. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2807. }
  2808. // print type counts
  2809. for (auto & kv : n_type) {
  2810. if (kv.second == 0) {
  2811. continue;
  2812. }
  2813. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2814. }
  2815. }
  2816. if (!llama_mmap::SUPPORTED) {
  2817. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2818. use_mmap = false;
  2819. }
  2820. this->use_mmap = use_mmap;
  2821. }
  2822. ~llama_model_loader() {
  2823. if (meta) {
  2824. gguf_free(meta);
  2825. }
  2826. for (auto * ctx : contexts) {
  2827. ggml_free(ctx);
  2828. }
  2829. }
  2830. template<typename T>
  2831. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2832. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2833. const int kid = gguf_find_key(meta, key.c_str());
  2834. if (kid < 0) {
  2835. if (required) {
  2836. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2837. }
  2838. return false;
  2839. }
  2840. struct GGUFMeta::ArrayInfo arr_info =
  2841. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2842. result = arr_info.length;
  2843. return true;
  2844. }
  2845. template<typename T>
  2846. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2847. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2848. return get_arr_n(llm_kv(kid), result, required);
  2849. }
  2850. template<typename T>
  2851. bool get_key(const std::string & key, T & result, const bool required = true) {
  2852. auto it = kv_overrides.find(key);
  2853. const struct llama_model_kv_override * override =
  2854. it != kv_overrides.end() ? &it->second : nullptr;
  2855. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2856. if (required && !found) {
  2857. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2858. }
  2859. return found;
  2860. }
  2861. template<typename T>
  2862. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2863. return get_key(llm_kv(kid), result, required);
  2864. }
  2865. std::string get_arch_name() const {
  2866. return arch_name;
  2867. }
  2868. enum llm_arch get_arch() const {
  2869. return llm_kv.arch;
  2870. }
  2871. const char * get_tensor_name(int i) const {
  2872. return weights.at(i).tensor->name;
  2873. }
  2874. const llama_tensor_weight * get_weight(const char * name) const {
  2875. for (const auto & weight : weights) {
  2876. if (strcmp(name, weight.tensor->name) == 0) {
  2877. return &weight;
  2878. }
  2879. }
  2880. return nullptr;
  2881. }
  2882. const llama_tensor_weight * get_weight(int i) const {
  2883. return get_weight(get_tensor_name(i));
  2884. }
  2885. const llama_tensor_weight & require_weight(const char * name) const {
  2886. const llama_tensor_weight * weight = get_weight(name);
  2887. if (!weight) {
  2888. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2889. }
  2890. return *weight;
  2891. }
  2892. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2893. const auto * weight = get_weight(name);
  2894. if (!weight) {
  2895. return nullptr;
  2896. }
  2897. return weight->tensor;
  2898. }
  2899. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2900. struct ggml_tensor * tensor = get_tensor_meta(name);
  2901. if (!tensor) {
  2902. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2903. }
  2904. return tensor;
  2905. }
  2906. struct ggml_tensor * get_tensor_meta(int i) const {
  2907. return get_tensor_meta(get_tensor_name(i));
  2908. }
  2909. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2910. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2911. ggml_set_name(tensor, ggml_get_name(cur));
  2912. n_created++;
  2913. return tensor;
  2914. }
  2915. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2916. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2917. if (cur == NULL) {
  2918. if (!required) {
  2919. return NULL;
  2920. }
  2921. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2922. }
  2923. {
  2924. bool is_ok = true;
  2925. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2926. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2927. is_ok = false;
  2928. break;
  2929. }
  2930. }
  2931. if (!is_ok) {
  2932. throw std::runtime_error(
  2933. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2934. __func__, name.c_str(),
  2935. llama_format_tensor_shape(ne).c_str(),
  2936. llama_format_tensor_shape(cur).c_str()));
  2937. }
  2938. }
  2939. return cur;
  2940. }
  2941. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2942. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2943. if (cur == NULL) {
  2944. return NULL;
  2945. }
  2946. return create_tensor_for(ctx, cur);
  2947. }
  2948. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2949. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2950. if (cur == NULL) {
  2951. return NULL;
  2952. }
  2953. if (cur->type != base->type) {
  2954. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2955. }
  2956. std::array<int64_t, GGML_MAX_DIMS> dims;
  2957. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2958. dims[i] = i < ne.size() ? ne[i] : 1;
  2959. }
  2960. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2961. dims[0], dims[1], dims[2], dims[3],
  2962. cur->nb[1], cur->nb[2], cur->nb[3],
  2963. offset);
  2964. ggml_set_name(tensor, name.c_str());
  2965. n_created++;
  2966. return tensor;
  2967. }
  2968. void done_getting_tensors() const {
  2969. if (n_created != n_tensors) {
  2970. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2971. }
  2972. }
  2973. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2974. if (use_mmap) {
  2975. mappings.reserve(files.size());
  2976. mmaps_used.reserve(files.size());
  2977. for (const auto & file : files) {
  2978. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2979. mmaps_used.emplace_back(mapping->size, 0);
  2980. if (mlock_mmaps) {
  2981. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2982. mlock_mmap->init(mapping->addr);
  2983. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2984. }
  2985. mappings.emplace_back(std::move(mapping));
  2986. }
  2987. }
  2988. // compute the total size of all tensors for progress reporting
  2989. for (auto & w : weights) {
  2990. size_data += ggml_nbytes(w.tensor);
  2991. }
  2992. }
  2993. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2994. GGML_ASSERT(!mappings.empty());
  2995. const auto & mapping = mappings.at(idx);
  2996. *first = mapping->size;
  2997. *last = 0;
  2998. *addr = mapping->addr;
  2999. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3000. try {
  3001. const auto * weight = get_weight(ggml_get_name(tensor));
  3002. if (!weight) {
  3003. continue;
  3004. }
  3005. if (weight->idx != idx) {
  3006. continue;
  3007. }
  3008. *first = std::min(*first, weight->offs);
  3009. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3010. } catch(...) {
  3011. // the tensor is not in the model
  3012. }
  3013. }
  3014. }
  3015. // for backwards compatibility, does not support ggml-backend
  3016. void load_data_for(struct ggml_tensor * cur) const {
  3017. const auto & w = require_weight(ggml_get_name(cur));
  3018. if (use_mmap) {
  3019. const auto & mapping = mappings.at(w.idx);
  3020. if (cur->data == nullptr) {
  3021. cur->data = (uint8_t *)mapping->addr + w.offs;
  3022. } else {
  3023. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3024. }
  3025. } else {
  3026. GGML_ASSERT(cur->data != nullptr);
  3027. GGML_ASSERT(w.idx < files.size());
  3028. const auto & file = files.at(w.idx);
  3029. file->seek(w.offs, SEEK_SET);
  3030. file->read_raw(cur->data, ggml_nbytes(cur));
  3031. }
  3032. }
  3033. size_t size_done = 0;
  3034. size_t size_data = 0;
  3035. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3036. // Returns false if cancelled by progress_callback
  3037. bool load_all_data(
  3038. struct ggml_context * ctx,
  3039. llama_buf_map & bufs_mmap,
  3040. llama_mlocks * lmlocks,
  3041. llama_progress_callback progress_callback,
  3042. void * progress_callback_user_data) {
  3043. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3044. std::vector<no_init<uint8_t>> read_buf;
  3045. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3046. const auto * weight = get_weight(ggml_get_name(cur));
  3047. if (weight == nullptr) {
  3048. // this can happen with split experts models
  3049. continue;
  3050. }
  3051. if (progress_callback) {
  3052. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3053. return false;
  3054. }
  3055. }
  3056. size_t n_size = ggml_nbytes(cur);
  3057. if (use_mmap) {
  3058. const auto & mapping = mappings.at(weight->idx);
  3059. ggml_backend_buffer_t buf_mmap = nullptr;
  3060. if (bufs_mmap.count(weight->idx)) {
  3061. buf_mmap = bufs_mmap.at(weight->idx);
  3062. }
  3063. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3064. if (buf_mmap && cur->data == nullptr) {
  3065. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  3066. if (lmlocks) {
  3067. const auto & lmlock = lmlocks->at(weight->idx);
  3068. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  3069. }
  3070. auto & mmap_used = mmaps_used[weight->idx];
  3071. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3072. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3073. } else {
  3074. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  3075. }
  3076. } else {
  3077. GGML_ASSERT(weight->idx < files.size());
  3078. const auto & file = files.at(weight->idx);
  3079. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3080. file->seek(weight->offs, SEEK_SET);
  3081. file->read_raw(cur->data, ggml_nbytes(cur));
  3082. } else {
  3083. read_buf.resize(ggml_nbytes(cur));
  3084. file->seek(weight->offs, SEEK_SET);
  3085. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  3086. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3087. }
  3088. }
  3089. size_done += n_size;
  3090. }
  3091. // check if this is the last call and do final cleanup
  3092. if (size_done >= size_data) {
  3093. // unmap offloaded tensors and metadata
  3094. if (use_mmap) {
  3095. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3096. const auto & mmap_used = mmaps_used.at(idx);
  3097. auto & mapping = mappings.at(idx);
  3098. mapping->unmap_fragment(0, mmap_used.first);
  3099. if (mmap_used.second != 0) {
  3100. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3101. }
  3102. }
  3103. }
  3104. if (progress_callback) {
  3105. // Even though the model is done loading, we still honor
  3106. // cancellation since we need to free allocations.
  3107. return progress_callback(1.0f, progress_callback_user_data);
  3108. }
  3109. }
  3110. return true;
  3111. }
  3112. };
  3113. template<>
  3114. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3115. uint32_t tmp;
  3116. const bool found = get_key(kid, tmp, required);
  3117. if (found) {
  3118. result = (enum llama_pooling_type) tmp;
  3119. } else {
  3120. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3121. }
  3122. return found;
  3123. }
  3124. //
  3125. // load LLaMA models
  3126. //
  3127. static const char * llama_model_arch_name(llm_arch arch) {
  3128. auto it = LLM_ARCH_NAMES.find(arch);
  3129. if (it == LLM_ARCH_NAMES.end()) {
  3130. return "unknown";
  3131. }
  3132. return it->second;
  3133. }
  3134. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3135. if (ftype & LLAMA_FTYPE_GUESSED) {
  3136. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3137. }
  3138. switch (ftype) {
  3139. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3140. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3141. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3142. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3143. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3144. return "Q4_1, some F16";
  3145. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3146. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3147. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3148. // K-quants
  3149. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3150. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3151. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3152. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3153. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3154. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3155. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3156. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3157. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3158. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3159. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3160. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3161. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3162. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3163. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3164. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3165. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3166. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3167. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3168. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3169. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3170. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3171. default: return "unknown, may not work";
  3172. }
  3173. }
  3174. static const char * llama_model_type_name(e_model type) {
  3175. switch (type) {
  3176. case MODEL_22M: return "22M";
  3177. case MODEL_33M: return "33M";
  3178. case MODEL_109M: return "109M";
  3179. case MODEL_137M: return "137M";
  3180. case MODEL_0_5B: return "0.5B";
  3181. case MODEL_1B: return "1B";
  3182. case MODEL_2B: return "2B";
  3183. case MODEL_3B: return "3B";
  3184. case MODEL_7B: return "7B";
  3185. case MODEL_8B: return "8B";
  3186. case MODEL_12B: return "12B";
  3187. case MODEL_13B: return "13B";
  3188. case MODEL_14B: return "14B";
  3189. case MODEL_15B: return "15B";
  3190. case MODEL_20B: return "20B";
  3191. case MODEL_30B: return "30B";
  3192. case MODEL_34B: return "34B";
  3193. case MODEL_35B: return "35B";
  3194. case MODEL_40B: return "40B";
  3195. case MODEL_65B: return "65B";
  3196. case MODEL_70B: return "70B";
  3197. case MODEL_314B: return "314B";
  3198. case MODEL_SMALL: return "0.1B";
  3199. case MODEL_MEDIUM: return "0.4B";
  3200. case MODEL_LARGE: return "0.8B";
  3201. case MODEL_XL: return "1.5B";
  3202. case MODEL_A2_7B: return "A2.7B";
  3203. case MODEL_8x7B: return "8x7B";
  3204. case MODEL_8x22B: return "8x22B";
  3205. case MODEL_16x12B: return "16x12B";
  3206. default: return "?B";
  3207. }
  3208. }
  3209. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3210. switch (type) {
  3211. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3212. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3213. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3214. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3215. default: return "unknown";
  3216. }
  3217. }
  3218. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3219. model.arch = ml.get_arch();
  3220. if (model.arch == LLM_ARCH_UNKNOWN) {
  3221. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3222. }
  3223. }
  3224. static void llm_load_hparams(
  3225. llama_model_loader & ml,
  3226. llama_model & model) {
  3227. auto & hparams = model.hparams;
  3228. const gguf_context * ctx = ml.meta;
  3229. // get metadata as string
  3230. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3231. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3232. if (type == GGUF_TYPE_ARRAY) {
  3233. continue;
  3234. }
  3235. const char * name = gguf_get_key(ctx, i);
  3236. const std::string value = gguf_kv_to_str(ctx, i);
  3237. model.gguf_kv.emplace(name, value);
  3238. }
  3239. // get general kv
  3240. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3241. // get hparams kv
  3242. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3243. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3244. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3245. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3246. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3247. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3248. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3249. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3250. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3251. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3252. if (hparams.n_expert > 0) {
  3253. GGML_ASSERT(hparams.n_expert_used > 0);
  3254. } else {
  3255. GGML_ASSERT(hparams.n_expert_used == 0);
  3256. }
  3257. // n_head_kv is optional, default to n_head
  3258. hparams.n_head_kv = hparams.n_head;
  3259. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3260. bool rope_finetuned = false;
  3261. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3262. hparams.rope_finetuned = rope_finetuned;
  3263. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3264. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3265. // rope_freq_base (optional)
  3266. hparams.rope_freq_base_train = 10000.0f;
  3267. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3268. std::string rope_scaling("linear");
  3269. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3270. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3271. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3272. // rope_freq_scale (inverse of the kv) is optional
  3273. float ropescale = 0.0f;
  3274. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3275. // try the old key name
  3276. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3277. }
  3278. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3279. // sanity check for n_rot (optional)
  3280. {
  3281. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3282. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3283. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3284. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3285. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3286. }
  3287. }
  3288. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3289. // gpt-j n_rot = rotary_dim
  3290. }
  3291. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3292. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3293. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3294. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3295. // arch-specific KVs
  3296. switch (model.arch) {
  3297. case LLM_ARCH_LLAMA:
  3298. {
  3299. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3300. if (hparams.n_expert == 8) {
  3301. switch (hparams.n_layer) {
  3302. case 32: model.type = e_model::MODEL_8x7B; break;
  3303. case 56: model.type = e_model::MODEL_8x22B; break;
  3304. default: model.type = e_model::MODEL_UNKNOWN;
  3305. }
  3306. } else {
  3307. switch (hparams.n_layer) {
  3308. case 22: model.type = e_model::MODEL_1B; break;
  3309. case 26: model.type = e_model::MODEL_3B; break;
  3310. case 32: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_7B : e_model::MODEL_8B; break; // LLaMa 8B v3 uses GQA
  3311. case 40: model.type = e_model::MODEL_13B; break;
  3312. case 48: model.type = e_model::MODEL_34B; break;
  3313. case 60: model.type = e_model::MODEL_30B; break;
  3314. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3315. default: model.type = e_model::MODEL_UNKNOWN;
  3316. }
  3317. }
  3318. } break;
  3319. case LLM_ARCH_MINICPM:
  3320. {
  3321. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3322. switch (hparams.n_layer) {
  3323. case 40: model.type = e_model::MODEL_2B; break;
  3324. default: model.type = e_model::MODEL_UNKNOWN;
  3325. }
  3326. } break;
  3327. case LLM_ARCH_GROK:
  3328. {
  3329. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3330. switch (hparams.n_layer) {
  3331. case 64: model.type = e_model::MODEL_314B; break;
  3332. default: model.type = e_model::MODEL_UNKNOWN;
  3333. }
  3334. } break;
  3335. case LLM_ARCH_FALCON:
  3336. {
  3337. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3338. switch (hparams.n_layer) {
  3339. case 32: model.type = e_model::MODEL_7B; break;
  3340. case 60: model.type = e_model::MODEL_40B; break;
  3341. default: model.type = e_model::MODEL_UNKNOWN;
  3342. }
  3343. } break;
  3344. case LLM_ARCH_BAICHUAN:
  3345. {
  3346. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3347. switch (hparams.n_layer) {
  3348. case 32: model.type = e_model::MODEL_7B; break;
  3349. case 40: model.type = e_model::MODEL_13B; break;
  3350. default: model.type = e_model::MODEL_UNKNOWN;
  3351. }
  3352. if (model.type == e_model::MODEL_13B) {
  3353. // TODO: become GGUF KV parameter
  3354. hparams.f_max_alibi_bias = 8.0f;
  3355. }
  3356. } break;
  3357. case LLM_ARCH_STARCODER:
  3358. {
  3359. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3360. switch (hparams.n_layer) {
  3361. case 24: model.type = e_model::MODEL_1B; break;
  3362. case 36: model.type = e_model::MODEL_3B; break;
  3363. case 42: model.type = e_model::MODEL_7B; break;
  3364. case 40: model.type = e_model::MODEL_15B; break;
  3365. default: model.type = e_model::MODEL_UNKNOWN;
  3366. }
  3367. } break;
  3368. case LLM_ARCH_PERSIMMON:
  3369. {
  3370. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3371. switch (hparams.n_layer) {
  3372. case 36: model.type = e_model::MODEL_8B; break;
  3373. default: model.type = e_model::MODEL_UNKNOWN;
  3374. }
  3375. } break;
  3376. case LLM_ARCH_REFACT:
  3377. {
  3378. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3379. switch (hparams.n_layer) {
  3380. case 32: model.type = e_model::MODEL_1B; break;
  3381. default: model.type = e_model::MODEL_UNKNOWN;
  3382. }
  3383. // TODO: become GGUF KV parameter
  3384. hparams.f_max_alibi_bias = 8.0f;
  3385. } break;
  3386. case LLM_ARCH_BERT:
  3387. {
  3388. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3389. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3390. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3391. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3392. switch (hparams.n_layer) {
  3393. case 3:
  3394. model.type = e_model::MODEL_17M; break; // bge-micro
  3395. case 6:
  3396. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3397. case 12:
  3398. switch (hparams.n_embd) {
  3399. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3400. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3401. } break;
  3402. case 24:
  3403. model.type = e_model::MODEL_335M; break; // bge-large
  3404. }
  3405. } break;
  3406. case LLM_ARCH_NOMIC_BERT:
  3407. {
  3408. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3409. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3410. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3411. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3412. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3413. model.type = e_model::MODEL_137M;
  3414. }
  3415. } break;
  3416. case LLM_ARCH_BLOOM:
  3417. {
  3418. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3419. switch (hparams.n_layer) {
  3420. case 24: model.type = e_model::MODEL_1B; break;
  3421. case 30:
  3422. switch (hparams.n_embd) {
  3423. case 2560: model.type = e_model::MODEL_3B; break;
  3424. case 4096: model.type = e_model::MODEL_7B; break;
  3425. } break;
  3426. }
  3427. // TODO: become GGUF KV parameter
  3428. hparams.f_max_alibi_bias = 8.0f;
  3429. } break;
  3430. case LLM_ARCH_MPT:
  3431. {
  3432. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3433. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3434. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3435. switch (hparams.n_layer) {
  3436. case 32: model.type = e_model::MODEL_7B; break;
  3437. case 48: model.type = e_model::MODEL_30B; break;
  3438. default: model.type = e_model::MODEL_UNKNOWN;
  3439. }
  3440. } break;
  3441. case LLM_ARCH_STABLELM:
  3442. {
  3443. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3444. switch (hparams.n_layer) {
  3445. case 24: model.type = e_model::MODEL_1B; break;
  3446. case 32: model.type = e_model::MODEL_3B; break;
  3447. case 40: model.type = e_model::MODEL_12B; break;
  3448. default: model.type = e_model::MODEL_UNKNOWN;
  3449. }
  3450. } break;
  3451. case LLM_ARCH_QWEN:
  3452. {
  3453. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3454. switch (hparams.n_layer) {
  3455. case 32: model.type = e_model::MODEL_7B; break;
  3456. case 40: model.type = e_model::MODEL_13B; break;
  3457. default: model.type = e_model::MODEL_UNKNOWN;
  3458. }
  3459. } break;
  3460. case LLM_ARCH_QWEN2:
  3461. {
  3462. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3463. switch (hparams.n_layer) {
  3464. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3465. case 32: model.type = e_model::MODEL_7B; break;
  3466. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3467. case 80: model.type = e_model::MODEL_70B; break;
  3468. default: model.type = e_model::MODEL_UNKNOWN;
  3469. }
  3470. } break;
  3471. case LLM_ARCH_QWEN2MOE:
  3472. {
  3473. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3474. switch (hparams.n_layer) {
  3475. case 24: model.type = e_model::MODEL_A2_7B; break;
  3476. default: model.type = e_model::MODEL_UNKNOWN;
  3477. }
  3478. } break;
  3479. case LLM_ARCH_PHI2:
  3480. {
  3481. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3482. switch (hparams.n_layer) {
  3483. case 24: model.type = e_model::MODEL_1B; break;
  3484. case 32: model.type = e_model::MODEL_3B; break;
  3485. default: model.type = e_model::MODEL_UNKNOWN;
  3486. }
  3487. } break;
  3488. case LLM_ARCH_PHI3:
  3489. {
  3490. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3491. switch (hparams.n_layer) {
  3492. case 24: model.type = e_model::MODEL_1B; break;
  3493. case 32: model.type = e_model::MODEL_3B; break;
  3494. default: model.type = e_model::MODEL_UNKNOWN;
  3495. }
  3496. } break;
  3497. case LLM_ARCH_PLAMO:
  3498. {
  3499. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3500. switch (hparams.n_layer) {
  3501. case 40: model.type = e_model::MODEL_13B; break;
  3502. default: model.type = e_model::MODEL_UNKNOWN;
  3503. }
  3504. } break;
  3505. case LLM_ARCH_GPT2:
  3506. {
  3507. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3508. switch (hparams.n_layer) {
  3509. case 12: model.type = e_model::MODEL_SMALL; break;
  3510. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3511. case 36: model.type = e_model::MODEL_LARGE; break;
  3512. case 48: model.type = e_model::MODEL_XL; break;
  3513. default: model.type = e_model::MODEL_UNKNOWN;
  3514. }
  3515. } break;
  3516. case LLM_ARCH_CODESHELL:
  3517. {
  3518. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3519. switch (hparams.n_layer) {
  3520. case 42: model.type = e_model::MODEL_SMALL; break;
  3521. default: model.type = e_model::MODEL_UNKNOWN;
  3522. }
  3523. } break;
  3524. case LLM_ARCH_ORION:
  3525. {
  3526. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3527. switch (hparams.n_layer) {
  3528. case 40: model.type = e_model::MODEL_14B; break;
  3529. default: model.type = e_model::MODEL_UNKNOWN;
  3530. }
  3531. } break;
  3532. case LLM_ARCH_INTERNLM2:
  3533. {
  3534. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3535. switch (hparams.n_layer) {
  3536. case 32: model.type = e_model::MODEL_7B; break;
  3537. case 48: model.type = e_model::MODEL_20B; break;
  3538. default: model.type = e_model::MODEL_UNKNOWN;
  3539. }
  3540. } break;
  3541. case LLM_ARCH_GEMMA:
  3542. {
  3543. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3544. switch (hparams.n_layer) {
  3545. case 18: model.type = e_model::MODEL_2B; break;
  3546. case 28: model.type = e_model::MODEL_7B; break;
  3547. default: model.type = e_model::MODEL_UNKNOWN;
  3548. }
  3549. } break;
  3550. case LLM_ARCH_STARCODER2:
  3551. {
  3552. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3553. switch (hparams.n_layer) {
  3554. case 30: model.type = e_model::MODEL_3B; break;
  3555. case 32: model.type = e_model::MODEL_7B; break;
  3556. case 40: model.type = e_model::MODEL_15B; break;
  3557. default: model.type = e_model::MODEL_UNKNOWN;
  3558. }
  3559. } break;
  3560. case LLM_ARCH_MAMBA:
  3561. {
  3562. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3563. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3564. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3565. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3566. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3567. switch (hparams.n_layer) {
  3568. case 24:
  3569. switch (hparams.n_embd) {
  3570. case 768: model.type = e_model::MODEL_SMALL; break;
  3571. default: model.type = e_model::MODEL_UNKNOWN;
  3572. } break;
  3573. case 48:
  3574. switch (hparams.n_embd) {
  3575. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3576. case 1536: model.type = e_model::MODEL_LARGE; break;
  3577. case 2048: model.type = e_model::MODEL_XL; break;
  3578. default: model.type = e_model::MODEL_UNKNOWN;
  3579. } break;
  3580. case 64:
  3581. switch (hparams.n_embd) {
  3582. case 2560: model.type = e_model::MODEL_3B; break;
  3583. default: model.type = e_model::MODEL_UNKNOWN;
  3584. } break;
  3585. default: model.type = e_model::MODEL_UNKNOWN;
  3586. }
  3587. } break;
  3588. case LLM_ARCH_XVERSE:
  3589. {
  3590. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3591. switch (hparams.n_layer) {
  3592. case 32: model.type = e_model::MODEL_7B; break;
  3593. case 40: model.type = e_model::MODEL_13B; break;
  3594. case 80: model.type = e_model::MODEL_65B; break;
  3595. default: model.type = e_model::MODEL_UNKNOWN;
  3596. }
  3597. } break;
  3598. case LLM_ARCH_COMMAND_R:
  3599. {
  3600. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3601. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3602. switch (hparams.n_layer) {
  3603. case 40: model.type = e_model::MODEL_35B; break;
  3604. default: model.type = e_model::MODEL_UNKNOWN;
  3605. }
  3606. } break;
  3607. case LLM_ARCH_DBRX:
  3608. {
  3609. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3610. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3611. switch (hparams.n_layer) {
  3612. case 40: model.type = e_model::MODEL_16x12B; break;
  3613. default: model.type = e_model::MODEL_UNKNOWN;
  3614. }
  3615. } break;
  3616. case LLM_ARCH_OLMO:
  3617. {
  3618. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3619. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3620. switch (hparams.n_layer) {
  3621. case 22: model.type = e_model::MODEL_1B; break;
  3622. case 32: model.type = e_model::MODEL_7B; break;
  3623. case 80: model.type = e_model::MODEL_70B; break;
  3624. default: model.type = e_model::MODEL_UNKNOWN;
  3625. }
  3626. } break;
  3627. default: (void)0;
  3628. }
  3629. model.ftype = ml.ftype;
  3630. if (hparams.f_max_alibi_bias > 0.0f) {
  3631. hparams.need_kq_pos = true;
  3632. }
  3633. hparams.rope_type = llama_rope_type(&model);
  3634. }
  3635. // TODO: This should probably be in llama.h
  3636. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3637. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3638. );
  3639. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3640. static void llm_load_vocab(
  3641. llama_model_loader & ml,
  3642. llama_model & model) {
  3643. auto & vocab = model.vocab;
  3644. struct gguf_context * ctx = ml.meta;
  3645. const auto kv = LLM_KV(model.arch);
  3646. // determine vocab type
  3647. {
  3648. std::string tokenizer_name;
  3649. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3650. if (tokenizer_name == "no_vocab") {
  3651. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3652. // default special tokens
  3653. vocab.special_bos_id = -1;
  3654. vocab.special_eos_id = -1;
  3655. vocab.special_unk_id = -1;
  3656. vocab.special_sep_id = -1;
  3657. vocab.special_pad_id = -1;
  3658. vocab.special_cls_id = -1;
  3659. vocab.special_mask_id = -1;
  3660. vocab.linefeed_id = -1;
  3661. return;
  3662. } else if (tokenizer_name == "llama") {
  3663. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3664. // default special tokens
  3665. vocab.special_bos_id = 1;
  3666. vocab.special_eos_id = 2;
  3667. vocab.special_unk_id = 0;
  3668. vocab.special_sep_id = -1;
  3669. vocab.special_pad_id = -1;
  3670. vocab.special_cls_id = -1;
  3671. vocab.special_mask_id = -1;
  3672. // For Fill-In-the-Middle (FIM)/infill models which where converted
  3673. // prior to support of FIM special tokens in GGUF, the following
  3674. // will allow those models to continue to work. The general names
  3675. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  3676. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  3677. // new versions of these models have been published.
  3678. std::string gen_name;
  3679. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  3680. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  3681. [](unsigned char c){ return std::tolower(c); });
  3682. if (gen_name.find("code") != std::string::npos) {
  3683. if (model.arch == LLM_ARCH_LLAMA) {
  3684. vocab.special_prefix_id = 32007;
  3685. vocab.special_suffix_id = 32008;
  3686. vocab.special_middle_id = 32009;
  3687. vocab.special_eot_id = 32010;
  3688. } else if (model.arch == LLM_ARCH_GEMMA) {
  3689. vocab.special_prefix_id = 67;
  3690. vocab.special_suffix_id = 69;
  3691. vocab.special_middle_id = 68;
  3692. // TODO: this is not EOT, it is "file separator" token, needs fix
  3693. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  3694. //vocab.special_eot_id = 70;
  3695. vocab.special_eot_id = 107;
  3696. }
  3697. }
  3698. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3699. if (add_space_prefix_keyidx != -1) {
  3700. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3701. } // The default value of add_space_prefix is true.
  3702. } else if (tokenizer_name == "gpt2") {
  3703. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3704. // read bpe merges and populate bpe ranks
  3705. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3706. if (merges_keyidx == -1) {
  3707. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3708. }
  3709. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3710. for (int i = 0; i < n_merges; i++) {
  3711. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3712. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3713. std::string first;
  3714. std::string second;
  3715. const size_t pos = word.find(' ', 1);
  3716. if (pos != std::string::npos) {
  3717. first = word.substr(0, pos);
  3718. second = word.substr(pos + 1);
  3719. }
  3720. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3721. }
  3722. // default special tokens
  3723. vocab.special_bos_id = 11;
  3724. vocab.special_eos_id = 11;
  3725. vocab.special_unk_id = -1;
  3726. vocab.special_sep_id = -1;
  3727. vocab.special_pad_id = -1;
  3728. vocab.special_cls_id = -1;
  3729. vocab.special_mask_id = -1;
  3730. } else if (tokenizer_name == "bert") {
  3731. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3732. // default special tokens
  3733. vocab.special_bos_id = -1;
  3734. vocab.special_eos_id = -1;
  3735. vocab.special_unk_id = 100;
  3736. vocab.special_sep_id = 102;
  3737. vocab.special_pad_id = 0;
  3738. vocab.special_cls_id = 101;
  3739. vocab.special_mask_id = 103;
  3740. vocab.add_space_prefix = false;
  3741. } else {
  3742. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3743. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3744. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3745. }
  3746. }
  3747. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3748. if (token_idx == -1) {
  3749. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3750. }
  3751. const float * scores = nullptr;
  3752. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3753. if (score_idx != -1) {
  3754. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3755. }
  3756. const int * toktypes = nullptr;
  3757. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3758. if (toktype_idx != -1) {
  3759. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3760. }
  3761. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3762. vocab.id_to_token.resize(n_vocab);
  3763. for (uint32_t i = 0; i < n_vocab; i++) {
  3764. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3765. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3766. vocab.token_to_id[word] = i;
  3767. auto & token_data = vocab.id_to_token[i];
  3768. token_data.text = std::move(word);
  3769. token_data.score = scores ? scores[i] : 0.0f;
  3770. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3771. }
  3772. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3773. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3774. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3775. try {
  3776. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3777. } catch (const std::exception & e) {
  3778. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3779. vocab.linefeed_id = vocab.special_pad_id;
  3780. }
  3781. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3782. vocab.linefeed_id = vocab.special_pad_id;
  3783. } else {
  3784. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3785. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3786. vocab.linefeed_id = ids[0];
  3787. }
  3788. // special tokens
  3789. {
  3790. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3791. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3792. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3793. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3794. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3795. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3796. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  3797. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  3798. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  3799. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  3800. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  3801. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  3802. };
  3803. for (const auto & it : special_token_types) {
  3804. const std::string & key = kv(std::get<0>(it));
  3805. int32_t & id = std::get<1>(it);
  3806. uint32_t new_id;
  3807. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3808. continue;
  3809. }
  3810. if (new_id >= vocab.id_to_token.size()) {
  3811. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3812. __func__, key.c_str(), new_id, id);
  3813. } else {
  3814. id = new_id;
  3815. }
  3816. }
  3817. // Handle add_bos_token and add_eos_token
  3818. {
  3819. bool temp = true;
  3820. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3821. vocab.special_add_bos = int(temp);
  3822. }
  3823. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3824. vocab.special_add_eos = int(temp);
  3825. }
  3826. }
  3827. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  3828. //
  3829. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  3830. // for now, we apply this workaround to find the EOT token based on its text
  3831. if (vocab.special_eot_id == -1) {
  3832. for (const auto & t : vocab.token_to_id) {
  3833. if (
  3834. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  3835. // need to fix convert script
  3836. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  3837. (t.first == "<|eot_id|>" ||
  3838. t.first == "<|im_end|>" ||
  3839. t.first == "<|end|>" ||
  3840. t.first == "<end_of_turn>"
  3841. )
  3842. ) {
  3843. vocab.special_eot_id = t.second;
  3844. break;
  3845. }
  3846. }
  3847. }
  3848. }
  3849. // build special tokens cache
  3850. {
  3851. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3852. // and will always be correctly labeled in 'added_tokens.json' etc.
  3853. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3854. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3855. // are special tokens.
  3856. // From testing, this appears to correlate 1:1 with special tokens.
  3857. //
  3858. // Counting special tokens and verifying in only one direction
  3859. // is sufficient to detect difference in those two sets.
  3860. //
  3861. uint32_t special_tokens_count_by_type = 0;
  3862. uint32_t special_tokens_count_from_verification = 0;
  3863. bool special_tokens_definition_mismatch = false;
  3864. for (const auto & t : vocab.token_to_id) {
  3865. const auto & token = t.first;
  3866. const auto & id = t.second;
  3867. // Count all non-normal tokens in the vocab while iterating
  3868. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3869. special_tokens_count_by_type++;
  3870. }
  3871. // Skip single character tokens
  3872. if (token.length() > 1) {
  3873. bool is_tokenizable = false;
  3874. // Split token string representation in two, in all possible ways
  3875. // and check if both halves can be matched to a valid token
  3876. for (unsigned i = 1; i < token.length();) {
  3877. const auto left = token.substr(0, i);
  3878. const auto right = token.substr(i);
  3879. // check if we didnt partition in the middle of a utf sequence
  3880. auto utf = utf8_len(left.at(left.length() - 1));
  3881. if (utf == 1) {
  3882. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3883. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3884. is_tokenizable = true;
  3885. break;
  3886. }
  3887. i++;
  3888. } else {
  3889. // skip over the rest of multibyte utf sequence
  3890. i += utf - 1;
  3891. }
  3892. }
  3893. if (!is_tokenizable) {
  3894. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3895. // it's faster to re-filter them here, since there are way less candidates now
  3896. // Calculate a total "utf" length of a token string representation
  3897. size_t utf8_str_len = 0;
  3898. for (unsigned i = 0; i < token.length();) {
  3899. utf8_str_len++;
  3900. i += utf8_len(token.at(i));
  3901. }
  3902. // And skip the ones which are one character
  3903. if (utf8_str_len > 1) {
  3904. // At this point what we have left are special tokens only
  3905. vocab.special_tokens_cache[token] = id;
  3906. // Count manually found special tokens
  3907. special_tokens_count_from_verification++;
  3908. // If this manually found special token is not marked as such, flag a mismatch
  3909. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3910. special_tokens_definition_mismatch = true;
  3911. }
  3912. }
  3913. }
  3914. }
  3915. }
  3916. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3917. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3918. __func__,
  3919. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3920. special_tokens_count_by_type, vocab.id_to_token.size()
  3921. );
  3922. } else {
  3923. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3924. __func__,
  3925. special_tokens_count_from_verification, vocab.id_to_token.size()
  3926. );
  3927. }
  3928. }
  3929. }
  3930. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3931. const auto & hparams = model.hparams;
  3932. const auto & vocab = model.vocab;
  3933. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3934. // hparams
  3935. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3936. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3937. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3938. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3939. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3940. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3941. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3942. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3943. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3944. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3945. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3946. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3947. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3948. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3949. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3950. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3951. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3952. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3953. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3954. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3955. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3956. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3957. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3958. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3959. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3960. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3961. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3962. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3963. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3964. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3965. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3966. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3967. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3968. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3969. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3970. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3971. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3972. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3973. if (ml.n_elements >= 1e12) {
  3974. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3975. } else if (ml.n_elements >= 1e9) {
  3976. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3977. } else if (ml.n_elements >= 1e6) {
  3978. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3979. } else {
  3980. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3981. }
  3982. if (ml.n_bytes < GiB) {
  3983. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3984. } else {
  3985. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3986. }
  3987. // general kv
  3988. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3989. // special tokens
  3990. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3991. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3992. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3993. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3994. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3995. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  3996. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  3997. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3998. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  3999. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4000. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4001. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4002. }
  4003. // Returns false if cancelled by progress_callback
  4004. static bool llm_load_tensors(
  4005. llama_model_loader & ml,
  4006. llama_model & model,
  4007. int n_gpu_layers,
  4008. enum llama_split_mode split_mode,
  4009. int main_gpu,
  4010. const float * tensor_split,
  4011. bool use_mlock,
  4012. llama_progress_callback progress_callback,
  4013. void * progress_callback_user_data) {
  4014. model.t_start_us = ggml_time_us();
  4015. auto & hparams = model.hparams;
  4016. #ifdef GGML_USE_SYCL
  4017. // disable MoE with SYCL until mul_mat_id is updated
  4018. if (hparams.n_expert > 0) {
  4019. n_gpu_layers = 0;
  4020. }
  4021. #endif
  4022. model.split_mode = split_mode;
  4023. model.main_gpu = main_gpu;
  4024. model.n_gpu_layers = n_gpu_layers;
  4025. const int64_t n_layer = hparams.n_layer;
  4026. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4027. bool use_mmap_buffer = true;
  4028. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4029. model.buft_input = llama_default_buffer_type_cpu(true);
  4030. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4031. model.buft_layer.resize(n_layer);
  4032. // assign cpu layers
  4033. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4034. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4035. }
  4036. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4037. // calculate the split points
  4038. int device_count = llama_get_device_count();
  4039. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4040. std::vector<float> splits(device_count);
  4041. if (all_zero) {
  4042. // default split, by free memory
  4043. for (int i = 0; i < device_count; ++i) {
  4044. splits[i] = llama_get_device_memory(i);
  4045. }
  4046. } else {
  4047. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4048. }
  4049. // sum and normalize the splits to get the split points
  4050. float split_sum = 0.0f;
  4051. for (int i = 0; i < device_count; ++i) {
  4052. split_sum += splits[i];
  4053. splits[i] = split_sum;
  4054. }
  4055. for (int i = 0; i < device_count; ++i) {
  4056. splits[i] /= split_sum;
  4057. }
  4058. // assign the repeating layers to the devices according to the splits
  4059. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4060. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4061. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4062. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  4063. }
  4064. // assign the output layer
  4065. if (n_gpu_layers > n_layer) {
  4066. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4067. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  4068. } else {
  4069. model.buft_output = llama_default_buffer_type_cpu(true);
  4070. }
  4071. } else {
  4072. ggml_backend_buffer_type_t split_buft;
  4073. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4074. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  4075. } else {
  4076. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4077. split_buft = llama_default_buffer_type_offload(main_gpu);
  4078. }
  4079. // assign the repeating layers
  4080. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4081. model.buft_layer[i] = {
  4082. split_buft,
  4083. llama_default_buffer_type_offload(main_gpu)
  4084. };
  4085. }
  4086. // assign the output layer
  4087. if (n_gpu_layers > n_layer) {
  4088. model.buft_output = {
  4089. split_buft,
  4090. llama_default_buffer_type_offload(main_gpu)
  4091. };
  4092. } else {
  4093. model.buft_output = llama_default_buffer_type_cpu(true);
  4094. }
  4095. }
  4096. // count used buffer types
  4097. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4098. buft_layer_count[model.buft_input.buft]++;
  4099. buft_layer_count[model.buft_input.buft_matrix]++;
  4100. buft_layer_count[model.buft_output.buft]++;
  4101. buft_layer_count[model.buft_output.buft_matrix]++;
  4102. for (int64_t i = 0; i < n_layer; ++i) {
  4103. buft_layer_count[model.buft_layer[i].buft]++;
  4104. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4105. }
  4106. // create one context per buffer type
  4107. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4108. // for moe merged tensors
  4109. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4110. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4111. for (auto & it : buft_layer_count) {
  4112. struct ggml_init_params params = {
  4113. /*.mem_size =*/ ctx_size,
  4114. /*.mem_buffer =*/ NULL,
  4115. /*.no_alloc =*/ true,
  4116. };
  4117. ggml_context * ctx = ggml_init(params);
  4118. if (!ctx) {
  4119. throw std::runtime_error(format("failed to create context"));
  4120. }
  4121. ctx_map[it.first] = ctx;
  4122. model.ctxs.push_back(ctx);
  4123. }
  4124. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4125. // create tensors for the weights
  4126. {
  4127. const int64_t n_embd = hparams.n_embd;
  4128. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4129. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4130. const int64_t n_embd_gqa = n_embd_v_gqa;
  4131. const int64_t n_vocab = hparams.n_vocab;
  4132. const int64_t n_vocab_type = hparams.n_vocab_type;
  4133. const int64_t n_ff = hparams.n_ff;
  4134. const int64_t n_expert = hparams.n_expert;
  4135. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4136. throw std::runtime_error("model has expert layers but no expert layers are used");
  4137. }
  4138. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  4139. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4140. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4141. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4142. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4143. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4144. model.layers.resize(n_layer);
  4145. const auto tn = LLM_TN(model.arch);
  4146. switch (model.arch) {
  4147. case LLM_ARCH_LLAMA:
  4148. case LLM_ARCH_REFACT:
  4149. case LLM_ARCH_MINICPM:
  4150. {
  4151. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4152. // output
  4153. {
  4154. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4155. if (model.arch != LLM_ARCH_MINICPM){
  4156. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4157. // if output is NULL, init from the input tok embed
  4158. if (model.output == NULL) {
  4159. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4160. ml.n_created--; // artificial tensor
  4161. ml.size_data += ggml_nbytes(model.output);
  4162. }
  4163. }
  4164. }
  4165. for (int i = 0; i < n_layer; ++i) {
  4166. ggml_context * ctx_layer = ctx_for_layer(i);
  4167. ggml_context * ctx_split = ctx_for_layer_split(i);
  4168. auto & layer = model.layers[i];
  4169. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4170. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4171. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4172. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4173. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4174. // optional bias tensors
  4175. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4176. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4177. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4178. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4179. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4180. if (n_expert == 0) {
  4181. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4182. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4183. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4184. } else {
  4185. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4186. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4187. if (layer.ffn_gate_exps) {
  4188. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4189. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4190. } else {
  4191. // merge split expert into a single tensor for compatibility with older models
  4192. // requires disabling mmap
  4193. use_mmap_buffer = false;
  4194. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4195. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4196. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4197. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4198. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4199. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4200. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4201. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4202. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4203. for (uint32_t x = 0; x < n_expert; ++x) {
  4204. // the individual experts are loaded into a view of the merged tensor
  4205. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4206. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4207. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4208. }
  4209. }
  4210. }
  4211. }
  4212. } break;
  4213. case LLM_ARCH_GROK:
  4214. {
  4215. if (n_expert == 0) {
  4216. throw std::runtime_error("Grok model cannot have zero experts");
  4217. }
  4218. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4219. // output
  4220. {
  4221. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4222. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4223. // if output is NULL, init from the input tok embed
  4224. if (model.output == NULL) {
  4225. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4226. ml.n_created--; // artificial tensor
  4227. ml.size_data += ggml_nbytes(model.output);
  4228. }
  4229. }
  4230. for (int i = 0; i < n_layer; ++i) {
  4231. ggml_context * ctx_layer = ctx_for_layer(i);
  4232. ggml_context * ctx_split = ctx_for_layer_split(i);
  4233. auto & layer = model.layers[i];
  4234. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4235. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4236. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4237. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4238. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4239. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4240. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4241. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4242. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  4243. if (layer.ffn_gate_exps) {
  4244. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4245. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4246. } else {
  4247. // merge split expert into a single tensor for compatibility with older models
  4248. // requires disabling mmap
  4249. use_mmap_buffer = false;
  4250. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4251. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4252. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4253. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4254. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4255. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4256. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4257. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4258. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4259. for (uint32_t x = 0; x < n_expert; ++x) {
  4260. // the individual experts are loaded into a view of the merged tensor
  4261. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4262. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4263. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4264. }
  4265. }
  4266. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4267. }
  4268. } break;
  4269. case LLM_ARCH_DBRX:
  4270. {
  4271. if (n_expert == 0) {
  4272. throw std::runtime_error("DBRX model cannot have zero experts");
  4273. }
  4274. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4275. // output
  4276. {
  4277. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4278. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4279. }
  4280. for (int i = 0; i < n_layer; ++i) {
  4281. ggml_context * ctx_layer = ctx_for_layer(i);
  4282. ggml_context * ctx_split = ctx_for_layer_split(i);
  4283. auto & layer = model.layers[i];
  4284. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4285. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4286. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4287. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4288. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4289. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4290. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4291. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4292. }
  4293. } break;
  4294. case LLM_ARCH_BAICHUAN:
  4295. {
  4296. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4297. {
  4298. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4299. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4300. }
  4301. for (int i = 0; i < n_layer; ++i) {
  4302. ggml_context * ctx_layer = ctx_for_layer(i);
  4303. ggml_context * ctx_split = ctx_for_layer_split(i);
  4304. auto & layer = model.layers[i];
  4305. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4306. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4307. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4308. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4309. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4310. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4311. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4312. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4313. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4314. }
  4315. } break;
  4316. case LLM_ARCH_FALCON:
  4317. {
  4318. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4319. // output
  4320. {
  4321. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4322. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4323. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4324. if (!model.output) {
  4325. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4326. ml.n_created--; // artificial tensor
  4327. ml.size_data += ggml_nbytes(model.output);
  4328. }
  4329. }
  4330. for (int i = 0; i < n_layer; ++i) {
  4331. ggml_context * ctx_layer = ctx_for_layer(i);
  4332. ggml_context * ctx_split = ctx_for_layer_split(i);
  4333. auto & layer = model.layers[i];
  4334. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4335. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4336. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4337. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4338. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4339. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4340. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4341. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4342. }
  4343. } break;
  4344. case LLM_ARCH_STARCODER:
  4345. {
  4346. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4347. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4348. // output
  4349. {
  4350. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4351. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4352. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4353. }
  4354. for (int i = 0; i < n_layer; ++i) {
  4355. ggml_context * ctx_layer = ctx_for_layer(i);
  4356. ggml_context * ctx_split = ctx_for_layer_split(i);
  4357. auto & layer = model.layers[i];
  4358. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4359. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4360. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4361. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4362. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4363. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4364. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4365. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4366. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4367. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4368. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4369. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4370. }
  4371. } break;
  4372. case LLM_ARCH_PERSIMMON:
  4373. {
  4374. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4375. {
  4376. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4377. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4378. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4379. }
  4380. for (int i = 0; i < n_layer; ++i) {
  4381. ggml_context * ctx_layer = ctx_for_layer(i);
  4382. ggml_context * ctx_split = ctx_for_layer_split(i);
  4383. auto & layer = model.layers[i];
  4384. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4385. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4386. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4387. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4388. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4389. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4390. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4391. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4392. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4393. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4394. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4395. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4396. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4397. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4398. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4399. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4400. }
  4401. } break;
  4402. case LLM_ARCH_BERT:
  4403. case LLM_ARCH_NOMIC_BERT:
  4404. {
  4405. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4406. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4407. if (model.arch == LLM_ARCH_BERT) {
  4408. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4409. }
  4410. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4411. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4412. for (int i = 0; i < n_layer; ++i) {
  4413. ggml_context * ctx_layer = ctx_for_layer(i);
  4414. ggml_context * ctx_split = ctx_for_layer_split(i);
  4415. auto & layer = model.layers[i];
  4416. if (model.arch == LLM_ARCH_BERT) {
  4417. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4418. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4419. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4420. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4421. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4422. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4423. } else {
  4424. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4425. }
  4426. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4427. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4428. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4429. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4430. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4431. if (model.arch == LLM_ARCH_BERT) {
  4432. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4433. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4434. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4435. } else {
  4436. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4437. }
  4438. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4439. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4440. }
  4441. } break;
  4442. case LLM_ARCH_BLOOM:
  4443. {
  4444. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4445. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4446. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4447. // output
  4448. {
  4449. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4450. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4451. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4452. }
  4453. for (int i = 0; i < n_layer; ++i) {
  4454. ggml_context * ctx_layer = ctx_for_layer(i);
  4455. ggml_context * ctx_split = ctx_for_layer_split(i);
  4456. auto & layer = model.layers[i];
  4457. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4458. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4459. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4460. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4461. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4462. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4463. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4464. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4465. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4466. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4467. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4468. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4469. }
  4470. } break;
  4471. case LLM_ARCH_MPT:
  4472. {
  4473. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4474. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false);
  4475. // output
  4476. {
  4477. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4478. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4479. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4480. if (!model.output) {
  4481. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4482. ml.n_created--; // artificial tensor
  4483. ml.size_data += ggml_nbytes(model.output);
  4484. }
  4485. }
  4486. for (int i = 0; i < n_layer; ++i) {
  4487. ggml_context * ctx_layer = ctx_for_layer(i);
  4488. ggml_context * ctx_split = ctx_for_layer_split(i);
  4489. auto & layer = model.layers[i];
  4490. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4491. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4492. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4493. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4494. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4495. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4496. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4497. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4498. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4499. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4500. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4501. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4502. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false);
  4503. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false);
  4504. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false);
  4505. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false);
  4506. // AWQ ScaleActivation layer
  4507. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4508. }
  4509. } break;
  4510. case LLM_ARCH_STABLELM:
  4511. {
  4512. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4513. // output
  4514. {
  4515. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4516. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4517. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4518. }
  4519. for (int i = 0; i < n_layer; ++i) {
  4520. ggml_context * ctx_layer = ctx_for_layer(i);
  4521. ggml_context * ctx_split = ctx_for_layer_split(i);
  4522. auto & layer = model.layers[i];
  4523. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4524. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4525. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4526. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4527. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4528. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4529. // optional bias tensors, present in Stable LM 2 1.6B
  4530. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4531. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4532. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4533. // optional q and k layernorms, present in StableLM 2 12B
  4534. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false);
  4535. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false);
  4536. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4537. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false);
  4538. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4539. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4540. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4541. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4542. }
  4543. } break;
  4544. case LLM_ARCH_QWEN:
  4545. {
  4546. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4547. // output
  4548. {
  4549. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4550. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4551. }
  4552. for (int i = 0; i < n_layer; ++i) {
  4553. ggml_context * ctx_layer = ctx_for_layer(i);
  4554. ggml_context * ctx_split = ctx_for_layer_split(i);
  4555. auto & layer = model.layers[i];
  4556. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4557. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4558. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4559. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4560. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4561. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4562. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4563. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4564. }
  4565. } break;
  4566. case LLM_ARCH_QWEN2:
  4567. {
  4568. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4569. // output
  4570. {
  4571. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4572. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4573. // if output is NULL, init from the input tok embed
  4574. if (model.output == NULL) {
  4575. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4576. ml.n_created--; // artificial tensor
  4577. ml.size_data += ggml_nbytes(model.output);
  4578. }
  4579. }
  4580. for (int i = 0; i < n_layer; ++i) {
  4581. ggml_context * ctx_layer = ctx_for_layer(i);
  4582. ggml_context * ctx_split = ctx_for_layer_split(i);
  4583. auto & layer = model.layers[i];
  4584. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4585. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4586. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4587. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4588. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4589. // optional bias tensors
  4590. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4591. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4592. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4593. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4594. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4595. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4596. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4597. }
  4598. } break;
  4599. case LLM_ARCH_QWEN2MOE:
  4600. {
  4601. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4602. // output
  4603. {
  4604. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4605. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4606. }
  4607. for (int i = 0; i < n_layer; ++i) {
  4608. ggml_context * ctx_layer = ctx_for_layer(i);
  4609. ggml_context * ctx_split = ctx_for_layer_split(i);
  4610. auto & layer = model.layers[i];
  4611. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4612. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4613. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4614. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4615. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4616. // optional bias tensors
  4617. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4618. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4619. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4620. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4621. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4622. GGML_ASSERT(hparams.n_expert > 0);
  4623. GGML_ASSERT(hparams.n_expert_used > 0);
  4624. // MoE branch
  4625. auto n_ff_exp = n_ff / hparams.n_expert_used;
  4626. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4627. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  4628. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  4629. // Shared expert branch
  4630. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  4631. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  4632. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  4633. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  4634. }
  4635. } break;
  4636. case LLM_ARCH_PHI2:
  4637. {
  4638. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4639. // output
  4640. {
  4641. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4642. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4643. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4644. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4645. }
  4646. for (int i = 0; i < n_layer; ++i) {
  4647. ggml_context * ctx_layer = ctx_for_layer(i);
  4648. ggml_context * ctx_split = ctx_for_layer_split(i);
  4649. auto & layer = model.layers[i];
  4650. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4651. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4652. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4653. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4654. if (layer.wqkv == nullptr) {
  4655. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4656. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4657. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4658. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4659. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4660. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4661. }
  4662. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4663. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4664. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4665. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4666. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4667. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4668. }
  4669. } break;
  4670. case LLM_ARCH_PHI3:
  4671. {
  4672. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  4673. // output
  4674. {
  4675. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  4676. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  4677. }
  4678. for (int i = 0; i < n_layer; ++i) {
  4679. ggml_context* ctx_layer = ctx_for_layer(i);
  4680. ggml_context* ctx_split = ctx_for_layer_split(i);
  4681. auto& layer = model.layers[i];
  4682. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  4683. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, false);
  4684. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  4685. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  4686. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  4687. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  4688. }
  4689. } break;
  4690. case LLM_ARCH_PLAMO:
  4691. {
  4692. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4693. // output
  4694. {
  4695. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4696. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4697. }
  4698. for (int i = 0; i < n_layer; ++i) {
  4699. ggml_context * ctx_layer = ctx_for_layer(i);
  4700. ggml_context * ctx_split = ctx_for_layer_split(i);
  4701. auto & layer = model.layers[i];
  4702. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4703. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4704. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4705. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4706. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4707. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4708. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4709. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4710. }
  4711. } break;
  4712. case LLM_ARCH_GPT2:
  4713. {
  4714. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4715. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4716. // output
  4717. {
  4718. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4719. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4720. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4721. }
  4722. for (int i = 0; i < n_layer; ++i) {
  4723. ggml_context * ctx_layer = ctx_for_layer(i);
  4724. ggml_context * ctx_split = ctx_for_layer_split(i);
  4725. auto & layer = model.layers[i];
  4726. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4727. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4728. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4729. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4730. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4731. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4732. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4733. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4734. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4735. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4736. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4737. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4738. }
  4739. } break;
  4740. case LLM_ARCH_CODESHELL:
  4741. {
  4742. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4743. // output
  4744. {
  4745. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4746. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4747. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4748. }
  4749. for (int i = 0; i < n_layer; ++i) {
  4750. ggml_context * ctx_layer = ctx_for_layer(i);
  4751. ggml_context * ctx_split = ctx_for_layer_split(i);
  4752. auto & layer = model.layers[i];
  4753. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4754. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4755. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4756. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4757. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4758. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4759. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4760. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4761. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4762. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4763. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4764. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4765. }
  4766. } break;
  4767. case LLM_ARCH_ORION:
  4768. {
  4769. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4770. {
  4771. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4772. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4773. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4774. }
  4775. for (int i = 0; i < n_layer; ++i) {
  4776. ggml_context * ctx_layer = ctx_for_layer(i);
  4777. ggml_context * ctx_split = ctx_for_layer_split(i);
  4778. auto & layer = model.layers[i];
  4779. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4780. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4781. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4782. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4783. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4784. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4785. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4786. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4787. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4788. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4789. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4790. }
  4791. } break;
  4792. case LLM_ARCH_INTERNLM2:
  4793. {
  4794. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4795. // output
  4796. {
  4797. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4798. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4799. }
  4800. for (int i = 0; i < n_layer; ++i) {
  4801. ggml_context * ctx_layer = ctx_for_layer(i);
  4802. ggml_context * ctx_split = ctx_for_layer_split(i);
  4803. auto & layer = model.layers[i];
  4804. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4805. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4806. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4807. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4808. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4809. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4810. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4811. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4812. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4813. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4814. }
  4815. } break;
  4816. case LLM_ARCH_GEMMA:
  4817. {
  4818. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4819. // output
  4820. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4821. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4822. ml.n_created--; // artificial tensor
  4823. ml.size_data += ggml_nbytes(model.output);
  4824. const int64_t n_ff = hparams.n_ff;
  4825. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4826. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4827. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4828. for (uint32_t i = 0; i < n_layer; ++i) {
  4829. ggml_context * ctx_layer = ctx_for_layer(i);
  4830. ggml_context * ctx_split = ctx_for_layer_split(i);
  4831. auto & layer = model.layers[i];
  4832. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4833. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4834. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4835. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4836. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4837. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4838. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4839. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4840. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4841. }
  4842. } break;
  4843. case LLM_ARCH_STARCODER2:
  4844. {
  4845. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4846. // output
  4847. {
  4848. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4849. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4850. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4851. // if output is NULL, init from the input tok embed
  4852. if (model.output == NULL) {
  4853. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4854. ml.n_created--; // artificial tensor
  4855. ml.size_data += ggml_nbytes(model.output);
  4856. }
  4857. }
  4858. for (int i = 0; i < n_layer; ++i) {
  4859. ggml_context * ctx_layer = ctx_for_layer(i);
  4860. ggml_context * ctx_split = ctx_for_layer_split(i);
  4861. auto & layer = model.layers[i];
  4862. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4863. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4864. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4865. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4866. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4867. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4868. // optional bias tensors
  4869. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4870. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4871. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4872. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4873. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4874. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4875. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4876. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4877. // optional bias tensors
  4878. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4879. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4880. }
  4881. } break;
  4882. case LLM_ARCH_MAMBA:
  4883. {
  4884. const int64_t d_conv = hparams.ssm_d_conv;
  4885. const int64_t d_inner = hparams.ssm_d_inner;
  4886. const int64_t d_state = hparams.ssm_d_state;
  4887. const int64_t dt_rank = hparams.ssm_dt_rank;
  4888. // only an expansion factor of 2 is supported for now
  4889. GGML_ASSERT(2 * n_embd == d_inner);
  4890. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4891. // output
  4892. {
  4893. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4894. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4895. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4896. if (model.output == NULL) {
  4897. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4898. ml.n_created--; // artificial tensor
  4899. ml.size_data += ggml_nbytes(model.output);
  4900. }
  4901. }
  4902. for (int i = 0; i < n_layer; ++i) {
  4903. ggml_context * ctx_layer = ctx_for_layer(i);
  4904. ggml_context * ctx_split = ctx_for_layer_split(i);
  4905. auto & layer = model.layers[i];
  4906. // norm
  4907. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4908. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4909. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4910. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4911. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4912. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4913. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4914. // no "weight" suffix for these
  4915. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4916. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4917. // out_proj
  4918. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4919. }
  4920. } break;
  4921. case LLM_ARCH_XVERSE:
  4922. {
  4923. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4924. {
  4925. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4926. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4927. }
  4928. for (int i = 0; i < n_layer; ++i) {
  4929. ggml_context * ctx_layer = ctx_for_layer(i);
  4930. ggml_context * ctx_split = ctx_for_layer_split(i);
  4931. auto & layer = model.layers[i];
  4932. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4933. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4934. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4935. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4936. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4937. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4938. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4939. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4940. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4941. }
  4942. } break;
  4943. case LLM_ARCH_COMMAND_R:
  4944. {
  4945. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4946. // output
  4947. {
  4948. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4949. // init output from the input tok embed
  4950. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4951. ml.n_created--; // artificial tensor
  4952. ml.size_data += ggml_nbytes(model.output);
  4953. }
  4954. for (int i = 0; i < n_layer; ++i) {
  4955. ggml_context * ctx_layer = ctx_for_layer(i);
  4956. ggml_context * ctx_split = ctx_for_layer_split(i);
  4957. auto & layer = model.layers[i];
  4958. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4959. if (n_layer >= 64){
  4960. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  4961. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  4962. }
  4963. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4964. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4965. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4966. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4967. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4968. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4969. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4970. }
  4971. } break;
  4972. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  4973. {
  4974. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4975. // output
  4976. {
  4977. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4978. // if output is NULL, init from the input tok embed
  4979. if (model.output == NULL) {
  4980. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4981. ml.n_created--; // artificial tensor
  4982. ml.size_data += ggml_nbytes(model.output);
  4983. }
  4984. }
  4985. for (int i = 0; i < n_layer; ++i) {
  4986. ggml_context * ctx_split = ctx_for_layer_split(i);
  4987. auto & layer = model.layers[i];
  4988. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4989. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4990. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4991. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4992. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4993. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4994. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4995. }
  4996. } break;
  4997. default:
  4998. throw std::runtime_error("unknown architecture");
  4999. }
  5000. }
  5001. ml.done_getting_tensors();
  5002. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5003. model.mappings.reserve(ml.mappings.size());
  5004. // create the backend buffers
  5005. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5006. ctx_bufs.reserve(ctx_map.size());
  5007. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5008. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5009. model.bufs.reserve(n_max_backend_buffer);
  5010. for (auto & it : ctx_map) {
  5011. ggml_backend_buffer_type_t buft = it.first;
  5012. ggml_context * ctx = it.second;
  5013. llama_buf_map bufs;
  5014. bufs.reserve(n_max_backend_buffer);
  5015. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5016. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5017. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5018. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5019. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5020. void * addr = nullptr;
  5021. size_t first, last;
  5022. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5023. if (first >= last) {
  5024. continue;
  5025. }
  5026. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5027. if (buf == nullptr) {
  5028. throw std::runtime_error("unable to allocate backend CPU buffer");
  5029. }
  5030. model.bufs.push_back(buf);
  5031. bufs.emplace(idx, buf);
  5032. #ifdef GGML_USE_CUDA
  5033. if (n_layer >= n_gpu_layers) {
  5034. ggml_backend_cuda_register_host_buffer(
  5035. ggml_backend_buffer_get_base(buf),
  5036. ggml_backend_buffer_get_size(buf));
  5037. }
  5038. #endif
  5039. }
  5040. }
  5041. #ifdef GGML_USE_METAL
  5042. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5043. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5044. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5045. void * addr = nullptr;
  5046. size_t first, last;
  5047. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5048. if (first >= last) {
  5049. continue;
  5050. }
  5051. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5052. if (buf == nullptr) {
  5053. throw std::runtime_error("unable to allocate backend metal buffer");
  5054. }
  5055. model.bufs.push_back(buf);
  5056. bufs.emplace(idx, buf);
  5057. }
  5058. }
  5059. #endif
  5060. else {
  5061. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5062. if (buf == nullptr) {
  5063. throw std::runtime_error("unable to allocate backend buffer");
  5064. }
  5065. model.bufs.push_back(buf);
  5066. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5067. model.mlock_bufs.emplace_back(new llama_mlock);
  5068. auto & mlock_buf = model.mlock_bufs.back();
  5069. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5070. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5071. }
  5072. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5073. bufs.emplace(idx, buf);
  5074. }
  5075. }
  5076. if (bufs.empty()) {
  5077. throw std::runtime_error("failed to allocate buffer");
  5078. }
  5079. for (auto & buf : bufs) {
  5080. // indicate that this buffer contains weights
  5081. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5082. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5083. }
  5084. ctx_bufs.emplace_back(ctx, bufs);
  5085. }
  5086. if (llama_supports_gpu_offload()) {
  5087. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5088. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5089. if (n_gpu_layers > (int) hparams.n_layer) {
  5090. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5091. }
  5092. const int max_backend_supported_layers = hparams.n_layer + 1;
  5093. const int max_offloadable_layers = hparams.n_layer + 1;
  5094. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5095. }
  5096. // print memory requirements
  5097. for (ggml_backend_buffer_t buf : model.bufs) {
  5098. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5099. }
  5100. // populate tensors_by_name
  5101. for (ggml_context * ctx : model.ctxs) {
  5102. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5103. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5104. }
  5105. }
  5106. // load tensor data
  5107. for (auto & it : ctx_bufs) {
  5108. ggml_context * ctx = it.first;
  5109. auto & bufs = it.second;
  5110. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5111. return false;
  5112. }
  5113. }
  5114. if (use_mmap_buffer) {
  5115. for (auto & mapping : ml.mappings) {
  5116. model.mappings.emplace_back(std::move(mapping));
  5117. }
  5118. }
  5119. // loading time will be recalculate after the first eval, so
  5120. // we take page faults deferred by mmap() into consideration
  5121. model.t_load_us = ggml_time_us() - model.t_start_us;
  5122. return true;
  5123. }
  5124. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5125. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5126. try {
  5127. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  5128. model.hparams.vocab_only = params.vocab_only;
  5129. try {
  5130. llm_load_arch(ml, model);
  5131. } catch(const std::exception & e) {
  5132. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5133. }
  5134. try {
  5135. llm_load_hparams(ml, model);
  5136. } catch(const std::exception & e) {
  5137. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5138. }
  5139. try {
  5140. llm_load_vocab(ml, model);
  5141. } catch(const std::exception & e) {
  5142. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5143. }
  5144. llm_load_print_meta(ml, model);
  5145. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5146. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5147. throw std::runtime_error("vocab size mismatch");
  5148. }
  5149. if (params.vocab_only) {
  5150. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5151. return 0;
  5152. }
  5153. #ifdef GGML_USE_KOMPUTE
  5154. if (params.n_gpu_layers > 0 && (
  5155. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5156. || !(
  5157. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5158. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5159. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5160. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5161. )
  5162. )) {
  5163. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5164. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5165. params.n_gpu_layers = 0;
  5166. }
  5167. #endif
  5168. #ifdef GGML_USE_SYCL
  5169. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5170. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5171. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5172. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5173. } else {
  5174. ggml_backend_sycl_set_mul_device_mode();
  5175. }
  5176. #endif
  5177. if (!llm_load_tensors(
  5178. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5179. params.progress_callback, params.progress_callback_user_data
  5180. )) {
  5181. return -2;
  5182. }
  5183. } catch (const std::exception & err) {
  5184. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5185. return -1;
  5186. }
  5187. return 0;
  5188. }
  5189. //
  5190. // llm_build
  5191. //
  5192. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5193. enum llm_ffn_op_type {
  5194. LLM_FFN_SILU,
  5195. LLM_FFN_GELU,
  5196. LLM_FFN_RELU,
  5197. LLM_FFN_RELU_SQR,
  5198. };
  5199. enum llm_ffn_gate_type {
  5200. LLM_FFN_SEQ,
  5201. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5202. };
  5203. enum llm_norm_type {
  5204. LLM_NORM,
  5205. LLM_NORM_RMS,
  5206. };
  5207. static struct ggml_tensor * llm_build_inp_embd(
  5208. struct ggml_context * ctx,
  5209. struct llama_context & lctx,
  5210. const llama_hparams & hparams,
  5211. const llama_batch & batch,
  5212. struct ggml_tensor * tok_embd,
  5213. const llm_build_cb & cb) {
  5214. const int64_t n_embd = hparams.n_embd;
  5215. struct ggml_tensor * inpL;
  5216. if (batch.token) {
  5217. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5218. cb(lctx.inp_tokens, "inp_tokens", -1);
  5219. ggml_set_input(lctx.inp_tokens);
  5220. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5221. } else {
  5222. #ifdef GGML_USE_MPI
  5223. GGML_ASSERT(false && "not implemented");
  5224. #endif
  5225. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5226. inpL = lctx.inp_embd;
  5227. ggml_set_input(lctx.inp_embd);
  5228. }
  5229. cb(inpL, "inp_embd", -1);
  5230. return inpL;
  5231. }
  5232. static void llm_build_kv_store(
  5233. struct ggml_context * ctx,
  5234. const llama_hparams & hparams,
  5235. const llama_kv_cache & kv,
  5236. struct ggml_cgraph * graph,
  5237. struct ggml_tensor * k_cur,
  5238. struct ggml_tensor * v_cur,
  5239. int64_t n_ctx,
  5240. int32_t n_tokens,
  5241. int32_t kv_head,
  5242. const llm_build_cb & cb,
  5243. int64_t il) {
  5244. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5245. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5246. GGML_ASSERT(kv.size == n_ctx);
  5247. // compute the transposed [n_tokens, n_embd] V matrix
  5248. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5249. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  5250. cb(v_cur_t, "v_cur_t", il);
  5251. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5252. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5253. cb(k_cache_view, "k_cache_view", il);
  5254. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5255. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5256. (kv_head)*ggml_element_size(kv.v_l[il]));
  5257. cb(v_cache_view, "v_cache_view", il);
  5258. // important: storing RoPE-ed version of K in the KV cache!
  5259. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5260. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  5261. }
  5262. static struct ggml_tensor * llm_build_norm(
  5263. struct ggml_context * ctx,
  5264. struct ggml_tensor * cur,
  5265. const llama_hparams & hparams,
  5266. struct ggml_tensor * mw,
  5267. struct ggml_tensor * mb,
  5268. llm_norm_type type,
  5269. const llm_build_cb & cb,
  5270. int il) {
  5271. switch (type) {
  5272. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5273. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5274. }
  5275. if (mw || mb) {
  5276. cb(cur, "norm", il);
  5277. }
  5278. if (mw) {
  5279. cur = ggml_mul(ctx, cur, mw);
  5280. if (mb) {
  5281. cb(cur, "norm_w", il);
  5282. }
  5283. }
  5284. if (mb) {
  5285. cur = ggml_add(ctx, cur, mb);
  5286. }
  5287. return cur;
  5288. }
  5289. static struct ggml_tensor * llm_build_ffn(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * cur,
  5292. struct ggml_tensor * up,
  5293. struct ggml_tensor * up_b,
  5294. struct ggml_tensor * gate,
  5295. struct ggml_tensor * gate_b,
  5296. struct ggml_tensor * down,
  5297. struct ggml_tensor * down_b,
  5298. struct ggml_tensor * act_scales,
  5299. llm_ffn_op_type type_op,
  5300. llm_ffn_gate_type type_gate,
  5301. const llm_build_cb & cb,
  5302. int il) {
  5303. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  5304. cb(tmp, "ffn_up", il);
  5305. if (up_b) {
  5306. tmp = ggml_add(ctx, tmp, up_b);
  5307. cb(tmp, "ffn_up_b", il);
  5308. }
  5309. if (gate) {
  5310. switch (type_gate) {
  5311. case LLM_FFN_SEQ:
  5312. {
  5313. cur = ggml_mul_mat(ctx, gate, tmp);
  5314. cb(cur, "ffn_gate", il);
  5315. } break;
  5316. case LLM_FFN_PAR:
  5317. {
  5318. cur = ggml_mul_mat(ctx, gate, cur);
  5319. cb(cur, "ffn_gate", il);
  5320. } break;
  5321. }
  5322. if (gate_b) {
  5323. cur = ggml_add(ctx, cur, gate_b);
  5324. cb(cur, "ffn_gate_b", il);
  5325. }
  5326. } else {
  5327. cur = tmp;
  5328. }
  5329. switch (type_op) {
  5330. case LLM_FFN_SILU:
  5331. {
  5332. cur = ggml_silu(ctx, cur);
  5333. cb(cur, "ffn_silu", il);
  5334. } break;
  5335. case LLM_FFN_GELU:
  5336. {
  5337. cur = ggml_gelu(ctx, cur);
  5338. cb(cur, "ffn_gelu", il);
  5339. if (act_scales != NULL) {
  5340. cur = ggml_div(ctx, cur, act_scales);
  5341. cb(cur, "ffn_act", il);
  5342. }
  5343. } break;
  5344. case LLM_FFN_RELU:
  5345. {
  5346. cur = ggml_relu(ctx, cur);
  5347. cb(cur, "ffn_relu", il);
  5348. } break;
  5349. case LLM_FFN_RELU_SQR:
  5350. {
  5351. cur = ggml_relu(ctx, cur);
  5352. cb(cur, "ffn_relu", il);
  5353. cur = ggml_sqr(ctx, cur);
  5354. cb(cur, "ffn_sqr(relu)", il);
  5355. } break;
  5356. }
  5357. if (type_gate == LLM_FFN_PAR) {
  5358. cur = ggml_mul(ctx, cur, tmp);
  5359. cb(cur, "ffn_gate_par", il);
  5360. }
  5361. cur = ggml_mul_mat(ctx, down, cur);
  5362. if (down_b) {
  5363. cb(cur, "ffn_down", il);
  5364. }
  5365. if (down_b) {
  5366. cur = ggml_add(ctx, cur, down_b);
  5367. }
  5368. return cur;
  5369. }
  5370. static struct ggml_tensor * llm_build_moe_ffn(
  5371. struct ggml_context * ctx,
  5372. struct ggml_tensor * cur,
  5373. struct ggml_tensor * gate_inp,
  5374. struct ggml_tensor * up_exps,
  5375. struct ggml_tensor * gate_exps,
  5376. struct ggml_tensor * down_exps,
  5377. int64_t n_expert,
  5378. int64_t n_expert_used,
  5379. llm_ffn_op_type type_op,
  5380. bool norm_w,
  5381. const llm_build_cb & cb,
  5382. int il) {
  5383. int64_t n_embd = cur->ne[0];
  5384. int64_t n_tokens = cur->ne[1];
  5385. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5386. cb(logits, "ffn_moe_logits", il);
  5387. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5388. cb(probs, "ffn_moe_probs", il);
  5389. // select experts
  5390. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5391. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5392. cb(selected_experts, "ffn_moe_topk", il);
  5393. ggml_tensor * weights = ggml_get_rows(ctx,
  5394. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5395. cb(weights, "ffn_moe_weights", il);
  5396. if (norm_w) {
  5397. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5398. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5399. cb(weights_sum, "ffn_moe_weights_sum", il);
  5400. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5401. cb(weights, "ffn_moe_weights_norm", il);
  5402. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5403. }
  5404. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5405. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5406. cb(up, "ffn_moe_up", il);
  5407. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5408. cb(gate, "ffn_moe_gate", il);
  5409. switch (type_op) {
  5410. case LLM_FFN_SILU:
  5411. {
  5412. gate = ggml_silu(ctx, gate);
  5413. cb(gate, "ffn_moe_silu", il);
  5414. } break;
  5415. case LLM_FFN_GELU:
  5416. {
  5417. gate = ggml_gelu(ctx, gate);
  5418. cb(gate, "ffn_moe_gelu", il);
  5419. } break;
  5420. default:
  5421. GGML_ASSERT(false);
  5422. }
  5423. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5424. cb(par, "ffn_moe_gate_par", il);
  5425. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5426. cb(experts, "ffn_moe_down", il);
  5427. experts = ggml_mul(ctx, experts, weights);
  5428. // aggregate experts
  5429. ggml_tensor * moe_out = nullptr;
  5430. for (int i = 0; i < n_expert_used; ++i) {
  5431. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5432. experts->nb[2], i*experts->nb[1]);
  5433. if (i == 0) {
  5434. moe_out = cur_expert;
  5435. } else {
  5436. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5437. }
  5438. }
  5439. if (n_expert_used == 1) {
  5440. // avoid returning a non-contiguous tensor
  5441. moe_out = ggml_cont(ctx, moe_out);
  5442. }
  5443. return moe_out;
  5444. }
  5445. // if max_alibi_bias > 0 then apply ALiBi
  5446. static struct ggml_tensor * llm_build_kqv(
  5447. struct ggml_context * ctx,
  5448. const llama_model & model,
  5449. const llama_hparams & hparams,
  5450. const llama_kv_cache & kv,
  5451. struct ggml_cgraph * graph,
  5452. struct ggml_tensor * wo,
  5453. struct ggml_tensor * wo_b,
  5454. struct ggml_tensor * q_cur,
  5455. struct ggml_tensor * kq_mask,
  5456. struct ggml_tensor * kq_pos,
  5457. int64_t n_ctx,
  5458. int32_t n_tokens,
  5459. int32_t n_kv,
  5460. float kq_scale,
  5461. const llm_build_cb & cb,
  5462. int il) {
  5463. const int64_t n_head = hparams.n_head;
  5464. const int64_t n_head_kv = hparams.n_head_kv;
  5465. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5466. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5467. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5468. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5469. cb(q, "q", il);
  5470. struct ggml_tensor * k =
  5471. ggml_view_3d(ctx, kv.k_l[il],
  5472. n_embd_head_k, n_kv, n_head_kv,
  5473. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5474. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5475. 0);
  5476. cb(k, "k", il);
  5477. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5478. cb(kq, "kq", il);
  5479. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3) {
  5480. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5481. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5482. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5483. }
  5484. if (model.arch == LLM_ARCH_GROK) {
  5485. // need to do the following:
  5486. // multiply by attn_output_multiplyer of 0.08838834764831845
  5487. // and then :
  5488. // kq = 30 * tanh(kq / 30)
  5489. // before the softmax below
  5490. //try from phi2
  5491. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5492. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5493. kq = ggml_scale(ctx, kq, 30);
  5494. }
  5495. #if defined(GGML_USE_KOMPUTE)
  5496. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5497. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5498. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5499. if (hparams.f_max_alibi_bias > 0.0f) {
  5500. kq = ggml_scale(ctx, kq, kq_scale);
  5501. cb(kq, "kq_scaled", il);
  5502. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5503. cb(kq, "kq_scaled_alibi", il);
  5504. kq = ggml_add(ctx, kq, kq_mask);
  5505. cb(kq, "kq_masked", il);
  5506. kq = ggml_soft_max(ctx, kq);
  5507. cb(kq, "kq_soft_max", il);
  5508. } else
  5509. #endif
  5510. {
  5511. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5512. cb(kq, "kq_soft_max_ext", il);
  5513. }
  5514. GGML_ASSERT(kv.size == n_ctx);
  5515. // split cached v into n_head heads
  5516. struct ggml_tensor * v =
  5517. ggml_view_3d(ctx, kv.v_l[il],
  5518. n_kv, n_embd_head_v, n_head_kv,
  5519. ggml_element_size(kv.v_l[il])*n_ctx,
  5520. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5521. 0);
  5522. cb(v, "v", il);
  5523. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5524. cb(kqv, "kqv", il);
  5525. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5526. cb(kqv_merged, "kqv_merged", il);
  5527. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5528. cb(cur, "kqv_merged_cont", il);
  5529. ggml_build_forward_expand(graph, cur);
  5530. cur = ggml_mul_mat(ctx, wo, cur);
  5531. if (wo_b) {
  5532. cb(cur, "kqv_wo", il);
  5533. }
  5534. if (wo_b) {
  5535. cur = ggml_add(ctx, cur, wo_b);
  5536. }
  5537. return cur;
  5538. }
  5539. static struct ggml_tensor * llm_build_kv(
  5540. struct ggml_context * ctx,
  5541. const llama_model & model,
  5542. const llama_hparams & hparams,
  5543. const llama_kv_cache & kv,
  5544. struct ggml_cgraph * graph,
  5545. struct ggml_tensor * wo,
  5546. struct ggml_tensor * wo_b,
  5547. struct ggml_tensor * k_cur,
  5548. struct ggml_tensor * v_cur,
  5549. struct ggml_tensor * q_cur,
  5550. struct ggml_tensor * kq_mask,
  5551. struct ggml_tensor * kq_pos,
  5552. int64_t n_ctx,
  5553. int32_t n_tokens,
  5554. int32_t kv_head,
  5555. int32_t n_kv,
  5556. float kq_scale,
  5557. const llm_build_cb & cb,
  5558. int il) {
  5559. // these nodes are added to the graph together so that they are not reordered
  5560. // by doing so, the number of splits in the graph is reduced
  5561. ggml_build_forward_expand(graph, q_cur);
  5562. ggml_build_forward_expand(graph, k_cur);
  5563. ggml_build_forward_expand(graph, v_cur);
  5564. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5565. struct ggml_tensor * cur;
  5566. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5567. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5568. cb(cur, "kqv_out", il);
  5569. return cur;
  5570. }
  5571. struct llm_build_context {
  5572. const llama_model & model;
  5573. llama_context & lctx;
  5574. const llama_hparams & hparams;
  5575. const llama_cparams & cparams;
  5576. const llama_batch & batch;
  5577. const llama_kv_cache & kv_self;
  5578. const int64_t n_embd;
  5579. const int64_t n_layer;
  5580. const int64_t n_rot;
  5581. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5582. const int64_t n_head;
  5583. const int64_t n_head_kv;
  5584. const int64_t n_embd_head_k;
  5585. const int64_t n_embd_k_gqa;
  5586. const int64_t n_embd_head_v;
  5587. const int64_t n_embd_v_gqa;
  5588. const int64_t n_expert;
  5589. const int64_t n_expert_used;
  5590. const float freq_base;
  5591. const float freq_scale;
  5592. const float ext_factor;
  5593. const float attn_factor;
  5594. const float beta_fast;
  5595. const float beta_slow;
  5596. const float norm_eps;
  5597. const float norm_rms_eps;
  5598. const int32_t n_tokens;
  5599. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5600. const int32_t n_outputs;
  5601. const int32_t kv_head; // index of where we store new KV data in the cache
  5602. const int32_t n_orig_ctx;
  5603. const enum llama_pooling_type pooling_type;
  5604. const enum llama_rope_type rope_type;
  5605. const llm_build_cb & cb;
  5606. std::vector<uint8_t> & buf_compute_meta;
  5607. struct ggml_context * ctx0 = nullptr;
  5608. // TODO: consider making the entire interface noexcept
  5609. llm_build_context(
  5610. llama_context & lctx,
  5611. const llama_batch & batch,
  5612. const llm_build_cb & cb,
  5613. bool worst_case) :
  5614. model (lctx.model),
  5615. lctx (lctx),
  5616. hparams (model.hparams),
  5617. cparams (lctx.cparams),
  5618. batch (batch),
  5619. kv_self (lctx.kv_self),
  5620. n_embd (hparams.n_embd),
  5621. n_layer (hparams.n_layer),
  5622. n_rot (hparams.n_rot),
  5623. n_ctx (cparams.n_ctx),
  5624. n_head (hparams.n_head),
  5625. n_head_kv (hparams.n_head_kv),
  5626. n_embd_head_k (hparams.n_embd_head_k),
  5627. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5628. n_embd_head_v (hparams.n_embd_head_v),
  5629. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5630. n_expert (hparams.n_expert),
  5631. n_expert_used (hparams.n_expert_used),
  5632. freq_base (cparams.rope_freq_base),
  5633. freq_scale (cparams.rope_freq_scale),
  5634. ext_factor (cparams.yarn_ext_factor),
  5635. attn_factor (cparams.yarn_attn_factor),
  5636. beta_fast (cparams.yarn_beta_fast),
  5637. beta_slow (cparams.yarn_beta_slow),
  5638. norm_eps (hparams.f_norm_eps),
  5639. norm_rms_eps (hparams.f_norm_rms_eps),
  5640. n_tokens (batch.n_tokens),
  5641. n_kv (worst_case ? kv_self.size : kv_self.n),
  5642. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5643. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5644. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5645. pooling_type (cparams.pooling_type),
  5646. rope_type (hparams.rope_type),
  5647. cb (cb),
  5648. buf_compute_meta (lctx.buf_compute_meta) {
  5649. // all initializations should be done in init()
  5650. }
  5651. void init() {
  5652. struct ggml_init_params params = {
  5653. /*.mem_size =*/ buf_compute_meta.size(),
  5654. /*.mem_buffer =*/ buf_compute_meta.data(),
  5655. /*.no_alloc =*/ true,
  5656. };
  5657. ctx0 = ggml_init(params);
  5658. lctx.inp_tokens = nullptr;
  5659. lctx.inp_embd = nullptr;
  5660. lctx.inp_pos = nullptr;
  5661. lctx.inp_out_ids = nullptr;
  5662. lctx.inp_KQ_mask = nullptr;
  5663. lctx.inp_KQ_pos = nullptr;
  5664. lctx.inp_K_shift = nullptr;
  5665. lctx.inp_mean = nullptr;
  5666. lctx.inp_cls = nullptr;
  5667. lctx.inp_s_copy = nullptr;
  5668. lctx.inp_s_mask = nullptr;
  5669. lctx.inp_s_seq = nullptr;
  5670. }
  5671. void free() {
  5672. if (ctx0) {
  5673. ggml_free(ctx0);
  5674. ctx0 = nullptr;
  5675. }
  5676. }
  5677. struct ggml_cgraph * build_k_shift() {
  5678. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5679. GGML_ASSERT(kv_self.size == n_ctx);
  5680. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5681. cb(lctx.inp_K_shift, "K_shift", -1);
  5682. ggml_set_input(lctx.inp_K_shift);
  5683. for (int il = 0; il < n_layer; ++il) {
  5684. struct ggml_tensor * tmp =
  5685. // we rotate only the first n_rot dimensions
  5686. ggml_rope_custom_inplace(ctx0,
  5687. ggml_view_3d(ctx0, kv_self.k_l[il],
  5688. n_embd_head_k, n_head_kv, n_ctx,
  5689. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5690. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5691. 0),
  5692. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5693. ext_factor, attn_factor, beta_fast, beta_slow);
  5694. cb(tmp, "K_shifted", il);
  5695. ggml_build_forward_expand(gf, tmp);
  5696. }
  5697. return gf;
  5698. }
  5699. struct ggml_cgraph * build_s_copy() {
  5700. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5701. GGML_ASSERT(kv_self.recurrent);
  5702. struct ggml_tensor * state_copy = build_inp_s_copy();
  5703. for (int il = 0; il < n_layer; ++il) {
  5704. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5705. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5706. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5707. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5708. // TODO: name the intermediate tensors with cb()
  5709. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5710. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5711. }
  5712. return gf;
  5713. }
  5714. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5715. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5716. for (uint32_t i = 0; i < ids.size(); ++i) {
  5717. const uint32_t id = ids[i];
  5718. if (i == id || id == ids.size()) {
  5719. continue;
  5720. }
  5721. uint32_t nm = 1;
  5722. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5723. nm++;
  5724. }
  5725. for (int il = 0; il < n_layer; ++il) {
  5726. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5727. n_embd_k_gqa, nm,
  5728. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5729. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5730. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5731. n_embd_k_gqa, nm,
  5732. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5733. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5734. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5735. nm, n_embd_v_gqa,
  5736. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5737. ggml_row_size(kv_self.v_l[il]->type, i));
  5738. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5739. nm, n_embd_v_gqa,
  5740. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5741. ggml_row_size(kv_self.v_l[il]->type, id));
  5742. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5743. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5744. }
  5745. i += nm - 1;
  5746. }
  5747. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5748. return gf;
  5749. }
  5750. struct ggml_tensor * build_inp_pos() {
  5751. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5752. cb(lctx.inp_pos, "inp_pos", -1);
  5753. ggml_set_input(lctx.inp_pos);
  5754. return lctx.inp_pos;
  5755. }
  5756. struct ggml_tensor * build_inp_out_ids() {
  5757. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5758. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5759. ggml_set_input(lctx.inp_out_ids);
  5760. return lctx.inp_out_ids;
  5761. }
  5762. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5763. if (causal) {
  5764. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5765. } else {
  5766. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5767. }
  5768. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5769. ggml_set_input(lctx.inp_KQ_mask);
  5770. return lctx.inp_KQ_mask;
  5771. }
  5772. struct ggml_tensor * build_inp_KQ_pos() {
  5773. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5774. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5775. ggml_set_input(lctx.inp_KQ_pos);
  5776. return lctx.inp_KQ_pos;
  5777. }
  5778. struct ggml_tensor * build_inp_mean() {
  5779. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5780. cb(lctx.inp_mean, "inp_mean", -1);
  5781. ggml_set_input(lctx.inp_mean);
  5782. return lctx.inp_mean;
  5783. }
  5784. struct ggml_tensor * build_inp_cls() {
  5785. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5786. cb(lctx.inp_cls, "inp_cls", -1);
  5787. ggml_set_input(lctx.inp_cls);
  5788. return lctx.inp_cls;
  5789. }
  5790. struct ggml_tensor * build_inp_s_copy() {
  5791. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5792. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5793. ggml_set_input(lctx.inp_s_copy);
  5794. return lctx.inp_s_copy;
  5795. }
  5796. struct ggml_tensor * build_inp_s_mask() {
  5797. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5798. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5799. ggml_set_input(lctx.inp_s_mask);
  5800. return lctx.inp_s_mask;
  5801. }
  5802. struct ggml_tensor * build_inp_s_seq() {
  5803. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5804. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5805. ggml_set_input(lctx.inp_s_seq);
  5806. return lctx.inp_s_seq;
  5807. }
  5808. struct ggml_cgraph * build_llama() {
  5809. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5810. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5811. int32_t n_tokens = this->n_tokens;
  5812. const int64_t n_embd_head = hparams.n_embd_head_v;
  5813. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5814. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5815. struct ggml_tensor * cur;
  5816. struct ggml_tensor * inpL;
  5817. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5818. // inp_pos - contains the positions
  5819. struct ggml_tensor * inp_pos = build_inp_pos();
  5820. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5821. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5822. for (int il = 0; il < n_layer; ++il) {
  5823. struct ggml_tensor * inpSA = inpL;
  5824. // norm
  5825. cur = llm_build_norm(ctx0, inpL, hparams,
  5826. model.layers[il].attn_norm, NULL,
  5827. LLM_NORM_RMS, cb, il);
  5828. cb(cur, "attn_norm", il);
  5829. // self-attention
  5830. {
  5831. // compute Q and K and RoPE them
  5832. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5833. cb(Qcur, "Qcur", il);
  5834. if (model.layers[il].bq) {
  5835. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5836. cb(Qcur, "Qcur", il);
  5837. }
  5838. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5839. cb(Kcur, "Kcur", il);
  5840. if (model.layers[il].bk) {
  5841. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5842. cb(Kcur, "Kcur", il);
  5843. }
  5844. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5845. cb(Vcur, "Vcur", il);
  5846. if (model.layers[il].bv) {
  5847. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5848. cb(Vcur, "Vcur", il);
  5849. }
  5850. Qcur = ggml_rope_custom(
  5851. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5852. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5853. ext_factor, attn_factor, beta_fast, beta_slow
  5854. );
  5855. cb(Qcur, "Qcur", il);
  5856. Kcur = ggml_rope_custom(
  5857. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5858. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5859. ext_factor, attn_factor, beta_fast, beta_slow
  5860. );
  5861. cb(Kcur, "Kcur", il);
  5862. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5863. model.layers[il].wo, model.layers[il].bo,
  5864. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5865. }
  5866. if (il == n_layer - 1) {
  5867. // skip computing output for unused tokens
  5868. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5869. n_tokens = n_outputs;
  5870. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5871. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5872. }
  5873. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5874. cb(ffn_inp, "ffn_inp", il);
  5875. // feed-forward network
  5876. if (model.layers[il].ffn_gate_inp == nullptr) {
  5877. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5878. model.layers[il].ffn_norm, NULL,
  5879. LLM_NORM_RMS, cb, il);
  5880. cb(cur, "ffn_norm", il);
  5881. cur = llm_build_ffn(ctx0, cur,
  5882. model.layers[il].ffn_up, NULL,
  5883. model.layers[il].ffn_gate, NULL,
  5884. model.layers[il].ffn_down, NULL,
  5885. NULL,
  5886. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5887. cb(cur, "ffn_out", il);
  5888. } else {
  5889. // MoE branch
  5890. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5891. model.layers[il].ffn_norm, NULL,
  5892. LLM_NORM_RMS, cb, il);
  5893. cb(cur, "ffn_norm", il);
  5894. cur = llm_build_moe_ffn(ctx0, cur,
  5895. model.layers[il].ffn_gate_inp,
  5896. model.layers[il].ffn_up_exps,
  5897. model.layers[il].ffn_gate_exps,
  5898. model.layers[il].ffn_down_exps,
  5899. n_expert, n_expert_used,
  5900. LLM_FFN_SILU, true,
  5901. cb, il);
  5902. cb(cur, "ffn_moe_out", il);
  5903. }
  5904. cur = ggml_add(ctx0, cur, ffn_inp);
  5905. cb(cur, "ffn_out", il);
  5906. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5907. if (layer_dir != nullptr) {
  5908. cur = ggml_add(ctx0, cur, layer_dir);
  5909. }
  5910. cb(cur, "l_out", il);
  5911. // input for next layer
  5912. inpL = cur;
  5913. }
  5914. cur = inpL;
  5915. cur = llm_build_norm(ctx0, cur, hparams,
  5916. model.output_norm, NULL,
  5917. LLM_NORM_RMS, cb, -1);
  5918. cb(cur, "result_norm", -1);
  5919. // lm_head
  5920. cur = ggml_mul_mat(ctx0, model.output, cur);
  5921. cb(cur, "result_output", -1);
  5922. ggml_build_forward_expand(gf, cur);
  5923. return gf;
  5924. }
  5925. struct ggml_cgraph * build_baichuan() {
  5926. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5927. const int64_t n_embd_head = hparams.n_embd_head_v;
  5928. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5929. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5930. struct ggml_tensor * cur;
  5931. struct ggml_tensor * inpL;
  5932. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5933. // inp_pos - contains the positions
  5934. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5935. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5936. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5937. // positions of the tokens in the KV cache
  5938. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5939. for (int il = 0; il < n_layer; ++il) {
  5940. struct ggml_tensor * inpSA = inpL;
  5941. cur = llm_build_norm(ctx0, inpL, hparams,
  5942. model.layers[il].attn_norm, NULL,
  5943. LLM_NORM_RMS, cb, il);
  5944. cb(cur, "attn_norm", il);
  5945. // self-attention
  5946. {
  5947. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5948. cb(Qcur, "Qcur", il);
  5949. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5950. cb(Kcur, "Kcur", il);
  5951. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5952. cb(Vcur, "Vcur", il);
  5953. switch (model.type) {
  5954. case MODEL_7B:
  5955. Qcur = ggml_rope_custom(
  5956. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5957. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5958. ext_factor, attn_factor, beta_fast, beta_slow
  5959. );
  5960. Kcur = ggml_rope_custom(
  5961. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5962. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5963. ext_factor, attn_factor, beta_fast, beta_slow
  5964. );
  5965. break;
  5966. case MODEL_13B:
  5967. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5968. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5969. break;
  5970. default:
  5971. GGML_ASSERT(false);
  5972. }
  5973. cb(Qcur, "Qcur", il);
  5974. cb(Kcur, "Kcur", il);
  5975. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5976. model.layers[il].wo, NULL,
  5977. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5978. }
  5979. if (il == n_layer - 1) {
  5980. // skip computing output for unused tokens
  5981. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5982. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5983. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5984. }
  5985. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5986. cb(ffn_inp, "ffn_inp", il);
  5987. // feed-forward network
  5988. {
  5989. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5990. model.layers[il].ffn_norm, NULL,
  5991. LLM_NORM_RMS, cb, il);
  5992. cb(cur, "ffn_norm", il);
  5993. cur = llm_build_ffn(ctx0, cur,
  5994. model.layers[il].ffn_up, NULL,
  5995. model.layers[il].ffn_gate, NULL,
  5996. model.layers[il].ffn_down, NULL,
  5997. NULL,
  5998. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5999. cb(cur, "ffn_out", il);
  6000. }
  6001. cur = ggml_add(ctx0, cur, ffn_inp);
  6002. cb(cur, "l_out", il);
  6003. // input for next layer
  6004. inpL = cur;
  6005. }
  6006. cur = inpL;
  6007. cur = llm_build_norm(ctx0, cur, hparams,
  6008. model.output_norm, NULL,
  6009. LLM_NORM_RMS, cb, -1);
  6010. cb(cur, "result_norm", -1);
  6011. // lm_head
  6012. cur = ggml_mul_mat(ctx0, model.output, cur);
  6013. cb(cur, "result_output", -1);
  6014. ggml_build_forward_expand(gf, cur);
  6015. return gf;
  6016. }
  6017. struct ggml_cgraph * build_xverse() {
  6018. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6019. const int64_t n_embd_head = hparams.n_embd_head_v;
  6020. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6021. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6022. struct ggml_tensor * cur;
  6023. struct ggml_tensor * inpL;
  6024. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6025. // inp_pos - contains the positions
  6026. struct ggml_tensor * inp_pos = build_inp_pos();
  6027. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6028. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6029. // positions of the tokens in the KV cache
  6030. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6031. for (int il = 0; il < n_layer; ++il) {
  6032. struct ggml_tensor * inpSA = inpL;
  6033. cur = llm_build_norm(ctx0, inpL, hparams,
  6034. model.layers[il].attn_norm, NULL,
  6035. LLM_NORM_RMS, cb, il);
  6036. cb(cur, "attn_norm", il);
  6037. // self-attention
  6038. {
  6039. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6040. cb(Qcur, "Qcur", il);
  6041. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6042. cb(Kcur, "Kcur", il);
  6043. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6044. cb(Vcur, "Vcur", il);
  6045. Qcur = ggml_rope_custom(
  6046. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6047. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6048. ext_factor, attn_factor, beta_fast, beta_slow
  6049. );
  6050. cb(Qcur, "Qcur", il);
  6051. Kcur = ggml_rope_custom(
  6052. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6053. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6054. ext_factor, attn_factor, beta_fast, beta_slow
  6055. );
  6056. cb(Kcur, "Kcur", il);
  6057. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6058. model.layers[il].wo, NULL,
  6059. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6060. }
  6061. if (il == n_layer - 1) {
  6062. // skip computing output for unused tokens
  6063. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6064. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6065. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6066. }
  6067. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6068. cb(ffn_inp, "ffn_inp", il);
  6069. // feed-forward network
  6070. {
  6071. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6072. model.layers[il].ffn_norm, NULL,
  6073. LLM_NORM_RMS, cb, il);
  6074. cb(cur, "ffn_norm", il);
  6075. cur = llm_build_ffn(ctx0, cur,
  6076. model.layers[il].ffn_up, NULL,
  6077. model.layers[il].ffn_gate, NULL,
  6078. model.layers[il].ffn_down, NULL,
  6079. NULL,
  6080. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6081. cb(cur, "ffn_out", il);
  6082. }
  6083. cur = ggml_add(ctx0, cur, ffn_inp);
  6084. cb(cur, "l_out", il);
  6085. // input for next layer
  6086. inpL = cur;
  6087. }
  6088. cur = inpL;
  6089. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6090. cb(cur, "result_norm", -1);
  6091. // lm_head
  6092. cur = ggml_mul_mat(ctx0, model.output, cur);
  6093. cb(cur, "result_output", -1);
  6094. ggml_build_forward_expand(gf, cur);
  6095. return gf;
  6096. }
  6097. struct ggml_cgraph * build_falcon() {
  6098. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6099. const int64_t n_embd_head = hparams.n_embd_head_v;
  6100. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6101. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6102. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6103. struct ggml_tensor * cur;
  6104. struct ggml_tensor * inpL;
  6105. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6106. // inp_pos - contains the positions
  6107. struct ggml_tensor * inp_pos = build_inp_pos();
  6108. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6109. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6110. for (int il = 0; il < n_layer; ++il) {
  6111. struct ggml_tensor * attn_norm;
  6112. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6113. model.layers[il].attn_norm,
  6114. model.layers[il].attn_norm_b,
  6115. LLM_NORM, cb, il);
  6116. cb(attn_norm, "attn_norm", il);
  6117. // self-attention
  6118. {
  6119. if (model.layers[il].attn_norm_2) {
  6120. // Falcon-40B
  6121. cur = llm_build_norm(ctx0, inpL, hparams,
  6122. model.layers[il].attn_norm_2,
  6123. model.layers[il].attn_norm_2_b,
  6124. LLM_NORM, cb, il);
  6125. cb(cur, "attn_norm_2", il);
  6126. } else {
  6127. cur = attn_norm;
  6128. }
  6129. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6130. cb(cur, "wqkv", il);
  6131. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6132. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6133. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6134. cb(Qcur, "Qcur", il);
  6135. cb(Kcur, "Kcur", il);
  6136. cb(Vcur, "Vcur", il);
  6137. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6138. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6139. // using mode = 2 for neox mode
  6140. Qcur = ggml_rope_custom(
  6141. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6142. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6143. );
  6144. cb(Qcur, "Qcur", il);
  6145. Kcur = ggml_rope_custom(
  6146. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6147. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6148. );
  6149. cb(Kcur, "Kcur", il);
  6150. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6151. model.layers[il].wo, NULL,
  6152. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6153. }
  6154. if (il == n_layer - 1) {
  6155. // skip computing output for unused tokens
  6156. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6157. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6158. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6159. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6160. }
  6161. struct ggml_tensor * ffn_inp = cur;
  6162. // feed forward
  6163. {
  6164. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6165. model.layers[il].ffn_up, NULL,
  6166. NULL, NULL,
  6167. model.layers[il].ffn_down, NULL,
  6168. NULL,
  6169. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6170. cb(cur, "ffn_out", il);
  6171. }
  6172. cur = ggml_add(ctx0, cur, ffn_inp);
  6173. cb(cur, "l_out", il);
  6174. cur = ggml_add(ctx0, cur, inpL);
  6175. cb(cur, "l_out", il);
  6176. // input for next layer
  6177. inpL = cur;
  6178. }
  6179. cur = inpL;
  6180. // norm
  6181. cur = llm_build_norm(ctx0, cur, hparams,
  6182. model.output_norm,
  6183. model.output_norm_b,
  6184. LLM_NORM, cb, -1);
  6185. cb(cur, "result_norm", -1);
  6186. cur = ggml_mul_mat(ctx0, model.output, cur);
  6187. cb(cur, "result_output", -1);
  6188. ggml_build_forward_expand(gf, cur);
  6189. return gf;
  6190. }
  6191. struct ggml_cgraph * build_grok() {
  6192. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6193. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6194. int32_t n_tokens = this->n_tokens;
  6195. const int64_t n_embd_head = hparams.n_embd_head_v;
  6196. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6197. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6198. struct ggml_tensor * cur;
  6199. struct ggml_tensor * inpL;
  6200. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6201. // multiply by embedding_multiplier_scale of 78.38367176906169
  6202. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6203. // inp_pos - contains the positions
  6204. struct ggml_tensor * inp_pos = build_inp_pos();
  6205. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6206. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6207. for (int il = 0; il < n_layer; ++il) {
  6208. struct ggml_tensor * inpSA = inpL;
  6209. // norm
  6210. cur = llm_build_norm(ctx0, inpL, hparams,
  6211. model.layers[il].attn_norm, NULL,
  6212. LLM_NORM_RMS, cb, il);
  6213. cb(cur, "attn_norm", il);
  6214. // self-attention
  6215. {
  6216. // compute Q and K and RoPE them
  6217. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6218. cb(Qcur, "Qcur", il);
  6219. if (model.layers[il].bq) {
  6220. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6221. cb(Qcur, "Qcur", il);
  6222. }
  6223. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6224. cb(Kcur, "Kcur", il);
  6225. if (model.layers[il].bk) {
  6226. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6227. cb(Kcur, "Kcur", il);
  6228. }
  6229. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6230. cb(Vcur, "Vcur", il);
  6231. if (model.layers[il].bv) {
  6232. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6233. cb(Vcur, "Vcur", il);
  6234. }
  6235. Qcur = ggml_rope_custom(
  6236. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6237. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6238. ext_factor, attn_factor, beta_fast, beta_slow
  6239. );
  6240. cb(Qcur, "Qcur", il);
  6241. Kcur = ggml_rope_custom(
  6242. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6243. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6244. ext_factor, attn_factor, beta_fast, beta_slow
  6245. );
  6246. cb(Kcur, "Kcur", il);
  6247. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6248. model.layers[il].wo, model.layers[il].bo,
  6249. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6250. }
  6251. if (il == n_layer - 1) {
  6252. // skip computing output for unused tokens
  6253. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6254. n_tokens = n_outputs;
  6255. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6256. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6257. }
  6258. // Grok
  6259. // if attn_out_norm is present then apply it before adding the input
  6260. if (model.layers[il].attn_out_norm) {
  6261. cur = llm_build_norm(ctx0, cur, hparams,
  6262. model.layers[il].attn_out_norm, NULL,
  6263. LLM_NORM_RMS, cb, il);
  6264. cb(cur, "attn_out_norm", il);
  6265. }
  6266. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6267. cb(ffn_inp, "ffn_inp", il);
  6268. // feed-forward network
  6269. // MoE branch
  6270. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6271. model.layers[il].ffn_norm, NULL,
  6272. LLM_NORM_RMS, cb, il);
  6273. cb(cur, "ffn_norm", il);
  6274. cur = llm_build_moe_ffn(ctx0, cur,
  6275. model.layers[il].ffn_gate_inp,
  6276. model.layers[il].ffn_up_exps,
  6277. model.layers[il].ffn_gate_exps,
  6278. model.layers[il].ffn_down_exps,
  6279. n_expert, n_expert_used,
  6280. LLM_FFN_GELU, true,
  6281. cb, il);
  6282. cb(cur, "ffn_moe_out", il);
  6283. // Grok
  6284. // if layer_out_norm is present then apply it before adding the input
  6285. // Idea: maybe ffn_out_norm is a better name
  6286. if (model.layers[il].layer_out_norm) {
  6287. cur = llm_build_norm(ctx0, cur, hparams,
  6288. model.layers[il].layer_out_norm, NULL,
  6289. LLM_NORM_RMS, cb, il);
  6290. cb(cur, "layer_out_norm", il);
  6291. }
  6292. cur = ggml_add(ctx0, cur, ffn_inp);
  6293. cb(cur, "ffn_out", il);
  6294. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6295. if (layer_dir != nullptr) {
  6296. cur = ggml_add(ctx0, cur, layer_dir);
  6297. }
  6298. cb(cur, "l_out", il);
  6299. // input for next layer
  6300. inpL = cur;
  6301. }
  6302. cur = inpL;
  6303. cur = llm_build_norm(ctx0, cur, hparams,
  6304. model.output_norm, NULL,
  6305. LLM_NORM_RMS, cb, -1);
  6306. cb(cur, "result_norm", -1);
  6307. // lm_head
  6308. cur = ggml_mul_mat(ctx0, model.output, cur);
  6309. // Grok
  6310. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6311. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6312. cb(cur, "result_output", -1);
  6313. ggml_build_forward_expand(gf, cur);
  6314. return gf;
  6315. }
  6316. struct ggml_cgraph * build_dbrx() {
  6317. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6318. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6319. int32_t n_tokens = this->n_tokens;
  6320. const int64_t n_embd_head = hparams.n_embd_head_v;
  6321. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6322. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6323. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6324. struct ggml_tensor * cur;
  6325. struct ggml_tensor * inpL;
  6326. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6327. // inp_pos - contains the positions
  6328. struct ggml_tensor * inp_pos = build_inp_pos();
  6329. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6330. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6331. for (int il = 0; il < n_layer; ++il) {
  6332. struct ggml_tensor * inpSA = inpL;
  6333. // norm
  6334. cur = llm_build_norm(ctx0, inpL, hparams,
  6335. model.layers[il].attn_norm, NULL,
  6336. LLM_NORM, cb, il);
  6337. cb(cur, "attn_norm", il);
  6338. // self-attention
  6339. {
  6340. struct ggml_tensor * Qcur = nullptr;
  6341. struct ggml_tensor * Kcur = nullptr;
  6342. struct ggml_tensor * Vcur = nullptr;
  6343. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6344. cb(cur, "wqkv", il);
  6345. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6346. cb(cur, "wqkv_clamped", il);
  6347. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6348. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6349. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6350. cb(Qcur, "Qcur", il);
  6351. cb(Kcur, "Kcur", il);
  6352. cb(Vcur, "Vcur", il);
  6353. Qcur = ggml_rope_custom(
  6354. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6355. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6356. ext_factor, attn_factor, beta_fast, beta_slow
  6357. );
  6358. cb(Qcur, "Qcur", il);
  6359. Kcur = ggml_rope_custom(
  6360. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6361. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6362. ext_factor, attn_factor, beta_fast, beta_slow
  6363. );
  6364. cb(Kcur, "Kcur", il);
  6365. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6366. model.layers[il].wo, NULL,
  6367. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6368. }
  6369. if (il == n_layer - 1) {
  6370. // skip computing output for unused tokens
  6371. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6372. n_tokens = n_outputs;
  6373. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6374. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6375. }
  6376. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6377. cb(ffn_inp, "ffn_inp", il);
  6378. // feed-forward network
  6379. // MoE branch
  6380. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6381. model.layers[il].attn_out_norm, NULL,
  6382. LLM_NORM, cb, il);
  6383. cb(cur, "attn_out_norm", il);
  6384. cur = llm_build_moe_ffn(ctx0, cur,
  6385. model.layers[il].ffn_gate_inp,
  6386. model.layers[il].ffn_up_exps,
  6387. model.layers[il].ffn_gate_exps,
  6388. model.layers[il].ffn_down_exps,
  6389. n_expert, n_expert_used,
  6390. LLM_FFN_SILU, true,
  6391. cb, il);
  6392. cb(cur, "ffn_moe_out", il);
  6393. cur = ggml_add(ctx0, cur, ffn_inp);
  6394. cb(cur, "ffn_out", il);
  6395. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6396. if (layer_dir != nullptr) {
  6397. cur = ggml_add(ctx0, cur, layer_dir);
  6398. }
  6399. cb(cur, "l_out", il);
  6400. // input for next layer
  6401. inpL = cur;
  6402. }
  6403. cur = inpL;
  6404. cur = llm_build_norm(ctx0, cur, hparams,
  6405. model.output_norm, NULL,
  6406. LLM_NORM, cb, -1);
  6407. cb(cur, "result_norm", -1);
  6408. // lm_head
  6409. cur = ggml_mul_mat(ctx0, model.output, cur);
  6410. cb(cur, "result_output", -1);
  6411. ggml_build_forward_expand(gf, cur);
  6412. return gf;
  6413. }
  6414. struct ggml_cgraph * build_starcoder() {
  6415. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6416. const int64_t n_embd_head = hparams.n_embd_head_v;
  6417. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6418. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6419. struct ggml_tensor * cur;
  6420. struct ggml_tensor * inpL;
  6421. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6422. // inp_pos - contains the positions
  6423. struct ggml_tensor * inp_pos = build_inp_pos();
  6424. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6425. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6426. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6427. cb(pos, "pos_embd", -1);
  6428. inpL = ggml_add(ctx0, inpL, pos);
  6429. cb(inpL, "inpL", -1);
  6430. for (int il = 0; il < n_layer; ++il) {
  6431. cur = llm_build_norm(ctx0, inpL, hparams,
  6432. model.layers[il].attn_norm,
  6433. model.layers[il].attn_norm_b,
  6434. LLM_NORM, cb, il);
  6435. cb(cur, "attn_norm", il);
  6436. // self-attention
  6437. {
  6438. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6439. cb(cur, "wqkv", il);
  6440. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6441. cb(cur, "bqkv", il);
  6442. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6443. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6444. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6445. cb(Qcur, "Qcur", il);
  6446. cb(Kcur, "Kcur", il);
  6447. cb(Vcur, "Vcur", il);
  6448. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6449. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6450. model.layers[il].wo, model.layers[il].bo,
  6451. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6452. }
  6453. if (il == n_layer - 1) {
  6454. // skip computing output for unused tokens
  6455. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6456. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6457. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6458. }
  6459. // add the input
  6460. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6461. cb(ffn_inp, "ffn_inp", il);
  6462. // FF
  6463. {
  6464. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6465. model.layers[il].ffn_norm,
  6466. model.layers[il].ffn_norm_b,
  6467. LLM_NORM, cb, il);
  6468. cb(cur, "ffn_norm", il);
  6469. cur = llm_build_ffn(ctx0, cur,
  6470. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6471. NULL, NULL,
  6472. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6473. NULL,
  6474. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6475. cb(cur, "ffn_out", il);
  6476. }
  6477. inpL = ggml_add(ctx0, cur, ffn_inp);
  6478. cb(inpL, "l_out", il);
  6479. }
  6480. cur = llm_build_norm(ctx0, inpL, hparams,
  6481. model.output_norm,
  6482. model.output_norm_b,
  6483. LLM_NORM, cb, -1);
  6484. cb(cur, "result_norm", -1);
  6485. cur = ggml_mul_mat(ctx0, model.output, cur);
  6486. cb(cur, "result_output", -1);
  6487. ggml_build_forward_expand(gf, cur);
  6488. return gf;
  6489. }
  6490. struct ggml_cgraph * build_persimmon() {
  6491. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6492. const int64_t n_embd_head = hparams.n_embd_head_v;
  6493. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6494. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6495. struct ggml_tensor * cur;
  6496. struct ggml_tensor * inpL;
  6497. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6498. // inp_pos - contains the positions
  6499. struct ggml_tensor * inp_pos = build_inp_pos();
  6500. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6501. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6502. for (int il = 0; il < n_layer; ++il) {
  6503. struct ggml_tensor * residual = inpL;
  6504. cur = llm_build_norm(ctx0, inpL, hparams,
  6505. model.layers[il].attn_norm,
  6506. model.layers[il].attn_norm_b,
  6507. LLM_NORM, cb, il);
  6508. cb(cur, "attn_norm", il);
  6509. // self attention
  6510. {
  6511. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6512. cb(cur, "wqkv", il);
  6513. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6514. cb(cur, "bqkv", il);
  6515. // split qkv
  6516. GGML_ASSERT(n_head_kv == n_head);
  6517. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6518. cb(tmpqkv, "tmpqkv", il);
  6519. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6520. cb(tmpqkv_perm, "tmpqkv", il);
  6521. struct ggml_tensor * tmpq = ggml_view_3d(
  6522. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6523. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6524. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6525. 0
  6526. );
  6527. cb(tmpq, "tmpq", il);
  6528. struct ggml_tensor * tmpk = ggml_view_3d(
  6529. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6530. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6531. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6532. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6533. );
  6534. cb(tmpk, "tmpk", il);
  6535. // Q/K Layernorm
  6536. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6537. model.layers[il].attn_q_norm,
  6538. model.layers[il].attn_q_norm_b,
  6539. LLM_NORM, cb, il);
  6540. cb(tmpq, "tmpq", il);
  6541. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6542. model.layers[il].attn_k_norm,
  6543. model.layers[il].attn_k_norm_b,
  6544. LLM_NORM, cb, il);
  6545. cb(tmpk, "tmpk", il);
  6546. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6547. struct ggml_tensor * qrot = ggml_view_3d(
  6548. ctx0, tmpq, n_rot, n_head, n_tokens,
  6549. ggml_element_size(tmpq) * n_embd_head,
  6550. ggml_element_size(tmpq) * n_embd_head * n_head,
  6551. 0
  6552. );
  6553. cb(qrot, "qrot", il);
  6554. struct ggml_tensor * krot = ggml_view_3d(
  6555. ctx0, tmpk, n_rot, n_head, n_tokens,
  6556. ggml_element_size(tmpk) * n_embd_head,
  6557. ggml_element_size(tmpk) * n_embd_head * n_head,
  6558. 0
  6559. );
  6560. cb(krot, "krot", il);
  6561. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6562. struct ggml_tensor * qpass = ggml_view_3d(
  6563. ctx0, tmpq, n_rot, n_head, n_tokens,
  6564. ggml_element_size(tmpq) * n_embd_head,
  6565. ggml_element_size(tmpq) * n_embd_head * n_head,
  6566. ggml_element_size(tmpq) * n_rot
  6567. );
  6568. cb(qpass, "qpass", il);
  6569. struct ggml_tensor * kpass = ggml_view_3d(
  6570. ctx0, tmpk, n_rot, n_head, n_tokens,
  6571. ggml_element_size(tmpk) * n_embd_head,
  6572. ggml_element_size(tmpk) * n_embd_head * n_head,
  6573. ggml_element_size(tmpk) * n_rot
  6574. );
  6575. cb(kpass, "kpass", il);
  6576. struct ggml_tensor * qrotated = ggml_rope_custom(
  6577. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6578. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6579. );
  6580. cb(qrotated, "qrotated", il);
  6581. struct ggml_tensor * krotated = ggml_rope_custom(
  6582. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6583. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6584. );
  6585. cb(krotated, "krotated", il);
  6586. // ggml currently only supports concatenation on dim=2
  6587. // so we need to permute qrot, qpass, concat, then permute back.
  6588. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6589. cb(qrotated, "qrotated", il);
  6590. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6591. cb(krotated, "krotated", il);
  6592. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6593. cb(qpass, "qpass", il);
  6594. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6595. cb(kpass, "kpass", il);
  6596. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6597. cb(Qcur, "Qcur", il);
  6598. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6599. cb(Kcur, "Kcur", il);
  6600. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6601. cb(Q, "Q", il);
  6602. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6603. cb(Kcur, "Kcur", il);
  6604. struct ggml_tensor * Vcur = ggml_view_3d(
  6605. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6606. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6607. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6608. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6609. );
  6610. cb(Vcur, "Vcur", il);
  6611. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6612. model.layers[il].wo, model.layers[il].bo,
  6613. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6614. }
  6615. if (il == n_layer - 1) {
  6616. // skip computing output for unused tokens
  6617. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6618. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6619. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6620. }
  6621. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6622. cb(ffn_inp, "ffn_inp", il);
  6623. // feed-forward network
  6624. {
  6625. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6626. model.layers[il].ffn_norm,
  6627. model.layers[il].ffn_norm_b,
  6628. LLM_NORM, cb, il);
  6629. cb(cur, "ffn_norm", il);
  6630. cur = llm_build_ffn(ctx0, cur,
  6631. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6632. NULL, NULL,
  6633. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6634. NULL,
  6635. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6636. cb(cur, "ffn_out", il);
  6637. }
  6638. cur = ggml_add(ctx0, cur, ffn_inp);
  6639. cb(cur, "l_out", il);
  6640. inpL = cur;
  6641. }
  6642. cur = inpL;
  6643. cur = llm_build_norm(ctx0, cur, hparams,
  6644. model.output_norm,
  6645. model.output_norm_b,
  6646. LLM_NORM, cb, -1);
  6647. cb(cur, "result_norm", -1);
  6648. cur = ggml_mul_mat(ctx0, model.output, cur);
  6649. cb(cur, "result_output", -1);
  6650. ggml_build_forward_expand(gf, cur);
  6651. return gf;
  6652. }
  6653. struct ggml_cgraph * build_refact() {
  6654. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6655. const int64_t n_embd_head = hparams.n_embd_head_v;
  6656. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6657. struct ggml_tensor * cur;
  6658. struct ggml_tensor * inpL;
  6659. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6660. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6661. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6662. // positions of the tokens in the KV cache
  6663. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6664. for (int il = 0; il < n_layer; ++il) {
  6665. struct ggml_tensor * inpSA = inpL;
  6666. cur = llm_build_norm(ctx0, inpL, hparams,
  6667. model.layers[il].attn_norm, NULL,
  6668. LLM_NORM_RMS, cb, il);
  6669. cb(cur, "attn_norm", il);
  6670. // self-attention
  6671. {
  6672. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6673. cb(Qcur, "Qcur", il);
  6674. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6675. cb(Kcur, "Kcur", il);
  6676. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6677. cb(Vcur, "Vcur", il);
  6678. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6679. cb(Kcur, "Kcur", il);
  6680. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6681. cb(Qcur, "Qcur", il);
  6682. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6683. model.layers[il].wo, NULL,
  6684. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6685. }
  6686. if (il == n_layer - 1) {
  6687. // skip computing output for unused tokens
  6688. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6689. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6690. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6691. }
  6692. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6693. cb(ffn_inp, "ffn_inp", il);
  6694. // feed-forward network
  6695. {
  6696. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6697. model.layers[il].ffn_norm, NULL,
  6698. LLM_NORM_RMS, cb, il);
  6699. cb(cur, "ffn_norm", il);
  6700. cur = llm_build_ffn(ctx0, cur,
  6701. model.layers[il].ffn_up, NULL,
  6702. model.layers[il].ffn_gate, NULL,
  6703. model.layers[il].ffn_down, NULL,
  6704. NULL,
  6705. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6706. cb(cur, "ffn_out", il);
  6707. }
  6708. cur = ggml_add(ctx0, cur, ffn_inp);
  6709. cb(cur, "l_out", il);
  6710. // input for next layer
  6711. inpL = cur;
  6712. }
  6713. cur = inpL;
  6714. cur = llm_build_norm(ctx0, cur, hparams,
  6715. model.output_norm, NULL,
  6716. LLM_NORM_RMS, cb, -1);
  6717. cb(cur, "result_norm", -1);
  6718. // lm_head
  6719. cur = ggml_mul_mat(ctx0, model.output, cur);
  6720. cb(cur, "result_output", -1);
  6721. ggml_build_forward_expand(gf, cur);
  6722. return gf;
  6723. }
  6724. struct ggml_cgraph * build_bert() {
  6725. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6726. const int64_t n_embd_head = hparams.n_embd_head_v;
  6727. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6728. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6729. struct ggml_tensor * cur;
  6730. struct ggml_tensor * inpL;
  6731. struct ggml_tensor * inp_pos = build_inp_pos();
  6732. struct ggml_tensor * inp_mean = build_inp_mean();
  6733. struct ggml_tensor * inp_cls = build_inp_cls();
  6734. // construct input embeddings (token, type, position)
  6735. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6736. // token types are hardcoded to zero ("Sentence A")
  6737. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6738. inpL = ggml_add(ctx0, inpL, type_row0);
  6739. if (model.arch == LLM_ARCH_BERT) {
  6740. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6741. }
  6742. cb(inpL, "inp_embd", -1);
  6743. // embed layer norm
  6744. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6745. cb(inpL, "inp_norm", -1);
  6746. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6747. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6748. // iterate layers
  6749. for (int il = 0; il < n_layer; ++il) {
  6750. struct ggml_tensor * cur = inpL;
  6751. struct ggml_tensor * Qcur;
  6752. struct ggml_tensor * Kcur;
  6753. struct ggml_tensor * Vcur;
  6754. // self-attention
  6755. if (model.arch == LLM_ARCH_BERT) {
  6756. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6757. cb(Qcur, "Qcur", il);
  6758. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6759. cb(Kcur, "Kcur", il);
  6760. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6761. cb(Vcur, "Vcur", il);
  6762. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6763. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6764. } else {
  6765. // compute Q and K and RoPE them
  6766. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6767. cb(cur, "wqkv", il);
  6768. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6769. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6770. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6771. cb(Qcur, "Qcur", il);
  6772. cb(Kcur, "Kcur", il);
  6773. cb(Vcur, "Vcur", il);
  6774. Qcur = ggml_rope_custom(
  6775. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6776. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6777. ext_factor, attn_factor, beta_fast, beta_slow
  6778. );
  6779. cb(Qcur, "Qcur", il);
  6780. Kcur = ggml_rope_custom(
  6781. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6782. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6783. ext_factor, attn_factor, beta_fast, beta_slow
  6784. );
  6785. cb(Kcur, "Kcur", il);
  6786. }
  6787. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6788. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6789. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6790. cb(kq, "kq", il);
  6791. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6792. cb(kq, "kq_soft_max_ext", il);
  6793. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6794. cb(v, "v", il);
  6795. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6796. cb(kqv, "kqv", il);
  6797. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6798. cb(kqv_merged, "kqv_merged", il);
  6799. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6800. cb(cur, "kqv_merged_cont", il);
  6801. ggml_build_forward_expand(gf, cur);
  6802. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6803. if (model.layers[il].bo) {
  6804. cb(cur, "kqv_wo", il);
  6805. }
  6806. if (model.layers[il].bo) {
  6807. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6808. }
  6809. cb(cur, "kqv_out", il);
  6810. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6811. // skip computing output for unused tokens
  6812. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6813. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6814. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6815. }
  6816. // re-add the layer input
  6817. cur = ggml_add(ctx0, cur, inpL);
  6818. // attention layer norm
  6819. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6820. struct ggml_tensor * ffn_inp = cur;
  6821. cb(ffn_inp, "ffn_inp", il);
  6822. // feed-forward network
  6823. if (model.arch == LLM_ARCH_BERT) {
  6824. cur = llm_build_ffn(ctx0, cur,
  6825. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6826. NULL, NULL,
  6827. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6828. NULL,
  6829. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6830. } else {
  6831. cur = llm_build_ffn(ctx0, cur,
  6832. model.layers[il].ffn_up, NULL,
  6833. model.layers[il].ffn_gate, NULL,
  6834. model.layers[il].ffn_down, NULL,
  6835. NULL,
  6836. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6837. }
  6838. cb(cur, "ffn_out", il);
  6839. // attentions bypass the intermediate layer
  6840. cur = ggml_add(ctx0, cur, ffn_inp);
  6841. // output layer norm
  6842. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6843. // input for next layer
  6844. inpL = cur;
  6845. }
  6846. // final output
  6847. cur = inpL;
  6848. cb(cur, "result_embd", -1);
  6849. // pooling layer
  6850. switch (pooling_type) {
  6851. case LLAMA_POOLING_TYPE_NONE:
  6852. {
  6853. // nop
  6854. } break;
  6855. case LLAMA_POOLING_TYPE_MEAN:
  6856. {
  6857. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6858. cb(cur, "result_embd_pooled", -1);
  6859. } break;
  6860. case LLAMA_POOLING_TYPE_CLS:
  6861. {
  6862. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6863. cb(cur, "result_embd_pooled", -1);
  6864. } break;
  6865. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6866. {
  6867. GGML_ASSERT(false && "Invalid pooling type");
  6868. } break;
  6869. }
  6870. ggml_build_forward_expand(gf, cur);
  6871. return gf;
  6872. }
  6873. struct ggml_cgraph * build_bloom() {
  6874. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6875. const int64_t n_embd_head = hparams.n_embd_head_v;
  6876. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6877. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6878. struct ggml_tensor * cur;
  6879. struct ggml_tensor * inpL;
  6880. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6881. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6882. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6883. // positions of the tokens in the KV cache
  6884. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6885. inpL = llm_build_norm(ctx0, inpL, hparams,
  6886. model.tok_norm,
  6887. model.tok_norm_b,
  6888. LLM_NORM, cb, -1);
  6889. cb(inpL, "inp_norm", -1);
  6890. for (int il = 0; il < n_layer; ++il) {
  6891. cur = llm_build_norm(ctx0, inpL, hparams,
  6892. model.layers[il].attn_norm,
  6893. model.layers[il].attn_norm_b,
  6894. LLM_NORM, cb, il);
  6895. cb(cur, "attn_norm", il);
  6896. // self-attention
  6897. {
  6898. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6899. cb(cur, "wqkv", il);
  6900. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6901. cb(cur, "bqkv", il);
  6902. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6903. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6904. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6905. cb(Qcur, "Qcur", il);
  6906. cb(Kcur, "Kcur", il);
  6907. cb(Vcur, "Vcur", il);
  6908. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6909. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6910. model.layers[il].wo, model.layers[il].bo,
  6911. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6912. }
  6913. if (il == n_layer - 1) {
  6914. // skip computing output for unused tokens
  6915. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6916. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6917. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6918. }
  6919. // Add the input
  6920. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6921. cb(ffn_inp, "ffn_inp", il);
  6922. // FF
  6923. {
  6924. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6925. model.layers[il].ffn_norm,
  6926. model.layers[il].ffn_norm_b,
  6927. LLM_NORM, cb, il);
  6928. cb(cur, "ffn_norm", il);
  6929. cur = llm_build_ffn(ctx0, cur,
  6930. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6931. NULL, NULL,
  6932. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6933. NULL,
  6934. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6935. cb(cur, "ffn_out", il);
  6936. }
  6937. inpL = ggml_add(ctx0, cur, ffn_inp);
  6938. cb(inpL, "l_out", il);
  6939. }
  6940. cur = llm_build_norm(ctx0, inpL, hparams,
  6941. model.output_norm,
  6942. model.output_norm_b,
  6943. LLM_NORM, cb, -1);
  6944. cb(cur, "result_norm", -1);
  6945. cur = ggml_mul_mat(ctx0, model.output, cur);
  6946. cb(cur, "result_output", -1);
  6947. ggml_build_forward_expand(gf, cur);
  6948. return gf;
  6949. }
  6950. struct ggml_cgraph * build_mpt() {
  6951. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6952. const int64_t n_embd_head = hparams.n_embd_head_v;
  6953. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6954. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6955. struct ggml_tensor * cur;
  6956. struct ggml_tensor * pos;
  6957. struct ggml_tensor * inpL;
  6958. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6959. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6960. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6961. // positions of the tokens in the KV cache
  6962. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6963. if (model.pos_embd) {
  6964. // inp_pos - contains the positions
  6965. struct ggml_tensor * inp_pos = build_inp_pos();
  6966. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6967. cb(pos, "pos_embd", -1);
  6968. inpL = ggml_add(ctx0, inpL, pos);
  6969. cb(inpL, "inpL", -1);
  6970. }
  6971. for (int il = 0; il < n_layer; ++il) {
  6972. struct ggml_tensor * attn_norm;
  6973. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6974. model.layers[il].attn_norm,
  6975. model.layers[il].attn_norm_b,
  6976. LLM_NORM, cb, il);
  6977. cb(attn_norm, "attn_norm", il);
  6978. // self-attention
  6979. {
  6980. cur = attn_norm;
  6981. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6982. cb(cur, "wqkv", il);
  6983. if (model.layers[il].bqkv){
  6984. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6985. cb(cur, "bqkv", il);
  6986. }
  6987. if (hparams.f_clamp_kqv > 0.0f) {
  6988. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6989. cb(cur, "wqkv_clamped", il);
  6990. }
  6991. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6992. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6993. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6994. cb(Qcur, "Qcur", il);
  6995. cb(Kcur, "Kcur", il);
  6996. cb(Vcur, "Vcur", il);
  6997. // Q/K Layernorm
  6998. if (model.layers[il].attn_q_norm) {
  6999. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7000. model.layers[il].attn_q_norm,
  7001. model.layers[il].attn_q_norm_b,
  7002. LLM_NORM, cb, il);
  7003. cb(Qcur, "Qcur", il);
  7004. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7005. model.layers[il].attn_k_norm,
  7006. model.layers[il].attn_k_norm_b,
  7007. LLM_NORM, cb, il);
  7008. cb(Kcur, "Kcur", il);
  7009. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7010. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7011. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7012. model.layers[il].wo, model.layers[il].bo,
  7013. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7014. } else {
  7015. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7016. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7017. model.layers[il].wo, model.layers[il].bo,
  7018. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7019. }
  7020. }
  7021. if (il == n_layer - 1) {
  7022. // skip computing output for unused tokens
  7023. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7024. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7025. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7026. }
  7027. // Add the input
  7028. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7029. cb(ffn_inp, "ffn_inp", il);
  7030. // feed forward
  7031. {
  7032. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7033. model.layers[il].ffn_norm,
  7034. model.layers[il].ffn_norm_b,
  7035. LLM_NORM, cb, il);
  7036. cb(cur, "ffn_norm", il);
  7037. cur = llm_build_ffn(ctx0, cur,
  7038. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7039. NULL, NULL,
  7040. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7041. model.layers[il].ffn_act,
  7042. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7043. cb(cur, "ffn_out", il);
  7044. }
  7045. cur = ggml_add(ctx0, cur, ffn_inp);
  7046. cb(cur, "l_out", il);
  7047. // input for next layer
  7048. inpL = cur;
  7049. }
  7050. cur = inpL;
  7051. cur = llm_build_norm(ctx0, cur, hparams,
  7052. model.output_norm,
  7053. model.output_norm_b,
  7054. LLM_NORM, cb, -1);
  7055. cb(cur, "result_norm", -1);
  7056. cur = ggml_mul_mat(ctx0, model.output, cur);
  7057. cb(cur, "result_output", -1);
  7058. ggml_build_forward_expand(gf, cur);
  7059. return gf;
  7060. }
  7061. struct ggml_cgraph * build_stablelm() {
  7062. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7063. const int64_t n_embd_head = hparams.n_embd_head_v;
  7064. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7065. struct ggml_tensor * cur;
  7066. struct ggml_tensor * inpL;
  7067. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7068. // inp_pos - contains the positions
  7069. struct ggml_tensor * inp_pos = build_inp_pos();
  7070. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7071. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7072. for (int il = 0; il < n_layer; ++il) {
  7073. // norm
  7074. cur = llm_build_norm(ctx0, inpL, hparams,
  7075. model.layers[il].attn_norm,
  7076. model.layers[il].attn_norm_b,
  7077. LLM_NORM, cb, il);
  7078. cb(cur, "attn_norm", il);
  7079. struct ggml_tensor * inpSA = cur;
  7080. // self-attention
  7081. {
  7082. // compute Q and K and RoPE them
  7083. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7084. cb(Qcur, "Qcur", il);
  7085. if (model.layers[il].bq) {
  7086. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7087. cb(Qcur, "Qcur", il);
  7088. }
  7089. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7090. cb(Kcur, "Kcur", il);
  7091. if (model.layers[il].bk) {
  7092. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7093. cb(Kcur, "Kcur", il);
  7094. }
  7095. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7096. cb(Vcur, "Vcur", il);
  7097. if (model.layers[il].bv) {
  7098. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7099. cb(Vcur, "Vcur", il);
  7100. }
  7101. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7102. cb(Qcur, "Qcur", il);
  7103. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7104. cb(Kcur, "Kcur", il);
  7105. if (model.layers[il].attn_q_norm) {
  7106. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7107. model.layers[il].attn_q_norm,
  7108. NULL,
  7109. LLM_NORM, cb, il);
  7110. cb(Qcur, "Qcur", il);
  7111. }
  7112. if (model.layers[il].attn_k_norm) {
  7113. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7114. model.layers[il].attn_k_norm,
  7115. NULL,
  7116. LLM_NORM, cb, il);
  7117. cb(Kcur, "Kcur", il);
  7118. }
  7119. Qcur = ggml_rope_custom(
  7120. ctx0, Qcur, inp_pos,
  7121. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7122. ext_factor, attn_factor, beta_fast, beta_slow
  7123. );
  7124. cb(Qcur, "Qcur", il);
  7125. Kcur = ggml_rope_custom(
  7126. ctx0, Kcur, inp_pos,
  7127. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7128. ext_factor, attn_factor, beta_fast, beta_slow
  7129. );
  7130. cb(Kcur, "Kcur", il);
  7131. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7132. model.layers[il].wo, NULL,
  7133. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7134. }
  7135. if (il == n_layer - 1) {
  7136. // skip computing output for unused tokens
  7137. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7138. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7139. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7140. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7141. }
  7142. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7143. cb(ffn_inp, "ffn_inp", il);
  7144. // feed-forward network
  7145. {
  7146. if (model.layers[il].ffn_norm) {
  7147. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7148. model.layers[il].ffn_norm,
  7149. model.layers[il].ffn_norm_b,
  7150. LLM_NORM, cb, il);
  7151. cb(cur, "ffn_norm", il);
  7152. } else {
  7153. // parallel residual
  7154. cur = inpSA;
  7155. }
  7156. cur = llm_build_ffn(ctx0, cur,
  7157. model.layers[il].ffn_up, NULL,
  7158. model.layers[il].ffn_gate, NULL,
  7159. model.layers[il].ffn_down, NULL,
  7160. NULL,
  7161. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7162. cb(cur, "ffn_out", il);
  7163. }
  7164. cur = ggml_add(ctx0, cur, ffn_inp);
  7165. cb(cur, "l_out", il);
  7166. // input for next layer
  7167. inpL = cur;
  7168. }
  7169. cur = inpL;
  7170. cur = llm_build_norm(ctx0, cur, hparams,
  7171. model.output_norm,
  7172. model.output_norm_b,
  7173. LLM_NORM, cb, -1);
  7174. cb(cur, "result_norm", -1);
  7175. // lm_head
  7176. cur = ggml_mul_mat(ctx0, model.output, cur);
  7177. cb(cur, "result_output", -1);
  7178. ggml_build_forward_expand(gf, cur);
  7179. return gf;
  7180. }
  7181. struct ggml_cgraph * build_qwen() {
  7182. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7183. const int64_t n_embd_head = hparams.n_embd_head_v;
  7184. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7185. struct ggml_tensor * cur;
  7186. struct ggml_tensor * inpL;
  7187. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7188. // inp_pos - contains the positions
  7189. struct ggml_tensor * inp_pos = build_inp_pos();
  7190. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7191. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7192. for (int il = 0; il < n_layer; ++il) {
  7193. struct ggml_tensor * inpSA = inpL;
  7194. cur = llm_build_norm(ctx0, inpL, hparams,
  7195. model.layers[il].attn_norm, NULL,
  7196. LLM_NORM_RMS, cb, il);
  7197. cb(cur, "attn_norm", il);
  7198. // self-attention
  7199. {
  7200. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7201. cb(cur, "wqkv", il);
  7202. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7203. cb(cur, "bqkv", il);
  7204. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7205. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7206. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7207. cb(Qcur, "Qcur", il);
  7208. cb(Kcur, "Kcur", il);
  7209. cb(Vcur, "Vcur", il);
  7210. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7211. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7212. // using mode = 2 for neox mode
  7213. Qcur = ggml_rope_custom(
  7214. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7215. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7216. );
  7217. cb(Qcur, "Qcur", il);
  7218. Kcur = ggml_rope_custom(
  7219. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7220. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7221. );
  7222. cb(Kcur, "Kcur", il);
  7223. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7224. model.layers[il].wo, NULL,
  7225. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7226. }
  7227. if (il == n_layer - 1) {
  7228. // skip computing output for unused tokens
  7229. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7230. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7231. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7232. }
  7233. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7234. cb(ffn_inp, "ffn_inp", il);
  7235. // feed-forward forward
  7236. {
  7237. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7238. model.layers[il].ffn_norm, NULL,
  7239. LLM_NORM_RMS, cb, il);
  7240. cb(cur, "ffn_norm", il);
  7241. cur = llm_build_ffn(ctx0, cur,
  7242. model.layers[il].ffn_up, NULL,
  7243. model.layers[il].ffn_gate, NULL,
  7244. model.layers[il].ffn_down, NULL,
  7245. NULL,
  7246. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7247. cb(cur, "ffn_out", il);
  7248. }
  7249. cur = ggml_add(ctx0, cur, ffn_inp);
  7250. cb(cur, "l_out", il);
  7251. // input for next layer
  7252. inpL = cur;
  7253. }
  7254. cur = inpL;
  7255. cur = llm_build_norm(ctx0, cur, hparams,
  7256. model.output_norm, NULL,
  7257. LLM_NORM_RMS, cb, -1);
  7258. cb(cur, "result_norm", -1);
  7259. // lm_head
  7260. cur = ggml_mul_mat(ctx0, model.output, cur);
  7261. cb(cur, "result_output", -1);
  7262. ggml_build_forward_expand(gf, cur);
  7263. return gf;
  7264. }
  7265. struct ggml_cgraph * build_qwen2() {
  7266. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7267. const int64_t n_embd_head = hparams.n_embd_head_v;
  7268. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7269. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7270. struct ggml_tensor * cur;
  7271. struct ggml_tensor * inpL;
  7272. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7273. // inp_pos - contains the positions
  7274. struct ggml_tensor * inp_pos = build_inp_pos();
  7275. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7276. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7277. for (int il = 0; il < n_layer; ++il) {
  7278. struct ggml_tensor * inpSA = inpL;
  7279. // norm
  7280. cur = llm_build_norm(ctx0, inpL, hparams,
  7281. model.layers[il].attn_norm, NULL,
  7282. LLM_NORM_RMS, cb, il);
  7283. cb(cur, "attn_norm", il);
  7284. // self-attention
  7285. {
  7286. // compute Q and K and RoPE them
  7287. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7288. cb(Qcur, "Qcur", il);
  7289. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7290. cb(Qcur, "Qcur", il);
  7291. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7292. cb(Kcur, "Kcur", il);
  7293. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7294. cb(Kcur, "Kcur", il);
  7295. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7296. cb(Vcur, "Vcur", il);
  7297. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7298. cb(Vcur, "Vcur", il);
  7299. Qcur = ggml_rope_custom(
  7300. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7301. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7302. ext_factor, attn_factor, beta_fast, beta_slow
  7303. );
  7304. cb(Qcur, "Qcur", il);
  7305. Kcur = ggml_rope_custom(
  7306. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7307. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7308. ext_factor, attn_factor, beta_fast, beta_slow
  7309. );
  7310. cb(Kcur, "Kcur", il);
  7311. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7312. model.layers[il].wo, model.layers[il].bo,
  7313. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7314. }
  7315. if (il == n_layer - 1) {
  7316. // skip computing output for unused tokens
  7317. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7318. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7319. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7320. }
  7321. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7322. cb(ffn_inp, "ffn_inp", il);
  7323. // feed-forward network
  7324. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7325. model.layers[il].ffn_norm, NULL,
  7326. LLM_NORM_RMS, cb, il);
  7327. cb(cur, "ffn_norm", il);
  7328. cur = llm_build_ffn(ctx0, cur,
  7329. model.layers[il].ffn_up, NULL,
  7330. model.layers[il].ffn_gate, NULL,
  7331. model.layers[il].ffn_down, NULL,
  7332. NULL,
  7333. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7334. cb(cur, "ffn_out", il);
  7335. cur = ggml_add(ctx0, cur, ffn_inp);
  7336. cb(cur, "l_out", il);
  7337. // input for next layer
  7338. inpL = cur;
  7339. }
  7340. cur = inpL;
  7341. cur = llm_build_norm(ctx0, cur, hparams,
  7342. model.output_norm, NULL,
  7343. LLM_NORM_RMS, cb, -1);
  7344. cb(cur, "result_norm", -1);
  7345. // lm_head
  7346. cur = ggml_mul_mat(ctx0, model.output, cur);
  7347. cb(cur, "result_output", -1);
  7348. ggml_build_forward_expand(gf, cur);
  7349. return gf;
  7350. }
  7351. struct ggml_cgraph * build_qwen2moe() {
  7352. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7353. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7354. int32_t n_tokens = this->n_tokens;
  7355. const int64_t n_embd_head = hparams.n_embd_head_v;
  7356. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7357. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7358. struct ggml_tensor * cur;
  7359. struct ggml_tensor * inpL;
  7360. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7361. // inp_pos - contains the positions
  7362. struct ggml_tensor * inp_pos = build_inp_pos();
  7363. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7364. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7365. for (int il = 0; il < n_layer; ++il) {
  7366. struct ggml_tensor * inpSA = inpL;
  7367. // norm
  7368. cur = llm_build_norm(ctx0, inpL, hparams,
  7369. model.layers[il].attn_norm, NULL,
  7370. LLM_NORM_RMS, cb, il);
  7371. cb(cur, "attn_norm", il);
  7372. // self_attention
  7373. {
  7374. // compute Q and K and RoPE them
  7375. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7376. cb(Qcur, "Qcur", il);
  7377. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7378. cb(Qcur, "Qcur", il);
  7379. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7380. cb(Kcur, "Kcur", il);
  7381. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7382. cb(Kcur, "Kcur", il);
  7383. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7384. cb(Vcur, "Vcur", il);
  7385. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7386. cb(Vcur, "Vcur", il);
  7387. Qcur = ggml_rope_custom(
  7388. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7389. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7390. ext_factor, attn_factor, beta_fast, beta_slow
  7391. );
  7392. cb(Qcur, "Qcur", il);
  7393. Kcur = ggml_rope_custom(
  7394. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7395. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7396. ext_factor, attn_factor, beta_fast, beta_slow
  7397. );
  7398. cb(Kcur, "Kcur", il);
  7399. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7400. model.layers[il].wo, model.layers[il].bo,
  7401. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7402. }
  7403. if (il == n_layer - 1) {
  7404. // skip computing output for unused tokens
  7405. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7406. n_tokens = n_outputs;
  7407. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7408. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7409. }
  7410. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7411. cb(ffn_inp, "ffn_inp", il);
  7412. // MoE branch
  7413. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7414. model.layers[il].ffn_norm, NULL,
  7415. LLM_NORM_RMS, cb, il);
  7416. cb(cur, "ffn_norm", il);
  7417. ggml_tensor * moe_out =
  7418. llm_build_moe_ffn(ctx0, cur,
  7419. model.layers[il].ffn_gate_inp,
  7420. model.layers[il].ffn_up_exps,
  7421. model.layers[il].ffn_gate_exps,
  7422. model.layers[il].ffn_down_exps,
  7423. n_expert, n_expert_used,
  7424. LLM_FFN_SILU, false,
  7425. cb, il);
  7426. cb(cur, "ffn_moe_out", il);
  7427. // FFN shared expert
  7428. {
  7429. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7430. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7431. // sigmoid
  7432. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7433. cb(cur_gate, "ffn_shexp_gate", il);
  7434. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7435. model.layers[il].ffn_up_shexp, NULL,
  7436. model.layers[il].ffn_gate_shexp, NULL,
  7437. model.layers[il].ffn_down_shexp, NULL,
  7438. NULL,
  7439. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7440. cb(cur_ffn, "ffn_shexp", il);
  7441. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7442. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7443. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7444. cb(moe_out, "ffn_out", il);
  7445. cur = moe_out;
  7446. }
  7447. cur = ggml_add(ctx0, cur, ffn_inp);
  7448. cb(cur, "l_out", il);
  7449. // input for next layer
  7450. inpL = cur;
  7451. }
  7452. cur = inpL;
  7453. cur = llm_build_norm(ctx0, cur, hparams,
  7454. model.output_norm, NULL,
  7455. LLM_NORM_RMS, cb, -1);
  7456. cb(cur, "result_norm", -1);
  7457. // lm_head
  7458. cur = ggml_mul_mat(ctx0, model.output, cur);
  7459. cb(cur, "result_output", -1);
  7460. ggml_build_forward_expand(gf, cur);
  7461. return gf;
  7462. }
  7463. struct ggml_cgraph * build_phi2() {
  7464. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7465. const int64_t n_embd_head = hparams.n_embd_head_v;
  7466. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7467. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7468. struct ggml_tensor * cur;
  7469. struct ggml_tensor * attn_norm_output;
  7470. struct ggml_tensor * ffn_output;
  7471. struct ggml_tensor * inpL;
  7472. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7473. // inp_pos - contains the positions
  7474. struct ggml_tensor * inp_pos = build_inp_pos();
  7475. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7476. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7477. for (int il = 0; il < n_layer; ++il) {
  7478. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7479. model.layers[il].attn_norm,
  7480. model.layers[il].attn_norm_b,
  7481. LLM_NORM, cb, il);
  7482. cb(attn_norm_output, "attn_norm", il);
  7483. // self-attention
  7484. {
  7485. struct ggml_tensor * Qcur = nullptr;
  7486. struct ggml_tensor * Kcur = nullptr;
  7487. struct ggml_tensor * Vcur = nullptr;
  7488. if (model.layers[il].wqkv) {
  7489. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7490. cb(cur, "wqkv", il);
  7491. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7492. cb(cur, "bqkv", il);
  7493. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7494. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7495. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7496. } else {
  7497. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7498. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7499. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7500. }
  7501. cb(Qcur, "Qcur", il);
  7502. cb(Kcur, "Kcur", il);
  7503. cb(Vcur, "Vcur", il);
  7504. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7505. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7506. Qcur = ggml_rope_custom(
  7507. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7508. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7509. );
  7510. cb(Qcur, "Qcur", il);
  7511. // with phi2, we scale the Q to avoid precision issues
  7512. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7513. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7514. cb(Qcur, "Qcur", il);
  7515. Kcur = ggml_rope_custom(
  7516. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7517. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7518. );
  7519. cb(Kcur, "Kcur", il);
  7520. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7521. model.layers[il].wo, model.layers[il].bo,
  7522. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7523. }
  7524. if (il == n_layer - 1) {
  7525. // skip computing output for unused tokens
  7526. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7527. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7528. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7529. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7530. }
  7531. // FF
  7532. {
  7533. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7534. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7535. NULL, NULL,
  7536. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7537. NULL,
  7538. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7539. cb(ffn_output, "ffn_out", il);
  7540. }
  7541. cur = ggml_add(ctx0, cur, ffn_output);
  7542. cb(cur, "l_out", il);
  7543. cur = ggml_add(ctx0, cur, inpL);
  7544. cb(cur, "l_out", il);
  7545. inpL = cur;
  7546. }
  7547. cur = llm_build_norm(ctx0, inpL, hparams,
  7548. model.output_norm,
  7549. model.output_norm_b,
  7550. LLM_NORM, cb, -1);
  7551. cb(cur, "result_norm", -1);
  7552. cur = ggml_mul_mat(ctx0, model.output, cur);
  7553. cb(cur, "result_output_no_bias", -1);
  7554. cur = ggml_add(ctx0, cur, model.output_b);
  7555. cb(cur, "result_output", -1);
  7556. ggml_build_forward_expand(gf, cur);
  7557. return gf;
  7558. }
  7559. struct ggml_cgraph * build_phi3() {
  7560. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7561. const int64_t n_embd_head = hparams.n_embd_head_v;
  7562. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7563. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7564. struct ggml_tensor * cur;
  7565. struct ggml_tensor * inpL;
  7566. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7567. // inp_pos - contains the positions
  7568. struct ggml_tensor * inp_pos = build_inp_pos();
  7569. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7570. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7571. for (int il = 0; il < n_layer; ++il) {
  7572. auto residual = inpL;
  7573. // self-attention
  7574. {
  7575. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7576. model.layers[il].attn_norm,
  7577. NULL,
  7578. LLM_NORM_RMS, cb, il);
  7579. cb(attn_norm_output, "attn_norm", il);
  7580. struct ggml_tensor * Qcur = nullptr;
  7581. struct ggml_tensor * Kcur = nullptr;
  7582. struct ggml_tensor * Vcur = nullptr;
  7583. if (model.layers[il].wqkv) {
  7584. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7585. cb(cur, "wqkv", il);
  7586. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7587. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7588. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7589. }
  7590. else {
  7591. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7592. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7593. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7594. }
  7595. cb(Qcur, "Qcur", il);
  7596. cb(Kcur, "Kcur", il);
  7597. cb(Vcur, "Vcur", il);
  7598. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7599. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7600. Qcur = ggml_rope_custom(
  7601. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7602. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7603. );
  7604. cb(Qcur, "Qcur", il);
  7605. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  7606. cb(Qcur, "Qcur", il);
  7607. Kcur = ggml_rope_custom(
  7608. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  7609. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7610. );
  7611. cb(Kcur, "Kcur", il);
  7612. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7613. model.layers[il].wo, NULL,
  7614. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7615. }
  7616. if (il == n_layer - 1) {
  7617. // skip computing output for unused tokens
  7618. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  7619. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7620. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7621. }
  7622. cur = ggml_add(ctx0, cur, residual);
  7623. residual = cur;
  7624. cur = llm_build_norm(ctx0, cur, hparams,
  7625. model.layers[il].ffn_norm, NULL,
  7626. LLM_NORM_RMS, cb, il);
  7627. cb(cur, "ffn_norm", il);
  7628. // FF
  7629. // special-case: the up and gate tensors are merged into a single tensor
  7630. // TOOD: support into llm_build_ffn
  7631. {
  7632. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  7633. cb(up, "ffn_up", il);
  7634. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  7635. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  7636. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  7637. cb(y, "ffn_gate", il);
  7638. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  7639. cb(down, "ffn_down", il);
  7640. cur = down;
  7641. cb(cur, "ffn_out", il);
  7642. }
  7643. cur = ggml_add(ctx0, residual, cur);
  7644. cb(cur, "l_out", il);
  7645. inpL = cur;
  7646. }
  7647. cur = llm_build_norm(ctx0, inpL, hparams,
  7648. model.output_norm,
  7649. NULL,
  7650. LLM_NORM_RMS, cb, -1);
  7651. cb(cur, "result_norm", -1);
  7652. cur = ggml_mul_mat(ctx0, model.output, cur);
  7653. cb(cur, "result_output", -1);
  7654. ggml_build_forward_expand(gf, cur);
  7655. return gf;
  7656. }
  7657. struct ggml_cgraph * build_plamo() {
  7658. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7659. const int64_t n_embd_head = hparams.n_embd_head_v;
  7660. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7661. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7662. struct ggml_tensor * cur;
  7663. struct ggml_tensor * inpL;
  7664. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7665. // inp_pos - contains the positions
  7666. struct ggml_tensor * inp_pos = build_inp_pos();
  7667. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7668. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7669. for (int il = 0; il < n_layer; ++il) {
  7670. // norm
  7671. cur = llm_build_norm(ctx0, inpL, hparams,
  7672. model.layers[il].attn_norm, NULL,
  7673. LLM_NORM_RMS, cb, il);
  7674. cb(cur, "attn_norm", il);
  7675. struct ggml_tensor * attention_norm = cur;
  7676. // self-attention
  7677. {
  7678. // compute Q and K and RoPE them
  7679. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7680. cb(Qcur, "Qcur", il);
  7681. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7682. cb(Kcur, "Kcur", il);
  7683. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7684. cb(Vcur, "Vcur", il);
  7685. Qcur = ggml_rope_custom(
  7686. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  7687. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7688. ext_factor, attn_factor, beta_fast, beta_slow);
  7689. cb(Qcur, "Qcur", il);
  7690. Kcur = ggml_rope_custom(
  7691. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  7692. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7693. ext_factor, attn_factor, beta_fast, beta_slow);
  7694. cb(Kcur, "Kcur", il);
  7695. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7696. model.layers[il].wo, NULL,
  7697. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7698. }
  7699. struct ggml_tensor * sa_out = cur;
  7700. cur = attention_norm;
  7701. if (il == n_layer - 1) {
  7702. // skip computing output for unused tokens
  7703. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7704. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7705. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  7706. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7707. }
  7708. // feed-forward network
  7709. {
  7710. cur = llm_build_ffn(ctx0, cur,
  7711. model.layers[il].ffn_up, NULL,
  7712. model.layers[il].ffn_gate, NULL,
  7713. model.layers[il].ffn_down, NULL,
  7714. NULL,
  7715. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7716. cb(cur, "ffn_out", il);
  7717. }
  7718. cur = ggml_add(ctx0, cur, sa_out);
  7719. cb(cur, "l_out", il);
  7720. cur = ggml_add(ctx0, cur, inpL);
  7721. cb(cur, "l_out", il);
  7722. // input for next layer
  7723. inpL = cur;
  7724. }
  7725. cur = inpL;
  7726. cur = llm_build_norm(ctx0, cur, hparams,
  7727. model.output_norm, NULL,
  7728. LLM_NORM_RMS, cb, -1);
  7729. cb(cur, "result_norm", -1);
  7730. // lm_head
  7731. cur = ggml_mul_mat(ctx0, model.output, cur);
  7732. cb(cur, "result_output", -1);
  7733. ggml_build_forward_expand(gf, cur);
  7734. return gf;
  7735. }
  7736. struct ggml_cgraph * build_gpt2() {
  7737. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7738. const int64_t n_embd_head = hparams.n_embd_head_v;
  7739. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7740. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7741. struct ggml_tensor * cur;
  7742. struct ggml_tensor * pos;
  7743. struct ggml_tensor * inpL;
  7744. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7745. // inp_pos - contains the positions
  7746. struct ggml_tensor * inp_pos = build_inp_pos();
  7747. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7748. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7749. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7750. cb(pos, "pos_embd", -1);
  7751. inpL = ggml_add(ctx0, inpL, pos);
  7752. cb(inpL, "inpL", -1);
  7753. for (int il = 0; il < n_layer; ++il) {
  7754. cur = llm_build_norm(ctx0, inpL, hparams,
  7755. model.layers[il].attn_norm,
  7756. model.layers[il].attn_norm_b,
  7757. LLM_NORM, cb, il);
  7758. cb(cur, "attn_norm", il);
  7759. // self-attention
  7760. {
  7761. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7762. cb(cur, "wqkv", il);
  7763. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7764. cb(cur, "bqkv", il);
  7765. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7766. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7767. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7768. cb(Qcur, "Qcur", il);
  7769. cb(Kcur, "Kcur", il);
  7770. cb(Vcur, "Vcur", il);
  7771. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7772. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7773. model.layers[il].wo, model.layers[il].bo,
  7774. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7775. }
  7776. if (il == n_layer - 1) {
  7777. // skip computing output for unused tokens
  7778. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7779. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7780. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7781. }
  7782. // add the input
  7783. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7784. cb(ffn_inp, "ffn_inp", il);
  7785. // FF
  7786. {
  7787. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7788. model.layers[il].ffn_norm,
  7789. model.layers[il].ffn_norm_b,
  7790. LLM_NORM, cb, il);
  7791. cb(cur, "ffn_norm", il);
  7792. cur = llm_build_ffn(ctx0, cur,
  7793. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7794. NULL, NULL,
  7795. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7796. NULL,
  7797. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7798. cb(cur, "ffn_out", il);
  7799. }
  7800. inpL = ggml_add(ctx0, cur, ffn_inp);
  7801. cb(inpL, "l_out", il);
  7802. }
  7803. cur = llm_build_norm(ctx0, inpL, hparams,
  7804. model.output_norm,
  7805. model.output_norm_b,
  7806. LLM_NORM, cb, -1);
  7807. cb(cur, "result_norm", -1);
  7808. cur = ggml_mul_mat(ctx0, model.output, cur);
  7809. cb(cur, "result_output", -1);
  7810. ggml_build_forward_expand(gf, cur);
  7811. return gf;
  7812. }
  7813. struct ggml_cgraph * build_codeshell() {
  7814. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7815. const int64_t n_embd_head = hparams.n_embd_head_v;
  7816. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7817. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7818. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7819. struct ggml_tensor * cur;
  7820. struct ggml_tensor * inpL;
  7821. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7822. // inp_pos - contains the positions
  7823. struct ggml_tensor * inp_pos = build_inp_pos();
  7824. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7825. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7826. for (int il = 0; il < n_layer; ++il) {
  7827. cur = llm_build_norm(ctx0, inpL, hparams,
  7828. model.layers[il].attn_norm,
  7829. model.layers[il].attn_norm_b,
  7830. LLM_NORM, cb, il);
  7831. cb(cur, "attn_norm", il);
  7832. // self-attention
  7833. {
  7834. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7835. cb(cur, "wqkv", il);
  7836. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7837. cb(cur, "bqkv", il);
  7838. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7839. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7840. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7841. cb(tmpq, "tmpq", il);
  7842. cb(tmpk, "tmpk", il);
  7843. cb(Vcur, "Vcur", il);
  7844. struct ggml_tensor * Qcur = ggml_rope_custom(
  7845. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7846. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7847. ext_factor, attn_factor, beta_fast, beta_slow
  7848. );
  7849. cb(Qcur, "Qcur", il);
  7850. struct ggml_tensor * Kcur = ggml_rope_custom(
  7851. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7852. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7853. ext_factor, attn_factor, beta_fast, beta_slow
  7854. );
  7855. cb(Kcur, "Kcur", il);
  7856. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7857. model.layers[il].wo, model.layers[il].bo,
  7858. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7859. }
  7860. if (il == n_layer - 1) {
  7861. // skip computing output for unused tokens
  7862. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7863. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7864. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7865. }
  7866. // add the input
  7867. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7868. cb(ffn_inp, "ffn_inp", il);
  7869. // FF
  7870. {
  7871. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7872. model.layers[il].ffn_norm,
  7873. model.layers[il].ffn_norm_b,
  7874. LLM_NORM, cb, il);
  7875. cb(cur, "ffn_norm", il);
  7876. cur = llm_build_ffn(ctx0, cur,
  7877. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7878. NULL, NULL,
  7879. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7880. NULL,
  7881. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7882. cb(cur, "ffn_out", il);
  7883. }
  7884. inpL = ggml_add(ctx0, cur, ffn_inp);
  7885. cb(inpL, "l_out", il);
  7886. }
  7887. cur = llm_build_norm(ctx0, inpL, hparams,
  7888. model.output_norm,
  7889. model.output_norm_b,
  7890. LLM_NORM, cb, -1);
  7891. cb(cur, "result_norm", -1);
  7892. cur = ggml_mul_mat(ctx0, model.output, cur);
  7893. cb(cur, "result_output", -1);
  7894. ggml_build_forward_expand(gf, cur);
  7895. return gf;
  7896. }
  7897. struct ggml_cgraph * build_orion() {
  7898. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7899. const int64_t n_embd_head = hparams.n_embd_head_v;
  7900. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7901. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7902. struct ggml_tensor * cur;
  7903. struct ggml_tensor * inpL;
  7904. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7905. // inp_pos - contains the positions
  7906. struct ggml_tensor * inp_pos = build_inp_pos();
  7907. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7908. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7909. for (int il = 0; il < n_layer; ++il) {
  7910. struct ggml_tensor * inpSA = inpL;
  7911. // norm
  7912. cur = llm_build_norm(ctx0, inpL, hparams,
  7913. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7914. LLM_NORM, cb, il);
  7915. cb(cur, "attn_norm", il);
  7916. // self-attention
  7917. {
  7918. // compute Q and K and RoPE them
  7919. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7920. cb(Qcur, "Qcur", il);
  7921. // if (model.layers[il].bq) {
  7922. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7923. // cb(Qcur, "Qcur", il);
  7924. // }
  7925. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7926. cb(Kcur, "Kcur", il);
  7927. // if (model.layers[il].bk) {
  7928. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7929. // cb(Kcur, "Kcur", il);
  7930. // }
  7931. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7932. cb(Vcur, "Vcur", il);
  7933. // if (model.layers[il].bv) {
  7934. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7935. // cb(Vcur, "Vcur", il);
  7936. // }
  7937. Qcur = ggml_rope_custom(
  7938. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7939. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7940. ext_factor, attn_factor, beta_fast, beta_slow
  7941. );
  7942. cb(Qcur, "Qcur", il);
  7943. Kcur = ggml_rope_custom(
  7944. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7945. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7946. ext_factor, attn_factor, beta_fast, beta_slow
  7947. );
  7948. cb(Kcur, "Kcur", il);
  7949. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7950. model.layers[il].wo, NULL,
  7951. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7952. }
  7953. if (il == n_layer - 1) {
  7954. // skip computing output for unused tokens
  7955. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7956. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7957. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7958. }
  7959. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7960. cb(ffn_inp, "ffn_inp", il);
  7961. // feed-forward network
  7962. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7963. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7964. LLM_NORM, cb, il);
  7965. cb(cur, "ffn_norm", il);
  7966. cur = llm_build_ffn(ctx0, cur,
  7967. model.layers[il].ffn_up, NULL,
  7968. model.layers[il].ffn_gate, NULL,
  7969. model.layers[il].ffn_down, NULL,
  7970. NULL,
  7971. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7972. cb(cur, "ffn_out", il);
  7973. cur = ggml_add(ctx0, cur, ffn_inp);
  7974. cb(cur, "l_out", il);
  7975. // input for next layer
  7976. inpL = cur;
  7977. }
  7978. cur = inpL;
  7979. cur = llm_build_norm(ctx0, cur, hparams,
  7980. model.output_norm, model.output_norm_b,
  7981. LLM_NORM, cb, -1);
  7982. cb(cur, "result_norm", -1);
  7983. // lm_head
  7984. cur = ggml_mul_mat(ctx0, model.output, cur);
  7985. cb(cur, "result_output", -1);
  7986. ggml_build_forward_expand(gf, cur);
  7987. return gf;
  7988. }
  7989. struct ggml_cgraph * build_internlm2() {
  7990. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7991. const int64_t n_embd_head = hparams.n_embd_head_v;
  7992. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7993. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7994. struct ggml_tensor * cur;
  7995. struct ggml_tensor * inpL;
  7996. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7997. // inp_pos - contains the positions
  7998. struct ggml_tensor * inp_pos = build_inp_pos();
  7999. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8000. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8001. for (int il = 0; il < n_layer; ++il) {
  8002. struct ggml_tensor * inpSA = inpL;
  8003. // norm
  8004. cur = llm_build_norm(ctx0, inpL, hparams,
  8005. model.layers[il].attn_norm, NULL,
  8006. LLM_NORM_RMS, cb, il);
  8007. cb(cur, "attn_norm", il);
  8008. // self-attention
  8009. {
  8010. // compute Q and K and RoPE them
  8011. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8012. cb(Qcur, "Qcur", il);
  8013. if (model.layers[il].bq) {
  8014. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8015. cb(Qcur, "Qcur", il);
  8016. }
  8017. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8018. cb(Kcur, "Kcur", il);
  8019. if (model.layers[il].bk) {
  8020. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8021. cb(Kcur, "Kcur", il);
  8022. }
  8023. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8024. cb(Vcur, "Vcur", il);
  8025. if (model.layers[il].bv) {
  8026. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8027. cb(Vcur, "Vcur", il);
  8028. }
  8029. Qcur = ggml_rope_custom(
  8030. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8031. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8032. ext_factor, attn_factor, beta_fast, beta_slow
  8033. );
  8034. cb(Qcur, "Qcur", il);
  8035. Kcur = ggml_rope_custom(
  8036. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8037. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8038. ext_factor, attn_factor, beta_fast, beta_slow
  8039. );
  8040. cb(Kcur, "Kcur", il);
  8041. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8042. model.layers[il].wo, model.layers[il].bo,
  8043. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8044. }
  8045. if (il == n_layer - 1) {
  8046. // skip computing output for unused tokens
  8047. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8048. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8049. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8050. }
  8051. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8052. cb(ffn_inp, "ffn_inp", il);
  8053. // feed-forward network
  8054. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8055. model.layers[il].ffn_norm, NULL,
  8056. LLM_NORM_RMS, cb, il);
  8057. cb(cur, "ffn_norm", il);
  8058. cur = llm_build_ffn(ctx0, cur,
  8059. model.layers[il].ffn_up, NULL,
  8060. model.layers[il].ffn_gate, NULL,
  8061. model.layers[il].ffn_down, NULL,
  8062. NULL,
  8063. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8064. cb(cur, "ffn_out", il);
  8065. cur = ggml_add(ctx0, cur, ffn_inp);
  8066. cb(cur, "l_out", il);
  8067. // input for next layer
  8068. inpL = cur;
  8069. }
  8070. cur = inpL;
  8071. cur = llm_build_norm(ctx0, cur, hparams,
  8072. model.output_norm, NULL,
  8073. LLM_NORM_RMS, cb, -1);
  8074. cb(cur, "result_norm", -1);
  8075. // lm_head
  8076. cur = ggml_mul_mat(ctx0, model.output, cur);
  8077. cb(cur, "result_output", -1);
  8078. ggml_build_forward_expand(gf, cur);
  8079. return gf;
  8080. }
  8081. // ref: https://arxiv.org/abs/2203.03466
  8082. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8083. // based on the original build_llama() function
  8084. struct ggml_cgraph * build_minicpm() {
  8085. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8086. const int64_t n_embd_head = hparams.n_embd_head_v;
  8087. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8088. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8089. const int64_t n_embd = hparams.n_embd;
  8090. //TODO: if the model varies, these parameters need to be read from the model
  8091. const int64_t n_embd_base = 256;
  8092. const float scale_embd = 12.0f;
  8093. const float scale_depth = 1.4f;
  8094. struct ggml_tensor * cur;
  8095. struct ggml_tensor * inpL;
  8096. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8097. // scale the input embeddings
  8098. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8099. cb(inpL, "inp_scaled", -1);
  8100. // inp_pos - contains the positions
  8101. struct ggml_tensor * inp_pos = build_inp_pos();
  8102. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8103. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8104. for (int il = 0; il < n_layer; ++il) {
  8105. struct ggml_tensor * inpSA = inpL;
  8106. // norm
  8107. cur = llm_build_norm(ctx0, inpL, hparams,
  8108. model.layers[il].attn_norm, NULL,
  8109. LLM_NORM_RMS, cb, il);
  8110. cb(cur, "attn_norm", il);
  8111. // self-attention
  8112. {
  8113. // compute Q and K and RoPE them
  8114. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8115. cb(Qcur, "Qcur", il);
  8116. if (model.layers[il].bq) {
  8117. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8118. cb(Qcur, "Qcur", il);
  8119. }
  8120. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8121. cb(Kcur, "Kcur", il);
  8122. if (model.layers[il].bk) {
  8123. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8124. cb(Kcur, "Kcur", il);
  8125. }
  8126. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8127. cb(Vcur, "Vcur", il);
  8128. if (model.layers[il].bv) {
  8129. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8130. cb(Vcur, "Vcur", il);
  8131. }
  8132. Qcur = ggml_rope_custom(
  8133. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8134. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8135. ext_factor, attn_factor, beta_fast, beta_slow
  8136. );
  8137. cb(Qcur, "Qcur", il);
  8138. Kcur = ggml_rope_custom(
  8139. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8140. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8141. ext_factor, attn_factor, beta_fast, beta_slow
  8142. );
  8143. cb(Kcur, "Kcur", il);
  8144. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8145. model.layers[il].wo, model.layers[il].bo,
  8146. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8147. }
  8148. if (il == n_layer - 1) {
  8149. // skip computing output for unused tokens
  8150. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8151. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8152. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8153. }
  8154. // scale_res - scale the hidden states for residual connection
  8155. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8156. cur = ggml_scale(ctx0, cur, scale_res);
  8157. cb(cur, "hidden_scaled", -1);
  8158. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8159. cb(ffn_inp, "ffn_inp", il);
  8160. // feed-forward network
  8161. {
  8162. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8163. model.layers[il].ffn_norm, NULL,
  8164. LLM_NORM_RMS, cb, il);
  8165. cb(cur, "ffn_norm", il);
  8166. cur = llm_build_ffn(ctx0, cur,
  8167. model.layers[il].ffn_up, NULL,
  8168. model.layers[il].ffn_gate, NULL,
  8169. model.layers[il].ffn_down, NULL,
  8170. NULL,
  8171. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8172. cb(cur, "ffn_out", il);
  8173. }
  8174. // scale the hidden states for residual connection
  8175. cur = ggml_scale(ctx0, cur, scale_res);
  8176. cb(cur, "hidden_scaled_ffn", -1);
  8177. cur = ggml_add(ctx0, cur, ffn_inp);
  8178. cb(cur, "l_out", il);
  8179. // input for next layer
  8180. inpL = cur;
  8181. }
  8182. cur = inpL;
  8183. cur = llm_build_norm(ctx0, cur, hparams,
  8184. model.output_norm, NULL,
  8185. LLM_NORM_RMS, cb, -1);
  8186. cb(cur, "result_norm", -1);
  8187. // lm_head scaling
  8188. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8189. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8190. cb(cur, "lmhead_scaling", -1);
  8191. // lm_head
  8192. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  8193. cb(cur, "result_output", -1);
  8194. ggml_build_forward_expand(gf, cur);
  8195. return gf;
  8196. }
  8197. struct ggml_cgraph * build_gemma() {
  8198. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8199. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8200. struct ggml_tensor * cur;
  8201. struct ggml_tensor * inpL;
  8202. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8203. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8204. cb(inpL, "inp_scaled", -1);
  8205. // inp_pos - contains the positions
  8206. struct ggml_tensor * inp_pos = build_inp_pos();
  8207. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8208. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8209. for (int il = 0; il < n_layer; ++il) {
  8210. // norm
  8211. cur = llm_build_norm(ctx0, inpL, hparams,
  8212. model.layers[il].attn_norm, NULL,
  8213. LLM_NORM_RMS, cb, il);
  8214. cb(cur, "attn_norm", il);
  8215. // self-attention
  8216. {
  8217. // compute Q and K and RoPE them
  8218. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8219. cb(Qcur, "Qcur", il);
  8220. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8221. cb(Kcur, "Kcur", il);
  8222. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8223. cb(Vcur, "Vcur", il);
  8224. Qcur = ggml_rope_custom(
  8225. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  8226. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8227. ext_factor, attn_factor, beta_fast, beta_slow);
  8228. cb(Qcur, "Qcur", il);
  8229. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8230. cb(Qcur, "Qcur_scaled", il);
  8231. Kcur = ggml_rope_custom(
  8232. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  8233. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8234. ext_factor, attn_factor, beta_fast, beta_slow);
  8235. cb(Kcur, "Kcur", il);
  8236. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8237. model.layers[il].wo, NULL,
  8238. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8239. }
  8240. if (il == n_layer - 1) {
  8241. // skip computing output for unused tokens
  8242. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8243. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8244. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8245. }
  8246. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8247. cb(sa_out, "sa_out", il);
  8248. cur = llm_build_norm(ctx0, sa_out, hparams,
  8249. model.layers[il].ffn_norm, NULL,
  8250. LLM_NORM_RMS, cb, il);
  8251. cb(cur, "ffn_norm", il);
  8252. // feed-forward network
  8253. {
  8254. cur = llm_build_ffn(ctx0, cur,
  8255. model.layers[il].ffn_up, NULL,
  8256. model.layers[il].ffn_gate, NULL,
  8257. model.layers[il].ffn_down, NULL,
  8258. NULL,
  8259. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8260. cb(cur, "ffn_out", il);
  8261. }
  8262. cur = ggml_add(ctx0, cur, sa_out);
  8263. cb(cur, "l_out", il);
  8264. // input for next layer
  8265. inpL = cur;
  8266. }
  8267. cur = inpL;
  8268. cur = llm_build_norm(ctx0, cur, hparams,
  8269. model.output_norm, NULL,
  8270. LLM_NORM_RMS, cb, -1);
  8271. cb(cur, "result_norm", -1);
  8272. // lm_head
  8273. cur = ggml_mul_mat(ctx0, model.output, cur);
  8274. cb(cur, "result_output", -1);
  8275. ggml_build_forward_expand(gf, cur);
  8276. return gf;
  8277. }
  8278. struct ggml_cgraph * build_starcoder2() {
  8279. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8280. const int64_t n_embd_head = hparams.n_embd_head_v;
  8281. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8282. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8283. struct ggml_tensor * cur;
  8284. struct ggml_tensor * inpL;
  8285. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8286. // inp_pos - contains the positions
  8287. struct ggml_tensor * inp_pos = build_inp_pos();
  8288. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8289. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8290. for (int il = 0; il < n_layer; ++il) {
  8291. struct ggml_tensor * inpSA = inpL;
  8292. // norm
  8293. cur = llm_build_norm(ctx0, inpL, hparams,
  8294. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8295. LLM_NORM, cb, il);
  8296. cb(cur, "attn_norm", il);
  8297. // self-attention
  8298. {
  8299. // compute Q and K and RoPE them
  8300. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8301. cb(Qcur, "Qcur", il);
  8302. if (model.layers[il].bq) {
  8303. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8304. cb(Qcur, "Qcur", il);
  8305. }
  8306. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8307. cb(Kcur, "Kcur", il);
  8308. if (model.layers[il].bk) {
  8309. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8310. cb(Kcur, "Kcur", il);
  8311. }
  8312. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8313. cb(Vcur, "Vcur", il);
  8314. if (model.layers[il].bv) {
  8315. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8316. cb(Vcur, "Vcur", il);
  8317. }
  8318. Qcur = ggml_rope_custom(
  8319. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8320. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8321. ext_factor, attn_factor, beta_fast, beta_slow
  8322. );
  8323. cb(Qcur, "Qcur", il);
  8324. Kcur = ggml_rope_custom(
  8325. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8326. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8327. ext_factor, attn_factor, beta_fast, beta_slow
  8328. );
  8329. cb(Kcur, "Kcur", il);
  8330. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8331. model.layers[il].wo, model.layers[il].bo,
  8332. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8333. }
  8334. if (il == n_layer - 1) {
  8335. // skip computing output for unused tokens
  8336. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8337. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8338. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8339. }
  8340. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8341. cb(ffn_inp, "ffn_inp", il);
  8342. // feed-forward network
  8343. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8344. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8345. LLM_NORM, cb, il);
  8346. cb(cur, "ffn_norm", il);
  8347. cur = llm_build_ffn(ctx0, cur,
  8348. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8349. NULL, NULL,
  8350. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8351. NULL,
  8352. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8353. cb(cur, "ffn_out", il);
  8354. cur = ggml_add(ctx0, cur, ffn_inp);
  8355. cb(cur, "l_out", il);
  8356. // input for next layer
  8357. inpL = cur;
  8358. }
  8359. cur = inpL;
  8360. cur = llm_build_norm(ctx0, cur, hparams,
  8361. model.output_norm, model.output_norm_b,
  8362. LLM_NORM, cb, -1);
  8363. cb(cur, "result_norm", -1);
  8364. // lm_head
  8365. cur = ggml_mul_mat(ctx0, model.output, cur);
  8366. cb(cur, "result_output", -1);
  8367. ggml_build_forward_expand(gf, cur);
  8368. return gf;
  8369. }
  8370. struct ggml_cgraph * build_mamba() {
  8371. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8372. const int64_t d_model = n_embd;
  8373. const int64_t d_conv = hparams.ssm_d_conv;
  8374. const int64_t d_inner = hparams.ssm_d_inner;
  8375. GGML_ASSERT(2 * d_model == d_inner);
  8376. const int64_t d_state = hparams.ssm_d_state;
  8377. const int64_t dt_rank = hparams.ssm_dt_rank;
  8378. struct ggml_tensor * cur;
  8379. struct ggml_tensor * inpL;
  8380. // {n_embd, n_tokens}
  8381. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8382. struct ggml_tensor * state_mask = build_inp_s_mask();
  8383. struct ggml_tensor * state_seq = build_inp_s_seq();
  8384. for (int il = 0; il < n_layer; ++il) {
  8385. // (ab)using the KV cache to store the states
  8386. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8387. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8388. // clear states of sequences which are starting at the beginning of this batch
  8389. {
  8390. conv_states = ggml_mul(ctx0,
  8391. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8392. state_mask);
  8393. ssm_states = ggml_mul(ctx0,
  8394. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8395. state_mask);
  8396. }
  8397. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8398. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8399. // norm
  8400. cur = llm_build_norm(ctx0, inpL, hparams,
  8401. model.layers[il].attn_norm, NULL,
  8402. LLM_NORM_RMS, cb, il);
  8403. cb(cur, "attn_norm", il);
  8404. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8405. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8406. // split the above in two
  8407. // => {d_inner, n_tokens}
  8408. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8409. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8410. // conv
  8411. {
  8412. // Custom operator which is needed only to ease simultaneous sequence processing.
  8413. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8414. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8415. // then element-wise multiply that with the conv1d weigth,
  8416. // then sum the elements of each row,
  8417. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8418. // then permute away the ne[0] dimension,
  8419. // and then you're left with the resulting x tensor.
  8420. // The new conv_states is the last (d_conv - 1) columns
  8421. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8422. // For simultaneous sequences, it's more complicated.
  8423. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8424. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8425. ggml_build_forward_expand(gf,
  8426. ggml_cpy(ctx0,
  8427. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8428. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8429. // extract x from x_conv
  8430. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8431. // bias
  8432. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8433. x = ggml_silu(ctx0, x);
  8434. }
  8435. // ssm
  8436. {
  8437. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8438. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8439. // split
  8440. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8441. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8442. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8443. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8444. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8445. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8446. // Custom operator to optimize the parallel associative scan
  8447. // as described in the Annex D of the Mamba paper.
  8448. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8449. // because only a single tensor can be returned.
  8450. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8451. // store last states (the second part of y_ssm_states)
  8452. ggml_build_forward_expand(gf,
  8453. ggml_cpy(ctx0,
  8454. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8455. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8456. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8457. if (il == n_layer - 1) {
  8458. // skip computing output for unused tokens
  8459. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8460. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8461. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8462. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8463. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8464. }
  8465. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8466. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8467. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8468. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8469. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8470. }
  8471. // residual
  8472. cur = ggml_add(ctx0, cur, inpL);
  8473. cb(cur, "l_out", il);
  8474. // input for next layer
  8475. inpL = cur;
  8476. }
  8477. // final rmsnorm
  8478. cur = llm_build_norm(ctx0, inpL, hparams,
  8479. model.output_norm, NULL,
  8480. LLM_NORM_RMS, cb, -1);
  8481. cb(cur, "result_norm", -1);
  8482. // lm_head
  8483. cur = ggml_mul_mat(ctx0, model.output, cur);
  8484. cb(cur, "result_output", -1);
  8485. ggml_build_forward_expand(gf, cur);
  8486. return gf;
  8487. }
  8488. struct ggml_cgraph * build_command_r() {
  8489. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8490. const int64_t n_embd_head = hparams.n_embd_head_v;
  8491. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8492. const float f_logit_scale = hparams.f_logit_scale;
  8493. struct ggml_tensor * cur;
  8494. struct ggml_tensor * inpL;
  8495. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8496. // inp_pos - contains the positions
  8497. struct ggml_tensor * inp_pos = build_inp_pos();
  8498. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8499. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8500. for (int il = 0; il < n_layer; ++il) {
  8501. // norm
  8502. cur = llm_build_norm(ctx0, inpL, hparams,
  8503. model.layers[il].attn_norm, NULL,
  8504. LLM_NORM, cb, il);
  8505. cb(cur, "attn_norm", il);
  8506. struct ggml_tensor * ffn_inp = cur;
  8507. // self-attention
  8508. {
  8509. // compute Q and K and RoPE them
  8510. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8511. cb(Qcur, "Qcur", il);
  8512. if (model.layers[il].bq) {
  8513. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8514. cb(Qcur, "Qcur", il);
  8515. }
  8516. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8517. cb(Kcur, "Kcur", il);
  8518. if (model.layers[il].bk) {
  8519. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8520. cb(Kcur, "Kcur", il);
  8521. }
  8522. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8523. cb(Vcur, "Vcur", il);
  8524. if (model.layers[il].bv) {
  8525. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8526. cb(Vcur, "Vcur", il);
  8527. }
  8528. if (model.layers[il].attn_q_norm) {
  8529. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8530. ggml_element_size(Qcur) * n_embd_head,
  8531. ggml_element_size(Qcur) * n_embd_head * n_head,
  8532. 0);
  8533. cb(Qcur, "Qcur", il);
  8534. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8535. ggml_element_size(Kcur) * n_embd_head,
  8536. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8537. 0);
  8538. cb(Kcur, "Kcur", il);
  8539. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8540. model.layers[il].attn_q_norm,
  8541. NULL,
  8542. LLM_NORM, cb, il);
  8543. cb(Qcur, "Qcur", il);
  8544. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8545. model.layers[il].attn_k_norm,
  8546. NULL,
  8547. LLM_NORM, cb, il);
  8548. cb(Kcur, "Kcur", il);
  8549. }
  8550. Qcur = ggml_rope_custom(
  8551. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8552. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8553. ext_factor, attn_factor, beta_fast, beta_slow
  8554. );
  8555. cb(Qcur, "Qcur", il);
  8556. Kcur = ggml_rope_custom(
  8557. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8558. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8559. ext_factor, attn_factor, beta_fast, beta_slow
  8560. );
  8561. cb(Kcur, "Kcur", il);
  8562. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8563. model.layers[il].wo, model.layers[il].bo,
  8564. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8565. }
  8566. if (il == n_layer - 1) {
  8567. // skip computing output for unused tokens
  8568. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8569. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8570. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8571. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8572. }
  8573. struct ggml_tensor * attn_out = cur;
  8574. // feed-forward network
  8575. {
  8576. cur = llm_build_ffn(ctx0, ffn_inp,
  8577. model.layers[il].ffn_up, NULL,
  8578. model.layers[il].ffn_gate, NULL,
  8579. model.layers[il].ffn_down, NULL,
  8580. NULL,
  8581. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8582. cb(cur, "ffn_out", il);
  8583. }
  8584. // add together residual + FFN + self-attention
  8585. cur = ggml_add(ctx0, cur, inpL);
  8586. cur = ggml_add(ctx0, cur, attn_out);
  8587. cb(cur, "l_out", il);
  8588. // input for next layer
  8589. inpL = cur;
  8590. }
  8591. cur = inpL;
  8592. cur = llm_build_norm(ctx0, cur, hparams,
  8593. model.output_norm, NULL,
  8594. LLM_NORM, cb, -1);
  8595. cb(cur, "result_norm", -1);
  8596. // lm_head
  8597. cur = ggml_mul_mat(ctx0, model.output, cur);
  8598. if (f_logit_scale) {
  8599. cur = ggml_scale(ctx0, cur, f_logit_scale);
  8600. }
  8601. cb(cur, "result_output", -1);
  8602. ggml_build_forward_expand(gf, cur);
  8603. return gf;
  8604. }
  8605. // ref: https://allenai.org/olmo
  8606. // based on the original build_llama() function, changes:
  8607. // * non-parametric layer norm
  8608. // * clamp qkv
  8609. // * removed bias
  8610. // * removed MoE
  8611. struct ggml_cgraph * build_olmo() {
  8612. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8613. // mutable variable, needed during the last layer of the computation to skip unused tokens
  8614. int32_t n_tokens = this->n_tokens;
  8615. const int64_t n_embd_head = hparams.n_embd_head_v;
  8616. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8617. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8618. struct ggml_tensor * cur;
  8619. struct ggml_tensor * inpL;
  8620. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8621. // inp_pos - contains the positions
  8622. struct ggml_tensor * inp_pos = build_inp_pos();
  8623. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8624. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8625. for (int il = 0; il < n_layer; ++il) {
  8626. struct ggml_tensor * inpSA = inpL;
  8627. // norm
  8628. cur = llm_build_norm(ctx0, inpL, hparams,
  8629. NULL, NULL,
  8630. LLM_NORM, cb, il);
  8631. cb(cur, "attn_norm", il);
  8632. // self-attention
  8633. {
  8634. // compute Q and K and RoPE them
  8635. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8636. cb(Qcur, "Qcur", il);
  8637. if (hparams.f_clamp_kqv > 0.0f) {
  8638. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8639. cb(Qcur, "Qcur", il);
  8640. }
  8641. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8642. cb(Kcur, "Kcur", il);
  8643. if (hparams.f_clamp_kqv > 0.0f) {
  8644. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8645. cb(Kcur, "Kcur", il);
  8646. }
  8647. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8648. cb(Vcur, "Vcur", il);
  8649. if (hparams.f_clamp_kqv > 0.0f) {
  8650. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  8651. cb(Vcur, "Vcur", il);
  8652. }
  8653. Qcur = ggml_rope_custom(
  8654. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  8655. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8656. ext_factor, attn_factor, beta_fast, beta_slow
  8657. );
  8658. cb(Qcur, "Qcur", il);
  8659. Kcur = ggml_rope_custom(
  8660. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  8661. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  8662. ext_factor, attn_factor, beta_fast, beta_slow
  8663. );
  8664. cb(Kcur, "Kcur", il);
  8665. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  8666. model.layers[il].wo, nullptr,
  8667. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8668. }
  8669. if (il == n_layer - 1) {
  8670. // skip computing output for unused tokens
  8671. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8672. n_tokens = n_outputs;
  8673. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8674. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8675. }
  8676. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8677. cb(ffn_inp, "ffn_inp", il);
  8678. // feed-forward network
  8679. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8680. NULL, NULL,
  8681. LLM_NORM, cb, il);
  8682. cb(cur, "ffn_norm", il);
  8683. cur = llm_build_ffn(ctx0, cur,
  8684. model.layers[il].ffn_up, NULL,
  8685. model.layers[il].ffn_gate, NULL,
  8686. model.layers[il].ffn_down, NULL,
  8687. NULL,
  8688. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8689. cb(cur, "ffn_out", il);
  8690. cur = ggml_add(ctx0, cur, ffn_inp);
  8691. cb(cur, "ffn_out", il);
  8692. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  8693. if (layer_dir != nullptr) {
  8694. cur = ggml_add(ctx0, cur, layer_dir);
  8695. }
  8696. cb(cur, "l_out", il);
  8697. // input for next layer
  8698. inpL = cur;
  8699. }
  8700. cur = inpL;
  8701. cur = llm_build_norm(ctx0, cur, hparams,
  8702. NULL, NULL,
  8703. LLM_NORM, cb, -1);
  8704. cb(cur, "result_norm", -1);
  8705. // lm_head
  8706. cur = ggml_mul_mat(ctx0, model.output, cur);
  8707. cb(cur, "result_output", -1);
  8708. ggml_build_forward_expand(gf, cur);
  8709. return gf;
  8710. }
  8711. };
  8712. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  8713. llama_batch dummy;
  8714. dummy.n_tokens = 0;
  8715. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8716. struct llm_build_context llm(lctx, dummy, cb, false);
  8717. llm.init();
  8718. struct ggml_cgraph * result = llm.build_defrag(ids);
  8719. llm.free();
  8720. return result;
  8721. }
  8722. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  8723. llama_batch dummy;
  8724. dummy.n_tokens = 0;
  8725. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8726. struct llm_build_context llm(lctx, dummy, cb, false);
  8727. llm.init();
  8728. struct ggml_cgraph * result = llm.build_k_shift();
  8729. llm.free();
  8730. return result;
  8731. }
  8732. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  8733. llama_batch dummy;
  8734. dummy.n_tokens = 0;
  8735. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  8736. struct llm_build_context llm(lctx, dummy, cb, false);
  8737. llm.init();
  8738. struct ggml_cgraph * result = llm.build_s_copy();
  8739. llm.free();
  8740. return result;
  8741. }
  8742. static struct ggml_cgraph * llama_build_graph(
  8743. llama_context & lctx,
  8744. const llama_batch & batch,
  8745. bool worst_case) {
  8746. const auto & model = lctx.model;
  8747. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  8748. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  8749. if (il >= 0) {
  8750. ggml_format_name(cur, "%s-%d", name, il);
  8751. } else {
  8752. ggml_set_name(cur, name);
  8753. }
  8754. if (!lctx.cparams.offload_kqv) {
  8755. if (strcmp(name, "kqv_merged_cont") == 0) {
  8756. // all nodes between the KV store and the attention output are run on the CPU
  8757. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  8758. }
  8759. }
  8760. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  8761. // FIXME: fix in ggml_backend_sched
  8762. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  8763. if (batch.n_tokens < 32 || full_offload) {
  8764. if (il != -1 && strcmp(name, "norm") == 0) {
  8765. for (auto * backend : lctx.backends) {
  8766. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  8767. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  8768. break;
  8769. }
  8770. }
  8771. }
  8772. }
  8773. };
  8774. struct ggml_cgraph * result = NULL;
  8775. struct llm_build_context llm(lctx, batch, cb, worst_case);
  8776. llm.init();
  8777. switch (model.arch) {
  8778. case LLM_ARCH_LLAMA:
  8779. {
  8780. result = llm.build_llama();
  8781. } break;
  8782. case LLM_ARCH_BAICHUAN:
  8783. {
  8784. result = llm.build_baichuan();
  8785. } break;
  8786. case LLM_ARCH_FALCON:
  8787. {
  8788. result = llm.build_falcon();
  8789. } break;
  8790. case LLM_ARCH_GROK:
  8791. {
  8792. result = llm.build_grok();
  8793. } break;
  8794. case LLM_ARCH_STARCODER:
  8795. {
  8796. result = llm.build_starcoder();
  8797. } break;
  8798. case LLM_ARCH_PERSIMMON:
  8799. {
  8800. result = llm.build_persimmon();
  8801. } break;
  8802. case LLM_ARCH_REFACT:
  8803. {
  8804. result = llm.build_refact();
  8805. } break;
  8806. case LLM_ARCH_BERT:
  8807. case LLM_ARCH_NOMIC_BERT:
  8808. {
  8809. result = llm.build_bert();
  8810. } break;
  8811. case LLM_ARCH_BLOOM:
  8812. {
  8813. result = llm.build_bloom();
  8814. } break;
  8815. case LLM_ARCH_MPT:
  8816. {
  8817. result = llm.build_mpt();
  8818. } break;
  8819. case LLM_ARCH_STABLELM:
  8820. {
  8821. result = llm.build_stablelm();
  8822. } break;
  8823. case LLM_ARCH_QWEN:
  8824. {
  8825. result = llm.build_qwen();
  8826. } break;
  8827. case LLM_ARCH_QWEN2:
  8828. {
  8829. result = llm.build_qwen2();
  8830. } break;
  8831. case LLM_ARCH_QWEN2MOE:
  8832. {
  8833. result = llm.build_qwen2moe();
  8834. } break;
  8835. case LLM_ARCH_PHI2:
  8836. {
  8837. result = llm.build_phi2();
  8838. } break;
  8839. case LLM_ARCH_PHI3:
  8840. {
  8841. result = llm.build_phi3();
  8842. } break;
  8843. case LLM_ARCH_PLAMO:
  8844. {
  8845. result = llm.build_plamo();
  8846. } break;
  8847. case LLM_ARCH_GPT2:
  8848. {
  8849. result = llm.build_gpt2();
  8850. } break;
  8851. case LLM_ARCH_CODESHELL:
  8852. {
  8853. result = llm.build_codeshell();
  8854. } break;
  8855. case LLM_ARCH_ORION:
  8856. {
  8857. result = llm.build_orion();
  8858. } break;
  8859. case LLM_ARCH_INTERNLM2:
  8860. {
  8861. result = llm.build_internlm2();
  8862. } break;
  8863. case LLM_ARCH_MINICPM:
  8864. {
  8865. result = llm.build_minicpm();
  8866. } break;
  8867. case LLM_ARCH_GEMMA:
  8868. {
  8869. result = llm.build_gemma();
  8870. } break;
  8871. case LLM_ARCH_STARCODER2:
  8872. {
  8873. result = llm.build_starcoder2();
  8874. } break;
  8875. case LLM_ARCH_MAMBA:
  8876. {
  8877. result = llm.build_mamba();
  8878. } break;
  8879. case LLM_ARCH_XVERSE:
  8880. {
  8881. result = llm.build_xverse();
  8882. } break;
  8883. case LLM_ARCH_COMMAND_R:
  8884. {
  8885. result = llm.build_command_r();
  8886. } break;
  8887. case LLM_ARCH_DBRX:
  8888. {
  8889. result = llm.build_dbrx();
  8890. } break;
  8891. case LLM_ARCH_OLMO:
  8892. {
  8893. result = llm.build_olmo();
  8894. } break;
  8895. default:
  8896. GGML_ASSERT(false);
  8897. }
  8898. llm.free();
  8899. return result;
  8900. }
  8901. static void llama_set_k_shift(llama_context & lctx) {
  8902. const int64_t kv_size = lctx.kv_self.size;
  8903. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8904. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8905. for (int i = 0; i < kv_size; ++i) {
  8906. data[i] = lctx.kv_self.cells[i].delta;
  8907. }
  8908. }
  8909. static void llama_set_s_copy(llama_context & lctx) {
  8910. const int64_t kv_size = lctx.kv_self.size;
  8911. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8912. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8913. for (int i = 0; i < kv_size; ++i) {
  8914. data[i] = lctx.kv_self.cells[i].src;
  8915. }
  8916. }
  8917. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8918. //
  8919. // set input data
  8920. //
  8921. const auto & hparams = lctx.model.hparams;
  8922. const auto & cparams = lctx.cparams;
  8923. const auto & kv_self = lctx.kv_self;
  8924. if (batch.token) {
  8925. const int64_t n_tokens = batch.n_tokens;
  8926. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8927. }
  8928. if (batch.embd) {
  8929. const int64_t n_embd = hparams.n_embd;
  8930. const int64_t n_tokens = batch.n_tokens;
  8931. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8932. }
  8933. if (batch.pos && lctx.inp_pos) {
  8934. const int64_t n_tokens = batch.n_tokens;
  8935. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8936. }
  8937. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8938. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8939. const int64_t n_tokens = batch.n_tokens;
  8940. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8941. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8942. if (lctx.n_outputs == n_tokens) {
  8943. for (int i = 0; i < n_tokens; ++i) {
  8944. data[i] = i;
  8945. }
  8946. } else if (batch.logits) {
  8947. int32_t n_outputs = 0;
  8948. for (int i = 0; i < n_tokens; ++i) {
  8949. if (batch.logits[i]) {
  8950. data[n_outputs++] = i;
  8951. }
  8952. }
  8953. // the graph needs to have been passed the correct number of outputs
  8954. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8955. } else if (lctx.n_outputs == 1) {
  8956. // only keep last output
  8957. data[0] = n_tokens - 1;
  8958. } else {
  8959. GGML_ASSERT(lctx.n_outputs == 0);
  8960. }
  8961. }
  8962. GGML_ASSERT(
  8963. // (!a || b) is a logical implication (a -> b)
  8964. // !hparams.causal_attn -> !cparams.causal_attn
  8965. (hparams.causal_attn || !cparams.causal_attn) &&
  8966. "causal attention with embedding models is not supported"
  8967. );
  8968. if (lctx.inp_KQ_mask) {
  8969. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8970. if (cparams.causal_attn) {
  8971. const int64_t n_kv = kv_self.n;
  8972. const int64_t n_tokens = batch.n_tokens;
  8973. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8974. float * data = (float *) lctx.inp_KQ_mask->data;
  8975. // For causal attention, use only the previous KV cells
  8976. // of the correct sequence for each token of the batch.
  8977. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8978. for (int h = 0; h < 1; ++h) {
  8979. for (int j = 0; j < n_tokens; ++j) {
  8980. const llama_pos pos = batch.pos[j];
  8981. const llama_seq_id seq_id = batch.seq_id[j][0];
  8982. for (int i = 0; i < n_kv; ++i) {
  8983. float f;
  8984. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8985. f = -INFINITY;
  8986. } else {
  8987. f = 0.0f;
  8988. }
  8989. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8990. }
  8991. }
  8992. }
  8993. } else {
  8994. // when using kv cache, the mask needs to match the kv cache size
  8995. const int64_t n_tokens = batch.n_tokens;
  8996. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8997. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8998. float * data = (float *) lctx.inp_KQ_mask->data;
  8999. for (int h = 0; h < 1; ++h) {
  9000. for (int j = 0; j < n_tokens; ++j) {
  9001. const llama_seq_id seq_id = batch.seq_id[j][0];
  9002. for (int i = 0; i < n_tokens; ++i) {
  9003. float f = -INFINITY;
  9004. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9005. if (batch.seq_id[i][s] == seq_id) {
  9006. f = 0.0f;
  9007. break;
  9008. }
  9009. }
  9010. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9011. }
  9012. for (int i = n_tokens; i < n_stride; ++i) {
  9013. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9014. }
  9015. }
  9016. }
  9017. }
  9018. }
  9019. if (hparams.need_kq_pos) {
  9020. const int64_t n_kv = kv_self.n;
  9021. GGML_ASSERT(lctx.inp_KQ_pos);
  9022. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  9023. float * data = (float *) lctx.inp_KQ_pos->data;
  9024. for (int i = 0; i < n_kv; ++i) {
  9025. data[i] = float(lctx.kv_self.cells[i].pos);
  9026. }
  9027. }
  9028. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9029. const int64_t n_tokens = batch.n_tokens;
  9030. GGML_ASSERT(lctx.inp_mean);
  9031. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9032. float * data = (float *) lctx.inp_mean->data;
  9033. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9034. std::vector<uint64_t> sum(n_tokens, 0);
  9035. for (int i = 0; i < n_tokens; ++i) {
  9036. const llama_seq_id seq_id = batch.seq_id[i][0];
  9037. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9038. sum[seq_id] += 1;
  9039. }
  9040. std::vector<float> div(n_tokens, 0.0f);
  9041. for (int i = 0; i < n_tokens; ++i) {
  9042. const uint64_t s = sum[i];
  9043. if (s > 0) {
  9044. div[i] = 1.0f/float(s);
  9045. }
  9046. }
  9047. for (int i = 0; i < n_tokens; ++i) {
  9048. const llama_seq_id seq_id = batch.seq_id[i][0];
  9049. data[seq_id*n_tokens + i] = div[seq_id];
  9050. }
  9051. }
  9052. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9053. const int64_t n_tokens = batch.n_tokens;
  9054. GGML_ASSERT(lctx.inp_cls);
  9055. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9056. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9057. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9058. for (int i = 0; i < n_tokens; ++i) {
  9059. const llama_seq_id seq_id = batch.seq_id[i][0];
  9060. const llama_pos pos = batch.pos[i];
  9061. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9062. if (pos == 0) {
  9063. data[seq_id] = i;
  9064. }
  9065. }
  9066. }
  9067. if (kv_self.recurrent) {
  9068. const int64_t n_kv = kv_self.n;
  9069. if (lctx.inp_s_mask) {
  9070. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9071. float * data = (float *) lctx.inp_s_mask->data;
  9072. // states which are not affected by the current batch are left untouched
  9073. for (int i = 0; i < n_kv; ++i) {
  9074. llama_seq_id seq_id = i + lctx.kv_self.head;
  9075. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9076. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9077. data[i] = (float) has_self_seq;
  9078. // ensure current sequences will be kept
  9079. if (!has_self_seq && kv_cell.pos >= 0) {
  9080. kv_cell.seq_id.insert(seq_id);
  9081. }
  9082. }
  9083. }
  9084. // For Mamba (and other recurrent architectures),
  9085. // update the correct state(s)/sequence(s) for each token of the batch.
  9086. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9087. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9088. if (lctx.inp_s_seq) {
  9089. const int64_t n_tokens = batch.n_tokens;
  9090. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9091. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9092. for (int j = 0; j < n_tokens; ++j) {
  9093. const int32_t n_seq = batch.n_seq_id[j];
  9094. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9095. for (int i = 0; i < n_kv; ++i) {
  9096. if (i < n_seq) {
  9097. // for this type of model, the head is the minimum seq_id of the batch
  9098. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9099. } else {
  9100. data[j*n_kv + i] = -1;
  9101. }
  9102. }
  9103. }
  9104. }
  9105. }
  9106. }
  9107. // Make sure enough space is available for outputs.
  9108. // Returns max number of outputs for which space was reserved.
  9109. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9110. const auto & cparams = lctx.cparams;
  9111. const auto & hparams = lctx.model.hparams;
  9112. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9113. const auto n_batch = cparams.n_batch;
  9114. const auto n_vocab = hparams.n_vocab;
  9115. const auto n_embd = hparams.n_embd;
  9116. // TODO: use a per-batch flag for logits presence instead
  9117. const bool has_logits = cparams.causal_attn;
  9118. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9119. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9120. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9121. if (lctx.output_ids.empty()) {
  9122. // init, never resized afterwards
  9123. lctx.output_ids.resize(n_batch);
  9124. }
  9125. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9126. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9127. // alloc only when more than the current capacity is required
  9128. // TODO: also consider shrinking the buffer
  9129. if (!lctx.buf_output || prev_size < new_size) {
  9130. if (lctx.buf_output) {
  9131. #ifndef NDEBUG
  9132. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9133. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9134. #endif
  9135. ggml_backend_buffer_free(lctx.buf_output);
  9136. lctx.buf_output = nullptr;
  9137. lctx.logits = nullptr;
  9138. lctx.embd = nullptr;
  9139. }
  9140. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9141. if (lctx.buf_output == nullptr) {
  9142. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9143. return 0;
  9144. }
  9145. }
  9146. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9147. lctx.logits = has_logits ? output_base : nullptr;
  9148. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9149. lctx.output_size = n_outputs_max;
  9150. lctx.logits_size = logits_size;
  9151. lctx.embd_size = embd_size;
  9152. // set all ids as invalid (negative)
  9153. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9154. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9155. lctx.n_outputs = 0;
  9156. return n_outputs_max;
  9157. }
  9158. static void llama_graph_compute(
  9159. llama_context & lctx,
  9160. ggml_cgraph * gf,
  9161. int n_threads) {
  9162. #ifdef GGML_USE_MPI
  9163. const int64_t n_layer = lctx.model.hparams.n_layer;
  9164. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  9165. #endif
  9166. #ifdef GGML_USE_METAL
  9167. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9168. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9169. }
  9170. #endif
  9171. if (lctx.backend_cpu != nullptr) {
  9172. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9173. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9174. }
  9175. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9176. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9177. #ifdef GGML_USE_MPI
  9178. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  9179. #endif
  9180. }
  9181. // decode a batch of tokens by evaluating the transformer
  9182. //
  9183. // - lctx: llama context
  9184. // - batch: batch to evaluate
  9185. //
  9186. // return 0 on success
  9187. // return positive int on warning
  9188. // return negative int on error
  9189. //
  9190. static int llama_decode_internal(
  9191. llama_context & lctx,
  9192. llama_batch batch_all) { // TODO: rename back to batch
  9193. const uint32_t n_tokens_all = batch_all.n_tokens;
  9194. if (n_tokens_all == 0) {
  9195. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  9196. return -1;
  9197. }
  9198. const auto & model = lctx.model;
  9199. const auto & hparams = model.hparams;
  9200. const auto & cparams = lctx.cparams;
  9201. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  9202. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  9203. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  9204. if (lctx.t_compute_start_us == 0) {
  9205. lctx.t_compute_start_us = ggml_time_us();
  9206. }
  9207. lctx.n_queued_tokens += n_tokens_all;
  9208. #ifdef GGML_USE_MPI
  9209. // TODO: needs fix after #3228
  9210. GGML_ASSERT(false && "not implemented");
  9211. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  9212. #endif
  9213. auto & kv_self = lctx.kv_self;
  9214. const int64_t n_embd = hparams.n_embd;
  9215. const int64_t n_vocab = hparams.n_vocab;
  9216. uint32_t n_outputs = 0;
  9217. uint32_t n_outputs_prev = 0;
  9218. const auto n_ubatch = cparams.n_ubatch;
  9219. std::vector<llama_pos> pos;
  9220. std::vector<int32_t> n_seq_id;
  9221. std::vector<llama_seq_id *> seq_id_arr;
  9222. std::vector<std::vector<llama_seq_id>> seq_id;
  9223. // count outputs
  9224. if (batch_all.logits) {
  9225. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9226. n_outputs += batch_all.logits[i] != 0;
  9227. }
  9228. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  9229. n_outputs = n_tokens_all;
  9230. } else {
  9231. // keep last output only
  9232. n_outputs = 1;
  9233. }
  9234. // reserve output buffer
  9235. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  9236. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  9237. return -2;
  9238. };
  9239. // set output mappings
  9240. if (batch_all.logits) {
  9241. int32_t i_logits = 0;
  9242. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  9243. if (batch_all.logits[i]) {
  9244. lctx.output_ids[i] = i_logits++;
  9245. }
  9246. }
  9247. } else {
  9248. for (uint32_t i = 0; i < n_outputs; ++i) {
  9249. lctx.output_ids[i] = i;
  9250. }
  9251. }
  9252. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  9253. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  9254. llama_batch u_batch = {
  9255. /* .n_tokens = */ (int32_t) n_tokens,
  9256. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  9257. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  9258. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  9259. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  9260. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  9261. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  9262. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  9263. /* .all_pos_1 = */ batch_all.all_pos_1,
  9264. /* .all_seq_id = */ batch_all.all_seq_id,
  9265. };
  9266. // count the outputs in this u_batch
  9267. {
  9268. int32_t n_outputs_new = 0;
  9269. if (u_batch.logits) {
  9270. for (uint32_t i = 0; i < n_tokens; i++) {
  9271. n_outputs_new += u_batch.logits[i] != 0;
  9272. }
  9273. } else if (n_outputs == n_tokens_all) {
  9274. n_outputs_new = n_tokens;
  9275. } else {
  9276. // keep last output only
  9277. if (cur_token + n_tokens >= n_tokens_all) {
  9278. n_outputs_new = 1;
  9279. }
  9280. }
  9281. // needs to happen before the graph is built
  9282. lctx.n_outputs = n_outputs_new;
  9283. }
  9284. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  9285. GGML_ASSERT(n_threads > 0);
  9286. // helpers for smoother batch API transition
  9287. // after deprecating the llama_eval calls, these will be removed
  9288. if (u_batch.pos == nullptr) {
  9289. pos.resize(n_tokens);
  9290. for (uint32_t i = 0; i < n_tokens; i++) {
  9291. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  9292. }
  9293. u_batch.pos = pos.data();
  9294. }
  9295. if (u_batch.seq_id == nullptr) {
  9296. n_seq_id.resize(n_tokens);
  9297. seq_id.resize(n_tokens);
  9298. seq_id_arr.resize(n_tokens);
  9299. for (uint32_t i = 0; i < n_tokens; i++) {
  9300. n_seq_id[i] = 1;
  9301. seq_id[i].resize(1);
  9302. seq_id[i][0] = u_batch.all_seq_id;
  9303. seq_id_arr[i] = seq_id[i].data();
  9304. }
  9305. u_batch.n_seq_id = n_seq_id.data();
  9306. u_batch.seq_id = seq_id_arr.data();
  9307. }
  9308. // non-causal masks do not use the KV cache
  9309. if (hparams.causal_attn) {
  9310. llama_kv_cache_update(&lctx);
  9311. // if we have enough unused cells before the current head ->
  9312. // better to start searching from the beginning of the cache, hoping to fill it
  9313. if (kv_self.head > kv_self.used + 2*n_tokens) {
  9314. kv_self.head = 0;
  9315. }
  9316. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  9317. return 1;
  9318. }
  9319. if (!kv_self.recurrent) {
  9320. // a heuristic, to avoid attending the full cache if it is not yet utilized
  9321. // after enough generations, the benefit from this heuristic disappears
  9322. // if we start defragmenting the cache, the benefit from this will be more important
  9323. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  9324. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  9325. }
  9326. }
  9327. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  9328. ggml_backend_sched_reset(lctx.sched);
  9329. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  9330. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  9331. // the output is always the last tensor in the graph
  9332. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  9333. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  9334. if (lctx.n_outputs == 0) {
  9335. // no output
  9336. res = nullptr;
  9337. embd = nullptr;
  9338. } else if (!hparams.causal_attn) {
  9339. res = nullptr; // do not extract logits for embedding models such as BERT
  9340. // token or sequence embeddings
  9341. embd = gf->nodes[gf->n_nodes - 1];
  9342. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  9343. } else if (cparams.embeddings) {
  9344. // the embeddings could be in the second to last tensor, or any of the previous tensors
  9345. int i_embd = gf->n_nodes - 2;
  9346. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  9347. i_embd = gf->n_nodes - i;
  9348. if (i_embd < 0) { break; }
  9349. embd = gf->nodes[i_embd];
  9350. }
  9351. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  9352. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  9353. if (!cparams.causal_attn) {
  9354. res = nullptr; // do not extract logits when not needed
  9355. // skip computing logits
  9356. // TODO: is this safe?
  9357. gf->n_nodes = i_embd + 1;
  9358. }
  9359. } else {
  9360. embd = nullptr; // do not extract embeddings when not needed
  9361. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  9362. }
  9363. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  9364. // for big prompts, if BLAS is enabled, it is better to use only one thread
  9365. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  9366. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  9367. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  9368. // with the BLAS calls. need a better solution
  9369. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  9370. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  9371. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  9372. n_threads = std::min(4, n_threads);
  9373. }
  9374. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9375. llama_set_inputs(lctx, u_batch);
  9376. llama_graph_compute(lctx, gf, n_threads);
  9377. // update the kv ring buffer
  9378. {
  9379. kv_self.head += n_tokens;
  9380. // Ensure kv cache head points to a valid index.
  9381. if (kv_self.head >= kv_self.size) {
  9382. kv_self.head = 0;
  9383. }
  9384. }
  9385. #ifdef GGML_PERF
  9386. // print timing information per ggml operation (for debugging purposes)
  9387. // requires GGML_PERF to be defined
  9388. ggml_graph_print(gf);
  9389. #endif
  9390. // plot the computation graph in dot format (for debugging purposes)
  9391. //if (n_past%100 == 0) {
  9392. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  9393. //}
  9394. // extract logits
  9395. if (res) {
  9396. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  9397. GGML_ASSERT(backend_res != nullptr);
  9398. GGML_ASSERT(lctx.logits != nullptr);
  9399. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  9400. const int32_t n_outputs_new = lctx.n_outputs;
  9401. if (n_outputs_new) {
  9402. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9403. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  9404. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  9405. }
  9406. }
  9407. // extract embeddings
  9408. if (embd) {
  9409. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  9410. GGML_ASSERT(backend_embd != nullptr);
  9411. switch (cparams.pooling_type) {
  9412. case LLAMA_POOLING_TYPE_NONE:
  9413. {
  9414. // extract token embeddings
  9415. GGML_ASSERT(lctx.embd != nullptr);
  9416. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  9417. const int32_t n_outputs_new = lctx.n_outputs;
  9418. if (n_outputs_new) {
  9419. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  9420. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  9421. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  9422. }
  9423. } break;
  9424. case LLAMA_POOLING_TYPE_CLS:
  9425. case LLAMA_POOLING_TYPE_MEAN:
  9426. {
  9427. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  9428. // extract sequence embeddings
  9429. auto & embd_seq_out = lctx.embd_seq;
  9430. embd_seq_out.clear();
  9431. for (uint32_t i = 0; i < n_tokens; i++) {
  9432. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  9433. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  9434. continue;
  9435. }
  9436. embd_seq_out[seq_id].resize(n_embd);
  9437. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  9438. }
  9439. } break;
  9440. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  9441. {
  9442. GGML_ASSERT(false && "unknown pooling type");
  9443. } break;
  9444. }
  9445. }
  9446. n_outputs_prev += lctx.n_outputs;
  9447. }
  9448. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  9449. lctx.n_outputs = n_outputs;
  9450. // wait for the computation to finish (automatically done when obtaining the model output)
  9451. //llama_synchronize(&lctx);
  9452. // decide if we need to defrag the kv cache
  9453. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  9454. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  9455. // queue defragmentation for next llama_kv_cache_update
  9456. if (fragmentation > cparams.defrag_thold) {
  9457. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  9458. llama_kv_cache_defrag(kv_self);
  9459. }
  9460. }
  9461. return 0;
  9462. }
  9463. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  9464. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  9465. auto & kv_self = lctx.kv_self;
  9466. const auto & hparams = lctx.model.hparams;
  9467. const uint32_t n_layer = hparams.n_layer;
  9468. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  9469. const uint32_t n_used = kv_self.used;
  9470. assert(n_used <= n_kv);
  9471. //const int64_t t_start = ggml_time_us();
  9472. // number of cells moved
  9473. uint32_t n_moves = 0;
  9474. // each move requires 6*n_layer tensors (see build_defrag)
  9475. // - source view, destination view, copy operation
  9476. // - x2 for keys and values
  9477. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  9478. // determine which KV cells to move where
  9479. //
  9480. // cell i moves to ids[i]
  9481. //
  9482. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  9483. //
  9484. std::vector<uint32_t> ids(n_kv, n_kv);
  9485. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  9486. const auto & cell0 = kv_self.cells[i0];
  9487. if (!cell0.is_empty()) {
  9488. ids[i0] = i0;
  9489. continue;
  9490. }
  9491. // found a hole - fill it with data from the end of the cache
  9492. uint32_t nh = 1;
  9493. // determine the size of the hole
  9494. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  9495. nh++;
  9496. }
  9497. uint32_t nf = 0;
  9498. uint32_t is = n_kv - 1;
  9499. // starting from the end, find nh non-empty cells
  9500. for (; is > i0; --is) {
  9501. const auto & cell1 = kv_self.cells[is];
  9502. if (cell1.is_empty() || ids[is] != n_kv) {
  9503. continue;
  9504. }
  9505. // non-empty cell which is not yet moved
  9506. nf++;
  9507. if (nf == nh) {
  9508. break;
  9509. }
  9510. }
  9511. // this can only happen if `n_used` is not accurate, which would be a bug
  9512. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  9513. nf = 0;
  9514. uint32_t i1 = is;
  9515. // are we moving a continuous block of memory?
  9516. bool cont = false;
  9517. // should we stop searching for the next move?
  9518. bool stop = false;
  9519. // go back and move the nf cells to the hole
  9520. for (; i1 < n_kv; ++i1) {
  9521. auto & cell1 = kv_self.cells[i1];
  9522. if (cell1.is_empty() || ids[i1] != n_kv) {
  9523. if (n_moves == max_moves) {
  9524. stop = true;
  9525. break;
  9526. }
  9527. cont = false;
  9528. continue;
  9529. }
  9530. // this cell goes to (i0 + nf)
  9531. ids[i1] = i0 + nf;
  9532. // move the cell meta data
  9533. kv_self.cells[i0 + nf] = cell1;
  9534. // clear the old cell and move the head there
  9535. cell1 = llama_kv_cell();
  9536. kv_self.head = n_used;
  9537. if (!cont) {
  9538. n_moves++;
  9539. cont = true;
  9540. }
  9541. nf++;
  9542. if (nf == nh) {
  9543. break;
  9544. }
  9545. }
  9546. if (stop || n_moves == max_moves) {
  9547. break;
  9548. }
  9549. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  9550. i0 += nh - 1;
  9551. }
  9552. if (n_moves == 0) {
  9553. return;
  9554. }
  9555. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  9556. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  9557. #if 0
  9558. // CPU defrag
  9559. //
  9560. // TODO: optimizations are possible:
  9561. // - multiple threads
  9562. // - avoid copying to the host memory when already there
  9563. //
  9564. // likely not worth the effort, as we have ggml_graph based defrag
  9565. //
  9566. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  9567. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  9568. const uint32_t kv_size = kv_self.size;
  9569. std::vector<uint8_t> buf_k;
  9570. std::vector<uint8_t> buf_v;
  9571. for (uint32_t il = 0; il < n_layer; ++il) {
  9572. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  9573. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  9574. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  9575. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  9576. buf_k.resize(k_size);
  9577. buf_v.resize(v_size);
  9578. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9579. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9580. // batch move [i, i+nm) to [id, id+nm)
  9581. // note: cells can move only to a lower index
  9582. for (uint32_t i = 0; i < n_kv; ++i) {
  9583. const uint32_t id = ids[i];
  9584. if (i == id || id == n_kv) {
  9585. continue;
  9586. }
  9587. uint32_t nm = 1;
  9588. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  9589. nm++;
  9590. }
  9591. // move keys
  9592. {
  9593. const int64_t os = i*k_size_row;
  9594. const int64_t od = id*k_size_row;
  9595. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  9596. }
  9597. // move values (note: they are transposed)
  9598. {
  9599. const int64_t os = i;
  9600. const int64_t od = id;
  9601. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  9602. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  9603. }
  9604. }
  9605. i += nm - 1;
  9606. }
  9607. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  9608. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  9609. }
  9610. #else
  9611. // ggml_graph defrag
  9612. ggml_backend_sched_reset(lctx.sched);
  9613. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  9614. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9615. #endif
  9616. //const int64_t t_end = ggml_time_us();
  9617. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  9618. }
  9619. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  9620. bool need_reserve = false;
  9621. // apply K-shift if needed
  9622. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  9623. {
  9624. ggml_backend_sched_reset(lctx.sched);
  9625. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  9626. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9627. llama_set_k_shift(lctx);
  9628. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9629. need_reserve = true;
  9630. }
  9631. {
  9632. auto & kv_self = lctx.kv_self;
  9633. kv_self.has_shift = false;
  9634. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9635. kv_self.cells[i].delta = 0;
  9636. }
  9637. }
  9638. }
  9639. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  9640. {
  9641. ggml_backend_sched_reset(lctx.sched);
  9642. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  9643. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  9644. llama_set_s_copy(lctx);
  9645. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  9646. need_reserve = true;
  9647. }
  9648. {
  9649. auto & kv_self = lctx.kv_self;
  9650. kv_self.do_copy = false;
  9651. for (uint32_t i = 0; i < kv_self.size; ++i) {
  9652. kv_self.cells[i].src = i;
  9653. }
  9654. }
  9655. }
  9656. // defragment the KV cache if needed
  9657. if (lctx.kv_self.do_defrag) {
  9658. llama_kv_cache_defrag_internal(lctx);
  9659. need_reserve = true;
  9660. lctx.kv_self.do_defrag = false;
  9661. }
  9662. // reserve a worst case graph again
  9663. if (need_reserve) {
  9664. // TODO: extract to a function
  9665. // build worst-case graph
  9666. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  9667. int n_past = lctx.cparams.n_ctx - n_tokens;
  9668. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  9669. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  9670. // initialize scheduler with the worst-case graph
  9671. ggml_backend_sched_reset(lctx.sched);
  9672. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  9673. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  9674. }
  9675. }
  9676. }
  9677. //
  9678. // tokenizer
  9679. //
  9680. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  9681. return vocab.type;
  9682. }
  9683. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  9684. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9685. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  9686. }
  9687. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  9688. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9689. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  9690. }
  9691. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  9692. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9693. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  9694. }
  9695. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  9696. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9697. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  9698. }
  9699. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  9700. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  9701. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  9702. }
  9703. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  9704. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9705. GGML_ASSERT(llama_is_byte_token(vocab, id));
  9706. const auto& token_data = vocab.id_to_token.at(id);
  9707. switch (llama_vocab_get_type(vocab)) {
  9708. case LLAMA_VOCAB_TYPE_SPM: {
  9709. auto buf = token_data.text.substr(3, 2);
  9710. return strtol(buf.c_str(), NULL, 16);
  9711. }
  9712. case LLAMA_VOCAB_TYPE_BPE: {
  9713. GGML_ASSERT(false);
  9714. return unicode_utf8_to_byte(token_data.text);
  9715. }
  9716. case LLAMA_VOCAB_TYPE_WPM: {
  9717. GGML_ASSERT(false);
  9718. }
  9719. default:
  9720. GGML_ASSERT(false);
  9721. }
  9722. }
  9723. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  9724. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  9725. static const char * hex = "0123456789ABCDEF";
  9726. switch (llama_vocab_get_type(vocab)) {
  9727. case LLAMA_VOCAB_TYPE_SPM: {
  9728. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  9729. auto token = vocab.token_to_id.find(buf);
  9730. if (token != vocab.token_to_id.end()) {
  9731. return (*token).second;
  9732. }
  9733. // Try to fall back to just the byte as a string
  9734. const char buf2[2] = { (char)ch, 0 };
  9735. return vocab.token_to_id.at(buf2);
  9736. }
  9737. case LLAMA_VOCAB_TYPE_WPM:
  9738. case LLAMA_VOCAB_TYPE_BPE: {
  9739. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  9740. }
  9741. default:
  9742. GGML_ASSERT(false);
  9743. }
  9744. }
  9745. static void llama_escape_whitespace(std::string & text) {
  9746. replace_all(text, " ", "\xe2\x96\x81");
  9747. }
  9748. static void llama_unescape_whitespace(std::string & word) {
  9749. replace_all(word, "\xe2\x96\x81", " ");
  9750. }
  9751. struct llm_symbol {
  9752. using index = int;
  9753. index prev;
  9754. index next;
  9755. const char * text;
  9756. size_t n;
  9757. };
  9758. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  9759. // SPM tokenizer
  9760. // original implementation:
  9761. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  9762. struct llm_bigram_spm {
  9763. struct comparator {
  9764. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  9765. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  9766. }
  9767. };
  9768. using queue_storage = std::vector<llm_bigram_spm>;
  9769. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  9770. llm_symbol::index left;
  9771. llm_symbol::index right;
  9772. float score;
  9773. size_t size;
  9774. };
  9775. struct llm_tokenizer_spm {
  9776. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  9777. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9778. // split string into utf8 chars
  9779. int index = 0;
  9780. size_t offs = 0;
  9781. while (offs < text.size()) {
  9782. llm_symbol sym;
  9783. size_t len = utf8_len(text[offs]);
  9784. sym.text = text.c_str() + offs;
  9785. sym.n = std::min(len, text.size() - offs);
  9786. offs += sym.n;
  9787. sym.prev = index - 1;
  9788. sym.next = offs == text.size() ? -1 : index + 1;
  9789. index++;
  9790. symbols.emplace_back(sym);
  9791. }
  9792. // seed the work queue with all possible 2-character tokens.
  9793. for (size_t i = 1; i < symbols.size(); ++i) {
  9794. try_add_bigram(i - 1, i);
  9795. }
  9796. // keep substituting the highest frequency pairs for as long as we can.
  9797. while (!work_queue.empty()) {
  9798. auto bigram = work_queue.top();
  9799. work_queue.pop();
  9800. auto & left_sym = symbols[bigram.left];
  9801. auto & right_sym = symbols[bigram.right];
  9802. // if one of the symbols already got merged, skip it.
  9803. if (left_sym.n == 0 || right_sym.n == 0 ||
  9804. left_sym.n + right_sym.n != bigram.size) {
  9805. continue;
  9806. }
  9807. // merge the right sym into the left one
  9808. left_sym.n += right_sym.n;
  9809. right_sym.n = 0;
  9810. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  9811. // remove the right sym from the chain
  9812. left_sym.next = right_sym.next;
  9813. if (right_sym.next >= 0) {
  9814. symbols[right_sym.next].prev = bigram.left;
  9815. }
  9816. // find more substitutions
  9817. try_add_bigram(left_sym.prev, bigram.left);
  9818. try_add_bigram(bigram.left, left_sym.next);
  9819. }
  9820. for (int i = 0; i != -1; i = symbols[i].next) {
  9821. auto & symbol = symbols[i];
  9822. resegment(symbol, output);
  9823. }
  9824. }
  9825. private:
  9826. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  9827. auto text = std::string(symbol.text, symbol.n);
  9828. auto token = vocab.token_to_id.find(text);
  9829. // Do we need to support is_unused?
  9830. if (token != vocab.token_to_id.end()) {
  9831. output.push_back((*token).second);
  9832. return;
  9833. }
  9834. const auto p = rev_merge.find(text);
  9835. if (p == rev_merge.end()) {
  9836. // output any symbols that did not form tokens as bytes.
  9837. output.reserve(output.size() + symbol.n);
  9838. for (int j = 0; j < (int)symbol.n; ++j) {
  9839. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  9840. output.push_back(token_id);
  9841. }
  9842. return;
  9843. }
  9844. resegment(symbols[p->second.first], output);
  9845. resegment(symbols[p->second.second], output);
  9846. }
  9847. void try_add_bigram(int left, int right) {
  9848. if (left == -1 || right == -1) {
  9849. return;
  9850. }
  9851. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  9852. auto token = vocab.token_to_id.find(text);
  9853. if (token == vocab.token_to_id.end()) {
  9854. return;
  9855. }
  9856. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  9857. return;
  9858. }
  9859. const auto & tok_data = vocab.id_to_token[(*token).second];
  9860. llm_bigram_spm bigram;
  9861. bigram.left = left;
  9862. bigram.right = right;
  9863. bigram.score = tok_data.score;
  9864. bigram.size = text.size();
  9865. work_queue.push(bigram);
  9866. // Do we need to support is_unused?
  9867. rev_merge[text] = std::make_pair(left, right);
  9868. }
  9869. const llama_vocab & vocab;
  9870. std::vector<llm_symbol> symbols;
  9871. llm_bigram_spm::queue work_queue;
  9872. std::map<std::string, std::pair<int, int>> rev_merge;
  9873. };
  9874. // BPE tokenizer
  9875. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  9876. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  9877. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  9878. struct llm_bigram_bpe {
  9879. struct comparator {
  9880. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  9881. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  9882. }
  9883. };
  9884. using queue_storage = std::vector<llm_bigram_bpe>;
  9885. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9886. llm_symbol::index left;
  9887. llm_symbol::index right;
  9888. std::string text;
  9889. int rank;
  9890. size_t size;
  9891. };
  9892. struct llm_tokenizer_bpe {
  9893. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9894. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9895. int final_prev_index = -1;
  9896. auto word_collection = bpe_gpt2_preprocess(text);
  9897. symbols_final.clear();
  9898. for (auto & word : word_collection) {
  9899. work_queue = llm_bigram_bpe::queue();
  9900. symbols.clear();
  9901. int index = 0;
  9902. size_t offset = 0;
  9903. while (offset < word.size()) {
  9904. llm_symbol sym;
  9905. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9906. sym.text = word.c_str() + offset;
  9907. sym.n = char_len;
  9908. offset += sym.n;
  9909. sym.prev = index - 1;
  9910. sym.next = offset == word.size() ? -1 : index + 1;
  9911. index++;
  9912. symbols.emplace_back(sym);
  9913. }
  9914. for (size_t i = 1; i < symbols.size(); ++i) {
  9915. add_new_bigram(i - 1, i);
  9916. }
  9917. // build token(s)
  9918. while (!work_queue.empty()) {
  9919. auto bigram = work_queue.top();
  9920. work_queue.pop();
  9921. auto & left_symbol = symbols[bigram.left];
  9922. auto & right_symbol = symbols[bigram.right];
  9923. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9924. continue;
  9925. }
  9926. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9927. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9928. if (left_token + right_token != bigram.text) {
  9929. continue; // Skip this bigram if it's outdated
  9930. }
  9931. // merge the right sym into the left one
  9932. left_symbol.n += right_symbol.n;
  9933. right_symbol.n = 0;
  9934. // remove the right sym from the chain
  9935. left_symbol.next = right_symbol.next;
  9936. if (right_symbol.next >= 0) {
  9937. symbols[right_symbol.next].prev = bigram.left;
  9938. }
  9939. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9940. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9941. }
  9942. // add the finished tokens to the final list keeping correct order for next and prev
  9943. for (auto & sym : symbols) {
  9944. if (sym.n > 0) {
  9945. sym.prev = final_prev_index;
  9946. sym.next = -1;
  9947. if (final_prev_index != -1) {
  9948. symbols_final[final_prev_index].next = symbols_final.size();
  9949. }
  9950. symbols_final.emplace_back(sym);
  9951. final_prev_index = symbols_final.size() - 1;
  9952. }
  9953. }
  9954. }
  9955. symbols = symbols_final;
  9956. if (!symbols.empty()) {
  9957. for (int i = 0; i != -1; i = symbols[i].next) {
  9958. auto & symbol = symbols[i];
  9959. if (symbol.n == 0) {
  9960. continue;
  9961. }
  9962. const std::string str = std::string(symbol.text, symbol.n);
  9963. const auto token = vocab.token_to_id.find(str);
  9964. if (token == vocab.token_to_id.end()) {
  9965. for (auto j = str.begin(); j != str.end(); ++j) {
  9966. std::string byte_str(1, *j);
  9967. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9968. if (token_multibyte == vocab.token_to_id.end()) {
  9969. throw std::runtime_error("ERROR: byte not found in vocab");
  9970. }
  9971. output.push_back((*token_multibyte).second);
  9972. }
  9973. } else {
  9974. output.push_back((*token).second);
  9975. }
  9976. }
  9977. }
  9978. }
  9979. private:
  9980. void add_new_bigram(int left, int right) {
  9981. if (left == -1 || right == -1) {
  9982. return;
  9983. }
  9984. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9985. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9986. int rank_found = -1;
  9987. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9988. if (rank_found < 0) {
  9989. return;
  9990. }
  9991. llm_bigram_bpe bigram;
  9992. bigram.left = left;
  9993. bigram.right = right;
  9994. bigram.text = left_token + right_token;
  9995. bigram.size = left_token.size() + right_token.size();
  9996. bigram.rank = rank_found;
  9997. work_queue.push(bigram);
  9998. }
  9999. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  10000. std::vector<std::string> bpe_words;
  10001. std::vector<std::string> bpe_encoded_words;
  10002. std::string token = "";
  10003. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  10004. bool collecting_numeric = false;
  10005. bool collecting_letter = false;
  10006. bool collecting_special = false;
  10007. bool collecting_whitespace_lookahead = false;
  10008. bool collecting = false;
  10009. std::vector<std::string> text_utf;
  10010. text_utf.reserve(text.size());
  10011. bpe_words.reserve(text.size());
  10012. bpe_encoded_words.reserve(text.size());
  10013. const auto cpts = unicode_cpts_from_utf8(text);
  10014. for (size_t i = 0; i < cpts.size(); ++i)
  10015. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  10016. for (int i = 0; i < (int)text_utf.size(); i++) {
  10017. const std::string & utf_char = text_utf[i];
  10018. bool split_condition = false;
  10019. int bytes_remain = text_utf.size() - i;
  10020. // forward backward lookups
  10021. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  10022. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  10023. // handling contractions
  10024. if (!split_condition && bytes_remain >= 2) {
  10025. // 's|'t|'m|'d
  10026. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  10027. split_condition = true;
  10028. }
  10029. if (split_condition) {
  10030. if (token.size()) {
  10031. bpe_words.emplace_back(token); // push previous content as token
  10032. }
  10033. token = utf_char + utf_char_next;
  10034. bpe_words.emplace_back(token);
  10035. token = "";
  10036. i++;
  10037. continue;
  10038. }
  10039. }
  10040. if (!split_condition && bytes_remain >= 3) {
  10041. // 're|'ve|'ll
  10042. if (utf_char == "\'" && (
  10043. (utf_char_next == "r" && utf_char_next_next == "e") ||
  10044. (utf_char_next == "v" && utf_char_next_next == "e") ||
  10045. (utf_char_next == "l" && utf_char_next_next == "l"))
  10046. ) {
  10047. split_condition = true;
  10048. }
  10049. if (split_condition) {
  10050. // current token + next token can be defined
  10051. if (token.size()) {
  10052. bpe_words.emplace_back(token); // push previous content as token
  10053. }
  10054. token = utf_char + utf_char_next + utf_char_next_next;
  10055. bpe_words.emplace_back(token); // the contraction
  10056. token = "";
  10057. i += 2;
  10058. continue;
  10059. }
  10060. }
  10061. if (!split_condition && !collecting) {
  10062. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  10063. collecting_letter = true;
  10064. collecting = true;
  10065. }
  10066. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10067. collecting_numeric = true;
  10068. collecting = true;
  10069. }
  10070. else if (
  10071. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  10072. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  10073. ) {
  10074. collecting_special = true;
  10075. collecting = true;
  10076. }
  10077. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  10078. collecting_whitespace_lookahead = true;
  10079. collecting = true;
  10080. }
  10081. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  10082. split_condition = true;
  10083. }
  10084. }
  10085. else if (!split_condition && collecting) {
  10086. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  10087. split_condition = true;
  10088. }
  10089. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  10090. split_condition = true;
  10091. }
  10092. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  10093. split_condition = true;
  10094. }
  10095. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  10096. split_condition = true;
  10097. }
  10098. }
  10099. if (utf_char_next == "") {
  10100. split_condition = true; // final
  10101. token += utf_char;
  10102. }
  10103. if (split_condition) {
  10104. if (token.size()) {
  10105. bpe_words.emplace_back(token);
  10106. }
  10107. token = utf_char;
  10108. collecting = false;
  10109. collecting_letter = false;
  10110. collecting_numeric = false;
  10111. collecting_special = false;
  10112. collecting_whitespace_lookahead = false;
  10113. }
  10114. else {
  10115. token += utf_char;
  10116. }
  10117. }
  10118. for (std::string & word : bpe_words) {
  10119. std::string encoded_token = "";
  10120. for (char & c : word) {
  10121. encoded_token += unicode_byte_to_utf8(c);
  10122. }
  10123. bpe_encoded_words.emplace_back(encoded_token);
  10124. }
  10125. return bpe_encoded_words;
  10126. }
  10127. const llama_vocab & vocab;
  10128. std::vector<llm_symbol> symbols;
  10129. std::vector<llm_symbol> symbols_final;
  10130. llm_bigram_bpe::queue work_queue;
  10131. };
  10132. struct llm_tokenizer_wpm {
  10133. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10134. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10135. auto * token_map = &vocab.token_to_id;
  10136. // normalize and split by whitespace
  10137. std::vector<std::string> words = preprocess(text);
  10138. // bos token prepended already
  10139. // find the longest tokens that form the words
  10140. for (const std::string &word : words) {
  10141. // skip empty words
  10142. if (word.size() == 0) {
  10143. continue;
  10144. }
  10145. // prepend phantom space
  10146. std::string word1 = "\xe2\x96\x81" + word;
  10147. int n = word1.size();
  10148. // we're at the start of a new word
  10149. int i = 0;
  10150. bool match_any = false;
  10151. // move through character position in word
  10152. while (i < n) {
  10153. // loop through possible match length
  10154. bool match = false;
  10155. for (int j = n; j > i; j--) {
  10156. auto it = token_map->find(word1.substr(i, j - i));
  10157. if (it != token_map->end()) {
  10158. output.push_back(it->second);
  10159. match = true;
  10160. match_any = true;
  10161. i = j;
  10162. break;
  10163. }
  10164. }
  10165. // must be an unknown character
  10166. if (!match) {
  10167. i++;
  10168. }
  10169. }
  10170. // we didn't find any matches for this word
  10171. if (!match_any) {
  10172. output.push_back(vocab.special_unk_id);
  10173. }
  10174. }
  10175. }
  10176. std::vector<std::string> preprocess(const std::string & text) {
  10177. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10178. // strip accents, strip control, uniformize whitespace,
  10179. // to lowercase, pad chinese characters, pad punctuation
  10180. std::string new_str = "";
  10181. for (uint32_t code : cpts_nfd) {
  10182. int type = unicode_cpt_type(code);
  10183. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  10184. continue;
  10185. }
  10186. code = unicode_tolower(code);
  10187. if (type == CODEPOINT_TYPE_WHITESPACE) {
  10188. code = ' ';
  10189. }
  10190. std::string s = unicode_cpt_to_utf8(code);
  10191. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  10192. new_str += " ";
  10193. new_str += s;
  10194. new_str += " ";
  10195. } else {
  10196. new_str += s;
  10197. }
  10198. }
  10199. // split by whitespace
  10200. uint64_t l = 0;
  10201. uint64_t r = 0;
  10202. std::vector<std::string> words;
  10203. while (r < new_str.size()) {
  10204. // if is whitespace
  10205. if (isspace(new_str[r], std::locale::classic())) {
  10206. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  10207. l = r + 1;
  10208. r = l;
  10209. } else {
  10210. r += 1;
  10211. }
  10212. }
  10213. if (r > l) {
  10214. words.push_back(new_str.substr(l, (r - l)));
  10215. }
  10216. return words;
  10217. }
  10218. bool is_ascii_punct(uint32_t code) {
  10219. if (code > 0xFF) {
  10220. return false;
  10221. }
  10222. auto c = char(static_cast<unsigned char>(code));
  10223. return ispunct(c, std::locale::classic());
  10224. }
  10225. bool is_chinese_char(uint32_t cpt) {
  10226. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  10227. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  10228. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10229. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10230. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10231. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10232. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  10233. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  10234. (cpt >= 0x3000 && cpt <= 0x303F) ||
  10235. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  10236. return true; // NOLINT
  10237. }
  10238. return false;
  10239. }
  10240. const llama_vocab & vocab;
  10241. };
  10242. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10243. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10244. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10245. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10246. struct fragment_buffer_variant {
  10247. fragment_buffer_variant(llama_vocab::id _token)
  10248. :
  10249. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  10250. token(_token),
  10251. raw_text(_dummy),
  10252. offset(0),
  10253. length(0) {}
  10254. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  10255. :
  10256. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  10257. token((llama_vocab::id) - 1),
  10258. raw_text(_raw_text),
  10259. offset(_offset),
  10260. length(_length){
  10261. GGML_ASSERT(_offset >= 0);
  10262. GGML_ASSERT(_length >= 1);
  10263. GGML_ASSERT(offset + length <= raw_text.length());
  10264. }
  10265. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  10266. const llama_vocab::id token;
  10267. const std::string _dummy;
  10268. const std::string & raw_text;
  10269. const uint64_t offset;
  10270. const uint64_t length;
  10271. };
  10272. // #define PRETOKENIZERDEBUG
  10273. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  10274. // for each special token
  10275. for (const auto & st: vocab.special_tokens_cache) {
  10276. const auto & special_token = st.first;
  10277. const auto & special_id = st.second;
  10278. // for each text fragment
  10279. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  10280. while (it != buffer.end()) {
  10281. auto & fragment = (*it);
  10282. // if a fragment is text ( not yet processed )
  10283. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10284. auto * raw_text = &(fragment.raw_text);
  10285. auto raw_text_base_offset = fragment.offset;
  10286. auto raw_text_base_length = fragment.length;
  10287. // loop over the text
  10288. while (true) {
  10289. // find the first occurrence of a given special token in this fragment
  10290. // passing offset argument only limit the "search area" but match coordinates
  10291. // are still relative to the source full raw_text
  10292. auto match = raw_text->find(special_token, raw_text_base_offset);
  10293. // no occurrences found, stop processing this fragment for a given special token
  10294. if (match == std::string::npos) break;
  10295. // check if match is within bounds of offset <-> length
  10296. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  10297. #ifdef PRETOKENIZERDEBUG
  10298. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10299. #endif
  10300. auto source = std::distance(buffer.begin(), it);
  10301. // if match is further than base offset
  10302. // then we have some text to the left of it
  10303. if (match > raw_text_base_offset) {
  10304. // left
  10305. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  10306. const int64_t left_reminder_length = match - raw_text_base_offset;
  10307. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  10308. #ifdef PRETOKENIZERDEBUG
  10309. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  10310. #endif
  10311. it++;
  10312. }
  10313. // special token
  10314. buffer.emplace_after(it, special_id);
  10315. it++;
  10316. // right
  10317. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  10318. const int64_t right_reminder_offset = match + special_token.length();
  10319. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  10320. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  10321. #ifdef PRETOKENIZERDEBUG
  10322. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  10323. #endif
  10324. it++;
  10325. if (source == 0) {
  10326. buffer.erase_after(buffer.before_begin());
  10327. } else {
  10328. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10329. }
  10330. // repeat for the right side
  10331. raw_text_base_offset = right_reminder_offset;
  10332. raw_text_base_length = right_reminder_length;
  10333. #ifdef PRETOKENIZERDEBUG
  10334. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  10335. #endif
  10336. } else {
  10337. if (source == 0) {
  10338. buffer.erase_after(buffer.before_begin());
  10339. } else {
  10340. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  10341. }
  10342. break;
  10343. }
  10344. }
  10345. }
  10346. it++;
  10347. }
  10348. }
  10349. }
  10350. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  10351. std::vector<llama_vocab::id> output;
  10352. std::forward_list<fragment_buffer_variant> fragment_buffer;
  10353. if (!raw_text.empty()) {
  10354. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  10355. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  10356. }
  10357. switch (vocab.type) {
  10358. case LLAMA_VOCAB_TYPE_SPM:
  10359. {
  10360. // OG tokenizer behavior:
  10361. //
  10362. // tokenizer.encode('', add_special_tokens=True) returns [1]
  10363. // tokenizer.encode('', add_special_tokens=False) returns []
  10364. if (add_special && vocab.special_add_bos != 0) {
  10365. GGML_ASSERT(vocab.special_bos_id != -1);
  10366. output.push_back(vocab.special_bos_id);
  10367. }
  10368. for (const auto & fragment : fragment_buffer) {
  10369. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10370. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  10371. // TODO: It's likely possible to get rid of this string copy entirely
  10372. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  10373. // and passing 'add space prefix' as bool argument
  10374. //
  10375. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10376. if (&fragment == &fragment_buffer.front()) {
  10377. if (vocab.add_space_prefix) {
  10378. raw_text = " " + raw_text; // prefix with space if the first token is not special
  10379. }
  10380. }
  10381. #ifdef PRETOKENIZERDEBUG
  10382. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10383. #endif
  10384. llm_tokenizer_spm tokenizer(vocab);
  10385. llama_escape_whitespace(raw_text);
  10386. tokenizer.tokenize(raw_text, output);
  10387. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10388. output.push_back(fragment.token);
  10389. }
  10390. }
  10391. if (add_special && vocab.special_add_eos == 1) {
  10392. GGML_ASSERT(vocab.special_eos_id != -1);
  10393. output.push_back(vocab.special_eos_id);
  10394. }
  10395. } break;
  10396. case LLAMA_VOCAB_TYPE_BPE:
  10397. {
  10398. if (add_special && vocab.special_add_bos == 1) {
  10399. GGML_ASSERT(vocab.special_bos_id != -1);
  10400. output.push_back(vocab.special_bos_id);
  10401. }
  10402. for (const auto & fragment : fragment_buffer) {
  10403. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10404. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10405. #ifdef PRETOKENIZERDEBUG
  10406. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10407. #endif
  10408. llm_tokenizer_bpe tokenizer(vocab);
  10409. tokenizer.tokenize(raw_text, output);
  10410. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10411. output.push_back(fragment.token);
  10412. }
  10413. }
  10414. GGML_ASSERT(vocab.special_add_eos != 1);
  10415. } break;
  10416. case LLAMA_VOCAB_TYPE_WPM:
  10417. {
  10418. if (add_special) {
  10419. GGML_ASSERT(vocab.special_cls_id != -1);
  10420. output.push_back(vocab.special_cls_id);
  10421. }
  10422. for (const auto & fragment : fragment_buffer) {
  10423. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  10424. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  10425. #ifdef PRETOKENIZERDEBUG
  10426. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  10427. #endif
  10428. llm_tokenizer_wpm tokenizer(vocab);
  10429. tokenizer.tokenize(raw_text, output);
  10430. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  10431. output.push_back(fragment.token);
  10432. }
  10433. }
  10434. if (add_special) {
  10435. GGML_ASSERT(vocab.special_sep_id != -1);
  10436. output.push_back(vocab.special_sep_id);
  10437. }
  10438. } break;
  10439. case LLAMA_VOCAB_TYPE_NONE:
  10440. GGML_ASSERT(false);
  10441. }
  10442. return output;
  10443. }
  10444. //
  10445. // grammar - internal
  10446. //
  10447. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  10448. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  10449. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  10450. const std::string & src,
  10451. llama_partial_utf8 partial_start) {
  10452. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  10453. const char * pos = src.c_str();
  10454. std::vector<uint32_t> code_points;
  10455. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  10456. code_points.reserve(src.size() + 1);
  10457. uint32_t value = partial_start.value;
  10458. int n_remain = partial_start.n_remain;
  10459. // continue previous decode, if applicable
  10460. while (*pos != 0 && n_remain > 0) {
  10461. uint8_t next_byte = static_cast<uint8_t>(*pos);
  10462. if ((next_byte >> 6) != 2) {
  10463. // invalid sequence, abort
  10464. code_points.push_back(0);
  10465. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  10466. }
  10467. value = (value << 6) + (next_byte & 0x3F);
  10468. ++pos;
  10469. --n_remain;
  10470. }
  10471. if (partial_start.n_remain > 0 && n_remain == 0) {
  10472. code_points.push_back(value);
  10473. }
  10474. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  10475. while (*pos != 0) {
  10476. uint8_t first_byte = static_cast<uint8_t>(*pos);
  10477. uint8_t highbits = first_byte >> 4;
  10478. n_remain = lookup[highbits] - 1;
  10479. if (n_remain < 0) {
  10480. // invalid sequence, abort
  10481. code_points.clear();
  10482. code_points.push_back(0);
  10483. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  10484. }
  10485. uint8_t mask = (1 << (7 - n_remain)) - 1;
  10486. value = first_byte & mask;
  10487. ++pos;
  10488. while (*pos != 0 && n_remain > 0) {
  10489. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  10490. ++pos;
  10491. --n_remain;
  10492. }
  10493. if (n_remain == 0) {
  10494. code_points.push_back(value);
  10495. }
  10496. }
  10497. code_points.push_back(0);
  10498. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  10499. }
  10500. // returns true iff pos points to the end of one of the definitions of a rule
  10501. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  10502. switch (pos->type) {
  10503. case LLAMA_GRETYPE_END: return true; // NOLINT
  10504. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  10505. default: return false;
  10506. }
  10507. }
  10508. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  10509. // asserts that pos is pointing to a char range element
  10510. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  10511. const llama_grammar_element * pos,
  10512. const uint32_t chr) {
  10513. bool found = false;
  10514. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10515. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  10516. do {
  10517. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10518. // inclusive range, e.g. [a-z]
  10519. found = found || (pos->value <= chr && chr <= pos[1].value);
  10520. pos += 2;
  10521. } else {
  10522. // exact char match, e.g. [a] or "a"
  10523. found = found || pos->value == chr;
  10524. pos += 1;
  10525. }
  10526. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10527. return std::make_pair(found == is_positive_char, pos);
  10528. }
  10529. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  10530. // range at pos (regular or inverse range)
  10531. // asserts that pos is pointing to a char range element
  10532. static bool llama_grammar_match_partial_char(
  10533. const llama_grammar_element * pos,
  10534. const llama_partial_utf8 partial_utf8) {
  10535. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  10536. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  10537. uint32_t partial_value = partial_utf8.value;
  10538. int n_remain = partial_utf8.n_remain;
  10539. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  10540. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  10541. return false;
  10542. }
  10543. // range of possible code points this partial UTF-8 sequence could complete to
  10544. uint32_t low = partial_value << (n_remain * 6);
  10545. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  10546. if (low == 0) {
  10547. if (n_remain == 2) {
  10548. low = 1 << 11;
  10549. } else if (n_remain == 3) {
  10550. low = 1 << 16;
  10551. }
  10552. }
  10553. do {
  10554. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  10555. // inclusive range, e.g. [a-z]
  10556. if (pos->value <= high && low <= pos[1].value) {
  10557. return is_positive_char;
  10558. }
  10559. pos += 2;
  10560. } else {
  10561. // exact char match, e.g. [a] or "a"
  10562. if (low <= pos->value && pos->value <= high) {
  10563. return is_positive_char;
  10564. }
  10565. pos += 1;
  10566. }
  10567. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  10568. return !is_positive_char;
  10569. }
  10570. // transforms a grammar pushdown stack into N possible stacks, all ending
  10571. // at a character range (terminal element)
  10572. static void llama_grammar_advance_stack(
  10573. const std::vector<std::vector<llama_grammar_element>> & rules,
  10574. const std::vector<const llama_grammar_element *> & stack,
  10575. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10576. if (stack.empty()) {
  10577. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10578. new_stacks.emplace_back(stack);
  10579. }
  10580. return;
  10581. }
  10582. const llama_grammar_element * pos = stack.back();
  10583. switch (pos->type) {
  10584. case LLAMA_GRETYPE_RULE_REF: {
  10585. const size_t rule_id = static_cast<size_t>(pos->value);
  10586. const llama_grammar_element * subpos = rules[rule_id].data();
  10587. do {
  10588. // init new stack without the top (pos)
  10589. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10590. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  10591. // if this rule ref is followed by another element, add that to stack
  10592. new_stack.push_back(pos + 1);
  10593. }
  10594. if (!llama_grammar_is_end_of_sequence(subpos)) {
  10595. // if alternate is nonempty, add to stack
  10596. new_stack.push_back(subpos);
  10597. }
  10598. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10599. while (!llama_grammar_is_end_of_sequence(subpos)) {
  10600. // scan to end of alternate def
  10601. subpos++;
  10602. }
  10603. if (subpos->type == LLAMA_GRETYPE_ALT) {
  10604. // there's another alternate def of this rule to process
  10605. subpos++;
  10606. } else {
  10607. break;
  10608. }
  10609. } while (true);
  10610. break;
  10611. }
  10612. case LLAMA_GRETYPE_CHAR:
  10613. case LLAMA_GRETYPE_CHAR_NOT:
  10614. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  10615. // only add the stack if it's not a duplicate of one we already have
  10616. new_stacks.emplace_back(stack);
  10617. }
  10618. break;
  10619. default:
  10620. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  10621. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  10622. // those
  10623. GGML_ASSERT(false);
  10624. }
  10625. }
  10626. // takes a set of possible pushdown stacks on a grammar, which are required to
  10627. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  10628. // produces the N possible stacks if the given char is accepted at those
  10629. // positions
  10630. void llama_grammar_accept(
  10631. const std::vector<std::vector<llama_grammar_element>> & rules,
  10632. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10633. const uint32_t chr,
  10634. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  10635. new_stacks.clear();
  10636. for (const auto & stack : stacks) {
  10637. if (stack.empty()) {
  10638. continue;
  10639. }
  10640. auto match = llama_grammar_match_char(stack.back(), chr);
  10641. if (match.first) {
  10642. const llama_grammar_element * pos = match.second;
  10643. // update top of stack to next element, if any
  10644. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  10645. if (!llama_grammar_is_end_of_sequence(pos)) {
  10646. new_stack.push_back(pos);
  10647. }
  10648. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  10649. }
  10650. }
  10651. }
  10652. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10653. const std::vector<std::vector<llama_grammar_element>> & rules,
  10654. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10655. const std::vector<llama_grammar_candidate> & candidates);
  10656. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  10657. const std::vector<std::vector<llama_grammar_element>> & rules,
  10658. const std::vector<const llama_grammar_element *> & stack,
  10659. const std::vector<llama_grammar_candidate> & candidates) {
  10660. std::vector<llama_grammar_candidate> rejects;
  10661. rejects.reserve(candidates.size());
  10662. if (stack.empty()) {
  10663. for (const auto & tok : candidates) {
  10664. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  10665. rejects.push_back(tok);
  10666. }
  10667. }
  10668. return rejects;
  10669. }
  10670. const llama_grammar_element * stack_pos = stack.back();
  10671. std::vector<llama_grammar_candidate> next_candidates;
  10672. next_candidates.reserve(candidates.size());
  10673. for (const auto & tok : candidates) {
  10674. if (*tok.code_points == 0) {
  10675. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  10676. // that cannot satisfy this position in grammar
  10677. if (tok.partial_utf8.n_remain != 0 &&
  10678. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  10679. rejects.push_back(tok);
  10680. }
  10681. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  10682. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  10683. } else {
  10684. rejects.push_back(tok);
  10685. }
  10686. }
  10687. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  10688. // update top of stack to next element, if any
  10689. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  10690. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  10691. stack_after.push_back(stack_pos_after);
  10692. }
  10693. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  10694. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  10695. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  10696. for (const auto & tok : next_rejects) {
  10697. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  10698. }
  10699. return rejects;
  10700. }
  10701. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  10702. const std::vector<std::vector<llama_grammar_element>> & rules,
  10703. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  10704. const std::vector<llama_grammar_candidate> & candidates) {
  10705. GGML_ASSERT(!stacks.empty()); // REVIEW
  10706. if (candidates.empty()) {
  10707. return std::vector<llama_grammar_candidate>();
  10708. }
  10709. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  10710. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  10711. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  10712. }
  10713. return rejects;
  10714. }
  10715. //
  10716. // grammar - external
  10717. //
  10718. struct llama_grammar * llama_grammar_init(
  10719. const llama_grammar_element ** rules,
  10720. size_t n_rules,
  10721. size_t start_rule_index) {
  10722. const llama_grammar_element * pos;
  10723. // copy rule definitions into vectors
  10724. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  10725. for (size_t i = 0; i < n_rules; i++) {
  10726. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  10727. vec_rules[i].push_back(*pos);
  10728. }
  10729. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  10730. }
  10731. // loop over alternates of start rule to build initial stacks
  10732. std::vector<std::vector<const llama_grammar_element *>> stacks;
  10733. pos = vec_rules[start_rule_index].data();
  10734. do {
  10735. std::vector<const llama_grammar_element *> stack;
  10736. if (!llama_grammar_is_end_of_sequence(pos)) {
  10737. // if alternate is nonempty, add to stack
  10738. stack.push_back(pos);
  10739. }
  10740. llama_grammar_advance_stack(vec_rules, stack, stacks);
  10741. while (!llama_grammar_is_end_of_sequence(pos)) {
  10742. // scan to end of alternate def
  10743. pos++;
  10744. }
  10745. if (pos->type == LLAMA_GRETYPE_ALT) {
  10746. // there's another alternate def of this rule to process
  10747. pos++;
  10748. } else {
  10749. break;
  10750. }
  10751. } while (true);
  10752. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  10753. }
  10754. void llama_grammar_free(struct llama_grammar * grammar) {
  10755. delete grammar;
  10756. }
  10757. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  10758. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  10759. // redirect elements in stacks to point to new rules
  10760. for (size_t is = 0; is < result->stacks.size(); is++) {
  10761. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  10762. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  10763. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  10764. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  10765. result->stacks[is][ie] = &result->rules[ir0][ir1];
  10766. }
  10767. }
  10768. }
  10769. }
  10770. }
  10771. return result;
  10772. }
  10773. //
  10774. // sampling
  10775. //
  10776. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  10777. if (seed == LLAMA_DEFAULT_SEED) {
  10778. seed = time(NULL);
  10779. }
  10780. ctx->rng.seed(seed);
  10781. }
  10782. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  10783. GGML_ASSERT(candidates->size > 0);
  10784. const int64_t t_start_sample_us = ggml_time_us();
  10785. // Sort the logits in descending order
  10786. if (!candidates->sorted) {
  10787. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10788. return a.logit > b.logit;
  10789. });
  10790. candidates->sorted = true;
  10791. }
  10792. float max_l = candidates->data[0].logit;
  10793. float cum_sum = 0.0f;
  10794. for (size_t i = 0; i < candidates->size; ++i) {
  10795. float p = expf(candidates->data[i].logit - max_l);
  10796. candidates->data[i].p = p;
  10797. cum_sum += p;
  10798. }
  10799. for (size_t i = 0; i < candidates->size; ++i) {
  10800. candidates->data[i].p /= cum_sum;
  10801. }
  10802. if (ctx) {
  10803. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10804. }
  10805. }
  10806. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  10807. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  10808. // if (k >= (int32_t)candidates->size) {
  10809. // return;
  10810. // }
  10811. const int64_t t_start_sample_us = ggml_time_us();
  10812. if (k <= 0) {
  10813. k = candidates->size;
  10814. }
  10815. k = std::max(k, (int) min_keep);
  10816. k = std::min(k, (int) candidates->size);
  10817. // Sort scores in descending order
  10818. if (!candidates->sorted) {
  10819. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  10820. return a.logit > b.logit;
  10821. };
  10822. if (k <= 128) {
  10823. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  10824. } else {
  10825. constexpr int nbuckets = 128;
  10826. constexpr float bucket_low = -10.0f;
  10827. constexpr float bucket_high = 10.0f;
  10828. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  10829. constexpr float bucker_inter = -bucket_low * bucket_scale;
  10830. std::vector<int> bucket_idx(candidates->size);
  10831. std::vector<int> histo(nbuckets, 0);
  10832. for (int i = 0; i < (int)candidates->size; ++i) {
  10833. const float val = candidates->data[i].logit;
  10834. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  10835. ib = std::max(0, std::min(nbuckets-1, ib));
  10836. bucket_idx[i] = ib;
  10837. ++histo[ib];
  10838. }
  10839. int nhave = 0;
  10840. int ib = nbuckets - 1;
  10841. for ( ; ib >= 0; --ib) {
  10842. nhave += histo[ib];
  10843. if (nhave >= k) break;
  10844. }
  10845. std::vector<llama_token_data> tmp_tokens(nhave);
  10846. auto ptr = tmp_tokens.data();
  10847. std::vector<llama_token_data*> bucket_ptrs;
  10848. bucket_ptrs.reserve(nbuckets - ib);
  10849. for (int j = nbuckets - 1; j >= ib; --j) {
  10850. bucket_ptrs.push_back(ptr);
  10851. ptr += histo[j];
  10852. }
  10853. for (int i = 0; i < (int)candidates->size; ++i) {
  10854. int j = bucket_idx[i];
  10855. if (j >= ib) {
  10856. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  10857. }
  10858. }
  10859. ptr = tmp_tokens.data();
  10860. int ndone = 0;
  10861. for (int j = nbuckets-1; j > ib; --j) {
  10862. std::sort(ptr, ptr + histo[j], comp);
  10863. ptr += histo[j];
  10864. ndone += histo[j];
  10865. }
  10866. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  10867. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  10868. }
  10869. candidates->sorted = true;
  10870. }
  10871. candidates->size = k;
  10872. if (ctx) {
  10873. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10874. }
  10875. }
  10876. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10877. if (p >= 1.0f) {
  10878. return;
  10879. }
  10880. llama_sample_softmax(ctx, candidates);
  10881. const int64_t t_start_sample_us = ggml_time_us();
  10882. // Compute the cumulative probabilities
  10883. float cum_sum = 0.0f;
  10884. size_t last_idx = candidates->size;
  10885. for (size_t i = 0; i < candidates->size; ++i) {
  10886. cum_sum += candidates->data[i].p;
  10887. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  10888. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  10889. if (cum_sum >= p && i + 1 >= min_keep) {
  10890. last_idx = i + 1;
  10891. break;
  10892. }
  10893. }
  10894. // Resize the output vector to keep only the top-p tokens
  10895. candidates->size = last_idx;
  10896. if (ctx) {
  10897. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10898. }
  10899. }
  10900. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10901. if (p <= 0.0f || !candidates->size) {
  10902. return;
  10903. }
  10904. const int64_t t_start_sample_us = ggml_time_us();
  10905. bool min_p_applied = false;
  10906. // if the candidates aren't sorted, try the unsorted implementation first
  10907. if (!candidates->sorted) {
  10908. std::vector<llama_token_data> filtered_tokens;
  10909. float max_logit = -FLT_MAX;
  10910. for (size_t i = 0; i < candidates->size; ++i) {
  10911. max_logit = std::max(max_logit, candidates->data[i].logit);
  10912. }
  10913. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10914. for (size_t i = 0; i < candidates->size; ++i) {
  10915. if (candidates->data[i].logit >= min_logit) {
  10916. filtered_tokens.push_back(candidates->data[i]);
  10917. }
  10918. }
  10919. // if we have enough values the operation was a success
  10920. if (filtered_tokens.size() >= min_keep) {
  10921. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10922. candidates->size = filtered_tokens.size();
  10923. min_p_applied = true;
  10924. }
  10925. }
  10926. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10927. if (!min_p_applied) {
  10928. // Sort the logits in descending order
  10929. if (!candidates->sorted) {
  10930. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10931. return a.logit > b.logit;
  10932. });
  10933. candidates->sorted = true;
  10934. }
  10935. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10936. size_t i = 1; // first token always matches
  10937. for (; i < candidates->size; ++i) {
  10938. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10939. break; // prob too small
  10940. }
  10941. }
  10942. // Resize the output vector to keep only the matching tokens
  10943. candidates->size = i;
  10944. }
  10945. if (ctx) {
  10946. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10947. }
  10948. }
  10949. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10950. if (z >= 1.0f || candidates->size <= 2) {
  10951. return;
  10952. }
  10953. llama_sample_softmax(nullptr, candidates);
  10954. const int64_t t_start_sample_us = ggml_time_us();
  10955. // Compute the first and second derivatives
  10956. std::vector<float> first_derivatives(candidates->size - 1);
  10957. std::vector<float> second_derivatives(candidates->size - 2);
  10958. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10959. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10960. }
  10961. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10962. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10963. }
  10964. // Calculate absolute value of second derivatives
  10965. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10966. second_derivatives[i] = std::abs(second_derivatives[i]);
  10967. }
  10968. // Normalize the second derivatives
  10969. {
  10970. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10971. if (second_derivatives_sum > 1e-6f) {
  10972. for (float & value : second_derivatives) {
  10973. value /= second_derivatives_sum;
  10974. }
  10975. } else {
  10976. for (float & value : second_derivatives) {
  10977. value = 1.0f / second_derivatives.size();
  10978. }
  10979. }
  10980. }
  10981. float cum_sum = 0.0f;
  10982. size_t last_idx = candidates->size;
  10983. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10984. cum_sum += second_derivatives[i];
  10985. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10986. if (cum_sum > z && i >= min_keep) {
  10987. last_idx = i;
  10988. break;
  10989. }
  10990. }
  10991. // Resize the output vector to keep only the tokens above the tail location
  10992. candidates->size = last_idx;
  10993. if (ctx) {
  10994. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10995. }
  10996. }
  10997. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10998. // Reference implementation:
  10999. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11000. if (p >= 1.0f) {
  11001. return;
  11002. }
  11003. // Compute the softmax of logits and calculate entropy
  11004. llama_sample_softmax(nullptr, candidates);
  11005. const int64_t t_start_sample_us = ggml_time_us();
  11006. float entropy = 0.0f;
  11007. for (size_t i = 0; i < candidates->size; ++i) {
  11008. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11009. }
  11010. // Compute the absolute difference between negative log probability and entropy for each candidate
  11011. std::vector<float> shifted_scores;
  11012. for (size_t i = 0; i < candidates->size; ++i) {
  11013. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11014. shifted_scores.push_back(shifted_score);
  11015. }
  11016. // Sort tokens based on the shifted_scores and their corresponding indices
  11017. std::vector<size_t> indices(candidates->size);
  11018. std::iota(indices.begin(), indices.end(), 0);
  11019. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11020. return shifted_scores[a] < shifted_scores[b];
  11021. });
  11022. // Compute the cumulative probabilities
  11023. float cum_sum = 0.0f;
  11024. size_t last_idx = indices.size();
  11025. for (size_t i = 0; i < indices.size(); ++i) {
  11026. size_t idx = indices[i];
  11027. cum_sum += candidates->data[idx].p;
  11028. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11029. if (cum_sum > p && i >= min_keep - 1) {
  11030. last_idx = i + 1;
  11031. break;
  11032. }
  11033. }
  11034. // Resize the output vector to keep only the locally typical tokens
  11035. std::vector<llama_token_data> new_candidates;
  11036. for (size_t i = 0; i < last_idx; ++i) {
  11037. size_t idx = indices[i];
  11038. new_candidates.push_back(candidates->data[idx]);
  11039. }
  11040. // Replace the data in candidates with the new_candidates data
  11041. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11042. candidates->size = new_candidates.size();
  11043. candidates->sorted = false;
  11044. if (ctx) {
  11045. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11046. }
  11047. }
  11048. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11049. const int64_t t_start_sample_us = ggml_time_us();
  11050. // no need to do anything if there is only one (or zero) candidates
  11051. if(candidates_p->size <= 1) {
  11052. return;
  11053. }
  11054. // Calculate maximum possible entropy
  11055. float max_entropy = -logf(1.0f / candidates_p->size);
  11056. llama_sample_softmax(nullptr, candidates_p);
  11057. // Calculate entropy of the softmax probabilities
  11058. float entropy = 0.0f;
  11059. for (size_t i = 0; i < candidates_p->size; ++i) {
  11060. float prob = candidates_p->data[i].p;
  11061. if (prob > 0.0f) { // Ensure no log(0)
  11062. entropy -= prob * logf(prob);
  11063. }
  11064. }
  11065. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11066. float normalized_entropy = entropy / max_entropy;
  11067. // Map the normalized entropy to the desired temperature range using the power function
  11068. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11069. #ifdef DEBUG
  11070. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11071. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11072. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11073. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11074. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11075. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11076. #endif
  11077. // Apply the dynamically calculated temperature scaling
  11078. for (size_t i = 0; i < candidates_p->size; ++i) {
  11079. candidates_p->data[i].logit /= dyn_temp;
  11080. }
  11081. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11082. double max_l_double = candidates_p->data[0].logit;
  11083. double cum_sum_double = 0.0;
  11084. for (size_t i = 0; i < candidates_p->size; ++i) {
  11085. double p = exp(candidates_p->data[i].logit - max_l_double);
  11086. candidates_p->data[i].p = p; // Store the scaled probability
  11087. cum_sum_double += p;
  11088. }
  11089. for (size_t i = 0; i < candidates_p->size; ++i) {
  11090. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11091. }
  11092. #ifdef DEBUG
  11093. // Print the updated top 25 probabilities after temperature scaling
  11094. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11095. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11096. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11097. }
  11098. #endif
  11099. if (ctx) {
  11100. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11101. }
  11102. }
  11103. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11104. const int64_t t_start_sample_us = ggml_time_us();
  11105. for (size_t i = 0; i < candidates_p->size; ++i) {
  11106. candidates_p->data[i].logit /= temp;
  11107. }
  11108. if (ctx) {
  11109. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11110. }
  11111. }
  11112. void llama_sample_repetition_penalties(
  11113. struct llama_context * ctx,
  11114. llama_token_data_array * candidates,
  11115. const llama_token * last_tokens,
  11116. size_t penalty_last_n,
  11117. float penalty_repeat,
  11118. float penalty_freq,
  11119. float penalty_present) {
  11120. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11121. return;
  11122. }
  11123. const int64_t t_start_sample_us = ggml_time_us();
  11124. // Create a frequency map to count occurrences of each token in last_tokens
  11125. std::unordered_map<llama_token, int> token_count;
  11126. for (size_t i = 0; i < penalty_last_n; ++i) {
  11127. token_count[last_tokens[i]]++;
  11128. }
  11129. // Apply frequency and presence penalties to the candidates
  11130. for (size_t i = 0; i < candidates->size; ++i) {
  11131. const auto token_iter = token_count.find(candidates->data[i].id);
  11132. if (token_iter == token_count.end()) {
  11133. continue;
  11134. }
  11135. const int count = token_iter->second;
  11136. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11137. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11138. if (candidates->data[i].logit <= 0) {
  11139. candidates->data[i].logit *= penalty_repeat;
  11140. } else {
  11141. candidates->data[i].logit /= penalty_repeat;
  11142. }
  11143. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11144. }
  11145. candidates->sorted = false;
  11146. if (ctx) {
  11147. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11148. }
  11149. }
  11150. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11151. GGML_ASSERT(ctx);
  11152. const int64_t t_start_sample_us = ggml_time_us();
  11153. bool allow_eog = false;
  11154. for (const auto & stack : grammar->stacks) {
  11155. if (stack.empty()) {
  11156. allow_eog = true;
  11157. break;
  11158. }
  11159. }
  11160. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  11161. candidates_decoded.reserve(candidates->size);
  11162. std::vector<llama_grammar_candidate> candidates_grammar;
  11163. candidates_grammar.reserve(candidates->size);
  11164. for (size_t i = 0; i < candidates->size; ++i) {
  11165. const llama_token id = candidates->data[i].id;
  11166. const std::string piece = llama_token_to_piece(ctx, id, false);
  11167. if (llama_token_is_eog(&ctx->model, id)) {
  11168. if (!allow_eog) {
  11169. candidates->data[i].logit = -INFINITY;
  11170. }
  11171. } else if (piece.empty() || piece[0] == 0) {
  11172. candidates->data[i].logit = -INFINITY;
  11173. } else {
  11174. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  11175. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  11176. }
  11177. }
  11178. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  11179. for (const auto & reject : rejects) {
  11180. candidates->data[reject.index].logit = -INFINITY;
  11181. }
  11182. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11183. }
  11184. static void llama_log_softmax(float * array, size_t size) {
  11185. float max_l = *std::max_element(array, array + size);
  11186. float sum = 0.f;
  11187. for (size_t i = 0; i < size; ++i) {
  11188. float p = expf(array[i] - max_l);
  11189. sum += p;
  11190. array[i] = p;
  11191. }
  11192. for (size_t i = 0; i < size; ++i) {
  11193. array[i] = logf(array[i] / sum);
  11194. }
  11195. }
  11196. void llama_sample_apply_guidance(
  11197. struct llama_context * ctx,
  11198. float * logits,
  11199. float * logits_guidance,
  11200. float scale) {
  11201. GGML_ASSERT(ctx);
  11202. const auto t_start_sample_us = ggml_time_us();
  11203. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  11204. llama_log_softmax(logits, n_vocab);
  11205. llama_log_softmax(logits_guidance, n_vocab);
  11206. for (int i = 0; i < n_vocab; ++i) {
  11207. auto & l = logits[i];
  11208. const auto & g = logits_guidance[i];
  11209. l = scale * (l - g) + g;
  11210. }
  11211. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11212. }
  11213. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  11214. GGML_ASSERT(ctx);
  11215. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  11216. int64_t t_start_sample_us;
  11217. t_start_sample_us = ggml_time_us();
  11218. llama_sample_softmax(nullptr, candidates);
  11219. // Estimate s_hat using the most probable m tokens
  11220. float s_hat = 0.0;
  11221. float sum_ti_bi = 0.0;
  11222. float sum_ti_sq = 0.0;
  11223. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  11224. float t_i = logf(float(i + 2) / float(i + 1));
  11225. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  11226. sum_ti_bi += t_i * b_i;
  11227. sum_ti_sq += t_i * t_i;
  11228. }
  11229. s_hat = sum_ti_bi / sum_ti_sq;
  11230. // Compute k from the estimated s_hat and target surprise value
  11231. float epsilon_hat = s_hat - 1;
  11232. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  11233. // Sample the next word X using top-k sampling
  11234. llama_sample_top_k(nullptr, candidates, int(k), 1);
  11235. if (ctx) {
  11236. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11237. }
  11238. llama_token X = llama_sample_token(ctx, candidates);
  11239. t_start_sample_us = ggml_time_us();
  11240. // Compute error as the difference between observed surprise and target surprise value
  11241. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11242. return candidate.id == X;
  11243. }));
  11244. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11245. float e = observed_surprise - tau;
  11246. // Update mu using the learning rate and error
  11247. *mu = *mu - eta * e;
  11248. if (ctx) {
  11249. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11250. }
  11251. return X;
  11252. }
  11253. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  11254. int64_t t_start_sample_us;
  11255. t_start_sample_us = ggml_time_us();
  11256. llama_sample_softmax(ctx, candidates);
  11257. // Truncate the words with surprise values greater than mu
  11258. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11259. return -log2f(candidate.p) > *mu;
  11260. }));
  11261. if (candidates->size == 0) {
  11262. candidates->size = 1;
  11263. }
  11264. if (ctx) {
  11265. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11266. }
  11267. // Normalize the probabilities of the remaining words
  11268. llama_sample_softmax(ctx, candidates);
  11269. // Sample the next word X from the remaining words
  11270. llama_token X = llama_sample_token(ctx, candidates);
  11271. t_start_sample_us = ggml_time_us();
  11272. // Compute error as the difference between observed surprise and target surprise value
  11273. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  11274. return candidate.id == X;
  11275. }));
  11276. float observed_surprise = -log2f(candidates->data[X_idx].p);
  11277. float e = observed_surprise - tau;
  11278. // Update mu using the learning rate and error
  11279. *mu = *mu - eta * e;
  11280. if (ctx) {
  11281. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11282. }
  11283. return X;
  11284. }
  11285. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  11286. const int64_t t_start_sample_us = ggml_time_us();
  11287. // Find max element
  11288. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11289. return a.logit < b.logit;
  11290. });
  11291. llama_token result = max_iter->id;
  11292. if (ctx) {
  11293. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11294. ctx->n_sample++;
  11295. }
  11296. return result;
  11297. }
  11298. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  11299. GGML_ASSERT(ctx);
  11300. const int64_t t_start_sample_us = ggml_time_us();
  11301. llama_sample_softmax(nullptr, candidates);
  11302. std::vector<float> probs;
  11303. probs.reserve(candidates->size);
  11304. for (size_t i = 0; i < candidates->size; ++i) {
  11305. probs.push_back(candidates->data[i].p);
  11306. }
  11307. std::discrete_distribution<> dist(probs.begin(), probs.end());
  11308. int idx = dist(rng);
  11309. llama_token result = candidates->data[idx].id;
  11310. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11311. ctx->n_sample++;
  11312. return result;
  11313. }
  11314. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  11315. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  11316. }
  11317. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  11318. const int64_t t_start_sample_us = ggml_time_us();
  11319. if (llama_token_is_eog(&ctx->model, token)) {
  11320. for (const auto & stack : grammar->stacks) {
  11321. if (stack.empty()) {
  11322. return;
  11323. }
  11324. }
  11325. GGML_ASSERT(false);
  11326. }
  11327. const std::string piece = llama_token_to_piece(ctx, token, false);
  11328. // Note terminating 0 in decoded string
  11329. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  11330. const auto & code_points = decoded.first;
  11331. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  11332. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  11333. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  11334. grammar->stacks = tmp_new_stacks;
  11335. }
  11336. grammar->partial_utf8 = decoded.second;
  11337. GGML_ASSERT(!grammar->stacks.empty());
  11338. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11339. }
  11340. //
  11341. // Beam search
  11342. //
  11343. struct llama_beam {
  11344. std::vector<llama_token> tokens;
  11345. float p; // Cumulative beam probability (renormalized relative to all beams)
  11346. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  11347. // Sort beams by probability. In case of ties, prefer beams at eob.
  11348. bool operator<(const llama_beam & rhs) const {
  11349. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  11350. }
  11351. // Shift off first n tokens and discard them.
  11352. void shift_tokens(const size_t n) {
  11353. if (n) {
  11354. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  11355. tokens.resize(tokens.size() - n);
  11356. }
  11357. }
  11358. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  11359. };
  11360. // A struct for calculating logit-related info.
  11361. struct llama_logit_info {
  11362. const float * const logits;
  11363. const int n_vocab;
  11364. const float max_l;
  11365. const float normalizer;
  11366. struct sum_exp {
  11367. float max_l;
  11368. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  11369. };
  11370. llama_logit_info(llama_context * ctx)
  11371. : logits(llama_get_logits(ctx))
  11372. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  11373. , max_l(*std::max_element(logits, logits + n_vocab))
  11374. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  11375. { }
  11376. llama_token_data get_token_data(const llama_token token_id) const {
  11377. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  11378. return {token_id, logits[token_id], p};
  11379. }
  11380. // Return top k token_data by logit.
  11381. std::vector<llama_token_data> top_k(size_t k) {
  11382. std::vector<llama_token_data> min_heap; // min-heap by logit
  11383. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  11384. min_heap.reserve(k_min);
  11385. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  11386. min_heap.push_back(get_token_data(token_id));
  11387. }
  11388. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  11389. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  11390. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  11391. if (min_heap.front().logit < logits[token_id]) {
  11392. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  11393. min_heap.back().id = token_id;
  11394. min_heap.back().logit = logits[token_id];
  11395. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  11396. }
  11397. }
  11398. return min_heap;
  11399. }
  11400. float probability_from_logit(float logit) const {
  11401. return normalizer * std::exp(logit - max_l);
  11402. }
  11403. };
  11404. struct llama_beam_search_data {
  11405. llama_context * ctx;
  11406. size_t n_beams;
  11407. int n_past;
  11408. int n_predict;
  11409. std::vector<llama_beam> beams;
  11410. std::vector<llama_beam> next_beams;
  11411. // Re-calculated on each loop iteration
  11412. size_t common_prefix_length;
  11413. // Used to communicate to/from callback on beams state.
  11414. std::vector<llama_beam_view> beam_views;
  11415. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  11416. : ctx(ctx)
  11417. , n_beams(n_beams)
  11418. , n_past(n_past)
  11419. , n_predict(n_predict)
  11420. , beam_views(n_beams) {
  11421. beams.reserve(n_beams);
  11422. next_beams.reserve(n_beams);
  11423. }
  11424. // Collapse beams to a single beam given by index.
  11425. void collapse_beams(const size_t beam_idx) {
  11426. if (0u < beam_idx) {
  11427. std::swap(beams[0], beams[beam_idx]);
  11428. }
  11429. beams.resize(1);
  11430. }
  11431. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  11432. // The repetitive patterns below reflect the 2 stages of heaps:
  11433. // * Gather elements until the vector is full, then call std::make_heap() on it.
  11434. // * If the heap is full and a new element is found that should be included, pop the
  11435. // least element to the back(), replace it with the new, then push it into the heap.
  11436. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  11437. // Min-heaps use a greater-than comparator.
  11438. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  11439. if (beam.eob) {
  11440. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  11441. if (next_beams.size() < n_beams) {
  11442. next_beams.push_back(std::move(beam));
  11443. if (next_beams.size() == n_beams) {
  11444. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11445. }
  11446. } else if (next_beams.front().p < beam.p) {
  11447. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11448. next_beams.back() = std::move(beam);
  11449. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11450. }
  11451. } else {
  11452. // beam is not at end-of-sentence, so branch with next top_k tokens.
  11453. if (!beam.tokens.empty()) {
  11454. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  11455. }
  11456. llama_logit_info logit_info(ctx);
  11457. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  11458. // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode()
  11459. // call in loop() will conclusively fill in the kv slot once the beams converge at this position.
  11460. llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
  11461. size_t i=0;
  11462. if (next_beams.size() < n_beams) {
  11463. for (; next_beams.size() < n_beams ; ++i) {
  11464. llama_beam next_beam = beam;
  11465. next_beam.tokens.push_back(next_tokens[i].id);
  11466. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11467. next_beams.push_back(std::move(next_beam));
  11468. }
  11469. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  11470. } else {
  11471. for (; next_beams.front().p == 0.0f ; ++i) {
  11472. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11473. next_beams.back() = beam;
  11474. next_beams.back().tokens.push_back(next_tokens[i].id);
  11475. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  11476. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11477. }
  11478. }
  11479. for (; i < n_beams ; ++i) {
  11480. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  11481. if (next_beams.front().p < next_p) {
  11482. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  11483. next_beams.back() = beam;
  11484. next_beams.back().tokens.push_back(next_tokens[i].id);
  11485. next_beams.back().p = next_p;
  11486. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  11487. }
  11488. }
  11489. }
  11490. }
  11491. // Find common_prefix_length based on beams.
  11492. // Requires beams is not empty.
  11493. size_t find_common_prefix_length() {
  11494. size_t common_prefix_length = beams[0].tokens.size();
  11495. for (size_t i = 1 ; i < beams.size() ; ++i) {
  11496. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  11497. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  11498. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  11499. common_prefix_length = j;
  11500. break;
  11501. }
  11502. }
  11503. }
  11504. return common_prefix_length;
  11505. }
  11506. // Construct beams_state to send back to caller via the callback function.
  11507. // Side effect: set common_prefix_length = find_common_prefix_length();
  11508. llama_beams_state get_beams_state(const bool last_call) {
  11509. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11510. beam_views[i] = beams[i].view();
  11511. }
  11512. common_prefix_length = find_common_prefix_length();
  11513. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  11514. }
  11515. // Loop:
  11516. // * while i < n_predict, AND
  11517. // * any of the beams have not yet reached end-of-beam (eob), AND
  11518. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  11519. // (since all other beam probabilities can only decrease)
  11520. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  11521. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  11522. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  11523. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  11524. !beams[top_beam_index()].eob ; ++i) {
  11525. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  11526. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  11527. if (common_prefix_length) {
  11528. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  11529. n_past += common_prefix_length;
  11530. }
  11531. // Zero-out next_beam probabilities to place them last in following min-heap.
  11532. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  11533. for (llama_beam & beam : beams) {
  11534. beam.shift_tokens(common_prefix_length);
  11535. fill_next_beams_by_top_probabilities(beam);
  11536. }
  11537. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  11538. beams.swap(next_beams);
  11539. renormalize_beam_probabilities(beams);
  11540. }
  11541. collapse_beams(top_beam_index());
  11542. callback(callback_data, get_beams_state(true));
  11543. }
  11544. // As beams grow, the cumulative probabilities decrease.
  11545. // Renormalize them to avoid floating point underflow.
  11546. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  11547. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  11548. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  11549. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  11550. }
  11551. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  11552. size_t top_beam_index() {
  11553. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  11554. }
  11555. // Copy (p,eob) for each beam which may have been changed by the callback.
  11556. void update_beams_from_beam_views() {
  11557. for (size_t i = 0 ; i < beams.size() ; ++i) {
  11558. beams[i].p = beam_views[i].p;
  11559. beams[i].eob = beam_views[i].eob;
  11560. }
  11561. }
  11562. };
  11563. void llama_beam_search(llama_context * ctx,
  11564. llama_beam_search_callback_fn_t callback, void * callback_data,
  11565. size_t n_beams, int n_past, int n_predict) {
  11566. assert(ctx);
  11567. const int64_t t_start_sample_us = ggml_time_us();
  11568. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  11569. beam_search_data.loop(callback, callback_data);
  11570. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11571. ctx->n_sample++;
  11572. }
  11573. //
  11574. // quantization
  11575. //
  11576. struct quantize_state_internal {
  11577. const llama_model & model;
  11578. const llama_model_quantize_params * params;
  11579. int n_attention_wv = 0;
  11580. int n_ffn_down = 0;
  11581. int n_ffn_gate = 0;
  11582. int n_ffn_up = 0;
  11583. int i_attention_wv = 0;
  11584. int i_ffn_down = 0;
  11585. int i_ffn_gate = 0;
  11586. int i_ffn_up = 0;
  11587. int n_k_quantized = 0;
  11588. int n_fallback = 0;
  11589. bool has_imatrix = false;
  11590. // used to figure out if a model shares tok_embd with the output weight
  11591. bool has_output = false;
  11592. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  11593. : model(model)
  11594. , params(params)
  11595. {}
  11596. };
  11597. static void llama_tensor_dequantize_internal(
  11598. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  11599. const size_t nelements, const int nthread
  11600. ) {
  11601. if (output.size() < nelements) {
  11602. output.resize(nelements);
  11603. }
  11604. float * f32_output = (float *) output.data();
  11605. ggml_type_traits_t qtype;
  11606. if (ggml_is_quantized(tensor->type)) {
  11607. qtype = ggml_internal_get_type_traits(tensor->type);
  11608. if (qtype.to_float == NULL) {
  11609. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  11610. }
  11611. } else if (tensor->type != GGML_TYPE_F16) {
  11612. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  11613. }
  11614. if (nthread < 2) {
  11615. if (tensor->type == GGML_TYPE_F16) {
  11616. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  11617. } else if (ggml_is_quantized(tensor->type)) {
  11618. qtype.to_float(tensor->data, f32_output, nelements);
  11619. } else {
  11620. GGML_ASSERT(false); // unreachable
  11621. }
  11622. return;
  11623. }
  11624. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  11625. size_t block_size_bytes = ggml_type_size(tensor->type);
  11626. GGML_ASSERT(nelements % block_size == 0);
  11627. size_t nblocks = nelements / block_size;
  11628. size_t blocks_per_thread = nblocks / nthread;
  11629. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  11630. size_t in_buff_offs = 0;
  11631. size_t out_buff_offs = 0;
  11632. for (int tnum = 0; tnum < nthread; tnum++) {
  11633. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  11634. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  11635. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  11636. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  11637. if (typ == GGML_TYPE_F16) {
  11638. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  11639. } else {
  11640. qtype.to_float(inbuf, outbuf, nels);
  11641. }
  11642. };
  11643. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  11644. in_buff_offs += thr_block_bytes;
  11645. out_buff_offs += thr_elems;
  11646. }
  11647. for (auto & w : workers) { w.join(); }
  11648. workers.clear();
  11649. }
  11650. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  11651. const std::string name = ggml_get_name(tensor);
  11652. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11653. const llm_arch arch = qs.model.arch;
  11654. const auto tn = LLM_TN(arch);
  11655. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  11656. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  11657. };
  11658. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  11659. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  11660. if (n_expert > 1) {
  11661. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  11662. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  11663. // for getting the current layer as I initially thought, and we need to resort to parsing the
  11664. // tensor name.
  11665. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  11666. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  11667. }
  11668. if (i_layer < 0 || i_layer >= n_layer) {
  11669. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  11670. }
  11671. }
  11672. return std::make_pair(i_layer, n_layer);
  11673. };
  11674. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  11675. // with the quantization of the output tensor
  11676. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  11677. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  11678. new_type = qs.params->output_tensor_type;
  11679. } else {
  11680. int nx = tensor->ne[0];
  11681. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  11682. new_type = GGML_TYPE_Q8_0;
  11683. }
  11684. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11685. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  11686. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11687. new_type = GGML_TYPE_Q5_K;
  11688. }
  11689. else if (new_type != GGML_TYPE_Q8_0) {
  11690. new_type = GGML_TYPE_Q6_K;
  11691. }
  11692. }
  11693. } else if (name == "token_embd.weight") {
  11694. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  11695. new_type = qs.params->token_embedding_type;
  11696. } else {
  11697. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  11698. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11699. new_type = GGML_TYPE_Q2_K;
  11700. }
  11701. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  11702. new_type = GGML_TYPE_IQ3_S;
  11703. }
  11704. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11705. new_type = GGML_TYPE_IQ3_S;
  11706. }
  11707. }
  11708. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  11709. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  11710. if (name.find("attn_v.weight") != std::string::npos) {
  11711. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  11712. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11713. ++qs.i_attention_wv;
  11714. }
  11715. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  11716. new_type = GGML_TYPE_Q4_K;
  11717. }
  11718. else if (name.find("ffn_down") != std::string::npos) {
  11719. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  11720. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  11721. }
  11722. ++qs.i_ffn_down;
  11723. }
  11724. else if (name.find("attn_output.weight") != std::string::npos) {
  11725. if (qs.model.hparams.n_expert == 8) {
  11726. new_type = GGML_TYPE_Q5_K;
  11727. } else {
  11728. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  11729. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  11730. }
  11731. }
  11732. } else if (name.find("attn_v.weight") != std::string::npos) {
  11733. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  11734. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11735. }
  11736. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  11737. new_type = GGML_TYPE_Q4_K;
  11738. }
  11739. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11740. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  11741. }
  11742. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  11743. new_type = GGML_TYPE_Q4_K;
  11744. }
  11745. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11746. new_type = GGML_TYPE_Q4_K;
  11747. }
  11748. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11749. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11750. }
  11751. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  11752. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  11753. new_type = GGML_TYPE_Q5_K;
  11754. }
  11755. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  11756. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  11757. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  11758. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  11759. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  11760. if (qs.model.type == MODEL_70B) {
  11761. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  11762. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  11763. // nearly negligible increase in model size by quantizing this tensor with more bits:
  11764. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  11765. }
  11766. if (qs.model.hparams.n_expert == 8) {
  11767. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11768. // TODO: explore better strategies
  11769. new_type = GGML_TYPE_Q8_0;
  11770. }
  11771. ++qs.i_attention_wv;
  11772. } else if (name.find("attn_k.weight") != std::string::npos) {
  11773. if (qs.model.hparams.n_expert == 8) {
  11774. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  11775. // TODO: explore better strategies
  11776. new_type = GGML_TYPE_Q8_0;
  11777. }
  11778. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11779. new_type = GGML_TYPE_IQ3_XXS;
  11780. }
  11781. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11782. new_type = GGML_TYPE_IQ2_S;
  11783. }
  11784. } else if (name.find("attn_q.weight") != std::string::npos) {
  11785. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  11786. new_type = GGML_TYPE_IQ3_XXS;
  11787. }
  11788. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  11789. new_type = GGML_TYPE_IQ2_S;
  11790. }
  11791. } else if (name.find("ffn_down") != std::string::npos) {
  11792. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  11793. int i_layer = info.first, n_layer = info.second;
  11794. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11795. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  11796. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  11797. }
  11798. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  11799. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  11800. }
  11801. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  11802. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  11803. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  11804. : GGML_TYPE_Q3_K;
  11805. }
  11806. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  11807. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  11808. new_type = GGML_TYPE_Q4_K;
  11809. }
  11810. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  11811. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  11812. }
  11813. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  11814. if (arch == LLM_ARCH_FALCON) {
  11815. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  11816. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  11817. } else {
  11818. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11819. }
  11820. }
  11821. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  11822. new_type = GGML_TYPE_Q5_K;
  11823. }
  11824. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  11825. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  11826. new_type = GGML_TYPE_Q5_K;
  11827. }
  11828. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  11829. && qs.has_imatrix && i_layer < n_layer/8) {
  11830. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  11831. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  11832. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  11833. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  11834. }
  11835. ++qs.i_ffn_down;
  11836. } else if (name.find("attn_output.weight") != std::string::npos) {
  11837. if (arch != LLM_ARCH_FALCON) {
  11838. if (qs.model.hparams.n_expert == 8) {
  11839. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  11840. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  11841. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  11842. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  11843. new_type = GGML_TYPE_Q5_K;
  11844. }
  11845. } else {
  11846. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  11847. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  11848. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  11849. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  11850. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  11851. }
  11852. } else {
  11853. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  11854. }
  11855. }
  11856. else if (name.find("attn_qkv.weight") != std::string::npos) {
  11857. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  11858. new_type = GGML_TYPE_Q4_K;
  11859. }
  11860. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  11861. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  11862. }
  11863. else if (name.find("ffn_gate") != std::string::npos) {
  11864. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  11865. int i_layer = info.first, n_layer = info.second;
  11866. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11867. new_type = GGML_TYPE_IQ3_XXS;
  11868. }
  11869. ++qs.i_ffn_gate;
  11870. }
  11871. else if (name.find("ffn_up") != std::string::npos) {
  11872. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  11873. int i_layer = info.first, n_layer = info.second;
  11874. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  11875. new_type = GGML_TYPE_IQ3_XXS;
  11876. }
  11877. ++qs.i_ffn_up;
  11878. }
  11879. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11880. //}
  11881. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  11882. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  11883. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  11884. //}
  11885. // This can be used to reduce the size of the Q5_K_S model.
  11886. // The associated PPL increase is fully in line with the size reduction
  11887. //else {
  11888. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  11889. //}
  11890. bool convert_incompatible_tensor = false;
  11891. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  11892. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  11893. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  11894. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  11895. new_type == GGML_TYPE_IQ1_M) {
  11896. int nx = tensor->ne[0];
  11897. int ny = tensor->ne[1];
  11898. if (nx % QK_K != 0) {
  11899. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11900. convert_incompatible_tensor = true;
  11901. } else {
  11902. ++qs.n_k_quantized;
  11903. }
  11904. }
  11905. if (convert_incompatible_tensor) {
  11906. switch (new_type) {
  11907. case GGML_TYPE_IQ2_XXS:
  11908. case GGML_TYPE_IQ2_XS:
  11909. case GGML_TYPE_IQ2_S:
  11910. case GGML_TYPE_IQ3_XXS:
  11911. case GGML_TYPE_IQ3_S:
  11912. case GGML_TYPE_IQ1_S:
  11913. case GGML_TYPE_IQ1_M:
  11914. case GGML_TYPE_Q2_K:
  11915. case GGML_TYPE_Q3_K:
  11916. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11917. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11918. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11919. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11920. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11921. }
  11922. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11923. ++qs.n_fallback;
  11924. }
  11925. return new_type;
  11926. }
  11927. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11928. std::mutex mutex;
  11929. int64_t counter = 0;
  11930. size_t new_size = 0;
  11931. if (nthread < 2) {
  11932. // single-thread
  11933. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11934. }
  11935. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11936. nrows, n_per_row, imatrix]() {
  11937. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  11938. size_t local_size = 0;
  11939. while (true) {
  11940. std::unique_lock<std::mutex> lock(mutex);
  11941. int64_t first_row = counter; counter += nrows_per_chunk;
  11942. if (first_row >= nrows) {
  11943. if (local_size > 0) {
  11944. new_size += local_size;
  11945. }
  11946. break;
  11947. }
  11948. lock.unlock();
  11949. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11950. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11951. }
  11952. };
  11953. for (int it = 0; it < nthread - 1; ++it) {
  11954. workers.emplace_back(compute);
  11955. }
  11956. compute();
  11957. for (auto & w : workers) { w.join(); }
  11958. workers.clear();
  11959. return new_size;
  11960. }
  11961. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11962. ggml_type default_type;
  11963. llama_ftype ftype = params->ftype;
  11964. switch (params->ftype) {
  11965. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11966. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11967. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11968. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11969. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11970. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11971. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11972. // K-quants
  11973. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11974. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11975. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11976. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11977. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11978. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11979. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11980. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11981. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11982. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11983. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11984. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11985. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11986. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11987. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11988. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11989. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11990. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11991. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11992. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11993. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11994. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11995. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11996. }
  11997. int nthread = params->nthread;
  11998. if (nthread <= 0) {
  11999. nthread = std::thread::hardware_concurrency();
  12000. }
  12001. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12002. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12003. #if defined(__linux__) || defined(_WIN32)
  12004. constexpr bool use_mmap = true;
  12005. #else
  12006. constexpr bool use_mmap = false;
  12007. #endif
  12008. llama_model_kv_override * kv_overrides = nullptr;
  12009. if (params->kv_overrides) {
  12010. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12011. kv_overrides = v->data();
  12012. }
  12013. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  12014. ml.init_mappings(false); // no prefetching
  12015. llama_model model;
  12016. llm_load_arch(ml, model);
  12017. llm_load_hparams(ml, model);
  12018. struct quantize_state_internal qs(model, params);
  12019. if (params->only_copy) {
  12020. ftype = model.ftype;
  12021. }
  12022. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12023. if (params->imatrix) {
  12024. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12025. if (imatrix_data) {
  12026. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12027. qs.has_imatrix = true;
  12028. }
  12029. }
  12030. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12031. struct gguf_context * ctx_out = gguf_init_empty();
  12032. // copy the KV pairs from the input file
  12033. gguf_set_kv (ctx_out, ml.meta);
  12034. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12035. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12036. // Remove split metadata
  12037. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12038. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12039. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12040. if (params->kv_overrides) {
  12041. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12042. for (auto & o : overrides) {
  12043. if (o.key[0] == 0) break;
  12044. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12045. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  12046. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12047. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  12048. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12049. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  12050. } else {
  12051. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12052. }
  12053. }
  12054. }
  12055. for (int i = 0; i < ml.n_tensors; ++i) {
  12056. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12057. const std::string name = ggml_get_name(meta);
  12058. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12059. if (name.find("attn_v.weight") != std::string::npos ||
  12060. name.find("attn_qkv.weight") != std::string::npos) {
  12061. ++qs.n_attention_wv;
  12062. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12063. qs.has_output = true;
  12064. }
  12065. }
  12066. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12067. // sanity checks
  12068. //
  12069. // - qs.n_attention_wv == 0 for Mamba models
  12070. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12071. //
  12072. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12073. size_t total_size_org = 0;
  12074. size_t total_size_new = 0;
  12075. std::vector<std::thread> workers;
  12076. workers.reserve(nthread);
  12077. int idx = 0;
  12078. std::vector<no_init<uint8_t>> read_data;
  12079. std::vector<no_init<uint8_t>> work;
  12080. std::vector<no_init<float>> f32_conv_buf;
  12081. uint16_t n_split = 1;
  12082. // Assume split index is continuous
  12083. if (params->keep_split) {
  12084. for (int i = 0; i < ml.n_tensors; ++i) {
  12085. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12086. }
  12087. }
  12088. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12089. ctx_outs[0] = ctx_out;
  12090. // populate the original tensors so we get an initial meta data
  12091. for (int i = 0; i < ml.n_tensors; ++i) {
  12092. auto weight = ml.get_weight(i);
  12093. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12094. struct ggml_tensor * tensor = weight->tensor;
  12095. if (ctx_outs[i_split] == NULL) {
  12096. ctx_outs[i_split] = gguf_init_empty();
  12097. }
  12098. gguf_add_tensor(ctx_outs[i_split], tensor);
  12099. }
  12100. // Set split info if needed
  12101. if (n_split > 1) {
  12102. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12103. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12104. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12105. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12106. }
  12107. }
  12108. int cur_split = -1;
  12109. std::ofstream fout;
  12110. auto close_ofstream = [&]() {
  12111. // Write metadata and close file handler
  12112. if (fout.is_open()) {
  12113. fout.seekp(0);
  12114. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12115. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12116. fout.write((const char *) data.data(), data.size());
  12117. fout.close();
  12118. }
  12119. };
  12120. auto new_ofstream = [&](int index) {
  12121. cur_split = index;
  12122. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12123. std::string fname = fname_out;
  12124. if (params->keep_split) {
  12125. char split_path[PATH_MAX] = {0};
  12126. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12127. fname = std::string(split_path);
  12128. }
  12129. fout = std::ofstream(fname, std::ios::binary);
  12130. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12131. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12132. // placeholder for the meta data
  12133. ::zeros(fout, meta_size);
  12134. };
  12135. const auto tn = LLM_TN(model.arch);
  12136. new_ofstream(0);
  12137. for (int i = 0; i < ml.n_tensors; ++i) {
  12138. auto weight = ml.get_weight(i);
  12139. struct ggml_tensor * tensor = weight->tensor;
  12140. if (weight->idx != cur_split && params->keep_split) {
  12141. close_ofstream();
  12142. new_ofstream(weight->idx);
  12143. }
  12144. const std::string name = ggml_get_name(tensor);
  12145. if (!ml.use_mmap) {
  12146. if (read_data.size() < ggml_nbytes(tensor)) {
  12147. read_data.resize(ggml_nbytes(tensor));
  12148. }
  12149. tensor->data = read_data.data();
  12150. }
  12151. ml.load_data_for(tensor);
  12152. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12153. ++idx, ml.n_tensors,
  12154. ggml_get_name(tensor),
  12155. llama_format_tensor_shape(tensor).c_str(),
  12156. ggml_type_name(tensor->type));
  12157. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12158. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12159. // quantize only 2D and 3D tensors (experts)
  12160. quantize &= (ggml_n_dims(tensor) >= 2);
  12161. // do not quantize norm tensors
  12162. quantize &= name.find("_norm.weight") == std::string::npos;
  12163. quantize &= params->quantize_output_tensor || name != "output.weight";
  12164. quantize &= !params->only_copy;
  12165. // do not quantize expert gating tensors
  12166. // NOTE: can't use LLM_TN here because the layer number is not known
  12167. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12168. // do not quantize positional embeddings and token types (BERT)
  12169. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12170. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12171. // do not quantize Mamba's small yet 2D weights
  12172. // NOTE: can't use LLM_TN here because the layer number is not known
  12173. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12174. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12175. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12176. enum ggml_type new_type;
  12177. void * new_data;
  12178. size_t new_size;
  12179. if (quantize) {
  12180. new_type = default_type;
  12181. // get more optimal quantization type based on the tensor shape, layer, etc.
  12182. if (!params->pure && ggml_is_quantized(default_type)) {
  12183. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12184. }
  12185. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12186. new_type = params->token_embedding_type;
  12187. }
  12188. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12189. new_type = params->output_tensor_type;
  12190. }
  12191. // If we've decided to quantize to the same type the tensor is already
  12192. // in then there's nothing to do.
  12193. quantize = tensor->type != new_type;
  12194. }
  12195. if (!quantize) {
  12196. new_type = tensor->type;
  12197. new_data = tensor->data;
  12198. new_size = ggml_nbytes(tensor);
  12199. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12200. } else {
  12201. const int64_t nelements = ggml_nelements(tensor);
  12202. const float * imatrix = nullptr;
  12203. if (imatrix_data) {
  12204. auto it = imatrix_data->find(tensor->name);
  12205. if (it == imatrix_data->end()) {
  12206. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12207. } else {
  12208. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12209. imatrix = it->second.data();
  12210. } else {
  12211. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12212. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12213. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12214. // this is a significant error and it may be good idea to abort the process if this happens,
  12215. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12216. // tok_embd should be ignored in this case, since it always causes this warning
  12217. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12218. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12219. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12220. }
  12221. }
  12222. }
  12223. }
  12224. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12225. new_type == GGML_TYPE_IQ2_XS ||
  12226. new_type == GGML_TYPE_IQ2_S ||
  12227. new_type == GGML_TYPE_IQ1_S ||
  12228. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12229. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12230. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12231. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12232. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12233. LLAMA_LOG_ERROR("============================================================\n\n");
  12234. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12235. }
  12236. float * f32_data;
  12237. if (tensor->type == GGML_TYPE_F32) {
  12238. f32_data = (float *) tensor->data;
  12239. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12240. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12241. } else {
  12242. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12243. f32_data = (float *) f32_conv_buf.data();
  12244. }
  12245. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12246. fflush(stdout);
  12247. if (work.size() < (size_t)nelements * 4) {
  12248. work.resize(nelements * 4); // upper bound on size
  12249. }
  12250. new_data = work.data();
  12251. const int64_t n_per_row = tensor->ne[0];
  12252. const int64_t nrows = tensor->ne[1];
  12253. static const int64_t min_chunk_size = 32 * 512;
  12254. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12255. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12256. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12257. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12258. // quantize each expert separately since they have different importance matrices
  12259. new_size = 0;
  12260. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12261. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12262. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12263. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12264. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12265. }
  12266. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12267. }
  12268. total_size_org += ggml_nbytes(tensor);
  12269. total_size_new += new_size;
  12270. // update the gguf meta data as we go
  12271. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12272. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12273. // write tensor data + padding
  12274. fout.write((const char *) new_data, new_size);
  12275. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12276. }
  12277. close_ofstream();
  12278. for (auto & c:ctx_outs) {
  12279. gguf_free(c);
  12280. }
  12281. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12282. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12283. if (qs.n_fallback > 0) {
  12284. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12285. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12286. }
  12287. }
  12288. static int llama_apply_lora_from_file_internal(
  12289. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12290. ) {
  12291. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12292. const int64_t t_start_lora_us = ggml_time_us();
  12293. llama_file fin(path_lora, "rb");
  12294. // verify magic and version
  12295. {
  12296. uint32_t magic = fin.read_u32();
  12297. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12298. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12299. return 1;
  12300. }
  12301. uint32_t format_version = fin.read_u32();
  12302. if (format_version != 1) {
  12303. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12304. return 1;
  12305. }
  12306. }
  12307. int32_t lora_r = fin.read_u32();
  12308. int32_t lora_alpha = fin.read_u32();
  12309. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12310. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12311. // load base model
  12312. std::unique_ptr<llama_model_loader> ml;
  12313. if (path_base_model) {
  12314. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12315. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  12316. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12317. }
  12318. struct tensor_meta {
  12319. std::string name;
  12320. ggml_type type;
  12321. int32_t ne[2];
  12322. size_t offset;
  12323. };
  12324. std::map<std::string, tensor_meta> tensor_meta_map;
  12325. // load all tensor meta
  12326. while (true) {
  12327. if (fin.tell() == fin.size) {
  12328. // eof
  12329. break;
  12330. }
  12331. int32_t n_dims;
  12332. int32_t name_len;
  12333. int32_t ftype;
  12334. fin.read_raw(&n_dims, sizeof(n_dims));
  12335. fin.read_raw(&name_len, sizeof(name_len));
  12336. fin.read_raw(&ftype, sizeof(ftype));
  12337. if (n_dims != 1 && n_dims != 2) {
  12338. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12339. return 1;
  12340. }
  12341. int32_t ne[2] = { 1, 1 };
  12342. for (int i = 0; i < n_dims; ++i) {
  12343. fin.read_raw(&ne[i], sizeof(ne[i]));
  12344. }
  12345. std::string name;
  12346. {
  12347. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12348. char buf[GGML_MAX_NAME];
  12349. fin.read_raw(buf, name_len);
  12350. name = std::string(buf, name_len);
  12351. }
  12352. // check for lora suffix
  12353. std::string lora_suffix;
  12354. if (name.length() > 6) {
  12355. lora_suffix = name.substr(name.length() - 6);
  12356. }
  12357. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12358. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12359. return 1;
  12360. }
  12361. // tensor type
  12362. ggml_type wtype;
  12363. switch (ftype) {
  12364. case 0: wtype = GGML_TYPE_F32; break;
  12365. case 1: wtype = GGML_TYPE_F16; break;
  12366. default:
  12367. {
  12368. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  12369. __func__, ftype);
  12370. return 1;
  12371. }
  12372. }
  12373. // data offset
  12374. size_t offset = fin.tell();
  12375. offset = (offset + 31) & -32;
  12376. // skip tensor data
  12377. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  12378. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  12379. }
  12380. bool warned = false;
  12381. int n_tensors = 0;
  12382. // apply
  12383. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  12384. if (backend_cpu == nullptr) {
  12385. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  12386. return 1;
  12387. }
  12388. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  12389. std::vector<no_init<uint8_t>> read_buf;
  12390. for (const auto & it : model.tensors_by_name) {
  12391. const std::string & base_name = it.first;
  12392. ggml_tensor * model_t = it.second;
  12393. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  12394. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  12395. continue;
  12396. }
  12397. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  12398. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  12399. ggml_init_params lora_init_params = {
  12400. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  12401. /* .mem_buffer */ nullptr,
  12402. /* .no_alloc */ true,
  12403. };
  12404. ggml_context * lora_ctx = ggml_init(lora_init_params);
  12405. if (lora_ctx == nullptr) {
  12406. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  12407. ggml_backend_free(backend_cpu);
  12408. return 1;
  12409. }
  12410. // create tensors
  12411. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  12412. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  12413. ggml_set_name(loraA, metaA.name.c_str());
  12414. ggml_set_name(loraB, metaB.name.c_str());
  12415. ggml_tensor * base_t;
  12416. if (ml) {
  12417. if (!ml->get_tensor_meta(base_name.c_str())) {
  12418. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  12419. return 1;
  12420. }
  12421. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  12422. } else {
  12423. base_t = ggml_dup_tensor(lora_ctx, model_t);
  12424. }
  12425. ggml_set_name(base_t, base_name.c_str());
  12426. // allocate in backend buffer
  12427. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12428. if (lora_buf == nullptr) {
  12429. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  12430. return 1;
  12431. }
  12432. // load tensor data
  12433. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  12434. read_buf.resize(ggml_nbytes(tensor));
  12435. fin.seek(tensor_meta.offset, SEEK_SET);
  12436. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  12437. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  12438. };
  12439. load_tensor(metaA, loraA);
  12440. load_tensor(metaB, loraB);
  12441. // load base model tensor data
  12442. if (ml) {
  12443. ml->load_data_for(base_t);
  12444. } else {
  12445. ggml_backend_tensor_copy(model_t, base_t);
  12446. }
  12447. if (ggml_is_quantized(base_t->type) && !warned) {
  12448. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  12449. "use a f16 or f32 base model with --lora-base\n", __func__);
  12450. warned = true;
  12451. }
  12452. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  12453. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  12454. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  12455. ggml_free(lora_ctx);
  12456. ggml_backend_buffer_free(lora_buf);
  12457. ggml_backend_free(backend_cpu);
  12458. return 1;
  12459. }
  12460. auto build_lora_graph = [&]() {
  12461. // w = w + BA*s
  12462. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  12463. ggml_set_name(BA, "BA");
  12464. if (scaling != 1.0f) {
  12465. BA = ggml_scale(lora_ctx, BA, scaling);
  12466. ggml_set_name(BA, "BA_scaled");
  12467. }
  12468. ggml_tensor * r;
  12469. r = ggml_add_inplace(lora_ctx, base_t, BA);
  12470. ggml_set_name(r, "r_add");
  12471. if (base_t->type != model_t->type) {
  12472. // convert the result to the model type
  12473. r = ggml_cast(lora_ctx, r, model_t->type);
  12474. ggml_set_name(r, "r_cast");
  12475. }
  12476. return r;
  12477. };
  12478. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  12479. ggml_tensor * r = build_lora_graph();
  12480. ggml_build_forward_expand(gf, r);
  12481. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  12482. if (graph_buf == nullptr) {
  12483. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  12484. ggml_free(lora_ctx);
  12485. ggml_backend_buffer_free(lora_buf);
  12486. ggml_backend_free(backend_cpu);
  12487. return 1;
  12488. }
  12489. ggml_backend_graph_compute(backend_cpu, gf);
  12490. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  12491. #if 0
  12492. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  12493. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  12494. // sched compute
  12495. ggml_build_forward_expand(gf, build_graph());
  12496. ggml_backend_sched_init_measure(sched, gf);
  12497. // create the graph again, since the previous one was destroyed by the measure
  12498. ggml_graph_clear(gf);
  12499. ggml_build_forward_expand(gf, build_graph());
  12500. ggml_backend_sched_graph_compute(sched, gf);
  12501. ggml_backend_sched_free(sched);
  12502. #endif
  12503. ggml_backend_buffer_free(lora_buf);
  12504. ggml_backend_buffer_free(graph_buf);
  12505. ggml_free(lora_ctx);
  12506. n_tensors++;
  12507. if (n_tensors % 4 == 0) {
  12508. LLAMA_LOG_INFO(".");
  12509. }
  12510. }
  12511. ggml_backend_free(backend_cpu);
  12512. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  12513. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  12514. return 0;
  12515. }
  12516. //
  12517. // interface implementation
  12518. //
  12519. struct llama_model_params llama_model_default_params() {
  12520. struct llama_model_params result = {
  12521. /*.n_gpu_layers =*/ 0,
  12522. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  12523. /*.main_gpu =*/ 0,
  12524. /*.tensor_split =*/ nullptr,
  12525. /*.progress_callback =*/ nullptr,
  12526. /*.progress_callback_user_data =*/ nullptr,
  12527. /*.kv_overrides =*/ nullptr,
  12528. /*.vocab_only =*/ false,
  12529. /*.use_mmap =*/ true,
  12530. /*.use_mlock =*/ false,
  12531. };
  12532. #ifdef GGML_USE_METAL
  12533. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  12534. result.n_gpu_layers = 999;
  12535. #endif
  12536. return result;
  12537. }
  12538. struct llama_context_params llama_context_default_params() {
  12539. struct llama_context_params result = {
  12540. /*.seed =*/ LLAMA_DEFAULT_SEED,
  12541. /*.n_ctx =*/ 512,
  12542. /*.n_batch =*/ 2048,
  12543. /*.n_ubatch =*/ 512,
  12544. /*.n_seq_max =*/ 1,
  12545. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  12546. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  12547. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  12548. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  12549. /*.rope_freq_base =*/ 0.0f,
  12550. /*.rope_freq_scale =*/ 0.0f,
  12551. /*.yarn_ext_factor =*/ -1.0f,
  12552. /*.yarn_attn_factor =*/ 1.0f,
  12553. /*.yarn_beta_fast =*/ 32.0f,
  12554. /*.yarn_beta_slow =*/ 1.0f,
  12555. /*.yarn_orig_ctx =*/ 0,
  12556. /*.defrag_thold =*/ -1.0f,
  12557. /*.cb_eval =*/ nullptr,
  12558. /*.cb_eval_user_data =*/ nullptr,
  12559. /*.type_k =*/ GGML_TYPE_F16,
  12560. /*.type_v =*/ GGML_TYPE_F16,
  12561. /*.logits_all =*/ false,
  12562. /*.embeddings =*/ false,
  12563. /*.offload_kqv =*/ true,
  12564. /*.abort_callback =*/ nullptr,
  12565. /*.abort_callback_data =*/ nullptr,
  12566. };
  12567. return result;
  12568. }
  12569. struct llama_model_quantize_params llama_model_quantize_default_params() {
  12570. struct llama_model_quantize_params result = {
  12571. /*.nthread =*/ 0,
  12572. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  12573. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  12574. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  12575. /*.allow_requantize =*/ false,
  12576. /*.quantize_output_tensor =*/ true,
  12577. /*.only_copy =*/ false,
  12578. /*.pure =*/ false,
  12579. /*.keep_split =*/ false,
  12580. /*.imatrix =*/ nullptr,
  12581. /*.kv_overrides =*/ nullptr,
  12582. };
  12583. return result;
  12584. }
  12585. size_t llama_max_devices(void) {
  12586. #if defined(GGML_USE_METAL)
  12587. return 1;
  12588. #elif defined(GGML_USE_CUDA)
  12589. return GGML_CUDA_MAX_DEVICES;
  12590. #elif defined(GGML_USE_SYCL)
  12591. return GGML_SYCL_MAX_DEVICES;
  12592. #elif defined(GGML_USE_VULKAN)
  12593. return GGML_VK_MAX_DEVICES;
  12594. #else
  12595. return 1;
  12596. #endif
  12597. }
  12598. bool llama_supports_mmap(void) {
  12599. return llama_mmap::SUPPORTED;
  12600. }
  12601. bool llama_supports_mlock(void) {
  12602. return llama_mlock::SUPPORTED;
  12603. }
  12604. bool llama_supports_gpu_offload(void) {
  12605. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  12606. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  12607. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  12608. return true;
  12609. #else
  12610. return false;
  12611. #endif
  12612. }
  12613. void llama_backend_init(void) {
  12614. ggml_time_init();
  12615. // needed to initialize f16 tables
  12616. {
  12617. struct ggml_init_params params = { 0, NULL, false };
  12618. struct ggml_context * ctx = ggml_init(params);
  12619. ggml_free(ctx);
  12620. }
  12621. #ifdef GGML_USE_MPI
  12622. ggml_mpi_backend_init();
  12623. #endif
  12624. }
  12625. void llama_numa_init(enum ggml_numa_strategy numa) {
  12626. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  12627. ggml_numa_init(numa);
  12628. }
  12629. }
  12630. void llama_backend_free(void) {
  12631. #ifdef GGML_USE_MPI
  12632. ggml_mpi_backend_free();
  12633. #endif
  12634. ggml_quantize_free();
  12635. }
  12636. int64_t llama_time_us(void) {
  12637. return ggml_time_us();
  12638. }
  12639. struct llama_model * llama_load_model_from_file(
  12640. const char * path_model,
  12641. struct llama_model_params params) {
  12642. ggml_time_init();
  12643. llama_model * model = new llama_model;
  12644. unsigned cur_percentage = 0;
  12645. if (params.progress_callback == NULL) {
  12646. params.progress_callback_user_data = &cur_percentage;
  12647. params.progress_callback = [](float progress, void * ctx) {
  12648. unsigned * cur_percentage_p = (unsigned *) ctx;
  12649. unsigned percentage = (unsigned) (100 * progress);
  12650. while (percentage > *cur_percentage_p) {
  12651. *cur_percentage_p = percentage;
  12652. LLAMA_LOG_INFO(".");
  12653. if (percentage >= 100) {
  12654. LLAMA_LOG_INFO("\n");
  12655. }
  12656. }
  12657. return true;
  12658. };
  12659. }
  12660. int status = llama_model_load(path_model, *model, params);
  12661. GGML_ASSERT(status <= 0);
  12662. if (status < 0) {
  12663. if (status == -1) {
  12664. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  12665. } else if (status == -2) {
  12666. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  12667. }
  12668. delete model;
  12669. return nullptr;
  12670. }
  12671. return model;
  12672. }
  12673. void llama_free_model(struct llama_model * model) {
  12674. delete model;
  12675. }
  12676. struct llama_context * llama_new_context_with_model(
  12677. struct llama_model * model,
  12678. struct llama_context_params params) {
  12679. if (!model) {
  12680. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  12681. return nullptr;
  12682. }
  12683. if (params.n_batch == 0 && params.n_ubatch == 0) {
  12684. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  12685. return nullptr;
  12686. }
  12687. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  12688. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  12689. return nullptr;
  12690. }
  12691. llama_context * ctx = new llama_context(*model);
  12692. const auto & hparams = model->hparams;
  12693. auto & cparams = ctx->cparams;
  12694. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  12695. cparams.n_threads = params.n_threads;
  12696. cparams.n_threads_batch = params.n_threads_batch;
  12697. cparams.yarn_ext_factor = params.yarn_ext_factor;
  12698. cparams.yarn_attn_factor = params.yarn_attn_factor;
  12699. cparams.yarn_beta_fast = params.yarn_beta_fast;
  12700. cparams.yarn_beta_slow = params.yarn_beta_slow;
  12701. cparams.defrag_thold = params.defrag_thold;
  12702. cparams.embeddings = params.embeddings;
  12703. cparams.offload_kqv = params.offload_kqv;
  12704. cparams.pooling_type = params.pooling_type;
  12705. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  12706. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  12707. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  12708. // this is necessary due to kv_self.n being padded later during inference
  12709. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  12710. // with causal attention, the batch size is limited by the context size
  12711. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  12712. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  12713. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  12714. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  12715. hparams.n_ctx_train;
  12716. cparams.cb_eval = params.cb_eval;
  12717. cparams.cb_eval_user_data = params.cb_eval_user_data;
  12718. auto rope_scaling_type = params.rope_scaling_type;
  12719. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  12720. rope_scaling_type = hparams.rope_scaling_type_train;
  12721. }
  12722. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  12723. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  12724. }
  12725. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  12726. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  12727. }
  12728. cparams.causal_attn = hparams.causal_attn;
  12729. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12730. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  12731. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  12732. } else {
  12733. cparams.pooling_type = hparams.pooling_type;
  12734. }
  12735. }
  12736. if (params.seed == LLAMA_DEFAULT_SEED) {
  12737. params.seed = time(NULL);
  12738. }
  12739. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  12740. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  12741. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  12742. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  12743. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  12744. ctx->abort_callback = params.abort_callback;
  12745. ctx->abort_callback_data = params.abort_callback_data;
  12746. ctx->rng = std::mt19937(params.seed);
  12747. ctx->logits_all = params.logits_all;
  12748. uint32_t kv_size = cparams.n_ctx;
  12749. ggml_type type_k = params.type_k;
  12750. ggml_type type_v = params.type_v;
  12751. // Mamba only needs a constant number of KV cache cells per sequence
  12752. if (model->arch == LLM_ARCH_MAMBA) {
  12753. // Mamba needs at least as many KV cells as there are sequences kept at any time
  12754. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  12755. // it's probably best to keep as much precision as possible for the states
  12756. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  12757. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  12758. }
  12759. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  12760. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  12761. if (!hparams.vocab_only) {
  12762. // initialize backends
  12763. #ifdef GGML_USE_METAL
  12764. if (model->n_gpu_layers > 0) {
  12765. ctx->backend_metal = ggml_backend_metal_init();
  12766. if (ctx->backend_metal == nullptr) {
  12767. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  12768. llama_free(ctx);
  12769. return nullptr;
  12770. }
  12771. ctx->backends.push_back(ctx->backend_metal);
  12772. }
  12773. #elif defined(GGML_USE_CUDA)
  12774. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12775. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12776. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  12777. if (backend == nullptr) {
  12778. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  12779. llama_free(ctx);
  12780. return nullptr;
  12781. }
  12782. ctx->backends.push_back(backend);
  12783. } else {
  12784. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  12785. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  12786. ggml_backend_t backend = ggml_backend_cuda_init(device);
  12787. if (backend == nullptr) {
  12788. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  12789. llama_free(ctx);
  12790. return nullptr;
  12791. }
  12792. ctx->backends.push_back(backend);
  12793. }
  12794. }
  12795. #elif defined(GGML_USE_VULKAN)
  12796. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12797. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  12798. llama_free(ctx);
  12799. return nullptr;
  12800. }
  12801. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  12802. ggml_backend_t backend = ggml_backend_vk_init(0);
  12803. if (backend == nullptr) {
  12804. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  12805. llama_free(ctx);
  12806. return nullptr;
  12807. }
  12808. ctx->backends.push_back(backend);
  12809. } else {
  12810. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  12811. ggml_backend_t backend = ggml_backend_vk_init(device);
  12812. if (backend == nullptr) {
  12813. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  12814. llama_free(ctx);
  12815. return nullptr;
  12816. }
  12817. ctx->backends.push_back(backend);
  12818. }
  12819. }
  12820. #elif defined(GGML_USE_SYCL)
  12821. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  12822. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  12823. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  12824. if (backend == nullptr) {
  12825. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  12826. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  12827. llama_free(ctx);
  12828. return nullptr;
  12829. }
  12830. ctx->backends.push_back(backend);
  12831. } else {
  12832. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  12833. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  12834. ggml_backend_t backend = ggml_backend_sycl_init(i);
  12835. if (backend == nullptr) {
  12836. int id_list[GGML_SYCL_MAX_DEVICES];
  12837. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  12838. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  12839. llama_free(ctx);
  12840. return nullptr;
  12841. }
  12842. ctx->backends.push_back(backend);
  12843. }
  12844. }
  12845. #elif defined(GGML_USE_KOMPUTE)
  12846. if (model->n_gpu_layers > 0) {
  12847. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  12848. if (backend == nullptr) {
  12849. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  12850. llama_free(ctx);
  12851. return nullptr;
  12852. }
  12853. ctx->backends.push_back(backend);
  12854. }
  12855. #endif
  12856. ctx->backend_cpu = ggml_backend_cpu_init();
  12857. if (ctx->backend_cpu == nullptr) {
  12858. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  12859. llama_free(ctx);
  12860. return nullptr;
  12861. }
  12862. ctx->backends.push_back(ctx->backend_cpu);
  12863. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  12864. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  12865. llama_free(ctx);
  12866. return nullptr;
  12867. }
  12868. {
  12869. size_t memory_size_k = 0;
  12870. size_t memory_size_v = 0;
  12871. for (auto & k : ctx->kv_self.k_l) {
  12872. memory_size_k += ggml_nbytes(k);
  12873. }
  12874. for (auto & v : ctx->kv_self.v_l) {
  12875. memory_size_v += ggml_nbytes(v);
  12876. }
  12877. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  12878. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  12879. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  12880. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  12881. }
  12882. // graph outputs buffer
  12883. {
  12884. // resized during inference when a batch uses more outputs
  12885. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  12886. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  12887. llama_free(ctx);
  12888. return nullptr;
  12889. }
  12890. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  12891. ggml_backend_buffer_name(ctx->buf_output),
  12892. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  12893. }
  12894. // scheduler and compute buffers
  12895. {
  12896. // buffer types used for the compute buffer of each backend
  12897. std::vector<ggml_backend_buffer_type_t> backend_buft;
  12898. for (auto * backend : ctx->backends) {
  12899. if (ggml_backend_is_cpu(backend)) {
  12900. // use host buffers for the CPU backend compute buffer
  12901. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  12902. } else {
  12903. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  12904. }
  12905. }
  12906. // buffer used to store the computation graph and the tensor meta data
  12907. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  12908. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  12909. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  12910. #ifndef GGML_USE_CUDA
  12911. // pipeline parallelism requires support for async compute and events
  12912. // currently this is only implemented in the CUDA backend
  12913. pipeline_parallel = false;
  12914. #endif
  12915. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  12916. if (pipeline_parallel) {
  12917. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  12918. }
  12919. // build worst-case graph
  12920. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  12921. int n_past = cparams.n_ctx - n_tokens;
  12922. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  12923. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  12924. // initialize scheduler with the worst-case graph
  12925. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  12926. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  12927. llama_free(ctx);
  12928. return nullptr;
  12929. }
  12930. for (size_t i = 0; i < ctx->backends.size(); i++) {
  12931. ggml_backend_t backend = ctx->backends[i];
  12932. ggml_backend_buffer_type_t buft = backend_buft[i];
  12933. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  12934. if (size > 1) {
  12935. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  12936. ggml_backend_buft_name(buft),
  12937. size / 1024.0 / 1024.0);
  12938. }
  12939. }
  12940. // note: the number of splits during measure is higher than during inference due to the kv shift
  12941. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  12942. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  12943. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  12944. }
  12945. }
  12946. #ifdef GGML_USE_MPI
  12947. ctx->ctx_mpi = ggml_mpi_init();
  12948. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  12949. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  12950. // TODO: needs fix after #3228
  12951. GGML_ASSERT(false && "not implemented");
  12952. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  12953. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12954. llama_backend_free();
  12955. exit(1);
  12956. }
  12957. #endif
  12958. return ctx;
  12959. }
  12960. void llama_free(struct llama_context * ctx) {
  12961. delete ctx;
  12962. }
  12963. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12964. return &ctx->model;
  12965. }
  12966. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12967. return ctx->cparams.n_ctx;
  12968. }
  12969. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12970. return ctx->cparams.n_batch;
  12971. }
  12972. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12973. return ctx->cparams.n_ubatch;
  12974. }
  12975. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12976. return ctx->kv_self.size;
  12977. }
  12978. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12979. return model->vocab.type;
  12980. }
  12981. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12982. switch (model->arch) {
  12983. // these models do not use RoPE
  12984. case LLM_ARCH_GPT2:
  12985. case LLM_ARCH_GPTJ:
  12986. case LLM_ARCH_GPTNEOX:
  12987. case LLM_ARCH_MPT:
  12988. case LLM_ARCH_REFACT:
  12989. case LLM_ARCH_BLOOM:
  12990. case LLM_ARCH_MAMBA:
  12991. return LLAMA_ROPE_TYPE_NONE;
  12992. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12993. case LLM_ARCH_LLAMA:
  12994. case LLM_ARCH_BAICHUAN:
  12995. case LLM_ARCH_STARCODER:
  12996. case LLM_ARCH_PLAMO:
  12997. case LLM_ARCH_CODESHELL:
  12998. case LLM_ARCH_ORION:
  12999. case LLM_ARCH_INTERNLM2:
  13000. case LLM_ARCH_MINICPM:
  13001. case LLM_ARCH_XVERSE:
  13002. case LLM_ARCH_COMMAND_R:
  13003. case LLM_ARCH_OLMO:
  13004. return LLAMA_ROPE_TYPE_NORM;
  13005. // the pairs of head values are offset by n_rot/2
  13006. case LLM_ARCH_FALCON:
  13007. case LLM_ARCH_GROK:
  13008. case LLM_ARCH_DBRX:
  13009. case LLM_ARCH_PERSIMMON:
  13010. case LLM_ARCH_BERT:
  13011. case LLM_ARCH_NOMIC_BERT:
  13012. case LLM_ARCH_STABLELM:
  13013. case LLM_ARCH_QWEN:
  13014. case LLM_ARCH_QWEN2:
  13015. case LLM_ARCH_QWEN2MOE:
  13016. case LLM_ARCH_PHI2:
  13017. case LLM_ARCH_PHI3:
  13018. case LLM_ARCH_GEMMA:
  13019. case LLM_ARCH_STARCODER2:
  13020. return LLAMA_ROPE_TYPE_NEOX;
  13021. // all model arches should be listed explicitly here
  13022. case LLM_ARCH_UNKNOWN:
  13023. GGML_ASSERT(false && "unknown architecture");
  13024. break;
  13025. }
  13026. return LLAMA_ROPE_TYPE_NONE;
  13027. }
  13028. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13029. return ctx->cparams.pooling_type;
  13030. }
  13031. int32_t llama_n_vocab(const struct llama_model * model) {
  13032. return model->hparams.n_vocab;
  13033. }
  13034. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13035. return model->hparams.n_ctx_train;
  13036. }
  13037. int32_t llama_n_embd(const struct llama_model * model) {
  13038. return model->hparams.n_embd;
  13039. }
  13040. int32_t llama_n_layer(const struct llama_model * model) {
  13041. return model->hparams.n_layer;
  13042. }
  13043. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13044. return model->hparams.rope_freq_scale_train;
  13045. }
  13046. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13047. const auto & it = model->gguf_kv.find(key);
  13048. if (it == model->gguf_kv.end()) {
  13049. if (buf_size > 0) {
  13050. buf[0] = '\0';
  13051. }
  13052. return -1;
  13053. }
  13054. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13055. }
  13056. int32_t llama_model_meta_count(const struct llama_model * model) {
  13057. return (int)model->gguf_kv.size();
  13058. }
  13059. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13060. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13061. if (buf_size > 0) {
  13062. buf[0] = '\0';
  13063. }
  13064. return -1;
  13065. }
  13066. auto it = model->gguf_kv.begin();
  13067. std::advance(it, i);
  13068. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13069. }
  13070. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13071. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13072. if (buf_size > 0) {
  13073. buf[0] = '\0';
  13074. }
  13075. return -1;
  13076. }
  13077. auto it = model->gguf_kv.begin();
  13078. std::advance(it, i);
  13079. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13080. }
  13081. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13082. return snprintf(buf, buf_size, "%s %s %s",
  13083. llama_model_arch_name(model->arch),
  13084. llama_model_type_name(model->type),
  13085. llama_model_ftype_name(model->ftype).c_str());
  13086. }
  13087. uint64_t llama_model_size(const struct llama_model * model) {
  13088. uint64_t size = 0;
  13089. for (const auto & it : model->tensors_by_name) {
  13090. size += ggml_nbytes(it.second);
  13091. }
  13092. return size;
  13093. }
  13094. uint64_t llama_model_n_params(const struct llama_model * model) {
  13095. uint64_t nparams = 0;
  13096. for (const auto & it : model->tensors_by_name) {
  13097. nparams += ggml_nelements(it.second);
  13098. }
  13099. return nparams;
  13100. }
  13101. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13102. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13103. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13104. return it.first == name;
  13105. });
  13106. if (it == model->tensors_by_name.end()) {
  13107. return nullptr;
  13108. }
  13109. return it->second;
  13110. }
  13111. uint32_t llama_model_quantize(
  13112. const char * fname_inp,
  13113. const char * fname_out,
  13114. const llama_model_quantize_params * params) {
  13115. try {
  13116. llama_model_quantize_internal(fname_inp, fname_out, params);
  13117. return 0;
  13118. } catch (const std::exception & err) {
  13119. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13120. return 1;
  13121. }
  13122. }
  13123. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13124. try {
  13125. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13126. } catch (const std::exception & err) {
  13127. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13128. return 1;
  13129. }
  13130. }
  13131. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13132. GGML_ASSERT(cvec.tensors.empty());
  13133. GGML_ASSERT(cvec.ctxs.empty());
  13134. GGML_ASSERT(cvec.bufs.empty());
  13135. // count layer buffer types
  13136. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13137. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13138. buft_layer_count[model.buft_layer[i].buft]++;
  13139. }
  13140. // allocate contexts
  13141. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13142. for (auto & it : buft_layer_count) {
  13143. int n_layers = it.second;
  13144. struct ggml_init_params params = {
  13145. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13146. /*.mem_buffer =*/ NULL,
  13147. /*.no_alloc =*/ true,
  13148. };
  13149. ggml_context * ctx = ggml_init(params);
  13150. if (!ctx) {
  13151. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13152. return 1;
  13153. }
  13154. ctx_map[it.first] = ctx;
  13155. }
  13156. // make tensors
  13157. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13158. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13159. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13160. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13161. cvec.tensors.push_back(tensor);
  13162. }
  13163. // allocate tensors / buffers and zero
  13164. for (auto it : ctx_map) {
  13165. ggml_backend_buffer_type_t buft = it.first;
  13166. ggml_context * ctx = it.second;
  13167. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13168. if (!buf) {
  13169. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13170. return false;
  13171. }
  13172. ggml_backend_buffer_clear(buf, 0);
  13173. cvec.ctxs.push_back(ctx);
  13174. cvec.bufs.push_back(buf);
  13175. }
  13176. return true;
  13177. }
  13178. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13179. const llama_model & model = lctx->model;
  13180. llama_control_vector & cvec = lctx->cvec;
  13181. if (data == nullptr) {
  13182. // disable the current control vector (but leave allocated for later)
  13183. cvec.layer_start = -1;
  13184. cvec.layer_end = -1;
  13185. return 0;
  13186. }
  13187. if (n_embd != (int) model.hparams.n_embd) {
  13188. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13189. return 1;
  13190. }
  13191. if (cvec.tensors.empty()) {
  13192. if (!llama_control_vector_init(cvec, model)) {
  13193. return 1;
  13194. }
  13195. }
  13196. cvec.layer_start = il_start;
  13197. cvec.layer_end = il_end;
  13198. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13199. assert(cvec.tensors[il] != nullptr);
  13200. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13201. if (off + n_embd <= len) {
  13202. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13203. }
  13204. }
  13205. return 0;
  13206. }
  13207. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13208. struct llama_kv_cache_view result = {
  13209. /*.n_cells = */ 0,
  13210. /*.n_seq_max = */ n_seq_max,
  13211. /*.token_count = */ 0,
  13212. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13213. /*.max_contiguous = */ 0,
  13214. /*.max_contiguous_idx = */ -1,
  13215. /*.cells = */ nullptr,
  13216. /*.cells_sequences = */ nullptr,
  13217. };
  13218. return result;
  13219. }
  13220. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13221. if (view->cells != nullptr) {
  13222. free(view->cells);
  13223. view->cells = nullptr;
  13224. }
  13225. if (view->cells_sequences != nullptr) {
  13226. free(view->cells_sequences);
  13227. view->cells_sequences = nullptr;
  13228. }
  13229. }
  13230. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13231. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13232. view->n_cells = int32_t(ctx->kv_self.size);
  13233. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13234. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13235. view->cells = (struct llama_kv_cache_view_cell *)p;
  13236. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13237. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13238. view->cells_sequences = (llama_seq_id *)p;
  13239. }
  13240. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13241. llama_kv_cache_view_cell * c_curr = view->cells;
  13242. llama_seq_id * cs_curr = view->cells_sequences;
  13243. int32_t used_cells = 0;
  13244. int32_t token_count = 0;
  13245. int32_t curr_contig_idx = -1;
  13246. uint32_t max_contig = 0;
  13247. int32_t max_contig_idx = -1;
  13248. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13249. const size_t curr_size = kv_cells[i].seq_id.size();
  13250. token_count += curr_size;
  13251. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13252. if (curr_size > 0) {
  13253. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13254. max_contig = i - curr_contig_idx;
  13255. max_contig_idx = curr_contig_idx;
  13256. }
  13257. curr_contig_idx = -1;
  13258. } else if (curr_contig_idx < 0) {
  13259. curr_contig_idx = i;
  13260. }
  13261. int seq_idx = 0;
  13262. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13263. if (seq_idx >= view->n_seq_max) {
  13264. break;
  13265. }
  13266. cs_curr[seq_idx] = it;
  13267. seq_idx++;
  13268. }
  13269. if (seq_idx != 0) {
  13270. used_cells++;
  13271. }
  13272. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13273. cs_curr[seq_idx] = -1;
  13274. }
  13275. }
  13276. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13277. max_contig_idx = curr_contig_idx;
  13278. max_contig = kv_cells.size() - curr_contig_idx;
  13279. }
  13280. view->max_contiguous = max_contig;
  13281. view->max_contiguous_idx = max_contig_idx;
  13282. view->token_count = token_count;
  13283. view->used_cells = used_cells;
  13284. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13285. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13286. __func__, ctx->kv_self.used, used_cells);
  13287. }
  13288. }
  13289. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13290. int result = 0;
  13291. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13292. result += ctx->kv_self.cells[i].seq_id.size();
  13293. }
  13294. return result;
  13295. }
  13296. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13297. return ctx->kv_self.used;
  13298. }
  13299. void llama_kv_cache_clear(struct llama_context * ctx) {
  13300. llama_kv_cache_clear(ctx->kv_self);
  13301. }
  13302. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13303. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13304. }
  13305. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13306. if (seq_id_src == seq_id_dst) {
  13307. return;
  13308. }
  13309. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13310. }
  13311. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13312. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13313. }
  13314. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13315. if (delta == 0) {
  13316. return;
  13317. }
  13318. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13319. }
  13320. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13321. if (d == 1) {
  13322. return;
  13323. }
  13324. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13325. }
  13326. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13327. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  13328. }
  13329. void llama_kv_cache_defrag(struct llama_context * ctx) {
  13330. llama_kv_cache_defrag(ctx->kv_self);
  13331. }
  13332. void llama_kv_cache_update(struct llama_context * ctx) {
  13333. llama_kv_cache_update_internal(*ctx);
  13334. }
  13335. // deprecated
  13336. size_t llama_get_state_size(const struct llama_context * ctx) {
  13337. return llama_state_get_size(ctx);
  13338. }
  13339. // deprecated
  13340. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  13341. return llama_state_get_data(ctx, dst);
  13342. }
  13343. // deprecated
  13344. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  13345. return llama_state_set_data(ctx, src);
  13346. }
  13347. // deprecated
  13348. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13349. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13350. }
  13351. // deprecated
  13352. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13353. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  13354. }
  13355. // Returns the *maximum* size of the state
  13356. size_t llama_state_get_size(const struct llama_context * ctx) {
  13357. const auto & cparams = ctx->cparams;
  13358. const auto & hparams = ctx->model.hparams;
  13359. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  13360. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  13361. const size_t s_rng_size = sizeof(size_t);
  13362. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  13363. const size_t s_n_outputs = sizeof(size_t);
  13364. // assume worst case for outputs although only currently set ones are serialized
  13365. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  13366. const size_t s_logits_size = sizeof(size_t);
  13367. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  13368. const size_t s_embedding_size = sizeof(size_t);
  13369. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  13370. const size_t s_kv_buf_size = sizeof(size_t);
  13371. const size_t s_kv_head = sizeof(uint32_t);
  13372. const size_t s_kv_size = sizeof(uint32_t);
  13373. const size_t s_kv_used = sizeof(uint32_t);
  13374. const size_t s_kv = ctx->kv_self.total_size();
  13375. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  13376. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  13377. const size_t s_total = (
  13378. + s_rng_size
  13379. + s_rng
  13380. + s_n_outputs
  13381. + s_output_pos
  13382. + s_logits_size
  13383. + s_logits
  13384. + s_embedding_size
  13385. + s_embedding
  13386. + s_kv_buf_size
  13387. + s_kv_head
  13388. + s_kv_size
  13389. + s_kv_used
  13390. + s_kv
  13391. + s_kv_cells
  13392. );
  13393. return s_total;
  13394. }
  13395. // llama_context_data
  13396. struct llama_data_context {
  13397. virtual void write(const void * src, size_t size) = 0;
  13398. virtual size_t get_size_written() = 0;
  13399. virtual ~llama_data_context() = default;
  13400. };
  13401. struct llama_data_buffer_context : llama_data_context {
  13402. uint8_t * ptr;
  13403. size_t size_written = 0;
  13404. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  13405. void write(const void * src, size_t size) override {
  13406. memcpy(ptr, src, size);
  13407. ptr += size;
  13408. size_written += size;
  13409. }
  13410. size_t get_size_written() override {
  13411. return size_written;
  13412. }
  13413. };
  13414. struct llama_data_file_context : llama_data_context {
  13415. llama_file * file;
  13416. size_t size_written = 0;
  13417. llama_data_file_context(llama_file * f) : file(f) {}
  13418. void write(const void * src, size_t size) override {
  13419. file->write_raw(src, size);
  13420. size_written += size;
  13421. }
  13422. size_t get_size_written() override {
  13423. return size_written;
  13424. }
  13425. };
  13426. /** copy state data into either a buffer or file depending on the passed in context
  13427. *
  13428. * file context:
  13429. * llama_file file("/path", "wb");
  13430. * llama_data_file_context data_ctx(&file);
  13431. * llama_state_get_data(ctx, &data_ctx);
  13432. *
  13433. * buffer context:
  13434. * std::vector<uint8_t> buf(max_size, 0);
  13435. * llama_data_buffer_context data_ctx(&buf.data());
  13436. * llama_state_get_data(ctx, &data_ctx);
  13437. *
  13438. */
  13439. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  13440. llama_synchronize(ctx);
  13441. // copy rng
  13442. {
  13443. std::ostringstream rng_ss;
  13444. rng_ss << ctx->rng;
  13445. const std::string & rng_str = rng_ss.str();
  13446. const size_t rng_size = rng_str.size();
  13447. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13448. data_ctx->write(&rng_size, sizeof(rng_size));
  13449. data_ctx->write(rng_str.data(), rng_size);
  13450. }
  13451. // copy outputs
  13452. {
  13453. // Can't use ctx->n_outputs because it's not for the
  13454. // entire last batch when n_ubatch is smaller than n_batch
  13455. size_t n_outputs = 0;
  13456. // copy output ids
  13457. {
  13458. std::vector<int32_t> output_pos;
  13459. const size_t n_batch = ctx->cparams.n_batch;
  13460. const auto & output_ids = ctx->output_ids;
  13461. output_pos.resize(ctx->output_size);
  13462. // build a more compact representation of the output ids
  13463. for (size_t i = 0; i < n_batch; ++i) {
  13464. // map an output id to a position in the batch
  13465. int32_t pos = output_ids[i];
  13466. if (pos >= 0) {
  13467. if ((size_t) pos >= n_outputs) {
  13468. n_outputs = pos + 1;
  13469. }
  13470. GGML_ASSERT((size_t) pos < ctx->output_size);
  13471. output_pos[pos] = i;
  13472. }
  13473. }
  13474. data_ctx->write(&n_outputs, sizeof(n_outputs));
  13475. if (n_outputs) {
  13476. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  13477. }
  13478. }
  13479. // copy logits
  13480. {
  13481. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  13482. data_ctx->write(&logits_size, sizeof(logits_size));
  13483. if (logits_size) {
  13484. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  13485. }
  13486. }
  13487. // copy embeddings
  13488. {
  13489. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  13490. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  13491. if (embeddings_size) {
  13492. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  13493. }
  13494. }
  13495. }
  13496. // copy kv cache
  13497. {
  13498. const auto & kv_self = ctx->kv_self;
  13499. const auto & hparams = ctx->model.hparams;
  13500. const uint32_t n_layer = hparams.n_layer;
  13501. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13502. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13503. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  13504. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  13505. const uint32_t kv_size = kv_self.size;
  13506. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  13507. const uint32_t kv_used = kv_self.used;
  13508. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  13509. data_ctx->write(&kv_head, sizeof(kv_head));
  13510. data_ctx->write(&kv_size, sizeof(kv_size));
  13511. data_ctx->write(&kv_used, sizeof(kv_used));
  13512. if (kv_buf_size) {
  13513. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  13514. std::vector<uint8_t> tmp_buf;
  13515. for (int il = 0; il < (int) n_layer; ++il) {
  13516. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13517. tmp_buf.resize(k_size);
  13518. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13519. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13520. if (kv_self.recurrent) {
  13521. // v is contiguous for recurrent models
  13522. // TODO: use other tensors for state models than k and v
  13523. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13524. tmp_buf.resize(v_size);
  13525. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  13526. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13527. continue;
  13528. }
  13529. // v is not contiguous, copy row by row
  13530. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13531. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  13532. tmp_buf.resize(v_row_size);
  13533. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13534. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  13535. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  13536. }
  13537. }
  13538. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  13539. }
  13540. for (uint32_t i = 0; i < kv_head; ++i) {
  13541. const auto & cell = kv_self.cells[i];
  13542. const llama_pos pos = cell.pos;
  13543. const size_t seq_id_size = cell.seq_id.size();
  13544. data_ctx->write(&pos, sizeof(pos));
  13545. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  13546. for (auto seq_id : cell.seq_id) {
  13547. data_ctx->write(&seq_id, sizeof(seq_id));
  13548. }
  13549. }
  13550. }
  13551. }
  13552. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  13553. llama_data_buffer_context data_ctx(dst);
  13554. llama_state_get_data_internal(ctx, &data_ctx);
  13555. return data_ctx.get_size_written();
  13556. }
  13557. // Sets the state reading from the specified source address
  13558. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  13559. llama_synchronize(ctx);
  13560. const uint8_t * inp = src;
  13561. // set rng
  13562. {
  13563. size_t rng_size;
  13564. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  13565. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  13566. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  13567. std::istringstream rng_ss(rng_str);
  13568. rng_ss >> ctx->rng;
  13569. GGML_ASSERT(!rng_ss.fail());
  13570. }
  13571. // set output ids
  13572. {
  13573. size_t n_outputs;
  13574. std::vector<int32_t> output_pos;
  13575. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  13576. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  13577. if (n_outputs) {
  13578. output_pos.resize(n_outputs);
  13579. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  13580. inp += n_outputs * sizeof(int32_t);
  13581. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  13582. int32_t id = output_pos[i];
  13583. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  13584. ctx->output_ids[id] = i;
  13585. }
  13586. ctx->n_outputs = n_outputs;
  13587. }
  13588. }
  13589. // set logits
  13590. {
  13591. size_t logits_size;
  13592. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  13593. GGML_ASSERT(ctx->logits_size >= logits_size);
  13594. if (logits_size) {
  13595. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  13596. inp += logits_size * sizeof(float);
  13597. }
  13598. }
  13599. // set embeddings
  13600. {
  13601. size_t embeddings_size;
  13602. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  13603. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  13604. if (embeddings_size) {
  13605. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  13606. inp += embeddings_size * sizeof(float);
  13607. }
  13608. }
  13609. // set kv cache
  13610. {
  13611. const auto & kv_self = ctx->kv_self;
  13612. const auto & hparams = ctx->model.hparams;
  13613. const uint32_t n_layer = hparams.n_layer;
  13614. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13615. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13616. size_t kv_buf_size;
  13617. uint32_t kv_head;
  13618. uint32_t kv_size;
  13619. uint32_t kv_used;
  13620. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  13621. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  13622. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  13623. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  13624. if (kv_self.size != kv_size) {
  13625. // the KV cache needs to be big enough to load all the KV cells from the saved state
  13626. GGML_ASSERT(kv_self.size >= kv_head);
  13627. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  13628. __func__, kv_head, kv_size, kv_self.size);
  13629. }
  13630. if (kv_buf_size) {
  13631. const size_t pre_kv_buf_size = inp - src;
  13632. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  13633. for (int il = 0; il < (int) n_layer; ++il) {
  13634. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  13635. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  13636. inp += k_size;
  13637. if (kv_self.recurrent) {
  13638. // v is contiguous for recurrent models
  13639. // TODO: use other tensors for state models than k and v
  13640. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  13641. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  13642. inp += v_size;
  13643. continue;
  13644. }
  13645. // v is not contiguous, copy row by row
  13646. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  13647. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  13648. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  13649. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  13650. inp += v_row_size;
  13651. }
  13652. }
  13653. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  13654. }
  13655. llama_kv_cache_clear(ctx);
  13656. ctx->kv_self.head = kv_head;
  13657. ctx->kv_self.used = kv_used;
  13658. for (uint32_t i = 0; i < kv_head; ++i) {
  13659. llama_pos pos;
  13660. size_t seq_id_size;
  13661. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  13662. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  13663. ctx->kv_self.cells[i].pos = pos;
  13664. llama_seq_id seq_id;
  13665. for (size_t j = 0; j < seq_id_size; ++j) {
  13666. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  13667. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  13668. }
  13669. }
  13670. }
  13671. const size_t nread = inp - src;
  13672. const size_t max_size = llama_state_get_size(ctx);
  13673. GGML_ASSERT(nread <= max_size);
  13674. return nread;
  13675. }
  13676. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13677. llama_file file(path_session, "rb");
  13678. // sanity checks
  13679. {
  13680. const uint32_t magic = file.read_u32();
  13681. const uint32_t version = file.read_u32();
  13682. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  13683. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  13684. return false;
  13685. }
  13686. llama_hparams session_hparams;
  13687. file.read_raw(&session_hparams, sizeof(llama_hparams));
  13688. if (session_hparams != ctx->model.hparams) {
  13689. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  13690. return false;
  13691. }
  13692. }
  13693. // load the prompt
  13694. {
  13695. const uint32_t n_token_count = file.read_u32();
  13696. if (n_token_count > n_token_capacity) {
  13697. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  13698. return false;
  13699. }
  13700. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  13701. *n_token_count_out = n_token_count;
  13702. }
  13703. // restore the context state
  13704. {
  13705. const size_t n_state_size_cur = file.size - file.tell();
  13706. const size_t n_state_size_max = llama_state_get_size(ctx);
  13707. if (n_state_size_cur > n_state_size_max) {
  13708. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  13709. return false;
  13710. }
  13711. std::vector<uint8_t> state_data(n_state_size_max);
  13712. file.read_raw(state_data.data(), n_state_size_cur);
  13713. llama_state_set_data(ctx, state_data.data());
  13714. }
  13715. return true;
  13716. }
  13717. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  13718. try {
  13719. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  13720. } catch (const std::exception & err) {
  13721. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  13722. return false;
  13723. }
  13724. }
  13725. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13726. llama_file file(path_session, "wb");
  13727. file.write_u32(LLAMA_SESSION_MAGIC);
  13728. file.write_u32(LLAMA_SESSION_VERSION);
  13729. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  13730. // save the prompt
  13731. file.write_u32((uint32_t) n_token_count);
  13732. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  13733. // save the context state using stream saving
  13734. llama_data_file_context data_ctx(&file);
  13735. llama_state_get_data_internal(ctx, &data_ctx);
  13736. return true;
  13737. }
  13738. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  13739. try {
  13740. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  13741. } catch (const std::exception & err) {
  13742. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  13743. return false;
  13744. }
  13745. }
  13746. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  13747. // save the size of size_t as a uint32_t for safety check
  13748. const size_t size_t_size_size = sizeof(uint32_t);
  13749. // other values
  13750. const size_t s_cell_count_size = sizeof(uint32_t);
  13751. const size_t s_layer_count_size = sizeof(uint32_t);
  13752. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  13753. size_t s_cell_count = 0;
  13754. size_t s_cell_data_size = 0;
  13755. const auto & kv_self = ctx->kv_self;
  13756. const auto & hparams = ctx->model.hparams;
  13757. const uint32_t n_layer = hparams.n_layer;
  13758. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13759. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13760. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13761. const auto & cell = kv_self.cells[i];
  13762. if (cell.seq_id.count(seq_id) > 0) {
  13763. ++s_cell_count;
  13764. s_cell_data_size += sizeof(llama_pos);
  13765. }
  13766. }
  13767. for (int il = 0; il < (int)n_layer; ++il) {
  13768. // types of keys and values
  13769. s_cell_data_size += sizeof(int32_t) * 2;
  13770. // k_size_row and v_size_el values of layer
  13771. s_cell_data_size += sizeof(size_t) * 2;
  13772. // keys
  13773. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13774. s_cell_data_size += k_size_row * s_cell_count;
  13775. // values (transposed)
  13776. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13777. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  13778. }
  13779. const size_t s_total = (
  13780. size_t_size_size +
  13781. s_cell_count_size +
  13782. s_layer_count_size +
  13783. n_embd_v_gqa_size +
  13784. s_cell_data_size
  13785. );
  13786. return s_total;
  13787. }
  13788. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  13789. llama_synchronize(ctx);
  13790. const auto & kv_self = ctx->kv_self;
  13791. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13792. // Save the size of size_t as a uint32_t for safety check
  13793. const uint32_t size_t_size = sizeof(size_t);
  13794. data_ctx.write(&size_t_size, sizeof(size_t_size));
  13795. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  13796. uint32_t cell_count = 0;
  13797. // Count the number of cells with the specified seq_id
  13798. // Find all the ranges of cells with this seq id
  13799. {
  13800. uint32_t cell_range_begin = kv_self.size;
  13801. for (uint32_t i = 0; i < kv_self.size; ++i) {
  13802. const auto & cell = kv_self.cells[i];
  13803. if (cell.has_seq_id(seq_id)) {
  13804. ++cell_count;
  13805. if (cell_range_begin == kv_self.size) {
  13806. cell_range_begin = i;
  13807. }
  13808. }
  13809. else {
  13810. if (cell_range_begin != kv_self.size) {
  13811. cell_ranges.push_back({ cell_range_begin, i });
  13812. cell_range_begin = kv_self.size;
  13813. }
  13814. }
  13815. }
  13816. if (cell_range_begin != kv_self.size) {
  13817. cell_ranges.push_back({ cell_range_begin, kv_self.size });
  13818. }
  13819. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  13820. uint32_t cell_count_check = 0;
  13821. for (const auto & range : cell_ranges) {
  13822. cell_count_check += range.second - range.first;
  13823. }
  13824. GGML_ASSERT(cell_count == cell_count_check);
  13825. }
  13826. // Write the cell count
  13827. data_ctx.write(&cell_count, sizeof(cell_count));
  13828. const auto & hparams = ctx->model.hparams;
  13829. const uint32_t n_layer = hparams.n_layer;
  13830. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13831. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13832. // Write the layer count
  13833. data_ctx.write(&n_layer, sizeof(n_layer));
  13834. // Write n_embd_v_gqa
  13835. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  13836. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  13837. for (const auto & range : cell_ranges) {
  13838. for (uint32_t i = range.first; i < range.second; ++i) {
  13839. const auto & cell = kv_self.cells[i];
  13840. data_ctx.write(&cell.pos, sizeof(cell.pos));
  13841. }
  13842. }
  13843. // Iterate and write all the keys first, each row is a cell
  13844. // Get whole range at a time
  13845. std::vector<uint8_t> tmp_buf;
  13846. for (int il = 0; il < (int)n_layer; ++il) {
  13847. // Write key type
  13848. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13849. data_ctx.write(&k_type_i, sizeof(k_type_i));
  13850. // Write row size of key
  13851. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13852. data_ctx.write(&k_size_row, sizeof(k_size_row));
  13853. // Read each range of cells of k_size length each into tmp_buf and write out
  13854. for (const auto & range : cell_ranges) {
  13855. const size_t range_size = range.second - range.first;
  13856. tmp_buf.resize(range_size * k_size_row);
  13857. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  13858. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13859. }
  13860. }
  13861. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  13862. const uint32_t kv_size = kv_self.size;
  13863. for (int il = 0; il < (int)n_layer; ++il) {
  13864. // Write value type
  13865. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13866. data_ctx.write(&v_type_i, sizeof(v_type_i));
  13867. // Write element size
  13868. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  13869. data_ctx.write(&v_size_el, sizeof(v_size_el));
  13870. // For each row, we get the element values of each cell
  13871. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  13872. // Read each range of cells of v_size_el length each into tmp_buf and write out
  13873. for (const auto & range : cell_ranges) {
  13874. const size_t range_size = range.second - range.first;
  13875. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  13876. tmp_buf.resize(range_size * v_size_el);
  13877. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  13878. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  13879. }
  13880. }
  13881. }
  13882. return data_ctx.get_size_written();
  13883. }
  13884. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  13885. llama_data_buffer_context data_ctx(dst);
  13886. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  13887. }
  13888. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  13889. llama_synchronize(ctx);
  13890. auto & kv_self = ctx->kv_self;
  13891. GGML_ASSERT(!kv_self.recurrent); // not implemented
  13892. // Wipe the slot
  13893. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13894. const uint8_t * inp = src;
  13895. // Read size of size_t
  13896. uint32_t size_t_size;
  13897. memcpy(&size_t_size, inp, sizeof(size_t_size));
  13898. inp += sizeof(size_t_size);
  13899. if (size_t_size != sizeof(size_t)) {
  13900. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  13901. return 0;
  13902. }
  13903. // Read the cell count
  13904. uint32_t cell_count;
  13905. memcpy(&cell_count, inp, sizeof(cell_count));
  13906. inp += sizeof(cell_count);
  13907. // Read the layer count
  13908. uint32_t n_layer_ref;
  13909. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  13910. inp += sizeof(n_layer_ref);
  13911. // Read n_embd_v_gqa
  13912. uint32_t n_embd_v_gqa_ref;
  13913. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  13914. inp += sizeof(n_embd_v_gqa_ref);
  13915. // Sanity check model compatibility
  13916. const auto & hparams = ctx->model.hparams;
  13917. const uint32_t n_layer = hparams.n_layer;
  13918. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  13919. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  13920. if (n_layer != n_layer_ref) {
  13921. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  13922. return 0;
  13923. }
  13924. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  13925. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  13926. return 0;
  13927. }
  13928. // Allocate the new cells for the slot
  13929. if (cell_count) {
  13930. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  13931. batch.n_tokens = cell_count;
  13932. for (uint32_t i = 0; i < cell_count; ++i) {
  13933. llama_pos pos;
  13934. memcpy(&pos, inp, sizeof(pos));
  13935. inp += sizeof(pos);
  13936. batch.pos[i] = pos;
  13937. batch.n_seq_id[i] = 1;
  13938. batch.seq_id[i][0] = dest_seq_id;
  13939. }
  13940. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  13941. llama_batch_free(batch);
  13942. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  13943. return 0;
  13944. }
  13945. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  13946. // Assume that this is one contiguous block of cells
  13947. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  13948. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  13949. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  13950. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  13951. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  13952. // Cleanup
  13953. llama_batch_free(batch);
  13954. }
  13955. const uint32_t kv_size = kv_self.size;
  13956. const uint32_t kv_head = kv_self.head;
  13957. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  13958. for (int il = 0; il < (int)n_layer; ++il) {
  13959. // Read type of key
  13960. int32_t k_type_i_ref;
  13961. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  13962. inp += sizeof(k_type_i_ref);
  13963. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  13964. if (k_type_i != k_type_i_ref) {
  13965. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13966. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  13967. return 0;
  13968. }
  13969. // Read row size of key
  13970. size_t k_size_row_ref;
  13971. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  13972. inp += sizeof(k_size_row_ref);
  13973. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  13974. if (k_size_row != k_size_row_ref) {
  13975. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13976. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  13977. return 0;
  13978. }
  13979. if (cell_count) {
  13980. // Read and set the keys for the whole cell range
  13981. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  13982. inp += cell_count * k_size_row;
  13983. }
  13984. }
  13985. // For each layer, read the values for each cell (transposed)
  13986. for (int il = 0; il < (int)n_layer; ++il) {
  13987. // Read type of value
  13988. int32_t v_type_i_ref;
  13989. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  13990. inp += sizeof(v_type_i_ref);
  13991. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  13992. if (v_type_i != v_type_i_ref) {
  13993. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  13994. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  13995. return 0;
  13996. }
  13997. // Read element size of value
  13998. size_t v_size_el_ref;
  13999. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14000. inp += sizeof(v_size_el_ref);
  14001. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14002. if (v_size_el != v_size_el_ref) {
  14003. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14004. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14005. return 0;
  14006. }
  14007. if (cell_count) {
  14008. // For each row in the transposed matrix, read the values for the whole cell range
  14009. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14010. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14011. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14012. inp += cell_count * v_size_el;
  14013. }
  14014. }
  14015. }
  14016. const size_t nread = inp - src;
  14017. return nread;
  14018. }
  14019. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14020. llama_file file(filepath, "wb");
  14021. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14022. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14023. // save the prompt
  14024. file.write_u32((uint32_t)n_token_count);
  14025. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14026. // save the context state using stream saving
  14027. llama_data_file_context data_ctx(&file);
  14028. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14029. const size_t res = file.tell();
  14030. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14031. return res;
  14032. }
  14033. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14034. llama_file file(filepath, "rb");
  14035. // version checks
  14036. {
  14037. const uint32_t magic = file.read_u32();
  14038. const uint32_t version = file.read_u32();
  14039. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14040. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14041. return 0;
  14042. }
  14043. }
  14044. // load the prompt
  14045. {
  14046. const uint32_t n_token_count = file.read_u32();
  14047. if (n_token_count > n_token_capacity) {
  14048. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14049. return 0;
  14050. }
  14051. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14052. *n_token_count_out = n_token_count;
  14053. }
  14054. // restore the context state
  14055. {
  14056. const size_t state_size = file.size - file.tell();
  14057. std::vector<uint8_t> state_data(state_size);
  14058. file.read_raw(state_data.data(), state_size);
  14059. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14060. if (!nread) {
  14061. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14062. return 0;
  14063. }
  14064. GGML_ASSERT(nread <= state_size);
  14065. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14066. }
  14067. return file.tell();
  14068. }
  14069. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14070. try {
  14071. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14072. } catch (const std::exception & err) {
  14073. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14074. return 0;
  14075. }
  14076. }
  14077. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14078. try {
  14079. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14080. } catch (const std::exception & err) {
  14081. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14082. return 0;
  14083. }
  14084. }
  14085. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14086. ctx->cparams.n_threads = n_threads;
  14087. ctx->cparams.n_threads_batch = n_threads_batch;
  14088. }
  14089. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14090. ctx->abort_callback = abort_callback;
  14091. ctx->abort_callback_data = abort_callback_data;
  14092. }
  14093. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14094. ctx->cparams.causal_attn = causal_attn;
  14095. }
  14096. struct llama_batch llama_batch_get_one(
  14097. llama_token * tokens,
  14098. int32_t n_tokens,
  14099. llama_pos pos_0,
  14100. llama_seq_id seq_id) {
  14101. return {
  14102. /*n_tokens =*/ n_tokens,
  14103. /*tokens =*/ tokens,
  14104. /*embd =*/ nullptr,
  14105. /*pos =*/ nullptr,
  14106. /*n_seq_id =*/ nullptr,
  14107. /*seq_id =*/ nullptr,
  14108. /*logits =*/ nullptr,
  14109. /*all_pos_0 =*/ pos_0,
  14110. /*all_pos_1 =*/ 1,
  14111. /*all_seq_id =*/ seq_id,
  14112. };
  14113. }
  14114. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14115. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14116. if (embd) {
  14117. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14118. } else {
  14119. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14120. }
  14121. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14122. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14123. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14124. for (int i = 0; i < n_tokens_alloc; ++i) {
  14125. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14126. }
  14127. batch.seq_id[n_tokens_alloc] = nullptr;
  14128. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14129. return batch;
  14130. }
  14131. void llama_batch_free(struct llama_batch batch) {
  14132. if (batch.token) free(batch.token);
  14133. if (batch.embd) free(batch.embd);
  14134. if (batch.pos) free(batch.pos);
  14135. if (batch.n_seq_id) free(batch.n_seq_id);
  14136. if (batch.seq_id) {
  14137. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14138. free(batch.seq_id[i]);
  14139. }
  14140. free(batch.seq_id);
  14141. }
  14142. if (batch.logits) free(batch.logits);
  14143. }
  14144. int32_t llama_decode(
  14145. struct llama_context * ctx,
  14146. struct llama_batch batch) {
  14147. const int ret = llama_decode_internal(*ctx, batch);
  14148. if (ret < 0) {
  14149. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14150. }
  14151. return ret;
  14152. }
  14153. void llama_synchronize(struct llama_context * ctx) {
  14154. ggml_backend_sched_synchronize(ctx->sched);
  14155. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14156. // the stats will be added to the prompt evaluation stats
  14157. // this should only happen when using batch size 1 to evaluate a batch
  14158. // add the evaluation to the stats
  14159. if (ctx->n_queued_tokens == 1) {
  14160. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14161. ctx->n_eval++;
  14162. } else if (ctx->n_queued_tokens > 1) {
  14163. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14164. ctx->n_p_eval += ctx->n_queued_tokens;
  14165. }
  14166. // get a more accurate load time, upon first eval
  14167. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14168. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14169. ctx->has_evaluated_once = true;
  14170. }
  14171. ctx->n_queued_tokens = 0;
  14172. ctx->t_compute_start_us = 0;
  14173. }
  14174. float * llama_get_logits(struct llama_context * ctx) {
  14175. llama_synchronize(ctx);
  14176. return ctx->logits;
  14177. }
  14178. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14179. int32_t j = -1;
  14180. llama_synchronize(ctx);
  14181. try {
  14182. if (ctx->logits == nullptr) {
  14183. throw std::runtime_error("no logits");
  14184. }
  14185. if (i < 0) {
  14186. j = ctx->n_outputs + i;
  14187. if (j < 0) {
  14188. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14189. }
  14190. } else if ((size_t) i >= ctx->output_ids.size()) {
  14191. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14192. } else {
  14193. j = ctx->output_ids[i];
  14194. }
  14195. if (j < 0) {
  14196. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14197. }
  14198. if (j >= ctx->n_outputs) {
  14199. // This should not happen
  14200. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14201. }
  14202. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14203. } catch (const std::exception & err) {
  14204. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14205. #ifndef NDEBUG
  14206. GGML_ASSERT(false);
  14207. #endif
  14208. return nullptr;
  14209. }
  14210. }
  14211. float * llama_get_embeddings(struct llama_context * ctx) {
  14212. llama_synchronize(ctx);
  14213. return ctx->embd;
  14214. }
  14215. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14216. int32_t j = -1;
  14217. llama_synchronize(ctx);
  14218. try {
  14219. if (ctx->embd == nullptr) {
  14220. throw std::runtime_error("no embeddings");
  14221. }
  14222. if (i < 0) {
  14223. j = ctx->n_outputs + i;
  14224. if (j < 0) {
  14225. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14226. }
  14227. } else if ((size_t) i >= ctx->output_ids.size()) {
  14228. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14229. } else {
  14230. j = ctx->output_ids[i];
  14231. }
  14232. if (j < 0) {
  14233. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14234. }
  14235. if (j >= ctx->n_outputs) {
  14236. // This should not happen
  14237. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14238. }
  14239. return ctx->embd + j*ctx->model.hparams.n_embd;
  14240. } catch (const std::exception & err) {
  14241. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14242. #ifndef NDEBUG
  14243. GGML_ASSERT(false);
  14244. #endif
  14245. return nullptr;
  14246. }
  14247. }
  14248. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14249. llama_synchronize(ctx);
  14250. auto it = ctx->embd_seq.find(seq_id);
  14251. if (it == ctx->embd_seq.end()) {
  14252. return nullptr;
  14253. }
  14254. return it->second.data();
  14255. }
  14256. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14257. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14258. return model->vocab.id_to_token[token].text.c_str();
  14259. }
  14260. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14261. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14262. return model->vocab.id_to_token[token].score;
  14263. }
  14264. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  14265. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14266. return model->vocab.id_to_token[token].type;
  14267. }
  14268. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  14269. return token != -1 && (
  14270. token == llama_token_eos(model) ||
  14271. token == llama_token_eot(model)
  14272. );
  14273. }
  14274. llama_token llama_token_bos(const struct llama_model * model) {
  14275. return model->vocab.special_bos_id;
  14276. }
  14277. llama_token llama_token_eos(const struct llama_model * model) {
  14278. return model->vocab.special_eos_id;
  14279. }
  14280. llama_token llama_token_cls(const struct llama_model * model) {
  14281. return model->vocab.special_cls_id;
  14282. }
  14283. llama_token llama_token_sep(const struct llama_model * model) {
  14284. return model->vocab.special_sep_id;
  14285. }
  14286. llama_token llama_token_nl(const struct llama_model * model) {
  14287. return model->vocab.linefeed_id;
  14288. }
  14289. int32_t llama_add_bos_token(const struct llama_model * model) {
  14290. return model->vocab.special_add_bos;
  14291. }
  14292. int32_t llama_add_eos_token(const struct llama_model * model) {
  14293. return model->vocab.special_add_eos;
  14294. }
  14295. llama_token llama_token_prefix(const struct llama_model * model) {
  14296. return model->vocab.special_prefix_id;
  14297. }
  14298. llama_token llama_token_middle(const struct llama_model * model) {
  14299. return model->vocab.special_middle_id;
  14300. }
  14301. llama_token llama_token_suffix(const struct llama_model * model) {
  14302. return model->vocab.special_suffix_id;
  14303. }
  14304. llama_token llama_token_eot(const struct llama_model * model) {
  14305. return model->vocab.special_eot_id;
  14306. }
  14307. int32_t llama_tokenize(
  14308. const struct llama_model * model,
  14309. const char * text,
  14310. int32_t text_len,
  14311. llama_token * tokens,
  14312. int32_t n_tokens_max,
  14313. bool add_special,
  14314. bool parse_special) {
  14315. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  14316. if (n_tokens_max < (int) res.size()) {
  14317. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  14318. return -((int) res.size());
  14319. }
  14320. for (size_t i = 0; i < res.size(); i++) {
  14321. tokens[i] = res[i];
  14322. }
  14323. return res.size();
  14324. }
  14325. static std::string llama_decode_text(const std::string & text) {
  14326. std::string decoded_text;
  14327. auto unicode_sequences = unicode_cpts_from_utf8(text);
  14328. for (auto & unicode_sequence : unicode_sequences) {
  14329. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  14330. }
  14331. return decoded_text;
  14332. }
  14333. // does not write null-terminator to buf
  14334. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  14335. if (0 <= token && token < llama_n_vocab(model)) {
  14336. switch (llama_vocab_get_type(model->vocab)) {
  14337. case LLAMA_VOCAB_TYPE_WPM:
  14338. case LLAMA_VOCAB_TYPE_SPM: {
  14339. // NOTE: we accept all unsupported token types,
  14340. // suppressing them like CONTROL tokens.
  14341. if (llama_is_normal_token(model->vocab, token)) {
  14342. std::string result = model->vocab.id_to_token[token].text;
  14343. llama_unescape_whitespace(result);
  14344. if (length < (int) result.length()) {
  14345. return -(int) result.length();
  14346. }
  14347. memcpy(buf, result.c_str(), result.length());
  14348. return result.length();
  14349. } else if (
  14350. (llama_is_user_defined_token(model->vocab, token)) ||
  14351. (llama_is_control_token (model->vocab, token) && special)) {
  14352. std::string result = model->vocab.id_to_token[token].text;
  14353. if (length < (int) result.length()) {
  14354. return -(int) result.length();
  14355. }
  14356. memcpy(buf, result.c_str(), result.length());
  14357. return result.length();
  14358. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  14359. if (length < 3) {
  14360. return -3;
  14361. }
  14362. memcpy(buf, "\xe2\x96\x85", 3);
  14363. return 3;
  14364. } else if (llama_is_byte_token(model->vocab, token)) {
  14365. if (length < 1) {
  14366. return -1;
  14367. }
  14368. buf[0] = llama_token_to_byte(model->vocab, token);
  14369. return 1;
  14370. }
  14371. break;
  14372. }
  14373. case LLAMA_VOCAB_TYPE_BPE: {
  14374. // NOTE: we accept all unsupported token types,
  14375. // suppressing them like CONTROL tokens.
  14376. if (llama_is_normal_token(model->vocab, token)) {
  14377. std::string result = model->vocab.id_to_token[token].text;
  14378. result = llama_decode_text(result);
  14379. if (length < (int) result.length()) {
  14380. return -(int) result.length();
  14381. }
  14382. memcpy(buf, result.c_str(), result.length());
  14383. return result.length();
  14384. } else if (
  14385. (llama_is_user_defined_token(model->vocab, token)) ||
  14386. (llama_is_control_token (model->vocab, token) && special)) {
  14387. std::string result = model->vocab.id_to_token[token].text;
  14388. if (length < (int) result.length()) {
  14389. return -(int) result.length();
  14390. }
  14391. memcpy(buf, result.c_str(), result.length());
  14392. return result.length();
  14393. }
  14394. break;
  14395. }
  14396. default:
  14397. GGML_ASSERT(false);
  14398. }
  14399. }
  14400. return 0;
  14401. }
  14402. // trim whitespace from the beginning and end of a string
  14403. static std::string trim(const std::string & str) {
  14404. size_t start = 0;
  14405. size_t end = str.size();
  14406. while (start < end && isspace(str[start])) {
  14407. start += 1;
  14408. }
  14409. while (end > start && isspace(str[end - 1])) {
  14410. end -= 1;
  14411. }
  14412. return str.substr(start, end - start);
  14413. }
  14414. // Simple version of "llama_apply_chat_template" that only works with strings
  14415. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  14416. static int32_t llama_chat_apply_template_internal(
  14417. const std::string & tmpl,
  14418. const std::vector<const llama_chat_message *> & chat,
  14419. std::string & dest, bool add_ass) {
  14420. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  14421. std::stringstream ss;
  14422. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  14423. // chatml template
  14424. for (auto message : chat) {
  14425. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  14426. }
  14427. if (add_ass) {
  14428. ss << "<|im_start|>assistant\n";
  14429. }
  14430. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  14431. // llama2 template and its variants
  14432. // [variant] support system message
  14433. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  14434. // [variant] space before + after response
  14435. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  14436. // [variant] add BOS inside history
  14437. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  14438. // [variant] trim spaces from the input message
  14439. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  14440. // construct the prompt
  14441. bool is_inside_turn = true; // skip BOS at the beginning
  14442. ss << "[INST] ";
  14443. for (auto message : chat) {
  14444. std::string content = strip_message ? trim(message->content) : message->content;
  14445. std::string role(message->role);
  14446. if (!is_inside_turn) {
  14447. is_inside_turn = true;
  14448. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  14449. }
  14450. if (role == "system") {
  14451. if (support_system_message) {
  14452. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  14453. } else {
  14454. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  14455. ss << content << "\n";
  14456. }
  14457. } else if (role == "user") {
  14458. ss << content << " [/INST]";
  14459. } else {
  14460. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  14461. is_inside_turn = false;
  14462. }
  14463. }
  14464. // llama2 templates seem to not care about "add_generation_prompt"
  14465. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  14466. // zephyr template
  14467. for (auto message : chat) {
  14468. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  14469. }
  14470. if (add_ass) {
  14471. ss << "<|assistant|>\n";
  14472. }
  14473. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  14474. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  14475. for (auto message : chat) {
  14476. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  14477. ss << bos << message->role << "\n" << message->content << "</s>\n";
  14478. }
  14479. if (add_ass) {
  14480. ss << "<s>assistant\n";
  14481. }
  14482. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  14483. // google/gemma-7b-it
  14484. std::string system_prompt = "";
  14485. for (auto message : chat) {
  14486. std::string role(message->role);
  14487. if (role == "system") {
  14488. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  14489. system_prompt = trim(message->content);
  14490. continue;
  14491. }
  14492. // in gemma, "assistant" is "model"
  14493. role = role == "assistant" ? "model" : message->role;
  14494. ss << "<start_of_turn>" << role << "\n";
  14495. if (!system_prompt.empty() && role != "model") {
  14496. ss << system_prompt << "\n\n";
  14497. system_prompt = "";
  14498. }
  14499. ss << trim(message->content) << "<end_of_turn>\n";
  14500. }
  14501. if (add_ass) {
  14502. ss << "<start_of_turn>model\n";
  14503. }
  14504. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  14505. // OrionStarAI/Orion-14B-Chat
  14506. std::string system_prompt = "";
  14507. for (auto message : chat) {
  14508. std::string role(message->role);
  14509. if (role == "system") {
  14510. // there is no system message support, we will merge it with user prompt
  14511. system_prompt = message->content;
  14512. continue;
  14513. } else if (role == "user") {
  14514. ss << "Human: ";
  14515. if (!system_prompt.empty()) {
  14516. ss << system_prompt << "\n\n";
  14517. system_prompt = "";
  14518. }
  14519. ss << message->content << "\n\nAssistant: </s>";
  14520. } else {
  14521. ss << message->content << "</s>";
  14522. }
  14523. }
  14524. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  14525. // openchat/openchat-3.5-0106,
  14526. for (auto message : chat) {
  14527. std::string role(message->role);
  14528. if (role == "system") {
  14529. ss << message->content << "<|end_of_turn|>";
  14530. } else {
  14531. role[0] = toupper(role[0]);
  14532. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  14533. }
  14534. }
  14535. if (add_ass) {
  14536. ss << "GPT4 Correct Assistant:";
  14537. }
  14538. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  14539. // eachadea/vicuna-13b-1.1 (and Orca variant)
  14540. for (auto message : chat) {
  14541. std::string role(message->role);
  14542. if (role == "system") {
  14543. // Orca-Vicuna variant uses a system prefix
  14544. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  14545. ss << "SYSTEM: " << message->content << "\n";
  14546. } else {
  14547. ss << message->content << "\n\n";
  14548. }
  14549. } else if (role == "user") {
  14550. ss << "USER: " << message->content << "\n";
  14551. } else if (role == "assistant") {
  14552. ss << "ASSISTANT: " << message->content << "</s>\n";
  14553. }
  14554. }
  14555. if (add_ass) {
  14556. ss << "ASSISTANT:";
  14557. }
  14558. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  14559. // deepseek-ai/deepseek-coder-33b-instruct
  14560. for (auto message : chat) {
  14561. std::string role(message->role);
  14562. if (role == "system") {
  14563. ss << message->content;
  14564. } else if (role == "user") {
  14565. ss << "### Instruction:\n" << message->content << "\n";
  14566. } else if (role == "assistant") {
  14567. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  14568. }
  14569. }
  14570. if (add_ass) {
  14571. ss << "### Response:\n";
  14572. }
  14573. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  14574. // CohereForAI/c4ai-command-r-plus
  14575. for (auto message : chat) {
  14576. std::string role(message->role);
  14577. if (role == "system") {
  14578. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14579. } else if (role == "user") {
  14580. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14581. } else if (role == "assistant") {
  14582. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  14583. }
  14584. }
  14585. if (add_ass) {
  14586. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  14587. }
  14588. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  14589. // Llama 3
  14590. for (auto message : chat) {
  14591. std::string role(message->role);
  14592. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  14593. }
  14594. if (add_ass) {
  14595. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  14596. }
  14597. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos )) {
  14598. // Phi 3
  14599. for (auto message : chat) {
  14600. std::string role(message->role);
  14601. ss << "<|" << role << "|>\n" << trim(message->content) << "<|end|>\n";
  14602. }
  14603. if (add_ass) {
  14604. ss << "<|assistant|>\n";
  14605. }
  14606. } else {
  14607. // template not supported
  14608. return -1;
  14609. }
  14610. dest = ss.str();
  14611. return dest.size();
  14612. }
  14613. LLAMA_API int32_t llama_chat_apply_template(
  14614. const struct llama_model * model,
  14615. const char * tmpl,
  14616. const struct llama_chat_message * chat,
  14617. size_t n_msg,
  14618. bool add_ass,
  14619. char * buf,
  14620. int32_t length) {
  14621. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  14622. if (tmpl == nullptr) {
  14623. GGML_ASSERT(model != nullptr);
  14624. // load template from model
  14625. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  14626. std::string template_key = "tokenizer.chat_template";
  14627. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  14628. if (res < 0) {
  14629. // worst case: there is no information about template, we will use chatml by default
  14630. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  14631. } else {
  14632. curr_tmpl = std::string(model_template.data(), model_template.size());
  14633. }
  14634. }
  14635. // format the chat to string
  14636. std::vector<const llama_chat_message *> chat_vec;
  14637. chat_vec.resize(n_msg);
  14638. for (size_t i = 0; i < n_msg; i++) {
  14639. chat_vec[i] = &chat[i];
  14640. }
  14641. std::string formatted_chat;
  14642. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  14643. if (res < 0) {
  14644. return res;
  14645. }
  14646. if (buf && length > 0) {
  14647. strncpy(buf, formatted_chat.c_str(), length);
  14648. }
  14649. return res;
  14650. }
  14651. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  14652. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  14653. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  14654. return strlen(split_path);
  14655. }
  14656. return 0;
  14657. }
  14658. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  14659. std::string str_split_path(split_path);
  14660. char postfix[32];
  14661. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  14662. std::string str_postfix(postfix);
  14663. // check if dest ends with postfix
  14664. int size_prefix = str_split_path.size() - str_postfix.size();
  14665. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  14666. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  14667. return size_prefix;
  14668. }
  14669. return 0;
  14670. }
  14671. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  14672. struct llama_timings result = {
  14673. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  14674. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  14675. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  14676. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  14677. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  14678. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  14679. /*.n_sample =*/ std::max(1, ctx->n_sample),
  14680. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  14681. /*.n_eval =*/ std::max(1, ctx->n_eval),
  14682. };
  14683. return result;
  14684. }
  14685. void llama_print_timings(struct llama_context * ctx) {
  14686. const llama_timings timings = llama_get_timings(ctx);
  14687. LLAMA_LOG_INFO("\n");
  14688. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  14689. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14690. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  14691. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  14692. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  14693. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  14694. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  14695. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  14696. }
  14697. void llama_reset_timings(struct llama_context * ctx) {
  14698. ctx->t_start_us = ggml_time_us();
  14699. ctx->t_sample_us = ctx->n_sample = 0;
  14700. ctx->t_eval_us = ctx->n_eval = 0;
  14701. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  14702. }
  14703. const char * llama_print_system_info(void) {
  14704. static std::string s;
  14705. s = "";
  14706. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  14707. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  14708. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  14709. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  14710. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  14711. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  14712. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  14713. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  14714. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  14715. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  14716. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  14717. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  14718. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  14719. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  14720. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  14721. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  14722. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  14723. return s.c_str();
  14724. }
  14725. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  14726. fprintf(stream, "\n");
  14727. fprintf(stream, "###########\n");
  14728. fprintf(stream, "# Timings #\n");
  14729. fprintf(stream, "###########\n");
  14730. fprintf(stream, "\n");
  14731. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  14732. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  14733. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  14734. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  14735. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  14736. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  14737. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  14738. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  14739. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  14740. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  14741. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  14742. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  14743. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  14744. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  14745. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  14746. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  14747. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  14748. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  14749. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  14750. }
  14751. // For internal test use
  14752. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  14753. struct llama_context * ctx
  14754. ) {
  14755. return ctx->model.tensors_by_name;
  14756. }
  14757. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  14758. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  14759. g_state.log_callback_user_data = user_data;
  14760. #ifdef GGML_USE_METAL
  14761. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  14762. #endif
  14763. }
  14764. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  14765. va_list args_copy;
  14766. va_copy(args_copy, args);
  14767. char buffer[128];
  14768. int len = vsnprintf(buffer, 128, format, args);
  14769. if (len < 128) {
  14770. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  14771. } else {
  14772. char* buffer2 = new char[len+1];
  14773. vsnprintf(buffer2, len+1, format, args_copy);
  14774. buffer2[len] = 0;
  14775. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  14776. delete[] buffer2;
  14777. }
  14778. va_end(args_copy);
  14779. }
  14780. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  14781. va_list args;
  14782. va_start(args, format);
  14783. llama_log_internal_v(level, format, args);
  14784. va_end(args);
  14785. }
  14786. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  14787. (void) level;
  14788. (void) user_data;
  14789. fputs(text, stderr);
  14790. fflush(stderr);
  14791. }