finetune.cpp 91 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930
  1. #include "ggml.h"
  2. #include "ggml-alloc.h"
  3. #include "llama.h"
  4. #include "common.h"
  5. #include "train.h"
  6. #include <vector>
  7. #include <cstring>
  8. #include <ctime>
  9. #include <algorithm>
  10. #include <string>
  11. #if defined(_MSC_VER)
  12. #pragma warning(disable: 4244 4267) // possible loss of data
  13. #endif
  14. static const size_t tensor_alignment = 32;
  15. struct my_llama_hparams {
  16. uint32_t n_vocab = 32000;
  17. uint32_t n_ctx = 512;
  18. uint32_t n_embd = 4096;
  19. uint32_t n_ff = 11008;
  20. uint32_t n_head = 32;
  21. uint32_t n_head_kv = 32;
  22. uint32_t n_layer = 32;
  23. // float f_norm_eps = 1e-5f; // falcon
  24. float f_norm_rms_eps = 1e-5f; // llama
  25. float rope_freq_base = 10000.0f;
  26. float rope_freq_scale = 1.0f;
  27. uint32_t n_gqa() const {
  28. return n_head/n_head_kv;
  29. }
  30. uint32_t n_embd_head() const {
  31. return n_embd/n_head;
  32. }
  33. uint32_t n_embd_gqa() const {
  34. return n_embd/n_gqa();
  35. }
  36. bool operator!=(const my_llama_hparams& other) const {
  37. return memcmp(this, &other, sizeof(other));
  38. }
  39. };
  40. struct my_llama_layer {
  41. // normalization
  42. struct ggml_tensor * attention_norm;
  43. // attention
  44. struct ggml_tensor * wq;
  45. struct ggml_tensor * wk;
  46. struct ggml_tensor * wv;
  47. struct ggml_tensor * wo;
  48. // normalization
  49. struct ggml_tensor * ffn_norm;
  50. // ff
  51. struct ggml_tensor * w1;
  52. struct ggml_tensor * w2;
  53. struct ggml_tensor * w3;
  54. };
  55. struct my_llama_model {
  56. struct my_llama_hparams hparams;
  57. struct ggml_tensor * tok_embeddings;
  58. struct ggml_tensor * norm;
  59. struct ggml_tensor * output;
  60. std::vector<my_llama_layer> layers;
  61. };
  62. struct my_llama_lora_hparams {
  63. uint32_t lora_r = 1;
  64. uint32_t lora_alpha = 1;
  65. uint32_t n_rank_attention_norm = 1;
  66. uint32_t n_rank_wq = 4;
  67. uint32_t n_rank_wk = 4;
  68. uint32_t n_rank_wv = 4;
  69. uint32_t n_rank_wo = 4;
  70. uint32_t n_rank_ffn_norm = 1;
  71. uint32_t n_rank_w1 = 4;
  72. uint32_t n_rank_w2 = 4;
  73. uint32_t n_rank_w3 = 4;
  74. uint32_t n_rank_tok_embeddings = 4;
  75. uint32_t n_rank_norm = 1;
  76. uint32_t n_rank_output = 4;
  77. bool operator!=(const my_llama_lora_hparams& other) const {
  78. return memcmp(this, &other, sizeof(other));
  79. }
  80. };
  81. struct my_llama_lora_layer {
  82. // normalization
  83. struct ggml_tensor * attention_norm_a;
  84. struct ggml_tensor * attention_norm_b;
  85. // attention
  86. struct ggml_tensor * wq_a;
  87. struct ggml_tensor * wq_b;
  88. struct ggml_tensor * wk_a;
  89. struct ggml_tensor * wk_b;
  90. struct ggml_tensor * wv_a;
  91. struct ggml_tensor * wv_b;
  92. struct ggml_tensor * wo_a;
  93. struct ggml_tensor * wo_b;
  94. // normalization
  95. struct ggml_tensor * ffn_norm_a;
  96. struct ggml_tensor * ffn_norm_b;
  97. // ff
  98. struct ggml_tensor * w1_a;
  99. struct ggml_tensor * w1_b;
  100. struct ggml_tensor * w2_a;
  101. struct ggml_tensor * w2_b;
  102. struct ggml_tensor * w3_a;
  103. struct ggml_tensor * w3_b;
  104. };
  105. struct my_llama_lora {
  106. struct ggml_context * ctx = NULL;
  107. std::vector<uint8_t> data;
  108. my_llama_lora_hparams hparams;
  109. struct ggml_tensor * tok_embeddings_a;
  110. struct ggml_tensor * tok_embeddings_b;
  111. struct ggml_tensor * norm_a;
  112. struct ggml_tensor * norm_b;
  113. struct ggml_tensor * output_a;
  114. struct ggml_tensor * output_b;
  115. std::vector<my_llama_lora_layer> layers;
  116. };
  117. // gguf constants
  118. static const char * LLM_KV_TRAINING_TYPE_FINETUNE_LORA = "finetune_lora";
  119. static const char * LLM_KV_TRAINING_TYPE = "training.type";
  120. static const char * LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD = "training.lora.rank.token_embd";
  121. static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM = "training.lora.rank.output_norm";
  122. static const char * LLM_KV_TRAINING_LORA_RANK_OUTPUT = "training.lora.rank.output";
  123. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_NORM = "training.lora.rank.attn_norm";
  124. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_Q = "training.lora.rank.attn_q";
  125. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_K = "training.lora.rank.attn_k";
  126. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_V = "training.lora.rank.attn_v";
  127. static const char * LLM_KV_TRAINING_LORA_RANK_ATTN_OUT = "training.lora.rank.attn_output";
  128. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_NORM = "training.lora.rank.ffn_norm";
  129. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_GATE = "training.lora.rank.ffn_gate";
  130. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_DOWN = "training.lora.rank.ffn_down";
  131. static const char * LLM_KV_TRAINING_LORA_RANK_FFN_UP = "training.lora.rank.ffn_up";
  132. // gguf constants (sync with gguf.py)
  133. static const char * LLM_KV_GENERAL_ARCHITECTURE = "general.architecture";
  134. static const char * LLM_KV_GENERAL_FILE_TYPE = "general.file_type";
  135. static const char * LLM_KV_CONTEXT_LENGTH = "%s.context_length";
  136. static const char * LLM_KV_EMBEDDING_LENGTH = "%s.embedding_length";
  137. static const char * LLM_KV_BLOCK_COUNT = "%s.block_count";
  138. static const char * LLM_KV_FEED_FORWARD_LENGTH = "%s.feed_forward_length";
  139. static const char * LLM_KV_ATTENTION_HEAD_COUNT = "%s.attention.head_count";
  140. static const char * LLM_KV_ATTENTION_HEAD_COUNT_KV = "%s.attention.head_count_kv";
  141. static const char * LLM_KV_ATTENTION_LAYERNORM_RMS_EPS = "%s.attention.layer_norm_rms_epsilon";
  142. static const char * LLM_KV_ROPE_DIMENSION_COUNT = "%s.rope.dimension_count";
  143. static const char * LLM_KV_ROPE_FREQ_BASE = "%s.rope.freq_base"; // TODO load in llama.cpp
  144. static const char * LLM_KV_ROPE_SCALE_LINEAR = "%s.rope.scale_linear";
  145. static const char * LLM_TENSOR_TOKEN_EMBD = "token_embd";
  146. static const char * LLM_TENSOR_OUTPUT_NORM = "output_norm";
  147. static const char * LLM_TENSOR_OUTPUT = "output";
  148. static const char * LLM_TENSOR_ATTN_NORM = "blk.%d.attn_norm";
  149. static const char * LLM_TENSOR_ATTN_Q = "blk.%d.attn_q";
  150. static const char * LLM_TENSOR_ATTN_K = "blk.%d.attn_k";
  151. static const char * LLM_TENSOR_ATTN_V = "blk.%d.attn_v";
  152. static const char * LLM_TENSOR_ATTN_OUT = "blk.%d.attn_output";
  153. static const char * LLM_TENSOR_FFN_NORM = "blk.%d.ffn_norm";
  154. static const char * LLM_TENSOR_FFN_GATE = "blk.%d.ffn_gate";
  155. static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
  156. static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
  157. static void print_params(struct my_llama_hparams * params) {
  158. printf("%s: n_vocab : %u\n", __func__, params->n_vocab);
  159. printf("%s: n_ctx : %u\n", __func__, params->n_ctx);
  160. printf("%s: n_embd : %u\n", __func__, params->n_embd);
  161. printf("%s: n_ff : %u\n", __func__, params->n_ff);
  162. printf("%s: n_head : %u\n", __func__, params->n_head);
  163. printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv);
  164. printf("%s: n_layer : %u\n", __func__, params->n_layer);
  165. printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
  166. printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
  167. printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
  168. }
  169. static void print_lora_params(struct my_llama_lora_hparams * params) {
  170. printf("%s: n_rank_attention_norm : %u\n", __func__, params->n_rank_attention_norm);
  171. printf("%s: n_rank_wq : %u\n", __func__, params->n_rank_wq);
  172. printf("%s: n_rank_wk : %u\n", __func__, params->n_rank_wk);
  173. printf("%s: n_rank_wv : %u\n", __func__, params->n_rank_wv);
  174. printf("%s: n_rank_wo : %u\n", __func__, params->n_rank_wo);
  175. printf("%s: n_rank_ffn_norm : %u\n", __func__, params->n_rank_ffn_norm);
  176. printf("%s: n_rank_w1 : %u\n", __func__, params->n_rank_w1);
  177. printf("%s: n_rank_w2 : %u\n", __func__, params->n_rank_w2);
  178. printf("%s: n_rank_w3 : %u\n", __func__, params->n_rank_w3);
  179. printf("%s: n_rank_tok_embeddings : %u\n", __func__, params->n_rank_tok_embeddings);
  180. printf("%s: n_rank_norm : %u\n", __func__, params->n_rank_norm);
  181. printf("%s: n_rank_output : %u\n", __func__, params->n_rank_output);
  182. }
  183. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  184. { \
  185. const std::string skey(key); \
  186. const int kid = gguf_find_key(ctx, skey.c_str()); \
  187. if (kid >= 0) { \
  188. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  189. if (ktype != (type)) { \
  190. die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
  191. } \
  192. (dst) = func(ctx, kid); \
  193. } else if (req) { \
  194. die_fmt("key not found in model: %s", skey.c_str()); \
  195. } \
  196. }
  197. static void load_model_hparams_gguf(struct gguf_context * ctx, struct my_llama_hparams * hparams, const char * expected_arch) {
  198. std::string arch;
  199. GGUF_GET_KEY(ctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  200. if (expected_arch != NULL) {
  201. if (arch != expected_arch) {
  202. printf("%s: arch=%s expected_arch=%s\n", __func__, arch.c_str(), expected_arch);
  203. }
  204. GGML_ASSERT(arch == expected_arch);
  205. }
  206. std::vector<char> keybuf;
  207. keybuf.resize(512);
  208. auto kv = [&arch, &keybuf](const char * key) -> const char * {
  209. snprintf(keybuf.data(), keybuf.size(), key, arch.c_str());
  210. return keybuf.data();
  211. };
  212. GGUF_GET_KEY(ctx, hparams->n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  213. GGUF_GET_KEY(ctx, hparams->n_ctx, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_CONTEXT_LENGTH));
  214. GGUF_GET_KEY(ctx, hparams->n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  215. GGUF_GET_KEY(ctx, hparams->n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  216. GGUF_GET_KEY(ctx, hparams->n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  217. // n_head_kv is optional, default to n_head
  218. hparams->n_head_kv = hparams->n_head;
  219. GGUF_GET_KEY(ctx, hparams->n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  220. float rope_freq_scale = 1.0f;
  221. GGUF_GET_KEY(ctx, hparams->f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  222. GGUF_GET_KEY(ctx, hparams->rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  223. GGUF_GET_KEY(ctx, rope_freq_scale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  224. if (rope_freq_scale != 1.0f) {
  225. hparams->rope_freq_scale = 1.0f / rope_freq_scale;
  226. }
  227. }
  228. static void init_model(struct llama_model * input, struct my_llama_model * model, const char * fn_model, uint32_t n_ctx) {
  229. auto & hparams = model->hparams;
  230. std::vector<char> tn_buf;
  231. tn_buf.resize(GGML_MAX_NAME);
  232. auto tn = [&tn_buf](const char * key) -> const char * {
  233. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", key);
  234. return tn_buf.data();
  235. };
  236. auto tni = [&tn_buf](const char * key, int bid) -> const char * {
  237. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  238. std::string s = tn_buf.data();
  239. snprintf(tn_buf.data(), tn_buf.size(), "%s.weight", s.c_str());
  240. return tn_buf.data();
  241. };
  242. // get parameters directly from gguf file
  243. {
  244. struct gguf_init_params params = {
  245. /*.no_alloc = */ false,
  246. /*.ctx = */ NULL,
  247. };
  248. struct gguf_context * mctx = gguf_init_from_file(fn_model, params);
  249. load_model_hparams_gguf(mctx, &hparams, "llama");
  250. gguf_free(mctx);
  251. }
  252. hparams.n_vocab = llama_n_vocab(input);
  253. hparams.n_ctx = n_ctx;
  254. // get tensors from llama_model (possibly mmapped)
  255. model->tok_embeddings = llama_get_model_tensor(input, tn(LLM_TENSOR_TOKEN_EMBD));
  256. model->norm = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT_NORM));
  257. model->output = llama_get_model_tensor(input, tn(LLM_TENSOR_OUTPUT));
  258. assert_shape_2d(model->tok_embeddings, hparams.n_embd, hparams.n_vocab);
  259. assert_shape_1d(model->norm, hparams.n_embd);
  260. assert_shape_2d(model->output, hparams.n_embd, hparams.n_vocab);
  261. model->layers.resize(hparams.n_layer);
  262. for (uint32_t i = 0; i < hparams.n_layer; ++i) {
  263. auto & layer = model->layers[i];
  264. layer.attention_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_NORM, i));
  265. layer.wq = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_Q, i));
  266. layer.wk = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_K, i));
  267. layer.wv = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_V, i));
  268. layer.wo = llama_get_model_tensor(input, tni(LLM_TENSOR_ATTN_OUT, i));
  269. layer.ffn_norm = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_NORM, i));
  270. layer.w1 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_GATE, i));
  271. layer.w2 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_DOWN, i));
  272. layer.w3 = llama_get_model_tensor(input, tni(LLM_TENSOR_FFN_UP, i));
  273. assert_shape_1d(layer.attention_norm, hparams.n_embd);
  274. assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
  275. assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa());
  276. assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
  277. assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
  278. assert_shape_1d(layer.ffn_norm, hparams.n_embd);
  279. assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
  280. assert_shape_2d(layer.w2, hparams.n_ff, hparams.n_embd);
  281. assert_shape_2d(layer.w3, hparams.n_embd, hparams.n_ff);
  282. }
  283. }
  284. static void set_param_lora(struct my_llama_lora * lora) {
  285. const uint32_t n_layer = lora->layers.size();
  286. struct ggml_context* ctx = lora->ctx;
  287. ggml_set_param(ctx, lora->tok_embeddings_a);
  288. ggml_set_param(ctx, lora->tok_embeddings_b);
  289. ggml_set_param(ctx, lora->norm_a);
  290. ggml_set_param(ctx, lora->norm_b);
  291. ggml_set_param(ctx, lora->output_a);
  292. ggml_set_param(ctx, lora->output_b);
  293. for (uint32_t i = 0; i < n_layer; ++i) {
  294. auto & layer = lora->layers[i];
  295. ggml_set_param(ctx, layer.attention_norm_a);
  296. ggml_set_param(ctx, layer.attention_norm_b);
  297. ggml_set_param(ctx, layer.wq_a);
  298. ggml_set_param(ctx, layer.wq_b);
  299. ggml_set_param(ctx, layer.wk_a);
  300. ggml_set_param(ctx, layer.wk_b);
  301. ggml_set_param(ctx, layer.wv_a);
  302. ggml_set_param(ctx, layer.wv_b);
  303. ggml_set_param(ctx, layer.wo_a);
  304. ggml_set_param(ctx, layer.wo_b);
  305. ggml_set_param(ctx, layer.ffn_norm_a);
  306. ggml_set_param(ctx, layer.ffn_norm_b);
  307. ggml_set_param(ctx, layer.w1_a);
  308. ggml_set_param(ctx, layer.w1_b);
  309. ggml_set_param(ctx, layer.w2_a);
  310. ggml_set_param(ctx, layer.w2_b);
  311. ggml_set_param(ctx, layer.w3_a);
  312. ggml_set_param(ctx, layer.w3_b);
  313. }
  314. }
  315. static void alloc_lora(struct ggml_allocr * alloc, struct my_llama_lora * lora) {
  316. ggml_allocr_alloc(alloc, lora->tok_embeddings_a);
  317. ggml_allocr_alloc(alloc, lora->tok_embeddings_b);
  318. ggml_allocr_alloc(alloc, lora->norm_a);
  319. ggml_allocr_alloc(alloc, lora->norm_b);
  320. ggml_allocr_alloc(alloc, lora->output_a);
  321. ggml_allocr_alloc(alloc, lora->output_b);
  322. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  323. auto & layer = lora->layers[i];
  324. ggml_allocr_alloc(alloc, layer.attention_norm_a);
  325. ggml_allocr_alloc(alloc, layer.attention_norm_b);
  326. ggml_allocr_alloc(alloc, layer.wq_a);
  327. ggml_allocr_alloc(alloc, layer.wq_b);
  328. ggml_allocr_alloc(alloc, layer.wk_a);
  329. ggml_allocr_alloc(alloc, layer.wk_b);
  330. ggml_allocr_alloc(alloc, layer.wv_a);
  331. ggml_allocr_alloc(alloc, layer.wv_b);
  332. ggml_allocr_alloc(alloc, layer.wo_a);
  333. ggml_allocr_alloc(alloc, layer.wo_b);
  334. ggml_allocr_alloc(alloc, layer.ffn_norm_a);
  335. ggml_allocr_alloc(alloc, layer.ffn_norm_b);
  336. ggml_allocr_alloc(alloc, layer.w1_a);
  337. ggml_allocr_alloc(alloc, layer.w1_b);
  338. ggml_allocr_alloc(alloc, layer.w2_a);
  339. ggml_allocr_alloc(alloc, layer.w2_b);
  340. ggml_allocr_alloc(alloc, layer.w3_a);
  341. ggml_allocr_alloc(alloc, layer.w3_b);
  342. }
  343. ggml_allocr_alloc(alloc, lora->tok_embeddings_a->grad);
  344. ggml_allocr_alloc(alloc, lora->tok_embeddings_b->grad);
  345. ggml_allocr_alloc(alloc, lora->norm_a->grad);
  346. ggml_allocr_alloc(alloc, lora->norm_b->grad);
  347. ggml_allocr_alloc(alloc, lora->output_a->grad);
  348. ggml_allocr_alloc(alloc, lora->output_b->grad);
  349. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  350. auto & layer = lora->layers[i];
  351. ggml_allocr_alloc(alloc, layer.attention_norm_a->grad);
  352. ggml_allocr_alloc(alloc, layer.attention_norm_b->grad);
  353. ggml_allocr_alloc(alloc, layer.wq_a->grad);
  354. ggml_allocr_alloc(alloc, layer.wq_b->grad);
  355. ggml_allocr_alloc(alloc, layer.wk_a->grad);
  356. ggml_allocr_alloc(alloc, layer.wk_b->grad);
  357. ggml_allocr_alloc(alloc, layer.wv_a->grad);
  358. ggml_allocr_alloc(alloc, layer.wv_b->grad);
  359. ggml_allocr_alloc(alloc, layer.wo_a->grad);
  360. ggml_allocr_alloc(alloc, layer.wo_b->grad);
  361. ggml_allocr_alloc(alloc, layer.ffn_norm_a->grad);
  362. ggml_allocr_alloc(alloc, layer.ffn_norm_b->grad);
  363. ggml_allocr_alloc(alloc, layer.w1_a->grad);
  364. ggml_allocr_alloc(alloc, layer.w1_b->grad);
  365. ggml_allocr_alloc(alloc, layer.w2_a->grad);
  366. ggml_allocr_alloc(alloc, layer.w2_b->grad);
  367. ggml_allocr_alloc(alloc, layer.w3_a->grad);
  368. ggml_allocr_alloc(alloc, layer.w3_b->grad);
  369. }
  370. }
  371. static void init_lora(const struct my_llama_model * model, struct my_llama_lora * lora) {
  372. const auto & lparams = lora->hparams;
  373. const uint32_t n_embd = model->hparams.n_embd;
  374. const uint32_t n_embd_gqa = model->hparams.n_embd_gqa();
  375. const uint32_t n_layer = model->hparams.n_layer;
  376. const uint32_t n_vocab = model->hparams.n_vocab;
  377. const uint32_t n_ff = model->hparams.n_ff;
  378. std::vector<char> tn_buf;
  379. tn_buf.resize(GGML_MAX_NAME);
  380. auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
  381. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
  382. return tn_buf.data();
  383. };
  384. auto tni = [&tn_buf](const char * key, const char * suffix, int bid) -> const char * {
  385. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  386. std::string s = tn_buf.data();
  387. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
  388. return tn_buf.data();
  389. };
  390. // context for lora tensors without their data
  391. struct ggml_init_params ctx_lora_params;
  392. ctx_lora_params.mem_size = ggml_tensor_overhead()*2*(6 + n_layer*18);
  393. ctx_lora_params.mem_buffer = NULL;
  394. ctx_lora_params.no_alloc = true;
  395. struct ggml_context * ctx = ggml_init(ctx_lora_params);
  396. lora->ctx = ctx;
  397. lora->tok_embeddings_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_embd);
  398. lora->tok_embeddings_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_tok_embeddings, n_vocab);
  399. lora->norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, n_embd);
  400. lora->norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_norm, 1);
  401. lora->output_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_embd);
  402. lora->output_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_output, n_vocab);
  403. ggml_set_name(lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_a"));
  404. ggml_set_name(lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.lora_b"));
  405. ggml_set_name(lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_a"));
  406. ggml_set_name(lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.lora_b"));
  407. ggml_set_name(lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.lora_a"));
  408. ggml_set_name(lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.lora_b"));
  409. lora->layers.resize(n_layer);
  410. for (uint32_t i = 0; i < n_layer; ++i) {
  411. auto & layer = lora->layers[i];
  412. layer.attention_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, n_embd);
  413. layer.attention_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_attention_norm, 1);
  414. layer.wq_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
  415. layer.wq_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wq, n_embd);
  416. layer.wk_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd);
  417. layer.wk_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wk, n_embd_gqa);
  418. layer.wv_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd);
  419. layer.wv_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wv, n_embd_gqa);
  420. layer.wo_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
  421. layer.wo_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_wo, n_embd);
  422. layer.ffn_norm_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, n_embd);
  423. layer.ffn_norm_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_ffn_norm, 1);
  424. layer.w1_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_embd);
  425. layer.w1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w1, n_ff);
  426. layer.w2_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_ff);
  427. layer.w2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w2, n_embd);
  428. layer.w3_a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_embd);
  429. layer.w3_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, lparams.n_rank_w3, n_ff);
  430. ggml_set_name(layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_a", i));
  431. ggml_set_name(layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, ".weight.lora_b", i));
  432. ggml_set_name(layer.wq_a, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_a", i));
  433. ggml_set_name(layer.wq_b, tni(LLM_TENSOR_ATTN_Q, ".weight.lora_b", i));
  434. ggml_set_name(layer.wk_a, tni(LLM_TENSOR_ATTN_K, ".weight.lora_a", i));
  435. ggml_set_name(layer.wk_b, tni(LLM_TENSOR_ATTN_K, ".weight.lora_b", i));
  436. ggml_set_name(layer.wv_a, tni(LLM_TENSOR_ATTN_V, ".weight.lora_a", i));
  437. ggml_set_name(layer.wv_b, tni(LLM_TENSOR_ATTN_V, ".weight.lora_b", i));
  438. ggml_set_name(layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_a", i));
  439. ggml_set_name(layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, ".weight.lora_b", i));
  440. ggml_set_name(layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_a", i));
  441. ggml_set_name(layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, ".weight.lora_b", i));
  442. ggml_set_name(layer.w1_a, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_a", i));
  443. ggml_set_name(layer.w1_b, tni(LLM_TENSOR_FFN_GATE, ".weight.lora_b", i));
  444. ggml_set_name(layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_a", i));
  445. ggml_set_name(layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, ".weight.lora_b", i));
  446. ggml_set_name(layer.w3_a, tni(LLM_TENSOR_FFN_UP, ".weight.lora_a", i));
  447. ggml_set_name(layer.w3_b, tni(LLM_TENSOR_FFN_UP, ".weight.lora_b", i));
  448. }
  449. set_param_lora(lora);
  450. // measure data size
  451. size_t size = 0;
  452. for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
  453. size += GGML_PAD(ggml_nbytes(t), tensor_alignment);
  454. }
  455. // allocate data
  456. struct ggml_allocr * alloc = NULL;
  457. lora->data.resize(size + tensor_alignment);
  458. alloc = ggml_allocr_new(lora->data.data(), lora->data.size(), tensor_alignment);
  459. alloc_lora(alloc, lora);
  460. ggml_allocr_free(alloc);
  461. }
  462. static void randomize_lora(struct my_llama_lora * lora, int seed, float mean, float std, float min, float max) {
  463. const uint32_t n_layer = lora->layers.size();
  464. struct random_normal_distribution * rnd = init_random_normal_distribution(seed, mean, std, min, max);
  465. randomize_tensor_normal(lora->tok_embeddings_a, rnd);
  466. ggml_set_zero(lora->tok_embeddings_b);
  467. randomize_tensor_normal(lora->norm_a, rnd);
  468. ggml_set_zero(lora->norm_b);
  469. randomize_tensor_normal(lora->output_a, rnd);
  470. ggml_set_zero(lora->output_b);
  471. for (uint32_t i = 0; i < n_layer; ++i) {
  472. auto & layer = lora->layers[i];
  473. randomize_tensor_normal(layer.attention_norm_a, rnd);
  474. ggml_set_zero(layer.attention_norm_b);
  475. randomize_tensor_normal(layer.wq_a, rnd);
  476. ggml_set_zero(layer.wq_b);
  477. randomize_tensor_normal(layer.wk_a, rnd);
  478. ggml_set_zero(layer.wk_b);
  479. randomize_tensor_normal(layer.wv_a, rnd);
  480. ggml_set_zero(layer.wv_b);
  481. randomize_tensor_normal(layer.wo_a, rnd);
  482. ggml_set_zero(layer.wo_b);
  483. randomize_tensor_normal(layer.ffn_norm_a, rnd);
  484. ggml_set_zero(layer.ffn_norm_b);
  485. randomize_tensor_normal(layer.w1_a, rnd);
  486. ggml_set_zero(layer.w1_b);
  487. randomize_tensor_normal(layer.w2_a, rnd);
  488. ggml_set_zero(layer.w2_b);
  489. randomize_tensor_normal(layer.w3_a, rnd);
  490. ggml_set_zero(layer.w3_b);
  491. }
  492. free_random_normal_distribution(rnd);
  493. }
  494. static struct ggml_tensor * llama_build_lora_finetune_graphs(
  495. struct my_llama_model * model,
  496. struct my_llama_lora * lora,
  497. struct ggml_allocr * alloc,
  498. struct ggml_context * ctx,
  499. struct ggml_cgraph * gf,
  500. struct ggml_cgraph * gb,
  501. struct ggml_cgraph * gb_tmp,
  502. struct ggml_tensor * * logits,
  503. struct ggml_tensor * tokens_input,
  504. struct ggml_tensor * targets,
  505. const int n_tokens,
  506. const int n_batch,
  507. const bool enable_flash_attn,
  508. const bool enable_checkpointing) {
  509. ggml_set_scratch(ctx, { 0, 0, nullptr, });
  510. const int n_past = 0;
  511. const int N = n_tokens;
  512. const auto & hparams = model->hparams;
  513. const int n_ctx = hparams.n_ctx;
  514. const int n_vocab = hparams.n_vocab;
  515. const int n_embd = hparams.n_embd;
  516. const int n_layer = hparams.n_layer;
  517. const int n_head = hparams.n_head;
  518. const int n_head_kv = hparams.n_head_kv;
  519. const int n_ff = hparams.n_ff;
  520. const int n_rot = hparams.n_embd_head();
  521. const int n_embd_head = hparams.n_embd_head();
  522. const int n_embd_gqa = hparams.n_embd_gqa();
  523. const float rms_norm_eps = hparams.f_norm_rms_eps;
  524. const float rope_freq_base = hparams.rope_freq_base;
  525. const float rope_freq_scale = hparams.rope_freq_scale;
  526. GGML_ASSERT((size_t) n_layer == lora->layers.size());
  527. auto set_name = [](struct ggml_tensor * t, const char * n) {
  528. ggml_set_name(t, n);
  529. if (t->grad) {
  530. ggml_format_name(t->grad, "%s->grad", n);
  531. }
  532. };
  533. // KQ_pos - contains the positions
  534. struct ggml_tensor * KQ_pos = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, N);
  535. ggml_allocr_alloc(alloc, KQ_pos);
  536. if (!ggml_allocr_is_measure(alloc)) {
  537. int * data = (int *) KQ_pos->data;
  538. for (int i = 0; i < N; ++i) {
  539. data[i] = n_past + i;
  540. }
  541. }
  542. // rope has so much parameters that we make a custom function for it
  543. auto rope = [ctx, KQ_pos, n_rot, n_ctx, rope_freq_base, rope_freq_scale]
  544. (struct ggml_tensor * t) -> struct ggml_tensor * {
  545. // not capturing these, to silcence warnings
  546. const int rope_mode = 0;
  547. return ggml_rope_custom(ctx,
  548. t, KQ_pos, n_rot, rope_mode, n_ctx, 0,
  549. rope_freq_base, rope_freq_scale, 0.0f, 1.0f, 0.0f, 0.0f
  550. );
  551. };
  552. set_name(tokens_input, "tokens_input");
  553. set_name(targets, "targets");
  554. GGML_ASSERT(tokens_input->type == GGML_TYPE_I32);
  555. auto add_to_f32 = [] (struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b) {
  556. if (ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16) {
  557. return ggml_add_cast(ctx, a, b, GGML_TYPE_F32);
  558. } else if (a->type == GGML_TYPE_F32) {
  559. return ggml_add(ctx, a, b);
  560. } else {
  561. die_fmt("%s: Finetuning on tensors with type '%s' is not yet supported.\n",
  562. __func__, ggml_type_name(a->type));
  563. }
  564. };
  565. struct ggml_tensor * tok_embeddings = add_to_f32(ctx, model->tok_embeddings, ggml_mul_mat(ctx, lora->tok_embeddings_a, lora->tok_embeddings_b));
  566. struct ggml_tensor * norm = add_to_f32(ctx, model->norm, ggml_mul_mat(ctx, lora->norm_a, lora->norm_b));
  567. struct ggml_tensor * output = add_to_f32(ctx, model->output, ggml_mul_mat(ctx, lora->output_a, lora->output_b));
  568. struct ggml_tensor * t00 = ggml_reshape_1d(ctx, tokens_input, N*n_batch); set_name(t00, "t00"); assert_shape_1d(t00, N*n_batch);
  569. struct ggml_tensor * t01 = ggml_get_rows(ctx, tok_embeddings, t00); set_name(t01, "t01"); assert_shape_2d(t01, n_embd, N*n_batch);
  570. struct ggml_tensor * cur = t01;
  571. std::vector<struct ggml_tensor *> checkpoints;
  572. if (enable_checkpointing) {
  573. checkpoints.push_back(tokens_input);
  574. checkpoints.push_back(targets);
  575. checkpoints.push_back(t00);
  576. checkpoints.push_back(t01);
  577. }
  578. const float kv_scale = 1.0f/sqrtf(float(n_embd)/n_head);
  579. for (int il = 0; il < n_layer; ++il) {
  580. struct my_llama_layer & layer = model->layers[il];
  581. struct my_llama_lora_layer & llayer = lora->layers[il];
  582. struct ggml_tensor * attention_norm = add_to_f32(ctx, layer.attention_norm, ggml_mul_mat(ctx, llayer.attention_norm_a, llayer.attention_norm_b));
  583. struct ggml_tensor * ffn_norm = add_to_f32(ctx, layer.ffn_norm, ggml_mul_mat(ctx, llayer.ffn_norm_a, llayer.ffn_norm_b));
  584. struct ggml_tensor * wq = add_to_f32(ctx, layer.wq, ggml_mul_mat(ctx, llayer.wq_a, llayer.wq_b));
  585. struct ggml_tensor * wk = add_to_f32(ctx, layer.wk, ggml_mul_mat(ctx, llayer.wk_a, llayer.wk_b));
  586. struct ggml_tensor * wv = add_to_f32(ctx, layer.wv, ggml_mul_mat(ctx, llayer.wv_a, llayer.wv_b));
  587. struct ggml_tensor * wo = add_to_f32(ctx, layer.wo, ggml_mul_mat(ctx, llayer.wo_a, llayer.wo_b));
  588. struct ggml_tensor * w1 = add_to_f32(ctx, layer.w1, ggml_mul_mat(ctx, llayer.w1_a, llayer.w1_b));
  589. struct ggml_tensor * w2 = add_to_f32(ctx, layer.w2, ggml_mul_mat(ctx, llayer.w2_a, llayer.w2_b));
  590. struct ggml_tensor * w3 = add_to_f32(ctx, layer.w3, ggml_mul_mat(ctx, llayer.w3_a, llayer.w3_b));
  591. struct ggml_tensor * t02 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t02, "t02"); assert_shape_2d(t02, n_embd, N*n_batch);
  592. struct ggml_tensor * t03 = ggml_repeat (ctx, attention_norm, t02); set_name(t03, "t03"); assert_shape_2d(t03, n_embd, N*n_batch);
  593. struct ggml_tensor * t04 = ggml_mul (ctx, t03, t02); set_name(t04, "t04"); assert_shape_2d(t04, n_embd, N*n_batch);
  594. struct ggml_tensor * t05 = ggml_mul_mat (ctx, wq, t04); set_name(t05, "t05"); assert_shape_2d(t05, n_embd, N*n_batch);
  595. struct ggml_tensor * t06 = ggml_reshape_4d (ctx, t05, n_embd_head, n_head, N, n_batch); set_name(t06, "t06"); assert_shape_4d(t06, n_embd_head, n_head, N, n_batch);
  596. struct ggml_tensor * t07 = rope (t06); set_name(t07, "t07"); assert_shape_4d(t07, n_embd_head, n_head, N, n_batch);
  597. struct ggml_tensor * t08 = ggml_mul_mat (ctx, wk, t04); set_name(t08, "t08"); assert_shape_2d(t08, n_embd_gqa, N*n_batch);
  598. struct ggml_tensor * t09 = ggml_reshape_4d (ctx, t08, n_embd_head, n_head_kv, N, n_batch); set_name(t09, "t09"); assert_shape_4d(t09, n_embd_head, n_head_kv, N, n_batch);
  599. struct ggml_tensor * t10 = rope (t09); set_name(t10, "t10"); assert_shape_4d(t10, n_embd_head, n_head_kv, N, n_batch);
  600. struct ggml_tensor * t11;
  601. if (ggml_is_quantized(wv->type)) {
  602. struct ggml_tensor * t11_1 = ggml_mul_mat (ctx, wv, t04); set_name(t11_1, "t11_1"); assert_shape_2d(t11_1, n_embd_gqa, N*n_batch);
  603. struct ggml_tensor * t11_2 = ggml_transpose(ctx, t11_1); set_name(t11_2, "t11_2"); assert_shape_2d(t11_2, N*n_batch, n_embd_gqa);
  604. t11 = ggml_cont (ctx, t11_2); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
  605. } else {
  606. t11 = ggml_mul_mat (ctx, t04, wv); set_name(t11, "t11"); assert_shape_2d(t11, N*n_batch, n_embd_gqa);
  607. }
  608. struct ggml_tensor * t12 = ggml_reshape_4d (ctx, t11, N, n_batch, n_embd_head, n_head_kv); set_name(t12, "t12"); assert_shape_4d(t12, N, n_batch, n_embd_head, n_head_kv);
  609. struct ggml_tensor * t13 = ggml_permute (ctx, t07, 0, 2, 1, 3); set_name(t13, "t13"); assert_shape_4d(t13, n_embd_head, N, n_head, n_batch);
  610. struct ggml_tensor * t14 = ggml_permute (ctx, t10, 0, 2, 1, 3); set_name(t14, "t14"); assert_shape_4d(t14, n_embd_head, N, n_head_kv, n_batch);
  611. struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
  612. struct ggml_tensor * t16;
  613. if (enable_flash_attn) {
  614. t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
  615. } else {
  616. struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
  617. struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);
  618. struct ggml_tensor * t16_2 = ggml_diag_mask_inf_inplace(ctx, t16_1, n_past); set_name(t16_2, "t16_2"); assert_shape_4d(t16_2, N, N, n_head, n_batch);
  619. struct ggml_tensor * t16_3 = ggml_soft_max_inplace (ctx, t16_2); set_name(t16_3, "t16_3"); assert_shape_4d(t16_3, N, N, n_head, n_batch);
  620. t16 = ggml_mul_mat(ctx, t15, t16_3); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
  621. }
  622. struct ggml_tensor * t17 = ggml_permute (ctx, t16, 0, 2, 1, 3); set_name(t17, "t17"); assert_shape_4d(t17, n_embd_head, n_head, N, n_batch);
  623. struct ggml_tensor * t18 = ggml_cont (ctx, t17); set_name(t18, "t18"); assert_shape_4d(t18, n_embd_head, n_head, N, n_batch);
  624. struct ggml_tensor * t19 = ggml_reshape_2d (ctx, t18, n_embd, N*n_batch); set_name(t19, "t19"); assert_shape_2d(t19, n_embd, N*n_batch);
  625. struct ggml_tensor * t20 = ggml_mul_mat (ctx, wo, t19); set_name(t20, "t20"); assert_shape_2d(t20, n_embd, N*n_batch);
  626. struct ggml_tensor * t21 = ggml_add (ctx, t20, cur); set_name(t21, "t21"); assert_shape_2d(t21, n_embd, N*n_batch);
  627. struct ggml_tensor * t22 = ggml_rms_norm (ctx, t21, rms_norm_eps); set_name(t22, "t22"); assert_shape_2d(t22, n_embd, N*n_batch);
  628. struct ggml_tensor * t23 = ggml_repeat (ctx, ffn_norm, t22); set_name(t23, "t23"); assert_shape_2d(t23, n_embd, N*n_batch);
  629. struct ggml_tensor * t24 = ggml_mul (ctx, t23, t22); set_name(t24, "t24"); assert_shape_2d(t24, n_embd, N*n_batch);
  630. struct ggml_tensor * t25 = ggml_mul_mat (ctx, w3, t24); set_name(t25, "t25"); assert_shape_2d(t25, n_ff, N*n_batch);
  631. struct ggml_tensor * t26 = ggml_mul_mat (ctx, w1, t24); set_name(t26, "t26"); assert_shape_2d(t26, n_ff, N*n_batch);
  632. struct ggml_tensor * t27 = ggml_silu (ctx, t26); set_name(t27, "t27"); assert_shape_2d(t27, n_ff, N*n_batch);
  633. struct ggml_tensor * t28 = ggml_mul (ctx, t27, t25); set_name(t28, "t28"); assert_shape_2d(t28, n_ff, N*n_batch);
  634. struct ggml_tensor * t29 = ggml_mul_mat (ctx, w2, t28); set_name(t29, "t29"); assert_shape_2d(t29, n_embd, N*n_batch);
  635. struct ggml_tensor * t30 = ggml_add (ctx, t29, t21); set_name(t30, "t30"); assert_shape_2d(t30, n_embd, N*n_batch);
  636. cur = t30;
  637. if (enable_checkpointing) {
  638. checkpoints.push_back(cur);
  639. }
  640. }
  641. struct ggml_tensor * t31 = ggml_rms_norm (ctx, cur, rms_norm_eps); set_name(t31, "t31"); assert_shape_2d(t31, n_embd, N*n_batch);
  642. struct ggml_tensor * t32 = ggml_repeat (ctx, norm, t31); set_name(t32, "t32"); assert_shape_2d(t32, n_embd, N*n_batch);
  643. struct ggml_tensor * t33 = ggml_mul (ctx, t32, t31); set_name(t33, "t33"); assert_shape_2d(t33, n_embd, N*n_batch);
  644. struct ggml_tensor * t34 = ggml_mul_mat (ctx, output, t33); set_name(t34, "t34"); assert_shape_2d(t34, n_vocab, N*n_batch);
  645. struct ggml_tensor * t35 = ggml_reshape_3d (ctx, t34, n_vocab, N, n_batch); set_name(t35, "t35"); assert_shape_3d(t35, n_vocab, N, n_batch);
  646. struct ggml_tensor * t36 = ggml_cross_entropy_loss(ctx, t35, targets); set_name(t36, "t36"); assert_shape_1d(t36, 1);
  647. if (enable_checkpointing) {
  648. checkpoints.push_back(t31);
  649. checkpoints.push_back(t32);
  650. checkpoints.push_back(t33);
  651. checkpoints.push_back(t34);
  652. checkpoints.push_back(t35);
  653. checkpoints.push_back(t36);
  654. }
  655. ggml_build_forward_expand(gf, t36);
  656. if (enable_checkpointing) {
  657. ggml_build_backward_gradient_checkpointing(ctx, gf, gb, gb_tmp, checkpoints.data(), (int) checkpoints.size());
  658. } else {
  659. ggml_graph_cpy(gf, gb);
  660. ggml_build_backward_expand(ctx, gf, gb, true);
  661. }
  662. GGML_ASSERT(alloc != NULL);
  663. // make sure some tensors are not reallocated by inserting new temporary nodes depending on them
  664. int n_leafs_before = gb->n_leafs;
  665. int n_nodes_before = gb->n_nodes;
  666. // output tensors
  667. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t35, 1.0f));
  668. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36, 1.0f));
  669. // input gradient
  670. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, t36->grad, 1.0f));
  671. GGML_ASSERT(t36->grad->data == NULL && t36->grad->view_src == NULL);
  672. ggml_allocr_alloc(alloc, t36->grad);
  673. // KQ_pos
  674. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, KQ_pos, 1.0f));
  675. // make sure base model tensors data cannot be used in viewable operations
  676. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->tok_embeddings, 1.0f));
  677. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->norm, 1.0f));
  678. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, model->output, 1.0f));
  679. for (int il = 0; il < n_layer; ++il) {
  680. struct my_llama_layer & layer = model->layers[il];
  681. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.attention_norm, 1.0f));
  682. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.ffn_norm, 1.0f));
  683. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wq, 1.0f));
  684. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wk, 1.0f));
  685. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wv, 1.0f));
  686. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.wo, 1.0f));
  687. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w1, 1.0f));
  688. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w2, 1.0f));
  689. ggml_build_forward_expand(gb, ggml_scale_inplace(ctx, layer.w3, 1.0f));
  690. }
  691. // allocating checkpoints in one block to reduce memory fragmentation
  692. // note: they will be freed in reverse order
  693. for (unsigned int i = 0; i < checkpoints.size(); ++i) {
  694. if (checkpoints[i]->data == NULL && checkpoints[i]->view_src == NULL) {
  695. ggml_allocr_alloc(alloc, checkpoints[i]);
  696. }
  697. }
  698. ggml_allocr_alloc_graph(alloc, gb);
  699. // remove the additional nodes and leafs
  700. for (int i = n_leafs_before; i < gb->n_leafs; ++i) {
  701. gb->leafs[i] = NULL;
  702. }
  703. for (int i = n_nodes_before; i < gb->n_nodes; ++i) {
  704. gb->nodes[i] = NULL;
  705. }
  706. gb->n_leafs = n_leafs_before;
  707. gb->n_nodes = n_nodes_before;
  708. *logits = t35;
  709. return t36;
  710. }
  711. static void load_llama_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora) {
  712. // NOTE: gguf_context must be initialized with f_ggml_ctx and no_alloc=false, otherwise tensor data can not be read
  713. std::string arch;
  714. std::vector<char> keybuf;
  715. keybuf.resize(512);
  716. GGUF_GET_KEY(fctx, arch, gguf_get_val_str, GGUF_TYPE_STRING, true, LLM_KV_GENERAL_ARCHITECTURE);
  717. GGML_ASSERT(arch == "llama");
  718. uint32_t ftype_u;
  719. GGUF_GET_KEY(fctx, ftype_u, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_GENERAL_FILE_TYPE);
  720. GGML_ASSERT((enum llama_ftype) ftype_u == LLAMA_FTYPE_ALL_F32);
  721. struct my_llama_hparams hparams;
  722. load_model_hparams_gguf(fctx, &hparams, arch.c_str());
  723. // parameters that define tensor shapes must match
  724. GGML_ASSERT(hparams.n_embd == model->hparams.n_embd);
  725. GGML_ASSERT(hparams.n_ff == model->hparams.n_ff);
  726. GGML_ASSERT(hparams.n_head == model->hparams.n_head);
  727. GGML_ASSERT(hparams.n_head_kv == model->hparams.n_head_kv);
  728. GGML_ASSERT(hparams.n_layer == model->hparams.n_layer);
  729. GGUF_GET_KEY(fctx, lora->hparams.n_rank_tok_embeddings, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD);
  730. GGUF_GET_KEY(fctx, lora->hparams.n_rank_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM);
  731. GGUF_GET_KEY(fctx, lora->hparams.n_rank_output, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_OUTPUT);
  732. GGUF_GET_KEY(fctx, lora->hparams.n_rank_attention_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM);
  733. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wq, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_Q);
  734. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wk, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_K);
  735. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wv, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_V);
  736. GGUF_GET_KEY(fctx, lora->hparams.n_rank_wo, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT);
  737. GGUF_GET_KEY(fctx, lora->hparams.n_rank_ffn_norm, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_NORM);
  738. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w1, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_GATE);
  739. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w2, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN);
  740. GGUF_GET_KEY(fctx, lora->hparams.n_rank_w3, gguf_get_val_u32, GGUF_TYPE_UINT32, true, LLM_KV_TRAINING_LORA_RANK_FFN_UP);
  741. init_lora(model, lora);
  742. copy_tensor_by_name(lora->tok_embeddings_a, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_a));
  743. copy_tensor_by_name(lora->tok_embeddings_b, f_ggml_ctx, ggml_get_name(lora->tok_embeddings_b));
  744. copy_tensor_by_name(lora->norm_a, f_ggml_ctx, ggml_get_name(lora->norm_a));
  745. copy_tensor_by_name(lora->norm_b, f_ggml_ctx, ggml_get_name(lora->norm_b));
  746. copy_tensor_by_name(lora->output_a, f_ggml_ctx, ggml_get_name(lora->output_a));
  747. copy_tensor_by_name(lora->output_b, f_ggml_ctx, ggml_get_name(lora->output_b));
  748. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  749. auto & layer = lora->layers[i];
  750. copy_tensor_by_name(layer.attention_norm_a, f_ggml_ctx, ggml_get_name(layer.attention_norm_a));
  751. copy_tensor_by_name(layer.attention_norm_b, f_ggml_ctx, ggml_get_name(layer.attention_norm_b));
  752. copy_tensor_by_name(layer.wq_a, f_ggml_ctx, ggml_get_name(layer.wq_a));
  753. copy_tensor_by_name(layer.wq_b, f_ggml_ctx, ggml_get_name(layer.wq_b));
  754. copy_tensor_by_name(layer.wk_a, f_ggml_ctx, ggml_get_name(layer.wk_a));
  755. copy_tensor_by_name(layer.wk_b, f_ggml_ctx, ggml_get_name(layer.wk_b));
  756. copy_tensor_by_name(layer.wv_a, f_ggml_ctx, ggml_get_name(layer.wv_a));
  757. copy_tensor_by_name(layer.wv_b, f_ggml_ctx, ggml_get_name(layer.wv_b));
  758. copy_tensor_by_name(layer.wo_a, f_ggml_ctx, ggml_get_name(layer.wo_a));
  759. copy_tensor_by_name(layer.wo_b, f_ggml_ctx, ggml_get_name(layer.wo_b));
  760. copy_tensor_by_name(layer.ffn_norm_a, f_ggml_ctx, ggml_get_name(layer.ffn_norm_a));
  761. copy_tensor_by_name(layer.ffn_norm_b, f_ggml_ctx, ggml_get_name(layer.ffn_norm_b));
  762. copy_tensor_by_name(layer.w1_a, f_ggml_ctx, ggml_get_name(layer.w1_a));
  763. copy_tensor_by_name(layer.w1_b, f_ggml_ctx, ggml_get_name(layer.w1_b));
  764. copy_tensor_by_name(layer.w2_a, f_ggml_ctx, ggml_get_name(layer.w2_a));
  765. copy_tensor_by_name(layer.w2_b, f_ggml_ctx, ggml_get_name(layer.w2_b));
  766. copy_tensor_by_name(layer.w3_a, f_ggml_ctx, ggml_get_name(layer.w3_a));
  767. copy_tensor_by_name(layer.w3_b, f_ggml_ctx, ggml_get_name(layer.w3_b));
  768. }
  769. }
  770. static void save_llama_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora) {
  771. const char * arch = "llama";
  772. enum llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  773. std::vector<char> keybuf;
  774. keybuf.resize(512);
  775. auto kv = [arch, &keybuf](const char * key) -> const char * {
  776. snprintf(keybuf.data(), keybuf.size(), key, arch);
  777. return keybuf.data();
  778. };
  779. gguf_set_val_str(fctx, LLM_KV_GENERAL_ARCHITECTURE, arch);
  780. gguf_set_val_u32(fctx, LLM_KV_GENERAL_FILE_TYPE, ftype);
  781. gguf_set_val_u32(fctx, kv(LLM_KV_CONTEXT_LENGTH), model->hparams.n_ctx);
  782. gguf_set_val_u32(fctx, kv(LLM_KV_EMBEDDING_LENGTH), model->hparams.n_embd);
  783. gguf_set_val_u32(fctx, kv(LLM_KV_FEED_FORWARD_LENGTH), model->hparams.n_ff);
  784. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT), model->hparams.n_head);
  785. gguf_set_val_u32(fctx, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV), model->hparams.n_head_kv);
  786. gguf_set_val_u32(fctx, kv(LLM_KV_BLOCK_COUNT), model->hparams.n_layer);
  787. gguf_set_val_u32(fctx, kv(LLM_KV_ROPE_DIMENSION_COUNT), model->hparams.n_embd_head());
  788. gguf_set_val_f32(fctx, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS), model->hparams.f_norm_rms_eps);
  789. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_FREQ_BASE), model->hparams.rope_freq_base);
  790. gguf_set_val_f32(fctx, kv(LLM_KV_ROPE_SCALE_LINEAR), model->hparams.rope_freq_scale);
  791. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_TOKEN_EMBD, lora->hparams.n_rank_tok_embeddings);
  792. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT_NORM, lora->hparams.n_rank_norm);
  793. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_OUTPUT, lora->hparams.n_rank_output);
  794. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_NORM, lora->hparams.n_rank_attention_norm);
  795. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_Q, lora->hparams.n_rank_wq);
  796. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_K, lora->hparams.n_rank_wk);
  797. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_V, lora->hparams.n_rank_wv);
  798. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_ATTN_OUT, lora->hparams.n_rank_wo);
  799. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_NORM, lora->hparams.n_rank_ffn_norm);
  800. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_GATE, lora->hparams.n_rank_w1);
  801. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_DOWN, lora->hparams.n_rank_w2);
  802. gguf_set_val_u32(fctx, LLM_KV_TRAINING_LORA_RANK_FFN_UP, lora->hparams.n_rank_w3);
  803. gguf_add_tensor(fctx, lora->tok_embeddings_a);
  804. gguf_add_tensor(fctx, lora->tok_embeddings_b);
  805. gguf_add_tensor(fctx, lora->norm_a);
  806. gguf_add_tensor(fctx, lora->norm_b);
  807. gguf_add_tensor(fctx, lora->output_a);
  808. gguf_add_tensor(fctx, lora->output_b);
  809. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  810. auto & layer = lora->layers[i];
  811. gguf_add_tensor(fctx, layer.attention_norm_a);
  812. gguf_add_tensor(fctx, layer.attention_norm_b);
  813. gguf_add_tensor(fctx, layer.wq_a);
  814. gguf_add_tensor(fctx, layer.wq_b);
  815. gguf_add_tensor(fctx, layer.wk_a);
  816. gguf_add_tensor(fctx, layer.wk_b);
  817. gguf_add_tensor(fctx, layer.wv_a);
  818. gguf_add_tensor(fctx, layer.wv_b);
  819. gguf_add_tensor(fctx, layer.wo_a);
  820. gguf_add_tensor(fctx, layer.wo_b);
  821. gguf_add_tensor(fctx, layer.ffn_norm_a);
  822. gguf_add_tensor(fctx, layer.ffn_norm_b);
  823. gguf_add_tensor(fctx, layer.w1_a);
  824. gguf_add_tensor(fctx, layer.w1_b);
  825. gguf_add_tensor(fctx, layer.w2_a);
  826. gguf_add_tensor(fctx, layer.w2_b);
  827. gguf_add_tensor(fctx, layer.w3_a);
  828. gguf_add_tensor(fctx, layer.w3_b);
  829. }
  830. }
  831. static void load_checkpoint_lora_gguf(struct gguf_context * fctx, struct ggml_context * f_ggml_ctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  832. std::string train_type = LLM_KV_TRAINING_TYPE_FINETUNE_LORA;
  833. GGUF_GET_KEY(fctx, train_type, gguf_get_val_str, GGUF_TYPE_STRING, false, LLM_KV_TRAINING_TYPE);
  834. GGML_ASSERT(train_type == LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
  835. load_train_state_gguf(fctx, f_ggml_ctx, train);
  836. load_llama_lora_gguf(fctx, f_ggml_ctx, model, lora);
  837. }
  838. static void save_checkpoint_lora_gguf(struct gguf_context * fctx, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  839. gguf_set_val_str(fctx, LLM_KV_TRAINING_TYPE, LLM_KV_TRAINING_TYPE_FINETUNE_LORA);
  840. save_llama_lora_gguf(fctx, model, lora);
  841. save_train_state_gguf(fctx, train);
  842. }
  843. static bool load_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  844. struct ggml_context * f_ggml_ctx;
  845. struct gguf_init_params params;
  846. params.no_alloc = false;
  847. params.ctx = &f_ggml_ctx;
  848. struct gguf_context * fctx = gguf_init_from_file(filename, params);
  849. if (fctx == NULL) {
  850. return false;
  851. }
  852. load_checkpoint_lora_gguf(fctx, f_ggml_ctx, model, lora, train);
  853. gguf_free(fctx);
  854. return true;
  855. }
  856. static void save_checkpoint_lora_file(const char * filename, struct my_llama_model * model, struct my_llama_lora * lora, struct train_state * train) {
  857. printf("%s: saving to %s\n", __func__, filename);
  858. struct gguf_context * fctx = gguf_init_empty();
  859. save_checkpoint_lora_gguf(fctx, model, lora, train);
  860. // write file
  861. const bool only_meta = false;
  862. gguf_write_to_file(fctx, filename, only_meta);
  863. gguf_free(fctx);
  864. }
  865. struct llama_file {
  866. // use FILE * so we don't have to re-open the file to mmap
  867. FILE * fp;
  868. size_t size;
  869. llama_file(const char * fname, const char * mode) {
  870. fp = std::fopen(fname, mode);
  871. if (fp == NULL) {
  872. size = 0;
  873. } else {
  874. seek(0, SEEK_END);
  875. size = tell();
  876. seek(0, SEEK_SET);
  877. }
  878. }
  879. size_t tell() const {
  880. #ifdef _WIN32
  881. __int64 ret = _ftelli64(fp);
  882. #else
  883. long ret = std::ftell(fp);
  884. #endif
  885. GGML_ASSERT(ret != -1); // this really shouldn't fail
  886. return (size_t) ret;
  887. }
  888. void seek(size_t offset, int whence) {
  889. #ifdef _WIN32
  890. int ret = _fseeki64(fp, (__int64) offset, whence);
  891. #else
  892. int ret = std::fseek(fp, (long) offset, whence);
  893. #endif
  894. GGML_ASSERT(ret == 0); // same
  895. }
  896. void read_raw(void * ptr, size_t size) {
  897. if (size == 0) {
  898. return;
  899. }
  900. errno = 0;
  901. std::size_t ret = std::fread(ptr, size, 1, fp);
  902. if (ferror(fp)) {
  903. die_fmt("read error: %s", strerror(errno));
  904. }
  905. if (ret != 1) {
  906. die("unexpectedly reached end of file");
  907. }
  908. }
  909. std::uint32_t read_u32() {
  910. std::uint32_t ret;
  911. read_raw(&ret, sizeof(ret));
  912. return ret;
  913. }
  914. std::string read_string(std::uint32_t len) {
  915. std::vector<char> chars(len);
  916. read_raw(chars.data(), len);
  917. return std::string(chars.data(), len);
  918. }
  919. void write_raw(const void * ptr, size_t size) {
  920. if (size == 0) {
  921. return;
  922. }
  923. errno = 0;
  924. size_t ret = std::fwrite(ptr, size, 1, fp);
  925. if (ret != 1) {
  926. die_fmt("write error: %s", strerror(errno));
  927. }
  928. }
  929. void write_u32(std::uint32_t val) {
  930. write_raw(&val, sizeof(val));
  931. }
  932. ~llama_file() {
  933. if (fp) {
  934. std::fclose(fp);
  935. }
  936. }
  937. };
  938. static void write_tensor(struct llama_file * file, struct ggml_tensor * tensor, const char * name) {
  939. if (tensor == NULL) {
  940. file->write_u32(0);
  941. file->write_u32(0);
  942. file->write_u32(GGML_TYPE_F32);
  943. file->seek((0-file->tell()) & 31, SEEK_CUR);
  944. return;
  945. }
  946. if (name == NULL) {
  947. name = ggml_get_name(tensor);
  948. }
  949. uint32_t name_len = strlen(name);
  950. uint32_t nd = ggml_n_dims(tensor);
  951. uint32_t ne[4] = { (uint32_t)tensor->ne[0],
  952. (uint32_t)tensor->ne[1],
  953. (uint32_t)tensor->ne[2],
  954. (uint32_t)tensor->ne[3] };
  955. file->write_u32(nd);
  956. file->write_u32(name_len);
  957. file->write_u32(tensor->type);
  958. file->write_raw(ne, sizeof(ne[0]) * nd);
  959. file->write_raw(name, name_len);
  960. file->seek((0-file->tell()) & 31, SEEK_CUR);
  961. file->write_raw(tensor->data, ggml_nbytes(tensor));
  962. }
  963. static void save_as_llama_lora(const char * filename, struct my_llama_lora * lora) {
  964. printf("%s: saving to %s\n", __func__, filename);
  965. struct llama_file file(filename, "wb");
  966. if (file.fp == NULL) {
  967. return;
  968. }
  969. std::vector<char> tn_buf;
  970. tn_buf.resize(GGML_MAX_NAME);
  971. auto tn = [&tn_buf](const char * key, const char * suffix) -> const char * {
  972. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", key, suffix);
  973. return tn_buf.data();
  974. };
  975. auto tni = [&tn_buf](const char * key, int bid, const char * suffix) -> const char * {
  976. snprintf(tn_buf.data(), tn_buf.size(), key, bid);
  977. std::string s = tn_buf.data();
  978. snprintf(tn_buf.data(), tn_buf.size(), "%s%s", s.c_str(), suffix);
  979. return tn_buf.data();
  980. };
  981. // write_magic
  982. file.write_u32(LLAMA_FILE_MAGIC_GGLA); // magic
  983. file.write_u32(1); // version
  984. // write_hparams
  985. file.write_u32(lora->hparams.lora_r);
  986. file.write_u32(lora->hparams.lora_alpha);
  987. // write tensors
  988. write_tensor(&file, lora->tok_embeddings_a, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraA"));
  989. write_tensor(&file, lora->tok_embeddings_b, tn(LLM_TENSOR_TOKEN_EMBD, ".weight.loraB"));
  990. write_tensor(&file, lora->norm_a, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraA"));
  991. write_tensor(&file, lora->norm_b, tn(LLM_TENSOR_OUTPUT_NORM, ".weight.loraB"));
  992. write_tensor(&file, lora->output_a, tn(LLM_TENSOR_OUTPUT, ".weight.loraA"));
  993. write_tensor(&file, lora->output_b, tn(LLM_TENSOR_OUTPUT, ".weight.loraB"));
  994. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  995. auto & layer = lora->layers[i];
  996. write_tensor(&file, layer.attention_norm_a, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraA"));
  997. write_tensor(&file, layer.attention_norm_b, tni(LLM_TENSOR_ATTN_NORM, i, ".weight.loraB"));
  998. write_tensor(&file, layer.wq_a, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraA"));
  999. write_tensor(&file, layer.wq_b, tni(LLM_TENSOR_ATTN_Q, i, ".weight.loraB"));
  1000. write_tensor(&file, layer.wk_a, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraA"));
  1001. write_tensor(&file, layer.wk_b, tni(LLM_TENSOR_ATTN_K, i, ".weight.loraB"));
  1002. write_tensor(&file, layer.wv_a, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraA"));
  1003. write_tensor(&file, layer.wv_b, tni(LLM_TENSOR_ATTN_V, i, ".weight.loraB"));
  1004. write_tensor(&file, layer.wo_a, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraA"));
  1005. write_tensor(&file, layer.wo_b, tni(LLM_TENSOR_ATTN_OUT, i, ".weight.loraB"));
  1006. write_tensor(&file, layer.ffn_norm_a, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraA"));
  1007. write_tensor(&file, layer.ffn_norm_b, tni(LLM_TENSOR_FFN_NORM, i, ".weight.loraB"));
  1008. write_tensor(&file, layer.w1_a, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraA"));
  1009. write_tensor(&file, layer.w1_b, tni(LLM_TENSOR_FFN_GATE, i, ".weight.loraB"));
  1010. write_tensor(&file, layer.w2_a, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraA"));
  1011. write_tensor(&file, layer.w2_b, tni(LLM_TENSOR_FFN_DOWN, i, ".weight.loraB"));
  1012. write_tensor(&file, layer.w3_a, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraA"));
  1013. write_tensor(&file, layer.w3_b, tni(LLM_TENSOR_FFN_UP, i, ".weight.loraB"));
  1014. }
  1015. }
  1016. struct train_params {
  1017. struct train_params_common common;
  1018. const char * fn_model_base;
  1019. const char * fn_lora_out;
  1020. bool only_write_lora;
  1021. float f_norm_rms_eps;
  1022. float rope_freq_base;
  1023. float rope_freq_scale;
  1024. bool custom_f_norm_rms_eps;
  1025. bool custom_rope_freq_base;
  1026. bool custom_rope_freq_scale;
  1027. int32_t lora_r;
  1028. int32_t lora_alpha;
  1029. bool custom_lora_alpha;
  1030. uint32_t n_rank_attention_norm;
  1031. uint32_t n_rank_wq;
  1032. uint32_t n_rank_wk;
  1033. uint32_t n_rank_wv;
  1034. uint32_t n_rank_wo;
  1035. uint32_t n_rank_ffn_norm;
  1036. uint32_t n_rank_w1;
  1037. uint32_t n_rank_w2;
  1038. uint32_t n_rank_w3;
  1039. uint32_t n_rank_tok_embeddings;
  1040. uint32_t n_rank_norm;
  1041. uint32_t n_rank_output;
  1042. bool custom_n_rank_attention_norm;
  1043. bool custom_n_rank_wq;
  1044. bool custom_n_rank_wk;
  1045. bool custom_n_rank_wv;
  1046. bool custom_n_rank_wo;
  1047. bool custom_n_rank_ffn_norm;
  1048. bool custom_n_rank_w1;
  1049. bool custom_n_rank_w2;
  1050. bool custom_n_rank_w3;
  1051. bool custom_n_rank_tok_embeddings;
  1052. bool custom_n_rank_norm;
  1053. bool custom_n_rank_output;
  1054. };
  1055. static struct train_params get_default_train_params() {
  1056. struct train_params params;
  1057. params.common = get_default_train_params_common();
  1058. params.fn_model_base = "";
  1059. params.fn_lora_out = "ggml-lora-ITERATION-f32.gguf";
  1060. params.only_write_lora = false;
  1061. params.f_norm_rms_eps = 1e-5f;
  1062. params.rope_freq_base = 10000.0f;
  1063. params.rope_freq_scale = 1.0f;
  1064. params.custom_f_norm_rms_eps = false;
  1065. params.custom_rope_freq_base = false;
  1066. params.custom_rope_freq_scale = false;
  1067. params.lora_r = 4;
  1068. params.lora_alpha = 4;
  1069. params.custom_lora_alpha = false;
  1070. params.n_rank_attention_norm = 1;
  1071. params.n_rank_wq = 4;
  1072. params.n_rank_wk = 4;
  1073. params.n_rank_wv = 4;
  1074. params.n_rank_wo = 4;
  1075. params.n_rank_ffn_norm = 1;
  1076. params.n_rank_w1 = 4;
  1077. params.n_rank_w2 = 4;
  1078. params.n_rank_w3 = 4;
  1079. params.n_rank_tok_embeddings = 4;
  1080. params.n_rank_norm = 1;
  1081. params.n_rank_output = 4;
  1082. params.custom_n_rank_attention_norm = false;
  1083. params.custom_n_rank_wq = false;
  1084. params.custom_n_rank_wk = false;
  1085. params.custom_n_rank_wv = false;
  1086. params.custom_n_rank_wo = false;
  1087. params.custom_n_rank_ffn_norm = false;
  1088. params.custom_n_rank_w1 = false;
  1089. params.custom_n_rank_w2 = false;
  1090. params.custom_n_rank_w3 = false;
  1091. params.custom_n_rank_tok_embeddings = false;
  1092. params.custom_n_rank_norm = false;
  1093. params.custom_n_rank_output = false;
  1094. return params;
  1095. }
  1096. static void train_print_usage(int argc, char ** argv, const struct train_params * params) {
  1097. fprintf(stderr, "usage: %s [options]\n", argv[0]);
  1098. fprintf(stderr, "\n");
  1099. fprintf(stderr, "options:\n");
  1100. fprintf(stderr, " -h, --help show this help message and exit\n");
  1101. fprintf(stderr, " --model-base FNAME model path from which to load base model (default '%s')\n", params->fn_model_base);
  1102. fprintf(stderr, " --lora-out FNAME path to save llama lora (default '%s')\n", params->fn_lora_out);
  1103. fprintf(stderr, " --only-write-lora only save llama lora, don't do any training. use this if you only want to convert a checkpoint to a lora adapter.\n");
  1104. fprintf(stderr, " --norm-rms-eps F RMS-Norm epsilon value (default %f)\n", params->f_norm_rms_eps);
  1105. fprintf(stderr, " --rope-freq-base F Frequency base for ROPE (default %f)\n", params->rope_freq_base);
  1106. fprintf(stderr, " --rope-freq-scale F Frequency scale for ROPE (default %f)\n", params->rope_freq_scale);
  1107. fprintf(stderr, " --lora-alpha N LORA alpha : resulting LORA scaling is alpha/r. (default %d)\n", params->lora_alpha);
  1108. fprintf(stderr, " --lora-r N LORA r: default rank. Also specifies resulting scaling together with lora-alpha. (default %d)\n", params->lora_r);
  1109. fprintf(stderr, " --rank-att-norm N LORA rank for attention norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1110. fprintf(stderr, " --rank-ffn-norm N LORA rank for feed-forward norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1111. fprintf(stderr, " --rank-out-norm N LORA rank for output norm tensor, overrides default rank. Norm tensors should generally have rank 1.\n");
  1112. fprintf(stderr, " --rank-tok-embd N LORA rank for token embeddings tensor, overrides default rank.\n");
  1113. fprintf(stderr, " --rank-out N LORA rank for output tensor, overrides default rank.\n");
  1114. fprintf(stderr, " --rank-wq N LORA rank for wq tensor, overrides default rank.\n");
  1115. fprintf(stderr, " --rank-wk N LORA rank for wk tensor, overrides default rank.\n");
  1116. fprintf(stderr, " --rank-wv N LORA rank for wv tensor, overrides default rank.\n");
  1117. fprintf(stderr, " --rank-wo N LORA rank for wo tensor, overrides default rank.\n");
  1118. fprintf(stderr, " --rank-w1 N LORA rank for w1 tensor, overrides default rank.\n");
  1119. fprintf(stderr, " --rank-w2 N LORA rank for w2 tensor, overrides default rank.\n");
  1120. fprintf(stderr, " --rank-w3 N LORA rank for w3 tensor, overrides default rank.\n");
  1121. print_common_train_usage(argc, argv, &params->common);
  1122. }
  1123. static bool train_params_parse(int argc, char ** argv, struct train_params * params) {
  1124. bool invalid_param = false;
  1125. std::string arg;
  1126. struct train_params default_params = get_default_train_params();
  1127. const std::string arg_prefix = "--";
  1128. for (int i = 1; i < argc; i++) {
  1129. arg = argv[i];
  1130. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  1131. std::replace(arg.begin(), arg.end(), '_', '-');
  1132. }
  1133. if (consume_common_train_arg(argc, argv, &i, &params->common, &invalid_param)) {
  1134. if (invalid_param) {
  1135. break;
  1136. } else if (params->common.print_usage) {
  1137. train_print_usage(argc, argv, &default_params);
  1138. exit(0);
  1139. }
  1140. } else if (arg == "--model-base") {
  1141. if (++i >= argc) {
  1142. invalid_param = true;
  1143. break;
  1144. }
  1145. params->fn_model_base = argv[i];
  1146. } else if (arg == "--lora-out") {
  1147. if (++i >= argc) {
  1148. invalid_param = true;
  1149. break;
  1150. }
  1151. params->fn_lora_out = argv[i];
  1152. } else if (arg == "--only-write-lora") {
  1153. params->only_write_lora = true;
  1154. } else if (arg == "--norm-rms-eps") {
  1155. if (++i >= argc) {
  1156. invalid_param = true;
  1157. break;
  1158. }
  1159. params->f_norm_rms_eps = std::stof(argv[i]);
  1160. params->custom_f_norm_rms_eps = true;
  1161. } else if (arg == "--rope-freq-base") {
  1162. if (++i >= argc) {
  1163. invalid_param = true;
  1164. break;
  1165. }
  1166. params->rope_freq_base = std::stof(argv[i]);
  1167. params->custom_rope_freq_base = true;
  1168. } else if (arg == "--rope-freq-scale") {
  1169. if (++i >= argc) {
  1170. invalid_param = true;
  1171. break;
  1172. }
  1173. params->rope_freq_scale = std::stof(argv[i]);
  1174. params->custom_rope_freq_scale = true;
  1175. } else if (arg == "--lora-alpha") {
  1176. if (++i >= argc) {
  1177. invalid_param = true;
  1178. break;
  1179. }
  1180. params->lora_alpha = std::stoi(argv[i]);
  1181. params->custom_lora_alpha = true;
  1182. } else if (arg == "--lora-r") {
  1183. if (++i >= argc) {
  1184. invalid_param = true;
  1185. break;
  1186. }
  1187. params->lora_r = std::stoi(argv[i]);
  1188. } else if (arg == "--rank-att-norm") {
  1189. if (++i >= argc) {
  1190. invalid_param = true;
  1191. break;
  1192. }
  1193. params->n_rank_attention_norm = std::stoi(argv[i]);
  1194. params->custom_n_rank_attention_norm = true;
  1195. } else if (arg == "--rank-ffn-norm") {
  1196. if (++i >= argc) {
  1197. invalid_param = true;
  1198. break;
  1199. }
  1200. params->n_rank_ffn_norm = std::stoi(argv[i]);
  1201. params->custom_n_rank_ffn_norm = true;
  1202. } else if (arg == "--rank-out-norm") {
  1203. if (++i >= argc) {
  1204. invalid_param = true;
  1205. break;
  1206. }
  1207. params->n_rank_norm = std::stoi(argv[i]);
  1208. params->custom_n_rank_norm = true;
  1209. } else if (arg == "--rank-tok-embd") {
  1210. if (++i >= argc) {
  1211. invalid_param = true;
  1212. break;
  1213. }
  1214. params->n_rank_tok_embeddings = std::stoi(argv[i]);
  1215. params->custom_n_rank_tok_embeddings = true;
  1216. } else if (arg == "--rank-out") {
  1217. if (++i >= argc) {
  1218. invalid_param = true;
  1219. break;
  1220. }
  1221. params->n_rank_output = std::stoi(argv[i]);
  1222. params->custom_n_rank_output = true;
  1223. } else if (arg == "--rank-wq") {
  1224. if (++i >= argc) {
  1225. invalid_param = true;
  1226. break;
  1227. }
  1228. params->n_rank_wq = std::stoi(argv[i]);
  1229. params->custom_n_rank_wq = true;
  1230. } else if (arg == "--rank-wk") {
  1231. if (++i >= argc) {
  1232. invalid_param = true;
  1233. break;
  1234. }
  1235. params->n_rank_wk = std::stoi(argv[i]);
  1236. params->custom_n_rank_wk = true;
  1237. } else if (arg == "--rank-wv") {
  1238. if (++i >= argc) {
  1239. invalid_param = true;
  1240. break;
  1241. }
  1242. params->n_rank_wv = std::stoi(argv[i]);
  1243. params->custom_n_rank_wv = true;
  1244. } else if (arg == "--rank-wo") {
  1245. if (++i >= argc) {
  1246. invalid_param = true;
  1247. break;
  1248. }
  1249. params->n_rank_wo = std::stoi(argv[i]);
  1250. params->custom_n_rank_wo = true;
  1251. } else if (arg == "--rank-w1") {
  1252. if (++i >= argc) {
  1253. invalid_param = true;
  1254. break;
  1255. }
  1256. params->n_rank_w1 = std::stoi(argv[i]);
  1257. params->custom_n_rank_w1 = true;
  1258. } else if (arg == "--rank-w2") {
  1259. if (++i >= argc) {
  1260. invalid_param = true;
  1261. break;
  1262. }
  1263. params->n_rank_w2 = std::stoi(argv[i]);
  1264. params->custom_n_rank_w2 = true;
  1265. } else if (arg == "--rank-w3") {
  1266. if (++i >= argc) {
  1267. invalid_param = true;
  1268. break;
  1269. }
  1270. params->n_rank_w3 = std::stoi(argv[i]);
  1271. params->custom_n_rank_w3 = true;
  1272. } else {
  1273. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  1274. train_print_usage(argc, argv, &default_params);
  1275. exit(1);
  1276. }
  1277. }
  1278. if (invalid_param) {
  1279. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  1280. train_print_usage(argc, argv, &default_params);
  1281. exit(1);
  1282. }
  1283. finish_processing_train_args(&params->common);
  1284. return true;
  1285. }
  1286. struct save_train_files_data {
  1287. const char * fn_checkpoint_out;
  1288. const char * fn_lora_out;
  1289. const char * pattern_fn_it;
  1290. const char * fn_latest;
  1291. struct my_llama_model * model;
  1292. struct my_llama_lora * lora;
  1293. };
  1294. static void save_train_files(void * vdata, struct train_state * train) {
  1295. struct save_train_files_data * data = (struct save_train_files_data *) vdata;
  1296. int64_t iter = train->opt->iter;
  1297. if (strlen(data->fn_checkpoint_out) > 0) {
  1298. save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->model, data->lora, train);
  1299. save_checkpoint_lora_file(get_train_filename(data->fn_checkpoint_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->model, data->lora, train);
  1300. }
  1301. if (strlen(data->fn_lora_out) > 0) {
  1302. save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, iter).c_str(), data->lora);
  1303. save_as_llama_lora(get_train_filename(data->fn_lora_out, data->pattern_fn_it, data->fn_latest, -1 ).c_str(), data->lora);
  1304. }
  1305. }
  1306. static int64_t get_parameter_count(struct my_llama_lora* lora) {
  1307. int64_t nx = 0;
  1308. nx += ggml_nelements(lora->tok_embeddings_a);
  1309. nx += ggml_nelements(lora->tok_embeddings_b);
  1310. nx += ggml_nelements(lora->norm_a);
  1311. nx += ggml_nelements(lora->norm_b);
  1312. nx += ggml_nelements(lora->output_a);
  1313. nx += ggml_nelements(lora->output_b);
  1314. for (uint32_t i = 0; i < lora->layers.size(); ++i) {
  1315. auto & layer = lora->layers[i];
  1316. nx += ggml_nelements(layer.attention_norm_a);
  1317. nx += ggml_nelements(layer.attention_norm_b);
  1318. nx += ggml_nelements(layer.wq_a);
  1319. nx += ggml_nelements(layer.wq_b);
  1320. nx += ggml_nelements(layer.wk_a);
  1321. nx += ggml_nelements(layer.wk_b);
  1322. nx += ggml_nelements(layer.wv_a);
  1323. nx += ggml_nelements(layer.wv_b);
  1324. nx += ggml_nelements(layer.wo_a);
  1325. nx += ggml_nelements(layer.wo_b);
  1326. nx += ggml_nelements(layer.ffn_norm_a);
  1327. nx += ggml_nelements(layer.ffn_norm_b);
  1328. nx += ggml_nelements(layer.w1_a);
  1329. nx += ggml_nelements(layer.w1_b);
  1330. nx += ggml_nelements(layer.w2_a);
  1331. nx += ggml_nelements(layer.w2_b);
  1332. nx += ggml_nelements(layer.w3_a);
  1333. nx += ggml_nelements(layer.w3_b);
  1334. }
  1335. return nx;
  1336. }
  1337. int main(int argc, char ** argv) {
  1338. struct train_params params = get_default_train_params();
  1339. if (!train_params_parse(argc, argv, &params)) {
  1340. return 1;
  1341. }
  1342. if (params.common.seed == LLAMA_DEFAULT_SEED) {
  1343. params.common.seed = time(NULL);
  1344. }
  1345. printf("%s: seed: %u\n", __func__, params.common.seed);
  1346. srand(params.common.seed);
  1347. struct llama_model_params llama_mparams = llama_model_default_params();
  1348. llama_mparams.n_gpu_layers = params.common.n_gpu_layers;
  1349. llama_mparams.vocab_only = false;
  1350. printf("%s: model base = '%s'\n", __func__, params.fn_model_base);
  1351. struct llama_model * lmodel = llama_load_model_from_file(params.fn_model_base, llama_mparams);
  1352. struct llama_context_params llama_cparams = llama_context_default_params();
  1353. struct llama_context * lctx = llama_new_context_with_model(lmodel, llama_cparams);
  1354. struct my_llama_model model;
  1355. init_model(lmodel, &model, params.fn_model_base, params.common.n_ctx);
  1356. struct my_llama_lora lora;
  1357. struct train_state * train = init_train_state();
  1358. struct ggml_opt_context * opt = train->opt;
  1359. // set params from command line
  1360. if (params.custom_f_norm_rms_eps) {
  1361. model.hparams.f_norm_rms_eps = params.f_norm_rms_eps;
  1362. }
  1363. if (params.custom_rope_freq_base) {
  1364. model.hparams.rope_freq_base = params.rope_freq_base;
  1365. }
  1366. if (params.custom_rope_freq_scale) {
  1367. model.hparams.rope_freq_scale = params.rope_freq_scale;
  1368. }
  1369. lora.hparams.lora_r = params.lora_r;
  1370. lora.hparams.lora_alpha = params.custom_lora_alpha ? params.lora_alpha : params.lora_r;
  1371. uint32_t n_rank_attention_norm = params.custom_n_rank_attention_norm ? params.n_rank_attention_norm : 1;
  1372. uint32_t n_rank_wq = params.custom_n_rank_wq ? params.n_rank_wq : params.lora_r;
  1373. uint32_t n_rank_wk = params.custom_n_rank_wk ? params.n_rank_wk : params.lora_r;
  1374. uint32_t n_rank_wv = params.custom_n_rank_wv ? params.n_rank_wv : params.lora_r;
  1375. uint32_t n_rank_wo = params.custom_n_rank_wo ? params.n_rank_wo : params.lora_r;
  1376. uint32_t n_rank_ffn_norm = params.custom_n_rank_ffn_norm ? params.n_rank_ffn_norm : 1;
  1377. uint32_t n_rank_w1 = params.custom_n_rank_w1 ? params.n_rank_w1 : params.lora_r;
  1378. uint32_t n_rank_w2 = params.custom_n_rank_w2 ? params.n_rank_w2 : params.lora_r;
  1379. uint32_t n_rank_w3 = params.custom_n_rank_w3 ? params.n_rank_w3 : params.lora_r;
  1380. uint32_t n_rank_tok_embeddings = params.custom_n_rank_tok_embeddings ? params.n_rank_tok_embeddings : params.lora_r;
  1381. uint32_t n_rank_norm = params.custom_n_rank_norm ? params.n_rank_norm : 1;
  1382. uint32_t n_rank_output = params.custom_n_rank_output ? params.n_rank_output : params.lora_r;
  1383. lora.hparams.n_rank_attention_norm = n_rank_attention_norm;
  1384. lora.hparams.n_rank_wq = n_rank_wq;
  1385. lora.hparams.n_rank_wk = n_rank_wk;
  1386. lora.hparams.n_rank_wv = n_rank_wv;
  1387. lora.hparams.n_rank_wo = n_rank_wo;
  1388. lora.hparams.n_rank_ffn_norm = n_rank_ffn_norm;
  1389. lora.hparams.n_rank_w1 = n_rank_w1;
  1390. lora.hparams.n_rank_w2 = n_rank_w2;
  1391. lora.hparams.n_rank_w3 = n_rank_w3;
  1392. lora.hparams.n_rank_tok_embeddings = n_rank_tok_embeddings;
  1393. lora.hparams.n_rank_norm = n_rank_norm;
  1394. lora.hparams.n_rank_output = n_rank_output;
  1395. // set opt params from command line
  1396. opt->params = ggml_opt_default_params(GGML_OPT_ADAM);
  1397. opt->params.print_forward_graph = false;
  1398. opt->params.print_backward_graph = false;
  1399. opt->params.graph_size = LLAMA_TRAIN_MAX_NODES;
  1400. opt->params.n_threads = params.common.n_threads;
  1401. opt->params.past = params.common.opt_past;
  1402. opt->params.delta = params.common.opt_delta;
  1403. opt->params.max_no_improvement = params.common.opt_max_no_improvement;
  1404. opt->params.n_gradient_accumulation = params.common.n_gradient_accumulation;
  1405. opt->params.adam.n_iter = params.common.adam_n_iter;
  1406. opt->params.adam.sched = 1.0f;
  1407. opt->params.adam.alpha = params.common.adam_alpha;
  1408. opt->params.adam.decay = params.common.adam_decay;
  1409. opt->params.adam.decay_min_ndim = params.common.adam_decay_min_ndim;
  1410. opt->params.adam.beta1 = params.common.adam_beta1;
  1411. opt->params.adam.beta2 = params.common.adam_beta2;
  1412. opt->params.adam.gclip = params.common.adam_gclip;
  1413. opt->params.adam.eps_f = params.common.adam_eps_f;
  1414. printf("%s: init model\n", __func__);
  1415. bool existed = load_checkpoint_lora_file(params.common.fn_checkpoint_in, &model, &lora, train);
  1416. if (existed) {
  1417. // overwrite last n_ctx with user provided n_ctx
  1418. if (params.common.custom_n_ctx) {
  1419. model.hparams.n_ctx = params.common.n_ctx;
  1420. }
  1421. const bool opt_param_count_changed = (
  1422. (lora.hparams.n_rank_attention_norm != n_rank_attention_norm)
  1423. || (lora.hparams.n_rank_wq != n_rank_wq)
  1424. || (lora.hparams.n_rank_wk != n_rank_wk)
  1425. || (lora.hparams.n_rank_wv != n_rank_wv)
  1426. || (lora.hparams.n_rank_wo != n_rank_wo)
  1427. || (lora.hparams.n_rank_ffn_norm != n_rank_ffn_norm)
  1428. || (lora.hparams.n_rank_w1 != n_rank_w1)
  1429. || (lora.hparams.n_rank_w2 != n_rank_w2)
  1430. || (lora.hparams.n_rank_w3 != n_rank_w3)
  1431. || (lora.hparams.n_rank_tok_embeddings != n_rank_tok_embeddings)
  1432. || (lora.hparams.n_rank_norm != n_rank_norm)
  1433. || (lora.hparams.n_rank_output != n_rank_output)
  1434. );
  1435. const bool opt_past_changed = opt->params.past != params.common.opt_past;
  1436. if (opt_param_count_changed) {
  1437. print_lora_params(&lora.hparams);
  1438. die("Provided rank differs from checkpoint file. To use different rank start finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting.");
  1439. // need to discard previous optimizer gradient statistics and opt_init with new shapes
  1440. // TODO
  1441. }
  1442. if (opt_past_changed) {
  1443. die("Optimizer parameter '--opt-past N' differs from checkpoint file. To use different value finetune from scratch with empty input checkpoint, e.g --checkpoint-in ''. Aborting");
  1444. // need to discard previous optimizer past function value statistics and opt_init with new shapes
  1445. // TODO
  1446. }
  1447. } else { // existed == false
  1448. init_lora(&model, &lora);
  1449. randomize_lora(&lora, params.common.seed, 0.0f, 1.0f, -1.0f, +1.0f);
  1450. if (!params.only_write_lora) {
  1451. ggml_opt_init(opt->ctx, opt, opt->params, get_parameter_count(&lora));
  1452. }
  1453. }
  1454. opt->iter = train->train_its;
  1455. print_params(&model.hparams);
  1456. print_lora_params(&lora.hparams);
  1457. printf("%s: total train_iterations %llu\n", __func__, (long long unsigned) train->train_its);
  1458. printf("%s: seen train_samples %llu\n", __func__, (long long unsigned) train->train_samples);
  1459. printf("%s: seen train_tokens %llu\n", __func__, (long long unsigned) train->train_tokens);
  1460. printf("%s: completed train_epochs %llu\n", __func__, (long long unsigned) train->train_epochs);
  1461. printf("%s: lora_size = %zu bytes (%.1f MB)\n", __func__, (ggml_used_mem(lora.ctx) + lora.data.size()), (float) (ggml_used_mem(lora.ctx) + lora.data.size()) / (1024.0f*1024.0f));
  1462. if (params.only_write_lora) {
  1463. save_train_files_data save_data;
  1464. save_data.fn_checkpoint_out = "";
  1465. save_data.fn_lora_out = params.fn_lora_out;
  1466. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1467. save_data.fn_latest = params.common.fn_latest;
  1468. save_data.model = &model;
  1469. save_data.lora = &lora;
  1470. save_train_files(&save_data, train);
  1471. free_train_state(train);
  1472. ggml_free(lora.ctx);
  1473. llama_free(lctx);
  1474. llama_free_model(lmodel);
  1475. return 0;
  1476. }
  1477. printf("%s: opt_size = %zu bytes (%.1f MB)\n", __func__, ggml_get_mem_size(opt->ctx), (float) ggml_get_mem_size(opt->ctx) / (1024.0f*1024.0f));
  1478. printf("%s: opt iter %d\n", __func__, opt->iter);
  1479. int n_tokens = model.hparams.n_ctx;
  1480. int n_vocab = model.hparams.n_vocab;
  1481. int n_batch = params.common.n_batch;
  1482. std::vector<uint8_t> mem_input_data;
  1483. std::vector<uint8_t> mem_compute_data;
  1484. // context for input tensors without their data
  1485. struct ggml_init_params ctx_input_params = {
  1486. ggml_tensor_overhead() * 2, // mem_size
  1487. NULL, // mem_buffer
  1488. true, // no_alloc
  1489. };
  1490. struct ggml_context * ctx_input = ggml_init(ctx_input_params);
  1491. // the input tensors
  1492. struct ggml_tensor * tokens_input = ggml_new_tensor_2d(ctx_input, GGML_TYPE_I32, n_tokens, n_batch);
  1493. struct ggml_tensor * target_probs = ggml_new_tensor_3d(ctx_input, GGML_TYPE_F32, n_vocab, n_tokens, n_batch);
  1494. // measure required memory for input tensors
  1495. size_t max_input_size = GGML_PAD(ggml_nbytes(tokens_input), tensor_alignment) +
  1496. GGML_PAD(ggml_nbytes(target_probs), tensor_alignment) +
  1497. tensor_alignment;
  1498. printf("%s: input_size = %zu bytes (%.1f MB)\n", __func__, max_input_size, (float) max_input_size / (1024.0f*1024.0f));
  1499. // allocate input tensors
  1500. mem_input_data.resize(max_input_size);
  1501. ggml_allocr_t alloc_inps = ggml_allocr_new(mem_input_data.data(), mem_input_data.size(), tensor_alignment);
  1502. ggml_allocr_alloc(alloc_inps, tokens_input);
  1503. ggml_allocr_alloc(alloc_inps, target_probs);
  1504. // context for compute tensors without their data
  1505. const size_t estimated_compute_size_wo_data = (
  1506. 2*LLAMA_TRAIN_MAX_NODES*ggml_tensor_overhead() +
  1507. (params.common.use_checkpointing ? 3 : 2)*(GGML_OBJECT_SIZE+ggml_graph_overhead_custom(LLAMA_TRAIN_MAX_NODES, true))
  1508. );
  1509. struct ggml_init_params ctx_compute_params = {
  1510. estimated_compute_size_wo_data, // mem_size
  1511. NULL, // mem_buffer
  1512. true, // no_alloc
  1513. };
  1514. struct ggml_context * ctx_compute = NULL;
  1515. struct ggml_tensor * loss = NULL;
  1516. struct ggml_tensor * logits = NULL;
  1517. struct ggml_cgraph * gf = NULL;
  1518. struct ggml_cgraph * gb = NULL;
  1519. struct ggml_cgraph * gb_tmp = NULL;
  1520. // measure required memory for compute tensors
  1521. size_t best_compute_size = SIZE_MAX;
  1522. enum ggml_cgraph_eval_order best_order = GGML_CGRAPH_EVAL_ORDER_COUNT;
  1523. // find best evaluation order
  1524. for (unsigned order = 0; order < (unsigned) GGML_CGRAPH_EVAL_ORDER_COUNT; ++order) {
  1525. ctx_compute = ggml_init(ctx_compute_params);
  1526. ggml_allocr_t alloc = ggml_allocr_new_measure(tensor_alignment);
  1527. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1528. gf->order = (enum ggml_cgraph_eval_order) order;
  1529. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1530. gb_tmp = params.common.use_checkpointing
  1531. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  1532. : NULL;
  1533. loss = llama_build_lora_finetune_graphs(
  1534. &model, &lora, alloc, ctx_compute,
  1535. gf, gb, gb_tmp,
  1536. &logits, tokens_input, target_probs,
  1537. n_tokens, n_batch,
  1538. params.common.use_flash,
  1539. params.common.use_checkpointing
  1540. );
  1541. size_t max_compute_size = ggml_allocr_max_size(alloc) + tensor_alignment;
  1542. if (max_compute_size < best_compute_size) {
  1543. best_compute_size = max_compute_size;
  1544. best_order = gf->order;
  1545. }
  1546. ggml_allocr_free(alloc);
  1547. ggml_free(ctx_compute);
  1548. }
  1549. size_t max_compute_size = best_compute_size;
  1550. printf("%s: compute_size = %zu bytes (%.1f MB)\n", __func__, max_compute_size, (float) max_compute_size / (1024.0f*1024.0f));
  1551. printf("%s: evaluation order = %s\n", __func__,
  1552. (best_order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? "LEFT_TO_RIGHT" :
  1553. (best_order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? "RIGHT_TO_LEFT" :
  1554. "invalid");
  1555. // allocate compute tensors
  1556. mem_compute_data.resize(max_compute_size);
  1557. ctx_compute = ggml_init(ctx_compute_params);
  1558. ggml_allocr_t alloc = ggml_allocr_new(mem_compute_data.data(), mem_compute_data.size(), tensor_alignment);
  1559. gf = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1560. gf->order = best_order;
  1561. gb = ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true);
  1562. gb_tmp = params.common.use_checkpointing
  1563. ? ggml_new_graph_custom(ctx_compute, LLAMA_TRAIN_MAX_NODES, true)
  1564. : NULL;
  1565. loss = llama_build_lora_finetune_graphs(
  1566. &model, &lora, alloc, ctx_compute,
  1567. gf, gb, gb_tmp,
  1568. &logits, tokens_input, target_probs,
  1569. n_tokens, n_batch,
  1570. params.common.use_flash,
  1571. params.common.use_checkpointing
  1572. );
  1573. ggml_allocr_free(alloc);
  1574. ggml_allocr_free(alloc_inps);
  1575. // tokenize data
  1576. std::vector<llama_token> train_tokens;
  1577. std::vector<size_t> train_samples_begin;
  1578. std::vector<size_t> train_samples_size;
  1579. printf("%s: tokenize training data\n", __func__);
  1580. tokenize_file(lctx,
  1581. params.common.fn_train_data,
  1582. params.common.sample_start,
  1583. params.common.include_sample_start,
  1584. params.common.overlapping_samples,
  1585. n_tokens,
  1586. train_tokens,
  1587. train_samples_begin,
  1588. train_samples_size);
  1589. GGML_ASSERT(train_samples_begin.size() == train_samples_size.size());
  1590. printf("%s: number of training tokens: %zu\n", __func__, train_tokens.size());
  1591. std::vector<size_t> token_noccurs;
  1592. token_noccurs.resize(model.hparams.n_vocab, 0);
  1593. for (unsigned int i = 0; i < train_tokens.size(); ++i) {
  1594. ++token_noccurs[train_tokens[i]];
  1595. }
  1596. int n_unique_tokens = 0;
  1597. for (unsigned int i = 0; i < token_noccurs.size(); ++i) {
  1598. if (token_noccurs[i] == 0) continue;
  1599. ++n_unique_tokens;
  1600. }
  1601. printf("%s: number of unique tokens: %d\n", __func__, n_unique_tokens);
  1602. size_t shuffle_samples_hash = compute_samples_hash(params.common.fn_train_data, train_samples_begin.data(), train_samples_size.data(), train_samples_size.size());
  1603. const bool changed_train_data = (shuffle_samples_hash != train->shuffle_samples_hash) || (train->shuffle_sample_count != train_samples_size.size());
  1604. if (changed_train_data) {
  1605. printf("%s: train data seems to have changed. restarting shuffled epoch.\n", __func__);
  1606. }
  1607. if (params.common.force_reshuffle) {
  1608. printf("%s: forced reshuffling of data. restarting with newly shuffled epoch.\n", __func__);
  1609. }
  1610. if ((train->shuffle_rng_state_current == "") || changed_train_data || params.common.force_reshuffle) {
  1611. train->shuffle_rng_state_current = mt19937_seed_to_state(params.common.seed);
  1612. train->shuffle_sample_count = train_samples_size.size();
  1613. train->shuffle_next_sample = 0;
  1614. train->shuffle_samples_hash = shuffle_samples_hash;
  1615. }
  1616. std::vector<size_t> train_shuffled_samples_offs;
  1617. std::vector<size_t> train_shuffled_samples_begin;
  1618. std::vector<size_t> train_shuffled_samples_size;
  1619. train_shuffled_samples_offs.resize(train_samples_begin.size());
  1620. train_shuffled_samples_begin.resize(train_samples_begin.size());
  1621. train_shuffled_samples_size.resize(train_samples_size.size());
  1622. train->shuffle_rng_state_next = shuffle_samples(
  1623. train->shuffle_rng_state_current,
  1624. train_shuffled_samples_offs.data(),
  1625. train_shuffled_samples_begin.data(),
  1626. train_shuffled_samples_size.data(),
  1627. train_samples_begin.data(),
  1628. train_samples_size.data(),
  1629. train_samples_size.size());
  1630. printf("%s: begin training\n", __func__);
  1631. save_train_files_data save_data;
  1632. save_data.fn_checkpoint_out = params.common.fn_checkpoint_out;
  1633. save_data.fn_lora_out = params.fn_lora_out;
  1634. save_data.pattern_fn_it = params.common.pattern_fn_it;
  1635. save_data.fn_latest = params.common.fn_latest;
  1636. save_data.model = &model;
  1637. save_data.lora = &lora;
  1638. struct train_opt_callback_data opt_cb_data;
  1639. opt_cb_data.params = &params.common;
  1640. opt_cb_data.train = train;
  1641. opt_cb_data.save_cb = &save_train_files;
  1642. opt_cb_data.save_data = &save_data;
  1643. opt_cb_data.lctx = lctx;
  1644. opt_cb_data.last_save_iter = opt->iter;
  1645. opt_cb_data.tokens_data = train_tokens.data();
  1646. opt_cb_data.tokens_size = train_tokens.size();
  1647. opt_cb_data.samples_begin = train_samples_begin.data();
  1648. opt_cb_data.samples_size = train_samples_size.data();
  1649. opt_cb_data.shuffled_samples_offs = train_shuffled_samples_offs.data();
  1650. opt_cb_data.shuffled_samples_begin = train_shuffled_samples_begin.data();
  1651. opt_cb_data.shuffled_samples_size = train_shuffled_samples_size.data();
  1652. opt_cb_data.samples_count = train_samples_size.size();
  1653. opt_cb_data.tokens_input = tokens_input;
  1654. opt_cb_data.target_probs = target_probs;
  1655. opt_cb_data.first_iter = opt->iter;
  1656. opt_cb_data.first_epoch = train->train_epochs;
  1657. opt_cb_data.iter_at_last_epoch = -1;
  1658. opt_cb_data.last_time = ggml_time_ms();
  1659. opt_cb_data.millis_per_iter = 0.0;
  1660. // measure required memory for work buffer
  1661. size_t max_work_size = ggml_graph_plan(gb, params.common.n_threads).work_size + GGML_OBJECT_SIZE;
  1662. printf("%s: work_size = %zu bytes (%.1f MB)\n", __func__, max_work_size, (float) max_work_size / (1024.0f*1024.0f));
  1663. // context for work buffer
  1664. struct ggml_init_params ctx_work_params = {
  1665. max_work_size, // mem_size
  1666. NULL, // mem_buffer
  1667. false, // no_alloc
  1668. };
  1669. struct ggml_context * ctx_work = ggml_init(ctx_work_params);
  1670. int64_t t0 = ggml_time_ms();
  1671. ggml_opt_resume_g(ctx_work, opt, loss, gf, gb, &train_opt_callback, (void *) &opt_cb_data);
  1672. ggml_free(ctx_work);
  1673. ggml_free(ctx_compute);
  1674. ggml_free(ctx_input);
  1675. int64_t t1 = ggml_time_ms();
  1676. printf("%s: total training time: ", __func__);
  1677. print_duration((double) (t1 - t0));
  1678. printf("\n");
  1679. int new_iters = opt->iter - opt_cb_data.last_save_iter;
  1680. if (new_iters > 0) {
  1681. train->train_its += new_iters;
  1682. train->train_tokens += new_iters * opt->params.n_gradient_accumulation * n_batch * n_tokens;
  1683. save_train_files(&save_data, train);
  1684. opt_cb_data.last_save_iter = opt->iter;
  1685. }
  1686. ggml_free(opt->ctx);
  1687. free_train_state(train);
  1688. ggml_free(lora.ctx);
  1689. llama_free(lctx);
  1690. llama_free_model(lmodel);
  1691. return 0;
  1692. }