convert_hf_to_gguf.py 271 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. VISION = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.VISION: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is VisionModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. )
  260. )
  261. or not new_name.endswith(".weight")
  262. ):
  263. data_qtype = gguf.GGMLQuantizationType.F32
  264. if data_qtype is False and any(
  265. self.match_model_tensor_name(new_name, key, bid)
  266. for key in (
  267. gguf.MODEL_TENSOR.TOKEN_EMBD,
  268. gguf.MODEL_TENSOR.OUTPUT,
  269. )
  270. ):
  271. if self.ftype in (
  272. gguf.LlamaFileType.MOSTLY_TQ1_0,
  273. gguf.LlamaFileType.MOSTLY_TQ2_0,
  274. ):
  275. # TODO: use Q4_K and Q6_K
  276. data_qtype = gguf.GGMLQuantizationType.F16
  277. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  278. if isinstance(data_qtype, bool):
  279. if self.ftype == gguf.LlamaFileType.ALL_F32:
  280. data_qtype = gguf.GGMLQuantizationType.F32
  281. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  282. data_qtype = gguf.GGMLQuantizationType.F16
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  284. data_qtype = gguf.GGMLQuantizationType.BF16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  286. data_qtype = gguf.GGMLQuantizationType.Q8_0
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  288. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  291. else:
  292. raise ValueError(f"Unknown file type: {self.ftype.name}")
  293. try:
  294. data = gguf.quants.quantize(data, data_qtype)
  295. except gguf.QuantError as e:
  296. logger.warning("%s, %s", e, "falling back to F16")
  297. data_qtype = gguf.GGMLQuantizationType.F16
  298. data = gguf.quants.quantize(data, data_qtype)
  299. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  300. # reverse shape to make it similar to the internal ggml dimension order
  301. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  302. # n_dims is implicit in the shape
  303. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  304. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  305. def set_type(self):
  306. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  307. def prepare_metadata(self, vocab_only: bool):
  308. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  309. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  310. # If we are using HF model id, set the metadata name to the model id
  311. if self.remote_hf_model_id:
  312. self.metadata.name = self.remote_hf_model_id
  313. # Fallback to model directory name if metadata name is still missing
  314. if self.metadata.name is None:
  315. self.metadata.name = self.dir_model.name
  316. # Generate parameter weight class (useful for leader boards) if not yet determined
  317. if self.metadata.size_label is None and total_params > 0:
  318. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  319. self.set_type()
  320. logger.info("Set meta model")
  321. self.metadata.set_gguf_meta_model(self.gguf_writer)
  322. logger.info("Set model parameters")
  323. self.set_gguf_parameters()
  324. logger.info("Set model quantization version")
  325. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  326. def write_vocab(self):
  327. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  328. def write(self):
  329. self.prepare_tensors()
  330. self.prepare_metadata(vocab_only=False)
  331. self.gguf_writer.write_header_to_file(path=self.fname_out)
  332. self.gguf_writer.write_kv_data_to_file()
  333. self.gguf_writer.write_tensors_to_file(progress=True)
  334. self.gguf_writer.close()
  335. @staticmethod
  336. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  337. part_names: list[str] = []
  338. for filename in os.listdir(dir_model):
  339. if filename.startswith(prefix) and filename.endswith(suffix):
  340. part_names.append(filename)
  341. part_names.sort()
  342. return part_names
  343. @staticmethod
  344. def load_hparams(dir_model: Path):
  345. try:
  346. return AutoConfig.from_pretrained(dir_model).to_dict()
  347. except Exception as e:
  348. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  349. logger.warning("Trying to load config.json instead")
  350. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  351. return json.load(f)
  352. @classmethod
  353. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  354. assert names
  355. def func(modelcls: AnyModel) -> AnyModel:
  356. model_type = ModelType.VISION if modelcls.model_arch == gguf.MODEL_ARCH.CLIP_VISION else ModelType.TEXT
  357. for name in names:
  358. cls._model_classes[model_type][name] = modelcls
  359. return modelcls
  360. return func
  361. @classmethod
  362. def print_registered_models(cls):
  363. for model_type, model_classes in cls._model_classes.items():
  364. logger.error(f"{model_type.name} models:")
  365. for name in sorted(model_classes.keys()):
  366. logger.error(f" - {name}")
  367. @classmethod
  368. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  369. try:
  370. return cls._model_classes[model_type][arch]
  371. except KeyError:
  372. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  373. class TextModel(ModelBase):
  374. def __init__(self, *args, **kwargs):
  375. super().__init__(*args, **kwargs)
  376. if "text_config" in self.hparams:
  377. # move the text_config to the root level
  378. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  379. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  380. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  381. @classmethod
  382. def __init_subclass__(cls):
  383. # can't use an abstract property, because overriding it without type errors
  384. # would require using decorated functions instead of simply defining the property
  385. if "model_arch" not in cls.__dict__:
  386. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  387. def set_vocab(self):
  388. self._set_vocab_gpt2()
  389. def prepare_metadata(self, vocab_only: bool):
  390. super().prepare_metadata(vocab_only=vocab_only)
  391. total_params = self.gguf_writer.get_total_parameter_count()[0]
  392. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  393. output_type: str = self.ftype.name.partition("_")[2]
  394. # Filename Output
  395. if self.fname_out.is_dir():
  396. # Generate default filename based on model specification and available metadata
  397. if not vocab_only:
  398. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  399. else:
  400. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  401. # Use the default filename
  402. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  403. else:
  404. # Output path is a custom defined templated filename
  405. # Note: `not is_dir()` is used because `.is_file()` will not detect
  406. # file template strings as it doesn't actually exist as a file
  407. # Process templated file name with the output ftype, useful with the "auto" ftype
  408. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  409. logger.info("Set model tokenizer")
  410. self.set_vocab()
  411. def set_gguf_parameters(self):
  412. self.gguf_writer.add_block_count(self.block_count)
  413. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  414. self.gguf_writer.add_context_length(n_ctx)
  415. logger.info(f"gguf: context length = {n_ctx}")
  416. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  417. self.gguf_writer.add_embedding_length(n_embd)
  418. logger.info(f"gguf: embedding length = {n_embd}")
  419. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  420. self.gguf_writer.add_feed_forward_length(n_ff)
  421. logger.info(f"gguf: feed forward length = {n_ff}")
  422. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  423. self.gguf_writer.add_head_count(n_head)
  424. logger.info(f"gguf: head count = {n_head}")
  425. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  426. self.gguf_writer.add_head_count_kv(n_head_kv)
  427. logger.info(f"gguf: key-value head count = {n_head_kv}")
  428. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  429. self.gguf_writer.add_rope_freq_base(rope_theta)
  430. logger.info(f"gguf: rope theta = {rope_theta}")
  431. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  432. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  433. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  434. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  435. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  436. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  437. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  438. self.gguf_writer.add_expert_count(n_experts)
  439. logger.info(f"gguf: expert count = {n_experts}")
  440. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  441. self.gguf_writer.add_expert_used_count(n_experts_used)
  442. logger.info(f"gguf: experts used count = {n_experts_used}")
  443. if (head_dim := self.hparams.get("head_dim")) is not None:
  444. self.gguf_writer.add_key_length(head_dim)
  445. self.gguf_writer.add_value_length(head_dim)
  446. self.gguf_writer.add_file_type(self.ftype)
  447. logger.info(f"gguf: file type = {self.ftype}")
  448. def write_vocab(self):
  449. if len(self.gguf_writer.tensors) != 1:
  450. raise ValueError('Splitting the vocabulary is not supported')
  451. self.prepare_metadata(vocab_only=True)
  452. self.gguf_writer.write_header_to_file(path=self.fname_out)
  453. self.gguf_writer.write_kv_data_to_file()
  454. self.gguf_writer.close()
  455. def does_token_look_special(self, token: str | bytes) -> bool:
  456. if isinstance(token, (bytes, bytearray)):
  457. token_text = token.decode(encoding="utf-8")
  458. elif isinstance(token, memoryview):
  459. token_text = token.tobytes().decode(encoding="utf-8")
  460. else:
  461. token_text = token
  462. # Some models mark some added tokens which ought to be control tokens as not special.
  463. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  464. seems_special = token_text in (
  465. "<pad>", # deepseek-coder
  466. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  467. )
  468. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  469. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  470. # TODO: should these be marked as UNUSED instead? (maybe not)
  471. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  472. return seems_special
  473. # used for GPT-2 BPE and WordPiece vocabs
  474. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  475. tokens: list[str] = []
  476. toktypes: list[int] = []
  477. from transformers import AutoTokenizer
  478. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  479. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  480. assert max(tokenizer.vocab.values()) < vocab_size
  481. tokpre = self.get_vocab_base_pre(tokenizer)
  482. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  483. added_vocab = tokenizer.get_added_vocab()
  484. added_tokens_decoder = tokenizer.added_tokens_decoder
  485. for i in range(vocab_size):
  486. if i not in reverse_vocab:
  487. tokens.append(f"[PAD{i}]")
  488. toktypes.append(gguf.TokenType.UNUSED)
  489. else:
  490. token: str = reverse_vocab[i]
  491. if token in added_vocab:
  492. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  493. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  494. if not added_tokens_decoder[i].normalized:
  495. previous_token = token
  496. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  497. if previous_token != token:
  498. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  499. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  500. toktypes.append(gguf.TokenType.CONTROL)
  501. else:
  502. # NOTE: this was added for Gemma.
  503. # Encoding and decoding the tokens above isn't sufficient for this case.
  504. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  505. toktypes.append(gguf.TokenType.USER_DEFINED)
  506. else:
  507. toktypes.append(gguf.TokenType.NORMAL)
  508. tokens.append(token)
  509. return tokens, toktypes, tokpre
  510. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  511. # do not modify it manually!
  512. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  513. # Marker: Start get_vocab_base_pre
  514. def get_vocab_base_pre(self, tokenizer) -> str:
  515. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  516. # is specific for the BPE pre-tokenizer used by the model
  517. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  518. # use in llama.cpp to implement the same pre-tokenizer
  519. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  520. chktok = tokenizer.encode(chktxt)
  521. chkhsh = sha256(str(chktok).encode()).hexdigest()
  522. logger.debug(f"chktok: {chktok}")
  523. logger.debug(f"chkhsh: {chkhsh}")
  524. res = None
  525. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  526. # or pull the latest version of the model from Huggingface
  527. # don't edit the hashes manually!
  528. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  529. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  530. res = "llama-bpe"
  531. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  532. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  533. res = "deepseek-llm"
  534. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  535. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  536. res = "deepseek-coder"
  537. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  538. # ref: https://huggingface.co/tiiuae/falcon-7b
  539. res = "falcon"
  540. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  541. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  542. res = "falcon3"
  543. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  544. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  545. res = "bert-bge"
  546. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  547. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  548. res = "bert-bge-large"
  549. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  550. # ref: https://huggingface.co/mosaicml/mpt-7b
  551. res = "mpt"
  552. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  553. # ref: https://huggingface.co/bigcode/starcoder2-3b
  554. res = "starcoder"
  555. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  556. # ref: https://huggingface.co/openai-community/gpt2
  557. res = "gpt-2"
  558. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  559. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  560. res = "stablelm2"
  561. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  562. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  563. res = "refact"
  564. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  565. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  566. res = "command-r"
  567. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  568. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  569. res = "qwen2"
  570. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  571. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  572. res = "olmo"
  573. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  574. # ref: https://huggingface.co/databricks/dbrx-base
  575. res = "dbrx"
  576. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  577. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  578. res = "jina-v1-en"
  579. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  580. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  581. res = "jina-v2-en"
  582. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  583. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  584. res = "jina-v2-es"
  585. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  586. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  587. res = "jina-v2-de"
  588. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  589. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  590. res = "smaug-bpe"
  591. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  592. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  593. res = "poro-chat"
  594. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  595. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  596. res = "jina-v2-code"
  597. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  598. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  599. res = "chatglm-bpe"
  600. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  601. # ref: https://huggingface.co/LumiOpen/Viking-7B
  602. res = "viking"
  603. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  604. # ref: https://huggingface.co/core42/jais-13b
  605. res = "jais"
  606. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  607. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  608. res = "codeshell"
  609. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  610. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  611. res = "tekken"
  612. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  613. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  614. res = "smollm"
  615. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  616. # ref: https://huggingface.co/bigscience/bloom
  617. res = "bloom"
  618. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  619. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  620. res = "gpt3-finnish"
  621. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  622. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  623. res = "exaone"
  624. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  625. # ref: https://huggingface.co/microsoft/phi-2
  626. res = "phi-2"
  627. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  628. # ref: https://huggingface.co/facebook/chameleon-7b
  629. res = "chameleon"
  630. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  631. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  632. res = "minerva-7b"
  633. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  634. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  635. res = "roberta-bpe"
  636. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  637. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  638. res = "gigachat"
  639. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  640. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  641. res = "megrez"
  642. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  643. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  644. res = "deepseek-v3"
  645. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  646. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  647. res = "deepseek-r1-qwen"
  648. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  649. # ref: https://huggingface.co/Xenova/gpt-4o
  650. res = "gpt-4o"
  651. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  652. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  653. res = "superbpe"
  654. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  655. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  656. res = "trillion"
  657. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  658. # ref: https://huggingface.co/inclusionAI/Ling-lite
  659. res = "bailingmoe"
  660. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  661. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  662. res = "llama4"
  663. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  664. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  665. res = "glm4"
  666. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  667. # ref: https://huggingface.co/mistral-community/pixtral-12b
  668. res = "pixtral"
  669. if res is None:
  670. logger.warning("\n")
  671. logger.warning("**************************************************************************************")
  672. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  673. logger.warning("** There are 2 possible reasons for this:")
  674. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  675. logger.warning("** - the pre-tokenization config has changed upstream")
  676. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  677. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  678. logger.warning("**")
  679. logger.warning(f"** chkhsh: {chkhsh}")
  680. logger.warning("**************************************************************************************")
  681. logger.warning("\n")
  682. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  683. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  684. logger.debug(f"chkhsh: {chkhsh}")
  685. return res
  686. # Marker: End get_vocab_base_pre
  687. def _set_vocab_none(self) -> None:
  688. self.gguf_writer.add_tokenizer_model("none")
  689. def _set_vocab_gpt2(self) -> None:
  690. tokens, toktypes, tokpre = self.get_vocab_base()
  691. self.gguf_writer.add_tokenizer_model("gpt2")
  692. self.gguf_writer.add_tokenizer_pre(tokpre)
  693. self.gguf_writer.add_token_list(tokens)
  694. self.gguf_writer.add_token_types(toktypes)
  695. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  696. special_vocab.add_to_gguf(self.gguf_writer)
  697. def _set_vocab_qwen(self):
  698. dir_model = self.dir_model
  699. hparams = self.hparams
  700. tokens: list[str] = []
  701. toktypes: list[int] = []
  702. from transformers import AutoTokenizer
  703. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  704. vocab_size = hparams["vocab_size"]
  705. assert max(tokenizer.get_vocab().values()) < vocab_size
  706. tokpre = self.get_vocab_base_pre(tokenizer)
  707. merges = []
  708. vocab = {}
  709. mergeable_ranks = tokenizer.mergeable_ranks
  710. for token, rank in mergeable_ranks.items():
  711. vocab[QwenModel.token_bytes_to_string(token)] = rank
  712. if len(token) == 1:
  713. continue
  714. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  715. assert len(merged) == 2
  716. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  717. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  718. added_vocab = tokenizer.special_tokens
  719. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  720. for i in range(vocab_size):
  721. if i not in reverse_vocab:
  722. tokens.append(f"[PAD{i}]")
  723. toktypes.append(gguf.TokenType.UNUSED)
  724. elif reverse_vocab[i] in added_vocab:
  725. tokens.append(reverse_vocab[i])
  726. toktypes.append(gguf.TokenType.CONTROL)
  727. else:
  728. tokens.append(reverse_vocab[i])
  729. toktypes.append(gguf.TokenType.NORMAL)
  730. self.gguf_writer.add_tokenizer_model("gpt2")
  731. self.gguf_writer.add_tokenizer_pre(tokpre)
  732. self.gguf_writer.add_token_list(tokens)
  733. self.gguf_writer.add_token_types(toktypes)
  734. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  735. special_vocab.merges = merges
  736. # only add special tokens when they were not already loaded from config.json
  737. if len(special_vocab.special_token_ids) == 0:
  738. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  739. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  740. # this one is usually not in config.json anyway
  741. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  742. special_vocab.add_to_gguf(self.gguf_writer)
  743. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  744. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  745. self.gguf_writer.add_tokenizer_model("llama")
  746. self.gguf_writer.add_tokenizer_pre("default")
  747. self.gguf_writer.add_token_list(tokens)
  748. self.gguf_writer.add_token_scores(scores)
  749. self.gguf_writer.add_token_types(toktypes)
  750. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  751. special_vocab.add_to_gguf(self.gguf_writer)
  752. def _create_vocab_sentencepiece(self):
  753. from sentencepiece import SentencePieceProcessor
  754. tokenizer_path = self.dir_model / 'tokenizer.model'
  755. if not tokenizer_path.is_file():
  756. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  757. tokenizer = SentencePieceProcessor()
  758. tokenizer.LoadFromFile(str(tokenizer_path))
  759. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  760. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  761. scores: list[float] = [-10000.0] * vocab_size
  762. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  763. for token_id in range(tokenizer.vocab_size()):
  764. piece = tokenizer.IdToPiece(token_id)
  765. text = piece.encode("utf-8")
  766. score = tokenizer.GetScore(token_id)
  767. toktype = SentencePieceTokenTypes.NORMAL
  768. if tokenizer.IsUnknown(token_id):
  769. toktype = SentencePieceTokenTypes.UNKNOWN
  770. elif tokenizer.IsControl(token_id):
  771. toktype = SentencePieceTokenTypes.CONTROL
  772. elif tokenizer.IsUnused(token_id):
  773. toktype = SentencePieceTokenTypes.UNUSED
  774. elif tokenizer.IsByte(token_id):
  775. toktype = SentencePieceTokenTypes.BYTE
  776. tokens[token_id] = text
  777. scores[token_id] = score
  778. toktypes[token_id] = toktype
  779. added_tokens_file = self.dir_model / 'added_tokens.json'
  780. if added_tokens_file.is_file():
  781. with open(added_tokens_file, "r", encoding="utf-8") as f:
  782. added_tokens_json = json.load(f)
  783. for key in added_tokens_json:
  784. token_id = added_tokens_json[key]
  785. if token_id >= vocab_size:
  786. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  787. continue
  788. tokens[token_id] = key.encode("utf-8")
  789. scores[token_id] = -1000.0
  790. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  791. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  792. if tokenizer_config_file.is_file():
  793. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  794. tokenizer_config_json = json.load(f)
  795. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  796. for token_id, token_data in added_tokens_decoder.items():
  797. token_id = int(token_id)
  798. token: str = token_data["content"]
  799. if token_id >= vocab_size:
  800. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  801. continue
  802. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  803. if tokens[token_id] != token.encode("utf-8"):
  804. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  805. if token_data.get("special") or self.does_token_look_special(token):
  806. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  807. else:
  808. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  809. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  810. scores[token_id] = -1000.0
  811. tokens[token_id] = token.encode("utf-8")
  812. if vocab_size > len(tokens):
  813. pad_count = vocab_size - len(tokens)
  814. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  815. for i in range(1, pad_count + 1):
  816. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  817. scores.append(-1000.0)
  818. toktypes.append(SentencePieceTokenTypes.UNUSED)
  819. return tokens, scores, toktypes
  820. def _set_vocab_llama_hf(self):
  821. vocab = gguf.LlamaHfVocab(self.dir_model)
  822. tokens = []
  823. scores = []
  824. toktypes = []
  825. for text, score, toktype in vocab.all_tokens():
  826. tokens.append(text)
  827. scores.append(score)
  828. toktypes.append(toktype)
  829. assert len(tokens) == vocab.vocab_size
  830. self.gguf_writer.add_tokenizer_model("llama")
  831. self.gguf_writer.add_tokenizer_pre("default")
  832. self.gguf_writer.add_token_list(tokens)
  833. self.gguf_writer.add_token_scores(scores)
  834. self.gguf_writer.add_token_types(toktypes)
  835. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  836. special_vocab.add_to_gguf(self.gguf_writer)
  837. def _set_vocab_rwkv_world(self):
  838. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  839. vocab_size = self.hparams.get("vocab_size", 65536)
  840. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  841. toktypes: list[int] = [gguf.TokenType.CONTROL]
  842. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  843. lines = f.readlines()
  844. for line in lines:
  845. parts = line.split(' ')
  846. assert len(parts) >= 3
  847. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  848. token = token.encode("utf-8") if isinstance(token, str) else token
  849. assert isinstance(token, bytes)
  850. assert len(token) == token_len
  851. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  852. tokens.append(token_text.encode("utf-8"))
  853. toktypes.append(gguf.TokenType.NORMAL)
  854. remainder = vocab_size - len(tokens)
  855. assert remainder >= 0
  856. for i in range(len(tokens), vocab_size):
  857. tokens.append(f"[PAD{i}]".encode("utf-8"))
  858. toktypes.append(gguf.TokenType.UNUSED)
  859. self.gguf_writer.add_tokenizer_model("rwkv")
  860. self.gguf_writer.add_token_list(tokens)
  861. self.gguf_writer.add_token_types(toktypes)
  862. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  863. special_vocab.chat_template = "rwkv-world"
  864. # hack: Add '\n\n' as the EOT token to make it chat normally
  865. special_vocab._set_special_token("eot", 261)
  866. special_vocab.add_to_gguf(self.gguf_writer)
  867. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  868. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  869. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  870. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  871. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  872. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  873. assert field # tokenizer model
  874. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  875. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  876. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  877. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  878. assert field # token list
  879. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  880. if model_name == "llama-spm":
  881. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  882. assert field # token scores
  883. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  884. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  885. assert field # token types
  886. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  887. if model_name != "llama-spm":
  888. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  889. assert field # token merges
  890. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  891. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  892. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  893. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  894. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  895. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  896. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  897. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  898. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  899. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  900. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  901. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  902. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  903. class VisionModel(ModelBase):
  904. model_arch = gguf.MODEL_ARCH.CLIP_VISION
  905. n_text_embd = 0
  906. preprocessor_config: dict[str, Any]
  907. global_config: dict[str, Any]
  908. def __init__(self, *args, **kwargs):
  909. super().__init__(*args, **kwargs)
  910. if self.model_arch != gguf.MODEL_ARCH.CLIP_VISION:
  911. raise TypeError("VisionModel must be subclassed with model_arch = gguf.MODEL_ARCH.CLIP_VISION")
  912. # get n_embd of the text model
  913. text_config = {**self.hparams, **self.hparams["text_config"]}
  914. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  915. assert self.n_embd_text > 0, "n_embd not found in hparams"
  916. if "vision_config" not in self.hparams:
  917. raise ValueError("vision_config not found in hparams")
  918. # move vision config to the top level, while preserving the original hparams in global_config
  919. self.global_config = self.hparams
  920. self.hparams = self.hparams["vision_config"]
  921. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"])
  922. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.CLIP_VISION, self.block_count)
  923. # load preprocessor config
  924. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  925. self.preprocessor_config = json.load(f)
  926. def set_type(self):
  927. self.gguf_writer.add_type(gguf.GGUFType.CLIP_VISION)
  928. def set_gguf_parameters(self):
  929. self.gguf_writer.add_file_type(self.ftype)
  930. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  931. self.gguf_writer.add_vision_has_vision_encoder(True)
  932. # vision config
  933. self.gguf_writer.add_vision_image_size(self.find_hparam(["image_size"]))
  934. self.gguf_writer.add_vision_patch_size(self.find_hparam(["patch_size"]))
  935. self.gguf_writer.add_vision_embedding_length(self.find_hparam(["hidden_size"]))
  936. self.gguf_writer.add_vision_feed_forward_length(self.find_hparam(["intermediate_size"]))
  937. self.gguf_writer.add_vision_block_count(self.block_count)
  938. self.gguf_writer.add_vision_head_count(self.find_hparam(["num_attention_heads"]))
  939. # preprocessor config
  940. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  941. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  942. def write_vocab(self):
  943. raise ValueError("VisionModel does not support vocab writing")
  944. @ModelBase.register("GPTNeoXForCausalLM")
  945. class GPTNeoXModel(TextModel):
  946. model_arch = gguf.MODEL_ARCH.GPTNEOX
  947. def set_gguf_parameters(self):
  948. block_count = self.hparams["num_hidden_layers"]
  949. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  950. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  951. self.gguf_writer.add_block_count(block_count)
  952. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  953. self.gguf_writer.add_rope_dimension_count(
  954. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  955. )
  956. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  957. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  958. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  959. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  960. del bid # unused
  961. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  962. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  963. tensors: list[tuple[str, Tensor]] = []
  964. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  965. # Map bloom-style qkv_linear to gpt-style qkv_linear
  966. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  967. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  968. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  969. data_torch = torch.cat(
  970. (
  971. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  972. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  973. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  974. ),
  975. dim=0,
  976. )
  977. logger.info("re-format attention.linear_qkv.weight")
  978. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  979. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  980. data_torch = torch.cat(
  981. (
  982. qkv_bias[:, 0, :].reshape((n_embed,)),
  983. qkv_bias[:, 1, :].reshape((n_embed,)),
  984. qkv_bias[:, 2, :].reshape((n_embed,)),
  985. ),
  986. dim=0,
  987. )
  988. logger.info("re-format attention.linear_qkv.bias")
  989. tensors.append((self.map_tensor_name(name), data_torch))
  990. return tensors
  991. @ModelBase.register("BloomForCausalLM", "BloomModel")
  992. class BloomModel(TextModel):
  993. model_arch = gguf.MODEL_ARCH.BLOOM
  994. def set_gguf_parameters(self):
  995. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  996. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  997. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  998. self.gguf_writer.add_embedding_length(n_embed)
  999. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1000. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1001. self.gguf_writer.add_head_count(n_head)
  1002. self.gguf_writer.add_head_count_kv(n_head)
  1003. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1004. self.gguf_writer.add_file_type(self.ftype)
  1005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1006. del bid # unused
  1007. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1008. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1009. name = re.sub(r'transformer\.', '', name)
  1010. tensors: list[tuple[str, Tensor]] = []
  1011. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1012. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1013. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1014. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1015. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1016. data_torch = torch.cat(
  1017. (
  1018. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1019. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1020. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1021. ),
  1022. dim=0,
  1023. )
  1024. logger.info("re-format attention.linear_qkv.weight")
  1025. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1026. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1027. data_torch = torch.cat(
  1028. (
  1029. qkv_bias[:, 0, :].reshape((n_embed,)),
  1030. qkv_bias[:, 1, :].reshape((n_embed,)),
  1031. qkv_bias[:, 2, :].reshape((n_embed,)),
  1032. ),
  1033. dim=0,
  1034. )
  1035. logger.info("re-format attention.linear_qkv.bias")
  1036. tensors.append((self.map_tensor_name(name), data_torch))
  1037. return tensors
  1038. @ModelBase.register("MPTForCausalLM")
  1039. class MPTModel(TextModel):
  1040. model_arch = gguf.MODEL_ARCH.MPT
  1041. def set_vocab(self):
  1042. try:
  1043. self._set_vocab_gpt2()
  1044. except Exception:
  1045. # Fallback for SEA-LION model
  1046. self._set_vocab_sentencepiece()
  1047. self.gguf_writer.add_add_bos_token(False)
  1048. self.gguf_writer.add_pad_token_id(3)
  1049. self.gguf_writer.add_eos_token_id(1)
  1050. self.gguf_writer.add_unk_token_id(0)
  1051. def set_gguf_parameters(self):
  1052. block_count = self.hparams["n_layers"]
  1053. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1054. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1055. self.gguf_writer.add_block_count(block_count)
  1056. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1057. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1058. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1059. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1060. self.gguf_writer.add_layer_norm_eps(1e-5)
  1061. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1062. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1063. if self.hparams["attn_config"]["alibi"]:
  1064. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1065. else:
  1066. self.gguf_writer.add_max_alibi_bias(0.0)
  1067. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1068. del bid # unused
  1069. if "scales" in name:
  1070. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1071. new_name = new_name.replace("scales", "act.scales")
  1072. else:
  1073. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1074. return [(new_name, data_torch)]
  1075. @ModelBase.register("OrionForCausalLM")
  1076. class OrionModel(TextModel):
  1077. model_arch = gguf.MODEL_ARCH.ORION
  1078. def set_vocab(self):
  1079. self._set_vocab_sentencepiece()
  1080. def set_gguf_parameters(self):
  1081. block_count = self.hparams["num_hidden_layers"]
  1082. head_count = self.hparams["num_attention_heads"]
  1083. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1084. ctx_length = 0
  1085. if "max_sequence_length" in self.hparams:
  1086. ctx_length = self.hparams["max_sequence_length"]
  1087. elif "max_position_embeddings" in self.hparams:
  1088. ctx_length = self.hparams["max_position_embeddings"]
  1089. elif "model_max_length" in self.hparams:
  1090. ctx_length = self.hparams["model_max_length"]
  1091. else:
  1092. raise ValueError("gguf: can not find ctx length parameter.")
  1093. self.gguf_writer.add_file_type(self.ftype)
  1094. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1095. self.gguf_writer.add_context_length(ctx_length)
  1096. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1097. self.gguf_writer.add_block_count(block_count)
  1098. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1099. self.gguf_writer.add_head_count(head_count)
  1100. self.gguf_writer.add_head_count_kv(head_count_kv)
  1101. # note: config provides rms norm but it is actually layer norm
  1102. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1103. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1104. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1105. class BaichuanModel(TextModel):
  1106. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1107. def set_vocab(self):
  1108. self._set_vocab_sentencepiece()
  1109. def set_gguf_parameters(self):
  1110. block_count = self.hparams["num_hidden_layers"]
  1111. head_count = self.hparams["num_attention_heads"]
  1112. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1113. ctx_length = 0
  1114. if "max_sequence_length" in self.hparams:
  1115. ctx_length = self.hparams["max_sequence_length"]
  1116. elif "max_position_embeddings" in self.hparams:
  1117. ctx_length = self.hparams["max_position_embeddings"]
  1118. elif "model_max_length" in self.hparams:
  1119. ctx_length = self.hparams["model_max_length"]
  1120. else:
  1121. raise ValueError("gguf: can not find ctx length parameter.")
  1122. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1123. self.gguf_writer.add_context_length(ctx_length)
  1124. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1125. self.gguf_writer.add_block_count(block_count)
  1126. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1127. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1128. self.gguf_writer.add_head_count(head_count)
  1129. self.gguf_writer.add_head_count_kv(head_count_kv)
  1130. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1131. self.gguf_writer.add_file_type(self.ftype)
  1132. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1133. if self.hparams["rope_scaling"].get("type") == "linear":
  1134. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1135. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1136. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1137. head_count = self.hparams["num_attention_heads"]
  1138. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1139. tensors: list[tuple[str, Tensor]] = []
  1140. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1141. logger.info(f"Unpacking and permuting layer {bid}")
  1142. tensors = [
  1143. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1144. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1145. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1146. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1147. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1148. self._reverse_hf_part(data_torch, 2)),
  1149. ]
  1150. else:
  1151. tensors = [(self.map_tensor_name(name), data_torch)]
  1152. return tensors
  1153. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1154. if n_kv_head is not None and n_head != n_kv_head:
  1155. n_head //= n_kv_head
  1156. return (
  1157. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1158. .swapaxes(1, 2)
  1159. .reshape(weights.shape)
  1160. )
  1161. def _reverse_hf_permute_part(
  1162. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1163. ) -> Tensor:
  1164. r = weights.shape[0] // 3
  1165. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1166. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1167. r = weights.shape[0] // 3
  1168. return weights[r * n_part:r * n_part + r, ...]
  1169. @ModelBase.register("XverseForCausalLM")
  1170. class XverseModel(TextModel):
  1171. model_arch = gguf.MODEL_ARCH.XVERSE
  1172. def set_vocab(self):
  1173. assert (self.dir_model / "tokenizer.json").is_file()
  1174. dir_model = self.dir_model
  1175. hparams = self.hparams
  1176. tokens: list[bytes] = []
  1177. toktypes: list[int] = []
  1178. from transformers import AutoTokenizer
  1179. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1180. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1181. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1182. # because vocab_size is the count of items, and indexes start at 0.
  1183. max_vocab_index = max(tokenizer.get_vocab().values())
  1184. if max_vocab_index >= vocab_size:
  1185. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1186. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1187. added_vocab = tokenizer.get_added_vocab()
  1188. for token_id in range(vocab_size):
  1189. token_text = reverse_vocab[token_id].encode('utf-8')
  1190. # replace "\x00" to string with length > 0
  1191. if token_text == b"\x00":
  1192. toktype = gguf.TokenType.BYTE # special
  1193. token_text = f"<{token_text}>".encode('utf-8')
  1194. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1195. toktype = gguf.TokenType.BYTE # special
  1196. elif reverse_vocab[token_id] in added_vocab:
  1197. if tokenizer.added_tokens_decoder[token_id].special:
  1198. toktype = gguf.TokenType.CONTROL
  1199. else:
  1200. toktype = gguf.TokenType.USER_DEFINED
  1201. else:
  1202. toktype = gguf.TokenType.NORMAL
  1203. tokens.append(token_text)
  1204. toktypes.append(toktype)
  1205. self.gguf_writer.add_tokenizer_model("llama")
  1206. self.gguf_writer.add_tokenizer_pre("default")
  1207. self.gguf_writer.add_token_list(tokens)
  1208. self.gguf_writer.add_token_types(toktypes)
  1209. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1210. special_vocab.add_to_gguf(self.gguf_writer)
  1211. def set_gguf_parameters(self):
  1212. block_count = self.hparams["num_hidden_layers"]
  1213. head_count = self.hparams["num_attention_heads"]
  1214. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1215. ctx_length = 0
  1216. if "max_sequence_length" in self.hparams:
  1217. ctx_length = self.hparams["max_sequence_length"]
  1218. elif "max_position_embeddings" in self.hparams:
  1219. ctx_length = self.hparams["max_position_embeddings"]
  1220. elif "model_max_length" in self.hparams:
  1221. ctx_length = self.hparams["model_max_length"]
  1222. else:
  1223. raise ValueError("gguf: can not find ctx length parameter.")
  1224. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1225. self.gguf_writer.add_context_length(ctx_length)
  1226. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1227. self.gguf_writer.add_block_count(block_count)
  1228. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1229. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1230. self.gguf_writer.add_head_count(head_count)
  1231. self.gguf_writer.add_head_count_kv(head_count_kv)
  1232. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1233. self.gguf_writer.add_file_type(self.ftype)
  1234. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1235. if self.hparams["rope_scaling"].get("type") == "linear":
  1236. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1237. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1239. del bid # unused
  1240. head_count = self.hparams["num_attention_heads"]
  1241. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1242. # HF models permute some of the tensors, so we need to undo that
  1243. if name.endswith("q_proj.weight"):
  1244. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1245. if name.endswith("k_proj.weight"):
  1246. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1247. return [(self.map_tensor_name(name), data_torch)]
  1248. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1249. if n_kv_head is not None and n_head != n_kv_head:
  1250. n_head //= n_kv_head
  1251. return (
  1252. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1253. .swapaxes(1, 2)
  1254. .reshape(weights.shape)
  1255. )
  1256. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1257. class FalconModel(TextModel):
  1258. model_arch = gguf.MODEL_ARCH.FALCON
  1259. def set_gguf_parameters(self):
  1260. block_count = self.hparams.get("num_hidden_layers")
  1261. if block_count is None:
  1262. block_count = self.hparams["n_layer"] # old name
  1263. n_head = self.hparams.get("num_attention_heads")
  1264. if n_head is None:
  1265. n_head = self.hparams["n_head"] # old name
  1266. n_head_kv = self.hparams.get("num_kv_heads")
  1267. if n_head_kv is None:
  1268. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1269. self.gguf_writer.add_context_length(2048) # not in config.json
  1270. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1271. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1272. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1273. self.gguf_writer.add_block_count(block_count)
  1274. self.gguf_writer.add_head_count(n_head)
  1275. self.gguf_writer.add_head_count_kv(n_head_kv)
  1276. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1277. self.gguf_writer.add_file_type(self.ftype)
  1278. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1279. del bid # unused
  1280. # QKV tensor transform
  1281. # The original query_key_value tensor contains n_head_kv "kv groups",
  1282. # each consisting of n_head/n_head_kv query weights followed by one key
  1283. # and one value weight (shared by all query heads in the kv group).
  1284. # This layout makes it a big pain to work with in GGML.
  1285. # So we rearrange them here,, so that we have n_head query weights
  1286. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1287. # in contiguous fashion.
  1288. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1289. if "query_key_value" in name:
  1290. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1291. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1292. head_dim = self.hparams["hidden_size"] // n_head
  1293. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1294. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1295. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1296. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1297. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1298. return [(self.map_tensor_name(name), data_torch)]
  1299. @ModelBase.register("GPTBigCodeForCausalLM")
  1300. class StarCoderModel(TextModel):
  1301. model_arch = gguf.MODEL_ARCH.STARCODER
  1302. def set_gguf_parameters(self):
  1303. block_count = self.hparams["n_layer"]
  1304. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1305. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1306. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1307. self.gguf_writer.add_block_count(block_count)
  1308. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1309. self.gguf_writer.add_head_count_kv(1)
  1310. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1311. self.gguf_writer.add_file_type(self.ftype)
  1312. @ModelBase.register("GPTRefactForCausalLM")
  1313. class RefactModel(TextModel):
  1314. model_arch = gguf.MODEL_ARCH.REFACT
  1315. def set_vocab(self):
  1316. super().set_vocab()
  1317. # TODO: how to determine special FIM tokens automatically?
  1318. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1319. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1320. special_vocab._set_special_token("prefix", 1)
  1321. special_vocab._set_special_token("suffix", 3)
  1322. special_vocab._set_special_token("middle", 2)
  1323. special_vocab.chat_template = None # do not add it twice
  1324. special_vocab.add_to_gguf(self.gguf_writer)
  1325. def set_gguf_parameters(self):
  1326. hidden_dim = self.hparams["n_embd"]
  1327. inner_dim = 4 * hidden_dim
  1328. hidden_dim = int(2 * inner_dim / 3)
  1329. multiple_of = 256
  1330. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1331. block_count = self.hparams["n_layer"]
  1332. # refact uses Alibi. So this is from config.json which might be used by training.
  1333. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1334. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1335. self.gguf_writer.add_feed_forward_length(ff_dim)
  1336. self.gguf_writer.add_block_count(block_count)
  1337. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1338. self.gguf_writer.add_head_count_kv(1)
  1339. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1340. self.gguf_writer.add_file_type(self.ftype)
  1341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1342. hidden_dim = self.hparams["n_embd"]
  1343. inner_dim = 4 * hidden_dim
  1344. hidden_dim = int(2 * inner_dim / 3)
  1345. multiple_of = 256
  1346. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1347. n_head = self.hparams["n_head"]
  1348. n_head_kv = 1
  1349. head_dim = self.hparams["n_embd"] // n_head
  1350. tensors: list[tuple[str, Tensor]] = []
  1351. if bid is not None:
  1352. if name == f"transformer.h.{bid}.attn.kv.weight":
  1353. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1354. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1355. elif name == f"transformer.h.{bid}.attn.q.weight":
  1356. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1357. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1358. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1359. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1360. if len(tensors) == 0:
  1361. tensors.append((self.map_tensor_name(name), data_torch))
  1362. return tensors
  1363. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1364. class StableLMModel(TextModel):
  1365. model_arch = gguf.MODEL_ARCH.STABLELM
  1366. def set_vocab(self):
  1367. if (self.dir_model / "tokenizer.json").is_file():
  1368. self._set_vocab_gpt2()
  1369. else:
  1370. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1371. self._set_vocab_qwen()
  1372. def set_gguf_parameters(self):
  1373. hparams = self.hparams
  1374. block_count = hparams["num_hidden_layers"]
  1375. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1376. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1377. self.gguf_writer.add_block_count(block_count)
  1378. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1379. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1380. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1381. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1382. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1383. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1384. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1385. self.gguf_writer.add_file_type(self.ftype)
  1386. _q_norms: list[dict[str, Tensor]] | None = None
  1387. _k_norms: list[dict[str, Tensor]] | None = None
  1388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1389. n_head = self.hparams["num_attention_heads"]
  1390. n_kv_head = self.hparams["num_key_value_heads"]
  1391. if name.find("q_layernorm.norms") != -1:
  1392. assert bid is not None
  1393. if self._q_norms is None:
  1394. self._q_norms = [{} for _ in range(self.block_count)]
  1395. self._q_norms[bid][name] = data_torch
  1396. if len(self._q_norms[bid]) >= n_head:
  1397. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1398. else:
  1399. return []
  1400. if name.find("k_layernorm.norms") != -1:
  1401. assert bid is not None
  1402. if self._k_norms is None:
  1403. self._k_norms = [{} for _ in range(self.block_count)]
  1404. self._k_norms[bid][name] = data_torch
  1405. if len(self._k_norms[bid]) >= n_kv_head:
  1406. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1407. else:
  1408. return []
  1409. return [(self.map_tensor_name(name), data_torch)]
  1410. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1411. datas: list[Tensor] = []
  1412. # extract the norms in order
  1413. for xid in range(n_head):
  1414. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1415. datas.append(norms[ename])
  1416. del norms[ename]
  1417. data_torch = torch.stack(datas, dim=0)
  1418. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1419. new_name = self.map_tensor_name(merged_name)
  1420. return [(new_name, data_torch)]
  1421. def prepare_tensors(self):
  1422. super().prepare_tensors()
  1423. if self._q_norms is not None or self._k_norms is not None:
  1424. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1425. norms = (
  1426. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1427. ) + (
  1428. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1429. )
  1430. if len(norms) > 0:
  1431. raise ValueError(f"Unprocessed norms: {norms}")
  1432. @ModelBase.register(
  1433. "LLaMAForCausalLM",
  1434. "LlamaForCausalLM",
  1435. "MistralForCausalLM",
  1436. "MixtralForCausalLM",
  1437. "VLlama3ForCausalLM",
  1438. "LlavaForConditionalGeneration")
  1439. class LlamaModel(TextModel):
  1440. model_arch = gguf.MODEL_ARCH.LLAMA
  1441. undo_permute = True
  1442. def set_vocab(self):
  1443. try:
  1444. self._set_vocab_sentencepiece()
  1445. except FileNotFoundError:
  1446. try:
  1447. self._set_vocab_llama_hf()
  1448. except (FileNotFoundError, TypeError):
  1449. # Llama 3
  1450. self._set_vocab_gpt2()
  1451. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1452. if self.hparams.get("vocab_size", 32000) == 32016:
  1453. special_vocab = gguf.SpecialVocab(
  1454. self.dir_model, load_merges=False,
  1455. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1456. )
  1457. special_vocab._set_special_token("prefix", 32007)
  1458. special_vocab._set_special_token("suffix", 32008)
  1459. special_vocab._set_special_token("middle", 32009)
  1460. special_vocab._set_special_token("eot", 32010)
  1461. special_vocab.add_to_gguf(self.gguf_writer)
  1462. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1463. if tokenizer_config_file.is_file():
  1464. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1465. tokenizer_config_json = json.load(f)
  1466. if "add_prefix_space" in tokenizer_config_json:
  1467. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1468. # Apply to granite small models only
  1469. if self.hparams.get("vocab_size", 32000) == 49152:
  1470. self.gguf_writer.add_add_bos_token(False)
  1471. def set_gguf_parameters(self):
  1472. super().set_gguf_parameters()
  1473. hparams = self.hparams
  1474. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1475. if "head_dim" in hparams:
  1476. rope_dim = hparams["head_dim"]
  1477. else:
  1478. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1479. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1480. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1481. if self.hparams["rope_scaling"].get("type") == "linear":
  1482. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1483. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1484. @staticmethod
  1485. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1486. if n_head_kv is not None and n_head != n_head_kv:
  1487. n_head = n_head_kv
  1488. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1489. .swapaxes(1, 2)
  1490. .reshape(weights.shape))
  1491. _experts: list[dict[str, Tensor]] | None = None
  1492. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1493. n_head = self.hparams["num_attention_heads"]
  1494. n_kv_head = self.hparams.get("num_key_value_heads")
  1495. is_vision_tensor = "vision_tower" in name \
  1496. or "vision_model" in name \
  1497. or "model.connector" in name \
  1498. or "multi_modal_projector" in name
  1499. if is_vision_tensor:
  1500. return [] # skip vision tensors
  1501. elif name.startswith("model.text_model"):
  1502. name = name.replace("text_model.", "") # for SmolVLM
  1503. elif name.startswith("language_model."):
  1504. name = name.replace("language_model.", "") # for the rest
  1505. if self.undo_permute:
  1506. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1507. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1508. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1509. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1510. # process the experts separately
  1511. if name.find("block_sparse_moe.experts") != -1:
  1512. n_experts = self.hparams["num_local_experts"]
  1513. assert bid is not None
  1514. if self._experts is None:
  1515. self._experts = [{} for _ in range(self.block_count)]
  1516. self._experts[bid][name] = data_torch
  1517. if len(self._experts[bid]) >= n_experts * 3:
  1518. tensors: list[tuple[str, Tensor]] = []
  1519. # merge the experts into a single 3d tensor
  1520. for wid in ["w1", "w2", "w3"]:
  1521. datas: list[Tensor] = []
  1522. for xid in range(n_experts):
  1523. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1524. datas.append(self._experts[bid][ename])
  1525. del self._experts[bid][ename]
  1526. data_torch = torch.stack(datas, dim=0)
  1527. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1528. new_name = self.map_tensor_name(merged_name)
  1529. tensors.append((new_name, data_torch))
  1530. return tensors
  1531. else:
  1532. return []
  1533. return [(self.map_tensor_name(name), data_torch)]
  1534. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1535. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1536. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1537. base = self.hparams.get("rope_theta", 10000.0)
  1538. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1539. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1540. factor = rope_scaling.get("factor", 8.0)
  1541. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1542. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1543. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1544. low_freq_wavelen = old_context_len / low_freq_factor
  1545. high_freq_wavelen = old_context_len / high_freq_factor
  1546. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1547. rope_factors = []
  1548. for freq in freqs:
  1549. wavelen = 2 * math.pi / freq
  1550. if wavelen < high_freq_wavelen:
  1551. rope_factors.append(1)
  1552. elif wavelen > low_freq_wavelen:
  1553. rope_factors.append(factor)
  1554. else:
  1555. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1556. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1557. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1558. def prepare_tensors(self):
  1559. super().prepare_tensors()
  1560. if self._experts is not None:
  1561. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1562. experts = [k for d in self._experts for k in d.keys()]
  1563. if len(experts) > 0:
  1564. raise ValueError(f"Unprocessed experts: {experts}")
  1565. @ModelBase.register(
  1566. "LlavaForConditionalGeneration", # pixtral
  1567. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1568. )
  1569. class LlavaVisionModel(VisionModel):
  1570. img_break_tok_id = -1
  1571. def __init__(self, *args, **kwargs):
  1572. super().__init__(*args, **kwargs)
  1573. if self.hparams["model_type"] == "pixtral":
  1574. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1575. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1576. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1577. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1578. else:
  1579. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1580. def get_token_id(self, token: str) -> int:
  1581. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1582. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1583. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1584. for id_, token_data in added_tokens_decoder.items():
  1585. if token_data["content"] == token:
  1586. return int(id_)
  1587. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1588. def set_gguf_parameters(self):
  1589. super().set_gguf_parameters()
  1590. hparams = self.hparams
  1591. if hparams["model_type"] == "pixtral":
  1592. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1593. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1594. # hidden_act
  1595. if hparams["hidden_act"] == "silu":
  1596. self.gguf_writer.add_vision_use_silu(True)
  1597. elif hparams["hidden_act"] == "gelu":
  1598. self.gguf_writer.add_vision_use_gelu(True)
  1599. else:
  1600. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1601. # spatial_merge_size
  1602. if "spatial_merge_size" in self.global_config:
  1603. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1604. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1605. del bid # unused
  1606. n_head = self.hparams["num_attention_heads"]
  1607. n_kv_head = n_head
  1608. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1609. # process vision tensors
  1610. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1611. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1612. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1613. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1614. return [(self.map_tensor_name(name), data_torch)]
  1615. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1616. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1617. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1618. img_break_embd = data_torch[self.img_break_tok_id]
  1619. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1620. return [(self.map_tensor_name(name), img_break_embd)]
  1621. return [] # skip other tensors
  1622. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1623. class SmolVLMModel(VisionModel):
  1624. def __init__(self, *args, **kwargs):
  1625. super().__init__(*args, **kwargs)
  1626. if self.hparams["model_type"] == "smolvlm_vision":
  1627. # fix for SmolVLM2, missing some keys in config.json
  1628. # default values are taken from transformers code
  1629. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1630. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1631. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1632. def set_gguf_parameters(self):
  1633. super().set_gguf_parameters()
  1634. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1635. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1636. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1637. self.gguf_writer.add_vision_use_gelu(True)
  1638. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1639. del bid, new_name, n_dims # unused
  1640. if ".embeddings." in name:
  1641. return gguf.GGMLQuantizationType.F32
  1642. return False
  1643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1644. del bid # unused
  1645. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1646. if is_vision_tensor:
  1647. return [(self.map_tensor_name(name), data_torch)]
  1648. return [] # skip other tensors
  1649. @ModelBase.register("Llama4ForConditionalGeneration")
  1650. class Llama4Model(LlamaModel):
  1651. model_arch = gguf.MODEL_ARCH.LLAMA4
  1652. undo_permute = False
  1653. def __init__(self, *args, **kwargs):
  1654. super().__init__(*args, **kwargs)
  1655. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1656. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1657. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1658. def set_vocab(self):
  1659. self._set_vocab_gpt2()
  1660. self.gguf_writer.add_add_bos_token(True)
  1661. def set_gguf_parameters(self):
  1662. super().set_gguf_parameters()
  1663. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1664. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1665. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1666. # split the gate_up into gate and up
  1667. if "gate_up_proj" in name:
  1668. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1669. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1670. dim_half = data_torch.shape[-1] // 2
  1671. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1672. return [
  1673. (self.map_tensor_name(name_gate), gate_proj_weight),
  1674. (self.map_tensor_name(name_up), up_proj_weight)
  1675. ]
  1676. if name.endswith("down_proj"):
  1677. name += ".weight"
  1678. data_torch = data_torch.transpose(-1, -2)
  1679. if "multi_modal_projector" in name or "vision_model" in name:
  1680. return []
  1681. return super().modify_tensors(data_torch, name, bid)
  1682. @ModelBase.register("Mistral3ForConditionalGeneration")
  1683. class Mistral3Model(LlamaModel):
  1684. model_arch = gguf.MODEL_ARCH.LLAMA
  1685. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1686. name = name.replace("language_model.", "")
  1687. if "multi_modal_projector" in name or "vision_tower" in name:
  1688. return []
  1689. return super().modify_tensors(data_torch, name, bid)
  1690. @ModelBase.register("DeciLMForCausalLM")
  1691. class DeciModel(TextModel):
  1692. model_arch = gguf.MODEL_ARCH.DECI
  1693. @staticmethod
  1694. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1695. # DeciLM-specific code
  1696. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1697. return DeciModel._find_multiple(intermediate_size, 256)
  1698. @staticmethod
  1699. def _find_multiple(n: int, k: int) -> int:
  1700. # DeciLM-specific code
  1701. if n % k == 0:
  1702. return n
  1703. return n + k - (n % k)
  1704. def __init__(self, *args, **kwargs):
  1705. super().__init__(*args, **kwargs)
  1706. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1707. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1708. assert self.block_count == len(_block_configs)
  1709. self._num_kv_heads = list()
  1710. self._num_heads = list()
  1711. _ffn_multipliers = list()
  1712. # ***linear attention layer***
  1713. # if n_heads_in_group is None and replace_with_linear is True
  1714. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1715. # ***attention-free layer***
  1716. # if n_heads_in_group is None and replace_with_linear is False
  1717. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1718. # ***normal attention-layer***
  1719. # if n_heads_in_group is not None, then
  1720. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1721. # _num_heads[il] is num_attention_head
  1722. for il in range(len(_block_configs)):
  1723. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1724. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1725. self._num_kv_heads.append(0)
  1726. self._num_heads.append(self.hparams["num_attention_heads"])
  1727. else:
  1728. self._num_kv_heads.append(0)
  1729. self._num_heads.append(0)
  1730. else:
  1731. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1732. self._num_heads.append(self.hparams["num_attention_heads"])
  1733. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1734. assert self.block_count == len(self._num_kv_heads)
  1735. assert self.block_count == len(self._num_heads)
  1736. assert self.block_count == len(_ffn_multipliers)
  1737. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1738. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1739. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1740. self._ffn_dims: list[int] = [
  1741. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1742. for multiplier in _ffn_multipliers
  1743. ]
  1744. def set_vocab(self):
  1745. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1746. # eos_token from '|eot_id|' to '|end_of_text|'
  1747. if self.hparams.get("vocab_size", 128256) == 128256:
  1748. tokens, toktypes, tokpre = self.get_vocab_base()
  1749. self.gguf_writer.add_tokenizer_model("gpt2")
  1750. self.gguf_writer.add_tokenizer_pre(tokpre)
  1751. self.gguf_writer.add_token_list(tokens)
  1752. self.gguf_writer.add_token_types(toktypes)
  1753. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1754. special_vocab.add_to_gguf(self.gguf_writer)
  1755. else:
  1756. # DeciLM-7B
  1757. self._set_vocab_llama_hf()
  1758. def set_gguf_parameters(self):
  1759. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1760. assert self.block_count == len(self._num_kv_heads)
  1761. assert self.block_count == len(self._num_heads)
  1762. assert self.block_count == len(self._ffn_dims)
  1763. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1764. self.gguf_writer.add_rope_freq_base(rope_theta)
  1765. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1766. self.gguf_writer.add_head_count(self._num_heads)
  1767. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1768. self.gguf_writer.add_block_count(self.block_count)
  1769. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1770. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1771. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1772. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1773. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1774. self.gguf_writer.add_file_type(self.ftype)
  1775. else: # DeciLM-7B
  1776. super().set_gguf_parameters()
  1777. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1778. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1779. assert self.block_count == len(self._num_kv_heads)
  1780. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1781. hparams = self.hparams
  1782. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1783. if "head_dim" in hparams:
  1784. rope_dim = hparams["head_dim"]
  1785. else:
  1786. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1787. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1788. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1789. if self.hparams["rope_scaling"].get("type") == "linear":
  1790. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1791. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1792. @staticmethod
  1793. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1794. if n_head_kv is not None and n_head != n_head_kv:
  1795. n_head = n_head_kv
  1796. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1797. .swapaxes(1, 2)
  1798. .reshape(weights.shape))
  1799. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1800. n_head = self.hparams["num_attention_heads"]
  1801. if bid is not None:
  1802. if "num_key_value_heads_per_layer" in self.hparams:
  1803. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1804. elif "block_configs" in self.hparams:
  1805. n_kv_head = self._num_kv_heads[bid]
  1806. n_head = self._num_heads[bid]
  1807. else:
  1808. n_kv_head = self.hparams.get("num_key_value_heads")
  1809. else:
  1810. n_kv_head = self.hparams.get("num_key_value_heads")
  1811. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1812. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1813. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1814. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1815. return [(self.map_tensor_name(name), data_torch)]
  1816. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1817. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1818. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1819. base = self.hparams.get("rope_theta", 10000.0)
  1820. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1821. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1822. factor = rope_scaling.get("factor", 8.0)
  1823. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1824. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1825. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1826. low_freq_wavelen = old_context_len / low_freq_factor
  1827. high_freq_wavelen = old_context_len / high_freq_factor
  1828. assert low_freq_wavelen != high_freq_wavelen
  1829. rope_factors = []
  1830. for freq in freqs:
  1831. wavelen = 2 * math.pi / freq
  1832. if wavelen < high_freq_wavelen:
  1833. rope_factors.append(1)
  1834. elif wavelen > low_freq_wavelen:
  1835. rope_factors.append(factor)
  1836. else:
  1837. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1838. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1839. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1840. def prepare_tensors(self):
  1841. super().prepare_tensors()
  1842. @ModelBase.register("BitnetForCausalLM")
  1843. class BitnetModel(TextModel):
  1844. model_arch = gguf.MODEL_ARCH.BITNET
  1845. def set_vocab(self):
  1846. self._set_vocab_sentencepiece()
  1847. def set_gguf_parameters(self):
  1848. super().set_gguf_parameters()
  1849. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1850. self.gguf_writer.add_rope_scaling_factor(1.0)
  1851. def weight_quant(self, weight: Tensor) -> Tensor:
  1852. dtype = weight.dtype
  1853. weight = weight.float()
  1854. scale = weight.abs().mean().clamp(min=1e-5)
  1855. iscale = 1 / scale
  1856. # TODO: multiply by the scale directly instead of inverting it twice
  1857. # (this is also unnecessarily doubly inverted upstream)
  1858. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1859. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1860. return result.type(dtype)
  1861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1862. new_name = self.map_tensor_name(name)
  1863. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1864. gguf.MODEL_TENSOR.ATTN_Q,
  1865. gguf.MODEL_TENSOR.ATTN_K,
  1866. gguf.MODEL_TENSOR.ATTN_V,
  1867. gguf.MODEL_TENSOR.ATTN_OUT,
  1868. gguf.MODEL_TENSOR.FFN_UP,
  1869. gguf.MODEL_TENSOR.FFN_DOWN,
  1870. gguf.MODEL_TENSOR.FFN_GATE,
  1871. ]):
  1872. # transform weight into 1/0/-1 (in fp32)
  1873. data_torch = self.weight_quant(data_torch)
  1874. yield (new_name, data_torch)
  1875. @ModelBase.register("GrokForCausalLM")
  1876. class GrokModel(TextModel):
  1877. model_arch = gguf.MODEL_ARCH.GROK
  1878. def set_vocab(self):
  1879. self._set_vocab_sentencepiece()
  1880. def __init__(self, *args, **kwargs):
  1881. super().__init__(*args, **kwargs)
  1882. def set_gguf_parameters(self):
  1883. super().set_gguf_parameters()
  1884. _experts: list[dict[str, Tensor]] | None = None
  1885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1886. # process the experts separately
  1887. if name.find(".moe.") != -1:
  1888. n_experts = self.hparams["num_local_experts"]
  1889. assert bid is not None
  1890. if self._experts is None:
  1891. self._experts = [{} for _ in range(self.block_count)]
  1892. self._experts[bid][name] = data_torch
  1893. if len(self._experts[bid]) >= n_experts * 3:
  1894. tensors: list[tuple[str, Tensor]] = []
  1895. # merge the experts into a single 3d tensor
  1896. for wid in ["linear", "linear_1", "linear_v"]:
  1897. datas: list[Tensor] = []
  1898. for xid in range(n_experts):
  1899. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1900. datas.append(self._experts[bid][ename])
  1901. del self._experts[bid][ename]
  1902. data_torch = torch.stack(datas, dim=0)
  1903. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1904. new_name = self.map_tensor_name(merged_name)
  1905. tensors.append((new_name, data_torch))
  1906. return tensors
  1907. else:
  1908. return []
  1909. return [(self.map_tensor_name(name), data_torch)]
  1910. @ModelBase.register("DbrxForCausalLM")
  1911. class DbrxModel(TextModel):
  1912. model_arch = gguf.MODEL_ARCH.DBRX
  1913. def set_gguf_parameters(self):
  1914. ffn_config = self.hparams["ffn_config"]
  1915. attn_config = self.hparams["attn_config"]
  1916. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1917. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1918. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1919. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1920. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1921. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1922. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1923. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1924. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1925. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1926. self.gguf_writer.add_layer_norm_eps(1e-5)
  1927. self.gguf_writer.add_file_type(self.ftype)
  1928. logger.info(f"gguf: file type = {self.ftype}")
  1929. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1930. del bid # unused
  1931. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1932. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1933. n_embd = self.hparams["d_model"]
  1934. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1935. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1936. # But llama.cpp moe graph works differently
  1937. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1938. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1939. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1940. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1941. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1942. experts = False
  1943. for exp_tensor_name in exp_tensor_names.keys():
  1944. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1945. experts = True
  1946. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1947. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1948. data_torch = data_torch.permute(*permute_tensor)
  1949. break
  1950. # map tensor names
  1951. # In MoE models the ffn tensors are typically most of the model weights,
  1952. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1953. # Every other model has the weight names ending in .weight,
  1954. # let's assume that is the convention which is not the case for dbrx:
  1955. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1956. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1957. return [(new_name, data_torch)]
  1958. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1959. del name, new_name, bid # unused
  1960. return n_dims > 1
  1961. @ModelBase.register("MiniCPMForCausalLM")
  1962. class MiniCPMModel(TextModel):
  1963. model_arch = gguf.MODEL_ARCH.MINICPM
  1964. def set_gguf_parameters(self):
  1965. super().set_gguf_parameters()
  1966. embedding_scale = float(self.hparams["scale_emb"])
  1967. self.gguf_writer.add_embedding_scale(embedding_scale)
  1968. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1969. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1970. self.gguf_writer.add_residual_scale(residual_scale)
  1971. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1972. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1973. self.gguf_writer.add_logit_scale(logit_scale)
  1974. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1975. if self.hparams.get("rope_scaling") is not None:
  1976. if self.hparams["rope_scaling"].get("type") == "longrope":
  1977. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1978. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1979. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1980. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1981. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1982. if rope_scaling is not None:
  1983. long_factors = rope_scaling.get('long_factor', None)
  1984. short_factors = rope_scaling.get('short_factor', None)
  1985. if long_factors is None or short_factors is None:
  1986. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1987. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1988. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1989. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1990. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1991. def set_vocab(self):
  1992. self._set_vocab_sentencepiece()
  1993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1994. del bid # unused
  1995. n_head = self.hparams["num_attention_heads"]
  1996. n_kv_head = self.hparams.get("num_key_value_heads")
  1997. # HF models permute some of the tensors, so we need to undo that
  1998. if name.endswith(("q_proj.weight")):
  1999. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2000. if name.endswith(("k_proj.weight")):
  2001. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2002. return [(self.map_tensor_name(name), data_torch)]
  2003. @ModelBase.register("MiniCPM3ForCausalLM")
  2004. class MiniCPM3Model(TextModel):
  2005. model_arch = gguf.MODEL_ARCH.MINICPM3
  2006. def set_gguf_parameters(self):
  2007. hparams = self.hparams
  2008. self.gguf_writer.add_file_type(self.ftype)
  2009. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2010. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2011. self.gguf_writer.add_block_count(self.block_count)
  2012. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2013. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2014. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2015. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2016. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2017. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2018. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2019. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2020. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2021. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2022. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2023. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2024. if rope_scaling is not None:
  2025. rope_dims = self.hparams["qk_rope_head_dim"]
  2026. long_factors = rope_scaling.get('long_factor', None)
  2027. short_factors = rope_scaling.get('short_factor', None)
  2028. if long_factors is None or short_factors is None:
  2029. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2030. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2031. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2032. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2033. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2034. def set_vocab(self):
  2035. self._set_vocab_sentencepiece()
  2036. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2037. if n_kv_head is not None and n_head != n_kv_head:
  2038. n_head //= n_kv_head
  2039. return (
  2040. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2041. .swapaxes(1, 2)
  2042. .reshape(weights.shape)
  2043. )
  2044. @ModelBase.register("QWenLMHeadModel")
  2045. class QwenModel(TextModel):
  2046. model_arch = gguf.MODEL_ARCH.QWEN
  2047. @staticmethod
  2048. def token_bytes_to_string(b):
  2049. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2050. byte_encoder = bytes_to_unicode()
  2051. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2052. @staticmethod
  2053. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2054. parts = [bytes([b]) for b in token]
  2055. while True:
  2056. min_idx = None
  2057. min_rank = None
  2058. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2059. rank = mergeable_ranks.get(pair[0] + pair[1])
  2060. if rank is not None and (min_rank is None or rank < min_rank):
  2061. min_idx = i
  2062. min_rank = rank
  2063. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2064. break
  2065. assert min_idx is not None
  2066. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2067. return parts
  2068. def set_vocab(self):
  2069. self._set_vocab_qwen()
  2070. def set_gguf_parameters(self):
  2071. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2072. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2073. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2074. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2075. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2076. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2077. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2078. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2079. self.gguf_writer.add_file_type(self.ftype)
  2080. @ModelBase.register("Qwen2ForCausalLM")
  2081. class Qwen2Model(TextModel):
  2082. model_arch = gguf.MODEL_ARCH.QWEN2
  2083. def set_vocab(self):
  2084. try:
  2085. self._set_vocab_sentencepiece()
  2086. except FileNotFoundError:
  2087. self._set_vocab_gpt2()
  2088. def set_gguf_parameters(self):
  2089. super().set_gguf_parameters()
  2090. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2091. if self.hparams["rope_scaling"].get("type") == "yarn":
  2092. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2093. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2094. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2095. @ModelBase.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2096. class Qwen2VLModel(TextModel):
  2097. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2098. def set_gguf_parameters(self):
  2099. super().set_gguf_parameters()
  2100. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2101. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2102. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2103. def set_vocab(self):
  2104. try:
  2105. self._set_vocab_sentencepiece()
  2106. except FileNotFoundError:
  2107. self._set_vocab_gpt2()
  2108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2109. del bid # unused
  2110. if name.startswith("visual."):
  2111. # skip visual tensors
  2112. return []
  2113. return [(self.map_tensor_name(name), data_torch)]
  2114. @ModelBase.register("WavTokenizerDec")
  2115. class WavTokenizerDecModel(TextModel):
  2116. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2117. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2118. del bid # unused
  2119. if \
  2120. name.endswith("codebook.cluster_size") or \
  2121. name.endswith("codebook.embed_avg") or \
  2122. name.endswith("codebook.inited"):
  2123. logger.debug(f"Skipping {name!r}")
  2124. return []
  2125. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2126. return [(self.map_tensor_name(name), data_torch)]
  2127. def set_vocab(self):
  2128. self._set_vocab_none()
  2129. def set_gguf_parameters(self):
  2130. super().set_gguf_parameters()
  2131. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2132. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2133. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2134. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2135. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2136. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2137. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2138. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2139. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2140. self.gguf_writer.add_causal_attention(False)
  2141. @ModelBase.register("Qwen2MoeForCausalLM")
  2142. class Qwen2MoeModel(TextModel):
  2143. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2144. def set_gguf_parameters(self):
  2145. super().set_gguf_parameters()
  2146. if (n_experts := self.hparams.get("num_experts")) is not None:
  2147. self.gguf_writer.add_expert_count(n_experts)
  2148. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2149. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2150. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2151. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2152. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2153. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2154. _experts: list[dict[str, Tensor]] | None = None
  2155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2156. # process the experts separately
  2157. if name.find("experts") != -1:
  2158. n_experts = self.hparams["num_experts"]
  2159. assert bid is not None
  2160. if self._experts is None:
  2161. self._experts = [{} for _ in range(self.block_count)]
  2162. self._experts[bid][name] = data_torch
  2163. if len(self._experts[bid]) >= n_experts * 3:
  2164. tensors: list[tuple[str, Tensor]] = []
  2165. # merge the experts into a single 3d tensor
  2166. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2167. datas: list[Tensor] = []
  2168. for xid in range(n_experts):
  2169. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2170. datas.append(self._experts[bid][ename])
  2171. del self._experts[bid][ename]
  2172. data_torch = torch.stack(datas, dim=0)
  2173. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2174. new_name = self.map_tensor_name(merged_name)
  2175. tensors.append((new_name, data_torch))
  2176. return tensors
  2177. else:
  2178. return []
  2179. return [(self.map_tensor_name(name), data_torch)]
  2180. def prepare_tensors(self):
  2181. super().prepare_tensors()
  2182. if self._experts is not None:
  2183. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2184. experts = [k for d in self._experts for k in d.keys()]
  2185. if len(experts) > 0:
  2186. raise ValueError(f"Unprocessed experts: {experts}")
  2187. @ModelBase.register("Qwen3ForCausalLM")
  2188. class Qwen3Model(Qwen2Model):
  2189. model_arch = gguf.MODEL_ARCH.QWEN3
  2190. @ModelBase.register("Qwen3MoeForCausalLM")
  2191. class Qwen3MoeModel(Qwen2MoeModel):
  2192. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2193. @ModelBase.register("GPT2LMHeadModel")
  2194. class GPT2Model(TextModel):
  2195. model_arch = gguf.MODEL_ARCH.GPT2
  2196. def set_gguf_parameters(self):
  2197. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2198. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2199. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2200. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2201. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2202. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2203. self.gguf_writer.add_file_type(self.ftype)
  2204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2205. del bid # unused
  2206. tensors: list[tuple[str, Tensor]] = []
  2207. # we don't need these
  2208. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2209. return tensors
  2210. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2211. data_torch = data_torch.transpose(1, 0)
  2212. new_name = self.map_tensor_name(name)
  2213. tensors.append((new_name, data_torch))
  2214. return tensors
  2215. @ModelBase.register("PhiForCausalLM")
  2216. class Phi2Model(TextModel):
  2217. model_arch = gguf.MODEL_ARCH.PHI2
  2218. def set_gguf_parameters(self):
  2219. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2220. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2221. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2222. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2223. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2224. self.gguf_writer.add_embedding_length(n_embd)
  2225. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2226. self.gguf_writer.add_block_count(block_count)
  2227. self.gguf_writer.add_head_count(n_head)
  2228. self.gguf_writer.add_head_count_kv(n_head)
  2229. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2230. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2231. self.gguf_writer.add_file_type(self.ftype)
  2232. self.gguf_writer.add_add_bos_token(False)
  2233. @ModelBase.register("Phi3ForCausalLM")
  2234. class Phi3MiniModel(TextModel):
  2235. model_arch = gguf.MODEL_ARCH.PHI3
  2236. def set_vocab(self):
  2237. # Phi-4 model uses GPT2Tokenizer
  2238. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2239. if tokenizer_config_file.is_file():
  2240. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2241. tokenizer_config_json = json.load(f)
  2242. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2243. if tokenizer_class == 'GPT2Tokenizer':
  2244. return self._set_vocab_gpt2()
  2245. from sentencepiece import SentencePieceProcessor
  2246. tokenizer_path = self.dir_model / 'tokenizer.model'
  2247. if not tokenizer_path.is_file():
  2248. raise ValueError(f'Error: Missing {tokenizer_path}')
  2249. tokenizer = SentencePieceProcessor()
  2250. tokenizer.LoadFromFile(str(tokenizer_path))
  2251. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2252. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2253. scores: list[float] = [-10000.0] * vocab_size
  2254. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2255. for token_id in range(tokenizer.vocab_size()):
  2256. piece = tokenizer.IdToPiece(token_id)
  2257. text = piece.encode("utf-8")
  2258. score = tokenizer.GetScore(token_id)
  2259. toktype = SentencePieceTokenTypes.NORMAL
  2260. if tokenizer.IsUnknown(token_id):
  2261. toktype = SentencePieceTokenTypes.UNKNOWN
  2262. elif tokenizer.IsControl(token_id):
  2263. toktype = SentencePieceTokenTypes.CONTROL
  2264. elif tokenizer.IsUnused(token_id):
  2265. toktype = SentencePieceTokenTypes.UNUSED
  2266. elif tokenizer.IsByte(token_id):
  2267. toktype = SentencePieceTokenTypes.BYTE
  2268. tokens[token_id] = text
  2269. scores[token_id] = score
  2270. toktypes[token_id] = toktype
  2271. added_tokens_file = self.dir_model / 'added_tokens.json'
  2272. if added_tokens_file.is_file():
  2273. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2274. added_tokens_json = json.load(f)
  2275. for key in added_tokens_json:
  2276. token_id = added_tokens_json[key]
  2277. if token_id >= vocab_size:
  2278. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2279. continue
  2280. tokens[token_id] = key.encode("utf-8")
  2281. scores[token_id] = -1000.0
  2282. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2283. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2284. if tokenizer_config_file.is_file():
  2285. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2286. tokenizer_config_json = json.load(f)
  2287. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2288. for token_id, foken_data in added_tokens_decoder.items():
  2289. token_id = int(token_id)
  2290. token = foken_data["content"].encode("utf-8")
  2291. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2292. if tokens[token_id] != token:
  2293. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2294. tokens[token_id] = token
  2295. scores[token_id] = -1000.0
  2296. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2297. if foken_data.get("special"):
  2298. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2299. tokenizer_file = self.dir_model / 'tokenizer.json'
  2300. if tokenizer_file.is_file():
  2301. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2302. tokenizer_json = json.load(f)
  2303. added_tokens = tokenizer_json.get("added_tokens", [])
  2304. for foken_data in added_tokens:
  2305. token_id = int(foken_data["id"])
  2306. token = foken_data["content"].encode("utf-8")
  2307. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2308. if tokens[token_id] != token:
  2309. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2310. tokens[token_id] = token
  2311. scores[token_id] = -1000.0
  2312. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2313. if foken_data.get("special"):
  2314. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2315. self.gguf_writer.add_tokenizer_model("llama")
  2316. self.gguf_writer.add_tokenizer_pre("default")
  2317. self.gguf_writer.add_token_list(tokens)
  2318. self.gguf_writer.add_token_scores(scores)
  2319. self.gguf_writer.add_token_types(toktypes)
  2320. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2321. special_vocab.add_to_gguf(self.gguf_writer)
  2322. def set_gguf_parameters(self):
  2323. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2324. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2325. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2326. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2327. rms_eps = self.find_hparam(["rms_norm_eps"])
  2328. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2329. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2330. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2331. rope_dims = int(rot_pct * n_embd) // n_head
  2332. self.gguf_writer.add_context_length(max_pos_embds)
  2333. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2334. self.gguf_writer.add_embedding_length(n_embd)
  2335. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2336. self.gguf_writer.add_block_count(block_count)
  2337. self.gguf_writer.add_head_count(n_head)
  2338. self.gguf_writer.add_head_count_kv(n_head_kv)
  2339. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2340. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2341. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2342. self.gguf_writer.add_file_type(self.ftype)
  2343. sliding_window = self.hparams.get("sliding_window")
  2344. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2345. if sliding_window is None:
  2346. sliding_window = 0
  2347. self.gguf_writer.add_sliding_window(sliding_window)
  2348. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2349. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2350. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2351. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2352. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2353. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2354. rope_dims = int(rot_pct * n_embd) // n_head
  2355. # write rope scaling for long context (128k) model
  2356. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2357. if rope_scaling is None:
  2358. return
  2359. scale = max_pos_embds / orig_max_pos_embds
  2360. rope_scaling_type = rope_scaling.get('type', '').lower()
  2361. if len(rope_scaling_type) == 0:
  2362. raise KeyError('Missing the required key rope_scaling.type')
  2363. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2364. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2365. elif rope_scaling_type == 'yarn':
  2366. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2367. else:
  2368. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2369. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2370. long_factors = rope_scaling.get('long_factor', None)
  2371. short_factors = rope_scaling.get('short_factor', None)
  2372. if long_factors is None or short_factors is None:
  2373. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2374. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2375. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2376. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2377. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2378. @ModelBase.register("PhiMoEForCausalLM")
  2379. class PhiMoeModel(Phi3MiniModel):
  2380. model_arch = gguf.MODEL_ARCH.PHIMOE
  2381. _experts: list[dict[str, Tensor]] | None = None
  2382. def set_gguf_parameters(self):
  2383. super().set_gguf_parameters()
  2384. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2385. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2387. # process the experts separately
  2388. if name.find("block_sparse_moe.experts") != -1:
  2389. n_experts = self.hparams["num_local_experts"]
  2390. assert bid is not None
  2391. if self._experts is None:
  2392. self._experts = [{} for _ in range(self.block_count)]
  2393. self._experts[bid][name] = data_torch
  2394. if len(self._experts[bid]) >= n_experts * 3:
  2395. tensors: list[tuple[str, Tensor]] = []
  2396. # merge the experts into a single 3d tensor
  2397. for w_name in ["w1", "w2", "w3"]:
  2398. datas: list[Tensor] = []
  2399. for xid in range(n_experts):
  2400. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2401. datas.append(self._experts[bid][ename])
  2402. del self._experts[bid][ename]
  2403. data_torch = torch.stack(datas, dim=0)
  2404. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2405. new_name = self.map_tensor_name(merged_name)
  2406. tensors.append((new_name, data_torch))
  2407. return tensors
  2408. else:
  2409. return []
  2410. return [(self.map_tensor_name(name), data_torch)]
  2411. def prepare_tensors(self):
  2412. super().prepare_tensors()
  2413. if self._experts is not None:
  2414. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2415. experts = [k for d in self._experts for k in d.keys()]
  2416. if len(experts) > 0:
  2417. raise ValueError(f"Unprocessed experts: {experts}")
  2418. @ModelBase.register("PlamoForCausalLM")
  2419. class PlamoModel(TextModel):
  2420. model_arch = gguf.MODEL_ARCH.PLAMO
  2421. def set_vocab(self):
  2422. self._set_vocab_sentencepiece()
  2423. def set_gguf_parameters(self):
  2424. hparams = self.hparams
  2425. block_count = hparams["num_hidden_layers"]
  2426. self.gguf_writer.add_context_length(4096) # not in config.json
  2427. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2428. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2429. self.gguf_writer.add_block_count(block_count)
  2430. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2431. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2432. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2433. self.gguf_writer.add_file_type(self.ftype)
  2434. def shuffle_attn_q_weight(self, data_torch):
  2435. assert data_torch.size() == (5120, 5120)
  2436. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2437. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2438. data_torch = torch.reshape(data_torch, (5120, 5120))
  2439. return data_torch
  2440. def shuffle_attn_output_weight(self, data_torch):
  2441. assert data_torch.size() == (5120, 5120)
  2442. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2443. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2444. data_torch = torch.reshape(data_torch, (5120, 5120))
  2445. return data_torch
  2446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2447. del bid # unused
  2448. new_name = self.map_tensor_name(name)
  2449. # shuffle for broadcasting of gqa in ggml_mul_mat
  2450. if new_name.endswith("attn_q.weight"):
  2451. data_torch = self.shuffle_attn_q_weight(data_torch)
  2452. elif new_name.endswith("attn_output.weight"):
  2453. data_torch = self.shuffle_attn_output_weight(data_torch)
  2454. return [(new_name, data_torch)]
  2455. @ModelBase.register("CodeShellForCausalLM")
  2456. class CodeShellModel(TextModel):
  2457. model_arch = gguf.MODEL_ARCH.CODESHELL
  2458. def set_gguf_parameters(self):
  2459. block_count = self.hparams["n_layer"]
  2460. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2461. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2462. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2463. self.gguf_writer.add_block_count(block_count)
  2464. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2465. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2466. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2467. self.gguf_writer.add_file_type(self.ftype)
  2468. self.gguf_writer.add_rope_freq_base(10000.0)
  2469. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2470. self.gguf_writer.add_rope_scaling_factor(1.0)
  2471. _has_tok_embd = False
  2472. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2473. del bid # unused
  2474. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2475. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2476. new_name = self.map_tensor_name(name)
  2477. # assuming token_embd.weight is seen before output.weight
  2478. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2479. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2480. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2481. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2482. self.tensor_names.remove("transformer.wte.weight")
  2483. elif new_name == tok_embd_name:
  2484. self._has_tok_embd = True
  2485. return [(new_name, data_torch)]
  2486. @ModelBase.register("InternLM2ForCausalLM")
  2487. class InternLM2Model(TextModel):
  2488. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2489. def set_vocab(self):
  2490. # (TODO): Is there a better way?
  2491. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2492. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2493. # recognized as an empty string in C++.
  2494. from sentencepiece import SentencePieceProcessor
  2495. from sentencepiece import sentencepiece_model_pb2 as model
  2496. tokenizer_path = self.dir_model / 'tokenizer.model'
  2497. tokens: list[bytes] = []
  2498. scores: list[float] = []
  2499. toktypes: list[int] = []
  2500. if not tokenizer_path.is_file():
  2501. logger.error(f'Error: Missing {tokenizer_path}')
  2502. sys.exit(1)
  2503. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2504. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2505. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2506. tokenizer = SentencePieceProcessor()
  2507. tokenizer.LoadFromFile(str(tokenizer_path))
  2508. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2509. for token_id in range(vocab_size):
  2510. piece = tokenizer.IdToPiece(token_id)
  2511. text = piece.encode("utf-8")
  2512. score = tokenizer.GetScore(token_id)
  2513. if text == b"\x00":
  2514. # (TODO): fixme
  2515. # Hack here and replace the \x00 characters.
  2516. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2517. text = "🐉".encode("utf-8")
  2518. toktype = SentencePieceTokenTypes.NORMAL
  2519. if tokenizer.IsUnknown(token_id):
  2520. toktype = SentencePieceTokenTypes.UNKNOWN
  2521. elif tokenizer.IsControl(token_id):
  2522. toktype = SentencePieceTokenTypes.CONTROL
  2523. elif tokenizer.IsUnused(token_id):
  2524. toktype = SentencePieceTokenTypes.UNUSED
  2525. elif tokenizer.IsByte(token_id):
  2526. toktype = SentencePieceTokenTypes.BYTE
  2527. # take care of ununsed raw token
  2528. if piece.startswith('[UNUSED'):
  2529. toktype = SentencePieceTokenTypes.UNUSED
  2530. tokens.append(text)
  2531. scores.append(score)
  2532. toktypes.append(toktype)
  2533. added_tokens_file = self.dir_model / 'added_tokens.json'
  2534. if added_tokens_file.is_file():
  2535. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2536. added_tokens_json = json.load(f)
  2537. for key in added_tokens_json:
  2538. tokens.append(key.encode("utf-8"))
  2539. scores.append(-1000.0)
  2540. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2541. chat_eos_token = '<|im_end|>'
  2542. chat_eos_token_id = None
  2543. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2544. if tokenizer_config_file.is_file():
  2545. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2546. tokenizer_config_json = json.load(f)
  2547. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2548. for token_id, foken_data in added_tokens_decoder.items():
  2549. token_id = int(token_id)
  2550. token = foken_data["content"]
  2551. if token == chat_eos_token:
  2552. chat_eos_token_id = token_id
  2553. token = token.encode("utf-8")
  2554. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2555. if tokens[token_id] != token:
  2556. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2557. tokens[token_id] = token
  2558. scores[token_id] = -1000.0
  2559. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2560. if foken_data.get("special"):
  2561. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2562. tokenizer_file = self.dir_model / 'tokenizer.json'
  2563. if tokenizer_file.is_file():
  2564. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2565. tokenizer_json = json.load(f)
  2566. added_tokens = tokenizer_json.get("added_tokens", [])
  2567. for foken_data in added_tokens:
  2568. token_id = int(foken_data["id"])
  2569. token = foken_data["content"]
  2570. if token == chat_eos_token:
  2571. chat_eos_token_id = token_id
  2572. token = token.encode("utf-8")
  2573. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2574. if tokens[token_id] != token:
  2575. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2576. tokens[token_id] = token
  2577. scores[token_id] = -1000.0
  2578. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2579. if foken_data.get("special"):
  2580. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2581. self.gguf_writer.add_tokenizer_model("llama")
  2582. self.gguf_writer.add_tokenizer_pre("default")
  2583. self.gguf_writer.add_token_list(tokens)
  2584. self.gguf_writer.add_token_scores(scores)
  2585. self.gguf_writer.add_token_types(toktypes)
  2586. self.gguf_writer.add_add_space_prefix(add_prefix)
  2587. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2588. old_eos = special_vocab.special_token_ids["eos"]
  2589. if chat_eos_token_id is not None:
  2590. # For the chat model, we replace the eos with '<|im_end|>'.
  2591. # TODO: this is a hack, should be fixed
  2592. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2593. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2594. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2595. " in chat mode so that the conversation can end normally.")
  2596. special_vocab.add_to_gguf(self.gguf_writer)
  2597. def set_gguf_parameters(self):
  2598. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2599. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2600. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2601. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2602. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2603. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2604. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2605. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2606. self.gguf_writer.add_file_type(self.ftype)
  2607. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2608. if self.hparams["rope_scaling"].get("type") == "linear":
  2609. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2610. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2612. num_heads = self.hparams["num_attention_heads"]
  2613. num_kv_heads = self.hparams["num_key_value_heads"]
  2614. n_embd = self.hparams["hidden_size"]
  2615. q_per_kv = num_heads // num_kv_heads
  2616. head_dim = n_embd // num_heads
  2617. num_groups = num_heads // q_per_kv
  2618. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2619. qkv = data_torch
  2620. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2621. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2622. # The model weights of q and k equire additional reshape.
  2623. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2624. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2625. v = v.reshape((-1, v.shape[-1]))
  2626. return [
  2627. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2628. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2629. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2630. ]
  2631. else:
  2632. return [(self.map_tensor_name(name), data_torch)]
  2633. @ModelBase.register("InternLM3ForCausalLM")
  2634. class InternLM3Model(TextModel):
  2635. model_arch = gguf.MODEL_ARCH.LLAMA
  2636. def set_vocab(self):
  2637. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2638. self.gguf_writer.add_tokenizer_model("llama")
  2639. self.gguf_writer.add_tokenizer_pre("default")
  2640. self.gguf_writer.add_token_list(tokens)
  2641. self.gguf_writer.add_token_scores(scores)
  2642. self.gguf_writer.add_token_types(toktypes)
  2643. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2644. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2645. if tokenizer_config_file.is_file():
  2646. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2647. tokenizer_config_json = json.load(f)
  2648. if "add_prefix_space" in tokenizer_config_json:
  2649. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2650. if "added_tokens_decoder" in tokenizer_config_json:
  2651. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2652. if token_data.get("special"):
  2653. token_id = int(token_id)
  2654. token = token_data["content"]
  2655. special_vocab._set_special_token(token, token_id)
  2656. # update eos token
  2657. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2658. special_vocab.special_token_ids["eos"] = token_id
  2659. special_vocab.add_to_gguf(self.gguf_writer)
  2660. def set_gguf_parameters(self):
  2661. super().set_gguf_parameters()
  2662. hparams = self.hparams
  2663. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2664. if "head_dim" in hparams:
  2665. rope_dim = hparams["head_dim"]
  2666. else:
  2667. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2668. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2669. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2670. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2672. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2673. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2674. n_head = self.hparams["num_attention_heads"]
  2675. n_kv_head = self.hparams.get("num_key_value_heads")
  2676. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2677. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2678. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2679. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2680. return [(self.map_tensor_name(name), data_torch)]
  2681. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2682. class BertModel(TextModel):
  2683. model_arch = gguf.MODEL_ARCH.BERT
  2684. def __init__(self, *args, **kwargs):
  2685. super().__init__(*args, **kwargs)
  2686. self.vocab_size = None
  2687. def set_gguf_parameters(self):
  2688. super().set_gguf_parameters()
  2689. self.gguf_writer.add_causal_attention(False)
  2690. # get pooling path
  2691. pooling_path = None
  2692. module_path = self.dir_model / "modules.json"
  2693. if module_path.is_file():
  2694. with open(module_path, encoding="utf-8") as f:
  2695. modules = json.load(f)
  2696. for mod in modules:
  2697. if mod["type"] == "sentence_transformers.models.Pooling":
  2698. pooling_path = mod["path"]
  2699. break
  2700. # get pooling type
  2701. if pooling_path is not None:
  2702. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2703. pooling = json.load(f)
  2704. if pooling["pooling_mode_mean_tokens"]:
  2705. pooling_type = gguf.PoolingType.MEAN
  2706. elif pooling["pooling_mode_cls_token"]:
  2707. pooling_type = gguf.PoolingType.CLS
  2708. else:
  2709. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2710. self.gguf_writer.add_pooling_type(pooling_type)
  2711. def set_vocab(self):
  2712. tokens, toktypes, tokpre = self.get_vocab_base()
  2713. self.vocab_size = len(tokens)
  2714. # we need this to validate the size of the token_type embeddings
  2715. # though currently we are passing all zeros to the token_type embeddings
  2716. # "Sequence A" or "Sequence B"
  2717. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2718. # convert to phantom space vocab
  2719. def phantom(tok):
  2720. if tok.startswith("[") and tok.endswith("]"):
  2721. return tok
  2722. if tok.startswith("##"):
  2723. return tok[2:]
  2724. return "\u2581" + tok
  2725. tokens = list(map(phantom, tokens))
  2726. # add vocab to gguf
  2727. self.gguf_writer.add_tokenizer_model("bert")
  2728. self.gguf_writer.add_tokenizer_pre(tokpre)
  2729. self.gguf_writer.add_token_list(tokens)
  2730. self.gguf_writer.add_token_types(toktypes)
  2731. # handle special tokens
  2732. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2733. special_vocab.add_to_gguf(self.gguf_writer)
  2734. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2735. del bid # unused
  2736. if name.startswith("bert."):
  2737. name = name[5:]
  2738. if name.endswith(".gamma"):
  2739. name = name[:-6] + ".weight"
  2740. if name.endswith(".beta"):
  2741. name = name[:-5] + ".bias"
  2742. # we are only using BERT for embeddings so we don't need the pooling layer
  2743. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2744. return [] # we don't need these
  2745. if name.startswith("cls.predictions"):
  2746. return []
  2747. if name.startswith("cls.seq_relationship"):
  2748. return []
  2749. return [(self.map_tensor_name(name), data_torch)]
  2750. def _xlmroberta_tokenizer_init(self) -> None:
  2751. # we need the pad_token_id to know how to chop down position_embd matrix
  2752. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2753. self._position_offset = 1 + pad_token_id
  2754. if "max_position_embeddings" in self.hparams:
  2755. self.hparams["max_position_embeddings"] -= self._position_offset
  2756. else:
  2757. self._position_offset = None
  2758. def _xlmroberta_set_vocab(self) -> None:
  2759. # to avoid TypeError: Descriptors cannot be created directly
  2760. # exception when importing sentencepiece_model_pb2
  2761. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2762. from sentencepiece import SentencePieceProcessor
  2763. from sentencepiece import sentencepiece_model_pb2 as model
  2764. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2765. if not tokenizer_path.is_file():
  2766. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2767. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2768. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2769. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2770. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2771. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2772. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2773. tokenizer = SentencePieceProcessor()
  2774. tokenizer.LoadFromFile(str(tokenizer_path))
  2775. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2776. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2777. scores: list[float] = [-10000.0] * vocab_size
  2778. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2779. for token_id in range(tokenizer.vocab_size()):
  2780. piece = tokenizer.IdToPiece(token_id)
  2781. text = piece.encode("utf-8")
  2782. score = tokenizer.GetScore(token_id)
  2783. toktype = SentencePieceTokenTypes.NORMAL
  2784. if tokenizer.IsUnknown(token_id):
  2785. toktype = SentencePieceTokenTypes.UNKNOWN
  2786. elif tokenizer.IsControl(token_id):
  2787. toktype = SentencePieceTokenTypes.CONTROL
  2788. elif tokenizer.IsUnused(token_id):
  2789. toktype = SentencePieceTokenTypes.UNUSED
  2790. elif tokenizer.IsByte(token_id):
  2791. toktype = SentencePieceTokenTypes.BYTE
  2792. tokens[token_id] = text
  2793. scores[token_id] = score
  2794. toktypes[token_id] = toktype
  2795. if vocab_size > len(tokens):
  2796. pad_count = vocab_size - len(tokens)
  2797. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2798. for i in range(1, pad_count + 1):
  2799. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2800. scores.append(-1000.0)
  2801. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2802. # realign tokens (see HF tokenizer code)
  2803. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2804. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2805. toktypes = [
  2806. SentencePieceTokenTypes.CONTROL,
  2807. SentencePieceTokenTypes.CONTROL,
  2808. SentencePieceTokenTypes.CONTROL,
  2809. SentencePieceTokenTypes.UNKNOWN,
  2810. ] + toktypes[3:-1]
  2811. self.gguf_writer.add_tokenizer_model("t5")
  2812. self.gguf_writer.add_tokenizer_pre("default")
  2813. self.gguf_writer.add_token_list(tokens)
  2814. self.gguf_writer.add_token_scores(scores)
  2815. self.gguf_writer.add_token_types(toktypes)
  2816. self.gguf_writer.add_add_space_prefix(add_prefix)
  2817. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2818. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2819. if precompiled_charsmap:
  2820. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2821. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2822. special_vocab.add_to_gguf(self.gguf_writer)
  2823. self.gguf_writer.add_add_bos_token(True)
  2824. self.gguf_writer.add_add_eos_token(True)
  2825. @ModelBase.register("RobertaModel")
  2826. class RobertaModel(BertModel):
  2827. model_arch = gguf.MODEL_ARCH.BERT
  2828. def __init__(self, *args, **kwargs):
  2829. super().__init__(*args, **kwargs)
  2830. # we need the pad_token_id to know how to chop down position_embd matrix
  2831. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2832. self._position_offset = 1 + pad_token_id
  2833. if "max_position_embeddings" in self.hparams:
  2834. self.hparams["max_position_embeddings"] -= self._position_offset
  2835. else:
  2836. self._position_offset = None
  2837. def set_vocab(self):
  2838. """Support BPE tokenizers for roberta models"""
  2839. bpe_tok_path = self.dir_model / "tokenizer.json"
  2840. if bpe_tok_path.exists():
  2841. self._set_vocab_gpt2()
  2842. self.gguf_writer.add_add_bos_token(True)
  2843. self.gguf_writer.add_add_eos_token(True)
  2844. # we need this to validate the size of the token_type embeddings
  2845. # though currently we are passing all zeros to the token_type embeddings
  2846. # "Sequence A" or "Sequence B"
  2847. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2848. else:
  2849. return super().set_vocab()
  2850. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2851. # if name starts with "roberta.", remove the prefix
  2852. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2853. if name.startswith("roberta."):
  2854. name = name[8:]
  2855. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2856. if name == "embeddings.position_embeddings.weight":
  2857. if self._position_offset is not None:
  2858. data_torch = data_torch[self._position_offset:,:]
  2859. return super().modify_tensors(data_torch, name, bid)
  2860. @ModelBase.register("NomicBertModel")
  2861. class NomicBertModel(BertModel):
  2862. model_arch = gguf.MODEL_ARCH.BERT
  2863. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  2864. hparams = kwargs.pop("hparams", None)
  2865. if hparams is None:
  2866. hparams = ModelBase.load_hparams(dir_model)
  2867. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  2868. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  2869. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  2870. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  2871. if self._tokenizer_is_xlmroberta:
  2872. self._xlmroberta_tokenizer_init()
  2873. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2874. self.hparams["n_ctx"] = 2048
  2875. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  2876. # this doesn't do anything in the HF version
  2877. assert self.hparams["causal"] is False
  2878. # no bias tensors unless MoE
  2879. assert self.hparams["qkv_proj_bias"] == self.is_moe
  2880. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  2881. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  2882. # norm at end of layer
  2883. assert self.hparams["prenorm"] is False
  2884. # standard RoPE
  2885. assert self.hparams["rotary_emb_fraction"] == 1.0
  2886. assert self.hparams["rotary_emb_interleaved"] is False
  2887. assert self.hparams["rotary_emb_scale_base"] is None
  2888. def set_vocab(self) -> None:
  2889. if self._tokenizer_is_xlmroberta:
  2890. return self._xlmroberta_set_vocab()
  2891. return super().set_vocab()
  2892. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  2893. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  2894. if "mlp.experts.bias" in name:
  2895. return [] # Explicitly return an empty list.
  2896. if "mlp.experts.mlp.w1" in name:
  2897. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2898. name += ".weight"
  2899. if "mlp.experts.mlp.w2" in name:
  2900. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  2901. data_torch = data_torch.transpose(1, 2)
  2902. name += ".weight"
  2903. return [(self.map_tensor_name(name), data_torch)]
  2904. def set_gguf_parameters(self):
  2905. super().set_gguf_parameters()
  2906. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2907. if self.is_moe:
  2908. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  2909. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  2910. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  2911. def _is_tokenizer_xlmroberta(self) -> bool:
  2912. with open(self.dir_model / "tokenizer.json") as f:
  2913. tokenizer_json = json.load(f)
  2914. toktyp = tokenizer_json["model"]["type"]
  2915. if toktyp == "Unigram":
  2916. return True
  2917. if toktyp == "WordPiece":
  2918. return False
  2919. raise ValueError(f"unknown tokenizer: {toktyp}")
  2920. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2921. class XLMRobertaModel(BertModel):
  2922. model_arch = gguf.MODEL_ARCH.BERT
  2923. def __init__(self, *args, **kwargs):
  2924. super().__init__(*args, **kwargs)
  2925. self._xlmroberta_tokenizer_init()
  2926. def set_vocab(self):
  2927. self._xlmroberta_set_vocab()
  2928. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2929. # if name starts with "roberta.", remove the prefix
  2930. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2931. if name.startswith("roberta."):
  2932. name = name[8:]
  2933. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2934. if name == "embeddings.position_embeddings.weight":
  2935. if self._position_offset is not None:
  2936. data_torch = data_torch[self._position_offset:,:]
  2937. return super().modify_tensors(data_torch, name, bid)
  2938. @ModelBase.register("GemmaForCausalLM")
  2939. class GemmaModel(TextModel):
  2940. model_arch = gguf.MODEL_ARCH.GEMMA
  2941. def set_vocab(self):
  2942. self._set_vocab_sentencepiece()
  2943. # TODO: these special tokens should be exported only for the CodeGemma family
  2944. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2945. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2946. special_vocab._set_special_token("prefix", 67)
  2947. special_vocab._set_special_token("suffix", 69)
  2948. special_vocab._set_special_token("middle", 68)
  2949. special_vocab._set_special_token("fsep", 70)
  2950. special_vocab._set_special_token("eot", 107)
  2951. special_vocab.chat_template = None # do not add it twice
  2952. special_vocab.add_to_gguf(self.gguf_writer)
  2953. self.gguf_writer.add_add_space_prefix(False)
  2954. def set_gguf_parameters(self):
  2955. hparams = self.hparams
  2956. block_count = hparams["num_hidden_layers"]
  2957. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2958. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2959. self.gguf_writer.add_block_count(block_count)
  2960. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2961. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2962. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2963. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2964. self.gguf_writer.add_key_length(hparams["head_dim"])
  2965. self.gguf_writer.add_value_length(hparams["head_dim"])
  2966. self.gguf_writer.add_file_type(self.ftype)
  2967. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2968. del bid # unused
  2969. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2970. # To prevent errors, skip loading lm_head.weight.
  2971. if name == "lm_head.weight":
  2972. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2973. return []
  2974. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2975. if name.endswith("norm.weight"):
  2976. data_torch = data_torch + 1
  2977. return [(self.map_tensor_name(name), data_torch)]
  2978. @ModelBase.register("Gemma2ForCausalLM")
  2979. class Gemma2Model(TextModel):
  2980. model_arch = gguf.MODEL_ARCH.GEMMA2
  2981. def set_vocab(self):
  2982. self._set_vocab_sentencepiece()
  2983. self.gguf_writer.add_add_space_prefix(False)
  2984. def set_gguf_parameters(self):
  2985. hparams = self.hparams
  2986. block_count = hparams["num_hidden_layers"]
  2987. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2988. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2989. self.gguf_writer.add_block_count(block_count)
  2990. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2991. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2992. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2993. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2994. self.gguf_writer.add_key_length(hparams["head_dim"])
  2995. self.gguf_writer.add_value_length(hparams["head_dim"])
  2996. self.gguf_writer.add_file_type(self.ftype)
  2997. self.gguf_writer.add_attn_logit_softcapping(
  2998. self.hparams["attn_logit_softcapping"]
  2999. )
  3000. self.gguf_writer.add_final_logit_softcapping(
  3001. self.hparams["final_logit_softcapping"]
  3002. )
  3003. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3004. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3005. del bid # unused
  3006. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3007. # To prevent errors, skip loading lm_head.weight.
  3008. if name == "lm_head.weight":
  3009. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3010. return []
  3011. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3012. if name.endswith("norm.weight"):
  3013. data_torch = data_torch + 1
  3014. return [(self.map_tensor_name(name), data_torch)]
  3015. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3016. class Gemma3Model(TextModel):
  3017. model_arch = gguf.MODEL_ARCH.GEMMA3
  3018. def set_vocab(self):
  3019. self._set_vocab_sentencepiece()
  3020. self.gguf_writer.add_add_space_prefix(False)
  3021. def set_gguf_parameters(self):
  3022. hparams = self.hparams
  3023. block_count = hparams["num_hidden_layers"]
  3024. # some default values are not specified in the hparams
  3025. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3026. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3027. self.gguf_writer.add_block_count(block_count)
  3028. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3029. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3030. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3031. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3032. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3033. self.gguf_writer.add_file_type(self.ftype)
  3034. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3035. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3036. assert hparams.get("attn_logit_softcapping") is None
  3037. assert hparams.get("final_logit_softcapping") is None
  3038. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3039. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3040. if hparams.get("rope_scaling") is not None:
  3041. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3042. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3043. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3044. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3045. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3046. del bid # unused
  3047. if name.startswith("language_model."):
  3048. name = name.replace("language_model.", "")
  3049. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3050. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3051. return [] # skip vision tensors
  3052. # remove OOV (out-of-vocabulary) rows in token_embd
  3053. if "embed_tokens.weight" in name:
  3054. vocab = self._create_vocab_sentencepiece()
  3055. tokens = vocab[0]
  3056. data_torch = data_torch[:len(tokens)]
  3057. # ref code in Gemma3RMSNorm
  3058. # output = output * (1.0 + self.weight.float())
  3059. if name.endswith("norm.weight"):
  3060. data_torch = data_torch + 1
  3061. return [(self.map_tensor_name(name), data_torch)]
  3062. @ModelBase.register("Gemma3ForConditionalGeneration")
  3063. class Gemma3VisionModel(VisionModel):
  3064. def set_gguf_parameters(self):
  3065. super().set_gguf_parameters()
  3066. hparams = self.hparams
  3067. self.gguf_writer.add_vision_projector_type(gguf.VisionProjectorType.GEMMA3)
  3068. # default values below are taken from HF tranformers code
  3069. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3070. self.gguf_writer.add_vision_use_gelu(True)
  3071. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3072. del bid, new_name, n_dims # unused
  3073. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3074. if "input_projection" in name:
  3075. return gguf.GGMLQuantizationType.F16
  3076. if ".embeddings." in name:
  3077. return gguf.GGMLQuantizationType.F32
  3078. return False
  3079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3080. del bid # unused
  3081. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3082. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3083. # process vision tensors
  3084. name = name.replace("_weight", ".weight")
  3085. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3086. # the other norm values are part of SigLIP model, and they are already correct
  3087. # ref code: Gemma3RMSNorm
  3088. if "soft_emb_norm.weight" in name:
  3089. logger.info(f"Correcting norm value for '{name}'")
  3090. data_torch = data_torch + 1
  3091. return [(self.map_tensor_name(name), data_torch)]
  3092. return [] # skip other tensors
  3093. @ModelBase.register("Starcoder2ForCausalLM")
  3094. class StarCoder2Model(TextModel):
  3095. model_arch = gguf.MODEL_ARCH.STARCODER2
  3096. @ModelBase.register("Rwkv6ForCausalLM")
  3097. class Rwkv6Model(TextModel):
  3098. model_arch = gguf.MODEL_ARCH.RWKV6
  3099. def set_vocab(self):
  3100. self._set_vocab_rwkv_world()
  3101. def set_gguf_parameters(self):
  3102. block_count = self.hparams["num_hidden_layers"]
  3103. head_size = self.hparams["head_size"]
  3104. hidden_size = self.hparams["hidden_size"]
  3105. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3106. rescale_every_n_layers = self.hparams["rescale_every"]
  3107. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3108. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3109. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3110. # RWKV isn't context limited
  3111. self.gguf_writer.add_context_length(1048576)
  3112. self.gguf_writer.add_embedding_length(hidden_size)
  3113. self.gguf_writer.add_block_count(block_count)
  3114. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3115. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3116. self.gguf_writer.add_wkv_head_size(head_size)
  3117. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3118. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3119. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3120. self.gguf_writer.add_file_type(self.ftype)
  3121. # required by llama.cpp, unused
  3122. self.gguf_writer.add_head_count(0)
  3123. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3125. new_name = self.map_tensor_name(name)
  3126. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3127. new_name += ".weight"
  3128. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3129. data_torch = data_torch.transpose(0, 1)
  3130. if new_name.endswith("time_mix_w2.weight"):
  3131. data_torch = data_torch.permute(0, 2, 1)
  3132. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3133. data_torch = data_torch.squeeze()
  3134. try:
  3135. rescale_every_n_layers = self.hparams["rescale_every"]
  3136. if rescale_every_n_layers > 0:
  3137. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3138. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3139. except KeyError:
  3140. pass
  3141. # concat time_mix_lerp weights to reduce some cpu overhead
  3142. # also reduces the number of tensors in the model
  3143. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3144. try:
  3145. self.lerp_weights[bid][new_name] = data_torch
  3146. except KeyError:
  3147. self.lerp_weights[bid] = {new_name: data_torch}
  3148. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3149. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3150. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3151. yield (new_name, data)
  3152. return
  3153. yield (new_name, data_torch)
  3154. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3155. class RWKV6Qwen2Model(Rwkv6Model):
  3156. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3157. def set_vocab(self):
  3158. try:
  3159. self._set_vocab_sentencepiece()
  3160. except FileNotFoundError:
  3161. self._set_vocab_gpt2()
  3162. def set_gguf_parameters(self):
  3163. block_count = self.hparams["num_hidden_layers"]
  3164. num_attention_heads = self.hparams["num_attention_heads"]
  3165. num_key_value_heads = self.hparams["num_key_value_heads"]
  3166. hidden_size = self.hparams["hidden_size"]
  3167. head_size = hidden_size // num_attention_heads
  3168. rms_norm_eps = self.hparams["rms_norm_eps"]
  3169. intermediate_size = self.hparams["intermediate_size"]
  3170. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3171. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3172. # RWKV isn't context limited
  3173. self.gguf_writer.add_context_length(1048576)
  3174. self.gguf_writer.add_embedding_length(hidden_size)
  3175. self.gguf_writer.add_block_count(block_count)
  3176. self.gguf_writer.add_wkv_head_size(head_size)
  3177. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3178. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3179. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3180. self.gguf_writer.add_file_type(self.ftype)
  3181. # special parameters for time_mixing in RWKV6QWEN2
  3182. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3183. self.gguf_writer.add_token_shift_count(1)
  3184. # RWKV6QWEN2 use grouped key/value like GQA
  3185. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3186. # required by llama.cpp, unused
  3187. self.gguf_writer.add_head_count(0)
  3188. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3189. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3190. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3191. data = data.view(5, -1, data.shape[-1])
  3192. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3193. # permute them here to avoid code changes
  3194. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3195. if "w2" in new_name:
  3196. data = data.view(5, -1, data.shape[-1])
  3197. yield (new_name, data)
  3198. continue
  3199. yield (new_name, data)
  3200. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3201. class Rwkv7Model(TextModel):
  3202. model_arch = gguf.MODEL_ARCH.RWKV7
  3203. def set_vocab(self):
  3204. self._set_vocab_rwkv_world()
  3205. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3206. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3207. def set_gguf_parameters(self):
  3208. block_count = self.hparams["num_hidden_layers"]
  3209. try:
  3210. head_size = self.hparams["head_size"]
  3211. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3212. except KeyError:
  3213. head_size = self.hparams["head_dim"]
  3214. layer_norm_eps = self.hparams["norm_eps"]
  3215. hidden_size = self.hparams["hidden_size"]
  3216. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3217. # ICLR: In-Context-Learning-Rate
  3218. try:
  3219. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3220. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3221. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3222. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3223. except KeyError:
  3224. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3225. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3226. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3227. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3228. # RWKV isn't context limited
  3229. self.gguf_writer.add_context_length(1048576)
  3230. self.gguf_writer.add_embedding_length(hidden_size)
  3231. self.gguf_writer.add_block_count(block_count)
  3232. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3233. self.gguf_writer.add_wkv_head_size(head_size)
  3234. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3235. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3236. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3237. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3238. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3239. self.gguf_writer.add_file_type(self.ftype)
  3240. # required by llama.cpp, unused
  3241. self.gguf_writer.add_head_count(0)
  3242. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3243. lora_needs_transpose: bool = True
  3244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3245. # unify tensor names here to make life easier
  3246. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3247. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3248. name = name.replace("time_mixer.", "")
  3249. # lora layer names in fla-hub's impl
  3250. if "_lora.lora" in name:
  3251. self.lora_needs_transpose = False
  3252. name = name.replace("_lora.lora.0.weight", "1.weight")
  3253. name = name.replace("_lora.lora.2.weight", "2.weight")
  3254. name = name.replace("_lora.lora.2.bias", "0.weight")
  3255. name = name.replace("feed_forward_norm", "ln2")
  3256. name = name.replace("g_norm", "ln_x")
  3257. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3258. # some models have dummy v0/v1/v2 on first layer while others don't
  3259. # ignore them all since they are not used
  3260. return
  3261. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3262. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3263. if bid is not None and "attention.x_" in name:
  3264. if "attention.x_x" in name:
  3265. # already concatenated
  3266. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3267. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3268. yield (new_name, data)
  3269. else:
  3270. try:
  3271. self.lerp_weights[bid][name] = data_torch
  3272. except KeyError:
  3273. self.lerp_weights[bid] = {name: data_torch}
  3274. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3275. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3276. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3277. yield (new_name, data)
  3278. return
  3279. else:
  3280. data_torch = data_torch.squeeze()
  3281. new_name = self.map_tensor_name(name)
  3282. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3283. new_name += ".weight"
  3284. if self.lora_needs_transpose and any(
  3285. new_name.endswith(t) for t in [
  3286. "time_mix_w1.weight", "time_mix_w2.weight",
  3287. "time_mix_a1.weight", "time_mix_a2.weight",
  3288. "time_mix_v1.weight", "time_mix_v2.weight",
  3289. "time_mix_g1.weight", "time_mix_g2.weight",
  3290. ]
  3291. ):
  3292. data_torch = data_torch.transpose(0, 1)
  3293. if 'r_k' in new_name:
  3294. data_torch = data_torch.flatten()
  3295. if bid == 0 and "time_mix_a" in new_name:
  3296. # dummy v0/v1/v2 on first layer
  3297. # easist way to make llama happy
  3298. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3299. yield (new_name, data_torch)
  3300. @ModelBase.register("RwkvHybridForCausalLM")
  3301. class ARwkv7Model(Rwkv7Model):
  3302. model_arch = gguf.MODEL_ARCH.ARWKV7
  3303. def set_vocab(self):
  3304. try:
  3305. self._set_vocab_sentencepiece()
  3306. except FileNotFoundError:
  3307. self._set_vocab_gpt2()
  3308. def set_gguf_parameters(self):
  3309. block_count = self.hparams["num_hidden_layers"]
  3310. hidden_size = self.hparams["hidden_size"]
  3311. head_size = self.hparams["head_size"]
  3312. rms_norm_eps = self.hparams["rms_norm_eps"]
  3313. intermediate_size = self.hparams["intermediate_size"]
  3314. wkv_has_gate = self.hparams["wkv_has_gate"]
  3315. assert self.hparams["wkv_version"] == 7
  3316. # ICLR: In-Context-Learning-Rate
  3317. lora_rank_decay = 64
  3318. lora_rank_iclr = 64
  3319. lora_rank_value_residual_mix = 32
  3320. lora_rank_gate = 128 if wkv_has_gate else 0
  3321. # RWKV isn't context limited
  3322. self.gguf_writer.add_context_length(1048576)
  3323. self.gguf_writer.add_embedding_length(hidden_size)
  3324. self.gguf_writer.add_block_count(block_count)
  3325. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3326. self.gguf_writer.add_wkv_head_size(head_size)
  3327. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3328. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3329. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3330. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3331. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3332. self.gguf_writer.add_file_type(self.ftype)
  3333. self.gguf_writer.add_token_shift_count(1)
  3334. # required by llama.cpp, unused
  3335. self.gguf_writer.add_head_count(0)
  3336. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3337. class MambaModel(TextModel):
  3338. model_arch = gguf.MODEL_ARCH.MAMBA
  3339. def set_vocab(self):
  3340. vocab_size = self.hparams["vocab_size"]
  3341. # Round vocab size to next multiple of 8
  3342. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3343. # pad using ceiling division
  3344. # ref: https://stackoverflow.com/a/17511341/22827863
  3345. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3346. self.hparams["vocab_size"] = vocab_size
  3347. if (self.dir_model / "tokenizer.json").is_file():
  3348. self._set_vocab_gpt2()
  3349. elif (self.dir_model / "tokenizer.model").is_file():
  3350. self._set_vocab_sentencepiece()
  3351. else:
  3352. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3353. self._set_vocab_builtin("gpt-neox", vocab_size)
  3354. def set_gguf_parameters(self):
  3355. d_model = self.find_hparam(["hidden_size", "d_model"])
  3356. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3357. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3358. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3359. # ceiling division
  3360. # ref: https://stackoverflow.com/a/17511341/22827863
  3361. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3362. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3363. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3364. use_dt_b_c_norm = False
  3365. # For falconmamba we do apply RMS norm on B / DT and C layers
  3366. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3367. use_dt_b_c_norm = True
  3368. # Fail early for models which don't have a block expansion factor of 2
  3369. assert d_inner == 2 * d_model
  3370. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3371. self.gguf_writer.add_embedding_length(d_model)
  3372. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3373. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3374. self.gguf_writer.add_block_count(self.block_count)
  3375. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3376. self.gguf_writer.add_ssm_inner_size(d_inner)
  3377. self.gguf_writer.add_ssm_state_size(d_state)
  3378. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3379. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3380. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3381. self.gguf_writer.add_file_type(self.ftype)
  3382. _tok_embd = None
  3383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3384. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3385. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3386. new_name = self.map_tensor_name(name)
  3387. if name.endswith(".A_log"):
  3388. logger.debug("A_log --> A ==> " + new_name)
  3389. data_torch = -torch.exp(data_torch)
  3390. # [4 1 8192 1] -> [4 8192 1 1]
  3391. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3392. data_torch = data_torch.squeeze()
  3393. # assuming token_embd.weight is seen before output.weight
  3394. if self._tok_embd is not None and new_name == output_name:
  3395. if torch.equal(self._tok_embd, data_torch):
  3396. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3397. return []
  3398. elif new_name == tok_embd_name:
  3399. self._tok_embd = data_torch
  3400. return [(new_name, data_torch)]
  3401. @ModelBase.register("CohereForCausalLM")
  3402. class CommandR2Model(TextModel):
  3403. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3404. def __init__(self, *args, **kwargs):
  3405. super().__init__(*args, **kwargs)
  3406. # max_position_embeddings = 8192 in config.json but model was actually
  3407. # trained on 128k context length
  3408. # aya-23 models don't have model_max_length specified
  3409. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3410. def set_gguf_parameters(self):
  3411. super().set_gguf_parameters()
  3412. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3413. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3414. @ModelBase.register("Cohere2ForCausalLM")
  3415. class Cohere2Model(TextModel):
  3416. model_arch = gguf.MODEL_ARCH.COHERE2
  3417. def set_gguf_parameters(self):
  3418. super().set_gguf_parameters()
  3419. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3420. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3421. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3422. rotary_pct = self.hparams["rotary_pct"]
  3423. hidden_size = self.hparams["hidden_size"]
  3424. num_attention_heads = self.hparams["num_attention_heads"]
  3425. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3426. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3427. @ModelBase.register("OlmoForCausalLM")
  3428. @ModelBase.register("OLMoForCausalLM")
  3429. class OlmoModel(TextModel):
  3430. model_arch = gguf.MODEL_ARCH.OLMO
  3431. def set_gguf_parameters(self):
  3432. super().set_gguf_parameters()
  3433. self.gguf_writer.add_layer_norm_eps(1e-5)
  3434. clip_qkv = self.hparams.get("clip_qkv")
  3435. if clip_qkv is not None:
  3436. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3437. # Same as super class, but permuting q_proj, k_proj
  3438. # Copied from: LlamaModel
  3439. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3440. del bid # unused
  3441. n_head = self.hparams["num_attention_heads"]
  3442. n_kv_head = self.hparams.get("num_key_value_heads")
  3443. if name.endswith("q_proj.weight"):
  3444. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3445. if name.endswith("k_proj.weight"):
  3446. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3447. return [(self.map_tensor_name(name), data_torch)]
  3448. @ModelBase.register("Olmo2ForCausalLM")
  3449. class Olmo2Model(TextModel):
  3450. model_arch = gguf.MODEL_ARCH.OLMO2
  3451. @ModelBase.register("OlmoeForCausalLM")
  3452. class OlmoeModel(TextModel):
  3453. model_arch = gguf.MODEL_ARCH.OLMOE
  3454. def set_gguf_parameters(self):
  3455. super().set_gguf_parameters()
  3456. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3457. if (n_experts := self.hparams.get("num_experts")) is not None:
  3458. self.gguf_writer.add_expert_count(n_experts)
  3459. _experts: list[dict[str, Tensor]] | None = None
  3460. # Copied from: Qwen2MoeModel
  3461. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3462. # process the experts separately
  3463. if name.find("experts") != -1:
  3464. n_experts = self.hparams["num_experts"]
  3465. assert bid is not None
  3466. if self._experts is None:
  3467. self._experts = [{} for _ in range(self.block_count)]
  3468. self._experts[bid][name] = data_torch
  3469. if len(self._experts[bid]) >= n_experts * 3:
  3470. tensors: list[tuple[str, Tensor]] = []
  3471. # merge the experts into a single 3d tensor
  3472. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3473. datas: list[Tensor] = []
  3474. for xid in range(n_experts):
  3475. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3476. datas.append(self._experts[bid][ename])
  3477. del self._experts[bid][ename]
  3478. data_torch = torch.stack(datas, dim=0)
  3479. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3480. new_name = self.map_tensor_name(merged_name)
  3481. tensors.append((new_name, data_torch))
  3482. return tensors
  3483. else:
  3484. return []
  3485. return [(self.map_tensor_name(name), data_torch)]
  3486. # Copied from: Qwen2MoeModel
  3487. def prepare_tensors(self):
  3488. super().prepare_tensors()
  3489. if self._experts is not None:
  3490. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3491. experts = [k for d in self._experts for k in d.keys()]
  3492. if len(experts) > 0:
  3493. raise ValueError(f"Unprocessed experts: {experts}")
  3494. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3495. class JinaBertV2Model(BertModel):
  3496. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3497. def __init__(self, *args, **kwargs):
  3498. super().__init__(*args, **kwargs)
  3499. self.intermediate_size = self.hparams["intermediate_size"]
  3500. def get_tensors(self):
  3501. for name, data in super().get_tensors():
  3502. if 'gated_layer' in name:
  3503. d1 = data[:self.intermediate_size, :]
  3504. name1 = name.replace('gated_layers', 'gated_layers_w')
  3505. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3506. d2 = data[self.intermediate_size:, :]
  3507. name2 = name.replace('gated_layers', 'gated_layers_v')
  3508. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3509. yield name1, d1
  3510. yield name2, d2
  3511. continue
  3512. yield name, data
  3513. def set_vocab(self):
  3514. tokenizer_class = 'BertTokenizer'
  3515. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3516. tokenizer_class = json.load(f)['tokenizer_class']
  3517. if tokenizer_class == 'BertTokenizer':
  3518. super().set_vocab()
  3519. elif tokenizer_class == 'RobertaTokenizer':
  3520. self._set_vocab_gpt2()
  3521. self.gguf_writer.add_token_type_count(2)
  3522. else:
  3523. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3524. self.gguf_writer.add_add_bos_token(True)
  3525. self.gguf_writer.add_add_eos_token(True)
  3526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3527. # if name starts with "bert.", remove the prefix
  3528. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3529. if name.startswith("bert."):
  3530. name = name[5:]
  3531. return super().modify_tensors(data_torch, name, bid)
  3532. @ModelBase.register("OpenELMForCausalLM")
  3533. class OpenELMModel(TextModel):
  3534. model_arch = gguf.MODEL_ARCH.OPENELM
  3535. @staticmethod
  3536. def _make_divisible(v: float | int, divisor: int) -> int:
  3537. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3538. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3539. # Make sure that round down does not go down by more than 10%.
  3540. if new_v < 0.9 * v:
  3541. new_v += divisor
  3542. return new_v
  3543. def __init__(self, *args, **kwargs):
  3544. super().__init__(*args, **kwargs)
  3545. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3546. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3547. self._n_embd: int = self.hparams["model_dim"]
  3548. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3549. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3550. self._ffn_dims: list[int] = [
  3551. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3552. for multiplier in ffn_multipliers
  3553. ]
  3554. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3555. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3556. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3557. def set_vocab(self):
  3558. try:
  3559. self._set_vocab_sentencepiece()
  3560. except FileNotFoundError:
  3561. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3562. def set_gguf_parameters(self):
  3563. n_embd = self._n_embd
  3564. head_dim = self.hparams["head_dim"]
  3565. rot_pct = 1.0
  3566. assert self.block_count == len(self._num_kv_heads)
  3567. assert self.block_count == len(self._num_query_heads)
  3568. assert self.block_count == len(self._ffn_dims)
  3569. self.gguf_writer.add_block_count(self.block_count)
  3570. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3571. self.gguf_writer.add_embedding_length(n_embd)
  3572. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3573. self.gguf_writer.add_head_count(self._num_query_heads)
  3574. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3575. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3576. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3577. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3578. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3579. self.gguf_writer.add_key_length(head_dim)
  3580. self.gguf_writer.add_value_length(head_dim)
  3581. self.gguf_writer.add_file_type(self.ftype)
  3582. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3583. if "n_layers" in keys:
  3584. return self.hparams["num_transformer_layers"]
  3585. return super().find_hparam(keys, optional)
  3586. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3587. # split ff
  3588. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3589. ff_dim = self._ffn_dims[bid]
  3590. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3591. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3592. return
  3593. yield (self.map_tensor_name(name), data_torch)
  3594. @ModelBase.register("ArcticForCausalLM")
  3595. class ArcticModel(TextModel):
  3596. model_arch = gguf.MODEL_ARCH.ARCTIC
  3597. def set_vocab(self):
  3598. # The reason for using a custom implementation here is that the
  3599. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3600. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3601. from sentencepiece import SentencePieceProcessor
  3602. tokenizer_path = self.dir_model / 'tokenizer.model'
  3603. if not tokenizer_path.is_file():
  3604. logger.error(f'Error: Missing {tokenizer_path}')
  3605. sys.exit(1)
  3606. # Read the whole vocabulary from the tokenizer.model file
  3607. tokenizer = SentencePieceProcessor()
  3608. tokenizer.LoadFromFile(str(tokenizer_path))
  3609. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3610. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3611. scores: list[float] = [-10000.0] * vocab_size
  3612. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3613. for token_id in range(tokenizer.vocab_size()):
  3614. piece = tokenizer.IdToPiece(token_id)
  3615. text = piece.encode("utf-8")
  3616. score = tokenizer.GetScore(token_id)
  3617. toktype = SentencePieceTokenTypes.NORMAL
  3618. if tokenizer.IsUnknown(token_id):
  3619. toktype = SentencePieceTokenTypes.UNKNOWN
  3620. elif tokenizer.IsControl(token_id):
  3621. toktype = SentencePieceTokenTypes.CONTROL
  3622. elif tokenizer.IsUnused(token_id):
  3623. toktype = SentencePieceTokenTypes.UNUSED
  3624. elif tokenizer.IsByte(token_id):
  3625. toktype = SentencePieceTokenTypes.BYTE
  3626. tokens[token_id] = text
  3627. scores[token_id] = score
  3628. toktypes[token_id] = toktype
  3629. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3630. # of information about added/redefined tokens and modify them accordingly.
  3631. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3632. if tokenizer_config_file.is_file():
  3633. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3634. tokenizer_config_json = json.load(f)
  3635. if "added_tokens_decoder" in tokenizer_config_json:
  3636. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3637. for token_id, token_json in added_tokens_decoder.items():
  3638. token_id = int(token_id)
  3639. if token_id >= vocab_size:
  3640. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3641. continue
  3642. token_content = token_json["content"]
  3643. token_type = SentencePieceTokenTypes.USER_DEFINED
  3644. token_score = -10000.0
  3645. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3646. # Set the score to 0.0 as in the original tokenizer.model
  3647. if ("special" in token_json) and token_json["special"]:
  3648. if token_content == tokenizer_config_json["unk_token"]:
  3649. token_type = SentencePieceTokenTypes.UNKNOWN
  3650. else:
  3651. token_type = SentencePieceTokenTypes.CONTROL
  3652. token_score = 0.0
  3653. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3654. tokens[token_id] = token_content.encode("utf-8")
  3655. toktypes[token_id] = token_type
  3656. scores[token_id] = token_score
  3657. self.gguf_writer.add_tokenizer_model("llama")
  3658. self.gguf_writer.add_tokenizer_pre("default")
  3659. self.gguf_writer.add_token_list(tokens)
  3660. self.gguf_writer.add_token_scores(scores)
  3661. self.gguf_writer.add_token_types(toktypes)
  3662. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3663. special_vocab.add_to_gguf(self.gguf_writer)
  3664. def set_gguf_parameters(self):
  3665. super().set_gguf_parameters()
  3666. hparams = self.hparams
  3667. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3668. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3669. _experts: list[dict[str, Tensor]] | None = None
  3670. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3671. n_head = self.hparams["num_attention_heads"]
  3672. n_kv_head = self.hparams.get("num_key_value_heads")
  3673. if name.endswith("q_proj.weight"):
  3674. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3675. if name.endswith("k_proj.weight"):
  3676. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3677. # process the experts separately
  3678. if name.find("block_sparse_moe.experts") != -1:
  3679. n_experts = self.hparams["num_local_experts"]
  3680. assert bid is not None
  3681. if self._experts is None:
  3682. self._experts = [{} for _ in range(self.block_count)]
  3683. self._experts[bid][name] = data_torch
  3684. if len(self._experts[bid]) >= n_experts * 3:
  3685. tensors: list[tuple[str, Tensor]] = []
  3686. # merge the experts into a single 3d tensor
  3687. for wid in ["w1", "w2", "w3"]:
  3688. datas: list[Tensor] = []
  3689. for xid in range(n_experts):
  3690. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3691. datas.append(self._experts[bid][ename])
  3692. del self._experts[bid][ename]
  3693. data_torch = torch.stack(datas, dim=0)
  3694. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3695. new_name = self.map_tensor_name(merged_name)
  3696. tensors.append((new_name, data_torch))
  3697. return tensors
  3698. else:
  3699. return []
  3700. return [(self.map_tensor_name(name), data_torch)]
  3701. def prepare_tensors(self):
  3702. super().prepare_tensors()
  3703. if self._experts is not None:
  3704. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3705. experts = [k for d in self._experts for k in d.keys()]
  3706. if len(experts) > 0:
  3707. raise ValueError(f"Unprocessed experts: {experts}")
  3708. @ModelBase.register("DeepseekForCausalLM")
  3709. class DeepseekModel(TextModel):
  3710. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3711. def set_vocab(self):
  3712. try:
  3713. self._set_vocab_sentencepiece()
  3714. except FileNotFoundError:
  3715. self._set_vocab_gpt2()
  3716. def set_gguf_parameters(self):
  3717. super().set_gguf_parameters()
  3718. hparams = self.hparams
  3719. if "head_dim" in hparams:
  3720. rope_dim = hparams["head_dim"]
  3721. else:
  3722. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3723. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3724. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3725. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3726. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3727. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3728. self.gguf_writer.add_expert_weights_scale(1.0)
  3729. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3730. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3731. _experts: list[dict[str, Tensor]] | None = None
  3732. @staticmethod
  3733. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3734. if n_head_kv is not None and n_head != n_head_kv:
  3735. n_head = n_head_kv
  3736. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3737. .swapaxes(1, 2)
  3738. .reshape(weights.shape))
  3739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3740. n_head = self.hparams["num_attention_heads"]
  3741. n_kv_head = self.hparams.get("num_key_value_heads")
  3742. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3743. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3744. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3745. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3746. # process the experts separately
  3747. if name.find("mlp.experts") != -1:
  3748. n_experts = self.hparams["n_routed_experts"]
  3749. assert bid is not None
  3750. if self._experts is None:
  3751. self._experts = [{} for _ in range(self.block_count)]
  3752. self._experts[bid][name] = data_torch
  3753. if len(self._experts[bid]) >= n_experts * 3:
  3754. tensors: list[tuple[str, Tensor]] = []
  3755. # merge the experts into a single 3d tensor
  3756. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3757. datas: list[Tensor] = []
  3758. for xid in range(n_experts):
  3759. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3760. datas.append(self._experts[bid][ename])
  3761. del self._experts[bid][ename]
  3762. data_torch = torch.stack(datas, dim=0)
  3763. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3764. new_name = self.map_tensor_name(merged_name)
  3765. tensors.append((new_name, data_torch))
  3766. return tensors
  3767. else:
  3768. return []
  3769. return [(self.map_tensor_name(name), data_torch)]
  3770. def prepare_tensors(self):
  3771. super().prepare_tensors()
  3772. if self._experts is not None:
  3773. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3774. experts = [k for d in self._experts for k in d.keys()]
  3775. if len(experts) > 0:
  3776. raise ValueError(f"Unprocessed experts: {experts}")
  3777. @ModelBase.register("DeepseekV2ForCausalLM")
  3778. @ModelBase.register("DeepseekV3ForCausalLM")
  3779. class DeepseekV2Model(TextModel):
  3780. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3781. def set_vocab(self):
  3782. self._set_vocab_gpt2()
  3783. def set_gguf_parameters(self):
  3784. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  3785. self.hparams["num_key_value_heads"] = 1
  3786. super().set_gguf_parameters()
  3787. hparams = self.hparams
  3788. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3789. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3790. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3791. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3792. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3793. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  3794. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  3795. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  3796. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3797. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  3798. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3799. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3800. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3801. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3802. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3803. if hparams["scoring_func"] == "sigmoid":
  3804. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3805. elif hparams["scoring_func"] == "softmax":
  3806. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3807. else:
  3808. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3809. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3810. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3811. if self.hparams["rope_scaling"].get("type") == "yarn":
  3812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3813. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3814. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3815. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3816. _experts: list[dict[str, Tensor]] | None = None
  3817. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3818. # rename e_score_correction_bias tensors
  3819. if name.endswith("e_score_correction_bias"):
  3820. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3821. # skip Multi-Token Prediction (MTP) layers
  3822. block_count = self.hparams["num_hidden_layers"]
  3823. match = re.match(r"model.layers.(\d+)", name)
  3824. if match and int(match.group(1)) >= block_count:
  3825. return []
  3826. # process the experts separately
  3827. if name.find("mlp.experts") != -1:
  3828. n_experts = self.hparams["n_routed_experts"]
  3829. assert bid is not None
  3830. if self._experts is None:
  3831. self._experts = [{} for _ in range(self.block_count)]
  3832. self._experts[bid][name] = data_torch
  3833. if len(self._experts[bid]) >= n_experts * 3:
  3834. tensors: list[tuple[str, Tensor]] = []
  3835. # merge the experts into a single 3d tensor
  3836. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3837. datas: list[Tensor] = []
  3838. for xid in range(n_experts):
  3839. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3840. datas.append(self._experts[bid][ename])
  3841. del self._experts[bid][ename]
  3842. data_torch = torch.stack(datas, dim=0)
  3843. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3844. new_name = self.map_tensor_name(merged_name)
  3845. tensors.append((new_name, data_torch))
  3846. return tensors
  3847. else:
  3848. return []
  3849. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  3850. if name.endswith("kv_b_proj.weight"):
  3851. name_kb = name.replace("kv_b_proj", "k_b_proj")
  3852. name_vb = name.replace("kv_b_proj", "v_b_proj")
  3853. n_head_kv = self.hparams["num_key_value_heads"]
  3854. v_head_dim = self.hparams["v_head_dim"]
  3855. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  3856. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  3857. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  3858. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  3859. k_b = k_b.transpose(1, 2)
  3860. return [
  3861. (self.map_tensor_name(name_kb), k_b),
  3862. (self.map_tensor_name(name_vb), v_b)
  3863. ]
  3864. return [(self.map_tensor_name(name), data_torch)]
  3865. def prepare_tensors(self):
  3866. super().prepare_tensors()
  3867. if self._experts is not None:
  3868. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3869. experts = [k for d in self._experts for k in d.keys()]
  3870. if len(experts) > 0:
  3871. raise ValueError(f"Unprocessed experts: {experts}")
  3872. @ModelBase.register("PLMForCausalLM")
  3873. class PLMModel(TextModel):
  3874. model_arch = gguf.MODEL_ARCH.PLM
  3875. def set_vocab(self):
  3876. self._set_vocab_gpt2()
  3877. def set_gguf_parameters(self):
  3878. super().set_gguf_parameters()
  3879. hparams = self.hparams
  3880. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3881. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3882. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3883. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3884. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3886. return [(self.map_tensor_name(name), data_torch)]
  3887. def prepare_tensors(self):
  3888. super().prepare_tensors()
  3889. @ModelBase.register("T5WithLMHeadModel")
  3890. @ModelBase.register("T5ForConditionalGeneration")
  3891. @ModelBase.register("MT5ForConditionalGeneration")
  3892. @ModelBase.register("UMT5ForConditionalGeneration")
  3893. class T5Model(TextModel):
  3894. model_arch = gguf.MODEL_ARCH.T5
  3895. def __init__(self, *args, **kwargs):
  3896. super().__init__(*args, **kwargs)
  3897. self.shared_token_embeddings_found = False
  3898. def set_vocab(self):
  3899. # to avoid TypeError: Descriptors cannot be created directly
  3900. # exception when importing sentencepiece_model_pb2
  3901. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3902. from sentencepiece import SentencePieceProcessor
  3903. from sentencepiece import sentencepiece_model_pb2 as model
  3904. tokenizer_path = self.dir_model / 'tokenizer.model'
  3905. # many older models use spiece.model tokenizer model filename
  3906. if not tokenizer_path.is_file():
  3907. tokenizer_path = self.dir_model / 'spiece.model'
  3908. if not tokenizer_path.is_file():
  3909. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3910. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3911. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3912. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3913. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3914. # assure the tokenizer model file name is correct
  3915. assert tokenizer_path.name == 'tokenizer.model'
  3916. return self._set_vocab_sentencepiece()
  3917. else:
  3918. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3919. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3920. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3921. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3922. tokenizer = SentencePieceProcessor()
  3923. tokenizer.LoadFromFile(str(tokenizer_path))
  3924. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3925. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3926. scores: list[float] = [-10000.0] * vocab_size
  3927. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3928. for token_id in range(tokenizer.vocab_size()):
  3929. piece = tokenizer.IdToPiece(token_id)
  3930. text = piece.encode("utf-8")
  3931. score = tokenizer.GetScore(token_id)
  3932. toktype = SentencePieceTokenTypes.NORMAL
  3933. if tokenizer.IsUnknown(token_id):
  3934. toktype = SentencePieceTokenTypes.UNKNOWN
  3935. elif tokenizer.IsControl(token_id):
  3936. toktype = SentencePieceTokenTypes.CONTROL
  3937. elif tokenizer.IsUnused(token_id):
  3938. toktype = SentencePieceTokenTypes.UNUSED
  3939. elif tokenizer.IsByte(token_id):
  3940. toktype = SentencePieceTokenTypes.BYTE
  3941. tokens[token_id] = text
  3942. scores[token_id] = score
  3943. toktypes[token_id] = toktype
  3944. added_tokens_file = self.dir_model / 'added_tokens.json'
  3945. if added_tokens_file.is_file():
  3946. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3947. added_tokens_json = json.load(f)
  3948. for key in added_tokens_json:
  3949. token_id = added_tokens_json[key]
  3950. if token_id >= vocab_size:
  3951. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3952. continue
  3953. tokens[token_id] = key.encode("utf-8")
  3954. scores[token_id] = -1000.0
  3955. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3956. if vocab_size > len(tokens):
  3957. pad_count = vocab_size - len(tokens)
  3958. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3959. for i in range(1, pad_count + 1):
  3960. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3961. scores.append(-1000.0)
  3962. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3963. self.gguf_writer.add_tokenizer_model("t5")
  3964. self.gguf_writer.add_tokenizer_pre("default")
  3965. self.gguf_writer.add_token_list(tokens)
  3966. self.gguf_writer.add_token_scores(scores)
  3967. self.gguf_writer.add_token_types(toktypes)
  3968. self.gguf_writer.add_add_space_prefix(add_prefix)
  3969. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3970. if precompiled_charsmap:
  3971. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3972. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3973. special_vocab.add_to_gguf(self.gguf_writer)
  3974. self.gguf_writer.add_add_bos_token(False)
  3975. self.gguf_writer.add_add_eos_token(True)
  3976. def set_gguf_parameters(self):
  3977. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3978. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3979. n_ctx = 512
  3980. self.gguf_writer.add_context_length(n_ctx)
  3981. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3982. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3983. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3984. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3985. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3986. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3987. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3988. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3989. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3990. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3991. self.gguf_writer.add_file_type(self.ftype)
  3992. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3993. del bid # unused
  3994. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3995. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3996. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3997. # and decoder and ignore the remaining ones.
  3998. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3999. if not self.shared_token_embeddings_found:
  4000. name = "shared.weight"
  4001. self.shared_token_embeddings_found = True
  4002. else:
  4003. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4004. return []
  4005. return [(self.map_tensor_name(name), data_torch)]
  4006. @ModelBase.register("T5EncoderModel")
  4007. class T5EncoderModel(TextModel):
  4008. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4009. def __init__(self, *args, **kwargs):
  4010. super().__init__(*args, **kwargs)
  4011. self.shared_token_embeddings_found = False
  4012. def set_vocab(self):
  4013. # to avoid TypeError: Descriptors cannot be created directly
  4014. # exception when importing sentencepiece_model_pb2
  4015. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4016. from sentencepiece import SentencePieceProcessor
  4017. from sentencepiece import sentencepiece_model_pb2 as model
  4018. tokenizer_path = self.dir_model / 'tokenizer.model'
  4019. # many older models use spiece.model tokenizer model filename
  4020. if not tokenizer_path.is_file():
  4021. tokenizer_path = self.dir_model / 'spiece.model'
  4022. if not tokenizer_path.is_file():
  4023. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4024. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4025. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4026. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4027. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4028. # assure the tokenizer model file name is correct
  4029. assert tokenizer_path.name == 'tokenizer.model'
  4030. return self._set_vocab_sentencepiece()
  4031. else:
  4032. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4033. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4034. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4035. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4036. tokenizer = SentencePieceProcessor()
  4037. tokenizer.LoadFromFile(str(tokenizer_path))
  4038. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4039. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4040. scores: list[float] = [-10000.0] * vocab_size
  4041. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4042. for token_id in range(tokenizer.vocab_size()):
  4043. piece = tokenizer.IdToPiece(token_id)
  4044. text = piece.encode("utf-8")
  4045. score = tokenizer.GetScore(token_id)
  4046. toktype = SentencePieceTokenTypes.NORMAL
  4047. if tokenizer.IsUnknown(token_id):
  4048. toktype = SentencePieceTokenTypes.UNKNOWN
  4049. elif tokenizer.IsControl(token_id):
  4050. toktype = SentencePieceTokenTypes.CONTROL
  4051. elif tokenizer.IsUnused(token_id):
  4052. toktype = SentencePieceTokenTypes.UNUSED
  4053. elif tokenizer.IsByte(token_id):
  4054. toktype = SentencePieceTokenTypes.BYTE
  4055. tokens[token_id] = text
  4056. scores[token_id] = score
  4057. toktypes[token_id] = toktype
  4058. added_tokens_file = self.dir_model / 'added_tokens.json'
  4059. if added_tokens_file.is_file():
  4060. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4061. added_tokens_json = json.load(f)
  4062. for key in added_tokens_json:
  4063. token_id = added_tokens_json[key]
  4064. if token_id >= vocab_size:
  4065. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4066. continue
  4067. tokens[token_id] = key.encode("utf-8")
  4068. scores[token_id] = -1000.0
  4069. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4070. if vocab_size > len(tokens):
  4071. pad_count = vocab_size - len(tokens)
  4072. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4073. for i in range(1, pad_count + 1):
  4074. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4075. scores.append(-1000.0)
  4076. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4077. self.gguf_writer.add_tokenizer_model("t5")
  4078. self.gguf_writer.add_tokenizer_pre("default")
  4079. self.gguf_writer.add_token_list(tokens)
  4080. self.gguf_writer.add_token_scores(scores)
  4081. self.gguf_writer.add_token_types(toktypes)
  4082. self.gguf_writer.add_add_space_prefix(add_prefix)
  4083. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4084. if precompiled_charsmap:
  4085. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4086. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4087. special_vocab.add_to_gguf(self.gguf_writer)
  4088. self.gguf_writer.add_add_bos_token(False)
  4089. self.gguf_writer.add_add_eos_token(True)
  4090. def set_gguf_parameters(self):
  4091. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4092. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4093. n_ctx = 512
  4094. self.gguf_writer.add_context_length(n_ctx)
  4095. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4096. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4097. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4098. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4099. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4100. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4101. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4102. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4103. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4104. self.gguf_writer.add_file_type(self.ftype)
  4105. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4106. del bid # unused
  4107. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4108. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4109. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4110. # and decoder and ignore the remaining ones.
  4111. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4112. if not self.shared_token_embeddings_found:
  4113. name = "shared.weight"
  4114. self.shared_token_embeddings_found = True
  4115. else:
  4116. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4117. return []
  4118. return [(self.map_tensor_name(name), data_torch)]
  4119. @ModelBase.register("JAISLMHeadModel")
  4120. class JaisModel(TextModel):
  4121. model_arch = gguf.MODEL_ARCH.JAIS
  4122. def __init__(self, *args, **kwargs):
  4123. super().__init__(*args, **kwargs)
  4124. # SwigLU activation
  4125. assert self.hparams["activation_function"] == "swiglu"
  4126. # ALiBi position embedding
  4127. assert self.hparams["position_embedding_type"] == "alibi"
  4128. # Embeddings scale
  4129. self.embeddings_scale = 1.0
  4130. if 'mup_embeddings_scale' in self.hparams:
  4131. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4132. elif 'embeddings_scale' in self.hparams:
  4133. self.embeddings_scale = self.hparams['embeddings_scale']
  4134. else:
  4135. assert False
  4136. self.width_scale = 1.0
  4137. if 'mup_output_alpha' in self.hparams:
  4138. assert 'mup_width_scale' in self.hparams
  4139. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4140. elif 'width_scale' in self.hparams:
  4141. self.width_scale = self.hparams['width_scale']
  4142. else:
  4143. assert False
  4144. self.max_alibi_bias = 8.0
  4145. def set_vocab(self):
  4146. self._set_vocab_gpt2()
  4147. def set_gguf_parameters(self):
  4148. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4149. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4150. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4151. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4152. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4153. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4154. self.gguf_writer.add_file_type(self.ftype)
  4155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4156. del bid # unused
  4157. tensors: list[tuple[str, Tensor]] = []
  4158. # we don't need these
  4159. if name.endswith((".attn.bias")):
  4160. return tensors
  4161. if name.endswith(("relative_pe.slopes")):
  4162. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4163. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4164. # but Jais's PyTorch model simply precalculates the slope values and places them
  4165. # in relative_pes.slopes
  4166. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4167. first_val = float(data_torch[0].item())
  4168. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4169. return tensors
  4170. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4171. data_torch = data_torch.transpose(1, 0)
  4172. new_name = self.map_tensor_name(name)
  4173. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4174. tensors.append((new_name, data_torch * self.embeddings_scale))
  4175. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4176. tensors.append((new_name, data_torch * self.width_scale))
  4177. else:
  4178. tensors.append((new_name, data_torch))
  4179. return tensors
  4180. def prepare_tensors(self):
  4181. super().prepare_tensors()
  4182. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4183. @ModelBase.register("Glm4ForCausalLM")
  4184. class Glm4Model(TextModel):
  4185. model_arch = gguf.MODEL_ARCH.GLM4
  4186. def set_vocab(self):
  4187. from transformers import AutoTokenizer
  4188. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4189. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4190. tokens, toktypes, tokpre = self.get_vocab_base()
  4191. self.gguf_writer.add_tokenizer_model("gpt2")
  4192. self.gguf_writer.add_tokenizer_pre(tokpre)
  4193. self.gguf_writer.add_token_list(tokens)
  4194. self.gguf_writer.add_token_types(toktypes)
  4195. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4196. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4197. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4198. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4199. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4200. special_vocab.add_to_gguf(self.gguf_writer)
  4201. def set_gguf_parameters(self):
  4202. super().set_gguf_parameters()
  4203. rope_dim = self.hparams["head_dim"]
  4204. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4205. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  4206. if self.hparams["rope_scaling"].get("type") == "yarn":
  4207. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4208. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  4209. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  4210. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4211. class ChatGLMModel(TextModel):
  4212. model_arch = gguf.MODEL_ARCH.CHATGLM
  4213. def set_vocab_chatglm3(self):
  4214. dir_model = self.dir_model
  4215. hparams = self.hparams
  4216. tokens: list[bytes] = []
  4217. toktypes: list[int] = []
  4218. scores: list[float] = []
  4219. from transformers import AutoTokenizer
  4220. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4221. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4222. assert max(tokenizer.get_vocab().values()) < vocab_size
  4223. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4224. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4225. for token_id in range(vocab_size):
  4226. piece = tokenizer._convert_id_to_token(token_id)
  4227. if token_id == 0:
  4228. piece = "<unk>"
  4229. elif token_id == 1:
  4230. piece = "<bos>"
  4231. elif token_id == 2:
  4232. piece = "<eos>"
  4233. text = piece.encode("utf-8")
  4234. score = 0.0
  4235. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4236. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4237. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4238. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4239. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4240. if piece in special_tokens:
  4241. toktype = SentencePieceTokenTypes.CONTROL
  4242. elif len(piece) == 0:
  4243. text = f"[PAD{token_id}]".encode("utf-8")
  4244. toktype = SentencePieceTokenTypes.UNUSED
  4245. else:
  4246. toktype = SentencePieceTokenTypes.USER_DEFINED
  4247. tokens.append(text)
  4248. scores.append(score)
  4249. toktypes.append(toktype)
  4250. continue
  4251. toktype = SentencePieceTokenTypes.NORMAL
  4252. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4253. toktype = SentencePieceTokenTypes.UNKNOWN
  4254. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4255. toktype = SentencePieceTokenTypes.CONTROL
  4256. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4257. toktype = SentencePieceTokenTypes.UNUSED
  4258. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4259. toktype = SentencePieceTokenTypes.BYTE
  4260. tokens.append(text)
  4261. scores.append(score)
  4262. toktypes.append(toktype)
  4263. self.gguf_writer.add_tokenizer_model("llama")
  4264. # glm3 needs prefix and suffix formatted as:
  4265. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4266. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4267. self.gguf_writer.add_token_list(tokens)
  4268. self.gguf_writer.add_token_scores(scores)
  4269. self.gguf_writer.add_token_types(toktypes)
  4270. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4271. special_vocab.add_to_gguf(self.gguf_writer)
  4272. @staticmethod
  4273. def token_bytes_to_string(b):
  4274. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4275. byte_encoder = bytes_to_unicode()
  4276. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4277. @staticmethod
  4278. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4279. parts = [bytes([b]) for b in token]
  4280. while True:
  4281. min_idx = None
  4282. min_rank = None
  4283. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4284. rank = mergeable_ranks.get(pair[0] + pair[1])
  4285. if rank is not None and (min_rank is None or rank < min_rank):
  4286. min_idx = i
  4287. min_rank = rank
  4288. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4289. break
  4290. assert min_idx is not None
  4291. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4292. return parts
  4293. def set_vocab(self):
  4294. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4295. self.set_vocab_chatglm3()
  4296. return
  4297. dir_model = self.dir_model
  4298. hparams = self.hparams
  4299. tokens: list[str] = []
  4300. toktypes: list[int] = []
  4301. from transformers import AutoTokenizer
  4302. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4303. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4304. assert max(tokenizer.get_vocab().values()) < vocab_size
  4305. tokens, toktypes, tokpre = self.get_vocab_base()
  4306. self.gguf_writer.add_tokenizer_model("gpt2")
  4307. self.gguf_writer.add_tokenizer_pre(tokpre)
  4308. self.gguf_writer.add_token_list(tokens)
  4309. self.gguf_writer.add_token_types(toktypes)
  4310. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4311. # only add special tokens when they were not already loaded from config.json
  4312. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4313. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4314. # this one is usually not in config.json anyway
  4315. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4316. special_vocab.add_to_gguf(self.gguf_writer)
  4317. def set_gguf_parameters(self):
  4318. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4319. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4320. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4321. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4322. self.gguf_writer.add_embedding_length(n_embed)
  4323. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4324. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4325. self.gguf_writer.add_head_count(n_head)
  4326. self.gguf_writer.add_head_count_kv(n_head_kv)
  4327. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4328. self.gguf_writer.add_file_type(self.ftype)
  4329. if "attention_dim" in self.hparams:
  4330. rope_dim = self.hparams["attention_dim"]
  4331. else:
  4332. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4333. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4334. self.gguf_writer.add_add_bos_token(False)
  4335. rope_freq = 10000
  4336. if "rope_ratio" in self.hparams:
  4337. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4338. self.gguf_writer.add_rope_freq_base(rope_freq)
  4339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4340. del bid # unused
  4341. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4342. return []
  4343. name = name.removeprefix("transformer.")
  4344. return [(self.map_tensor_name(name), data_torch)]
  4345. @ModelBase.register("NemotronForCausalLM")
  4346. class NemotronModel(TextModel):
  4347. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4348. def set_vocab(self):
  4349. self._set_vocab_sentencepiece()
  4350. self.gguf_writer.add_pad_token_id(0)
  4351. self.gguf_writer.add_unk_token_id(1)
  4352. def set_gguf_parameters(self):
  4353. super().set_gguf_parameters()
  4354. hparams = self.hparams
  4355. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4356. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4357. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4358. # * Partial RoPE
  4359. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4360. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4361. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4362. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4363. # * RopeScaling for Nemotron
  4364. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4365. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4366. else:
  4367. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4368. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4370. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4371. # model.layers.{l}.input_layernorm.weight
  4372. # model.layers.{l}.post_attention_layernorm.weight
  4373. # model.norm.weight
  4374. if name.endswith("norm.weight"):
  4375. data_torch = data_torch + 1
  4376. return [(self.map_tensor_name(name), data_torch)]
  4377. @ModelBase.register("ExaoneForCausalLM")
  4378. class ExaoneModel(TextModel):
  4379. model_arch = gguf.MODEL_ARCH.EXAONE
  4380. def set_gguf_parameters(self):
  4381. hparams = self.hparams
  4382. assert (hparams["activation_function"] == "silu")
  4383. max_position_embeddings = hparams["max_position_embeddings"]
  4384. embed_dim = hparams["hidden_size"]
  4385. num_heads = hparams["num_attention_heads"]
  4386. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4387. layer_norm_eps = hparams["layer_norm_epsilon"]
  4388. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4389. num_layers = hparams["num_layers"]
  4390. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4391. # attention_dropout_rate = hparams["attention_dropout"]
  4392. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4393. # embed_dropout_rate = hparams["embed_dropout"]
  4394. self.gguf_writer.add_embedding_length(embed_dim)
  4395. self.gguf_writer.add_head_count(num_heads)
  4396. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4397. self.gguf_writer.add_context_length(max_position_embeddings)
  4398. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4399. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4400. self.gguf_writer.add_block_count(num_layers)
  4401. self.gguf_writer.add_file_type(self.ftype)
  4402. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4403. self.gguf_writer.add_rope_freq_base(rope_theta)
  4404. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4405. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4406. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4407. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4408. if hparams["rope_scaling"].get("type") == "linear":
  4409. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4410. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4411. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4412. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4413. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4414. base = self.hparams.get("rope_theta", 10000.0)
  4415. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4416. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4417. factor = rope_scaling.get("factor", 8.0)
  4418. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4419. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4420. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4421. low_freq_wavelen = old_context_len / low_freq_factor
  4422. high_freq_wavelen = old_context_len / high_freq_factor
  4423. assert low_freq_wavelen != high_freq_wavelen
  4424. rope_factors = []
  4425. for freq in freqs:
  4426. wavelen = 2 * math.pi / freq
  4427. if wavelen < high_freq_wavelen:
  4428. rope_factors.append(1)
  4429. elif wavelen > low_freq_wavelen:
  4430. rope_factors.append(factor)
  4431. else:
  4432. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4433. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4434. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4435. @ModelBase.register("GraniteForCausalLM")
  4436. class GraniteModel(LlamaModel):
  4437. """Conversion for IBM's GraniteForCausalLM"""
  4438. model_arch = gguf.MODEL_ARCH.GRANITE
  4439. def set_gguf_parameters(self):
  4440. """Granite uses standard llama parameters with the following differences:
  4441. - No head_dim support
  4442. - New multiplier params:
  4443. - attention_scale
  4444. - embedding_scale
  4445. - residual_scale
  4446. - logits_scaling
  4447. """
  4448. if head_dim := self.hparams.pop("head_dim", None):
  4449. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4450. super().set_gguf_parameters()
  4451. # NOTE: Convert _multiplier params to _scale params for naming
  4452. # consistency
  4453. if attention_scale := self.hparams.get("attention_multiplier"):
  4454. self.gguf_writer.add_attention_scale(attention_scale)
  4455. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4456. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4457. self.gguf_writer.add_embedding_scale(embedding_scale)
  4458. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4459. if residual_scale := self.hparams.get("residual_multiplier"):
  4460. self.gguf_writer.add_residual_scale(residual_scale)
  4461. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4462. if logits_scale := self.hparams.get("logits_scaling"):
  4463. self.gguf_writer.add_logit_scale(logits_scale)
  4464. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4465. @ModelBase.register("GraniteMoeForCausalLM")
  4466. class GraniteMoeModel(GraniteModel):
  4467. """Conversion for IBM's GraniteMoeForCausalLM"""
  4468. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4470. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4471. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4472. the hidden size that is then split during forward. To keep compatibility
  4473. with existing mixtral support, we pull them apart here.
  4474. """
  4475. if name.endswith("block_sparse_moe.input_linear.weight"):
  4476. ffn_dim = self.hparams["intermediate_size"]
  4477. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4478. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4479. return [
  4480. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4481. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4482. ]
  4483. return super().modify_tensors(data_torch, name, bid)
  4484. @ModelBase.register("BailingMoeForCausalLM")
  4485. class BailingMoeModel(TextModel):
  4486. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4487. def set_vocab(self):
  4488. self._set_vocab_gpt2()
  4489. def set_gguf_parameters(self):
  4490. super().set_gguf_parameters()
  4491. hparams = self.hparams
  4492. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4493. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4494. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4495. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4496. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4497. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4498. self.gguf_writer.add_expert_weights_scale(1.0)
  4499. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4500. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4501. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4502. _experts: list[dict[str, Tensor]] | None = None
  4503. @staticmethod
  4504. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4505. if n_head_kv is not None and n_head != n_head_kv:
  4506. n_head = n_head_kv
  4507. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4508. .swapaxes(1, 2)
  4509. .reshape(weights.shape))
  4510. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4511. n_head = self.hparams["num_attention_heads"]
  4512. n_kv_head = self.hparams.get("num_key_value_heads")
  4513. n_embd = self.hparams["hidden_size"]
  4514. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4515. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4516. if name.endswith("attention.dense.weight"):
  4517. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4518. elif name.endswith("query_key_value.weight"):
  4519. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4520. return [
  4521. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4522. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4523. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4524. ]
  4525. elif name.find("mlp.experts") != -1:
  4526. n_experts = self.hparams["num_experts"]
  4527. assert bid is not None
  4528. tensors: list[tuple[str, Tensor]] = []
  4529. if self._experts is None:
  4530. self._experts = [{} for _ in range(self.block_count)]
  4531. self._experts[bid][name] = data_torch
  4532. if len(self._experts[bid]) >= n_experts * 3:
  4533. # merge the experts into a single 3d tensor
  4534. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4535. datas: list[Tensor] = []
  4536. for xid in range(n_experts):
  4537. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4538. datas.append(self._experts[bid][ename])
  4539. del self._experts[bid][ename]
  4540. data_torch = torch.stack(datas, dim=0)
  4541. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4542. new_name = self.map_tensor_name(merged_name)
  4543. tensors.append((new_name, data_torch))
  4544. return tensors
  4545. new_name = self.map_tensor_name(name)
  4546. if new_name == output_name and self.hparams.get("norm_head"):
  4547. data_torch = data_torch.float()
  4548. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4549. return [(new_name, data_torch)]
  4550. def prepare_tensors(self):
  4551. super().prepare_tensors()
  4552. if self._experts is not None:
  4553. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4554. experts = [k for d in self._experts for k in d.keys()]
  4555. if len(experts) > 0:
  4556. raise ValueError(f"Unprocessed experts: {experts}")
  4557. @ModelBase.register("ChameleonForConditionalGeneration")
  4558. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4559. class ChameleonModel(TextModel):
  4560. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4561. def set_gguf_parameters(self):
  4562. super().set_gguf_parameters()
  4563. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4564. def set_vocab(self):
  4565. self._set_vocab_gpt2()
  4566. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4567. # ignore image tokenizer for now
  4568. # TODO: remove this once image support is implemented for Chameleon
  4569. if name.startswith("model.vqmodel"):
  4570. return []
  4571. n_head = self.hparams["num_attention_heads"]
  4572. n_kv_head = self.hparams.get("num_key_value_heads")
  4573. hidden_dim = self.hparams.get("hidden_size")
  4574. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4575. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4576. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4577. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4578. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4579. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4580. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4581. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4582. return [(self.map_tensor_name(name), data_torch)]
  4583. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4584. @staticmethod
  4585. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4586. head_dim = hidden_dim // n_heads
  4587. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4588. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4589. return data_torch
  4590. ###### CONVERSION LOGIC ######
  4591. # tree of lazy tensors
  4592. class LazyTorchTensor(gguf.LazyBase):
  4593. _tensor_type = torch.Tensor
  4594. # to keep the type-checker happy
  4595. dtype: torch.dtype
  4596. shape: torch.Size
  4597. # only used when converting a torch.Tensor to a np.ndarray
  4598. _dtype_map: dict[torch.dtype, type] = {
  4599. torch.float16: np.float16,
  4600. torch.float32: np.float32,
  4601. }
  4602. # used for safetensors slices
  4603. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4604. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4605. _dtype_str_map: dict[str, torch.dtype] = {
  4606. "F64": torch.float64,
  4607. "F32": torch.float32,
  4608. "BF16": torch.bfloat16,
  4609. "F16": torch.float16,
  4610. # "U64": torch.uint64,
  4611. "I64": torch.int64,
  4612. # "U32": torch.uint32,
  4613. "I32": torch.int32,
  4614. # "U16": torch.uint16,
  4615. "I16": torch.int16,
  4616. "U8": torch.uint8,
  4617. "I8": torch.int8,
  4618. "BOOL": torch.bool,
  4619. "F8_E4M3": torch.float8_e4m3fn,
  4620. "F8_E5M2": torch.float8_e5m2,
  4621. }
  4622. def numpy(self) -> gguf.LazyNumpyTensor:
  4623. dtype = self._dtype_map[self.dtype]
  4624. return gguf.LazyNumpyTensor(
  4625. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4626. args=(self,),
  4627. func=(lambda s: s.numpy())
  4628. )
  4629. @classmethod
  4630. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4631. return torch.empty(size=shape, dtype=dtype, device="meta")
  4632. @classmethod
  4633. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4634. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4635. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4636. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4637. return cast(torch.Tensor, lazy)
  4638. @classmethod
  4639. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  4640. dtype = cls._dtype_str_map[remote_tensor.dtype]
  4641. shape = remote_tensor.shape
  4642. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  4643. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  4644. return cast(torch.Tensor, lazy)
  4645. @classmethod
  4646. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4647. del types # unused
  4648. if kwargs is None:
  4649. kwargs = {}
  4650. if func is torch.Tensor.numpy:
  4651. return args[0].numpy()
  4652. return cls._wrap_fn(func)(*args, **kwargs)
  4653. def parse_args() -> argparse.Namespace:
  4654. parser = argparse.ArgumentParser(
  4655. description="Convert a huggingface model to a GGML compatible file")
  4656. parser.add_argument(
  4657. "--vocab-only", action="store_true",
  4658. help="extract only the vocab",
  4659. )
  4660. parser.add_argument(
  4661. "--outfile", type=Path,
  4662. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4663. )
  4664. parser.add_argument(
  4665. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4666. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4667. )
  4668. parser.add_argument(
  4669. "--bigendian", action="store_true",
  4670. help="model is executed on big endian machine",
  4671. )
  4672. parser.add_argument(
  4673. "model", type=Path,
  4674. help="directory containing model file",
  4675. nargs="?",
  4676. )
  4677. parser.add_argument(
  4678. "--use-temp-file", action="store_true",
  4679. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4680. )
  4681. parser.add_argument(
  4682. "--no-lazy", action="store_true",
  4683. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4684. )
  4685. parser.add_argument(
  4686. "--model-name", type=str, default=None,
  4687. help="name of the model",
  4688. )
  4689. parser.add_argument(
  4690. "--verbose", action="store_true",
  4691. help="increase output verbosity",
  4692. )
  4693. parser.add_argument(
  4694. "--split-max-tensors", type=int, default=0,
  4695. help="max tensors in each split",
  4696. )
  4697. parser.add_argument(
  4698. "--split-max-size", type=str, default="0",
  4699. help="max size per split N(M|G)",
  4700. )
  4701. parser.add_argument(
  4702. "--dry-run", action="store_true",
  4703. help="only print out a split plan and exit, without writing any new files",
  4704. )
  4705. parser.add_argument(
  4706. "--no-tensor-first-split", action="store_true",
  4707. help="do not add tensors to the first split (disabled by default)"
  4708. )
  4709. parser.add_argument(
  4710. "--metadata", type=Path,
  4711. help="Specify the path for an authorship metadata override file"
  4712. )
  4713. parser.add_argument(
  4714. "--print-supported-models", action="store_true",
  4715. help="Print the supported models"
  4716. )
  4717. parser.add_argument(
  4718. "--remote", action="store_true",
  4719. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  4720. )
  4721. parser.add_argument(
  4722. "--mmproj", action="store_true",
  4723. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  4724. )
  4725. args = parser.parse_args()
  4726. if not args.print_supported_models and args.model is None:
  4727. parser.error("the following arguments are required: model")
  4728. return args
  4729. def split_str_to_n_bytes(split_str: str) -> int:
  4730. if split_str.endswith("K"):
  4731. n = int(split_str[:-1]) * 1000
  4732. elif split_str.endswith("M"):
  4733. n = int(split_str[:-1]) * 1000 * 1000
  4734. elif split_str.endswith("G"):
  4735. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4736. elif split_str.isnumeric():
  4737. n = int(split_str)
  4738. else:
  4739. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4740. if n < 0:
  4741. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4742. return n
  4743. def get_model_architecture(dir_model: Path, model_type: ModelType, hparams: Any = None) -> str:
  4744. hparams = ModelBase.load_hparams(dir_model) if hparams is None else hparams
  4745. text_config = hparams.get("text_config", {})
  4746. vision_config = hparams.get("vision_config", {})
  4747. arch = hparams["architectures"][0]
  4748. # if "architectures" is found in the sub-config, use that instead
  4749. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  4750. arch = text_config["architectures"][0]
  4751. elif model_type == ModelType.VISION and vision_config.get("architectures") is not None:
  4752. arch = vision_config["architectures"][0]
  4753. return arch
  4754. def main() -> None:
  4755. args = parse_args()
  4756. if args.print_supported_models:
  4757. logger.error("Supported models:")
  4758. ModelBase.print_registered_models()
  4759. sys.exit(0)
  4760. if args.verbose:
  4761. logging.basicConfig(level=logging.DEBUG)
  4762. else:
  4763. logging.basicConfig(level=logging.INFO)
  4764. dir_model = args.model
  4765. if args.remote:
  4766. from huggingface_hub import snapshot_download
  4767. local_dir = snapshot_download(
  4768. repo_id=str(dir_model),
  4769. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  4770. dir_model = Path(local_dir)
  4771. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  4772. if not dir_model.is_dir():
  4773. logger.error(f'Error: {args.model} is not a directory')
  4774. sys.exit(1)
  4775. ftype_map: dict[str, gguf.LlamaFileType] = {
  4776. "f32": gguf.LlamaFileType.ALL_F32,
  4777. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4778. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4779. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4780. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4781. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4782. "auto": gguf.LlamaFileType.GUESSED,
  4783. }
  4784. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4785. if args.use_temp_file and is_split:
  4786. logger.error("Error: Cannot use temp file when splitting")
  4787. sys.exit(1)
  4788. if args.outfile is not None:
  4789. fname_out = args.outfile
  4790. elif args.remote:
  4791. # if remote, use the model ID as the output file name
  4792. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  4793. else:
  4794. fname_out = dir_model
  4795. logger.info(f"Loading model: {dir_model.name}")
  4796. if args.mmproj:
  4797. if "mmproj" not in fname_out.name:
  4798. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  4799. with torch.inference_mode():
  4800. output_type = ftype_map[args.outtype]
  4801. model_type = ModelType.VISION if args.mmproj else ModelType.TEXT
  4802. model_architecture = get_model_architecture(dir_model, model_type)
  4803. logger.info(f"Model architecture: {model_architecture}")
  4804. try:
  4805. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  4806. except NotImplementedError:
  4807. logger.error(f"Model {model_architecture} is not supported")
  4808. sys.exit(1)
  4809. model_instance = model_class(dir_model, output_type, fname_out,
  4810. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4811. eager=args.no_lazy,
  4812. metadata_override=args.metadata, model_name=args.model_name,
  4813. split_max_tensors=args.split_max_tensors,
  4814. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4815. small_first_shard=args.no_tensor_first_split,
  4816. remote_hf_model_id=str(args.model) if args.remote else None)
  4817. if args.vocab_only:
  4818. logger.info("Exporting model vocab...")
  4819. model_instance.write_vocab()
  4820. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4821. else:
  4822. logger.info("Exporting model...")
  4823. model_instance.write()
  4824. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4825. logger.info(f"Model successfully exported to {out_path}")
  4826. if __name__ == '__main__':
  4827. main()