| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- // single thread
- #define CPPHTTPLIB_THREAD_POOL_COUNT 1
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- #include "httplib.h"
- #include "json.hpp"
- #ifndef SERVER_VERBOSE
- #define SERVER_VERBOSE 1
- #endif
- using namespace httplib;
- using json = nlohmann::json;
- struct server_params {
- std::string hostname = "127.0.0.1";
- int32_t port = 8080;
- int32_t read_timeout = 600;
- int32_t write_timeout = 600;
- };
- // completion token output with probabilities
- struct completion_token_output {
- struct token_prob {
- llama_token tok;
- float prob;
- };
- std::vector<token_prob> probs;
- llama_token tok;
- };
- static size_t common_part(const std::vector<llama_token> & a, const std::vector<llama_token> & b) {
- size_t i;
- for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++) {}
- return i;
- }
- enum stop_type {
- STOP_FULL,
- STOP_PARTIAL,
- };
- static bool ends_with(const std::string & str, const std::string & suffix) {
- return str.size() >= suffix.size() &&
- 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
- }
- static size_t find_partial_stop_string(const std::string & stop,
- const std::string & text) {
- if (!text.empty() && !stop.empty()) {
- const char text_last_char = text.back();
- for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--) {
- if (stop[char_index] == text_last_char) {
- const std::string current_partial = stop.substr(0, char_index + 1);
- if (ends_with(text, current_partial)) {
- return text.size() - char_index - 1;
- }
- }
- }
- }
- return std::string::npos;
- }
- template<class Iter>
- static std::string tokens_to_str(llama_context * ctx, Iter begin, Iter end) {
- std::string ret;
- for (; begin != end; ++begin) {
- ret += llama_token_to_str(ctx, *begin);
- }
- return ret;
- }
- static void server_log(const char * level, const char * function, int line,
- const char * message, const nlohmann::ordered_json & extra) {
- nlohmann::ordered_json log {
- { "timestamp", time(nullptr) },
- { "level", level },
- { "function", function },
- { "line", line },
- { "message", message },
- };
- if (!extra.empty()) {
- log.merge_patch(extra);
- }
- const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
- fprintf(stdout, "%.*s\n", (int)str.size(), str.data());
- fflush(stdout);
- }
- // format incomplete utf-8 multibyte character for output
- static std::string tokens_to_output_formatted_string(const llama_context * ctx, const llama_token token) {
- std::string out = token == -1 ? "" : llama_token_to_str(ctx, token);
- // if first bit is 1, meaning it's a partial character
- if (out.size() > 0 && (out[0] & 0x80) == 0x80) {
- std::stringstream ss;
- ss<< std::hex << (out[0] & 0xff);
- std::string res ( ss.str() );
- out = "byte: \\x" + res;
- }
- return out;
- }
- // convert a vector of completion_token_output to json
- static json probs_vector_to_json(const llama_context * ctx, const std::vector<completion_token_output> probs) {
- json out = json::array();
- for (const auto & prob : probs) {
- json probs_for_token = json::array();
- for (const auto & p : prob.probs) {
- std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
- probs_for_token.push_back(json {
- { "tok_str", tok_str },
- { "prob", p.prob },
- });
- }
- std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
- out.push_back(json {
- {"content", tok_str},
- {"probs", probs_for_token},
- });
- }
- return out;
- }
- static bool server_verbose = false;
- #if SERVER_VERBOSE != 1
- # define LOG_VERBOSE(MSG, ...)
- #else
- # define LOG_VERBOSE(MSG, ...) \
- do { \
- if (server_verbose) { \
- server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
- } \
- } while(0)
- #endif
- #define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
- struct llama_server_context {
- bool stream = false;
- bool has_next_token = false;
- std::string generated_text;
- std::vector<completion_token_output> generated_token_probs;
- size_t num_tokens_predicted = 0;
- size_t n_past = 0;
- size_t n_remain = 0;
- std::vector<llama_token> embd;
- std::vector<llama_token> last_n_tokens;
- llama_model * model = nullptr;
- llama_context * ctx = nullptr;
- gpt_params params;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- std::string stopping_word;
- int32_t multibyte_pending = 0;
- ~llama_server_context() {
- if (ctx) {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model) {
- llama_free_model(model);
- model = nullptr;
- }
- }
- void rewind() {
- params.antiprompt.clear();
- num_tokens_predicted = 0;
- generated_text = "";
- generated_text.reserve(params.n_ctx);
- generated_token_probs.clear();
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- multibyte_pending = 0;
- n_remain = 0;
- n_past = 0;
- }
- bool loadModel(const gpt_params & params_) {
- params = params_;
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == nullptr) {
- LOG_ERROR("unable to load model", { { "model", params_.model } });
- return false;
- }
- last_n_tokens.resize(params.n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- return true;
- }
- void loadPrompt() {
- params.prompt.insert(0, 1, ' '); // always add a first space
- std::vector<llama_token> prompt_tokens = ::llama_tokenize(ctx, params.prompt, true);
- if (params.n_keep < 0) {
- params.n_keep = (int)prompt_tokens.size();
- }
- params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
- // if input prompt is too big, truncate like normal
- if (prompt_tokens.size() >= (size_t)params.n_ctx) {
- const int n_left = (params.n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
- const int erased_blocks = (prompt_tokens.size() - params.n_keep - n_left - 1) / n_left;
- new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
- std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
- LOG_VERBOSE("input truncated", {
- { "n_ctx", params.n_ctx },
- { "n_keep", params.n_keep },
- { "n_left", n_left },
- { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
- });
- truncated = true;
- prompt_tokens = new_tokens;
- } else {
- const size_t ps = prompt_tokens.size();
- std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
- std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
- }
- // compare the evaluated prompt with the new prompt
- n_past = common_part(embd, prompt_tokens);
- embd = prompt_tokens;
- if (n_past == prompt_tokens.size()) {
- // we have to evaluate at least 1 token to generate logits.
- n_past--;
- }
- LOG_VERBOSE("prompt ingested", {
- { "n_past", n_past },
- { "cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past) },
- { "to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
- });
- has_next_token = true;
- }
- void beginCompletion() {
- // number of tokens to keep when resetting context
- n_remain = params.n_predict;
- llama_set_rng_seed(ctx, params.seed);
- }
- completion_token_output nextToken() {
- completion_token_output result;
- result.tok = -1;
- if (embd.size() >= (size_t)params.n_ctx) {
- // Reset context
- const int n_left = (params.n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(embd.begin(), embd.begin() + params.n_keep);
- new_tokens.insert(new_tokens.end(), embd.end() - n_left, embd.end());
- embd = new_tokens;
- n_past = params.n_keep;
- truncated = true;
- LOG_VERBOSE("input truncated", {
- { "n_ctx", params.n_ctx },
- { "n_keep", params.n_keep },
- { "n_left", n_left },
- { "new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend()) },
- });
- }
- while (n_past < embd.size()) {
- int n_eval = (int)embd.size() - n_past;
- if (n_eval > params.n_batch) {
- n_eval = params.n_batch;
- }
- if (llama_eval(ctx, &embd[n_past], n_eval, n_past, params.n_threads)) {
- LOG_ERROR("failed to eval", {
- { "n_eval", n_eval },
- { "n_past", n_past },
- { "n_threads", params.n_threads },
- { "embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend()) },
- });
- has_next_token = false;
- return result;
- }
- n_past += n_eval;
- }
- if (params.n_predict == 0) {
- has_next_token = false;
- result.tok = llama_token_eos();
- return result;
- }
- // out of user input, sample next token
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(ctx) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? params.n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- const int32_t n_probs = params.n_probs;
- {
- auto * logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(ctx);
- // Apply params.logit_bias map
- for (const auto & it : params.logit_bias) {
- logits[it.first] += it.second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
- candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
- }
- llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
- // Apply penalties
- float nl_logit = logits[llama_token_nl()];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), params.n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl) {
- logits[llama_token_nl()] = nl_logit;
- }
- if (temp <= 0) {
- // Greedy sampling
- result.tok = llama_sample_token_greedy(ctx, &candidates_p);
- if (n_probs > 0) {
- llama_sample_softmax(ctx, &candidates_p);
- }
- } else {
- if (mirostat == 1) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- } else if (mirostat == 2) {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- } else {
- // Temperature sampling
- size_t min_keep = std::max(1, n_probs);
- llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
- llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
- llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
- llama_sample_temperature(ctx, &candidates_p, temp);
- result.tok = llama_sample_token(ctx, &candidates_p);
- }
- }
- for (size_t i = 0; i < std::min(candidates_p.size, (size_t) n_probs); ++i) {
- result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(result.tok);
- num_tokens_predicted++;
- }
- // add it to the context
- embd.push_back(result.tok);
- // decrement remaining sampling budget
- --n_remain;
- if (!embd.empty() && embd.back() == llama_token_eos()) {
- //stopping_word = llama_token_to_str(ctx, embd.back());
- has_next_token = false;
- stopped_eos = true;
- LOG_VERBOSE("eos token found", {});
- return result;
- }
- has_next_token = params.n_predict == -1 || n_remain != 0;
- return result;
- }
- size_t findStoppingStrings(const std::string & text, const size_t last_token_size,
- const stop_type type) {
- size_t stop_pos = std::string::npos;
- for (const std::string & word : params.antiprompt) {
- size_t pos;
- if (type == STOP_FULL) {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- }
- else {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos &&
- (stop_pos == std::string::npos || pos < stop_pos)) {
- if (type == STOP_FULL) {
- stopping_word = word;
- stopped_word = true;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- completion_token_output doCompletion() {
- const completion_token_output token_with_probs = nextToken();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_str(ctx, token_with_probs.tok);
- generated_text += token_text;
- if (params.n_probs > 0) {
- generated_token_probs.push_back(token_with_probs);
- }
- if (multibyte_pending > 0) {
- multibyte_pending -= token_text.size();
- } else if (token_text.size() == 1) {
- const char c = token_text[0];
- // 2-byte characters: 110xxxxx 10xxxxxx
- if ((c & 0xE0) == 0xC0) {
- multibyte_pending = 1;
- // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
- } else if ((c & 0xF0) == 0xE0) {
- multibyte_pending = 2;
- // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- } else if ((c & 0xF8) == 0xF0) {
- multibyte_pending = 3;
- } else {
- multibyte_pending = 0;
- }
- }
- if (multibyte_pending > 0 && !has_next_token) {
- has_next_token = true;
- n_remain++;
- }
- if (!has_next_token && n_remain == 0) {
- stopped_limit = true;
- }
- LOG_VERBOSE("next token", {
- { "token", token_with_probs.tok },
- { "token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok) },
- { "has_next_token", has_next_token },
- { "n_remain", n_remain },
- { "num_tokens_predicted", num_tokens_predicted },
- { "stopped_eos", stopped_eos },
- { "stopped_word", stopped_word },
- { "stopped_limit", stopped_limit },
- { "stopping_word", stopping_word },
- });
- return token_with_probs;
- }
- std::vector<float> getEmbedding() {
- static const int n_embd = llama_n_embd(ctx);
- if (!params.embedding) {
- LOG_WARNING("embedding disabled", {
- { "params.embedding", params.embedding },
- });
- return std::vector<float>(n_embd, 0.0f);
- }
- const float * data = llama_get_embeddings(ctx);
- std::vector<float> embedding(data, data + n_embd);
- return embedding;
- }
- };
- static void server_print_usage(const char * argv0, const gpt_params & params,
- const server_params & sparams) {
- fprintf(stderr, "usage: %s [options]\n", argv0);
- fprintf(stderr, "\n");
- fprintf(stderr, "options:\n");
- fprintf(stderr, " -h, --help show this help message and exit\n");
- fprintf(stderr, " -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
- fprintf(stderr, " -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- fprintf(stderr, " -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- fprintf(stderr, " -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- fprintf(stderr, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- fprintf(stderr, " not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_mlock_supported()) {
- fprintf(stderr, " --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_mmap_supported()) {
- fprintf(stderr, " --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
- fprintf(stderr, " number of layers to store in VRAM\n");
- fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
- fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
- fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
- fprintf(stderr, " -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
- fprintf(stderr, " -lv, --low-vram don't allocate VRAM scratch buffer\n");
- #endif
- fprintf(stderr, " -m FNAME, --model FNAME\n");
- fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
- fprintf(stderr, " -a ALIAS, --alias ALIAS\n");
- fprintf(stderr, " set an alias for the model, will be added as `model` field in completion response\n");
- fprintf(stderr, " --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- fprintf(stderr, " --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- fprintf(stderr, " --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
- fprintf(stderr, " --port PORT port to listen (default (default: %d)\n", sparams.port);
- fprintf(stderr, " -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
- fprintf(stderr, " --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
- fprintf(stderr, "\n");
- }
- static void server_params_parse(int argc, char ** argv, server_params & sparams,
- gpt_params & params) {
- gpt_params default_params;
- server_params default_sparams;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++) {
- arg = argv[i];
- if (arg == "--port") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- } else if (arg == "--host") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- } else if (arg == "--timeout" || arg == "-to") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- sparams.read_timeout = std::stoi(argv[i]);
- sparams.write_timeout = std::stoi(argv[i]);
- } else if (arg == "-m" || arg == "--model") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- } else if (arg == "-a" || arg == "--alias") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- } else if (arg == "-h" || arg == "--help") {
- server_print_usage(argv[0], default_params, default_sparams);
- exit(0);
- } else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- } else if (arg == "--memory-f32" || arg == "--memory_f32") {
- params.memory_f16 = false;
- } else if (arg == "--threads" || arg == "-t") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.n_threads = std::stoi(argv[i]);
- } else if (arg == "-b" || arg == "--batch-size") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.n_batch = std::stoi(argv[i]);
- params.n_batch = std::min(512, params.n_batch);
- } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params.n_gpu_layers = std::stoi(argv[i]);
- #else
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
- "See main README.md for information on enabling GPU BLAS support", { { "n_gpu_layers", params.n_gpu_layers } });
- #endif
- }
- else if (arg == "--tensor-split" || arg == "-ts") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{ R"([,/]+)" };
- std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
- std::vector<std::string> split_arg{ it, {} };
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device) {
- if (i_device < split_arg.size()) {
- params.tensor_split[i_device] = std::stof(split_arg[i_device]);
- }
- else {
- params.tensor_split[i_device] = 0.0f;
- }
- }
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--low-vram" || arg == "-lv")
- {
- #ifdef GGML_USE_CUBLAS
- params.low_vram = true;
- #else
- fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--main-gpu" || arg == "-mg") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- params.main_gpu = std::stoi(argv[i]);
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
- #endif
- } else if (arg == "--lora") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.lora_adapter = argv[i];
- params.use_mmap = false;
- } else if (arg == "--lora-base") {
- if (++i >= argc) {
- invalid_param = true;
- break;
- }
- params.lora_base = argv[i];
- } else if (arg == "-v" || arg == "--verbose") {
- #if SERVER_VERBOSE != 1
- LOG_WARNING("server.cpp is not built with verbose logging.", {});
- #else
- server_verbose = true;
- #endif
- } else if (arg == "--mlock") {
- params.use_mlock = true;
- } else if (arg == "--no-mmap") {
- params.use_mmap = false;
- } else if (arg == "--embedding") {
- params.embedding = true;
- } else {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- if (invalid_param) {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- static json format_generation_settings(llama_server_context & llama) {
- const auto eos_bias = llama.params.logit_bias.find(llama_token_eos());
- const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
- eos_bias->second < 0.0f && std::isinf(eos_bias->second);
- return json {
- { "seed", llama.params.seed },
- { "temp", llama.params.temp },
- { "top_k", llama.params.top_k },
- { "top_p", llama.params.top_p },
- { "tfs_z", llama.params.tfs_z },
- { "typical_p", llama.params.typical_p },
- { "repeat_last_n", llama.params.repeat_last_n },
- { "repeat_penalty", llama.params.repeat_penalty },
- { "presence_penalty", llama.params.presence_penalty },
- { "frequency_penalty", llama.params.frequency_penalty },
- { "mirostat", llama.params.mirostat },
- { "mirostat_tau", llama.params.mirostat_tau },
- { "mirostat_eta", llama.params.mirostat_eta },
- { "penalize_nl", llama.params.penalize_nl },
- { "stop", llama.params.antiprompt },
- { "n_predict", llama.params.n_predict },
- { "n_keep", llama.params.n_keep },
- { "ignore_eos", ignore_eos },
- { "stream", llama.stream },
- { "logit_bias", llama.params.logit_bias },
- { "n_probs", llama.params.n_probs },
- };
- }
- static json format_embedding_response(llama_server_context & llama) {
- return json {
- { "embedding", llama.getEmbedding() },
- };
- }
- static json format_final_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
- json res = json {
- { "content", content },
- { "stop", true },
- { "model", llama.params.model_alias },
- { "tokens_predicted", llama.num_tokens_predicted },
- { "generation_settings", format_generation_settings(llama) },
- { "prompt", llama.params.prompt },
- { "truncated", llama.truncated },
- { "stopped_eos", llama.stopped_eos },
- { "stopped_word", llama.stopped_word },
- { "stopped_limit", llama.stopped_limit },
- { "stopping_word", llama.stopping_word },
- };
- if (llama.params.n_probs > 0) {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_partial_response(llama_server_context & llama, const std::string & content, const std::vector<completion_token_output> & probs) {
- json res = json {
- { "content", content },
- { "stop", false },
- };
- if (llama.params.n_probs > 0) {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_tokenizer_response(const std::vector<llama_token> & tokens) {
- return json {
- { "tokens", tokens }
- };
- }
- static void parse_options_completion(const json & body, llama_server_context & llama) {
- gpt_params default_params;
- llama.stream = body.value("stream", false);
- llama.params.n_predict = body.value("n_predict", default_params.n_predict);
- llama.params.top_k = body.value("top_k", default_params.top_k);
- llama.params.top_p = body.value("top_p", default_params.top_p);
- llama.params.tfs_z = body.value("tfs_z", default_params.tfs_z);
- llama.params.typical_p = body.value("typical_p", default_params.typical_p);
- llama.params.repeat_last_n = body.value("repeat_last_n", default_params.repeat_last_n);
- llama.params.temp = body.value("temperature", default_params.temp);
- llama.params.repeat_penalty = body.value("repeat_penalty", default_params.repeat_penalty);
- llama.params.presence_penalty = body.value("presence_penalty", default_params.presence_penalty);
- llama.params.frequency_penalty = body.value("frequency_penalty", default_params.frequency_penalty);
- llama.params.mirostat = body.value("mirostat", default_params.mirostat);
- llama.params.mirostat_tau = body.value("mirostat_tau", default_params.mirostat_tau);
- llama.params.mirostat_eta = body.value("mirostat_eta", default_params.mirostat_eta);
- llama.params.penalize_nl = body.value("penalize_nl", default_params.penalize_nl);
- llama.params.n_keep = body.value("n_keep", default_params.n_keep);
- llama.params.seed = body.value("seed", default_params.seed);
- llama.params.prompt = body.value("prompt", default_params.prompt);
- llama.params.n_probs = body.value("n_probs", default_params.n_probs);
- llama.params.logit_bias.clear();
- if (body.value("ignore_eos", false)) {
- llama.params.logit_bias[llama_token_eos()] = -INFINITY;
- }
- const auto & logit_bias = body.find("logit_bias");
- if (logit_bias != body.end() && logit_bias->is_array()) {
- const int n_vocab = llama_n_vocab(llama.ctx);
- for (const auto & el : *logit_bias) {
- if (el.is_array() && el.size() == 2 && el[0].is_number_integer()) {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab) {
- if (el[1].is_number()) {
- llama.params.logit_bias[tok] = el[1].get<float>();
- } else if (el[1].is_boolean() && !el[1].get<bool>()) {
- llama.params.logit_bias[tok] = -INFINITY;
- }
- }
- }
- }
- }
- llama.params.antiprompt.clear();
- const auto & stop = body.find("stop");
- if (stop != body.end() && stop->is_array()) {
- for (const auto & word : *stop) {
- if (!word.empty()) {
- llama.params.antiprompt.push_back(word);
- }
- }
- }
- LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
- }
- static void log_server_request(const Request & req, const Response & res) {
- LOG_INFO("request", {
- { "remote_addr", req.remote_addr },
- { "remote_port", req.remote_port },
- { "status", res.status },
- { "path", req.path },
- { "request", req.body },
- { "response", res.body },
- });
- }
- int main(int argc, char ** argv) {
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- server_params_parse(argc, argv, sparams, params);
- if (params.model_alias == "unknown") {
- params.model_alias = params.model;
- }
- llama_init_backend(params.numa);
- LOG_INFO("build info", {
- { "build", BUILD_NUMBER },
- { "commit", BUILD_COMMIT }
- });
- LOG_INFO("system info", {
- { "n_threads", params.n_threads },
- { "total_threads", std::thread::hardware_concurrency() },
- { "system_info", llama_print_system_info() },
- });
- // load the model
- if (!llama.loadModel(params)) {
- return 1;
- }
- Server svr;
- svr.set_default_headers({
- { "Access-Control-Allow-Origin", "*" },
- { "Access-Control-Allow-Headers", "content-type" }
- });
- svr.Get("/", [](const Request &, Response & res) {
- res.set_content("<h1>llama.cpp server works</h1>", "text/html");
- });
- svr.Post("/completion", [&llama](const Request & req, Response & res) {
- llama.rewind();
- llama_reset_timings(llama.ctx);
- parse_options_completion(json::parse(req.body), llama);
- llama.loadPrompt();
- llama.beginCompletion();
- if (!llama.stream) {
- size_t stop_pos = std::string::npos;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok);
- stop_pos = llama.findStoppingStrings(llama.generated_text,
- token_text.size(), STOP_FULL);
- }
- if (stop_pos == std::string::npos) {
- stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
- }
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
- llama.generated_text.end());
- }
- const json data = format_final_response(llama, llama.generated_text, llama.generated_token_probs);
- llama_print_timings(llama.ctx);
- res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
- "application/json");
- } else {
- const auto chunked_content_provider = [&](size_t, DataSink & sink) {
- size_t sent_count = 0;
- size_t sent_token_probs_index = 0;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = llama_token_to_str(llama.ctx, token_with_probs.tok);
- if (llama.multibyte_pending > 0) {
- continue;
- }
- size_t pos = std::min(sent_count, llama.generated_text.size());
- const std::string str_test = llama.generated_text.substr(pos);
- size_t stop_pos =
- llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(
- llama.generated_text.begin() + pos + stop_pos,
- llama.generated_text.end());
- pos = std::min(sent_count, llama.generated_text.size());
- } else {
- stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
- STOP_PARTIAL);
- }
- const std::string to_send = llama.generated_text.substr(pos, stop_pos);
- sent_count += to_send.size();
- std::vector<completion_token_output> probs_output = {};
- if (llama.params.n_probs > 0) {
- const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
- size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
- size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
- if (probs_pos < probs_stop_pos) {
- probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
- }
- sent_token_probs_index = probs_stop_pos;
- }
- const json data = llama.has_next_token
- ? format_partial_response(llama, to_send, probs_output)
- // Generation is done, send extra information.
- : format_final_response(llama, to_send, llama.generated_token_probs);
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- llama_print_timings(llama.ctx);
- sink.done();
- return true;
- };
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider);
- }
- });
- svr.Options(R"(/.*)", [](const Request &, Response & res) {
- return res.set_content("", "application/json");
- });
- svr.Post("/tokenize", [&llama](const Request & req, Response & res) {
- const json body = json::parse(req.body);
- const std::string content = body.value("content", "");
- const std::vector<llama_token> tokens = llama_tokenize(llama.ctx, content, false);
- const json data = format_tokenizer_response(tokens);
- return res.set_content(data.dump(), "application/json");
- });
- svr.Post("/embedding", [&llama](const Request & req, Response & res) {
- const json body = json::parse(req.body);
- llama.rewind();
- llama_reset_timings(llama.ctx);
- llama.params.prompt = body.value("content", "");
- llama.params.n_predict = 0;
- llama.loadPrompt();
- llama.beginCompletion();
- llama.doCompletion();
- const json data = format_embedding_response(llama);
- return res.set_content(data.dump(), "application/json");
- });
- svr.set_logger(log_server_request);
- svr.set_exception_handler([](const Request &, Response & res, std::exception_ptr ep) {
- const auto * fmt = "500 Internal Server Error\n%s";
- char buf[BUFSIZ];
- try {
- std::rethrow_exception(std::move(ep));
- } catch (std::exception & e) {
- snprintf(buf, sizeof(buf), fmt, e.what());
- } catch (...) {
- snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
- }
- res.set_content(buf, "text/plain");
- res.status = 500;
- });
- // set timeouts and change hostname and port
- svr.set_read_timeout(sparams.read_timeout);
- svr.set_write_timeout(sparams.write_timeout);
- if (!svr.bind_to_port(sparams.hostname, sparams.port)) {
- LOG_ERROR("couldn't bind to server socket", {
- { "hostname", sparams.hostname },
- { "port", sparams.port },
- });
- return 1;
- }
- LOG_INFO("HTTP server listening", {
- { "hostname", sparams.hostname },
- { "port", sparams.port },
- });
- if (!svr.listen_after_bind()) {
- return 1;
- }
- return 0;
- }
|