test-tokenizer-random.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335
  1. # Test libllama tokenizer == AutoTokenizer.
  2. # Brute force random words/text generation.
  3. #
  4. # Sample usage:
  5. #
  6. # python3 tests/test-tokenizer-random.py ./models/ggml-vocab-llama-bpe.gguf ./models/tokenizers/llama-bpe
  7. #
  8. import time
  9. import logging
  10. import argparse
  11. import subprocess
  12. import random
  13. from typing import Callable, Iterator
  14. import cffi
  15. from transformers import AutoTokenizer
  16. logger = logging.getLogger("test-tokenizer-random-bpe")
  17. class LibLlama:
  18. DEFAULT_PATH_LLAMA_H = "./llama.h"
  19. DEFAULT_PATH_LIBLLAMA = "./build/libllama.so" # CMakeLists.txt: BUILD_SHARED_LIBS ON
  20. def __init__(self, path_llama_h: str = None, path_libllama: str = None):
  21. path_llama_h = path_llama_h or self.DEFAULT_PATH_LLAMA_H
  22. path_libllama = path_libllama or self.DEFAULT_PATH_LIBLLAMA
  23. (self.ffi, self.lib) = self._load_libllama_cffi(path_llama_h, path_libllama)
  24. self.lib.llama_backend_init()
  25. def _load_libllama_cffi(self, path_llama_h: str, path_libllama: str):
  26. cmd = ["gcc", "-E", "-P", "-D__restrict=", "-D__attribute__(x)=", "-D__asm__(x)=", path_llama_h]
  27. res = subprocess.run(cmd, stdout=subprocess.PIPE)
  28. assert (res.returncode == 0)
  29. source = res.stdout.decode()
  30. ffi = cffi.FFI()
  31. if True: # workarounds for pycparser
  32. source = "typedef struct { } __builtin_va_list;" + "\n" + source
  33. source = source.replace("sizeof (int)", str(ffi.sizeof("int")))
  34. source = source.replace("sizeof (void *)", str(ffi.sizeof("void*")))
  35. source = source.replace("sizeof (size_t)", str(ffi.sizeof("size_t")))
  36. source = source.replace("sizeof(int32_t)", str(ffi.sizeof("int32_t")))
  37. ffi.cdef(source, override=True)
  38. lib = ffi.dlopen(path_libllama)
  39. return (ffi, lib)
  40. def model_default_params(self, **kwargs):
  41. mparams = self.lib.llama_model_default_params()
  42. for k, v in kwargs.items():
  43. setattr(mparams, k, v)
  44. return mparams
  45. def context_default_params(self, **kwargs):
  46. cparams = self.lib.llama_context_default_params()
  47. for k, v in kwargs.items():
  48. setattr(cparams, k, v)
  49. return cparams
  50. class LibLlamaModel:
  51. def __init__(self, libllama: LibLlama, path_model: str, mparams={}, cparams={}):
  52. self.lib = libllama.lib
  53. self.ffi = libllama.ffi
  54. if isinstance(mparams, dict):
  55. mparams = libllama.model_default_params(**mparams)
  56. self.model = self.lib.llama_load_model_from_file(path_model.encode(), mparams)
  57. if not self.model:
  58. raise RuntimeError("error: failed to load model '%s'" % path_model)
  59. if isinstance(cparams, dict):
  60. cparams = libllama.context_default_params(**cparams)
  61. self.ctx = self.lib.llama_new_context_with_model(self.model, cparams)
  62. if not self.ctx:
  63. raise RuntimeError("error: failed to create context for model '%s'" % path_model)
  64. n_tokens_max = self.lib.llama_n_ctx(self.ctx)
  65. self.token_ids = self.ffi.new("llama_token[]", n_tokens_max)
  66. def free(self):
  67. if self.ctx:
  68. self.lib.llama_free(self.ctx)
  69. if self.model:
  70. self.lib.llama_free_model(self.model)
  71. self.ctx = None
  72. self.model = None
  73. self.lib = None
  74. def tokenize(self, text: str, n_tokens_max: int = 0, add_special: bool = False, parse_special: bool = False) -> list[int]:
  75. n_tokens_max = n_tokens_max if n_tokens_max > 0 else len(self.token_ids)
  76. text = text.encode("utf-8")
  77. num = self.lib.llama_tokenize(self.model, text, len(text), self.token_ids, n_tokens_max, add_special, parse_special)
  78. if num < 0:
  79. return []
  80. return list(self.token_ids[0:num])
  81. def generator_custom_text() -> Iterator[str]:
  82. """General tests"""
  83. yield from [
  84. "",
  85. " ",
  86. " ",
  87. " ",
  88. "\t",
  89. "\n",
  90. "\n\n",
  91. "\n\n\n",
  92. "\t\n",
  93. "Hello world",
  94. " Hello world",
  95. "Hello World",
  96. " Hello World",
  97. " Hello World!",
  98. "Hello, world!",
  99. " Hello, world!",
  100. " this is 🦙.cpp",
  101. "w048 7tuijk dsdfhu",
  102. "нещо на Български",
  103. "កាន់តែពិសេសអាចខលចេញ",
  104. "🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)",
  105. "Hello",
  106. " Hello",
  107. " Hello",
  108. " Hello",
  109. " Hello",
  110. " Hello\n Hello",
  111. " (",
  112. "\n =",
  113. "' era",
  114. "Hello, y'all! How are you 😁 ?我想在apple工作1314151天~",
  115. "3",
  116. "33",
  117. "333",
  118. "3333",
  119. "33333",
  120. "333333",
  121. "3333333",
  122. "33333333",
  123. "333333333",
  124. ]
  125. def generator_custom_text_edge_cases() -> Iterator[str]:
  126. """Edge cases found while debugging"""
  127. yield from [
  128. '\x1f-a', # unicode_ranges_control, {0x00001C, 0x00001F}
  129. '¼-a', # unicode_ranges_digit, 0x00BC
  130. '½-a', # unicode_ranges_digit, 0x00BD
  131. '¾-a', # unicode_ranges_digit, 0x00BE
  132. 'a 〇b', # unicode_ranges_digit, 0x3007
  133. 'Ⅵ-a', # unicode_ranges_digit, {0x00002150, 0x0000218F} // Number Forms
  134. '\uFEFF//', # unicode_ranges_control, 0xFEFF (BOM)
  135. 'Cửa Việt', # llama-3, ignore_merges = true
  136. '<s>a', # Phi-3 fail
  137. '<unk><|endoftext|><s>', # Phi-3 fail
  138. 'a\na', # TODO: Bert fail
  139. ]
  140. def generator_random_special_tokens(tokenizer, iterations=100) -> Iterator[str]:
  141. special_tokens = set(tokenizer.all_special_tokens)
  142. special_tokens.update([" ", "\n", "\t", "-", "!", "one", "1", "<s>", "</s>"])
  143. special_tokens = list(sorted(special_tokens))
  144. rand = random.Random()
  145. for m in range(iterations):
  146. rand.seed(m)
  147. words = rand.choices(special_tokens, k=500)
  148. if tokenizer.add_bos_token: # skip spam warning of double BOS
  149. while words and words[0] == tokenizer.bos_token:
  150. words.pop(0)
  151. yield "".join(words)
  152. def generator_vocab_words(vocab: list[str]) -> Iterator[str]:
  153. """Brute force check all vocab words"""
  154. yield from vocab
  155. def generator_random_chars(iterations=100) -> Iterator[str]:
  156. """Brute force random text with simple characters"""
  157. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  158. CHARS = list(sorted(set("""
  159. ABCDEFGHIJKLMNOPQRSTUVWXYZ
  160. abcdefghijklmnopqrstuvwxyz
  161. ÁÉÍÓÚÀÈÌÒÙÂÊÎÔÛÄËÏÖÜ
  162. áéíóúàèìòùâêîôûäëïöü
  163. .-,*/-+ª!"·$%&/()=?¿[]{}<>\\|@#~½¬~;:_
  164. """)))
  165. rand = random.Random()
  166. for m in range(iterations):
  167. rand.seed(m)
  168. text = []
  169. num_words = rand.randint(300, 400)
  170. for i in range(num_words):
  171. k = rand.randint(1, 7)
  172. word = rand.choices(CHARS, k=k)
  173. space = rand.choice(WHITESPACES)
  174. text.append("".join(word) + space)
  175. yield "".join(text)
  176. def generator_random_vocab_chars(vocab: list[str], iterations=100) -> Iterator[str]:
  177. """Brute force random text with vocab characters"""
  178. vocab_chars = set()
  179. for word in vocab:
  180. vocab_chars.update(word)
  181. vocab_chars = list(sorted(vocab_chars))
  182. rand = random.Random()
  183. for m in range(iterations):
  184. rand.seed(m)
  185. text = rand.choices(vocab_chars, k=1024)
  186. yield "".join(text)
  187. def generator_random_vocab_words(vocab: list[str], iterations=100) -> Iterator[str]:
  188. """Brute force random text from vocab words"""
  189. vocab = [w.strip() for w in vocab]
  190. yield from vocab
  191. rand = random.Random()
  192. for m in range(iterations):
  193. rand.seed(m)
  194. text = []
  195. num_words = rand.randint(300, 400)
  196. for i in range(num_words):
  197. k = rand.randint(1, 3)
  198. words = rand.choices(vocab, k=k)
  199. sep = rand.choice(" \n\r\t")
  200. text.append("".join(words) + sep)
  201. yield "".join(text)
  202. def generator_random_bytes(iterations=100) -> Iterator[str]:
  203. """Brute force random bytes"""
  204. WHITESPACES = list(" " * 20 + "\n" * 5 + "\r\n" * 5 + "\t" * 5)
  205. rand = random.Random()
  206. for m in range(iterations):
  207. rand.seed(m)
  208. text = []
  209. num_words = rand.randint(300, 400)
  210. for i in range(num_words):
  211. k = rand.randint(1, 8)
  212. word = [chr(r) for r in rand.randbytes(k) if r]
  213. word.append(rand.choice(WHITESPACES))
  214. text.append("".join(word))
  215. yield "".join(text)
  216. def test_compare_tokenizer(func_tokenize1: Callable, func_tokenize2: Callable, generator: Iterator[str]):
  217. def find_first_mismatch(ids1: list[int], ids2: list[int]):
  218. for i, (a, b) in enumerate(zip(ids1, ids2)):
  219. if a != b:
  220. return i
  221. if len(ids1) == len(ids2):
  222. return -1
  223. return min(len(ids1), len(ids2))
  224. t0 = time.perf_counter()
  225. logger.info("%s: %s" % (generator.__name__, "ini"))
  226. for text in generator:
  227. ids1 = func_tokenize1(text)
  228. ids2 = func_tokenize2(text)
  229. if ids1 != ids2:
  230. i = find_first_mismatch(ids1, ids2)
  231. ids1 = list(ids1)[max(0, i - 2) : i + 2 + 1]
  232. ids2 = list(ids2)[max(0, i - 2) : i + 2 + 1]
  233. logger.info(" TokenIDs: " + str(ids1))
  234. logger.info(" Expected: " + str(ids2))
  235. raise Exception()
  236. t1 = time.perf_counter()
  237. logger.info("%s: end, time: %.3f secs" % (generator.__name__, t1 - t0))
  238. def main(argv: list[str] = None):
  239. parser = argparse.ArgumentParser()
  240. parser.add_argument("vocab_file", help="path to vocab 'gguf' file")
  241. parser.add_argument("dir_tokenizer", help="directory containing 'tokenizer.model' file")
  242. parser.add_argument("--verbose", action="store_true", help="increase output verbosity")
  243. args = parser.parse_args(argv)
  244. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  245. model = LibLlamaModel(LibLlama(), args.vocab_file, mparams=dict(vocab_only=True), cparams=dict(n_ctx=4096))
  246. tokenizer = AutoTokenizer.from_pretrained(args.dir_tokenizer)
  247. tokenizer.add_bos_token = getattr(tokenizer, "add_bos_token", True)
  248. tokenizer.add_eos_token = getattr(tokenizer, "add_eos_token", False)
  249. def func_tokenize1(text: str):
  250. return model.tokenize(text, add_special=True, parse_special=True)
  251. def func_tokenize2(text: str):
  252. return tokenizer.encode(text, add_special_tokens=True)
  253. vocab = list(sorted(tokenizer.batch_decode(list(tokenizer.get_vocab().values()), skip_special_tokens=True)))
  254. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text())
  255. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_custom_text_edge_cases())
  256. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_special_tokens(tokenizer, 10_000))
  257. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_vocab_words(vocab))
  258. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_chars(10_000))
  259. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_chars(vocab, 10_000))
  260. test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_vocab_words(vocab, 5_000))
  261. # test_compare_tokenizer(func_tokenize1, func_tokenize2, generator_random_bytes(10_000)) # FAIL
  262. model.free()
  263. if __name__ == "__main__":
  264. # main()
  265. path_tokenizers = "./models/tokenizers/"
  266. path_vocab_format = "./models/ggml-vocab-%s.gguf"
  267. # import os
  268. # tokenizers = os.listdir(path_tokenizers)
  269. tokenizers = [
  270. "llama-spm", # SPM
  271. "phi-3", # SPM
  272. ]
  273. for tokenizer in tokenizers:
  274. print("\n" + "=" * 50 + "\n" + tokenizer + "\n") # noqa
  275. vocab_file = path_vocab_format % tokenizer
  276. dir_tokenizer = path_tokenizers + "/" + tokenizer
  277. main([vocab_file, dir_tokenizer, "--verbose"])