ggml-cuda.cu 130 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355
  1. #include "ggml-cuda.h"
  2. #include "ggml-impl.h"
  3. #include "ggml-backend-impl.h"
  4. #include "ggml-cuda/common.cuh"
  5. #include "ggml-cuda/acc.cuh"
  6. #include "ggml-cuda/arange.cuh"
  7. #include "ggml-cuda/argmax.cuh"
  8. #include "ggml-cuda/argsort.cuh"
  9. #include "ggml-cuda/binbcast.cuh"
  10. #include "ggml-cuda/clamp.cuh"
  11. #include "ggml-cuda/concat.cuh"
  12. #include "ggml-cuda/conv-transpose-1d.cuh"
  13. #include "ggml-cuda/convert.cuh"
  14. #include "ggml-cuda/count-equal.cuh"
  15. #include "ggml-cuda/cpy.cuh"
  16. #include "ggml-cuda/cross-entropy-loss.cuh"
  17. #include "ggml-cuda/diagmask.cuh"
  18. #include "ggml-cuda/dmmv.cuh"
  19. #include "ggml-cuda/fattn.cuh"
  20. #include "ggml-cuda/getrows.cuh"
  21. #include "ggml-cuda/im2col.cuh"
  22. #include "ggml-cuda/mmq.cuh"
  23. #include "ggml-cuda/mmvq.cuh"
  24. #include "ggml-cuda/norm.cuh"
  25. #include "ggml-cuda/opt-step-adamw.cuh"
  26. #include "ggml-cuda/out-prod.cuh"
  27. #include "ggml-cuda/pad.cuh"
  28. #include "ggml-cuda/pool2d.cuh"
  29. #include "ggml-cuda/quantize.cuh"
  30. #include "ggml-cuda/rope.cuh"
  31. #include "ggml-cuda/scale.cuh"
  32. #include "ggml-cuda/softmax.cuh"
  33. #include "ggml-cuda/sum.cuh"
  34. #include "ggml-cuda/sumrows.cuh"
  35. #include "ggml-cuda/tsembd.cuh"
  36. #include "ggml-cuda/unary.cuh"
  37. #include "ggml-cuda/upscale.cuh"
  38. #include "ggml-cuda/rwkv-wkv.cuh"
  39. #include <algorithm>
  40. #include <array>
  41. #include <atomic>
  42. #include <cinttypes>
  43. #include <cstddef>
  44. #include <cstdint>
  45. #include <float.h>
  46. #include <limits>
  47. #include <map>
  48. #include <memory>
  49. #include <mutex>
  50. #include <stdint.h>
  51. #include <stdio.h>
  52. #include <stdarg.h>
  53. #include <stdlib.h>
  54. #include <string>
  55. #include <vector>
  56. static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
  57. [[noreturn]]
  58. void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
  59. int id = -1; // in case cudaGetDevice fails
  60. cudaGetDevice(&id);
  61. GGML_LOG_ERROR(GGML_CUDA_NAME " error: %s\n", msg);
  62. GGML_LOG_ERROR(" current device: %d, in function %s at %s:%d\n", id, func, file, line);
  63. GGML_LOG_ERROR(" %s\n", stmt);
  64. // abort with GGML_ABORT to get a stack trace
  65. GGML_ABORT(GGML_CUDA_NAME " error");
  66. }
  67. // this is faster on Windows
  68. // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
  69. void ggml_cuda_set_device(int device) {
  70. int current_device;
  71. CUDA_CHECK(cudaGetDevice(&current_device));
  72. if (device == current_device) {
  73. return;
  74. }
  75. CUDA_CHECK(cudaSetDevice(device));
  76. }
  77. int ggml_cuda_get_device() {
  78. int id;
  79. CUDA_CHECK(cudaGetDevice(&id));
  80. return id;
  81. }
  82. static cudaError_t ggml_cuda_device_malloc(void ** ptr, size_t size, int device) {
  83. ggml_cuda_set_device(device);
  84. #if defined(GGML_USE_HIPBLAS) && defined(GGML_HIP_UMA)
  85. auto res = hipMallocManaged(ptr, size);
  86. if (res == hipSuccess) {
  87. // if error we "need" to know why...
  88. CUDA_CHECK(hipMemAdvise(*ptr, size, hipMemAdviseSetCoarseGrain, device));
  89. }
  90. return res;
  91. #else
  92. #if !defined(GGML_USE_HIPBLAS)
  93. cudaError_t err;
  94. if (getenv("GGML_CUDA_ENABLE_UNIFIED_MEMORY") != nullptr)
  95. {
  96. err = cudaMallocManaged(ptr, size);
  97. }
  98. else
  99. {
  100. err = cudaMalloc(ptr, size);
  101. }
  102. return err;
  103. #else
  104. return cudaMalloc(ptr, size);
  105. #endif // !defined(GGML_USE_HIPBLAS)
  106. #endif
  107. }
  108. static ggml_cuda_device_info ggml_cuda_init() {
  109. #ifdef __HIP_PLATFORM_AMD__
  110. // Workaround for a rocBLAS bug when using multiple graphics cards:
  111. // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
  112. rocblas_initialize();
  113. CUDA_CHECK(cudaDeviceSynchronize());
  114. #endif
  115. ggml_cuda_device_info info = {};
  116. cudaError_t err = cudaGetDeviceCount(&info.device_count);
  117. if (err != cudaSuccess) {
  118. GGML_LOG_ERROR("%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
  119. return info;
  120. }
  121. GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
  122. int64_t total_vram = 0;
  123. #ifdef GGML_CUDA_FORCE_MMQ
  124. GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
  125. #else
  126. GGML_LOG_INFO("%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
  127. #endif // GGML_CUDA_FORCE_MMQ
  128. #ifdef GGML_CUDA_FORCE_CUBLAS
  129. GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: yes\n", __func__);
  130. #else
  131. GGML_LOG_INFO("%s: GGML_CUDA_FORCE_CUBLAS: no\n", __func__);
  132. #endif // GGML_CUDA_FORCE_CUBLAS
  133. GGML_LOG_INFO("%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
  134. for (int id = 0; id < info.device_count; ++id) {
  135. int device_vmm = 0;
  136. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  137. CUdevice device;
  138. CU_CHECK(cuDeviceGet(&device, id));
  139. CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
  140. if (device_vmm) {
  141. CUmemAllocationProp alloc_prop = {};
  142. alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  143. alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  144. alloc_prop.location.id = id;
  145. CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
  146. }
  147. #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  148. info.devices[id].vmm = !!device_vmm;
  149. cudaDeviceProp prop;
  150. CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
  151. GGML_LOG_INFO(" Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
  152. info.default_tensor_split[id] = total_vram;
  153. total_vram += prop.totalGlobalMem;
  154. info.devices[id].nsm = prop.multiProcessorCount;
  155. info.devices[id].smpb = prop.sharedMemPerBlock;
  156. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  157. info.devices[id].smpbo = prop.sharedMemPerBlock;
  158. info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
  159. #else
  160. info.devices[id].smpbo = prop.sharedMemPerBlockOptin;
  161. info.devices[id].cc = 100*prop.major + 10*prop.minor;
  162. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  163. }
  164. for (int id = 0; id < info.device_count; ++id) {
  165. info.default_tensor_split[id] /= total_vram;
  166. }
  167. // configure logging to stdout
  168. // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
  169. return info;
  170. }
  171. const ggml_cuda_device_info & ggml_cuda_info() {
  172. static ggml_cuda_device_info info = ggml_cuda_init();
  173. return info;
  174. }
  175. // #define DEBUG_CUDA_MALLOC
  176. // buffer pool for cuda (legacy)
  177. struct ggml_cuda_pool_leg : public ggml_cuda_pool {
  178. static const int MAX_BUFFERS = 256;
  179. int device;
  180. struct ggml_cuda_buffer {
  181. void * ptr = nullptr;
  182. size_t size = 0;
  183. };
  184. ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
  185. size_t pool_size = 0;
  186. explicit ggml_cuda_pool_leg(int device) :
  187. device(device) {
  188. }
  189. ~ggml_cuda_pool_leg() {
  190. ggml_cuda_set_device(device);
  191. for (int i = 0; i < MAX_BUFFERS; ++i) {
  192. ggml_cuda_buffer & b = buffer_pool[i];
  193. if (b.ptr != nullptr) {
  194. CUDA_CHECK(cudaFree(b.ptr));
  195. pool_size -= b.size;
  196. }
  197. }
  198. GGML_ASSERT(pool_size == 0);
  199. }
  200. void * alloc(size_t size, size_t * actual_size) override {
  201. #ifdef DEBUG_CUDA_MALLOC
  202. int nnz = 0;
  203. size_t max_size = 0;
  204. #endif
  205. size_t best_diff = 1ull << 36;
  206. int ibest = -1;
  207. for (int i = 0; i < MAX_BUFFERS; ++i) {
  208. ggml_cuda_buffer& b = buffer_pool[i];
  209. if (b.ptr != nullptr) {
  210. #ifdef DEBUG_CUDA_MALLOC
  211. ++nnz;
  212. if (b.size > max_size) max_size = b.size;
  213. #endif
  214. if (b.size >= size) {
  215. size_t diff = b.size - size;
  216. if (diff < best_diff) {
  217. best_diff = diff;
  218. ibest = i;
  219. if (!best_diff) {
  220. void * ptr = b.ptr;
  221. *actual_size = b.size;
  222. b.ptr = nullptr;
  223. b.size = 0;
  224. return ptr;
  225. }
  226. }
  227. }
  228. }
  229. }
  230. if (ibest >= 0) {
  231. ggml_cuda_buffer& b = buffer_pool[ibest];
  232. void * ptr = b.ptr;
  233. *actual_size = b.size;
  234. b.ptr = nullptr;
  235. b.size = 0;
  236. return ptr;
  237. }
  238. void * ptr;
  239. size_t look_ahead_size = (size_t) (1.05 * size);
  240. look_ahead_size = 256 * ((look_ahead_size + 255)/256);
  241. ggml_cuda_set_device(device);
  242. CUDA_CHECK(ggml_cuda_device_malloc(&ptr, look_ahead_size, device));
  243. *actual_size = look_ahead_size;
  244. pool_size += look_ahead_size;
  245. #ifdef DEBUG_CUDA_MALLOC
  246. GGML_LOG_INFO("%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
  247. (uint32_t)(max_size / 1024 / 1024), (uint32_t)(pool_size / 1024 / 1024), (uint32_t)(size / 1024 / 1024));
  248. #endif
  249. return ptr;
  250. }
  251. void free(void * ptr, size_t size) override {
  252. for (int i = 0; i < MAX_BUFFERS; ++i) {
  253. ggml_cuda_buffer& b = buffer_pool[i];
  254. if (b.ptr == nullptr) {
  255. b.ptr = ptr;
  256. b.size = size;
  257. return;
  258. }
  259. }
  260. GGML_LOG_DEBUG(GGML_CUDA_NAME " buffer pool full, increase MAX_CUDA_BUFFERS\n");
  261. ggml_cuda_set_device(device);
  262. CUDA_CHECK(cudaFree(ptr));
  263. pool_size -= size;
  264. }
  265. };
  266. // pool with virtual memory
  267. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  268. struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
  269. static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
  270. int device;
  271. CUdeviceptr pool_addr = 0;
  272. size_t pool_used = 0;
  273. size_t pool_size = 0;
  274. size_t granularity;
  275. explicit ggml_cuda_pool_vmm(int device) :
  276. device(device),
  277. granularity(ggml_cuda_info().devices[device].vmm_granularity) {
  278. }
  279. ~ggml_cuda_pool_vmm() {
  280. if (pool_addr != 0) {
  281. CU_CHECK(cuMemUnmap(pool_addr, pool_size));
  282. CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
  283. }
  284. }
  285. void * alloc(size_t size, size_t * actual_size) override {
  286. // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
  287. const size_t alignment = 128;
  288. size = alignment * ((size + alignment - 1) / alignment);
  289. size_t avail = pool_size - pool_used;
  290. if (size > avail) {
  291. // round up to the next multiple of the granularity
  292. size_t reserve_size = size - avail;
  293. reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
  294. GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
  295. // allocate more physical memory
  296. CUmemAllocationProp prop = {};
  297. prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
  298. prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  299. prop.location.id = device;
  300. CUmemGenericAllocationHandle handle;
  301. CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
  302. // reserve virtual address space (if not already reserved)
  303. if (pool_addr == 0) {
  304. CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
  305. }
  306. // map at the end of the pool
  307. CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
  308. // the memory allocation handle is no longer needed after mapping
  309. CU_CHECK(cuMemRelease(handle));
  310. // set access
  311. CUmemAccessDesc access = {};
  312. access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
  313. access.location.id = device;
  314. access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
  315. CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
  316. // add to the pool
  317. pool_size += reserve_size;
  318. //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
  319. // device, (unsigned long long) (pool_size/1024/1024),
  320. // (unsigned long long) (reserve_size/1024/1024));
  321. }
  322. GGML_ASSERT(pool_addr != 0);
  323. void * ptr = (void *) (pool_addr + pool_used);
  324. *actual_size = size;
  325. pool_used += size;
  326. #ifdef DEBUG_CUDA_MALLOC
  327. printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  328. #endif
  329. return ptr;
  330. }
  331. void free(void * ptr, size_t size) override {
  332. #ifdef DEBUG_CUDA_MALLOC
  333. printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
  334. #endif
  335. pool_used -= size;
  336. // all deallocations must be in reverse order of the allocations
  337. GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
  338. }
  339. };
  340. #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  341. std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
  342. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  343. if (ggml_cuda_info().devices[device].vmm) {
  344. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
  345. }
  346. #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_CUDA_NO_VMM)
  347. return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
  348. }
  349. // cuda buffer
  350. struct ggml_backend_cuda_buffer_context {
  351. int device;
  352. void * dev_ptr = nullptr;
  353. std::string name;
  354. ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
  355. device(device), dev_ptr(dev_ptr),
  356. name(GGML_CUDA_NAME + std::to_string(device)) {
  357. }
  358. ~ggml_backend_cuda_buffer_context() {
  359. CUDA_CHECK(cudaFree(dev_ptr));
  360. }
  361. };
  362. static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  363. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  364. delete ctx;
  365. }
  366. static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
  367. return buffer->iface.free_buffer == ggml_backend_cuda_buffer_free_buffer;
  368. }
  369. static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
  370. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  371. return ctx->dev_ptr;
  372. }
  373. static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  374. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  375. if (tensor->view_src != NULL) {
  376. assert(tensor->view_src->buffer->buft == buffer->buft);
  377. return;
  378. }
  379. if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
  380. // initialize padding to 0 to avoid possible NaN values
  381. size_t original_size = ggml_nbytes(tensor);
  382. size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
  383. if (padded_size > original_size) {
  384. ggml_cuda_set_device(ctx->device);
  385. CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
  386. }
  387. }
  388. }
  389. static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
  390. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  391. ggml_cuda_set_device(ctx->device);
  392. CUDA_CHECK(cudaMemsetAsync((char *)tensor->data + offset, value, size, cudaStreamPerThread));
  393. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  394. }
  395. static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  396. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  397. ggml_cuda_set_device(ctx->device);
  398. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  399. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  400. }
  401. static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  402. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  403. ggml_cuda_set_device(ctx->device);
  404. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  405. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  406. }
  407. static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
  408. if (ggml_backend_buffer_is_cuda(src->buffer)) {
  409. ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
  410. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
  411. if (src_ctx->device == dst_ctx->device) {
  412. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
  413. } else {
  414. #ifdef GGML_CUDA_NO_PEER_COPY
  415. return false;
  416. #else
  417. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
  418. #endif
  419. }
  420. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  421. return true;
  422. }
  423. return false;
  424. GGML_UNUSED(buffer);
  425. }
  426. static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  427. ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
  428. ggml_cuda_set_device(ctx->device);
  429. CUDA_CHECK(cudaDeviceSynchronize());
  430. CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
  431. CUDA_CHECK(cudaDeviceSynchronize());
  432. }
  433. static const ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
  434. /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
  435. /* .get_base = */ ggml_backend_cuda_buffer_get_base,
  436. /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
  437. /* .memset_tensor = */ ggml_backend_cuda_buffer_memset_tensor,
  438. /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
  439. /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
  440. /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
  441. /* .clear = */ ggml_backend_cuda_buffer_clear,
  442. /* .reset = */ NULL,
  443. };
  444. // cuda buffer type
  445. struct ggml_backend_cuda_buffer_type_context {
  446. int device;
  447. std::string name;
  448. };
  449. static const char * ggml_backend_cuda_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  450. ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  451. return ctx->name.c_str();
  452. }
  453. static bool ggml_backend_buft_is_cuda(ggml_backend_buffer_type_t buft) {
  454. return buft->iface.get_name == ggml_backend_cuda_buffer_type_get_name;
  455. }
  456. static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  457. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
  458. ggml_cuda_set_device(buft_ctx->device);
  459. void * dev_ptr;
  460. cudaError_t err = ggml_cuda_device_malloc(&dev_ptr, size, buft_ctx->device);
  461. if (err != cudaSuccess) {
  462. // clear the error
  463. cudaGetLastError();
  464. GGML_LOG_ERROR("%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size / 1024.0 / 1024.0, buft_ctx->device, cudaGetErrorString(err));
  465. return nullptr;
  466. }
  467. ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
  468. return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
  469. }
  470. static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  471. return 128;
  472. GGML_UNUSED(buft);
  473. }
  474. static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  475. size_t size = ggml_nbytes(tensor);
  476. int64_t ne0 = tensor->ne[0];
  477. if (ggml_is_quantized(tensor->type)) {
  478. if (ne0 % MATRIX_ROW_PADDING != 0) {
  479. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  480. }
  481. }
  482. return size;
  483. GGML_UNUSED(buft);
  484. }
  485. static const ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
  486. /* .get_name = */ ggml_backend_cuda_buffer_type_get_name,
  487. /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
  488. /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
  489. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  490. /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
  491. /* .is_host = */ NULL,
  492. };
  493. ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
  494. static std::mutex mutex;
  495. std::lock_guard<std::mutex> lock(mutex);
  496. if (device >= ggml_backend_cuda_get_device_count()) {
  497. return nullptr;
  498. }
  499. static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
  500. static bool ggml_backend_cuda_buffer_type_initialized = false;
  501. if (!ggml_backend_cuda_buffer_type_initialized) {
  502. for (int i = 0; i < ggml_backend_cuda_get_device_count(); i++) {
  503. ggml_backend_cuda_buffer_types[i] = {
  504. /* .iface = */ ggml_backend_cuda_buffer_type_interface,
  505. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), i),
  506. /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
  507. };
  508. }
  509. ggml_backend_cuda_buffer_type_initialized = true;
  510. }
  511. return &ggml_backend_cuda_buffer_types[device];
  512. }
  513. // cuda split buffer
  514. static int64_t get_row_rounding(const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
  515. int64_t row_rounding = 0;
  516. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  517. if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  518. continue;
  519. }
  520. const int cc = ggml_cuda_info().devices[id].cc;
  521. row_rounding = std::max(row_rounding, (int64_t)get_mmq_y_host(cc));
  522. }
  523. return row_rounding;
  524. }
  525. static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
  526. const int64_t nrows = ggml_nrows(tensor);
  527. const int64_t rounding = get_row_rounding(tensor_split);
  528. *row_low = id == 0 ? 0 : nrows*tensor_split[id];
  529. *row_low -= *row_low % rounding;
  530. if (id == ggml_backend_cuda_get_device_count() - 1) {
  531. *row_high = nrows;
  532. } else {
  533. *row_high = nrows*tensor_split[id + 1];
  534. *row_high -= *row_high % rounding;
  535. }
  536. }
  537. static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  538. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  539. return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
  540. }
  541. struct ggml_backend_cuda_split_buffer_type_context {
  542. int main_device;
  543. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  544. std::string name;
  545. };
  546. struct ggml_backend_cuda_split_buffer_context {
  547. ~ggml_backend_cuda_split_buffer_context() {
  548. for (ggml_tensor_extra_gpu * extra : tensor_extras) {
  549. for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
  550. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  551. if (extra->events[id][is] != nullptr) {
  552. CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
  553. }
  554. }
  555. if (extra->data_device[id] != nullptr) {
  556. CUDA_CHECK(cudaFree(extra->data_device[id]));
  557. }
  558. }
  559. delete extra;
  560. }
  561. }
  562. std::vector<ggml_tensor_extra_gpu *> tensor_extras;
  563. };
  564. static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  565. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  566. delete ctx;
  567. }
  568. static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
  569. // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
  570. return (void *)0x1000;
  571. GGML_UNUSED(buffer);
  572. }
  573. static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  574. GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
  575. ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
  576. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  577. const int64_t ne0 = tensor->ne[0];
  578. ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
  579. ctx->tensor_extras.push_back(extra);
  580. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  581. int64_t row_low, row_high;
  582. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  583. int64_t nrows_split = row_high - row_low;
  584. if (nrows_split == 0) {
  585. continue;
  586. }
  587. size_t size = ggml_nbytes_split(tensor, nrows_split);
  588. const size_t original_size = size;
  589. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  590. if (ne0 % MATRIX_ROW_PADDING != 0) {
  591. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  592. }
  593. // FIXME: do not crash if cudaMalloc fails
  594. // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
  595. ggml_cuda_set_device(id);
  596. char * buf;
  597. CUDA_CHECK(ggml_cuda_device_malloc((void**)&buf, size, id));
  598. // set padding to 0 to avoid possible NaN values
  599. if (size > original_size) {
  600. CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
  601. }
  602. extra->data_device[id] = buf;
  603. for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
  604. CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
  605. }
  606. }
  607. tensor->extra = extra;
  608. }
  609. static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  610. // split tensors must always be set in their entirety at once
  611. GGML_ASSERT(offset == 0);
  612. GGML_ASSERT(size == ggml_nbytes(tensor));
  613. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  614. const int64_t ne0 = tensor->ne[0];
  615. const size_t nb1 = tensor->nb[1];
  616. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  617. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  618. int64_t row_low, row_high;
  619. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  620. int64_t nrows_split = row_high - row_low;
  621. if (nrows_split == 0) {
  622. continue;
  623. }
  624. const size_t offset_split = row_low*nb1;
  625. size_t size = ggml_nbytes_split(tensor, nrows_split);
  626. const size_t original_size = size;
  627. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  628. if (ne0 % MATRIX_ROW_PADDING != 0) {
  629. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  630. }
  631. const char * buf_host = (const char *)data + offset_split;
  632. CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
  633. }
  634. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  635. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  636. }
  637. }
  638. static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  639. // split tensors must always be set in their entirety at once
  640. GGML_ASSERT(offset == 0);
  641. GGML_ASSERT(size == ggml_nbytes(tensor));
  642. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
  643. const int64_t ne0 = tensor->ne[0];
  644. const size_t nb1 = tensor->nb[1];
  645. ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
  646. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  647. int64_t row_low, row_high;
  648. get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
  649. int64_t nrows_split = row_high - row_low;
  650. if (nrows_split == 0) {
  651. continue;
  652. }
  653. const size_t offset_split = row_low*nb1;
  654. size_t size = ggml_nbytes_split(tensor, nrows_split);
  655. const size_t original_size = size;
  656. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  657. if (ne0 % MATRIX_ROW_PADDING != 0) {
  658. size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  659. }
  660. char * buf_host = (char *)data + offset_split;
  661. CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
  662. }
  663. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  664. CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
  665. }
  666. }
  667. static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  668. GGML_UNUSED(buffer);
  669. GGML_UNUSED(value);
  670. }
  671. static const ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
  672. /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
  673. /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
  674. /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
  675. /* .memset_tensor = */ NULL,
  676. /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
  677. /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
  678. /* .cpy_tensor = */ NULL,
  679. /* .clear = */ ggml_backend_cuda_split_buffer_clear,
  680. /* .reset = */ NULL,
  681. };
  682. // cuda split buffer type
  683. static const char * ggml_backend_cuda_split_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  684. ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
  685. return ctx->name.c_str();
  686. }
  687. static bool ggml_backend_buft_is_cuda_split(ggml_backend_buffer_type_t buft) {
  688. return buft->iface.get_name == ggml_backend_cuda_split_buffer_type_get_name;
  689. }
  690. static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  691. // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
  692. // instead, we allocate them for each tensor separately in init_tensor
  693. // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
  694. // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
  695. ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
  696. return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
  697. }
  698. static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  699. return 128;
  700. GGML_UNUSED(buft);
  701. }
  702. static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
  703. ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
  704. size_t total_size = 0;
  705. const int64_t ne0 = tensor->ne[0];
  706. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  707. int64_t row_low, row_high;
  708. get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
  709. int64_t nrows_split = row_high - row_low;
  710. if (nrows_split == 0) {
  711. continue;
  712. }
  713. total_size += ggml_nbytes_split(tensor, nrows_split);
  714. // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
  715. if (ne0 % MATRIX_ROW_PADDING != 0) {
  716. total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
  717. }
  718. }
  719. return total_size;
  720. }
  721. static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  722. return false;
  723. GGML_UNUSED(buft);
  724. }
  725. static const ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
  726. /* .get_name = */ ggml_backend_cuda_split_buffer_type_get_name,
  727. /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
  728. /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
  729. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  730. /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
  731. /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
  732. };
  733. ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(int main_device, const float * tensor_split) {
  734. static std::mutex mutex;
  735. std::lock_guard<std::mutex> lock(mutex);
  736. static std::map<std::pair<int, std::array<float, GGML_CUDA_MAX_DEVICES>>, struct ggml_backend_buffer_type> buft_map;
  737. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
  738. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
  739. if (all_zero) {
  740. tensor_split_arr = ggml_cuda_info().default_tensor_split;
  741. } else {
  742. float split_sum = 0.0f;
  743. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  744. tensor_split_arr[i] = split_sum;
  745. split_sum += tensor_split[i];
  746. }
  747. for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
  748. tensor_split_arr[i] /= split_sum;
  749. }
  750. }
  751. auto it = buft_map.find({main_device, tensor_split_arr});
  752. if (it != buft_map.end()) {
  753. return &it->second;
  754. }
  755. auto * ctx = new ggml_backend_cuda_split_buffer_type_context{
  756. main_device,
  757. tensor_split_arr,
  758. GGML_CUDA_NAME + std::to_string(main_device) + "_Split",
  759. };
  760. struct ggml_backend_buffer_type buft {
  761. /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
  762. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), main_device),
  763. /* .context = */ ctx,
  764. };
  765. auto result = buft_map.emplace(std::make_pair(main_device, tensor_split_arr), buft);
  766. return &result.first->second;
  767. }
  768. // host buffer type
  769. static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
  770. return GGML_CUDA_NAME "_Host";
  771. GGML_UNUSED(buft);
  772. }
  773. static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  774. CUDA_CHECK(cudaFreeHost(buffer->context));
  775. }
  776. static void * ggml_cuda_host_malloc(size_t size) {
  777. if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
  778. return nullptr;
  779. }
  780. void * ptr = nullptr;
  781. cudaError_t err = cudaMallocHost((void **) &ptr, size);
  782. if (err != cudaSuccess) {
  783. // clear the error
  784. cudaGetLastError();
  785. GGML_LOG_DEBUG("%s: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
  786. size / 1024.0 / 1024.0, cudaGetErrorString(err));
  787. return nullptr;
  788. }
  789. return ptr;
  790. }
  791. static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  792. void * ptr = ggml_cuda_host_malloc(size);
  793. if (ptr == nullptr) {
  794. // fallback to cpu buffer
  795. return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
  796. }
  797. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  798. buffer->buft = buft;
  799. buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
  800. return buffer;
  801. }
  802. ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
  803. static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
  804. /* .iface = */ {
  805. /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
  806. /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
  807. /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
  808. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  809. /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
  810. /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
  811. },
  812. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), 0),
  813. /* .context = */ nullptr,
  814. };
  815. return &ggml_backend_cuda_buffer_type_host;
  816. }
  817. //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
  818. // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
  819. //}
  820. /// kernels
  821. typedef void (*ggml_cuda_op_mul_mat_t)(
  822. ggml_backend_cuda_context & ctx,
  823. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  824. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  825. const int64_t src1_padded_row_size, cudaStream_t stream);
  826. #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
  827. #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
  828. #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
  829. #define MUL_MAT_SRC1_COL_STRIDE 128
  830. static __global__ void mul_mat_p021_f16_f32(
  831. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
  832. const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
  833. const half * x = (const half *) vx;
  834. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  835. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  836. const int channel_x = channel / (nchannels_y / nchannels_x);
  837. const int nrows_y = ncols_x;
  838. const int nrows_dst = nrows_x;
  839. const int row_dst = row_x;
  840. float tmp = 0.0f;
  841. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  842. const int col_x = col_x0 + threadIdx.x;
  843. if (col_x >= ncols_x) {
  844. break;
  845. }
  846. // x is transposed and permuted
  847. const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
  848. const float xi = __half2float(x[ix]);
  849. const int row_y = col_x;
  850. // y is not transposed but permuted
  851. const int iy = channel*nrows_y + row_y;
  852. tmp += xi * y[iy];
  853. }
  854. // dst is not transposed and not permuted
  855. const int idst = channel*nrows_dst + row_dst;
  856. // sum up partial sums and write back result
  857. tmp = warp_reduce_sum(tmp);
  858. if (threadIdx.x == 0) {
  859. dst[idst] = tmp;
  860. }
  861. }
  862. static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
  863. const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
  864. const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
  865. const half * x = (const half *) vx;
  866. const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
  867. const int channel = blockDim.z*blockIdx.z + threadIdx.z;
  868. const int channel_x = channel / channel_x_divisor;
  869. const int nrows_y = ncols_x;
  870. const int nrows_dst = nrows_x;
  871. const int row_dst = row_x;
  872. const int idst = channel*nrows_dst + row_dst;
  873. float tmp = 0.0f;
  874. for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
  875. const int col_x = col_x0 + threadIdx.x;
  876. if (col_x >= ncols_x) {
  877. break;
  878. }
  879. const int row_y = col_x;
  880. const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
  881. const int iy = channel*nrows_y + row_y;
  882. const float xi = __half2float(x[ix]);
  883. tmp += xi * y[iy];
  884. }
  885. // sum up partial sums and write back result
  886. tmp = warp_reduce_sum(tmp);
  887. if (threadIdx.x == 0) {
  888. dst[idst] = tmp;
  889. }
  890. }
  891. static void ggml_mul_mat_p021_f16_f32_cuda(
  892. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
  893. const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
  894. const dim3 block_nums(1, nrows_x, nchannels_y);
  895. const dim3 block_dims(WARP_SIZE, 1, 1);
  896. mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
  897. }
  898. static void ggml_mul_mat_vec_nc_f16_f32_cuda(
  899. const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
  900. const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
  901. const dim3 block_nums(1, nrows_x, nchannels_y);
  902. const dim3 block_dims(WARP_SIZE, 1, 1);
  903. mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
  904. (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
  905. }
  906. static cudaError_t ggml_cuda_cpy_tensor_2d(
  907. void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
  908. GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
  909. const char * src_ptr = (const char *) src->data;
  910. char * dst_ptr = (char *) dst;
  911. const int64_t ne0 = src->ne[0];
  912. const int64_t nb0 = src->nb[0];
  913. const int64_t nb1 = src->nb[1];
  914. const int64_t nb2 = src->nb[2];
  915. const int64_t nb3 = src->nb[3];
  916. const enum ggml_type type = src->type;
  917. const int64_t ts = ggml_type_size(type);
  918. const int64_t bs = ggml_blck_size(type);
  919. const int64_t i1_diff = i1_high - i1_low;
  920. const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
  921. if (nb0 == ts && nb1 == ts*ne0/bs) {
  922. return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
  923. } else if (nb0 == ts) {
  924. return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
  925. } else {
  926. for (int64_t i1 = 0; i1 < i1_diff; i1++) {
  927. const void * rx = (const void *) ((const char *) x + i1*nb1);
  928. void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
  929. // pretend the row is a matrix with cols=1
  930. cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
  931. if (r != cudaSuccess) {
  932. return r;
  933. }
  934. }
  935. return cudaSuccess;
  936. }
  937. }
  938. static void ggml_cuda_op_mul_mat_cublas(
  939. ggml_backend_cuda_context & ctx,
  940. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
  941. const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
  942. const int64_t src1_padded_row_size, cudaStream_t stream) {
  943. GGML_ASSERT(src0_dd_i != nullptr);
  944. GGML_ASSERT(src1_ddf_i != nullptr);
  945. GGML_ASSERT(dst_dd_i != nullptr);
  946. const int64_t ne00 = src0->ne[0];
  947. const int64_t ne10 = src1->ne[0];
  948. const int64_t ne0 = dst->ne[0];
  949. const int64_t row_diff = row_high - row_low;
  950. int id = ggml_cuda_get_device();
  951. // the main device has a larger memory buffer to hold the results from all GPUs
  952. // ldc == nrows of the matrix that cuBLAS writes into
  953. int64_t ldc = id == ctx.device ? ne0 : row_diff;
  954. const int compute_capability = ggml_cuda_info().devices[id].cc;
  955. if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
  956. // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
  957. ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
  958. if (src0->type != GGML_TYPE_F16) {
  959. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
  960. GGML_ASSERT(to_fp16_cuda != nullptr);
  961. size_t ne = row_diff*ne00;
  962. src0_as_f16.alloc(ne);
  963. to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
  964. }
  965. const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
  966. ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool(id));
  967. if (src1->type != GGML_TYPE_F16) {
  968. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  969. GGML_ASSERT(to_fp16_cuda != nullptr);
  970. size_t ne = src1_ncols*ne10;
  971. src1_as_f16.alloc(ne);
  972. to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
  973. }
  974. const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
  975. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(id), row_diff*src1_ncols);
  976. const half alpha_f16 = 1.0f;
  977. const half beta_f16 = 0.0f;
  978. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  979. CUBLAS_CHECK(
  980. cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  981. row_diff, src1_ncols, ne10,
  982. &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
  983. src1_ptr, CUDA_R_16F, ne10,
  984. &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
  985. CUBLAS_COMPUTE_16F,
  986. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  987. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  988. to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
  989. } else {
  990. ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
  991. ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
  992. if (src0->type != GGML_TYPE_F32) {
  993. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
  994. GGML_ASSERT(to_fp32_cuda != nullptr);
  995. src0_ddq_as_f32.alloc(row_diff*ne00);
  996. to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
  997. }
  998. if (src1->type != GGML_TYPE_F32) {
  999. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
  1000. GGML_ASSERT(to_fp32_cuda != nullptr);
  1001. src1_ddq_as_f32.alloc(src1_ncols*ne10);
  1002. to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
  1003. }
  1004. const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
  1005. const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
  1006. const float alpha = 1.0f;
  1007. const float beta = 0.0f;
  1008. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
  1009. CUBLAS_CHECK(
  1010. cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
  1011. row_diff, src1_ncols, ne10,
  1012. &alpha, src0_ddf_i, ne00,
  1013. src1_ddf1_i, ne10,
  1014. &beta, dst_dd_i, ldc));
  1015. }
  1016. GGML_UNUSED(dst);
  1017. GGML_UNUSED(src1_ddq_i);
  1018. GGML_UNUSED(src1_padded_row_size);
  1019. }
  1020. static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
  1021. static bool peer_access_enabled = false;
  1022. const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
  1023. if (peer_access_enabled == enable_peer_access) {
  1024. return;
  1025. }
  1026. #ifdef NDEBUG
  1027. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1028. ggml_cuda_set_device(id);
  1029. CUDA_CHECK(cudaDeviceSynchronize());
  1030. }
  1031. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1032. ggml_cuda_set_device(id);
  1033. for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
  1034. if (id == id_other) {
  1035. continue;
  1036. }
  1037. if (id != main_device && id_other != main_device) {
  1038. continue;
  1039. }
  1040. int can_access_peer;
  1041. CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
  1042. if (can_access_peer) {
  1043. if (enable_peer_access) {
  1044. cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
  1045. if (err != cudaErrorPeerAccessAlreadyEnabled) {
  1046. CUDA_CHECK(err);
  1047. }
  1048. } else {
  1049. cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
  1050. if (err != cudaErrorPeerAccessNotEnabled) {
  1051. CUDA_CHECK(err);
  1052. }
  1053. }
  1054. }
  1055. }
  1056. }
  1057. ggml_cuda_set_device(main_device);
  1058. #endif // NDEBUG
  1059. peer_access_enabled = enable_peer_access;
  1060. GGML_UNUSED(main_device);
  1061. }
  1062. static cudaError_t ggml_cuda_Memcpy2DPeerAsync(
  1063. void * dst, int dstDevice, size_t dpitch, void * src, int srcDevice, size_t spitch, size_t width, size_t height, cudaStream_t stream) {
  1064. #if !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
  1065. // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
  1066. cudaMemcpy3DPeerParms p = {};
  1067. p.dstDevice = dstDevice;
  1068. p.dstPtr = make_cudaPitchedPtr(dst, dpitch, dpitch, height);
  1069. p.srcDevice = srcDevice;
  1070. p.srcPtr = make_cudaPitchedPtr(src, spitch, spitch, height);
  1071. p.extent = make_cudaExtent(width, height, 1);
  1072. return cudaMemcpy3DPeerAsync(&p, stream);
  1073. #else
  1074. // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
  1075. GGML_UNUSED(dstDevice);
  1076. GGML_UNUSED(srcDevice);
  1077. return cudaMemcpy2DAsync(dst, dpitch, src, spitch, width, height, cudaMemcpyDeviceToDevice, stream);
  1078. #endif // !defined(GGML_USE_HIPBLAS) && !defined(GGML_USE_MUSA)
  1079. }
  1080. static void ggml_cuda_op_mul_mat(
  1081. ggml_backend_cuda_context & ctx,
  1082. const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
  1083. quantize_cuda_t quantize_src1) {
  1084. const int64_t ne00 = src0->ne[0];
  1085. const int64_t ne01 = src0->ne[1];
  1086. const int64_t ne02 = src0->ne[2];
  1087. const int64_t ne03 = src0->ne[3];
  1088. const int64_t ne10 = src1->ne[0];
  1089. const int64_t ne11 = src1->ne[1];
  1090. const int64_t ne12 = src1->ne[2];
  1091. const int64_t ne13 = src1->ne[3];
  1092. const int64_t nrows1 = ggml_nrows(src1);
  1093. GGML_ASSERT(ne03 == ne13);
  1094. const int64_t ne0 = dst->ne[0];
  1095. const int64_t ne1 = dst->ne[1];
  1096. const int64_t nb2 = dst->nb[2];
  1097. const int64_t nb3 = dst->nb[3];
  1098. GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
  1099. GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
  1100. ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
  1101. ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
  1102. GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
  1103. GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
  1104. const int64_t i02_divisor = ne12 / ne02;
  1105. const size_t src0_ts = ggml_type_size(src0->type);
  1106. const size_t src0_bs = ggml_blck_size(src0->type);
  1107. const size_t q8_1_ts = sizeof(block_q8_1);
  1108. const size_t q8_1_bs = QK8_1;
  1109. const bool src0_is_contiguous = ggml_is_contiguous(src0);
  1110. const bool src1_is_contiguous = ggml_is_contiguous(src1);
  1111. const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
  1112. const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
  1113. GGML_ASSERT(!(split && ne02 > 1));
  1114. GGML_ASSERT(!(split && ne03 > 1));
  1115. GGML_ASSERT(!(split && ne02 < ne12));
  1116. ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
  1117. std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
  1118. if (split) {
  1119. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1120. tensor_split = buft_ctx->tensor_split;
  1121. }
  1122. struct dev_data {
  1123. int cc;
  1124. ggml_cuda_pool_alloc<char> src0_dd_alloc;
  1125. ggml_cuda_pool_alloc<float> src1_ddf_alloc;
  1126. ggml_cuda_pool_alloc<char> src1_ddq_alloc;
  1127. ggml_cuda_pool_alloc<float> dst_dd_alloc;
  1128. char * src0_dd = nullptr;
  1129. float * src1_ddf = nullptr; // float
  1130. char * src1_ddq = nullptr; // q8_1
  1131. float * dst_dd = nullptr;
  1132. int64_t row_low;
  1133. int64_t row_high;
  1134. };
  1135. dev_data dev[GGML_CUDA_MAX_DEVICES];
  1136. int used_devices = 0;
  1137. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1138. dev[id].cc = ggml_cuda_info().devices[id].cc;
  1139. // by default, use all rows
  1140. dev[id].row_low = 0;
  1141. dev[id].row_high = ne01;
  1142. // for multi GPU, get the row boundaries from tensor split
  1143. // and round to mul_mat_q tile sizes
  1144. if (split) {
  1145. const int64_t rounding = get_row_rounding(tensor_split);
  1146. if (id != 0) {
  1147. dev[id].row_low = ne01*tensor_split[id];
  1148. if (dev[id].row_low < ne01) {
  1149. dev[id].row_low -= dev[id].row_low % rounding;
  1150. }
  1151. }
  1152. if (id != ggml_backend_cuda_get_device_count() - 1) {
  1153. dev[id].row_high = ne01*tensor_split[id + 1];
  1154. if (dev[id].row_high < ne01) {
  1155. dev[id].row_high -= dev[id].row_high % rounding;
  1156. }
  1157. }
  1158. }
  1159. }
  1160. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1161. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1162. continue;
  1163. }
  1164. used_devices++;
  1165. const bool src1_on_device = id == src1_ctx->device;
  1166. const bool dst_on_device = id == dst_ctx->device;
  1167. ggml_cuda_set_device(id);
  1168. cudaStream_t stream = ctx.stream(id, 0);
  1169. if (src0_is_contiguous) {
  1170. dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
  1171. } else {
  1172. // If src0 is not contiguous it will be copied to a temporary buffer.
  1173. // This buffer needs to be cleared entirely because multiple regions will function as padding.
  1174. const size_t nbytes_data = ggml_nbytes(src0);
  1175. const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
  1176. dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), nbytes_data + nbytes_padding);
  1177. // TODO: remove this for MUSA once the Guilty Lockup issue is resolved
  1178. #ifndef GGML_USE_MUSA
  1179. CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd, 0, nbytes_data + nbytes_padding, stream));
  1180. #else // GGML_USE_MUSA
  1181. CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
  1182. #endif // !GGML_USE_MUSA
  1183. }
  1184. // If src0 is on a temporary compute buffer (partial offloading) there may be some padding that needs to be cleared:
  1185. if (ne00 % MATRIX_ROW_PADDING != 0 && ggml_is_quantized(src0->type) && ggml_backend_buffer_get_usage(src0->buffer) == GGML_BACKEND_BUFFER_USAGE_COMPUTE && src0->view_src == nullptr) {
  1186. const size_t nbytes_data = ggml_row_size(src0->type, (dev[id].row_high - dev[id].row_low)*ne00);
  1187. const size_t nbytes_padding = ggml_row_size(src0->type, MATRIX_ROW_PADDING - ne00 % MATRIX_ROW_PADDING);
  1188. CUDA_CHECK(cudaMemsetAsync(dev[id].src0_dd + nbytes_data, 0, nbytes_padding, stream));
  1189. }
  1190. if (src1_on_device && src1_is_contiguous) {
  1191. dev[id].src1_ddf = (float *) src1->data;
  1192. } else {
  1193. dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
  1194. }
  1195. if (quantize_src1) {
  1196. size_t src_1_ddq_size = nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs;
  1197. if (quantize_src1 == quantize_mmq_q8_1_cuda) {
  1198. src_1_ddq_size += get_mmq_x_max_host(dev[id].cc)*sizeof(block_q8_1_mmq);
  1199. }
  1200. dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), src_1_ddq_size);
  1201. if (src1_on_device && src1_is_contiguous) {
  1202. quantize_src1(dev[id].src1_ddf, dev[id].src1_ddq, ne10, ne11, ne12*ne13, src1_padded_col_size, src0->type, stream);
  1203. CUDA_CHECK(cudaGetLastError());
  1204. }
  1205. }
  1206. if (dst_on_device) {
  1207. dev[id].dst_dd = (float *) dst->data;
  1208. } else {
  1209. const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
  1210. dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
  1211. }
  1212. }
  1213. // if multiple devices are used they need to wait for the main device
  1214. // here an event is recorded that signals that the main device has finished calculating the input data
  1215. if (split && used_devices > 1) {
  1216. ggml_cuda_set_device(ctx.device);
  1217. CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
  1218. }
  1219. const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
  1220. for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
  1221. const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
  1222. const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
  1223. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1224. if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
  1225. continue;
  1226. }
  1227. const bool src1_on_device = id == src1_ctx->device;
  1228. const bool dst_on_device = id == dst_ctx->device;
  1229. const int64_t row_diff = dev[id].row_high - dev[id].row_low;
  1230. ggml_cuda_set_device(id);
  1231. cudaStream_t stream = ctx.stream(id, is);
  1232. // wait for main GPU data if necessary
  1233. if (split && (id != ctx.device || is != 0)) {
  1234. CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
  1235. }
  1236. for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
  1237. const int64_t i03 = i0 / ne12;
  1238. const int64_t i02 = i0 % ne12;
  1239. size_t src1_ddq_i_offset = i0*ne11 * src1_padded_col_size*q8_1_ts/q8_1_bs;
  1240. if (quantize_src1 == quantize_mmq_q8_1_cuda) {
  1241. src1_ddq_i_offset += src1_col_0 * sizeof(block_q8_1_mmq);
  1242. } else {
  1243. src1_ddq_i_offset += src1_col_0 * src1_padded_col_size*q8_1_ts/q8_1_bs;
  1244. }
  1245. // for split tensors the data begins at i0 == i0_offset_low
  1246. char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
  1247. float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
  1248. char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
  1249. float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
  1250. // the main device memory buffer can be on VRAM scratch, with space for all partial results
  1251. // in that case an offset on dst_ddf_i is needed
  1252. if (id == ctx.device) {
  1253. dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
  1254. }
  1255. // copy src0, src1 to device if necessary
  1256. if (src1_is_contiguous) {
  1257. if (id != ctx.device) {
  1258. if (quantize_src1) {
  1259. char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
  1260. if (quantize_src1 == quantize_mmq_q8_1_cuda) {
  1261. const size_t pitch = ne11*sizeof(block_q8_1_mmq);
  1262. const size_t width = src1_ncols*sizeof(block_q8_1_mmq);
  1263. const size_t height = src1_padded_col_size/(4*QK8_1);
  1264. CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(src1_ddq_i, id, pitch, src1_ddq_i_source, ctx.device, pitch, width, height, stream));
  1265. } else {
  1266. CUDA_CHECK(cudaMemcpyPeerAsync(
  1267. src1_ddq_i, id, src1_ddq_i_source, ctx.device, src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
  1268. }
  1269. } else {
  1270. float * src1_ddf_i_source = (float *) src1->data;
  1271. src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
  1272. CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
  1273. src1_ncols*ne10*sizeof(float), stream));
  1274. }
  1275. }
  1276. } else if (src1_on_device && !src1_is_contiguous) {
  1277. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
  1278. src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
  1279. } else {
  1280. GGML_ABORT("fatal error");
  1281. }
  1282. if (quantize_src1 && !src1_is_contiguous) {
  1283. quantize_src1(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, 1, src1_padded_col_size, src0->type, stream);
  1284. CUDA_CHECK(cudaGetLastError());
  1285. }
  1286. if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
  1287. CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
  1288. }
  1289. // do the computation
  1290. op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
  1291. dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
  1292. CUDA_CHECK(cudaGetLastError());
  1293. // copy dst to host or other device if necessary
  1294. if (!dst_on_device) {
  1295. void * dst_off_device = dst->data;
  1296. if (split) {
  1297. // src0 = weight matrix is saved as a transposed matrix for better memory layout.
  1298. // dst is NOT transposed.
  1299. // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
  1300. // Instead they need to be copied to the correct slice in ne0 = dst row index.
  1301. // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
  1302. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1303. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1304. dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
  1305. CUDA_CHECK(ggml_cuda_Memcpy2DPeerAsync(
  1306. dhf_dst_i, ctx.device, ne0*sizeof(float), dst_dd_i, id, row_diff*sizeof(float), row_diff*sizeof(float), src1_ncols, stream));
  1307. } else {
  1308. float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
  1309. GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
  1310. dhf_dst_i += src1_col_0*ne0;
  1311. CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
  1312. }
  1313. }
  1314. // add event for the main device to wait on until other device is done
  1315. if (split && (id != ctx.device || is != 0)) {
  1316. CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
  1317. }
  1318. }
  1319. }
  1320. }
  1321. // main device waits for all other devices to be finished
  1322. if (split && ggml_backend_cuda_get_device_count() > 1) {
  1323. int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
  1324. is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
  1325. ggml_cuda_set_device(ctx.device);
  1326. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1327. if (dev[id].row_low == dev[id].row_high) {
  1328. continue;
  1329. }
  1330. for (int64_t is = 0; is < is_max; ++is) {
  1331. CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
  1332. }
  1333. }
  1334. }
  1335. }
  1336. static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1337. GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
  1338. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1339. GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
  1340. GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
  1341. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1342. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1343. const int64_t ne00 = src0->ne[0];
  1344. const int64_t ne01 = src0->ne[1];
  1345. const int64_t ne02 = src0->ne[2];
  1346. const int64_t ne12 = src1->ne[2];
  1347. cudaStream_t main_stream = ctx.stream();
  1348. void * src0_ddq = src0->data;
  1349. float * src1_ddf = (float *) src1->data;
  1350. float * dst_ddf = (float *) dst->data;
  1351. ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
  1352. }
  1353. static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1354. GGML_ASSERT(!ggml_is_transposed(src0));
  1355. GGML_ASSERT(!ggml_is_transposed(src1));
  1356. GGML_ASSERT(!ggml_is_permuted(src0));
  1357. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1358. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1359. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  1360. const int64_t ne00 = src0->ne[0];
  1361. const int64_t ne01 = src0->ne[1];
  1362. const int64_t ne02 = src0->ne[2];
  1363. const int64_t nb01 = src0->nb[1];
  1364. const int64_t nb02 = src0->nb[2];
  1365. const int64_t ne12 = src1->ne[2];
  1366. cudaStream_t main_stream = ctx.stream();
  1367. void * src0_ddq = src0->data;
  1368. float * src1_ddf = (float *) src1->data;
  1369. float * dst_ddf = (float *) dst->data;
  1370. const int64_t row_stride_x = nb01 / sizeof(half);
  1371. const int64_t channel_stride_x = nb02 / sizeof(half);
  1372. ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
  1373. }
  1374. static __global__ void k_compute_batched_ptrs(
  1375. const half * src0_as_f16, const half * src1_as_f16, char * dst,
  1376. const void ** ptrs_src, void ** ptrs_dst,
  1377. int64_t ne12, int64_t ne13,
  1378. int64_t ne23,
  1379. size_t nb02, size_t nb03,
  1380. size_t nb12, size_t nb13,
  1381. size_t nbd2, size_t nbd3,
  1382. int64_t r2, int64_t r3) {
  1383. int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
  1384. int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
  1385. if (i13 >= ne13 || i12 >= ne12) {
  1386. return;
  1387. }
  1388. int64_t i03 = i13 / r3;
  1389. int64_t i02 = i12 / r2;
  1390. ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
  1391. ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
  1392. ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
  1393. }
  1394. static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1395. GGML_ASSERT(!ggml_is_transposed(src0));
  1396. GGML_ASSERT(!ggml_is_transposed(src1));
  1397. GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
  1398. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  1399. GGML_TENSOR_BINARY_OP_LOCALS
  1400. const int64_t ne_dst = ggml_nelements(dst);
  1401. cudaStream_t main_stream = ctx.stream();
  1402. CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
  1403. void * src0_ddq = src0->data;
  1404. half * src0_f16 = (half *) src0_ddq;
  1405. float * src1_ddf = (float *) src1->data;
  1406. float * dst_ddf = (float *) dst->data;
  1407. // convert src1 to fp16
  1408. ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
  1409. if (src1->type != GGML_TYPE_F16) {
  1410. const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
  1411. const int64_t ne_src1 = ggml_nelements(src1);
  1412. src1_f16_alloc.alloc(ne_src1);
  1413. GGML_ASSERT(to_fp16_cuda != nullptr);
  1414. to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
  1415. }
  1416. half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
  1417. ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
  1418. char * dst_t;
  1419. cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
  1420. cudaDataType_t cu_data_type = CUDA_R_16F;
  1421. // dst strides
  1422. size_t nbd2 = dst->nb[2];
  1423. size_t nbd3 = dst->nb[3];
  1424. const half alpha_f16 = 1.0f;
  1425. const half beta_f16 = 0.0f;
  1426. const float alpha_f32 = 1.0f;
  1427. const float beta_f32 = 0.0f;
  1428. const void * alpha = &alpha_f16;
  1429. const void * beta = &beta_f16;
  1430. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1431. dst_t = (char *) dst_f16.alloc(ne_dst);
  1432. nbd2 /= sizeof(float) / sizeof(half);
  1433. nbd3 /= sizeof(float) / sizeof(half);
  1434. } else {
  1435. dst_t = (char *) dst_ddf;
  1436. cu_compute_type = CUBLAS_COMPUTE_32F;
  1437. cu_data_type = CUDA_R_32F;
  1438. alpha = &alpha_f32;
  1439. beta = &beta_f32;
  1440. }
  1441. GGML_ASSERT(ne12 % ne02 == 0);
  1442. GGML_ASSERT(ne13 % ne03 == 0);
  1443. // broadcast factors
  1444. const int64_t r2 = ne12/ne02;
  1445. const int64_t r3 = ne13/ne03;
  1446. #if 0
  1447. // use cublasGemmEx
  1448. {
  1449. for (int i13 = 0; i13 < ne13; ++i13) {
  1450. for (int i12 = 0; i12 < ne12; ++i12) {
  1451. int i03 = i13 / r3;
  1452. int i02 = i12 / r2;
  1453. CUBLAS_CHECK(
  1454. cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
  1455. ne01, ne11, ne10,
  1456. alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
  1457. (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
  1458. beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
  1459. cu_compute_type,
  1460. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1461. }
  1462. }
  1463. }
  1464. #else
  1465. #ifdef GGML_USE_MUSA
  1466. GGML_ASSERT(false);
  1467. #else // !GGML_USE_MUSA
  1468. if (r2 == 1 && r3 == 1 && ggml_is_contiguous_2(src0) && ggml_is_contiguous_2(src1)) {
  1469. // there is no broadcast and src0, src1 are contiguous across dims 2, 3
  1470. // use cublasGemmStridedBatchedEx
  1471. CUBLAS_CHECK(
  1472. cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1473. ne01, ne11, ne10,
  1474. alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
  1475. (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
  1476. beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
  1477. ne12*ne13,
  1478. cu_compute_type,
  1479. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1480. } else {
  1481. // use cublasGemmBatchedEx
  1482. const int ne23 = ne12*ne13;
  1483. ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
  1484. ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
  1485. dim3 block_dims(ne13, ne12);
  1486. k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
  1487. src0_f16, src1_f16, dst_t,
  1488. ptrs_src.get(), ptrs_dst.get(),
  1489. ne12, ne13,
  1490. ne23,
  1491. nb02, nb03,
  1492. src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
  1493. src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
  1494. nbd2, nbd3,
  1495. r2, r3);
  1496. CUDA_CHECK(cudaGetLastError());
  1497. CUBLAS_CHECK(
  1498. cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
  1499. ne01, ne11, ne10,
  1500. alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
  1501. (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
  1502. beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
  1503. ne23,
  1504. cu_compute_type,
  1505. CUBLAS_GEMM_DEFAULT_TENSOR_OP));
  1506. }
  1507. #endif // GGML_USE_MUSA
  1508. #endif
  1509. if (dst->op_params[0] == GGML_PREC_DEFAULT) {
  1510. const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
  1511. to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
  1512. }
  1513. }
  1514. static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1515. const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
  1516. bool use_dequantize_mul_mat_vec = ggml_cuda_dmmv_type_supported(src0->type)
  1517. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1518. && src0->ne[0] % (GGML_CUDA_DMMV_X*2) == 0 && src1->ne[1] == 1;
  1519. bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
  1520. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
  1521. && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
  1522. bool use_mul_mat_q = ggml_is_quantized(src0->type)
  1523. && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
  1524. // if mmvq is available it's a better choice than dmmv:
  1525. #ifndef GGML_CUDA_FORCE_DMMV
  1526. use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
  1527. #endif // GGML_CUDA_FORCE_DMMV
  1528. bool any_gpus_with_slow_fp16 = false;
  1529. if (split) {
  1530. ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
  1531. auto & tensor_split = buft_ctx->tensor_split;
  1532. for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
  1533. // skip devices that are not going to do any work:
  1534. if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
  1535. continue;
  1536. }
  1537. const int cc = ggml_cuda_info().devices[id].cc;
  1538. use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
  1539. any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
  1540. }
  1541. } else {
  1542. const int cc = ggml_cuda_info().devices[ctx.device].cc;
  1543. use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
  1544. any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
  1545. }
  1546. // debug helpers
  1547. //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
  1548. //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
  1549. //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
  1550. //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
  1551. //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
  1552. //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
  1553. if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
  1554. // FP32 precision KQ single-batch for batch size 1 without FlashAttention
  1555. ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
  1556. } else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
  1557. // FP32 precision KQV single-batch for batch size 1 without FlashAttention
  1558. ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
  1559. } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
  1560. && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
  1561. // KQ + KQV multi-batch without FlashAttention
  1562. ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
  1563. } else if (use_dequantize_mul_mat_vec) {
  1564. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, nullptr);
  1565. } else if (use_mul_mat_vec_q) {
  1566. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
  1567. } else if (use_mul_mat_q) {
  1568. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, quantize_mmq_q8_1_cuda);
  1569. } else {
  1570. ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, nullptr);
  1571. }
  1572. }
  1573. struct mmid_row_mapping {
  1574. int32_t i1;
  1575. int32_t i2;
  1576. };
  1577. static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous,
  1578. int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping,
  1579. const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0,
  1580. int64_t ne11, int64_t ne10,
  1581. size_t nb11, size_t nb12) {
  1582. int32_t iid1 = blockIdx.x;
  1583. int32_t id = blockIdx.y;
  1584. const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0);
  1585. if (row_id_i != i02) {
  1586. return;
  1587. }
  1588. const int64_t i11 = id % ne11;
  1589. const int64_t i12 = iid1;
  1590. __shared__ int src1_row;
  1591. if (threadIdx.x == 0) {
  1592. src1_row = atomicAdd(cur_src1_row, 1);
  1593. row_mapping[src1_row] = {id, iid1};
  1594. }
  1595. __syncthreads();
  1596. const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12);
  1597. float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11);
  1598. for (int i = threadIdx.x; i < ne10; i += blockDim.x) {
  1599. src1_row_contiguous[i] = src1_row_original[i];
  1600. }
  1601. }
  1602. static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous,
  1603. const mmid_row_mapping * __restrict__ row_mapping,
  1604. int64_t ne0,
  1605. size_t nb1, size_t nb2) {
  1606. int32_t i = blockIdx.x;
  1607. const int32_t i1 = row_mapping[i].i1;
  1608. const int32_t i2 = row_mapping[i].i2;
  1609. const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1);
  1610. float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2);
  1611. for (int j = threadIdx.x; j < ne0; j += blockDim.x) {
  1612. dst_row_original[j] = dst_row_contiguous[j];
  1613. }
  1614. }
  1615. static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
  1616. const ggml_tensor * src0 = dst->src[0];
  1617. const ggml_tensor * src1 = dst->src[1];
  1618. const ggml_tensor * ids = dst->src[2];
  1619. GGML_TENSOR_BINARY_OP_LOCALS
  1620. GGML_ASSERT(!ggml_backend_buft_is_cuda_split(src0->buffer->buft) && "mul_mat_id does not support split buffers");
  1621. cudaStream_t stream = ctx.stream();
  1622. const int64_t n_as = ne02;
  1623. const int64_t n_ids = ids->ne[0];
  1624. std::vector<char> ids_host(ggml_nbytes(ids));
  1625. const char * ids_dev = (const char *) ids->data;
  1626. CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
  1627. CUDA_CHECK(cudaStreamSynchronize(stream));
  1628. ggml_tensor src0_row = *src0;
  1629. ggml_tensor src1_row = *src1;
  1630. ggml_tensor dst_row = *dst;
  1631. char * src0_original = (char *) src0->data;
  1632. char * src1_original = (char *) src1->data;
  1633. char * dst_original = (char *) dst->data;
  1634. src0_row.ne[2] = 1;
  1635. src0_row.ne[3] = 1;
  1636. src0_row.nb[3] = nb02;
  1637. src1_row.ne[1] = 1;
  1638. src1_row.ne[2] = 1;
  1639. src1_row.ne[3] = 1;
  1640. src1_row.nb[2] = nb11;
  1641. src1_row.nb[3] = nb11;
  1642. dst_row.ne[1] = 1;
  1643. dst_row.ne[2] = 1;
  1644. dst_row.ne[3] = 1;
  1645. dst_row.nb[2] = nb1;
  1646. dst_row.nb[3] = nb1;
  1647. if (ne12 == 1) {
  1648. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1649. for (int64_t id = 0; id < n_ids; id++) {
  1650. const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1651. GGML_ASSERT(i02 >= 0 && i02 < n_as);
  1652. const int64_t i11 = id % ne11;
  1653. const int64_t i12 = iid1;
  1654. const int64_t i1 = id;
  1655. const int64_t i2 = i12;
  1656. src0_row.data = src0_original + i02*nb02;
  1657. src1_row.data = src1_original + i11*nb11 + i12*nb12;
  1658. dst_row.data = dst_original + i1*nb1 + i2*nb2;
  1659. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1660. }
  1661. }
  1662. } else {
  1663. ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
  1664. ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
  1665. src1_row.data = src1_contiguous.get();
  1666. dst_row.data = dst_contiguous.get();
  1667. for (int64_t i02 = 0; i02 < n_as; i02++) {
  1668. int64_t num_src1_rows = 0;
  1669. for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) {
  1670. for (int64_t id = 0; id < n_ids; id++) {
  1671. const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]);
  1672. GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as);
  1673. if (row_id_i != i02) {
  1674. continue;
  1675. }
  1676. num_src1_rows++;
  1677. }
  1678. }
  1679. if (num_src1_rows == 0) {
  1680. continue;
  1681. }
  1682. ggml_cuda_pool_alloc<int> dev_cur_src1_row(ctx.pool(), 1);
  1683. ggml_cuda_pool_alloc<mmid_row_mapping> dev_row_mapping(ctx.pool(), num_src1_rows);
  1684. CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream));
  1685. {
  1686. dim3 block_dims(std::min((unsigned int)ne10, 768u));
  1687. dim3 grid_dims(ids->ne[1], n_ids);
  1688. k_copy_src1_to_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1689. src1_original, src1_contiguous.get(),
  1690. dev_cur_src1_row.get(), dev_row_mapping.get(),
  1691. ids_dev, i02, ids->nb[1], ids->nb[0],
  1692. ne11, ne10,
  1693. nb11, nb12);
  1694. CUDA_CHECK(cudaGetLastError());
  1695. }
  1696. src0_row.data = src0_original + i02*nb02;
  1697. GGML_ASSERT(nb11 == sizeof(float)*ne10);
  1698. GGML_ASSERT(nb1 == sizeof(float)*ne0);
  1699. src1_row.ne[1] = num_src1_rows;
  1700. src1_row.nb[1] = nb11;
  1701. src1_row.nb[2] = num_src1_rows*nb11;
  1702. src1_row.nb[3] = num_src1_rows*nb11;
  1703. dst_row.ne[1] = num_src1_rows;
  1704. dst_row.nb[1] = nb1;
  1705. dst_row.nb[2] = num_src1_rows*nb1;
  1706. dst_row.nb[3] = num_src1_rows*nb1;
  1707. ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row);
  1708. {
  1709. dim3 block_dims(std::min((unsigned int)ne0, 768u));
  1710. dim3 grid_dims(num_src1_rows);
  1711. k_copy_dst_from_contiguous<<<grid_dims, block_dims, 0, stream>>>(
  1712. dst_original, dst_contiguous.get(),
  1713. dev_row_mapping.get(),
  1714. ne0,
  1715. nb1, nb2);
  1716. CUDA_CHECK(cudaGetLastError());
  1717. }
  1718. }
  1719. }
  1720. }
  1721. static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
  1722. // why is this here instead of mul_mat?
  1723. if (dst->src[0] != nullptr && ggml_backend_buft_is_cuda_split(dst->src[0]->buffer->buft)) {
  1724. ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
  1725. }
  1726. switch (dst->op) {
  1727. case GGML_OP_ARGMAX:
  1728. ggml_cuda_argmax(ctx, dst);
  1729. break;
  1730. case GGML_OP_COUNT_EQUAL:
  1731. ggml_cuda_count_equal(ctx, dst);
  1732. break;
  1733. case GGML_OP_REPEAT:
  1734. ggml_cuda_op_repeat(ctx, dst);
  1735. break;
  1736. case GGML_OP_REPEAT_BACK:
  1737. ggml_cuda_op_repeat_back(ctx, dst);
  1738. break;
  1739. case GGML_OP_GET_ROWS:
  1740. ggml_cuda_op_get_rows(ctx, dst);
  1741. break;
  1742. case GGML_OP_DUP:
  1743. ggml_cuda_dup(ctx, dst);
  1744. break;
  1745. case GGML_OP_CPY:
  1746. ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
  1747. break;
  1748. case GGML_OP_CONT:
  1749. ggml_cuda_dup(ctx, dst);
  1750. break;
  1751. case GGML_OP_ADD:
  1752. case GGML_OP_ADD1: // TODO: more efficient implementation
  1753. ggml_cuda_op_add(ctx, dst);
  1754. break;
  1755. case GGML_OP_SUB:
  1756. ggml_cuda_op_sub(ctx, dst);
  1757. break;
  1758. case GGML_OP_ACC:
  1759. ggml_cuda_op_acc(ctx, dst);
  1760. break;
  1761. case GGML_OP_MUL:
  1762. ggml_cuda_op_mul(ctx, dst);
  1763. break;
  1764. case GGML_OP_DIV:
  1765. ggml_cuda_op_div(ctx, dst);
  1766. break;
  1767. case GGML_OP_UNARY:
  1768. switch (ggml_get_unary_op(dst)) {
  1769. case GGML_UNARY_OP_NEG:
  1770. ggml_cuda_op_neg(ctx, dst);
  1771. break;
  1772. case GGML_UNARY_OP_STEP:
  1773. ggml_cuda_op_step(ctx, dst);
  1774. break;
  1775. case GGML_UNARY_OP_GELU:
  1776. ggml_cuda_op_gelu(ctx, dst);
  1777. break;
  1778. case GGML_UNARY_OP_SILU:
  1779. ggml_cuda_op_silu(ctx, dst);
  1780. break;
  1781. case GGML_UNARY_OP_GELU_QUICK:
  1782. ggml_cuda_op_gelu_quick(ctx, dst);
  1783. break;
  1784. case GGML_UNARY_OP_TANH:
  1785. ggml_cuda_op_tanh(ctx, dst);
  1786. break;
  1787. case GGML_UNARY_OP_RELU:
  1788. ggml_cuda_op_relu(ctx, dst);
  1789. break;
  1790. case GGML_UNARY_OP_SIGMOID:
  1791. ggml_cuda_op_sigmoid(ctx, dst);
  1792. break;
  1793. case GGML_UNARY_OP_HARDSIGMOID:
  1794. ggml_cuda_op_hardsigmoid(ctx, dst);
  1795. break;
  1796. case GGML_UNARY_OP_HARDSWISH:
  1797. ggml_cuda_op_hardswish(ctx, dst);
  1798. break;
  1799. case GGML_UNARY_OP_EXP:
  1800. ggml_cuda_op_exp(ctx, dst);
  1801. break;
  1802. default:
  1803. return false;
  1804. }
  1805. break;
  1806. case GGML_OP_NORM:
  1807. ggml_cuda_op_norm(ctx, dst);
  1808. break;
  1809. case GGML_OP_GROUP_NORM:
  1810. ggml_cuda_op_group_norm(ctx, dst);
  1811. break;
  1812. case GGML_OP_CONCAT:
  1813. ggml_cuda_op_concat(ctx, dst);
  1814. break;
  1815. case GGML_OP_UPSCALE:
  1816. ggml_cuda_op_upscale(ctx, dst);
  1817. break;
  1818. case GGML_OP_PAD:
  1819. ggml_cuda_op_pad(ctx, dst);
  1820. break;
  1821. case GGML_OP_ARANGE:
  1822. ggml_cuda_op_arange(ctx, dst);
  1823. break;
  1824. case GGML_OP_TIMESTEP_EMBEDDING:
  1825. ggml_cuda_op_timestep_embedding(ctx, dst);
  1826. break;
  1827. case GGML_OP_LEAKY_RELU:
  1828. ggml_cuda_op_leaky_relu(ctx, dst);
  1829. break;
  1830. case GGML_OP_RMS_NORM:
  1831. ggml_cuda_op_rms_norm(ctx, dst);
  1832. break;
  1833. case GGML_OP_MUL_MAT:
  1834. if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
  1835. GGML_LOG_ERROR("%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
  1836. return false;
  1837. } else {
  1838. ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
  1839. }
  1840. break;
  1841. case GGML_OP_MUL_MAT_ID:
  1842. ggml_cuda_mul_mat_id(ctx, dst);
  1843. break;
  1844. case GGML_OP_OUT_PROD:
  1845. ggml_cuda_out_prod(ctx, dst);
  1846. break;
  1847. case GGML_OP_SCALE:
  1848. ggml_cuda_op_scale(ctx, dst);
  1849. break;
  1850. case GGML_OP_SQR:
  1851. ggml_cuda_op_sqr(ctx, dst);
  1852. break;
  1853. case GGML_OP_SQRT:
  1854. ggml_cuda_op_sqrt(ctx, dst);
  1855. break;
  1856. case GGML_OP_SIN:
  1857. ggml_cuda_op_sin(ctx, dst);
  1858. break;
  1859. case GGML_OP_COS:
  1860. ggml_cuda_op_cos(ctx, dst);
  1861. break;
  1862. case GGML_OP_CLAMP:
  1863. ggml_cuda_op_clamp(ctx, dst);
  1864. break;
  1865. case GGML_OP_NONE:
  1866. case GGML_OP_RESHAPE:
  1867. case GGML_OP_VIEW:
  1868. case GGML_OP_PERMUTE:
  1869. case GGML_OP_TRANSPOSE:
  1870. break;
  1871. case GGML_OP_DIAG_MASK_INF:
  1872. ggml_cuda_op_diag_mask_inf(ctx, dst);
  1873. break;
  1874. case GGML_OP_SOFT_MAX:
  1875. ggml_cuda_op_soft_max(ctx, dst);
  1876. break;
  1877. case GGML_OP_ROPE:
  1878. ggml_cuda_op_rope(ctx, dst);
  1879. break;
  1880. case GGML_OP_IM2COL:
  1881. ggml_cuda_op_im2col(ctx, dst);
  1882. break;
  1883. case GGML_OP_CONV_TRANSPOSE_1D:
  1884. ggml_cuda_op_conv_transpose_1d(ctx,dst);
  1885. break;
  1886. case GGML_OP_POOL_2D:
  1887. ggml_cuda_op_pool2d(ctx, dst);
  1888. break;
  1889. case GGML_OP_SUM:
  1890. ggml_cuda_op_sum(ctx, dst);
  1891. break;
  1892. case GGML_OP_SUM_ROWS:
  1893. ggml_cuda_op_sum_rows(ctx, dst);
  1894. break;
  1895. case GGML_OP_ARGSORT:
  1896. ggml_cuda_op_argsort(ctx, dst);
  1897. break;
  1898. case GGML_OP_FLASH_ATTN_EXT:
  1899. ggml_cuda_flash_attn_ext(ctx, dst);
  1900. break;
  1901. case GGML_OP_CROSS_ENTROPY_LOSS:
  1902. ggml_cuda_cross_entropy_loss(ctx, dst);
  1903. break;
  1904. case GGML_OP_RWKV_WKV:
  1905. ggml_cuda_op_rwkv_wkv(ctx, dst);
  1906. break;
  1907. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  1908. ggml_cuda_cross_entropy_loss_back(ctx, dst);
  1909. break;
  1910. case GGML_OP_OPT_STEP_ADAMW:
  1911. ggml_cuda_opt_step_adamw(ctx, dst);
  1912. break;
  1913. default:
  1914. return false;
  1915. }
  1916. cudaError_t err = cudaGetLastError();
  1917. if (err != cudaSuccess) {
  1918. GGML_LOG_ERROR("%s: %s failed\n", __func__, ggml_op_desc(dst));
  1919. CUDA_CHECK(err);
  1920. }
  1921. return true;
  1922. }
  1923. ////////////////////////////////////////////////////////////////////////////////
  1924. // backend
  1925. static const char * ggml_backend_cuda_get_name(ggml_backend_t backend) {
  1926. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1927. return cuda_ctx->name.c_str();
  1928. }
  1929. static void ggml_backend_cuda_free(ggml_backend_t backend) {
  1930. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1931. delete cuda_ctx;
  1932. delete backend;
  1933. }
  1934. static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1935. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1936. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1937. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1938. CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
  1939. }
  1940. static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1941. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1942. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  1943. GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
  1944. CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
  1945. }
  1946. static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
  1947. ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
  1948. ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
  1949. if (!ggml_backend_is_cuda(backend_src) || !ggml_backend_is_cuda(backend_dst)) {
  1950. return false;
  1951. }
  1952. if (!ggml_backend_buffer_is_cuda(src->buffer) || !ggml_backend_buffer_is_cuda(dst->buffer)) {
  1953. return false;
  1954. }
  1955. // device -> device copy
  1956. ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
  1957. ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
  1958. ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
  1959. ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
  1960. if (cuda_ctx_src->device != buf_ctx_src->device || cuda_ctx_dst->device != buf_ctx_dst->device) {
  1961. #ifndef NDEBUG
  1962. GGML_LOG_DEBUG("%s: backend and buffer devices do not match\n", __func__);
  1963. #endif
  1964. return false;
  1965. }
  1966. if (backend_src != backend_dst) {
  1967. // copy on src stream
  1968. if (cuda_ctx_src->device == cuda_ctx_dst->device) {
  1969. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
  1970. } else {
  1971. #ifdef GGML_CUDA_NO_PEER_COPY
  1972. return false;
  1973. #else
  1974. CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
  1975. #endif
  1976. }
  1977. // record event on src stream after the copy
  1978. if (!cuda_ctx_src->copy_event) {
  1979. ggml_cuda_set_device(cuda_ctx_src->device);
  1980. CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
  1981. }
  1982. CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
  1983. // wait on dst stream for the copy to complete
  1984. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
  1985. } else {
  1986. // src and dst are on the same backend
  1987. CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_src->stream()));
  1988. }
  1989. return true;
  1990. }
  1991. static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
  1992. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  1993. CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
  1994. GGML_UNUSED(backend);
  1995. }
  1996. #ifdef USE_CUDA_GRAPH
  1997. static void set_ggml_graph_node_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  1998. graph_node_properties->node_address = node->data;
  1999. graph_node_properties->node_op = node->op;
  2000. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2001. graph_node_properties->ne[i] = node->ne[i];
  2002. graph_node_properties->nb[i] = node->nb[i];
  2003. }
  2004. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2005. graph_node_properties->src_address[i] = node->src[i] ? node->src[i]->data : nullptr;
  2006. }
  2007. memcpy(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS);
  2008. }
  2009. static bool ggml_graph_node_has_matching_properties(ggml_tensor * node, ggml_graph_node_properties * graph_node_properties) {
  2010. if (node->data != graph_node_properties->node_address &&
  2011. node->op != GGML_OP_CPY &&
  2012. node->op != GGML_OP_VIEW) {
  2013. return false;
  2014. }
  2015. if (node->op != graph_node_properties->node_op) {
  2016. return false;
  2017. }
  2018. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2019. if (node->ne[i] != graph_node_properties->ne[i]) {
  2020. return false;
  2021. }
  2022. if (node->nb[i] != graph_node_properties->nb[i]) {
  2023. return false;
  2024. }
  2025. }
  2026. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2027. if (node->src[i] &&
  2028. node->src[i]->data != graph_node_properties->src_address[i] &&
  2029. node->op != GGML_OP_CPY &&
  2030. node->op != GGML_OP_VIEW
  2031. ) {
  2032. return false;
  2033. }
  2034. }
  2035. if (node->op == GGML_OP_SCALE &&
  2036. memcmp(graph_node_properties->op_params, node->op_params, GGML_MAX_OP_PARAMS) != 0) {
  2037. return false;
  2038. }
  2039. return true;
  2040. }
  2041. #endif
  2042. static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  2043. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2044. ggml_cuda_set_device(cuda_ctx->device);
  2045. #ifdef USE_CUDA_GRAPH
  2046. static const bool disable_cuda_graphs_due_to_env = (getenv("GGML_CUDA_DISABLE_GRAPHS") != nullptr);
  2047. // Objects required for CUDA Graph
  2048. if (cuda_ctx->cuda_graph == nullptr) {
  2049. cuda_ctx->cuda_graph.reset(new ggml_cuda_graph());
  2050. }
  2051. bool use_cuda_graph = true;
  2052. bool cuda_graph_update_required = false;
  2053. // vector of pointers to CUDA cpy kernels, which are required to identify
  2054. // kernel parameters which need updated in the graph for each token
  2055. std::vector<void *> ggml_cuda_cpy_fn_ptrs;
  2056. if (cuda_ctx->cuda_graph->graph == nullptr) {
  2057. if (ggml_cuda_info().devices[cuda_ctx->device].cc < CC_AMPERE) {
  2058. cuda_ctx->cuda_graph->disable_due_to_gpu_arch = true;
  2059. #ifndef NDEBUG
  2060. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to GPU architecture\n", __func__);
  2061. #endif
  2062. }
  2063. }
  2064. // Disable CUDA graphs in presence of env var, old GPU, use-case which is changing too rapidly,
  2065. // or previous graph capture failure.
  2066. // Also disable for multi-gpu for now. TO DO investigate
  2067. if (disable_cuda_graphs_due_to_env
  2068. || cuda_ctx->cuda_graph->disable_due_to_gpu_arch
  2069. || cuda_ctx->cuda_graph->disable_due_to_too_many_updates
  2070. || cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture) {
  2071. use_cuda_graph = false;
  2072. }
  2073. if (use_cuda_graph) {
  2074. if (cuda_ctx->cuda_graph->instance == nullptr) {
  2075. cuda_graph_update_required = true;
  2076. }
  2077. // Check if the graph size has changed
  2078. if (cuda_ctx->cuda_graph->ggml_graph_properties.size() != (size_t)cgraph->n_nodes) {
  2079. cuda_graph_update_required = true;
  2080. cuda_ctx->cuda_graph->ggml_graph_properties.resize(cgraph->n_nodes);
  2081. }
  2082. // Loop over nodes in GGML graph to determine if CUDA graph update is required
  2083. // and store properties to allow this comparison for the next token
  2084. for (int i = 0; i < cgraph->n_nodes; i++) {
  2085. bool has_matching_properties = true;
  2086. if (!cuda_graph_update_required) {
  2087. has_matching_properties = ggml_graph_node_has_matching_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2088. }
  2089. if (!has_matching_properties) {
  2090. cuda_graph_update_required = true;
  2091. }
  2092. set_ggml_graph_node_properties(cgraph->nodes[i], &cuda_ctx->cuda_graph->ggml_graph_properties[i]);
  2093. }
  2094. // Loop over nodes in GGML graph to obtain info needed for CUDA graph
  2095. cuda_ctx->cuda_graph->updated_kernel_arg.clear();
  2096. for (int i = 0; i < cgraph->n_nodes; i++) {
  2097. ggml_tensor * node = cgraph->nodes[i];
  2098. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2099. continue;
  2100. }
  2101. if (node->src[0] && node->src[0]->buffer && ggml_backend_buft_is_cuda_split(node->src[0]->buffer->buft)) {
  2102. use_cuda_graph = false; // Split buffers are not supported by CUDA graph capture
  2103. #ifndef NDEBUG
  2104. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to split buffer\n", __func__);
  2105. #endif
  2106. }
  2107. if (node->op == GGML_OP_MUL_MAT_ID) {
  2108. use_cuda_graph = false; // This node type is not supported by CUDA graph capture
  2109. #ifndef NDEBUG
  2110. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to mul_mat_id\n", __func__);
  2111. #endif
  2112. }
  2113. if (node->op == GGML_OP_ADD && node->src[1] && node->src[1]->ne[1] > 1) {
  2114. // disable CUDA graphs for batch size > 1 for now.
  2115. // Changes in batch size or context size can cause changes to the grid size of some kernels.
  2116. use_cuda_graph = false;
  2117. #ifndef NDEBUG
  2118. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to batch size > 1 [%s] [%ld %ld %ld %ld]\n", __func__, node->name, node->ne[0], node->ne[1], node->ne[2], node->ne[3]);
  2119. #endif
  2120. }
  2121. if (node->op == GGML_OP_CPY) {
  2122. // store the copy op parameter which changes with each token.
  2123. cuda_ctx->cuda_graph->updated_kernel_arg.push_back((char **) &(node->src[1]->data));
  2124. // store a pointer to each copy op CUDA kernel to identify it later
  2125. void * ptr = ggml_cuda_cpy_fn(node->src[0], node->src[1]);
  2126. if (!ptr) {
  2127. use_cuda_graph = false;
  2128. #ifndef NDEBUG
  2129. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to unsupported copy op\n", __func__);
  2130. #endif
  2131. } else {
  2132. if (std::find(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), ptr) == ggml_cuda_cpy_fn_ptrs.end()) {
  2133. ggml_cuda_cpy_fn_ptrs.push_back(ptr);
  2134. }
  2135. }
  2136. }
  2137. if (!use_cuda_graph) {
  2138. break;
  2139. }
  2140. }
  2141. // Disable CUDA graphs (from the next token) if the use-case is demanding too many consecutive graph updates.
  2142. if (use_cuda_graph && cuda_graph_update_required) {
  2143. cuda_ctx->cuda_graph->number_consecutive_updates++;
  2144. } else {
  2145. cuda_ctx->cuda_graph->number_consecutive_updates = 0;
  2146. }
  2147. if (cuda_ctx->cuda_graph->number_consecutive_updates >= 4) {
  2148. cuda_ctx->cuda_graph->disable_due_to_too_many_updates = true;
  2149. #ifndef NDEBUG
  2150. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to too many consecutive updates\n", __func__);
  2151. #endif
  2152. }
  2153. }
  2154. if (use_cuda_graph && cuda_graph_update_required) { // Start CUDA graph capture
  2155. CUDA_CHECK(cudaStreamBeginCapture(cuda_ctx->stream(), cudaStreamCaptureModeRelaxed));
  2156. }
  2157. #else
  2158. bool use_cuda_graph = false;
  2159. bool cuda_graph_update_required = false;
  2160. #endif // USE_CUDA_GRAPH
  2161. bool graph_evaluated_or_captured = false;
  2162. while (!graph_evaluated_or_captured) {
  2163. // Only perform the graph execution if CUDA graphs are not enabled, or we are capturing the graph.
  2164. // With the use of CUDA graphs, the execution will be performed by the graph launch.
  2165. if (!use_cuda_graph || cuda_graph_update_required) {
  2166. for (int i = 0; i < cgraph->n_nodes; i++) {
  2167. ggml_tensor * node = cgraph->nodes[i];
  2168. if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  2169. continue;
  2170. }
  2171. #ifndef NDEBUG
  2172. assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
  2173. for (int j = 0; j < GGML_MAX_SRC; j++) {
  2174. if (node->src[j] != nullptr) {
  2175. assert(node->src[j]->buffer);
  2176. assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) ||
  2177. ggml_backend_buft_is_cuda_split(node->src[j]->buffer->buft));
  2178. }
  2179. }
  2180. #endif
  2181. bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
  2182. if (!ok) {
  2183. GGML_LOG_ERROR("%s: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  2184. }
  2185. GGML_ASSERT(ok);
  2186. }
  2187. }
  2188. #ifdef USE_CUDA_GRAPH
  2189. if (use_cuda_graph && cuda_graph_update_required) { // End CUDA graph capture
  2190. if (cuda_ctx->cuda_graph->graph != nullptr) {
  2191. CUDA_CHECK(cudaGraphDestroy(cuda_ctx->cuda_graph->graph));
  2192. cuda_ctx->cuda_graph->graph = nullptr;
  2193. }
  2194. CUDA_CHECK(cudaStreamEndCapture(cuda_ctx->stream(), &cuda_ctx->cuda_graph->graph));
  2195. #if 0
  2196. if (disable_cuda_graphs_due_to_failed_capture) {
  2197. use_cuda_graph = false;
  2198. cuda_ctx->cuda_graph->disable_due_to_failed_graph_capture = true;
  2199. #ifndef NDEBUG
  2200. GGML_LOG_DEBUG("%s: disabling CUDA graphs due to failed graph capture\n", __func__);
  2201. #endif
  2202. } else {
  2203. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2204. }
  2205. #endif
  2206. graph_evaluated_or_captured = true; // CUDA graph has been captured
  2207. } else {
  2208. graph_evaluated_or_captured = true; // ggml graph has been directly evaluated
  2209. }
  2210. }
  2211. if (use_cuda_graph) {
  2212. if (cuda_ctx->cuda_graph->instance == nullptr) { // Create executable graph from captured graph.
  2213. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2214. }
  2215. // Perform update to graph (if required for this token), and change copy parameter (required for every token)
  2216. if (cuda_graph_update_required) {
  2217. // Extract nodes from graph
  2218. // First call with null argument gets number of nodes in graph
  2219. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, nullptr, &cuda_ctx->cuda_graph->num_nodes));
  2220. // Subsequent call with non-null argument gets nodes
  2221. cuda_ctx->cuda_graph->nodes.clear();
  2222. cuda_ctx->cuda_graph->nodes.resize(cuda_ctx->cuda_graph->num_nodes);
  2223. cuda_ctx->cuda_graph->params.clear();
  2224. cuda_ctx->cuda_graph->params.resize(cuda_ctx->cuda_graph->num_nodes);
  2225. if (cuda_ctx->cuda_graph->num_nodes > 0) {
  2226. CUDA_CHECK(cudaGraphGetNodes(cuda_ctx->cuda_graph->graph, cuda_ctx->cuda_graph->nodes.data(), &cuda_ctx->cuda_graph->num_nodes));
  2227. // Loop over nodes, and extract kernel parameters from each node
  2228. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2229. cudaGraphNodeType node_type;
  2230. CUDA_CHECK(cudaGraphNodeGetType(cuda_ctx->cuda_graph->nodes[i], &node_type));
  2231. if (node_type == cudaGraphNodeTypeKernel) {
  2232. cudaError_t stat = cudaGraphKernelNodeGetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]); // Get params using runtime
  2233. if (stat == cudaErrorInvalidDeviceFunction) {
  2234. // Fails due to incorrect handling by CUDA runtime of CUDA BLAS node.
  2235. // We don't need to update blas nodes, so clear error and move on.
  2236. cudaGetLastError();
  2237. } else {
  2238. GGML_ASSERT(stat == cudaSuccess);
  2239. }
  2240. }
  2241. }
  2242. }
  2243. }
  2244. // One of the arguments to the copy kernel is updated for each token, hence we need to
  2245. // replace that argument with the updated value in the CUDA graph
  2246. if (!cuda_graph_update_required) { // on update steps, the live parameters will already be captured
  2247. int k = 0;
  2248. for (size_t i = 0; i < cuda_ctx->cuda_graph->num_nodes; i++) {
  2249. if(count(ggml_cuda_cpy_fn_ptrs.begin(), ggml_cuda_cpy_fn_ptrs.end(), cuda_ctx->cuda_graph->params[i].func) > 0) {
  2250. char ** updated_kernel_arg_ptr = cuda_ctx->cuda_graph->updated_kernel_arg.at(k++);
  2251. cuda_ctx->cuda_graph->params[i].kernelParams[1] = updated_kernel_arg_ptr;
  2252. CUDA_CHECK(cudaGraphKernelNodeSetParams(cuda_ctx->cuda_graph->nodes[i], &cuda_ctx->cuda_graph->params[i]));
  2253. }
  2254. }
  2255. }
  2256. // Update graph executable
  2257. cudaGraphExecUpdateResultInfo result_info;
  2258. cudaError_t stat = cudaGraphExecUpdate(cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, &result_info);
  2259. if (stat == cudaErrorGraphExecUpdateFailure) {
  2260. #ifndef NDEBUG
  2261. GGML_LOG_DEBUG("%s: CUDA graph update failed\n", __func__);
  2262. #endif
  2263. // The pre-existing graph exec cannot be updated due to violated constraints
  2264. // so instead clear error and re-instantiate
  2265. cudaGetLastError();
  2266. CUDA_CHECK(cudaGraphExecDestroy(cuda_ctx->cuda_graph->instance));
  2267. cuda_ctx->cuda_graph->instance = nullptr;
  2268. CUDA_CHECK(cudaGraphInstantiate(&cuda_ctx->cuda_graph->instance, cuda_ctx->cuda_graph->graph, NULL, NULL, 0));
  2269. } else {
  2270. GGML_ASSERT(stat == cudaSuccess);
  2271. }
  2272. // Launch graph
  2273. CUDA_CHECK(cudaGraphLaunch(cuda_ctx->cuda_graph->instance, cuda_ctx->stream()));
  2274. #else
  2275. graph_evaluated_or_captured = true;
  2276. #endif // USE_CUDA_GRAPH
  2277. }
  2278. return GGML_STATUS_SUCCESS;
  2279. }
  2280. static void ggml_backend_cuda_event_record(ggml_backend_t backend, ggml_backend_event_t event) {
  2281. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2282. CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
  2283. }
  2284. static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  2285. ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
  2286. if (ggml_backend_is_cuda(backend)) {
  2287. CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
  2288. } else {
  2289. #if 0
  2290. // untested
  2291. auto wait_fn = [](void * user_data) {
  2292. ggml_backend_event_t event = (ggml_backend_event_t)user_data;
  2293. ggml_backend_event_synchronize(event);
  2294. };
  2295. CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
  2296. #endif
  2297. GGML_ABORT("fatal error");
  2298. }
  2299. }
  2300. static const ggml_backend_i ggml_backend_cuda_interface = {
  2301. /* .get_name = */ ggml_backend_cuda_get_name,
  2302. /* .free = */ ggml_backend_cuda_free,
  2303. /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
  2304. /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
  2305. /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
  2306. /* .synchronize = */ ggml_backend_cuda_synchronize,
  2307. /* .graph_plan_create = */ NULL,
  2308. /* .graph_plan_free = */ NULL,
  2309. /* .graph_plan_update = */ NULL,
  2310. /* .graph_plan_compute = */ NULL,
  2311. /* .graph_compute = */ ggml_backend_cuda_graph_compute,
  2312. /* .event_record = */ ggml_backend_cuda_event_record,
  2313. /* .event_wait = */ ggml_backend_cuda_event_wait,
  2314. };
  2315. static ggml_guid_t ggml_backend_cuda_guid() {
  2316. static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
  2317. return &guid;
  2318. }
  2319. bool ggml_backend_is_cuda(ggml_backend_t backend) {
  2320. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
  2321. }
  2322. int ggml_backend_cuda_get_device_count() {
  2323. return ggml_cuda_info().device_count;
  2324. }
  2325. void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
  2326. cudaDeviceProp prop;
  2327. CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
  2328. snprintf(description, description_size, "%s", prop.name);
  2329. }
  2330. void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
  2331. ggml_cuda_set_device(device);
  2332. CUDA_CHECK(cudaMemGetInfo(free, total));
  2333. }
  2334. bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
  2335. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2336. return false;
  2337. }
  2338. #if CUDART_VERSION >= 11100 || defined(GGML_USE_MUSA)
  2339. cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
  2340. if (err != cudaSuccess) {
  2341. // clear the error
  2342. cudaGetLastError();
  2343. GGML_LOG_DEBUG("%s: failed to register %.2f MiB of pinned memory: %s\n", __func__,
  2344. size / 1024.0 / 1024.0, cudaGetErrorString(err));
  2345. return false;
  2346. }
  2347. return true;
  2348. #else
  2349. return false;
  2350. #endif
  2351. }
  2352. void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
  2353. if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
  2354. return;
  2355. }
  2356. cudaError_t err = cudaHostUnregister(buffer);
  2357. if (err != cudaSuccess) {
  2358. // clear the error
  2359. cudaGetLastError();
  2360. }
  2361. }
  2362. // backend device
  2363. struct ggml_backend_cuda_device_context {
  2364. int device;
  2365. std::string name;
  2366. std::string description;
  2367. };
  2368. static const char * ggml_backend_cuda_device_get_name(ggml_backend_dev_t dev) {
  2369. ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
  2370. return ctx->name.c_str();
  2371. }
  2372. static const char * ggml_backend_cuda_device_get_description(ggml_backend_dev_t dev) {
  2373. ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
  2374. return ctx->description.c_str();
  2375. }
  2376. static void ggml_backend_cuda_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  2377. ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
  2378. ggml_cuda_set_device(ctx->device);
  2379. CUDA_CHECK(cudaMemGetInfo(free, total));
  2380. }
  2381. static enum ggml_backend_dev_type ggml_backend_cuda_device_get_type(ggml_backend_dev_t dev) {
  2382. GGML_UNUSED(dev);
  2383. return GGML_BACKEND_DEVICE_TYPE_GPU;
  2384. }
  2385. static void ggml_backend_cuda_device_get_props(ggml_backend_dev_t dev, ggml_backend_dev_props * props) {
  2386. props->name = ggml_backend_cuda_device_get_name(dev);
  2387. props->description = ggml_backend_cuda_device_get_description(dev);
  2388. props->type = ggml_backend_cuda_device_get_type(dev);
  2389. ggml_backend_cuda_device_get_memory(dev, &props->memory_free, &props->memory_total);
  2390. bool host_buffer = getenv("GGML_CUDA_NO_PINNED") == nullptr;
  2391. #ifdef GGML_CUDA_NO_PEER_COPY
  2392. bool events = false;
  2393. #else
  2394. bool events = true;
  2395. #endif
  2396. props->caps = {
  2397. /* .async = */ true,
  2398. /* .host_buffer = */ host_buffer,
  2399. /* .buffer_from_host_ptr = */ false,
  2400. /* .events = */ events,
  2401. };
  2402. }
  2403. static ggml_backend_t ggml_backend_cuda_device_init_backend(ggml_backend_dev_t dev, const char * params) {
  2404. GGML_UNUSED(params);
  2405. ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
  2406. return ggml_backend_cuda_init(ctx->device);
  2407. }
  2408. static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_buffer_type(ggml_backend_dev_t dev) {
  2409. ggml_backend_cuda_device_context * ctx = (ggml_backend_cuda_device_context *)dev->context;
  2410. return ggml_backend_cuda_buffer_type(ctx->device);
  2411. }
  2412. static ggml_backend_buffer_type_t ggml_backend_cuda_device_get_host_buffer_type(ggml_backend_dev_t dev) {
  2413. GGML_UNUSED(dev);
  2414. return ggml_backend_cuda_host_buffer_type();
  2415. }
  2416. // TODO: move these functions here
  2417. static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
  2418. ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *) dev->context;
  2419. // split buffers can only be used with GGML_OP_MUL_MAT
  2420. if (op->op != GGML_OP_MUL_MAT) {
  2421. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2422. if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda_split(op->src[i]->buffer->buft)) {
  2423. return false;
  2424. }
  2425. }
  2426. }
  2427. // check if all the sources are allocated on this device
  2428. for (int i = 0; i < GGML_MAX_SRC; i++) {
  2429. if (op->src[i] && op->src[i]->buffer && ggml_backend_buft_is_cuda(op->src[i]->buffer->buft)) {
  2430. ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)op->src[i]->buffer->buft->context;
  2431. if (buft_ctx->device != dev_ctx->device) {
  2432. return false;
  2433. }
  2434. }
  2435. }
  2436. switch (op->op) {
  2437. case GGML_OP_UNARY:
  2438. switch (ggml_get_unary_op(op)) {
  2439. case GGML_UNARY_OP_NEG:
  2440. case GGML_UNARY_OP_STEP:
  2441. case GGML_UNARY_OP_GELU:
  2442. case GGML_UNARY_OP_SILU:
  2443. case GGML_UNARY_OP_RELU:
  2444. case GGML_UNARY_OP_SIGMOID:
  2445. case GGML_UNARY_OP_HARDSIGMOID:
  2446. case GGML_UNARY_OP_HARDSWISH:
  2447. case GGML_UNARY_OP_GELU_QUICK:
  2448. case GGML_UNARY_OP_TANH:
  2449. case GGML_UNARY_OP_EXP:
  2450. return ggml_is_contiguous(op->src[0]);
  2451. default:
  2452. return false;
  2453. }
  2454. break;
  2455. case GGML_OP_MUL_MAT:
  2456. case GGML_OP_MUL_MAT_ID:
  2457. {
  2458. struct ggml_tensor * a = op->src[0];
  2459. struct ggml_tensor * b = op->src[1];
  2460. if (b->type == GGML_TYPE_F16 && a->type != GGML_TYPE_F16) {
  2461. return false;
  2462. }
  2463. if (op->op == GGML_OP_MUL_MAT && a->ne[3] != b->ne[3]) {
  2464. return false;
  2465. }
  2466. #ifdef GGML_USE_MUSA
  2467. if (b->type == GGML_TYPE_F16 && b->ne[2]*b->ne[3] > 1 &&
  2468. !ggml_is_transposed(a) && !ggml_is_transposed(b)) {
  2469. return false;
  2470. }
  2471. #endif // GGML_USE_MUSA
  2472. switch (a->type) {
  2473. case GGML_TYPE_F32:
  2474. case GGML_TYPE_F16:
  2475. case GGML_TYPE_Q4_0:
  2476. case GGML_TYPE_Q4_1:
  2477. case GGML_TYPE_Q5_0:
  2478. case GGML_TYPE_Q5_1:
  2479. case GGML_TYPE_Q8_0:
  2480. case GGML_TYPE_Q2_K:
  2481. case GGML_TYPE_Q3_K:
  2482. case GGML_TYPE_Q4_K:
  2483. case GGML_TYPE_Q5_K:
  2484. case GGML_TYPE_Q6_K:
  2485. case GGML_TYPE_Q8_K:
  2486. case GGML_TYPE_IQ1_M:
  2487. case GGML_TYPE_IQ1_S:
  2488. case GGML_TYPE_IQ2_S:
  2489. case GGML_TYPE_IQ2_XS:
  2490. case GGML_TYPE_IQ2_XXS:
  2491. case GGML_TYPE_IQ3_S:
  2492. case GGML_TYPE_IQ3_XXS:
  2493. case GGML_TYPE_IQ4_NL:
  2494. case GGML_TYPE_IQ4_XS:
  2495. #ifdef GGML_USE_MUSA
  2496. if (a->type == GGML_TYPE_Q3_K) {
  2497. return false;
  2498. }
  2499. #endif // GGML_USE_MUSA
  2500. return true;
  2501. default:
  2502. return false;
  2503. }
  2504. } break;
  2505. case GGML_OP_OUT_PROD:
  2506. return op->type == GGML_TYPE_F32 && op->src[0]->type == GGML_TYPE_F32 && op->src[1]->type == GGML_TYPE_F32 && op->ne[2] == 1 && op->ne[3] == 1;
  2507. case GGML_OP_GET_ROWS:
  2508. {
  2509. switch (op->src[0]->type) {
  2510. case GGML_TYPE_F16:
  2511. case GGML_TYPE_F32:
  2512. case GGML_TYPE_Q4_0:
  2513. case GGML_TYPE_Q4_1:
  2514. case GGML_TYPE_Q5_0:
  2515. case GGML_TYPE_Q5_1:
  2516. case GGML_TYPE_Q8_0:
  2517. return true;
  2518. default:
  2519. return false;
  2520. }
  2521. } break;
  2522. case GGML_OP_CPY:
  2523. {
  2524. ggml_type src0_type = op->src[0]->type;
  2525. ggml_type src1_type = op->src[1]->type;
  2526. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  2527. return true;
  2528. }
  2529. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
  2530. return true;
  2531. }
  2532. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
  2533. return true;
  2534. }
  2535. if (src0_type == GGML_TYPE_Q8_0 && src1_type == GGML_TYPE_F32) {
  2536. return true;
  2537. }
  2538. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
  2539. return true;
  2540. }
  2541. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
  2542. return true;
  2543. }
  2544. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
  2545. return true;
  2546. }
  2547. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
  2548. return true;
  2549. }
  2550. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
  2551. return true;
  2552. }
  2553. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
  2554. return true;
  2555. }
  2556. if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
  2557. return true;
  2558. }
  2559. if (src0_type == src1_type && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1])) {
  2560. return true;
  2561. }
  2562. return false;
  2563. } break;
  2564. case GGML_OP_DUP:
  2565. {
  2566. ggml_type src0_type = op->src[0]->type;
  2567. return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  2568. } break;
  2569. case GGML_OP_ARGMAX:
  2570. case GGML_OP_COUNT_EQUAL:
  2571. {
  2572. return true;
  2573. } break;
  2574. case GGML_OP_REPEAT:
  2575. {
  2576. ggml_type src0_type = op->src[0]->type;
  2577. return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  2578. } break;
  2579. case GGML_OP_REPEAT_BACK:
  2580. return op->type == GGML_TYPE_F32 && op->src[0]->ne[3] == 1;
  2581. case GGML_OP_CONCAT:
  2582. {
  2583. ggml_type src0_type = op->src[0]->type;
  2584. return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
  2585. } break;
  2586. case GGML_OP_CONV_TRANSPOSE_1D:
  2587. {
  2588. ggml_type src0_type = op->src[0]->type;
  2589. ggml_type src1_type = op->src[1]->type;
  2590. if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
  2591. return true;
  2592. }
  2593. return false;
  2594. } break;
  2595. case GGML_OP_NORM:
  2596. case GGML_OP_RMS_NORM:
  2597. return ggml_is_contiguous(op->src[0]) && op->ne[0] % WARP_SIZE == 0;
  2598. break;
  2599. case GGML_OP_NONE:
  2600. case GGML_OP_RESHAPE:
  2601. case GGML_OP_VIEW:
  2602. case GGML_OP_PERMUTE:
  2603. case GGML_OP_TRANSPOSE:
  2604. case GGML_OP_ADD:
  2605. case GGML_OP_ADD1:
  2606. case GGML_OP_SUB:
  2607. case GGML_OP_MUL:
  2608. case GGML_OP_DIV:
  2609. case GGML_OP_SCALE:
  2610. case GGML_OP_SQR:
  2611. case GGML_OP_SQRT:
  2612. case GGML_OP_SIN:
  2613. case GGML_OP_COS:
  2614. case GGML_OP_CLAMP:
  2615. return true;
  2616. case GGML_OP_CONT:
  2617. return op->src[0]->type != GGML_TYPE_BF16;
  2618. case GGML_OP_DIAG_MASK_INF:
  2619. case GGML_OP_SOFT_MAX:
  2620. return true;
  2621. case GGML_OP_ROPE:
  2622. return ggml_is_contiguous(op->src[0]);
  2623. case GGML_OP_IM2COL:
  2624. case GGML_OP_POOL_2D:
  2625. case GGML_OP_SUM:
  2626. case GGML_OP_SUM_ROWS:
  2627. case GGML_OP_ARGSORT:
  2628. case GGML_OP_ACC:
  2629. case GGML_OP_GROUP_NORM:
  2630. case GGML_OP_UPSCALE:
  2631. case GGML_OP_PAD:
  2632. case GGML_OP_ARANGE:
  2633. case GGML_OP_TIMESTEP_EMBEDDING:
  2634. case GGML_OP_LEAKY_RELU:
  2635. case GGML_OP_RWKV_WKV:
  2636. return true;
  2637. case GGML_OP_FLASH_ATTN_EXT: {
  2638. #ifndef FLASH_ATTN_AVAILABLE
  2639. return false;
  2640. #endif
  2641. if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
  2642. return true;
  2643. }
  2644. if (op->src[0]->ne[0] == 128) {
  2645. return true;
  2646. }
  2647. if (op->src[0]->ne[0] == 256 && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16) {
  2648. return true;
  2649. }
  2650. const int cc = ggml_cuda_info().devices[dev_ctx->device].cc;
  2651. return cc >= CC_VOLTA && cc < CC_OFFSET_AMD && op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
  2652. }
  2653. case GGML_OP_CROSS_ENTROPY_LOSS:
  2654. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  2655. case GGML_OP_OPT_STEP_ADAMW:
  2656. return true;
  2657. default:
  2658. return false;
  2659. }
  2660. }
  2661. static bool ggml_backend_cuda_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  2662. return (ggml_backend_buft_is_cuda(buft) || ggml_backend_buft_is_cuda_split(buft)) && buft->device == dev;
  2663. }
  2664. static int64_t get_op_batch_size(const ggml_tensor * op) {
  2665. switch (op->op) {
  2666. case GGML_OP_GET_ROWS:
  2667. return 0;
  2668. case GGML_OP_MUL_MAT:
  2669. return op->ne[1];
  2670. case GGML_OP_MUL_MAT_ID:
  2671. case GGML_OP_ROPE:
  2672. return op->ne[2];
  2673. default:
  2674. return ggml_nrows(op);
  2675. }
  2676. }
  2677. static bool ggml_backend_cuda_device_offload_op(ggml_backend_dev_t dev, const ggml_tensor * op) {
  2678. const int min_batch_size = 32;
  2679. return get_op_batch_size(op) >= min_batch_size;
  2680. GGML_UNUSED(dev);
  2681. }
  2682. static ggml_backend_event_t ggml_backend_cuda_device_event_new(ggml_backend_dev_t dev) {
  2683. #ifdef GGML_CUDA_NO_PEER_COPY
  2684. return nullptr;
  2685. #else
  2686. ggml_backend_cuda_device_context * dev_ctx = (ggml_backend_cuda_device_context *)dev->context;
  2687. ggml_cuda_set_device(dev_ctx->device);
  2688. cudaEvent_t event;
  2689. CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
  2690. return new ggml_backend_event {
  2691. /* .device = */ dev,
  2692. /* .context = */ event,
  2693. };
  2694. #endif
  2695. }
  2696. static void ggml_backend_cuda_device_event_free(ggml_backend_dev_t dev, ggml_backend_event_t event) {
  2697. GGML_UNUSED(dev);
  2698. CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
  2699. delete event;
  2700. }
  2701. static void ggml_backend_cuda_device_event_synchronize(ggml_backend_dev_t dev, ggml_backend_event_t event) {
  2702. GGML_UNUSED(dev);
  2703. CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
  2704. }
  2705. static const ggml_backend_device_i ggml_backend_cuda_device_interface = {
  2706. /* .get_name = */ ggml_backend_cuda_device_get_name,
  2707. /* .get_description = */ ggml_backend_cuda_device_get_description,
  2708. /* .get_memory = */ ggml_backend_cuda_device_get_memory,
  2709. /* .get_type = */ ggml_backend_cuda_device_get_type,
  2710. /* .get_props = */ ggml_backend_cuda_device_get_props,
  2711. /* .init_backend = */ ggml_backend_cuda_device_init_backend,
  2712. /* .get_buffer_type = */ ggml_backend_cuda_device_get_buffer_type,
  2713. /* .get_host_buffer_type = */ ggml_backend_cuda_device_get_host_buffer_type,
  2714. /* .buffer_from_host_ptr = */ NULL,
  2715. /* .supports_op = */ ggml_backend_cuda_device_supports_op,
  2716. /* .supports_buft = */ ggml_backend_cuda_device_supports_buft,
  2717. /* .offload_op = */ ggml_backend_cuda_device_offload_op,
  2718. /* .event_new = */ ggml_backend_cuda_device_event_new,
  2719. /* .event_free = */ ggml_backend_cuda_device_event_free,
  2720. /* .event_synchronize = */ ggml_backend_cuda_device_event_synchronize,
  2721. };
  2722. // backend reg
  2723. struct ggml_backend_cuda_reg_context {
  2724. std::vector<ggml_backend_dev_t> devices;
  2725. };
  2726. static const char * ggml_backend_cuda_reg_get_name(ggml_backend_reg_t reg) {
  2727. GGML_UNUSED(reg);
  2728. return GGML_CUDA_NAME;
  2729. }
  2730. static size_t ggml_backend_cuda_reg_get_device_count(ggml_backend_reg_t reg) {
  2731. ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
  2732. return ctx->devices.size();
  2733. }
  2734. static ggml_backend_dev_t ggml_backend_cuda_reg_get_device(ggml_backend_reg_t reg, size_t index) {
  2735. ggml_backend_cuda_reg_context * ctx = (ggml_backend_cuda_reg_context *)reg->context;
  2736. GGML_ASSERT(index < ctx->devices.size());
  2737. return ctx->devices[index];
  2738. }
  2739. static void * ggml_backend_cuda_reg_get_proc_address(ggml_backend_reg_t reg, const char * name) {
  2740. GGML_UNUSED(reg);
  2741. if (strcmp(name, "ggml_backend_split_buffer_type") == 0) {
  2742. return (void *)ggml_backend_cuda_split_buffer_type;
  2743. }
  2744. if (strcmp(name, "ggml_backend_register_host_buffer") == 0) {
  2745. return (void *)ggml_backend_cuda_register_host_buffer;
  2746. }
  2747. if (strcmp(name, "ggml_backend_unregister_host_buffer") == 0) {
  2748. return (void *)ggml_backend_cuda_unregister_host_buffer;
  2749. }
  2750. return nullptr;
  2751. }
  2752. static const ggml_backend_reg_i ggml_backend_cuda_reg_interface = {
  2753. /* .get_name = */ ggml_backend_cuda_reg_get_name,
  2754. /* .get_device_count = */ ggml_backend_cuda_reg_get_device_count,
  2755. /* .get_device_get = */ ggml_backend_cuda_reg_get_device,
  2756. /* .get_proc_address = */ ggml_backend_cuda_reg_get_proc_address,
  2757. };
  2758. // backend registry
  2759. ggml_backend_reg_t ggml_backend_cuda_reg() {
  2760. static ggml_backend_reg reg;
  2761. static bool initialized = false;
  2762. {
  2763. static std::mutex mutex;
  2764. std::lock_guard<std::mutex> lock(mutex);
  2765. if (!initialized) {
  2766. ggml_backend_cuda_reg_context * ctx = new ggml_backend_cuda_reg_context;
  2767. for (int i = 0; i < ggml_cuda_info().device_count; i++) {
  2768. ggml_backend_cuda_device_context * dev_ctx = new ggml_backend_cuda_device_context;
  2769. dev_ctx->device = i;
  2770. dev_ctx->name = GGML_CUDA_NAME + std::to_string(i);
  2771. ggml_cuda_set_device(i);
  2772. cudaDeviceProp prop;
  2773. CUDA_CHECK(cudaGetDeviceProperties(&prop, i));
  2774. dev_ctx->description = prop.name;
  2775. ggml_backend_dev_t dev = new ggml_backend_device {
  2776. /* .interface = */ ggml_backend_cuda_device_interface,
  2777. /* .reg = */ &reg,
  2778. /* .context = */ dev_ctx
  2779. };
  2780. ctx->devices.push_back(dev);
  2781. }
  2782. reg = ggml_backend_reg {
  2783. /* .interface = */ ggml_backend_cuda_reg_interface,
  2784. /* .context = */ ctx
  2785. };
  2786. }
  2787. initialized = true;
  2788. }
  2789. return &reg;
  2790. }
  2791. ggml_backend_t ggml_backend_cuda_init(int device) {
  2792. if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
  2793. GGML_LOG_ERROR("%s: invalid device %d\n", __func__, device);
  2794. return nullptr;
  2795. }
  2796. ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
  2797. if (ctx == nullptr) {
  2798. GGML_LOG_ERROR("%s: failed to allocate context\n", __func__);
  2799. return nullptr;
  2800. }
  2801. ggml_backend_t cuda_backend = new ggml_backend {
  2802. /* .guid = */ ggml_backend_cuda_guid(),
  2803. /* .interface = */ ggml_backend_cuda_interface,
  2804. /* .device = */ ggml_backend_reg_dev_get(ggml_backend_cuda_reg(), device),
  2805. /* .context = */ ctx,
  2806. };
  2807. return cuda_backend;
  2808. }