server.cpp 199 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. #include "mtmd-helper.h"
  12. // mime type for sending response
  13. #define MIMETYPE_JSON "application/json; charset=utf-8"
  14. // auto generated files (see README.md for details)
  15. #include "index.html.gz.hpp"
  16. #include "loading.html.hpp"
  17. #include <atomic>
  18. #include <chrono>
  19. #include <condition_variable>
  20. #include <cstddef>
  21. #include <cinttypes>
  22. #include <deque>
  23. #include <memory>
  24. #include <mutex>
  25. #include <signal.h>
  26. #include <thread>
  27. #include <unordered_map>
  28. #include <unordered_set>
  29. using json = nlohmann::ordered_json;
  30. constexpr int HTTP_POLLING_SECONDS = 1;
  31. enum stop_type {
  32. STOP_TYPE_NONE,
  33. STOP_TYPE_EOS,
  34. STOP_TYPE_WORD,
  35. STOP_TYPE_LIMIT,
  36. };
  37. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  38. enum slot_state {
  39. SLOT_STATE_IDLE,
  40. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  41. SLOT_STATE_PROCESSING_PROMPT,
  42. SLOT_STATE_DONE_PROMPT,
  43. SLOT_STATE_GENERATING,
  44. };
  45. enum server_state {
  46. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  47. SERVER_STATE_READY, // Server is ready and model is loaded
  48. };
  49. enum server_task_type {
  50. SERVER_TASK_TYPE_COMPLETION,
  51. SERVER_TASK_TYPE_EMBEDDING,
  52. SERVER_TASK_TYPE_RERANK,
  53. SERVER_TASK_TYPE_INFILL,
  54. SERVER_TASK_TYPE_CANCEL,
  55. SERVER_TASK_TYPE_NEXT_RESPONSE,
  56. SERVER_TASK_TYPE_METRICS,
  57. SERVER_TASK_TYPE_SLOT_SAVE,
  58. SERVER_TASK_TYPE_SLOT_RESTORE,
  59. SERVER_TASK_TYPE_SLOT_ERASE,
  60. SERVER_TASK_TYPE_SET_LORA,
  61. };
  62. enum oaicompat_type {
  63. OAICOMPAT_TYPE_NONE,
  64. OAICOMPAT_TYPE_CHAT,
  65. OAICOMPAT_TYPE_COMPLETION,
  66. OAICOMPAT_TYPE_EMBEDDING,
  67. };
  68. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  69. enum error_type {
  70. ERROR_TYPE_INVALID_REQUEST,
  71. ERROR_TYPE_AUTHENTICATION,
  72. ERROR_TYPE_SERVER,
  73. ERROR_TYPE_NOT_FOUND,
  74. ERROR_TYPE_PERMISSION,
  75. ERROR_TYPE_UNAVAILABLE, // custom error
  76. ERROR_TYPE_NOT_SUPPORTED, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  99. bool return_tokens = false;
  100. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  101. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  102. int32_t n_predict = -1; // new tokens to predict
  103. int32_t n_indent = 0; // mininum line indentation for the generated text in number of whitespace characters
  104. int64_t t_max_prompt_ms = -1; // TODO: implement
  105. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  106. std::vector<common_adapter_lora_info> lora;
  107. std::vector<std::string> antiprompt;
  108. std::vector<std::string> response_fields;
  109. bool timings_per_token = false;
  110. bool post_sampling_probs = false;
  111. struct common_params_sampling sampling;
  112. struct common_params_speculative speculative;
  113. // OAI-compat fields
  114. bool verbose = false;
  115. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  116. std::string oaicompat_model;
  117. std::string oaicompat_cmpl_id;
  118. common_chat_syntax oaicompat_chat_syntax;
  119. // Embeddings
  120. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  121. json to_json() const {
  122. std::vector<std::string> samplers;
  123. samplers.reserve(sampling.samplers.size());
  124. for (const auto & sampler : sampling.samplers) {
  125. samplers.emplace_back(common_sampler_type_to_str(sampler));
  126. }
  127. json lora = json::array();
  128. for (size_t i = 0; i < this->lora.size(); ++i) {
  129. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  130. }
  131. auto grammar_triggers = json::array();
  132. for (const auto & trigger : sampling.grammar_triggers) {
  133. server_grammar_trigger ct(std::move(trigger));
  134. grammar_triggers.push_back(ct.to_json());
  135. }
  136. return json {
  137. {"n_predict", n_predict}, // Server configured n_predict
  138. {"seed", sampling.seed},
  139. {"temperature", sampling.temp},
  140. {"dynatemp_range", sampling.dynatemp_range},
  141. {"dynatemp_exponent", sampling.dynatemp_exponent},
  142. {"top_k", sampling.top_k},
  143. {"top_p", sampling.top_p},
  144. {"min_p", sampling.min_p},
  145. {"top_n_sigma", sampling.top_n_sigma},
  146. {"xtc_probability", sampling.xtc_probability},
  147. {"xtc_threshold", sampling.xtc_threshold},
  148. {"typical_p", sampling.typ_p},
  149. {"repeat_last_n", sampling.penalty_last_n},
  150. {"repeat_penalty", sampling.penalty_repeat},
  151. {"presence_penalty", sampling.penalty_present},
  152. {"frequency_penalty", sampling.penalty_freq},
  153. {"dry_multiplier", sampling.dry_multiplier},
  154. {"dry_base", sampling.dry_base},
  155. {"dry_allowed_length", sampling.dry_allowed_length},
  156. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  157. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  158. {"mirostat", sampling.mirostat},
  159. {"mirostat_tau", sampling.mirostat_tau},
  160. {"mirostat_eta", sampling.mirostat_eta},
  161. {"stop", antiprompt},
  162. {"max_tokens", n_predict}, // User configured n_predict
  163. {"n_keep", n_keep},
  164. {"n_discard", n_discard},
  165. {"ignore_eos", sampling.ignore_eos},
  166. {"stream", stream},
  167. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  168. {"n_probs", sampling.n_probs},
  169. {"min_keep", sampling.min_keep},
  170. {"grammar", sampling.grammar},
  171. {"grammar_lazy", sampling.grammar_lazy},
  172. {"grammar_triggers", grammar_triggers},
  173. {"preserved_tokens", sampling.preserved_tokens},
  174. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  175. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  176. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  177. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  178. {"samplers", samplers},
  179. {"speculative.n_max", speculative.n_max},
  180. {"speculative.n_min", speculative.n_min},
  181. {"speculative.p_min", speculative.p_min},
  182. {"timings_per_token", timings_per_token},
  183. {"post_sampling_probs", post_sampling_probs},
  184. {"lora", lora},
  185. };
  186. }
  187. };
  188. struct server_task {
  189. int id = -1; // to be filled by server_queue
  190. int index = -1; // used when there are multiple prompts (batch request)
  191. server_task_type type;
  192. // used by SERVER_TASK_TYPE_CANCEL
  193. int id_target = -1;
  194. // used by SERVER_TASK_TYPE_INFERENCE
  195. slot_params params;
  196. server_tokens prompt_tokens;
  197. int id_selected_slot = -1;
  198. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  199. struct slot_action {
  200. int slot_id;
  201. std::string filename;
  202. std::string filepath;
  203. };
  204. slot_action slot_action;
  205. // used by SERVER_TASK_TYPE_METRICS
  206. bool metrics_reset_bucket = false;
  207. // used by SERVER_TASK_TYPE_SET_LORA
  208. std::vector<common_adapter_lora_info> set_lora;
  209. server_task(server_task_type type) : type(type) {}
  210. static slot_params params_from_json_cmpl(
  211. const llama_context * ctx,
  212. const common_params & params_base,
  213. const json & data) {
  214. const llama_model * model = llama_get_model(ctx);
  215. const llama_vocab * vocab = llama_model_get_vocab(model);
  216. slot_params params;
  217. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  218. slot_params defaults;
  219. defaults.sampling = params_base.sampling;
  220. defaults.speculative = params_base.speculative;
  221. defaults.n_keep = params_base.n_keep;
  222. defaults.antiprompt = params_base.antiprompt;
  223. // enabling this will output extra debug information in the HTTP responses from the server
  224. params.verbose = params_base.verbosity > 9;
  225. params.timings_per_token = json_value(data, "timings_per_token", false);
  226. params.stream = json_value(data, "stream", false);
  227. params.cache_prompt = json_value(data, "cache_prompt", true);
  228. params.return_tokens = json_value(data, "return_tokens", false);
  229. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  230. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  231. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  232. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  233. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  234. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  235. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  236. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  237. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  238. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  239. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  240. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  241. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  242. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  243. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  244. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  245. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  246. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  247. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  248. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  249. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  250. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  251. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  252. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  253. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  254. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  255. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  256. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  257. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  258. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  259. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  260. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  261. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  262. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  263. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  264. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  265. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  266. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  267. // Use OpenAI API logprobs only if n_probs wasn't provided
  268. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  269. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  270. }
  271. if (data.contains("lora")) {
  272. if (data.at("lora").is_array()) {
  273. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  274. } else {
  275. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  276. }
  277. } else {
  278. params.lora = params_base.lora_adapters;
  279. }
  280. // TODO: add more sanity checks for the input parameters
  281. if (params.sampling.penalty_last_n < -1) {
  282. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  283. }
  284. if (params.sampling.dry_penalty_last_n < -1) {
  285. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  286. }
  287. if (params.sampling.penalty_last_n == -1) {
  288. // note: should be the slot's context and not the full context, but it's ok
  289. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  290. }
  291. if (params.sampling.dry_penalty_last_n == -1) {
  292. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  293. }
  294. if (params.sampling.dry_base < 1.0f) {
  295. params.sampling.dry_base = defaults.sampling.dry_base;
  296. }
  297. // sequence breakers for DRY
  298. {
  299. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  300. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  301. if (data.contains("dry_sequence_breakers")) {
  302. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  303. if (params.sampling.dry_sequence_breakers.empty()) {
  304. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  305. }
  306. }
  307. }
  308. // process "json_schema" and "grammar"
  309. if (data.contains("json_schema") && !data.contains("grammar")) {
  310. try {
  311. auto schema = json_value(data, "json_schema", json::object());
  312. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  313. params.sampling.grammar = json_schema_to_grammar(schema);
  314. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  315. } catch (const std::exception & e) {
  316. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  317. }
  318. } else {
  319. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  320. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  321. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  322. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  323. }
  324. {
  325. auto it = data.find("chat_format");
  326. if (it != data.end()) {
  327. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  328. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  329. } else {
  330. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  331. }
  332. common_reasoning_format reasoning_format = params_base.reasoning_format;
  333. if (data.contains("reasoning_format")) {
  334. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  335. }
  336. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  337. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  338. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  339. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  340. }
  341. {
  342. const auto preserved_tokens = data.find("preserved_tokens");
  343. if (preserved_tokens != data.end()) {
  344. for (const auto & t : *preserved_tokens) {
  345. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  346. if (ids.size() == 1) {
  347. SRV_DBG("Preserved token: %d\n", ids[0]);
  348. params.sampling.preserved_tokens.insert(ids[0]);
  349. } else {
  350. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  351. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  352. }
  353. }
  354. }
  355. const auto grammar_triggers = data.find("grammar_triggers");
  356. if (grammar_triggers != data.end()) {
  357. for (const auto & t : *grammar_triggers) {
  358. server_grammar_trigger ct(t);
  359. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  360. const auto & word = ct.value.value;
  361. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  362. if (ids.size() == 1) {
  363. auto token = ids[0];
  364. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  365. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  366. }
  367. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  368. common_grammar_trigger trigger;
  369. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  370. trigger.value = word;
  371. trigger.token = token;
  372. params.sampling.grammar_triggers.push_back(std::move(trigger));
  373. } else {
  374. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  375. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  376. }
  377. } else {
  378. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  379. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  380. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  381. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  382. } else {
  383. throw std::runtime_error("Unknown grammar trigger type");
  384. }
  385. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  386. }
  387. }
  388. }
  389. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  390. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  391. }
  392. }
  393. {
  394. params.sampling.logit_bias.clear();
  395. const auto & logit_bias = data.find("logit_bias");
  396. if (logit_bias != data.end() && logit_bias->is_array()) {
  397. const int n_vocab = llama_vocab_n_tokens(vocab);
  398. for (const auto & el : *logit_bias) {
  399. // TODO: we may want to throw errors here, in case "el" is incorrect
  400. if (el.is_array() && el.size() == 2) {
  401. float bias;
  402. if (el[1].is_number()) {
  403. bias = el[1].get<float>();
  404. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  405. bias = -INFINITY;
  406. } else {
  407. continue;
  408. }
  409. if (el[0].is_number_integer()) {
  410. llama_token tok = el[0].get<llama_token>();
  411. if (tok >= 0 && tok < n_vocab) {
  412. params.sampling.logit_bias.push_back({tok, bias});
  413. }
  414. } else if (el[0].is_string()) {
  415. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  416. for (auto tok : toks) {
  417. params.sampling.logit_bias.push_back({tok, bias});
  418. }
  419. }
  420. }
  421. }
  422. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  423. const int n_vocab = llama_vocab_n_tokens(vocab);
  424. for (const auto & el : logit_bias->items()) {
  425. float bias;
  426. const auto & key = el.key();
  427. const auto & value = el.value();
  428. if (value.is_number()) {
  429. bias = value.get<float>();
  430. } else if (value.is_boolean() && !value.get<bool>()) {
  431. bias = -INFINITY;
  432. } else {
  433. continue;
  434. }
  435. char *end;
  436. llama_token tok = strtol(key.c_str(), &end, 10);
  437. if (*end == 0) {
  438. if (tok >= 0 && tok < n_vocab) {
  439. params.sampling.logit_bias.push_back({tok, bias});
  440. }
  441. } else {
  442. auto toks = common_tokenize(vocab, key, false);
  443. for (auto tok : toks) {
  444. params.sampling.logit_bias.push_back({tok, bias});
  445. }
  446. }
  447. }
  448. }
  449. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  450. if (params.sampling.ignore_eos) {
  451. params.sampling.logit_bias.insert(
  452. params.sampling.logit_bias.end(),
  453. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  454. }
  455. }
  456. {
  457. params.antiprompt.clear();
  458. const auto & stop = data.find("stop");
  459. if (stop != data.end() && stop->is_array()) {
  460. for (const auto & word : *stop) {
  461. if (!word.empty()) {
  462. params.antiprompt.push_back(word);
  463. }
  464. }
  465. }
  466. // set reverse prompt from cli args if not set in the request
  467. if (params.antiprompt.empty()) {
  468. params.antiprompt = defaults.antiprompt;
  469. }
  470. }
  471. {
  472. const auto samplers = data.find("samplers");
  473. if (samplers != data.end()) {
  474. if (samplers->is_array()) {
  475. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  476. } else if (samplers->is_string()){
  477. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  478. }
  479. } else {
  480. params.sampling.samplers = defaults.sampling.samplers;
  481. }
  482. }
  483. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  484. params.oaicompat_model = json_value(data, "model", model_name);
  485. return params;
  486. }
  487. // utility function
  488. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  489. std::unordered_set<int> ids(tasks.size());
  490. for (size_t i = 0; i < tasks.size(); i++) {
  491. ids.insert(tasks[i].id);
  492. }
  493. return ids;
  494. }
  495. };
  496. struct result_timings {
  497. int32_t prompt_n = -1;
  498. double prompt_ms;
  499. double prompt_per_token_ms;
  500. double prompt_per_second;
  501. int32_t predicted_n = -1;
  502. double predicted_ms;
  503. double predicted_per_token_ms;
  504. double predicted_per_second;
  505. // Optional speculative metrics - only included when > 0
  506. int32_t draft_n = 0;
  507. int32_t draft_n_accepted = 0;
  508. json to_json() const {
  509. json base = {
  510. {"prompt_n", prompt_n},
  511. {"prompt_ms", prompt_ms},
  512. {"prompt_per_token_ms", prompt_per_token_ms},
  513. {"prompt_per_second", prompt_per_second},
  514. {"predicted_n", predicted_n},
  515. {"predicted_ms", predicted_ms},
  516. {"predicted_per_token_ms", predicted_per_token_ms},
  517. {"predicted_per_second", predicted_per_second},
  518. };
  519. if (draft_n > 0) {
  520. base["draft_n"] = draft_n;
  521. base["draft_n_accepted"] = draft_n_accepted;
  522. }
  523. return base;
  524. }
  525. };
  526. struct server_task_result {
  527. int id = -1;
  528. int id_slot = -1;
  529. virtual bool is_error() {
  530. // only used by server_task_result_error
  531. return false;
  532. }
  533. virtual bool is_stop() {
  534. // only used by server_task_result_cmpl_*
  535. return false;
  536. }
  537. virtual int get_index() {
  538. return -1;
  539. }
  540. virtual json to_json() = 0;
  541. virtual ~server_task_result() = default;
  542. };
  543. // using shared_ptr for polymorphism of server_task_result
  544. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  545. inline std::string stop_type_to_str(stop_type type) {
  546. switch (type) {
  547. case STOP_TYPE_EOS: return "eos";
  548. case STOP_TYPE_WORD: return "word";
  549. case STOP_TYPE_LIMIT: return "limit";
  550. default: return "none";
  551. }
  552. }
  553. struct completion_token_output {
  554. llama_token tok;
  555. float prob;
  556. std::string text_to_send;
  557. struct prob_info {
  558. llama_token tok;
  559. std::string txt;
  560. float prob;
  561. };
  562. std::vector<prob_info> probs;
  563. json to_json(bool post_sampling_probs) const {
  564. json probs_for_token = json::array();
  565. for (const auto & p : probs) {
  566. std::string txt(p.txt);
  567. txt.resize(validate_utf8(txt));
  568. probs_for_token.push_back(json {
  569. {"id", p.tok},
  570. {"token", txt},
  571. {"bytes", str_to_bytes(p.txt)},
  572. {
  573. post_sampling_probs ? "prob" : "logprob",
  574. post_sampling_probs ? p.prob : logarithm(p.prob)
  575. },
  576. });
  577. }
  578. return probs_for_token;
  579. }
  580. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  581. json out = json::array();
  582. for (const auto & p : probs) {
  583. std::string txt(p.text_to_send);
  584. txt.resize(validate_utf8(txt));
  585. out.push_back(json {
  586. {"id", p.tok},
  587. {"token", txt},
  588. {"bytes", str_to_bytes(p.text_to_send)},
  589. {
  590. post_sampling_probs ? "prob" : "logprob",
  591. post_sampling_probs ? p.prob : logarithm(p.prob)
  592. },
  593. {
  594. post_sampling_probs ? "top_probs" : "top_logprobs",
  595. p.to_json(post_sampling_probs)
  596. },
  597. });
  598. }
  599. return out;
  600. }
  601. static float logarithm(float x) {
  602. // nlohmann::json converts -inf to null, so we need to prevent that
  603. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  604. }
  605. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  606. std::vector<unsigned char> bytes;
  607. for (unsigned char c : str) {
  608. bytes.push_back(c);
  609. }
  610. return bytes;
  611. }
  612. };
  613. struct server_task_result_cmpl_final : server_task_result {
  614. int index = 0;
  615. std::string content;
  616. llama_tokens tokens;
  617. bool stream;
  618. result_timings timings;
  619. std::string prompt;
  620. bool truncated;
  621. int32_t n_decoded;
  622. int32_t n_prompt_tokens;
  623. int32_t n_tokens_cached;
  624. bool has_new_line;
  625. std::string stopping_word;
  626. stop_type stop = STOP_TYPE_NONE;
  627. bool post_sampling_probs;
  628. std::vector<completion_token_output> probs_output;
  629. std::vector<std::string> response_fields;
  630. slot_params generation_params;
  631. // OAI-compat fields
  632. bool verbose = false;
  633. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  634. std::string oaicompat_model;
  635. std::string oaicompat_cmpl_id;
  636. common_chat_msg oaicompat_msg;
  637. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  638. virtual int get_index() override {
  639. return index;
  640. }
  641. virtual bool is_stop() override {
  642. return true; // in stream mode, final responses are considered stop
  643. }
  644. virtual json to_json() override {
  645. switch (oaicompat) {
  646. case OAICOMPAT_TYPE_NONE:
  647. return to_json_non_oaicompat();
  648. case OAICOMPAT_TYPE_COMPLETION:
  649. return to_json_oaicompat();
  650. case OAICOMPAT_TYPE_CHAT:
  651. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  652. default:
  653. GGML_ASSERT(false && "Invalid oaicompat_type");
  654. }
  655. }
  656. json to_json_non_oaicompat() {
  657. json res = json {
  658. {"index", index},
  659. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  660. {"tokens", stream ? llama_tokens {} : tokens},
  661. {"id_slot", id_slot},
  662. {"stop", true},
  663. {"model", oaicompat_model},
  664. {"tokens_predicted", n_decoded},
  665. {"tokens_evaluated", n_prompt_tokens},
  666. {"generation_settings", generation_params.to_json()},
  667. {"prompt", prompt},
  668. {"has_new_line", has_new_line},
  669. {"truncated", truncated},
  670. {"stop_type", stop_type_to_str(stop)},
  671. {"stopping_word", stopping_word},
  672. {"tokens_cached", n_tokens_cached},
  673. {"timings", timings.to_json()},
  674. };
  675. if (!stream && !probs_output.empty()) {
  676. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  677. }
  678. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  679. }
  680. json to_json_oaicompat() {
  681. std::time_t t = std::time(0);
  682. json logprobs = json(nullptr); // OAI default to null
  683. if (!stream && probs_output.size() > 0) {
  684. logprobs = json{
  685. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  686. };
  687. }
  688. json finish_reason = "length";
  689. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  690. finish_reason = "stop";
  691. }
  692. json res = json {
  693. {"choices", json::array({
  694. json{
  695. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  696. {"index", index},
  697. {"logprobs", logprobs},
  698. {"finish_reason", finish_reason},
  699. }
  700. })},
  701. {"created", t},
  702. {"model", oaicompat_model},
  703. {"system_fingerprint", build_info},
  704. {"object", "text_completion"},
  705. {"usage", json {
  706. {"completion_tokens", n_decoded},
  707. {"prompt_tokens", n_prompt_tokens},
  708. {"total_tokens", n_decoded + n_prompt_tokens}
  709. }},
  710. {"id", oaicompat_cmpl_id}
  711. };
  712. // extra fields for debugging purposes
  713. if (verbose) {
  714. res["__verbose"] = to_json_non_oaicompat();
  715. }
  716. if (timings.prompt_n >= 0) {
  717. res.push_back({"timings", timings.to_json()});
  718. }
  719. return res;
  720. }
  721. json to_json_oaicompat_chat() {
  722. std::string finish_reason = "length";
  723. common_chat_msg msg;
  724. if (!oaicompat_msg.empty()) {
  725. msg = oaicompat_msg;
  726. } else {
  727. msg.role = "assistant";
  728. msg.content = content;
  729. }
  730. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  731. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  732. }
  733. json choice {
  734. {"finish_reason", finish_reason},
  735. {"index", 0},
  736. {"message", msg.to_json_oaicompat<json>()},
  737. };
  738. if (!stream && probs_output.size() > 0) {
  739. choice["logprobs"] = json{
  740. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  741. };
  742. }
  743. std::time_t t = std::time(0);
  744. json res = json {
  745. {"choices", json::array({choice})},
  746. {"created", t},
  747. {"model", oaicompat_model},
  748. {"system_fingerprint", build_info},
  749. {"object", "chat.completion"},
  750. {"usage", json {
  751. {"completion_tokens", n_decoded},
  752. {"prompt_tokens", n_prompt_tokens},
  753. {"total_tokens", n_decoded + n_prompt_tokens}
  754. }},
  755. {"id", oaicompat_cmpl_id}
  756. };
  757. // extra fields for debugging purposes
  758. if (verbose) {
  759. res["__verbose"] = to_json_non_oaicompat();
  760. }
  761. if (timings.prompt_n >= 0) {
  762. res.push_back({"timings", timings.to_json()});
  763. }
  764. return res;
  765. }
  766. json to_json_oaicompat_chat_stream() {
  767. std::time_t t = std::time(0);
  768. std::string finish_reason = "length";
  769. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  770. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  771. }
  772. json deltas = json::array();
  773. for (const auto & diff : oaicompat_msg_diffs) {
  774. deltas.push_back({
  775. {"choices", json::array({
  776. json {
  777. {"finish_reason", nullptr},
  778. {"index", 0},
  779. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  780. },
  781. })},
  782. {"created", t},
  783. {"id", oaicompat_cmpl_id},
  784. {"model", oaicompat_model},
  785. {"system_fingerprint", build_info},
  786. {"object", "chat.completion.chunk"},
  787. });
  788. }
  789. deltas.push_back({
  790. {"choices", json::array({
  791. json {
  792. {"finish_reason", finish_reason},
  793. {"index", 0},
  794. {"delta", json::object()},
  795. },
  796. })},
  797. {"created", t},
  798. {"id", oaicompat_cmpl_id},
  799. {"model", oaicompat_model},
  800. {"system_fingerprint", build_info},
  801. {"object", "chat.completion.chunk"},
  802. {"usage", json {
  803. {"completion_tokens", n_decoded},
  804. {"prompt_tokens", n_prompt_tokens},
  805. {"total_tokens", n_decoded + n_prompt_tokens},
  806. }},
  807. });
  808. if (timings.prompt_n >= 0) {
  809. deltas.back().push_back({"timings", timings.to_json()});
  810. }
  811. // extra fields for debugging purposes
  812. if (verbose && !deltas.empty()) {
  813. deltas.front()["__verbose"] = to_json_non_oaicompat();
  814. }
  815. return deltas;
  816. }
  817. };
  818. struct server_task_result_cmpl_partial : server_task_result {
  819. int index = 0;
  820. std::string content;
  821. llama_tokens tokens;
  822. int32_t n_decoded;
  823. int32_t n_prompt_tokens;
  824. bool post_sampling_probs;
  825. completion_token_output prob_output;
  826. result_timings timings;
  827. // OAI-compat fields
  828. bool verbose = false;
  829. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  830. std::string oaicompat_model;
  831. std::string oaicompat_cmpl_id;
  832. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  833. virtual int get_index() override {
  834. return index;
  835. }
  836. virtual bool is_stop() override {
  837. return false; // in stream mode, partial responses are not considered stop
  838. }
  839. virtual json to_json() override {
  840. switch (oaicompat) {
  841. case OAICOMPAT_TYPE_NONE:
  842. return to_json_non_oaicompat();
  843. case OAICOMPAT_TYPE_COMPLETION:
  844. return to_json_oaicompat();
  845. case OAICOMPAT_TYPE_CHAT:
  846. return to_json_oaicompat_chat();
  847. default:
  848. GGML_ASSERT(false && "Invalid oaicompat_type");
  849. }
  850. }
  851. json to_json_non_oaicompat() {
  852. // non-OAI-compat JSON
  853. json res = json {
  854. {"index", index},
  855. {"content", content},
  856. {"tokens", tokens},
  857. {"stop", false},
  858. {"id_slot", id_slot},
  859. {"tokens_predicted", n_decoded},
  860. {"tokens_evaluated", n_prompt_tokens},
  861. };
  862. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  863. if (timings.prompt_n > 0) {
  864. res.push_back({"timings", timings.to_json()});
  865. }
  866. if (!prob_output.probs.empty()) {
  867. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  868. }
  869. return res;
  870. }
  871. json to_json_oaicompat() {
  872. std::time_t t = std::time(0);
  873. json logprobs = json(nullptr); // OAI default to null
  874. if (prob_output.probs.size() > 0) {
  875. logprobs = json{
  876. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  877. };
  878. }
  879. json res = json {
  880. {"choices", json::array({
  881. json{
  882. {"text", content},
  883. {"index", index},
  884. {"logprobs", logprobs},
  885. {"finish_reason", nullptr},
  886. }
  887. })},
  888. {"created", t},
  889. {"model", oaicompat_model},
  890. {"system_fingerprint", build_info},
  891. {"object", "text_completion"},
  892. {"id", oaicompat_cmpl_id}
  893. };
  894. // extra fields for debugging purposes
  895. if (verbose) {
  896. res["__verbose"] = to_json_non_oaicompat();
  897. }
  898. if (timings.prompt_n >= 0) {
  899. res.push_back({"timings", timings.to_json()});
  900. }
  901. return res;
  902. }
  903. json to_json_oaicompat_chat() {
  904. bool first = n_decoded == 1;
  905. std::time_t t = std::time(0);
  906. json choices;
  907. std::vector<json> deltas;
  908. auto add_delta = [&](const json & delta) {
  909. deltas.push_back({
  910. {"choices", json::array({
  911. json {
  912. {"finish_reason", nullptr},
  913. {"index", 0},
  914. {"delta", delta},
  915. },
  916. })},
  917. {"created", t},
  918. {"id", oaicompat_cmpl_id},
  919. {"model", oaicompat_model},
  920. {"system_fingerprint", build_info},
  921. {"object", "chat.completion.chunk"},
  922. });
  923. };
  924. // We have to send an initial update to conform to openai behavior
  925. if (first) {
  926. add_delta({
  927. {"role", "assistant"},
  928. {"content", nullptr},
  929. });
  930. }
  931. for (const auto & diff : oaicompat_msg_diffs) {
  932. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  933. }
  934. if (!deltas.empty()) {
  935. GGML_ASSERT(deltas[deltas.size() - 1].at("choices").size() >= 1);
  936. if (prob_output.probs.size() > 0) {
  937. deltas[deltas.size() - 1].at("choices").at(0)["logprobs"] = json {
  938. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  939. };
  940. }
  941. if (timings.prompt_n >= 0) {
  942. deltas[deltas.size() - 1].push_back({"timings", timings.to_json()});
  943. }
  944. }
  945. return deltas;
  946. }
  947. };
  948. struct server_task_result_embd : server_task_result {
  949. int index = 0;
  950. std::vector<std::vector<float>> embedding;
  951. int32_t n_tokens;
  952. // OAI-compat fields
  953. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  954. virtual int get_index() override {
  955. return index;
  956. }
  957. virtual json to_json() override {
  958. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  959. ? to_json_oaicompat()
  960. : to_json_non_oaicompat();
  961. }
  962. json to_json_non_oaicompat() {
  963. return json {
  964. {"index", index},
  965. {"embedding", embedding},
  966. };
  967. }
  968. json to_json_oaicompat() {
  969. return json {
  970. {"index", index},
  971. {"embedding", embedding[0]},
  972. {"tokens_evaluated", n_tokens},
  973. };
  974. }
  975. };
  976. struct server_task_result_rerank : server_task_result {
  977. int index = 0;
  978. float score = -1e6;
  979. int32_t n_tokens;
  980. virtual int get_index() override {
  981. return index;
  982. }
  983. virtual json to_json() override {
  984. return json {
  985. {"index", index},
  986. {"score", score},
  987. {"tokens_evaluated", n_tokens},
  988. };
  989. }
  990. };
  991. // this function maybe used outside of server_task_result_error
  992. static json format_error_response(const std::string & message, const enum error_type type) {
  993. std::string type_str;
  994. int code = 500;
  995. switch (type) {
  996. case ERROR_TYPE_INVALID_REQUEST:
  997. type_str = "invalid_request_error";
  998. code = 400;
  999. break;
  1000. case ERROR_TYPE_AUTHENTICATION:
  1001. type_str = "authentication_error";
  1002. code = 401;
  1003. break;
  1004. case ERROR_TYPE_NOT_FOUND:
  1005. type_str = "not_found_error";
  1006. code = 404;
  1007. break;
  1008. case ERROR_TYPE_SERVER:
  1009. type_str = "server_error";
  1010. code = 500;
  1011. break;
  1012. case ERROR_TYPE_PERMISSION:
  1013. type_str = "permission_error";
  1014. code = 403;
  1015. break;
  1016. case ERROR_TYPE_NOT_SUPPORTED:
  1017. type_str = "not_supported_error";
  1018. code = 501;
  1019. break;
  1020. case ERROR_TYPE_UNAVAILABLE:
  1021. type_str = "unavailable_error";
  1022. code = 503;
  1023. break;
  1024. }
  1025. return json {
  1026. {"code", code},
  1027. {"message", message},
  1028. {"type", type_str},
  1029. };
  1030. }
  1031. struct server_task_result_error : server_task_result {
  1032. int index = 0;
  1033. error_type err_type = ERROR_TYPE_SERVER;
  1034. std::string err_msg;
  1035. virtual bool is_error() override {
  1036. return true;
  1037. }
  1038. virtual json to_json() override {
  1039. return format_error_response(err_msg, err_type);
  1040. }
  1041. };
  1042. struct server_task_result_metrics : server_task_result {
  1043. int n_idle_slots;
  1044. int n_processing_slots;
  1045. int n_tasks_deferred;
  1046. int64_t t_start;
  1047. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1048. uint64_t n_prompt_tokens_processed_total = 0;
  1049. uint64_t t_prompt_processing_total = 0;
  1050. uint64_t n_tokens_predicted_total = 0;
  1051. uint64_t t_tokens_generation_total = 0;
  1052. uint64_t n_prompt_tokens_processed = 0;
  1053. uint64_t t_prompt_processing = 0;
  1054. uint64_t n_tokens_predicted = 0;
  1055. uint64_t t_tokens_generation = 0;
  1056. uint64_t n_decode_total = 0;
  1057. uint64_t n_busy_slots_total = 0;
  1058. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1059. // therefore, we use json to temporarily store the slot.to_json() result
  1060. json slots_data = json::array();
  1061. virtual json to_json() override {
  1062. return json {
  1063. { "idle", n_idle_slots },
  1064. { "processing", n_processing_slots },
  1065. { "deferred", n_tasks_deferred },
  1066. { "t_start", t_start },
  1067. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1068. { "t_tokens_generation_total", t_tokens_generation_total },
  1069. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1070. { "t_prompt_processing_total", t_prompt_processing_total },
  1071. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1072. { "t_prompt_processing", t_prompt_processing },
  1073. { "n_tokens_predicted", n_tokens_predicted },
  1074. { "t_tokens_generation", t_tokens_generation },
  1075. { "n_decode_total", n_decode_total },
  1076. { "n_busy_slots_total", n_busy_slots_total },
  1077. { "slots", slots_data },
  1078. };
  1079. }
  1080. };
  1081. struct server_task_result_slot_save_load : server_task_result {
  1082. std::string filename;
  1083. bool is_save; // true = save, false = load
  1084. size_t n_tokens;
  1085. size_t n_bytes;
  1086. double t_ms;
  1087. virtual json to_json() override {
  1088. if (is_save) {
  1089. return json {
  1090. { "id_slot", id_slot },
  1091. { "filename", filename },
  1092. { "n_saved", n_tokens },
  1093. { "n_written", n_bytes },
  1094. { "timings", {
  1095. { "save_ms", t_ms }
  1096. }},
  1097. };
  1098. } else {
  1099. return json {
  1100. { "id_slot", id_slot },
  1101. { "filename", filename },
  1102. { "n_restored", n_tokens },
  1103. { "n_read", n_bytes },
  1104. { "timings", {
  1105. { "restore_ms", t_ms }
  1106. }},
  1107. };
  1108. }
  1109. }
  1110. };
  1111. struct server_task_result_slot_erase : server_task_result {
  1112. size_t n_erased;
  1113. virtual json to_json() override {
  1114. return json {
  1115. { "id_slot", id_slot },
  1116. { "n_erased", n_erased },
  1117. };
  1118. }
  1119. };
  1120. struct server_task_result_apply_lora : server_task_result {
  1121. virtual json to_json() override {
  1122. return json {{ "success", true }};
  1123. }
  1124. };
  1125. struct server_slot {
  1126. int id;
  1127. int id_task = -1;
  1128. // only used for completion/embedding/infill/rerank
  1129. server_task_type task_type = SERVER_TASK_TYPE_COMPLETION;
  1130. llama_batch batch_spec = {};
  1131. llama_context * ctx = nullptr;
  1132. llama_context * ctx_dft = nullptr;
  1133. // multimodal
  1134. mtmd_context * mctx = nullptr;
  1135. common_speculative * spec = nullptr;
  1136. std::vector<common_adapter_lora_info> lora;
  1137. // the index relative to completion multi-task request
  1138. size_t index = 0;
  1139. struct slot_params params;
  1140. slot_state state = SLOT_STATE_IDLE;
  1141. // used to determine the slot that has been used the longest
  1142. int64_t t_last_used = -1;
  1143. // generation props
  1144. int32_t n_ctx = 0; // context size per slot
  1145. int32_t n_past = 0;
  1146. int32_t n_decoded = 0;
  1147. int32_t n_remaining = -1;
  1148. int32_t i_batch = -1;
  1149. int32_t n_predict = -1; // TODO: disambiguate from params.n_predict
  1150. // n_prompt_tokens may not be equal to prompt_tokens.size(), because prompt maybe truncated
  1151. int32_t n_prompt_tokens = 0;
  1152. int32_t n_prompt_tokens_processed = 0;
  1153. // input prompt tokens
  1154. server_tokens prompt_tokens;
  1155. size_t last_nl_pos = 0;
  1156. std::string generated_text;
  1157. llama_tokens generated_tokens;
  1158. common_chat_msg chat_msg;
  1159. server_tokens cache_tokens;
  1160. std::vector<completion_token_output> generated_token_probs;
  1161. bool has_next_token = true;
  1162. bool has_new_line = false;
  1163. bool truncated = false;
  1164. stop_type stop;
  1165. std::string stopping_word;
  1166. // sampling
  1167. json json_schema;
  1168. struct common_sampler * smpl = nullptr;
  1169. llama_token sampled;
  1170. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1171. std::vector<std::string> generated_tool_call_ids;
  1172. // stats
  1173. size_t n_sent_text = 0; // number of sent text character
  1174. int64_t t_start_process_prompt;
  1175. int64_t t_start_generation;
  1176. double t_prompt_processing; // ms
  1177. double t_token_generation; // ms
  1178. std::function<void(int)> callback_on_release;
  1179. // Speculative decoding stats
  1180. int32_t n_draft_total = 0; // Total draft tokens generated
  1181. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1182. void reset() {
  1183. SLT_DBG(*this, "%s", "\n");
  1184. n_prompt_tokens = 0;
  1185. last_nl_pos = 0;
  1186. generated_text = "";
  1187. has_new_line = false;
  1188. truncated = false;
  1189. stop = STOP_TYPE_NONE;
  1190. stopping_word = "";
  1191. n_past = 0;
  1192. n_sent_text = 0;
  1193. task_type = SERVER_TASK_TYPE_COMPLETION;
  1194. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1195. generated_tokens.clear();
  1196. generated_token_probs.clear();
  1197. chat_msg = {};
  1198. json_schema = json();
  1199. generated_tool_call_ids.clear();
  1200. // clear speculative decoding stats
  1201. n_draft_total = 0;
  1202. n_draft_accepted = 0;
  1203. }
  1204. bool need_embd() const {
  1205. return server_task_type_need_embd(task_type);
  1206. }
  1207. bool need_logits() const {
  1208. return server_task_type_need_logits(task_type);
  1209. }
  1210. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1211. // also we cannot split if the pooling would require any past tokens
  1212. bool can_split() const {
  1213. return
  1214. !need_embd() ||
  1215. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1216. }
  1217. bool can_batch_with(server_slot & other_slot) const {
  1218. return task_type == other_slot.task_type && are_lora_equal(lora, other_slot.lora);
  1219. }
  1220. bool has_budget(const common_params & global_params) {
  1221. if (params.n_predict == -1 && global_params.n_predict == -1) {
  1222. return true; // limitless
  1223. }
  1224. n_remaining = -1;
  1225. if (params.n_predict != -1) {
  1226. n_remaining = params.n_predict - n_decoded;
  1227. } else if (global_params.n_predict != -1) {
  1228. n_remaining = global_params.n_predict - n_decoded;
  1229. }
  1230. return n_remaining > 0; // no budget
  1231. }
  1232. bool is_processing() const {
  1233. return state != SLOT_STATE_IDLE;
  1234. }
  1235. bool can_speculate() const {
  1236. return ctx_dft && params.speculative.n_max > 0 && params.cache_prompt;
  1237. }
  1238. void add_token(const completion_token_output & token) {
  1239. if (!is_processing()) {
  1240. SLT_WRN(*this, "%s", "slot is not processing\n");
  1241. return;
  1242. }
  1243. generated_token_probs.push_back(token);
  1244. }
  1245. void release() {
  1246. if (is_processing()) {
  1247. SLT_INF(*this, "stop processing: n_past = %d, truncated = %d\n", n_past, truncated);
  1248. t_last_used = ggml_time_us();
  1249. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1250. state = SLOT_STATE_IDLE;
  1251. callback_on_release(id);
  1252. }
  1253. }
  1254. result_timings get_timings() const {
  1255. result_timings timings;
  1256. timings.prompt_n = n_prompt_tokens_processed;
  1257. timings.prompt_ms = t_prompt_processing;
  1258. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1259. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1260. timings.predicted_n = n_decoded;
  1261. timings.predicted_ms = t_token_generation;
  1262. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1263. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1264. // Add speculative metrics
  1265. if (n_draft_total > 0) {
  1266. timings.draft_n = n_draft_total;
  1267. timings.draft_n_accepted = n_draft_accepted;
  1268. }
  1269. return timings;
  1270. }
  1271. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1272. auto previous_msg = chat_msg;
  1273. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1274. auto new_msg = common_chat_parse(
  1275. generated_text,
  1276. /* is_partial= */ stop != STOP_TYPE_EOS,
  1277. params.oaicompat_chat_syntax);
  1278. if (!new_msg.empty()) {
  1279. new_msg.ensure_tool_call_ids_set(generated_tool_call_ids, gen_tool_call_id);
  1280. chat_msg = new_msg;
  1281. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1282. }
  1283. return chat_msg;
  1284. }
  1285. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1286. size_t stop_pos = std::string::npos;
  1287. for (const std::string & word : params.antiprompt) {
  1288. size_t pos;
  1289. if (is_full_stop) {
  1290. const size_t tmp = word.size() + last_token_size;
  1291. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1292. pos = text.find(word, from_pos);
  1293. } else {
  1294. // otherwise, partial stop
  1295. pos = string_find_partial_stop(text, word);
  1296. }
  1297. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1298. if (is_full_stop) {
  1299. stop = STOP_TYPE_WORD;
  1300. stopping_word = word;
  1301. has_next_token = false;
  1302. }
  1303. stop_pos = pos;
  1304. }
  1305. }
  1306. return stop_pos;
  1307. }
  1308. void print_timings() const {
  1309. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1310. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1311. const double t_gen = t_token_generation / n_decoded;
  1312. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1313. SLT_INF(*this,
  1314. "\n"
  1315. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1316. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1317. " total time = %10.2f ms / %5d tokens\n",
  1318. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1319. t_token_generation, n_decoded, t_gen, n_gen_second,
  1320. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1321. if (n_draft_total > 0) {
  1322. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1323. SLT_INF(*this,
  1324. "\n"
  1325. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1326. draft_ratio, n_draft_accepted, n_draft_total
  1327. );
  1328. }
  1329. }
  1330. json to_json() const {
  1331. return json {
  1332. {"id", id},
  1333. {"id_task", id_task},
  1334. {"n_ctx", n_ctx},
  1335. {"speculative", can_speculate()},
  1336. {"is_processing", is_processing()},
  1337. {"params", params.to_json()},
  1338. {"prompt", prompt_tokens.detokenize(ctx, true)},
  1339. {"next_token",
  1340. {
  1341. {"has_next_token", has_next_token},
  1342. {"has_new_line", has_new_line},
  1343. {"n_remain", n_remaining},
  1344. {"n_decoded", n_decoded},
  1345. {"stopping_word", stopping_word},
  1346. }
  1347. },
  1348. };
  1349. }
  1350. };
  1351. struct server_metrics {
  1352. int64_t t_start = 0;
  1353. uint64_t n_prompt_tokens_processed_total = 0;
  1354. uint64_t t_prompt_processing_total = 0;
  1355. uint64_t n_tokens_predicted_total = 0;
  1356. uint64_t t_tokens_generation_total = 0;
  1357. uint64_t n_prompt_tokens_processed = 0;
  1358. uint64_t t_prompt_processing = 0;
  1359. uint64_t n_tokens_predicted = 0;
  1360. uint64_t t_tokens_generation = 0;
  1361. uint64_t n_decode_total = 0;
  1362. uint64_t n_busy_slots_total = 0;
  1363. void init() {
  1364. t_start = ggml_time_us();
  1365. }
  1366. void on_prompt_eval(const server_slot & slot) {
  1367. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1368. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1369. t_prompt_processing += slot.t_prompt_processing;
  1370. t_prompt_processing_total += slot.t_prompt_processing;
  1371. }
  1372. void on_prediction(const server_slot & slot) {
  1373. n_tokens_predicted_total += slot.n_decoded;
  1374. n_tokens_predicted += slot.n_decoded;
  1375. t_tokens_generation += slot.t_token_generation;
  1376. t_tokens_generation_total += slot.t_token_generation;
  1377. }
  1378. void on_decoded(const std::vector<server_slot> & slots) {
  1379. n_decode_total++;
  1380. for (const auto & slot : slots) {
  1381. if (slot.is_processing()) {
  1382. n_busy_slots_total++;
  1383. }
  1384. }
  1385. }
  1386. void reset_bucket() {
  1387. n_prompt_tokens_processed = 0;
  1388. t_prompt_processing = 0;
  1389. n_tokens_predicted = 0;
  1390. t_tokens_generation = 0;
  1391. }
  1392. };
  1393. struct server_queue {
  1394. int id = 0;
  1395. bool running;
  1396. // queues
  1397. std::deque<server_task> queue_tasks;
  1398. std::deque<server_task> queue_tasks_deferred;
  1399. std::mutex mutex_tasks;
  1400. std::condition_variable condition_tasks;
  1401. // callback functions
  1402. std::function<void(server_task &&)> callback_new_task;
  1403. std::function<void(void)> callback_update_slots;
  1404. // Add a new task to the end of the queue
  1405. int post(server_task && task, bool front = false) {
  1406. std::unique_lock<std::mutex> lock(mutex_tasks);
  1407. GGML_ASSERT(task.id != -1);
  1408. // if this is cancel task make sure to clean up pending tasks
  1409. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1410. cleanup_pending_task(task.id_target);
  1411. }
  1412. const int task_id = task.id;
  1413. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1414. if (front) {
  1415. queue_tasks.push_front(std::move(task));
  1416. } else {
  1417. queue_tasks.push_back(std::move(task));
  1418. }
  1419. condition_tasks.notify_one();
  1420. return task_id;
  1421. }
  1422. // multi-task version of post()
  1423. int post(std::vector<server_task> && tasks, bool front = false) {
  1424. std::unique_lock<std::mutex> lock(mutex_tasks);
  1425. for (auto & task : tasks) {
  1426. if (task.id == -1) {
  1427. task.id = id++;
  1428. }
  1429. // if this is cancel task make sure to clean up pending tasks
  1430. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1431. cleanup_pending_task(task.id_target);
  1432. }
  1433. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1434. if (front) {
  1435. queue_tasks.push_front(std::move(task));
  1436. } else {
  1437. queue_tasks.push_back(std::move(task));
  1438. }
  1439. }
  1440. condition_tasks.notify_one();
  1441. return 0;
  1442. }
  1443. // Add a new task, but defer until one slot is available
  1444. void defer(server_task && task) {
  1445. std::unique_lock<std::mutex> lock(mutex_tasks);
  1446. QUE_DBG("defer task, id = %d\n", task.id);
  1447. queue_tasks_deferred.push_back(std::move(task));
  1448. condition_tasks.notify_one();
  1449. }
  1450. // Get the next id for creating a new task
  1451. int get_new_id() {
  1452. std::unique_lock<std::mutex> lock(mutex_tasks);
  1453. int new_id = id++;
  1454. return new_id;
  1455. }
  1456. // Register function to process a new task
  1457. void on_new_task(std::function<void(server_task &&)> callback) {
  1458. callback_new_task = std::move(callback);
  1459. }
  1460. // Register the function to be called when all slots data is ready to be processed
  1461. void on_update_slots(std::function<void(void)> callback) {
  1462. callback_update_slots = std::move(callback);
  1463. }
  1464. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1465. void pop_deferred_task() {
  1466. std::unique_lock<std::mutex> lock(mutex_tasks);
  1467. if (!queue_tasks_deferred.empty()) {
  1468. queue_tasks.emplace_back(std::move(queue_tasks_deferred.front()));
  1469. queue_tasks_deferred.pop_front();
  1470. }
  1471. condition_tasks.notify_one();
  1472. }
  1473. // end the start_loop routine
  1474. void terminate() {
  1475. std::unique_lock<std::mutex> lock(mutex_tasks);
  1476. running = false;
  1477. condition_tasks.notify_all();
  1478. }
  1479. /**
  1480. * Main loop consists of these steps:
  1481. * - Wait until a new task arrives
  1482. * - Process the task (i.e. maybe copy data into slot)
  1483. * - Check if multitask is finished
  1484. * - Update all slots
  1485. */
  1486. void start_loop() {
  1487. running = true;
  1488. while (true) {
  1489. QUE_DBG("%s", "processing new tasks\n");
  1490. while (true) {
  1491. std::unique_lock<std::mutex> lock(mutex_tasks);
  1492. if (!running) {
  1493. QUE_DBG("%s", "terminate\n");
  1494. return;
  1495. }
  1496. if (queue_tasks.empty()) {
  1497. lock.unlock();
  1498. break;
  1499. }
  1500. server_task task = std::move(queue_tasks.front());
  1501. queue_tasks.pop_front();
  1502. lock.unlock();
  1503. QUE_DBG("processing task, id = %d\n", task.id);
  1504. callback_new_task(std::move(task));
  1505. }
  1506. // all tasks in the current loop is processed, slots data is now ready
  1507. QUE_DBG("%s", "update slots\n");
  1508. callback_update_slots();
  1509. QUE_DBG("%s", "waiting for new tasks\n");
  1510. {
  1511. std::unique_lock<std::mutex> lock(mutex_tasks);
  1512. if (!running) {
  1513. QUE_DBG("%s", "terminate\n");
  1514. return;
  1515. }
  1516. if (queue_tasks.empty()) {
  1517. condition_tasks.wait(lock, [&]{
  1518. return (!queue_tasks.empty() || !running);
  1519. });
  1520. }
  1521. }
  1522. }
  1523. }
  1524. private:
  1525. void cleanup_pending_task(int id_target) {
  1526. // no need lock because this is called exclusively by post()
  1527. auto rm_func = [id_target](const server_task & task) {
  1528. return task.id_target == id_target;
  1529. };
  1530. queue_tasks.erase(
  1531. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1532. queue_tasks.end());
  1533. queue_tasks_deferred.erase(
  1534. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1535. queue_tasks_deferred.end());
  1536. }
  1537. };
  1538. struct server_response {
  1539. bool running = true;
  1540. // for keeping track of all tasks waiting for the result
  1541. std::unordered_set<int> waiting_task_ids;
  1542. // the main result queue (using ptr for polymorphism)
  1543. std::vector<server_task_result_ptr> queue_results;
  1544. std::mutex mutex_results;
  1545. std::condition_variable condition_results;
  1546. // add the id_task to the list of tasks waiting for response
  1547. void add_waiting_task_id(int id_task) {
  1548. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1549. std::unique_lock<std::mutex> lock(mutex_results);
  1550. waiting_task_ids.insert(id_task);
  1551. }
  1552. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1553. std::unique_lock<std::mutex> lock(mutex_results);
  1554. for (const auto & task : tasks) {
  1555. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1556. waiting_task_ids.insert(task.id);
  1557. }
  1558. }
  1559. // when the request is finished, we can remove task associated with it
  1560. void remove_waiting_task_id(int id_task) {
  1561. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1562. std::unique_lock<std::mutex> lock(mutex_results);
  1563. waiting_task_ids.erase(id_task);
  1564. // make sure to clean up all pending results
  1565. queue_results.erase(
  1566. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1567. return res->id == id_task;
  1568. }),
  1569. queue_results.end());
  1570. }
  1571. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1572. std::unique_lock<std::mutex> lock(mutex_results);
  1573. for (const auto & id_task : id_tasks) {
  1574. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1575. waiting_task_ids.erase(id_task);
  1576. }
  1577. }
  1578. // This function blocks the thread until there is a response for one of the id_tasks
  1579. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1580. while (true) {
  1581. std::unique_lock<std::mutex> lock(mutex_results);
  1582. condition_results.wait(lock, [&]{
  1583. if (!running) {
  1584. SRV_DBG("%s : queue result stop\n", __func__);
  1585. std::terminate(); // we cannot return here since the caller is HTTP code
  1586. }
  1587. return !queue_results.empty();
  1588. });
  1589. for (size_t i = 0; i < queue_results.size(); i++) {
  1590. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1591. server_task_result_ptr res = std::move(queue_results[i]);
  1592. queue_results.erase(queue_results.begin() + i);
  1593. return res;
  1594. }
  1595. }
  1596. }
  1597. // should never reach here
  1598. }
  1599. // same as recv(), but have timeout in seconds
  1600. // if timeout is reached, nullptr is returned
  1601. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1602. while (true) {
  1603. std::unique_lock<std::mutex> lock(mutex_results);
  1604. for (int i = 0; i < (int) queue_results.size(); i++) {
  1605. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1606. server_task_result_ptr res = std::move(queue_results[i]);
  1607. queue_results.erase(queue_results.begin() + i);
  1608. return res;
  1609. }
  1610. }
  1611. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1612. if (!running) {
  1613. SRV_DBG("%s : queue result stop\n", __func__);
  1614. std::terminate(); // we cannot return here since the caller is HTTP code
  1615. }
  1616. if (cr_res == std::cv_status::timeout) {
  1617. return nullptr;
  1618. }
  1619. }
  1620. // should never reach here
  1621. }
  1622. // single-task version of recv()
  1623. server_task_result_ptr recv(int id_task) {
  1624. std::unordered_set<int> id_tasks = {id_task};
  1625. return recv(id_tasks);
  1626. }
  1627. // Send a new result to a waiting id_task
  1628. void send(server_task_result_ptr && result) {
  1629. SRV_DBG("sending result for task id = %d\n", result->id);
  1630. std::unique_lock<std::mutex> lock(mutex_results);
  1631. for (const auto & id_task : waiting_task_ids) {
  1632. if (result->id == id_task) {
  1633. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1634. queue_results.emplace_back(std::move(result));
  1635. condition_results.notify_all();
  1636. return;
  1637. }
  1638. }
  1639. }
  1640. // terminate the waiting loop
  1641. void terminate() {
  1642. running = false;
  1643. condition_results.notify_all();
  1644. }
  1645. };
  1646. struct server_context {
  1647. common_params params_base;
  1648. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1649. common_init_result llama_init;
  1650. common_init_result llama_init_dft;
  1651. llama_model * model = nullptr;
  1652. llama_context * ctx = nullptr;
  1653. // multimodal
  1654. mtmd_context * mctx = nullptr;
  1655. const llama_vocab * vocab = nullptr;
  1656. bool vocab_dft_compatible = true;
  1657. llama_model * model_dft = nullptr;
  1658. llama_context_params cparams_dft;
  1659. llama_batch batch {};
  1660. bool clean_kv_cache = true;
  1661. bool add_bos_token = true;
  1662. int32_t n_ctx; // total context for all clients / slots
  1663. // slots / clients
  1664. std::vector<server_slot> slots;
  1665. json default_generation_settings_for_props;
  1666. server_queue queue_tasks;
  1667. server_response queue_results;
  1668. server_metrics metrics;
  1669. // Necessary similarity of prompt for slot selection
  1670. float slot_prompt_similarity = 0.0f;
  1671. common_chat_templates_ptr chat_templates;
  1672. oaicompat_parser_options oai_parser_opt;
  1673. ~server_context() {
  1674. mtmd_free(mctx);
  1675. // Clear any sampling context
  1676. for (server_slot & slot : slots) {
  1677. common_sampler_free(slot.smpl);
  1678. slot.smpl = nullptr;
  1679. llama_free(slot.ctx_dft);
  1680. slot.ctx_dft = nullptr;
  1681. common_speculative_free(slot.spec);
  1682. slot.spec = nullptr;
  1683. llama_batch_free(slot.batch_spec);
  1684. }
  1685. llama_batch_free(batch);
  1686. }
  1687. bool load_model(const common_params & params) {
  1688. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1689. params_base = params;
  1690. llama_init = common_init_from_params(params_base);
  1691. model = llama_init.model.get();
  1692. ctx = llama_init.context.get();
  1693. if (model == nullptr) {
  1694. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1695. return false;
  1696. }
  1697. vocab = llama_model_get_vocab(model);
  1698. n_ctx = llama_n_ctx(ctx);
  1699. add_bos_token = llama_vocab_get_add_bos(vocab);
  1700. if (!params_base.speculative.model.path.empty() || !params_base.speculative.model.hf_repo.empty()) {
  1701. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  1702. auto params_dft = params_base;
  1703. params_dft.devices = params_base.speculative.devices;
  1704. params_dft.model = params_base.speculative.model;
  1705. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? params_base.n_ctx / params_base.n_parallel : params_base.speculative.n_ctx;
  1706. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  1707. params_dft.n_parallel = 1;
  1708. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  1709. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  1710. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  1711. llama_init_dft = common_init_from_params(params_dft);
  1712. model_dft = llama_init_dft.model.get();
  1713. if (model_dft == nullptr) {
  1714. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  1715. return false;
  1716. }
  1717. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  1718. if (!vocab_dft_compatible) {
  1719. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  1720. }
  1721. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  1722. cparams_dft = common_context_params_to_llama(params_dft);
  1723. cparams_dft.n_batch = n_ctx_dft;
  1724. // the context is not needed - we will create one for each slot
  1725. llama_init_dft.context.reset();
  1726. }
  1727. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  1728. try {
  1729. common_chat_format_example(chat_templates.get(), params.use_jinja);
  1730. } catch (const std::exception & e) {
  1731. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  1732. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  1733. chat_templates = common_chat_templates_init(model, "chatml");
  1734. }
  1735. std::string & mmproj_path = params_base.mmproj.path;
  1736. if (!mmproj_path.empty()) {
  1737. mtmd_context_params mparams = mtmd_context_params_default();
  1738. mparams.use_gpu = params_base.mmproj_use_gpu;
  1739. mparams.print_timings = false;
  1740. mparams.n_threads = params_base.cpuparams.n_threads;
  1741. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  1742. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  1743. if (mctx == nullptr) {
  1744. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  1745. return false;
  1746. }
  1747. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  1748. if (params_base.ctx_shift) {
  1749. params_base.ctx_shift = false;
  1750. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  1751. }
  1752. if (params_base.n_cache_reuse) {
  1753. params_base.n_cache_reuse = 0;
  1754. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  1755. }
  1756. if (!params_base.speculative.model.path.empty()) {
  1757. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  1758. return false;
  1759. }
  1760. }
  1761. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  1762. if (params_base.ctx_shift) {
  1763. params_base.ctx_shift = false;
  1764. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  1765. }
  1766. if (params_base.n_cache_reuse) {
  1767. params_base.n_cache_reuse = 0;
  1768. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  1769. }
  1770. }
  1771. return true;
  1772. }
  1773. void init() {
  1774. const int32_t n_ctx_slot = n_ctx / params_base.n_parallel;
  1775. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  1776. for (int i = 0; i < params_base.n_parallel; i++) {
  1777. server_slot slot;
  1778. slot.id = i;
  1779. slot.ctx = ctx;
  1780. slot.n_ctx = n_ctx_slot;
  1781. slot.n_predict = params_base.n_predict;
  1782. slot.mctx = mctx;
  1783. slot.cache_tokens.has_mtmd = mctx != nullptr;
  1784. if (model_dft) {
  1785. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  1786. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  1787. if (slot.ctx_dft == nullptr) {
  1788. SRV_ERR("%s", "failed to create draft context\n");
  1789. return;
  1790. }
  1791. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  1792. if (slot.spec == nullptr) {
  1793. SRV_ERR("%s", "failed to create speculator\n");
  1794. return;
  1795. }
  1796. for (auto &pair : params_base.speculative.replacements) {
  1797. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  1798. }
  1799. }
  1800. SLT_INF(slot, "new slot n_ctx_slot = %d\n", slot.n_ctx);
  1801. slot.params.sampling = params_base.sampling;
  1802. slot.params.n_keep = params_base.n_keep;
  1803. slot.callback_on_release = [this](int) {
  1804. queue_tasks.pop_deferred_task();
  1805. };
  1806. slot.reset();
  1807. slots.push_back(std::move(slot));
  1808. }
  1809. default_generation_settings_for_props = slots[0].to_json();
  1810. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  1811. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  1812. {
  1813. const int32_t n_batch = llama_n_batch(ctx);
  1814. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  1815. }
  1816. metrics.init();
  1817. oai_parser_opt = {
  1818. /* use_jinja */ params_base.use_jinja,
  1819. /* prefill_assistant */ params_base.prefill_assistant,
  1820. /* reasoning_format */ params_base.reasoning_format,
  1821. /* chat_template_kwargs */ params_base.default_template_kwargs,
  1822. /* common_chat_templates */ chat_templates.get(),
  1823. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  1824. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  1825. /* enable_thinking */ params_base.reasoning_budget != 0,
  1826. };
  1827. }
  1828. server_slot * get_slot_by_id(int id) {
  1829. for (server_slot & slot : slots) {
  1830. if (slot.id == id) {
  1831. return &slot;
  1832. }
  1833. }
  1834. return nullptr;
  1835. }
  1836. server_slot * get_available_slot(const server_task & task) {
  1837. server_slot * ret = nullptr;
  1838. // find the slot that has at least n% prompt similarity
  1839. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  1840. int lcs_len = 0;
  1841. float similarity = 0;
  1842. for (server_slot & slot : slots) {
  1843. // skip the slot if it is not available
  1844. if (slot.is_processing()) {
  1845. continue;
  1846. }
  1847. // skip the slot if it does not contains cached tokens
  1848. if (slot.cache_tokens.empty()) {
  1849. continue;
  1850. }
  1851. // length of the Longest Common Subsequence between the current slot's prompt and the input prompt
  1852. int cur_lcs_len = slot.cache_tokens.get_common_prefix(task.prompt_tokens);
  1853. // fraction of the common subsequence length compared to the current slot's prompt length
  1854. float cur_similarity = static_cast<float>(cur_lcs_len) / static_cast<int>(slot.cache_tokens.size());
  1855. // select the current slot if the criteria match
  1856. if (cur_lcs_len > lcs_len && cur_similarity > slot_prompt_similarity) {
  1857. lcs_len = cur_lcs_len;
  1858. similarity = cur_similarity;
  1859. ret = &slot;
  1860. }
  1861. }
  1862. if (ret != nullptr) {
  1863. SLT_DBG(*ret, "selected slot by lcs similarity, lcs_len = %d, similarity = %f\n", lcs_len, similarity);
  1864. }
  1865. }
  1866. // find the slot that has been least recently used
  1867. if (ret == nullptr) {
  1868. int64_t t_last = -1;
  1869. for (server_slot & slot : slots) {
  1870. // skip the slot if it is not available
  1871. if (slot.is_processing()) {
  1872. continue;
  1873. }
  1874. // select the current slot if the criteria match
  1875. if (!ret || slot.t_last_used <= t_last) {
  1876. t_last = slot.t_last_used;
  1877. ret = &slot;
  1878. }
  1879. }
  1880. if (ret != nullptr) {
  1881. SLT_DBG(*ret, "selected slot by lru, t_last = %" PRId64 "\n", t_last);
  1882. }
  1883. }
  1884. return ret;
  1885. }
  1886. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  1887. slot.reset();
  1888. slot.id_task = task.id;
  1889. slot.index = task.index;
  1890. slot.task_type = task.type;
  1891. slot.params = std::move(task.params);
  1892. slot.prompt_tokens = std::move(task.prompt_tokens);
  1893. if (!are_lora_equal(slot.params.lora, slot.lora)) {
  1894. // if lora is changed, we cannot reuse cached tokens
  1895. slot.cache_tokens.clear();
  1896. slot.lora = slot.params.lora;
  1897. }
  1898. if (!slot.prompt_tokens.validate(ctx)) {
  1899. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  1900. return false;
  1901. }
  1902. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  1903. if (slot.n_predict > 0 && slot.params.n_predict > slot.n_predict) {
  1904. // Might be better to reject the request with a 400 ?
  1905. SLT_WRN(slot, "n_predict = %d exceeds server configuration, setting to %d\n", slot.params.n_predict, slot.n_predict);
  1906. slot.params.n_predict = slot.n_predict;
  1907. }
  1908. {
  1909. if (slot.smpl != nullptr) {
  1910. common_sampler_free(slot.smpl);
  1911. }
  1912. slot.smpl = common_sampler_init(model, slot.params.sampling);
  1913. if (slot.smpl == nullptr) {
  1914. // for now, the only error that may happen here is invalid grammar
  1915. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  1916. return false;
  1917. }
  1918. }
  1919. if (slot.ctx_dft) {
  1920. llama_batch_free(slot.batch_spec);
  1921. slot.batch_spec = llama_batch_init(slot.params.speculative.n_max + 1, 0, 1);
  1922. }
  1923. slot.state = SLOT_STATE_STARTED;
  1924. SLT_INF(slot, "%s", "processing task\n");
  1925. return true;
  1926. }
  1927. void kv_cache_clear() {
  1928. SRV_DBG("%s", "clearing KV cache\n");
  1929. // clear the entire KV cache
  1930. llama_memory_clear(llama_get_memory(ctx), true);
  1931. clean_kv_cache = false;
  1932. }
  1933. bool process_token(completion_token_output & result, server_slot & slot) {
  1934. // remember which tokens were sampled - used for repetition penalties during sampling
  1935. const std::string token_str = result.text_to_send;
  1936. slot.sampled = result.tok;
  1937. slot.generated_text += token_str;
  1938. if (slot.params.return_tokens) {
  1939. slot.generated_tokens.push_back(result.tok);
  1940. }
  1941. slot.has_next_token = true;
  1942. // check if there is incomplete UTF-8 character at the end
  1943. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  1944. // search stop word and delete it
  1945. if (!incomplete) {
  1946. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1947. const std::string str_test = slot.generated_text.substr(pos);
  1948. bool send_text = true;
  1949. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  1950. if (stop_pos != std::string::npos) {
  1951. slot.generated_text.erase(
  1952. slot.generated_text.begin() + pos + stop_pos,
  1953. slot.generated_text.end());
  1954. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  1955. } else if (slot.has_next_token) {
  1956. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  1957. send_text = stop_pos == std::string::npos;
  1958. }
  1959. // check if there is any token to predict
  1960. if (send_text) {
  1961. // no send the stop word in the response
  1962. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  1963. slot.n_sent_text += result.text_to_send.size();
  1964. // add the token to slot queue and cache
  1965. } else {
  1966. result.text_to_send = "";
  1967. }
  1968. slot.add_token(result);
  1969. if (slot.params.stream) {
  1970. send_partial_response(slot, result);
  1971. }
  1972. }
  1973. if (incomplete) {
  1974. slot.has_next_token = true;
  1975. }
  1976. // if context shifting is disabled, make sure that we don't run out of context
  1977. if (!params_base.ctx_shift && slot.n_past + 1 >= slot.n_ctx) {
  1978. slot.stop = STOP_TYPE_LIMIT;
  1979. slot.has_next_token = false;
  1980. SLT_DBG(slot, "stopped due to running out of context, n_past = %d, n_ctx = %d\n", slot.n_past, slot.n_ctx);
  1981. }
  1982. // check the limits
  1983. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  1984. slot.stop = STOP_TYPE_LIMIT;
  1985. slot.has_next_token = false;
  1986. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.params.n_predict);
  1987. }
  1988. if (slot.has_new_line) {
  1989. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  1990. if (slot.params.n_indent > 0) {
  1991. // check the current indentation
  1992. // TODO: improve by not doing it more than once for each new line
  1993. if (slot.last_nl_pos > 0) {
  1994. size_t pos = slot.last_nl_pos;
  1995. int n_indent = 0;
  1996. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  1997. n_indent++;
  1998. pos++;
  1999. }
  2000. if (pos < slot.generated_text.size() && n_indent < slot.params.n_indent) {
  2001. slot.stop = STOP_TYPE_LIMIT;
  2002. slot.has_next_token = false;
  2003. // cut the last line
  2004. slot.generated_text.erase(pos, std::string::npos);
  2005. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2006. }
  2007. }
  2008. // find the next new line
  2009. {
  2010. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2011. if (pos != std::string::npos) {
  2012. slot.last_nl_pos = pos + 1;
  2013. }
  2014. }
  2015. }
  2016. }
  2017. // check if there is a new line in the generated text
  2018. if (result.text_to_send.find('\n') != std::string::npos) {
  2019. slot.has_new_line = true;
  2020. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2021. if (slot.params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.params.t_max_predict_ms)) {
  2022. slot.stop = STOP_TYPE_LIMIT;
  2023. slot.has_next_token = false;
  2024. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.params.t_max_predict_ms);
  2025. }
  2026. }
  2027. // if context shift is disabled, we stop when it reaches the context limit
  2028. if (slot.n_past >= slot.n_ctx) {
  2029. slot.truncated = true;
  2030. slot.stop = STOP_TYPE_LIMIT;
  2031. slot.has_next_token = false;
  2032. SLT_DBG(slot, "stopped due to running out of context capacity, n_past = %d, n_prompt_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2033. slot.n_decoded, slot.n_prompt_tokens, slot.n_past, slot.n_ctx);
  2034. }
  2035. if (llama_vocab_is_eog(vocab, result.tok)) {
  2036. slot.stop = STOP_TYPE_EOS;
  2037. slot.has_next_token = false;
  2038. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2039. }
  2040. const auto n_ctx_train = llama_model_n_ctx_train(model);
  2041. if (slot.params.n_predict < 1 && slot.n_predict < 1 && slot.n_prompt_tokens + slot.n_decoded >= n_ctx_train) {
  2042. slot.truncated = true;
  2043. slot.stop = STOP_TYPE_LIMIT;
  2044. slot.has_next_token = false; // stop prediction
  2045. SLT_WRN(slot,
  2046. "n_predict (%d) is set for infinite generation. "
  2047. "Limiting generated tokens to n_ctx_train (%d) to avoid EOS-less generation infinite loop\n",
  2048. slot.params.n_predict, n_ctx_train);
  2049. }
  2050. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2051. return slot.has_next_token; // continue
  2052. }
  2053. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) {
  2054. size_t n_probs = slot.params.sampling.n_probs;
  2055. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2056. if (post_sampling) {
  2057. const auto * cur_p = common_sampler_get_candidates(slot.smpl);
  2058. const size_t max_probs = cur_p->size;
  2059. // set probability for sampled token
  2060. for (size_t i = 0; i < max_probs; i++) {
  2061. if (cur_p->data[i].id == result.tok) {
  2062. result.prob = cur_p->data[i].p;
  2063. break;
  2064. }
  2065. }
  2066. // set probability for top n_probs tokens
  2067. result.probs.reserve(max_probs);
  2068. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2069. result.probs.push_back({
  2070. cur_p->data[i].id,
  2071. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2072. cur_p->data[i].p
  2073. });
  2074. }
  2075. } else {
  2076. // TODO: optimize this with min-p optimization
  2077. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2078. // set probability for sampled token
  2079. for (size_t i = 0; i < n_vocab; i++) {
  2080. // set probability for sampled token
  2081. if (cur[i].id == result.tok) {
  2082. result.prob = cur[i].p;
  2083. break;
  2084. }
  2085. }
  2086. // set probability for top n_probs tokens
  2087. result.probs.reserve(n_probs);
  2088. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2089. result.probs.push_back({
  2090. cur[i].id,
  2091. common_token_to_piece(ctx, cur[i].id, special),
  2092. cur[i].p
  2093. });
  2094. }
  2095. }
  2096. }
  2097. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2098. send_error(task.id, error, type);
  2099. }
  2100. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2101. send_error(slot.id_task, error, type);
  2102. }
  2103. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2104. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2105. auto res = std::make_unique<server_task_result_error>();
  2106. res->id = id_task;
  2107. res->err_type = type;
  2108. res->err_msg = error;
  2109. queue_results.send(std::move(res));
  2110. }
  2111. // if multimodal is enabled, send an error and return false
  2112. bool ensure_no_mtmd(const int id_task) {
  2113. if (mctx) {
  2114. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2115. return false;
  2116. }
  2117. return true;
  2118. }
  2119. void send_partial_response(server_slot & slot, const completion_token_output & tkn) {
  2120. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2121. res->id = slot.id_task;
  2122. res->index = slot.index;
  2123. res->content = tkn.text_to_send;
  2124. res->tokens = { tkn.tok };
  2125. res->n_decoded = slot.n_decoded;
  2126. res->n_prompt_tokens = slot.n_prompt_tokens;
  2127. res->post_sampling_probs = slot.params.post_sampling_probs;
  2128. res->verbose = slot.params.verbose;
  2129. res->oaicompat = slot.params.oaicompat;
  2130. res->oaicompat_model = slot.params.oaicompat_model;
  2131. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2132. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2133. // populate res.probs_output
  2134. if (slot.params.sampling.n_probs > 0) {
  2135. res->prob_output = tkn; // copy the token probs
  2136. }
  2137. // populate timings if this is final response or timings_per_token is enabled
  2138. if (slot.stop != STOP_TYPE_NONE || slot.params.timings_per_token) {
  2139. res->timings = slot.get_timings();
  2140. }
  2141. queue_results.send(std::move(res));
  2142. }
  2143. void send_final_response(server_slot & slot) {
  2144. auto res = std::make_unique<server_task_result_cmpl_final>();
  2145. res->id = slot.id_task;
  2146. res->id_slot = slot.id;
  2147. res->index = slot.index;
  2148. res->content = slot.generated_text;
  2149. res->tokens = std::move(slot.generated_tokens);
  2150. res->timings = slot.get_timings();
  2151. res->prompt = slot.prompt_tokens.detokenize(ctx, true);
  2152. res->response_fields = std::move(slot.params.response_fields);
  2153. res->truncated = slot.truncated;
  2154. res->n_decoded = slot.n_decoded;
  2155. res->n_prompt_tokens = slot.n_prompt_tokens;
  2156. res->n_tokens_cached = slot.n_past;
  2157. res->has_new_line = slot.has_new_line;
  2158. res->stopping_word = slot.stopping_word;
  2159. res->stop = slot.stop;
  2160. res->post_sampling_probs = slot.params.post_sampling_probs;
  2161. res->verbose = slot.params.verbose;
  2162. res->stream = slot.params.stream;
  2163. res->oaicompat = slot.params.oaicompat;
  2164. res->oaicompat_model = slot.params.oaicompat_model;
  2165. res->oaicompat_cmpl_id = slot.params.oaicompat_cmpl_id;
  2166. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2167. // populate res.probs_output
  2168. if (slot.params.sampling.n_probs > 0) {
  2169. if (!slot.params.stream && slot.stop == STOP_TYPE_WORD) {
  2170. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2171. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2172. res->probs_output = std::vector<completion_token_output>(
  2173. slot.generated_token_probs.begin(),
  2174. slot.generated_token_probs.end() - safe_offset);
  2175. } else {
  2176. res->probs_output = std::vector<completion_token_output>(
  2177. slot.generated_token_probs.begin(),
  2178. slot.generated_token_probs.end());
  2179. }
  2180. }
  2181. res->generation_params = slot.params; // copy the parameters
  2182. queue_results.send(std::move(res));
  2183. }
  2184. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2185. auto res = std::make_unique<server_task_result_embd>();
  2186. res->id = slot.id_task;
  2187. res->index = slot.index;
  2188. res->n_tokens = slot.n_prompt_tokens;
  2189. res->oaicompat = slot.params.oaicompat;
  2190. const int n_embd = llama_model_n_embd(model);
  2191. std::vector<float> embd_res(n_embd, 0.0f);
  2192. for (int i = 0; i < batch.n_tokens; ++i) {
  2193. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2194. continue;
  2195. }
  2196. const float * embd = nullptr;
  2197. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2198. embd = llama_get_embeddings_ith(ctx, i);
  2199. } else {
  2200. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2201. }
  2202. if (embd == nullptr) {
  2203. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2204. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2205. continue;
  2206. }
  2207. // normalize only when there is pooling
  2208. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2209. common_embd_normalize(embd, embd_res.data(), n_embd, slot.params.embd_normalize);
  2210. res->embedding.push_back(embd_res);
  2211. break;
  2212. } else {
  2213. res->embedding.emplace_back(embd, embd + n_embd);
  2214. }
  2215. }
  2216. SLT_DBG(slot, "%s", "sending embeddings\n");
  2217. queue_results.send(std::move(res));
  2218. }
  2219. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2220. auto res = std::make_unique<server_task_result_rerank>();
  2221. res->id = slot.id_task;
  2222. res->index = slot.index;
  2223. res->n_tokens = slot.n_prompt_tokens;
  2224. for (int i = 0; i < batch.n_tokens; ++i) {
  2225. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2226. continue;
  2227. }
  2228. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2229. if (embd == NULL) {
  2230. embd = llama_get_embeddings_ith(ctx, i);
  2231. }
  2232. if (embd == NULL) {
  2233. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2234. res->score = -1e6;
  2235. continue;
  2236. }
  2237. res->score = embd[0];
  2238. }
  2239. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2240. queue_results.send(std::move(res));
  2241. }
  2242. //
  2243. // Functions to create new task(s) and receive result(s)
  2244. //
  2245. void cancel_tasks(const std::unordered_set<int> & id_tasks) {
  2246. std::vector<server_task> cancel_tasks;
  2247. cancel_tasks.reserve(id_tasks.size());
  2248. for (const auto & id_task : id_tasks) {
  2249. SRV_WRN("cancel task, id_task = %d\n", id_task);
  2250. server_task task(SERVER_TASK_TYPE_CANCEL);
  2251. task.id_target = id_task;
  2252. queue_results.remove_waiting_task_id(id_task);
  2253. cancel_tasks.push_back(std::move(task));
  2254. }
  2255. // push to beginning of the queue, so it has highest priority
  2256. queue_tasks.post(std::move(cancel_tasks), true);
  2257. }
  2258. // receive the results from task(s)
  2259. void receive_multi_results(
  2260. const std::unordered_set<int> & id_tasks,
  2261. const std::function<void(std::vector<server_task_result_ptr>&)> & result_handler,
  2262. const std::function<void(json)> & error_handler,
  2263. const std::function<bool()> & is_connection_closed) {
  2264. std::vector<server_task_result_ptr> results(id_tasks.size());
  2265. for (int i = 0; i < (int)id_tasks.size(); i++) {
  2266. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2267. if (is_connection_closed()) {
  2268. cancel_tasks(id_tasks);
  2269. return;
  2270. }
  2271. if (result == nullptr) {
  2272. i--; // retry
  2273. continue;
  2274. }
  2275. if (result->is_error()) {
  2276. error_handler(result->to_json());
  2277. cancel_tasks(id_tasks);
  2278. return;
  2279. }
  2280. GGML_ASSERT(
  2281. dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2282. || dynamic_cast<server_task_result_embd*>(result.get()) != nullptr
  2283. || dynamic_cast<server_task_result_rerank*>(result.get()) != nullptr
  2284. );
  2285. const size_t idx = result->get_index();
  2286. GGML_ASSERT(idx < results.size() && "index out of range");
  2287. results[idx] = std::move(result);
  2288. }
  2289. result_handler(results);
  2290. }
  2291. // receive the results from task(s), in stream mode
  2292. void receive_cmpl_results_stream(
  2293. const std::unordered_set<int> & id_tasks,
  2294. const std::function<bool(server_task_result_ptr&)> & result_handler,
  2295. const std::function<void(json)> & error_handler,
  2296. const std::function<bool()> & is_connection_closed) {
  2297. size_t n_finished = 0;
  2298. while (true) {
  2299. server_task_result_ptr result = queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  2300. if (is_connection_closed()) {
  2301. cancel_tasks(id_tasks);
  2302. return;
  2303. }
  2304. if (result == nullptr) {
  2305. continue; // retry
  2306. }
  2307. if (result->is_error()) {
  2308. error_handler(result->to_json());
  2309. cancel_tasks(id_tasks);
  2310. return;
  2311. }
  2312. GGML_ASSERT(
  2313. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  2314. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  2315. );
  2316. if (!result_handler(result)) {
  2317. cancel_tasks(id_tasks);
  2318. break;
  2319. }
  2320. if (result->is_stop()) {
  2321. if (++n_finished == id_tasks.size()) {
  2322. break;
  2323. }
  2324. }
  2325. }
  2326. }
  2327. //
  2328. // Functions to process the task
  2329. //
  2330. void process_single_task(server_task && task) {
  2331. switch (task.type) {
  2332. case SERVER_TASK_TYPE_COMPLETION:
  2333. case SERVER_TASK_TYPE_INFILL:
  2334. case SERVER_TASK_TYPE_EMBEDDING:
  2335. case SERVER_TASK_TYPE_RERANK:
  2336. {
  2337. const int id_slot = task.id_selected_slot;
  2338. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2339. if (slot == nullptr) {
  2340. // if no slot is available, we defer this task for processing later
  2341. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2342. queue_tasks.defer(std::move(task));
  2343. break;
  2344. }
  2345. if (slot->is_processing()) {
  2346. // if requested slot is unavailable, we defer this task for processing later
  2347. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2348. queue_tasks.defer(std::move(task));
  2349. break;
  2350. }
  2351. if (!launch_slot_with_task(*slot, std::move(task))) {
  2352. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2353. break;
  2354. }
  2355. } break;
  2356. case SERVER_TASK_TYPE_CANCEL:
  2357. {
  2358. // release slot linked with the task id
  2359. for (auto & slot : slots) {
  2360. if (slot.id_task == task.id_target) {
  2361. slot.release();
  2362. break;
  2363. }
  2364. }
  2365. } break;
  2366. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2367. {
  2368. // do nothing
  2369. } break;
  2370. case SERVER_TASK_TYPE_METRICS:
  2371. {
  2372. json slots_data = json::array();
  2373. int n_idle_slots = 0;
  2374. int n_processing_slots = 0;
  2375. for (server_slot & slot : slots) {
  2376. json slot_data = slot.to_json();
  2377. if (slot.is_processing()) {
  2378. n_processing_slots++;
  2379. } else {
  2380. n_idle_slots++;
  2381. }
  2382. slots_data.push_back(slot_data);
  2383. }
  2384. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2385. auto res = std::make_unique<server_task_result_metrics>();
  2386. res->id = task.id;
  2387. res->slots_data = std::move(slots_data);
  2388. res->n_idle_slots = n_idle_slots;
  2389. res->n_processing_slots = n_processing_slots;
  2390. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2391. res->t_start = metrics.t_start;
  2392. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2393. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2394. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2395. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2396. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2397. res->t_prompt_processing = metrics.t_prompt_processing;
  2398. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2399. res->t_tokens_generation = metrics.t_tokens_generation;
  2400. res->n_decode_total = metrics.n_decode_total;
  2401. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2402. if (task.metrics_reset_bucket) {
  2403. metrics.reset_bucket();
  2404. }
  2405. queue_results.send(std::move(res));
  2406. } break;
  2407. case SERVER_TASK_TYPE_SLOT_SAVE:
  2408. {
  2409. if (!ensure_no_mtmd(task.id)) {
  2410. break;
  2411. }
  2412. int id_slot = task.slot_action.slot_id;
  2413. server_slot * slot = get_slot_by_id(id_slot);
  2414. if (slot == nullptr) {
  2415. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2416. break;
  2417. }
  2418. if (slot->is_processing()) {
  2419. // if requested slot is unavailable, we defer this task for processing later
  2420. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2421. queue_tasks.defer(std::move(task));
  2422. break;
  2423. }
  2424. const size_t token_count = slot->cache_tokens.size();
  2425. const int64_t t_start = ggml_time_us();
  2426. std::string filename = task.slot_action.filename;
  2427. std::string filepath = task.slot_action.filepath;
  2428. const llama_tokens & tokens = slot->cache_tokens.get_text_tokens();
  2429. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2430. const int64_t t_end = ggml_time_us();
  2431. const double t_save_ms = (t_end - t_start) / 1000.0;
  2432. auto res = std::make_unique<server_task_result_slot_save_load>();
  2433. res->id = task.id;
  2434. res->id_slot = id_slot;
  2435. res->filename = filename;
  2436. res->is_save = true;
  2437. res->n_tokens = token_count;
  2438. res->n_bytes = nwrite;
  2439. res->t_ms = t_save_ms;
  2440. queue_results.send(std::move(res));
  2441. } break;
  2442. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2443. {
  2444. if (!ensure_no_mtmd(task.id)) break;
  2445. int id_slot = task.slot_action.slot_id;
  2446. server_slot * slot = get_slot_by_id(id_slot);
  2447. if (slot == nullptr) {
  2448. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2449. break;
  2450. }
  2451. if (slot->is_processing()) {
  2452. // if requested slot is unavailable, we defer this task for processing later
  2453. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2454. queue_tasks.defer(std::move(task));
  2455. break;
  2456. }
  2457. const int64_t t_start = ggml_time_us();
  2458. std::string filename = task.slot_action.filename;
  2459. std::string filepath = task.slot_action.filepath;
  2460. llama_tokens tokens;
  2461. tokens.resize(slot->n_ctx);
  2462. size_t token_count = 0;
  2463. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2464. if (nread == 0) {
  2465. slot->cache_tokens.clear(); // KV may already been invalidated?
  2466. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2467. break;
  2468. }
  2469. tokens.resize(token_count);
  2470. slot->cache_tokens.clear();
  2471. slot->cache_tokens.insert(tokens);
  2472. const int64_t t_end = ggml_time_us();
  2473. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2474. auto res = std::make_unique<server_task_result_slot_save_load>();
  2475. res->id = task.id;
  2476. res->id_slot = id_slot;
  2477. res->filename = filename;
  2478. res->is_save = false;
  2479. res->n_tokens = token_count;
  2480. res->n_bytes = nread;
  2481. res->t_ms = t_restore_ms;
  2482. queue_results.send(std::move(res));
  2483. } break;
  2484. case SERVER_TASK_TYPE_SLOT_ERASE:
  2485. {
  2486. if (!ensure_no_mtmd(task.id)) break;
  2487. int id_slot = task.slot_action.slot_id;
  2488. server_slot * slot = get_slot_by_id(id_slot);
  2489. if (slot == nullptr) {
  2490. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2491. break;
  2492. }
  2493. if (slot->is_processing()) {
  2494. // if requested slot is unavailable, we defer this task for processing later
  2495. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2496. queue_tasks.defer(std::move(task));
  2497. break;
  2498. }
  2499. // Erase token cache
  2500. const size_t n_erased = slot->cache_tokens.size();
  2501. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2502. slot->cache_tokens.clear();
  2503. auto res = std::make_unique<server_task_result_slot_erase>();
  2504. res->id = task.id;
  2505. res->id_slot = id_slot;
  2506. res->n_erased = n_erased;
  2507. queue_results.send(std::move(res));
  2508. } break;
  2509. case SERVER_TASK_TYPE_SET_LORA:
  2510. {
  2511. params_base.lora_adapters = std::move(task.set_lora);
  2512. auto res = std::make_unique<server_task_result_apply_lora>();
  2513. res->id = task.id;
  2514. queue_results.send(std::move(res));
  2515. } break;
  2516. }
  2517. }
  2518. void update_slots() {
  2519. // check if all slots are idle
  2520. {
  2521. bool all_idle = true;
  2522. for (auto & slot : slots) {
  2523. if (slot.is_processing()) {
  2524. all_idle = false;
  2525. break;
  2526. }
  2527. }
  2528. if (all_idle) {
  2529. SRV_INF("%s", "all slots are idle\n");
  2530. if (clean_kv_cache) {
  2531. kv_cache_clear();
  2532. }
  2533. return;
  2534. }
  2535. }
  2536. {
  2537. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2538. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2539. task.id = queue_tasks.get_new_id();
  2540. queue_tasks.post(std::move(task));
  2541. }
  2542. // apply context-shift if needed
  2543. // TODO: simplify and improve
  2544. for (server_slot & slot : slots) {
  2545. if (slot.is_processing() && slot.n_past + 1 >= slot.n_ctx) {
  2546. if (!params_base.ctx_shift) {
  2547. // this check is redundant (for good)
  2548. // we should never get here, because generation should already stopped in process_token()
  2549. slot.release();
  2550. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2551. continue;
  2552. }
  2553. if (mctx) {
  2554. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2555. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2556. GGML_ABORT("not supported by multimodal");
  2557. }
  2558. // Shift context
  2559. const int n_keep = slot.params.n_keep + add_bos_token;
  2560. const int n_left = slot.n_past - n_keep;
  2561. const int n_discard = slot.params.n_discard ? slot.params.n_discard : (n_left / 2);
  2562. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2563. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2564. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.n_past, -n_discard);
  2565. // add generated tokens to cache
  2566. {
  2567. llama_tokens new_tokens = slot.cache_tokens.get_text_tokens(); // copy
  2568. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2569. new_tokens[i - n_discard] = new_tokens[i];
  2570. }
  2571. new_tokens.resize(slot.cache_tokens.size() - n_discard);
  2572. slot.cache_tokens.clear();
  2573. slot.cache_tokens.insert(new_tokens);
  2574. }
  2575. slot.n_past -= n_discard;
  2576. slot.truncated = true;
  2577. }
  2578. }
  2579. // start populating the batch for this iteration
  2580. common_batch_clear(batch);
  2581. // track if given slot can be batched with slots already in the batch
  2582. server_slot * slot_batched = nullptr;
  2583. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2584. return params_base.special || slot.params.sampling.preserved_tokens.find(token) != slot.params.sampling.preserved_tokens.end();
  2585. };
  2586. // frist, add sampled tokens from any ongoing sequences
  2587. for (auto & slot : slots) {
  2588. if (slot.state != SLOT_STATE_GENERATING) {
  2589. continue;
  2590. }
  2591. // check if we can batch this slot with the previous one
  2592. if (!slot_batched) {
  2593. slot_batched = &slot;
  2594. } else if (!slot_batched->can_batch_with(slot)) {
  2595. continue;
  2596. }
  2597. slot.i_batch = batch.n_tokens;
  2598. common_batch_add(batch, slot.sampled, slot.n_past, { slot.id }, true);
  2599. slot.n_past += 1;
  2600. slot.cache_tokens.push_back(slot.sampled);
  2601. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_past = %d, n_cache_tokens = %d, truncated = %d\n",
  2602. slot.n_ctx, slot.n_past, (int) slot.cache_tokens.size(), slot.truncated);
  2603. }
  2604. // process in chunks of params.n_batch
  2605. int32_t n_batch = llama_n_batch(ctx);
  2606. int32_t n_ubatch = llama_n_ubatch(ctx);
  2607. // next, batch any pending prompts without exceeding n_batch
  2608. if (params_base.cont_batching || batch.n_tokens == 0) {
  2609. for (auto & slot : slots) {
  2610. // check if we can batch this slot with the previous one
  2611. if (slot.is_processing()) {
  2612. if (!slot_batched) {
  2613. slot_batched = &slot;
  2614. } else if (!slot_batched->can_batch_with(slot)) {
  2615. continue;
  2616. }
  2617. }
  2618. // this slot still has a prompt to be processed
  2619. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2620. auto & prompt_tokens = slot.prompt_tokens;
  2621. // TODO: maybe move branch to outside of this loop in the future
  2622. if (slot.state == SLOT_STATE_STARTED) {
  2623. slot.t_start_process_prompt = ggml_time_us();
  2624. slot.t_start_generation = 0;
  2625. slot.n_past = 0;
  2626. slot.n_prompt_tokens = prompt_tokens.size();
  2627. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2628. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, slot.n_prompt_tokens);
  2629. // print prompt tokens (for debugging)
  2630. /*if (1) {
  2631. // first 16 tokens (avoid flooding logs)
  2632. for (int i = 0; i < std::min<int>(16, prompt_tokens.size()); i++) {
  2633. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2634. }
  2635. } else {
  2636. // all
  2637. for (int i = 0; i < (int) prompt_tokens.size(); i++) {
  2638. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2639. }
  2640. }*/
  2641. // empty prompt passed -> release the slot and send empty response
  2642. if (prompt_tokens.empty()) {
  2643. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2644. slot.release();
  2645. slot.print_timings();
  2646. send_final_response(slot);
  2647. continue;
  2648. }
  2649. // TODO: support memory-less logits computation
  2650. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2651. slot.release();
  2652. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2653. continue;
  2654. }
  2655. if (!slot.can_split()) {
  2656. if (slot.n_prompt_tokens > n_ubatch) {
  2657. slot.release();
  2658. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  2659. continue;
  2660. }
  2661. if (slot.n_prompt_tokens > slot.n_ctx) {
  2662. slot.release();
  2663. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_SERVER);
  2664. continue;
  2665. }
  2666. } else {
  2667. if (!params_base.ctx_shift) {
  2668. // if context shift is disabled, we make sure prompt size is smaller than KV size
  2669. // TODO: there should be a separate parameter that control prompt truncation
  2670. // context shift should be applied only during the generation phase
  2671. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2672. slot.release();
  2673. send_error(slot, "the request exceeds the available context size. try increasing the context size or enable context shift", ERROR_TYPE_INVALID_REQUEST);
  2674. continue;
  2675. }
  2676. }
  2677. if (slot.params.n_keep < 0) {
  2678. slot.params.n_keep = slot.n_prompt_tokens;
  2679. }
  2680. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  2681. // if input prompt is too big, truncate it
  2682. if (slot.n_prompt_tokens >= slot.n_ctx) {
  2683. if (mctx) {
  2684. // we should never reach this
  2685. GGML_ABORT("not supported by multimodal");
  2686. }
  2687. const int n_left = slot.n_ctx - slot.params.n_keep;
  2688. const int n_block_size = n_left / 2;
  2689. const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  2690. const llama_tokens & curr_tokens = slot.prompt_tokens.get_text_tokens();
  2691. llama_tokens new_tokens(
  2692. curr_tokens.begin(),
  2693. curr_tokens.begin() + slot.params.n_keep);
  2694. new_tokens.insert(
  2695. new_tokens.end(),
  2696. curr_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
  2697. curr_tokens.end());
  2698. prompt_tokens.clear();
  2699. prompt_tokens.insert(new_tokens);
  2700. slot.truncated = true;
  2701. slot.n_prompt_tokens = prompt_tokens.size();
  2702. SLT_WRN(slot, "input truncated, n_ctx = %d, n_keep = %d, n_left = %d, n_prompt_tokens = %d\n", slot.n_ctx, slot.params.n_keep, n_left, slot.n_prompt_tokens);
  2703. GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
  2704. }
  2705. if (slot.params.cache_prompt) {
  2706. // reuse any previously computed tokens that are common with the new prompt
  2707. slot.n_past = slot.cache_tokens.get_common_prefix(prompt_tokens);
  2708. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  2709. if (params_base.n_cache_reuse > 0) {
  2710. size_t head_c = slot.n_past; // cache
  2711. size_t head_p = slot.n_past; // current prompt
  2712. if (mctx) {
  2713. // we should never reach this
  2714. GGML_ABORT("not supported by multimodal");
  2715. }
  2716. SLT_DBG(slot, "trying to reuse chunks with size > %d, slot.n_past = %d\n", params_base.n_cache_reuse, slot.n_past);
  2717. while (head_c < slot.cache_tokens.size() &&
  2718. head_p < prompt_tokens.size()) {
  2719. size_t n_match = 0;
  2720. while (head_c + n_match < slot.cache_tokens.size() &&
  2721. head_p + n_match < prompt_tokens.size() &&
  2722. slot.cache_tokens[head_c + n_match] == prompt_tokens[head_p + n_match]) {
  2723. n_match++;
  2724. }
  2725. if (n_match >= (size_t) params_base.n_cache_reuse) {
  2726. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  2727. //for (size_t i = head_p; i < head_p + n_match; i++) {
  2728. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  2729. //}
  2730. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  2731. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  2732. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  2733. for (size_t i = 0; i < n_match; i++) {
  2734. slot.cache_tokens.set_token(head_p + i, slot.cache_tokens[head_c + i]);
  2735. slot.n_past++;
  2736. }
  2737. head_c += n_match;
  2738. head_p += n_match;
  2739. } else {
  2740. head_c += 1;
  2741. }
  2742. }
  2743. SLT_DBG(slot, "after context reuse, new slot.n_past = %d\n", slot.n_past);
  2744. }
  2745. } else {
  2746. // if we don't cache the prompt, we have to remove the entire KV cache
  2747. slot.n_past = 0;
  2748. }
  2749. if (slot.n_past > 0 && slot.n_past < (int) slot.cache_tokens.size()) {
  2750. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  2751. if (pos_min == -1) {
  2752. SLT_ERR(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min);
  2753. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  2754. }
  2755. const auto n_swa = llama_model_n_swa(model);
  2756. if (pos_min > std::max(0, slot.n_past - n_swa)) {
  2757. SLT_WRN(slot, "n_past = %d, cache_tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", slot.n_past, (int) slot.cache_tokens.size(), slot.id, pos_min, n_swa);
  2758. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA, see %s)\n",
  2759. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  2760. slot.n_past = 0;
  2761. }
  2762. }
  2763. }
  2764. if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0) {
  2765. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot, n_past = %d, n_prompt_tokens = %d\n", slot.n_past, slot.n_prompt_tokens);
  2766. slot.n_past--;
  2767. }
  2768. slot.n_prompt_tokens_processed = 0;
  2769. }
  2770. if (!slot.can_split()) {
  2771. // cannot fit the prompt in the current batch - will try next iter
  2772. if (batch.n_tokens + slot.n_prompt_tokens > n_batch) {
  2773. continue;
  2774. }
  2775. }
  2776. // keep only the common part
  2777. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1)) {
  2778. // could not partially delete (likely using a non-Transformer model)
  2779. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2780. // there is no common part left
  2781. slot.n_past = 0;
  2782. }
  2783. SLT_INF(slot, "kv cache rm [%d, end)\n", slot.n_past);
  2784. // remove the non-common part from the cache
  2785. slot.cache_tokens.keep_first(slot.n_past);
  2786. // check if we should process the image
  2787. if (slot.n_past < slot.n_prompt_tokens && slot.prompt_tokens[slot.n_past] == LLAMA_TOKEN_NULL) {
  2788. // process the image
  2789. int32_t new_n_past;
  2790. int32_t res = slot.prompt_tokens.process_chunk(ctx, mctx, slot.n_past, slot.id, new_n_past);
  2791. int32_t n_pos = new_n_past - slot.n_past;
  2792. if (res != 0) {
  2793. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  2794. slot.release();
  2795. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  2796. continue;
  2797. }
  2798. // add the image chunk to cache
  2799. {
  2800. const auto & chunk = slot.prompt_tokens.find_chunk(slot.n_past);
  2801. slot.cache_tokens.push_back(chunk.get()); // copy
  2802. }
  2803. slot.n_past += n_pos;
  2804. slot.n_prompt_tokens_processed += n_pos;
  2805. }
  2806. // add prompt tokens for processing in the current batch
  2807. while (slot.n_past < slot.n_prompt_tokens && batch.n_tokens < n_batch) {
  2808. // get next token to process
  2809. llama_token cur_tok = slot.prompt_tokens[slot.n_past];
  2810. if (cur_tok == LLAMA_TOKEN_NULL) {
  2811. break; // end of text chunk
  2812. }
  2813. // embedding requires all tokens in the batch to be output
  2814. const bool need_embd = server_task_type_need_embd(slot.task_type);
  2815. common_batch_add(batch, cur_tok, slot.n_past, { slot.id }, need_embd);
  2816. slot.cache_tokens.push_back(cur_tok);
  2817. slot.n_prompt_tokens_processed++;
  2818. slot.n_past++;
  2819. }
  2820. // SLT_INF(slot, "new cache_tokens: %s\n", slot.cache_tokens.str().c_str());
  2821. SLT_INF(slot, "prompt processing progress, n_past = %d, n_tokens = %d, progress = %f\n", slot.n_past, batch.n_tokens, (float) slot.n_prompt_tokens_processed / slot.n_prompt_tokens);
  2822. // entire prompt has been processed
  2823. if (slot.n_past == slot.n_prompt_tokens) {
  2824. slot.state = SLOT_STATE_DONE_PROMPT;
  2825. GGML_ASSERT(batch.n_tokens > 0);
  2826. GGML_ASSERT((size_t) slot.n_prompt_tokens == slot.prompt_tokens.size());
  2827. common_sampler_reset(slot.smpl);
  2828. // Process all prompt tokens through sampler system
  2829. for (int i = 0; i < slot.n_prompt_tokens; ++i) {
  2830. llama_token id = slot.prompt_tokens[i];
  2831. if (id != LLAMA_TOKEN_NULL) {
  2832. common_sampler_accept(slot.smpl, id, false);
  2833. }
  2834. }
  2835. // extract the logits only for the last token
  2836. batch.logits[batch.n_tokens - 1] = true;
  2837. slot.n_decoded = 0;
  2838. slot.i_batch = batch.n_tokens - 1;
  2839. SLT_INF(slot, "prompt done, n_past = %d, n_tokens = %d\n", slot.n_past, batch.n_tokens);
  2840. }
  2841. }
  2842. if (batch.n_tokens >= n_batch) {
  2843. break;
  2844. }
  2845. }
  2846. }
  2847. if (batch.n_tokens == 0) {
  2848. SRV_WRN("%s", "no tokens to decode\n");
  2849. return;
  2850. }
  2851. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  2852. if (slot_batched) {
  2853. // apply lora, only need to do it once per batch
  2854. common_set_adapter_lora(ctx, slot_batched->lora);
  2855. llama_set_embeddings(ctx, slot_batched->need_embd());
  2856. }
  2857. int32_t i_next = 0;
  2858. // process the created batch of tokens
  2859. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  2860. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  2861. llama_batch batch_view = {
  2862. n_tokens,
  2863. batch.token + i,
  2864. nullptr,
  2865. batch.pos + i,
  2866. batch.n_seq_id + i,
  2867. batch.seq_id + i,
  2868. batch.logits + i,
  2869. };
  2870. const int ret = llama_decode(ctx, batch_view);
  2871. metrics.on_decoded(slots);
  2872. if (ret != 0) {
  2873. {
  2874. std::string err;
  2875. if (n_batch == 1 && ret == 1) {
  2876. err = "Context size has been exceeded.";
  2877. }
  2878. if (ret == -1) {
  2879. err = "Invalid input batch.";
  2880. }
  2881. if (ret < -1) {
  2882. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  2883. err = "Compute error.";
  2884. }
  2885. // TODO: handle ret == 2 (abort) when we start aborting
  2886. if (!err.empty()) {
  2887. SRV_ERR("%s, i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  2888. for (auto & slot : slots) {
  2889. slot.release();
  2890. send_error(slot, err);
  2891. }
  2892. break;
  2893. }
  2894. }
  2895. // retry with half the batch size to try to find a free slot in the KV cache
  2896. n_batch /= 2;
  2897. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  2898. continue; // continue loop of n_batch
  2899. }
  2900. // move the head of the batch forward with the number of tokens we just processed
  2901. i_next = i + n_tokens;
  2902. // on successful decode, restore the original batch size
  2903. n_batch = llama_n_batch(ctx);
  2904. for (auto & slot : slots) {
  2905. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  2906. continue; // continue loop of slots
  2907. }
  2908. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  2909. if (slot.task_type == SERVER_TASK_TYPE_EMBEDDING) {
  2910. // prompt evaluated for embedding
  2911. send_embedding(slot, batch_view);
  2912. slot.release();
  2913. slot.i_batch = -1;
  2914. continue; // continue loop of slots
  2915. }
  2916. if (slot.task_type == SERVER_TASK_TYPE_RERANK) {
  2917. send_rerank(slot, batch_view);
  2918. slot.release();
  2919. slot.i_batch = -1;
  2920. continue; // continue loop of slots
  2921. }
  2922. // prompt evaluated for next-token prediction
  2923. slot.state = SLOT_STATE_GENERATING;
  2924. } else if (slot.state != SLOT_STATE_GENERATING) {
  2925. continue; // continue loop of slots
  2926. }
  2927. const int tok_idx = slot.i_batch - i;
  2928. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  2929. slot.i_batch = -1;
  2930. common_sampler_accept(slot.smpl, id, true);
  2931. slot.n_decoded += 1;
  2932. const int64_t t_current = ggml_time_us();
  2933. if (slot.n_decoded == 1) {
  2934. slot.t_start_generation = t_current;
  2935. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  2936. metrics.on_prompt_eval(slot);
  2937. }
  2938. slot.t_token_generation = (t_current - slot.t_start_generation) / 1e3;
  2939. completion_token_output result;
  2940. result.tok = id;
  2941. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  2942. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  2943. if (slot.params.sampling.n_probs > 0) {
  2944. populate_token_probs(slot, result, slot.params.post_sampling_probs, params_base.special, tok_idx);
  2945. }
  2946. if (!process_token(result, slot)) {
  2947. // release slot because of stop condition
  2948. slot.release();
  2949. slot.print_timings();
  2950. send_final_response(slot);
  2951. metrics.on_prediction(slot);
  2952. continue;
  2953. }
  2954. }
  2955. // do speculative decoding
  2956. for (auto & slot : slots) {
  2957. if (!slot.is_processing() || !slot.can_speculate()) {
  2958. continue;
  2959. }
  2960. if (slot.state != SLOT_STATE_GENERATING) {
  2961. continue;
  2962. }
  2963. if (mctx) {
  2964. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  2965. GGML_ABORT("not supported by multimodal");
  2966. }
  2967. // determine the max draft that fits the current slot state
  2968. int n_draft_max = slot.params.speculative.n_max;
  2969. // note: n_past is not yet increased for the `id` token sampled above
  2970. // also, need to leave space for 1 extra token to allow context shifts
  2971. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.n_past - 2);
  2972. if (slot.n_remaining > 0) {
  2973. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  2974. }
  2975. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  2976. if (n_draft_max < slot.params.speculative.n_min) {
  2977. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.params.speculative.n_min);
  2978. continue;
  2979. }
  2980. llama_token id = slot.sampled;
  2981. struct common_speculative_params params_spec;
  2982. params_spec.n_draft = n_draft_max;
  2983. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.params.speculative.n_max;
  2984. params_spec.p_min = slot.params.speculative.p_min;
  2985. const llama_tokens & cached_text_tokens = slot.cache_tokens.get_text_tokens();
  2986. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  2987. // ignore small drafts
  2988. if (slot.params.speculative.n_min > (int) draft.size()) {
  2989. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.params.speculative.n_min);
  2990. continue;
  2991. }
  2992. // keep track of total number of drafted tokens tested
  2993. slot.n_draft_total += draft.size();
  2994. // construct the speculation batch
  2995. common_batch_clear(slot.batch_spec);
  2996. common_batch_add (slot.batch_spec, id, slot.n_past, { slot.id }, true);
  2997. for (size_t i = 0; i < draft.size(); ++i) {
  2998. common_batch_add(slot.batch_spec, draft[i], slot.n_past + 1 + i, { slot.id }, true);
  2999. }
  3000. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3001. llama_decode(ctx, slot.batch_spec);
  3002. // the accepted tokens from the speculation
  3003. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3004. slot.n_past += ids.size();
  3005. slot.n_decoded += ids.size();
  3006. // update how many tokens out of those tested were accepted
  3007. slot.n_draft_accepted += ids.size() - 1;
  3008. slot.cache_tokens.push_back(id);
  3009. slot.cache_tokens.insert({ids.begin(), ids.end() - 1});
  3010. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.n_past, -1);
  3011. for (size_t i = 0; i < ids.size(); ++i) {
  3012. completion_token_output result;
  3013. result.tok = ids[i];
  3014. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3015. result.prob = 1.0f; // set later
  3016. // TODO: set result.probs
  3017. if (!process_token(result, slot)) {
  3018. // release slot because of stop condition
  3019. slot.release();
  3020. slot.print_timings();
  3021. send_final_response(slot);
  3022. metrics.on_prediction(slot);
  3023. break;
  3024. }
  3025. }
  3026. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_past = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.n_past);
  3027. }
  3028. }
  3029. SRV_DBG("%s", "run slots completed\n");
  3030. }
  3031. json model_meta() const {
  3032. return json {
  3033. {"vocab_type", llama_vocab_type (vocab)},
  3034. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3035. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3036. {"n_embd", llama_model_n_embd (model)},
  3037. {"n_params", llama_model_n_params (model)},
  3038. {"size", llama_model_size (model)},
  3039. };
  3040. }
  3041. };
  3042. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3043. // skip GH copilot requests when using default port
  3044. if (req.path == "/v1/health" || req.path == "/v1/completions") {
  3045. return;
  3046. }
  3047. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3048. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3049. SRV_DBG("request: %s\n", req.body.c_str());
  3050. SRV_DBG("response: %s\n", res.body.c_str());
  3051. }
  3052. std::function<void(int)> shutdown_handler;
  3053. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3054. inline void signal_handler(int signal) {
  3055. if (is_terminating.test_and_set()) {
  3056. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3057. // this is for better developer experience, we can remove when the server is stable enough
  3058. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3059. exit(1);
  3060. }
  3061. shutdown_handler(signal);
  3062. }
  3063. int main(int argc, char ** argv) {
  3064. // own arguments required by this example
  3065. common_params params;
  3066. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3067. return 1;
  3068. }
  3069. common_init();
  3070. // struct that contains llama context and inference
  3071. server_context ctx_server;
  3072. llama_backend_init();
  3073. llama_numa_init(params.numa);
  3074. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3075. LOG_INF("\n");
  3076. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3077. LOG_INF("\n");
  3078. std::unique_ptr<httplib::Server> svr;
  3079. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3080. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3081. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3082. svr.reset(
  3083. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3084. );
  3085. } else {
  3086. LOG_INF("Running without SSL\n");
  3087. svr.reset(new httplib::Server());
  3088. }
  3089. #else
  3090. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3091. LOG_ERR("Server is built without SSL support\n");
  3092. return 1;
  3093. }
  3094. svr.reset(new httplib::Server());
  3095. #endif
  3096. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3097. svr->set_default_headers({{"Server", "llama.cpp"}});
  3098. svr->set_logger(log_server_request);
  3099. auto res_error = [](httplib::Response & res, const json & error_data) {
  3100. json final_response {{"error", error_data}};
  3101. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3102. res.status = json_value(error_data, "code", 500);
  3103. };
  3104. auto res_ok = [](httplib::Response & res, const json & data) {
  3105. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3106. res.status = 200;
  3107. };
  3108. svr->set_exception_handler([&res_error](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3109. std::string message;
  3110. try {
  3111. std::rethrow_exception(ep);
  3112. } catch (const std::exception & e) {
  3113. message = e.what();
  3114. } catch (...) {
  3115. message = "Unknown Exception";
  3116. }
  3117. try {
  3118. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3119. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3120. res_error(res, formatted_error);
  3121. } catch (const std::exception & e) {
  3122. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3123. }
  3124. });
  3125. svr->set_error_handler([&res_error](const httplib::Request &, httplib::Response & res) {
  3126. if (res.status == 404) {
  3127. res_error(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3128. }
  3129. // for other error codes, we skip processing here because it's already done by res_error()
  3130. });
  3131. // set timeouts and change hostname and port
  3132. svr->set_read_timeout (params.timeout_read);
  3133. svr->set_write_timeout(params.timeout_write);
  3134. std::unordered_map<std::string, std::string> log_data;
  3135. log_data["hostname"] = params.hostname;
  3136. log_data["port"] = std::to_string(params.port);
  3137. if (params.api_keys.size() == 1) {
  3138. auto key = params.api_keys[0];
  3139. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3140. } else if (params.api_keys.size() > 1) {
  3141. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3142. }
  3143. // Necessary similarity of prompt for slot selection
  3144. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3145. //
  3146. // Middlewares
  3147. //
  3148. auto middleware_validate_api_key = [&params, &res_error](const httplib::Request & req, httplib::Response & res) {
  3149. static const std::unordered_set<std::string> public_endpoints = {
  3150. "/health",
  3151. "/models",
  3152. "/v1/models",
  3153. "/api/tags"
  3154. };
  3155. // If API key is not set, skip validation
  3156. if (params.api_keys.empty()) {
  3157. return true;
  3158. }
  3159. // If path is public or is static file, skip validation
  3160. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3161. return true;
  3162. }
  3163. // Check for API key in the header
  3164. auto auth_header = req.get_header_value("Authorization");
  3165. std::string prefix = "Bearer ";
  3166. if (auth_header.substr(0, prefix.size()) == prefix) {
  3167. std::string received_api_key = auth_header.substr(prefix.size());
  3168. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3169. return true; // API key is valid
  3170. }
  3171. }
  3172. // API key is invalid or not provided
  3173. res_error(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3174. LOG_WRN("Unauthorized: Invalid API Key\n");
  3175. return false;
  3176. };
  3177. auto middleware_server_state = [&res_error, &state](const httplib::Request & req, httplib::Response & res) {
  3178. server_state current_state = state.load();
  3179. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3180. auto tmp = string_split<std::string>(req.path, '.');
  3181. if (req.path == "/" || tmp.back() == "html") {
  3182. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3183. res.status = 503;
  3184. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3185. // allow the models endpoint to be accessed during loading
  3186. return true;
  3187. } else {
  3188. res_error(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3189. }
  3190. return false;
  3191. }
  3192. return true;
  3193. };
  3194. // register server middlewares
  3195. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3196. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3197. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3198. if (req.method == "OPTIONS") {
  3199. res.set_header("Access-Control-Allow-Credentials", "true");
  3200. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3201. res.set_header("Access-Control-Allow-Headers", "*");
  3202. res.set_content("", "text/html"); // blank response, no data
  3203. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3204. }
  3205. if (!middleware_server_state(req, res)) {
  3206. return httplib::Server::HandlerResponse::Handled;
  3207. }
  3208. if (!middleware_validate_api_key(req, res)) {
  3209. return httplib::Server::HandlerResponse::Handled;
  3210. }
  3211. return httplib::Server::HandlerResponse::Unhandled;
  3212. });
  3213. //
  3214. // Route handlers (or controllers)
  3215. //
  3216. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3217. // error and loading states are handled by middleware
  3218. json health = {{"status", "ok"}};
  3219. res_ok(res, health);
  3220. };
  3221. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3222. if (!params.endpoint_slots) {
  3223. res_error(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3224. return;
  3225. }
  3226. // request slots data using task queue
  3227. int task_id = ctx_server.queue_tasks.get_new_id();
  3228. {
  3229. server_task task(SERVER_TASK_TYPE_METRICS);
  3230. task.id = task_id;
  3231. ctx_server.queue_results.add_waiting_task_id(task_id);
  3232. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3233. }
  3234. // get the result
  3235. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3236. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3237. if (result->is_error()) {
  3238. res_error(res, result->to_json());
  3239. return;
  3240. }
  3241. // TODO: get rid of this dynamic_cast
  3242. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3243. GGML_ASSERT(res_metrics != nullptr);
  3244. // optionally return "fail_on_no_slot" error
  3245. if (req.has_param("fail_on_no_slot")) {
  3246. if (res_metrics->n_idle_slots == 0) {
  3247. res_error(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3248. return;
  3249. }
  3250. }
  3251. res_ok(res, res_metrics->slots_data);
  3252. };
  3253. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3254. if (!params.endpoint_metrics) {
  3255. res_error(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3256. return;
  3257. }
  3258. // request slots data using task queue
  3259. int task_id = ctx_server.queue_tasks.get_new_id();
  3260. {
  3261. server_task task(SERVER_TASK_TYPE_METRICS);
  3262. task.id = task_id;
  3263. ctx_server.queue_results.add_waiting_task_id(task_id);
  3264. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3265. }
  3266. // get the result
  3267. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3268. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3269. if (result->is_error()) {
  3270. res_error(res, result->to_json());
  3271. return;
  3272. }
  3273. // TODO: get rid of this dynamic_cast
  3274. auto res_metrics = dynamic_cast<server_task_result_metrics*>(result.get());
  3275. GGML_ASSERT(res_metrics != nullptr);
  3276. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3277. json all_metrics_def = json {
  3278. {"counter", {{
  3279. {"name", "prompt_tokens_total"},
  3280. {"help", "Number of prompt tokens processed."},
  3281. {"value", (uint64_t) res_metrics->n_prompt_tokens_processed_total}
  3282. }, {
  3283. {"name", "prompt_seconds_total"},
  3284. {"help", "Prompt process time"},
  3285. {"value", (uint64_t) res_metrics->t_prompt_processing_total / 1.e3}
  3286. }, {
  3287. {"name", "tokens_predicted_total"},
  3288. {"help", "Number of generation tokens processed."},
  3289. {"value", (uint64_t) res_metrics->n_tokens_predicted_total}
  3290. }, {
  3291. {"name", "tokens_predicted_seconds_total"},
  3292. {"help", "Predict process time"},
  3293. {"value", (uint64_t) res_metrics->t_tokens_generation_total / 1.e3}
  3294. }, {
  3295. {"name", "n_decode_total"},
  3296. {"help", "Total number of llama_decode() calls"},
  3297. {"value", res_metrics->n_decode_total}
  3298. }, {
  3299. {"name", "n_busy_slots_per_decode"},
  3300. {"help", "Average number of busy slots per llama_decode() call"},
  3301. {"value", (float) res_metrics->n_busy_slots_total / std::max((float) res_metrics->n_decode_total, 1.f)}
  3302. }}},
  3303. {"gauge", {{
  3304. {"name", "prompt_tokens_seconds"},
  3305. {"help", "Average prompt throughput in tokens/s."},
  3306. {"value", res_metrics->n_prompt_tokens_processed ? 1.e3 / res_metrics->t_prompt_processing * res_metrics->n_prompt_tokens_processed : 0.}
  3307. },{
  3308. {"name", "predicted_tokens_seconds"},
  3309. {"help", "Average generation throughput in tokens/s."},
  3310. {"value", res_metrics->n_tokens_predicted ? 1.e3 / res_metrics->t_tokens_generation * res_metrics->n_tokens_predicted : 0.}
  3311. },{
  3312. {"name", "requests_processing"},
  3313. {"help", "Number of requests processing."},
  3314. {"value", (uint64_t) res_metrics->n_processing_slots}
  3315. },{
  3316. {"name", "requests_deferred"},
  3317. {"help", "Number of requests deferred."},
  3318. {"value", (uint64_t) res_metrics->n_tasks_deferred}
  3319. }}}
  3320. };
  3321. std::stringstream prometheus;
  3322. for (const auto & el : all_metrics_def.items()) {
  3323. const auto & type = el.key();
  3324. const auto & metrics_def = el.value();
  3325. for (const auto & metric_def : metrics_def) {
  3326. const std::string name = metric_def.at("name");
  3327. const std::string help = metric_def.at("help");
  3328. auto value = json_value(metric_def, "value", 0.);
  3329. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3330. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3331. << "llamacpp:" << name << " " << value << "\n";
  3332. }
  3333. }
  3334. res.set_header("Process-Start-Time-Unix", std::to_string(res_metrics->t_start));
  3335. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3336. res.status = 200; // HTTP OK
  3337. };
  3338. const auto handle_slots_save = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3339. json request_data = json::parse(req.body);
  3340. std::string filename = request_data.at("filename");
  3341. if (!fs_validate_filename(filename)) {
  3342. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3343. return;
  3344. }
  3345. std::string filepath = params.slot_save_path + filename;
  3346. int task_id = ctx_server.queue_tasks.get_new_id();
  3347. {
  3348. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3349. task.id = task_id;
  3350. task.slot_action.slot_id = id_slot;
  3351. task.slot_action.filename = filename;
  3352. task.slot_action.filepath = filepath;
  3353. ctx_server.queue_results.add_waiting_task_id(task_id);
  3354. ctx_server.queue_tasks.post(std::move(task));
  3355. }
  3356. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3357. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3358. if (result->is_error()) {
  3359. res_error(res, result->to_json());
  3360. return;
  3361. }
  3362. res_ok(res, result->to_json());
  3363. };
  3364. const auto handle_slots_restore = [&ctx_server, &res_error, &res_ok, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3365. json request_data = json::parse(req.body);
  3366. std::string filename = request_data.at("filename");
  3367. if (!fs_validate_filename(filename)) {
  3368. res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3369. return;
  3370. }
  3371. std::string filepath = params.slot_save_path + filename;
  3372. int task_id = ctx_server.queue_tasks.get_new_id();
  3373. {
  3374. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3375. task.id = task_id;
  3376. task.slot_action.slot_id = id_slot;
  3377. task.slot_action.filename = filename;
  3378. task.slot_action.filepath = filepath;
  3379. ctx_server.queue_results.add_waiting_task_id(task_id);
  3380. ctx_server.queue_tasks.post(std::move(task));
  3381. }
  3382. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3383. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3384. if (result->is_error()) {
  3385. res_error(res, result->to_json());
  3386. return;
  3387. }
  3388. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3389. res_ok(res, result->to_json());
  3390. };
  3391. const auto handle_slots_erase = [&ctx_server, &res_error, &res_ok](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3392. int task_id = ctx_server.queue_tasks.get_new_id();
  3393. {
  3394. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3395. task.id = task_id;
  3396. task.slot_action.slot_id = id_slot;
  3397. ctx_server.queue_results.add_waiting_task_id(task_id);
  3398. ctx_server.queue_tasks.post(std::move(task));
  3399. }
  3400. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3401. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3402. if (result->is_error()) {
  3403. res_error(res, result->to_json());
  3404. return;
  3405. }
  3406. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3407. res_ok(res, result->to_json());
  3408. };
  3409. const auto handle_slots_action = [&params, &res_error, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3410. if (params.slot_save_path.empty()) {
  3411. res_error(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3412. return;
  3413. }
  3414. std::string id_slot_str = req.path_params.at("id_slot");
  3415. int id_slot;
  3416. try {
  3417. id_slot = std::stoi(id_slot_str);
  3418. } catch (const std::exception &) {
  3419. res_error(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  3420. return;
  3421. }
  3422. std::string action = req.get_param_value("action");
  3423. if (action == "save") {
  3424. handle_slots_save(req, res, id_slot);
  3425. } else if (action == "restore") {
  3426. handle_slots_restore(req, res, id_slot);
  3427. } else if (action == "erase") {
  3428. handle_slots_erase(req, res, id_slot);
  3429. } else {
  3430. res_error(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  3431. }
  3432. };
  3433. const auto handle_props = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3434. // this endpoint is publicly available, please only return what is safe to be exposed
  3435. json data = {
  3436. { "default_generation_settings", ctx_server.default_generation_settings_for_props },
  3437. { "total_slots", ctx_server.params_base.n_parallel },
  3438. { "model_path", ctx_server.params_base.model.path },
  3439. { "modalities", json{
  3440. {"vision", ctx_server.oai_parser_opt.allow_image},
  3441. {"audio", ctx_server.oai_parser_opt.allow_audio},
  3442. } },
  3443. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  3444. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  3445. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  3446. { "build_info", build_info },
  3447. };
  3448. if (ctx_server.params_base.use_jinja) {
  3449. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  3450. data["chat_template_tool_use"] = tool_use_src;
  3451. }
  3452. }
  3453. res_ok(res, data);
  3454. };
  3455. const auto handle_props_change = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3456. if (!ctx_server.params_base.endpoint_props) {
  3457. res_error(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  3458. return;
  3459. }
  3460. json data = json::parse(req.body);
  3461. // update any props here
  3462. res_ok(res, {{ "success", true }});
  3463. };
  3464. const auto handle_api_show = [&ctx_server, &res_ok](const httplib::Request &, httplib::Response & res) {
  3465. json data = {
  3466. {
  3467. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  3468. },
  3469. {
  3470. "model_info", {
  3471. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  3472. }
  3473. },
  3474. {"modelfile", ""},
  3475. {"parameters", ""},
  3476. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  3477. {"details", {
  3478. {"parent_model", ""},
  3479. {"format", "gguf"},
  3480. {"family", ""},
  3481. {"families", {""}},
  3482. {"parameter_size", ""},
  3483. {"quantization_level", ""}
  3484. }},
  3485. {"model_info", ""},
  3486. {"capabilities", {"completion"}}
  3487. };
  3488. res_ok(res, data);
  3489. };
  3490. // handle completion-like requests (completion, chat, infill)
  3491. // we can optionally provide a custom format for partial results and final results
  3492. const auto handle_completions_impl = [&ctx_server, &res_error, &res_ok](
  3493. server_task_type type,
  3494. json & data,
  3495. const std::vector<raw_buffer> & files,
  3496. const std::function<bool()> & is_connection_closed,
  3497. httplib::Response & res,
  3498. oaicompat_type oaicompat) -> void {
  3499. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  3500. auto completion_id = gen_chatcmplid();
  3501. std::unordered_set<int> task_ids;
  3502. try {
  3503. std::vector<server_task> tasks;
  3504. const auto & prompt = data.at("prompt");
  3505. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  3506. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  3507. // process files
  3508. mtmd::bitmaps bitmaps;
  3509. const bool has_mtmd = ctx_server.mctx != nullptr;
  3510. {
  3511. if (!has_mtmd && !files.empty()) {
  3512. throw std::runtime_error("This server does not support multimodal");
  3513. }
  3514. for (auto & file : files) {
  3515. mtmd::bitmap bmp(mtmd_helper_bitmap_init_from_buf(ctx_server.mctx, file.data(), file.size()));
  3516. if (!bmp.ptr) {
  3517. throw std::runtime_error("Failed to load image or audio file");
  3518. }
  3519. // calculate bitmap hash (for KV caching)
  3520. std::string hash = fnv_hash(bmp.data(), bmp.n_bytes());
  3521. bmp.set_id(hash.c_str());
  3522. bitmaps.entries.push_back(std::move(bmp));
  3523. }
  3524. }
  3525. // process prompt
  3526. std::vector<server_tokens> inputs;
  3527. if (oaicompat && has_mtmd) {
  3528. // multimodal
  3529. std::string prompt_str = prompt.get<std::string>();
  3530. mtmd_input_text inp_txt = {
  3531. prompt_str.c_str(),
  3532. /* add_special */ true,
  3533. /* parse_special */ true,
  3534. };
  3535. mtmd::input_chunks chunks(mtmd_input_chunks_init());
  3536. auto bitmaps_c_ptr = bitmaps.c_ptr();
  3537. int32_t tokenized = mtmd_tokenize(ctx_server.mctx,
  3538. chunks.ptr.get(),
  3539. &inp_txt,
  3540. bitmaps_c_ptr.data(),
  3541. bitmaps_c_ptr.size());
  3542. if (tokenized != 0) {
  3543. throw std::runtime_error("Failed to tokenize prompt");
  3544. }
  3545. server_tokens tmp(chunks, true);
  3546. inputs.push_back(std::move(tmp));
  3547. } else {
  3548. // non-multimodal version
  3549. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3550. for (auto & p : tokenized_prompts) {
  3551. auto tmp = server_tokens(p, ctx_server.mctx != nullptr);
  3552. inputs.push_back(std::move(tmp));
  3553. }
  3554. }
  3555. tasks.reserve(inputs.size());
  3556. for (size_t i = 0; i < inputs.size(); i++) {
  3557. server_task task = server_task(type);
  3558. task.id = ctx_server.queue_tasks.get_new_id();
  3559. task.index = i;
  3560. task.prompt_tokens = std::move(inputs[i]);
  3561. task.params = server_task::params_from_json_cmpl(
  3562. ctx_server.ctx,
  3563. ctx_server.params_base,
  3564. data);
  3565. task.id_selected_slot = json_value(data, "id_slot", -1);
  3566. // OAI-compat
  3567. task.params.oaicompat = oaicompat;
  3568. task.params.oaicompat_cmpl_id = completion_id;
  3569. // oaicompat_model is already populated by params_from_json_cmpl
  3570. tasks.push_back(std::move(task));
  3571. }
  3572. task_ids = server_task::get_list_id(tasks);
  3573. ctx_server.queue_results.add_waiting_tasks(tasks);
  3574. ctx_server.queue_tasks.post(std::move(tasks));
  3575. } catch (const std::exception & e) {
  3576. res_error(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  3577. return;
  3578. }
  3579. bool stream = json_value(data, "stream", false);
  3580. if (!stream) {
  3581. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3582. if (results.size() == 1) {
  3583. // single result
  3584. res_ok(res, results[0]->to_json());
  3585. } else {
  3586. // multiple results (multitask)
  3587. json arr = json::array();
  3588. for (auto & res : results) {
  3589. arr.push_back(res->to_json());
  3590. }
  3591. res_ok(res, arr);
  3592. }
  3593. }, [&](const json & error_data) {
  3594. res_error(res, error_data);
  3595. }, is_connection_closed);
  3596. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3597. } else {
  3598. const auto chunked_content_provider = [task_ids, &ctx_server, oaicompat](size_t, httplib::DataSink & sink) {
  3599. ctx_server.receive_cmpl_results_stream(task_ids, [&](server_task_result_ptr & result) -> bool {
  3600. json res_json = result->to_json();
  3601. if (res_json.is_array()) {
  3602. for (const auto & res : res_json) {
  3603. if (!server_sent_event(sink, "data", res)) {
  3604. // sending failed (HTTP connection closed), cancel the generation
  3605. return false;
  3606. }
  3607. }
  3608. return true;
  3609. } else {
  3610. return server_sent_event(sink, "data", res_json);
  3611. }
  3612. }, [&](const json & error_data) {
  3613. server_sent_event(sink, "error", error_data);
  3614. }, [&sink]() {
  3615. // note: do not use req.is_connection_closed here because req is already destroyed
  3616. return !sink.is_writable();
  3617. });
  3618. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  3619. static const std::string ev_done = "data: [DONE]\n\n";
  3620. sink.write(ev_done.data(), ev_done.size());
  3621. }
  3622. sink.done();
  3623. return false;
  3624. };
  3625. auto on_complete = [task_ids, &ctx_server] (bool) {
  3626. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3627. };
  3628. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  3629. }
  3630. };
  3631. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3632. json data = json::parse(req.body);
  3633. std::vector<raw_buffer> files; // dummy
  3634. handle_completions_impl(
  3635. SERVER_TASK_TYPE_COMPLETION,
  3636. data,
  3637. files,
  3638. req.is_connection_closed,
  3639. res,
  3640. OAICOMPAT_TYPE_NONE);
  3641. };
  3642. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3643. json data = oaicompat_completion_params_parse(json::parse(req.body));
  3644. std::vector<raw_buffer> files; // dummy
  3645. handle_completions_impl(
  3646. SERVER_TASK_TYPE_COMPLETION,
  3647. data,
  3648. files,
  3649. req.is_connection_closed,
  3650. res,
  3651. OAICOMPAT_TYPE_COMPLETION);
  3652. };
  3653. const auto handle_infill = [&ctx_server, &res_error, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3654. // check model compatibility
  3655. std::string err;
  3656. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3657. err += "prefix token is missing. ";
  3658. }
  3659. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3660. err += "suffix token is missing. ";
  3661. }
  3662. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  3663. err += "middle token is missing. ";
  3664. }
  3665. if (!err.empty()) {
  3666. res_error(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  3667. return;
  3668. }
  3669. json data = json::parse(req.body);
  3670. // validate input
  3671. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  3672. // prompt is optional
  3673. res_error(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3674. }
  3675. if (!data.contains("input_prefix")) {
  3676. res_error(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3677. }
  3678. if (!data.contains("input_suffix")) {
  3679. res_error(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  3680. }
  3681. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  3682. // input_extra is optional
  3683. res_error(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  3684. return;
  3685. }
  3686. json input_extra = json_value(data, "input_extra", json::array());
  3687. for (const auto & chunk : input_extra) {
  3688. // { "text": string, "filename": string }
  3689. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  3690. res_error(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  3691. return;
  3692. }
  3693. // filename is optional
  3694. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  3695. res_error(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  3696. return;
  3697. }
  3698. }
  3699. data["input_extra"] = input_extra; // default to empty array if it's not exist
  3700. std::string prompt = json_value(data, "prompt", std::string());
  3701. std::vector<llama_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, false, true);
  3702. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  3703. data["prompt"] = format_infill(
  3704. ctx_server.vocab,
  3705. data.at("input_prefix"),
  3706. data.at("input_suffix"),
  3707. data.at("input_extra"),
  3708. ctx_server.params_base.n_batch,
  3709. ctx_server.params_base.n_predict,
  3710. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  3711. ctx_server.params_base.spm_infill,
  3712. tokenized_prompts[0]
  3713. );
  3714. std::vector<raw_buffer> files; // dummy
  3715. handle_completions_impl(
  3716. SERVER_TASK_TYPE_INFILL,
  3717. data,
  3718. files,
  3719. req.is_connection_closed,
  3720. res,
  3721. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  3722. };
  3723. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  3724. LOG_DBG("request: %s\n", req.body.c_str());
  3725. auto body = json::parse(req.body);
  3726. std::vector<raw_buffer> files;
  3727. json data = oaicompat_chat_params_parse(
  3728. body,
  3729. ctx_server.oai_parser_opt,
  3730. files);
  3731. handle_completions_impl(
  3732. SERVER_TASK_TYPE_COMPLETION,
  3733. data,
  3734. files,
  3735. req.is_connection_closed,
  3736. res,
  3737. OAICOMPAT_TYPE_CHAT);
  3738. };
  3739. // same with handle_chat_completions, but without inference part
  3740. const auto handle_apply_template = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3741. auto body = json::parse(req.body);
  3742. std::vector<raw_buffer> files; // dummy, unused
  3743. json data = oaicompat_chat_params_parse(
  3744. body,
  3745. ctx_server.oai_parser_opt,
  3746. files);
  3747. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  3748. };
  3749. const auto handle_models = [&params, &ctx_server, &state, &res_ok](const httplib::Request &, httplib::Response & res) {
  3750. server_state current_state = state.load();
  3751. json model_meta = nullptr;
  3752. if (current_state == SERVER_STATE_READY) {
  3753. model_meta = ctx_server.model_meta();
  3754. }
  3755. json models = {
  3756. {"models", {
  3757. {
  3758. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  3759. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  3760. {"modified_at", ""},
  3761. {"size", ""},
  3762. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  3763. {"type", "model"},
  3764. {"description", ""},
  3765. {"tags", {""}},
  3766. {"capabilities", {"completion"}},
  3767. {"parameters", ""},
  3768. {"details", {
  3769. {"parent_model", ""},
  3770. {"format", "gguf"},
  3771. {"family", ""},
  3772. {"families", {""}},
  3773. {"parameter_size", ""},
  3774. {"quantization_level", ""}
  3775. }}
  3776. }
  3777. }},
  3778. {"object", "list"},
  3779. {"data", {
  3780. {
  3781. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  3782. {"object", "model"},
  3783. {"created", std::time(0)},
  3784. {"owned_by", "llamacpp"},
  3785. {"meta", model_meta},
  3786. },
  3787. }}
  3788. };
  3789. res_ok(res, models);
  3790. };
  3791. const auto handle_tokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3792. const json body = json::parse(req.body);
  3793. json tokens_response = json::array();
  3794. if (body.count("content") != 0) {
  3795. const bool add_special = json_value(body, "add_special", false);
  3796. const bool parse_special = json_value(body, "parse_special", true);
  3797. const bool with_pieces = json_value(body, "with_pieces", false);
  3798. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  3799. if (with_pieces) {
  3800. for (const auto& token : tokens) {
  3801. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  3802. json piece_json;
  3803. // Check if the piece is valid UTF-8
  3804. if (is_valid_utf8(piece)) {
  3805. piece_json = piece;
  3806. } else {
  3807. // If not valid UTF-8, store as array of byte values
  3808. piece_json = json::array();
  3809. for (unsigned char c : piece) {
  3810. piece_json.push_back(static_cast<int>(c));
  3811. }
  3812. }
  3813. tokens_response.push_back({
  3814. {"id", token},
  3815. {"piece", piece_json}
  3816. });
  3817. }
  3818. } else {
  3819. tokens_response = tokens;
  3820. }
  3821. }
  3822. const json data = format_tokenizer_response(tokens_response);
  3823. res_ok(res, data);
  3824. };
  3825. const auto handle_detokenize = [&ctx_server, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3826. const json body = json::parse(req.body);
  3827. std::string content;
  3828. if (body.count("tokens") != 0) {
  3829. const llama_tokens tokens = body.at("tokens");
  3830. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  3831. }
  3832. const json data = format_detokenized_response(content);
  3833. res_ok(res, data);
  3834. };
  3835. const auto handle_embeddings_impl = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  3836. if (!ctx_server.params_base.embedding) {
  3837. res_error(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  3838. return;
  3839. }
  3840. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3841. res_error(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  3842. return;
  3843. }
  3844. const json body = json::parse(req.body);
  3845. // for the shape of input/content, see tokenize_input_prompts()
  3846. json prompt;
  3847. if (body.count("input") != 0) {
  3848. prompt = body.at("input");
  3849. } else if (body.contains("content")) {
  3850. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  3851. prompt = body.at("content");
  3852. } else {
  3853. res_error(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3854. return;
  3855. }
  3856. bool use_base64 = false;
  3857. if (body.count("encoding_format") != 0) {
  3858. const std::string& format = body.at("encoding_format");
  3859. if (format == "base64") {
  3860. use_base64 = true;
  3861. } else if (format != "float") {
  3862. res_error(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  3863. return;
  3864. }
  3865. }
  3866. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, prompt, true, true);
  3867. for (const auto & tokens : tokenized_prompts) {
  3868. // this check is necessary for models that do not add BOS token to the input
  3869. if (tokens.empty()) {
  3870. res_error(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  3871. return;
  3872. }
  3873. }
  3874. int embd_normalize = 2; // default to Euclidean/L2 norm
  3875. if (body.count("embd_normalize") != 0) {
  3876. embd_normalize = body.at("embd_normalize");
  3877. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  3878. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  3879. }
  3880. }
  3881. // create and queue the task
  3882. json responses = json::array();
  3883. bool error = false;
  3884. std::unordered_set<int> task_ids;
  3885. {
  3886. std::vector<server_task> tasks;
  3887. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  3888. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  3889. task.id = ctx_server.queue_tasks.get_new_id();
  3890. task.index = i;
  3891. task.prompt_tokens = server_tokens(tokenized_prompts[i], ctx_server.mctx != nullptr);
  3892. // OAI-compat
  3893. task.params.oaicompat = oaicompat;
  3894. task.params.embd_normalize = embd_normalize;
  3895. tasks.push_back(std::move(task));
  3896. }
  3897. task_ids = server_task::get_list_id(tasks);
  3898. ctx_server.queue_results.add_waiting_tasks(tasks);
  3899. ctx_server.queue_tasks.post(std::move(tasks));
  3900. }
  3901. // get the result
  3902. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3903. for (auto & res : results) {
  3904. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  3905. responses.push_back(res->to_json());
  3906. }
  3907. }, [&](const json & error_data) {
  3908. res_error(res, error_data);
  3909. error = true;
  3910. }, req.is_connection_closed);
  3911. ctx_server.queue_results.remove_waiting_task_ids(task_ids);
  3912. if (error) {
  3913. return;
  3914. }
  3915. // write JSON response
  3916. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  3917. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  3918. : json(responses);
  3919. res_ok(res, root);
  3920. };
  3921. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3922. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  3923. };
  3924. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  3925. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  3926. };
  3927. const auto handle_rerank = [&ctx_server, &res_error, &res_ok](const httplib::Request & req, httplib::Response & res) {
  3928. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  3929. res_error(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  3930. return;
  3931. }
  3932. const json body = json::parse(req.body);
  3933. // TODO: implement
  3934. //int top_n = 1;
  3935. //if (body.count("top_n") != 1) {
  3936. // top_n = body.at("top_n");
  3937. //} else {
  3938. // res_error(res, format_error_response("\"top_n\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3939. // return;
  3940. //}
  3941. // if true, use TEI API format, otherwise use Jina API format
  3942. // Jina: https://jina.ai/reranker/
  3943. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  3944. bool is_tei_format = body.contains("texts");
  3945. json query;
  3946. if (body.count("query") == 1) {
  3947. query = body.at("query");
  3948. if (!query.is_string()) {
  3949. res_error(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  3950. return;
  3951. }
  3952. } else {
  3953. res_error(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  3954. return;
  3955. }
  3956. std::vector<std::string> documents = json_value(body, "documents",
  3957. json_value(body, "texts", std::vector<std::string>()));
  3958. if (documents.empty()) {
  3959. res_error(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  3960. return;
  3961. }
  3962. llama_tokens tokenized_query = tokenize_input_prompts(ctx_server.vocab, query, /* add_special */ false, true)[0];
  3963. // create and queue the task
  3964. json responses = json::array();
  3965. bool error = false;
  3966. std::unordered_set<int> task_ids;
  3967. {
  3968. std::vector<server_task> tasks;
  3969. auto tokenized_docs = tokenize_input_prompts(ctx_server.vocab, documents, /* add_special */ false, true);
  3970. tasks.reserve(tokenized_docs.size());
  3971. for (size_t i = 0; i < tokenized_docs.size(); i++) {
  3972. auto tmp = format_rerank(ctx_server.vocab, tokenized_query, tokenized_docs[i]);
  3973. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  3974. task.id = ctx_server.queue_tasks.get_new_id();
  3975. task.index = i;
  3976. task.prompt_tokens = server_tokens(tmp, ctx_server.mctx != nullptr);
  3977. tasks.push_back(std::move(task));
  3978. }
  3979. task_ids = server_task::get_list_id(tasks);
  3980. ctx_server.queue_results.add_waiting_tasks(tasks);
  3981. ctx_server.queue_tasks.post(std::move(tasks));
  3982. }
  3983. ctx_server.receive_multi_results(task_ids, [&](std::vector<server_task_result_ptr> & results) {
  3984. for (auto & res : results) {
  3985. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  3986. responses.push_back(res->to_json());
  3987. }
  3988. }, [&](const json & error_data) {
  3989. res_error(res, error_data);
  3990. error = true;
  3991. }, req.is_connection_closed);
  3992. if (error) {
  3993. return;
  3994. }
  3995. // write JSON response
  3996. json root = format_response_rerank(
  3997. body,
  3998. responses,
  3999. is_tei_format,
  4000. documents);
  4001. res_ok(res, root);
  4002. };
  4003. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4004. json result = json::array();
  4005. const auto & loras = ctx_server.params_base.lora_adapters;
  4006. for (size_t i = 0; i < loras.size(); ++i) {
  4007. auto & lora = loras[i];
  4008. result.push_back({
  4009. {"id", i},
  4010. {"path", lora.path},
  4011. {"scale", lora.scale},
  4012. });
  4013. }
  4014. res_ok(res, result);
  4015. res.status = 200; // HTTP OK
  4016. };
  4017. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4018. const json body = json::parse(req.body);
  4019. if (!body.is_array()) {
  4020. res_error(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4021. return;
  4022. }
  4023. int task_id = ctx_server.queue_tasks.get_new_id();
  4024. {
  4025. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4026. task.id = task_id;
  4027. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4028. ctx_server.queue_results.add_waiting_task_id(task_id);
  4029. ctx_server.queue_tasks.post(std::move(task));
  4030. }
  4031. // get the result
  4032. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4033. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4034. if (result->is_error()) {
  4035. res_error(res, result->to_json());
  4036. return;
  4037. }
  4038. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4039. res_ok(res, result->to_json());
  4040. };
  4041. //
  4042. // Router
  4043. //
  4044. if (!params.webui) {
  4045. LOG_INF("Web UI is disabled\n");
  4046. } else {
  4047. // register static assets routes
  4048. if (!params.public_path.empty()) {
  4049. // Set the base directory for serving static files
  4050. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4051. if (!is_found) {
  4052. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4053. return 1;
  4054. }
  4055. } else {
  4056. // using embedded static index.html
  4057. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4058. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4059. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4060. } else {
  4061. res.set_header("Content-Encoding", "gzip");
  4062. // COEP and COOP headers, required by pyodide (python interpreter)
  4063. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4064. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4065. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4066. }
  4067. return false;
  4068. });
  4069. }
  4070. }
  4071. // register API routes
  4072. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4073. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4074. svr->Get (params.api_prefix + "/props", handle_props);
  4075. svr->Post(params.api_prefix + "/props", handle_props_change);
  4076. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4077. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4078. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4079. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4080. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4081. svr->Post(params.api_prefix + "/completions", handle_completions);
  4082. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4083. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4084. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4085. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4086. svr->Post(params.api_prefix + "/infill", handle_infill);
  4087. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4088. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4089. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4090. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4091. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4092. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4093. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4094. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4095. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4096. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4097. // LoRA adapters hotswap
  4098. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4099. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4100. // Save & load slots
  4101. svr->Get (params.api_prefix + "/slots", handle_slots);
  4102. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4103. //
  4104. // Start the server
  4105. //
  4106. if (params.n_threads_http < 1) {
  4107. // +2 threads for monitoring endpoints
  4108. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4109. }
  4110. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4111. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4112. // clean up function, to be called before exit
  4113. auto clean_up = [&svr, &ctx_server]() {
  4114. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4115. svr->stop();
  4116. ctx_server.queue_results.terminate();
  4117. llama_backend_free();
  4118. };
  4119. bool was_bound = false;
  4120. bool is_sock = false;
  4121. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4122. is_sock = true;
  4123. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4124. svr->set_address_family(AF_UNIX);
  4125. // bind_to_port requires a second arg, any value other than 0 should
  4126. // simply get ignored
  4127. was_bound = svr->bind_to_port(params.hostname, 8080);
  4128. } else {
  4129. LOG_INF("%s: binding port with default address family\n", __func__);
  4130. // bind HTTP listen port
  4131. if (params.port == 0) {
  4132. int bound_port = svr->bind_to_any_port(params.hostname);
  4133. if ((was_bound = (bound_port >= 0))) {
  4134. params.port = bound_port;
  4135. }
  4136. } else {
  4137. was_bound = svr->bind_to_port(params.hostname, params.port);
  4138. }
  4139. }
  4140. if (!was_bound) {
  4141. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4142. clean_up();
  4143. return 1;
  4144. }
  4145. // run the HTTP server in a thread
  4146. std::thread t([&]() { svr->listen_after_bind(); });
  4147. svr->wait_until_ready();
  4148. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4149. // load the model
  4150. LOG_INF("%s: loading model\n", __func__);
  4151. if (!ctx_server.load_model(params)) {
  4152. clean_up();
  4153. t.join();
  4154. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4155. return 1;
  4156. }
  4157. ctx_server.init();
  4158. state.store(SERVER_STATE_READY);
  4159. LOG_INF("%s: model loaded\n", __func__);
  4160. // print sample chat example to make it clear which template is used
  4161. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4162. common_chat_templates_source(ctx_server.chat_templates.get()),
  4163. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja).c_str());
  4164. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4165. ctx_server.process_single_task(std::move(task));
  4166. });
  4167. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4168. ctx_server.update_slots();
  4169. });
  4170. shutdown_handler = [&](int) {
  4171. // this will unblock start_loop()
  4172. ctx_server.queue_tasks.terminate();
  4173. };
  4174. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4175. struct sigaction sigint_action;
  4176. sigint_action.sa_handler = signal_handler;
  4177. sigemptyset (&sigint_action.sa_mask);
  4178. sigint_action.sa_flags = 0;
  4179. sigaction(SIGINT, &sigint_action, NULL);
  4180. sigaction(SIGTERM, &sigint_action, NULL);
  4181. #elif defined (_WIN32)
  4182. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4183. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4184. };
  4185. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4186. #endif
  4187. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4188. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4189. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4190. // this call blocks the main thread until queue_tasks.terminate() is called
  4191. ctx_server.queue_tasks.start_loop();
  4192. clean_up();
  4193. t.join();
  4194. return 0;
  4195. }