ggml.c 511 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #if !defined(__riscv)
  159. #include <immintrin.h>
  160. #endif
  161. #endif
  162. #endif
  163. #endif
  164. #ifdef __F16C__
  165. #ifdef _MSC_VER
  166. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  167. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  168. #else
  169. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  170. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  171. #endif
  172. #elif defined(__POWER9_VECTOR__)
  173. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  174. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  175. /* the inline asm below is about 12% faster than the lookup method */
  176. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  177. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  178. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  179. register float f;
  180. register double d;
  181. __asm__(
  182. "mtfprd %0,%2\n"
  183. "xscvhpdp %0,%0\n"
  184. "frsp %1,%0\n" :
  185. /* temp */ "=d"(d),
  186. /* out */ "=f"(f):
  187. /* in */ "r"(h));
  188. return f;
  189. }
  190. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  191. register double d;
  192. register ggml_fp16_t r;
  193. __asm__( /* xscvdphp can work on double or single precision */
  194. "xscvdphp %0,%2\n"
  195. "mffprd %1,%0\n" :
  196. /* temp */ "=d"(d),
  197. /* out */ "=r"(r):
  198. /* in */ "f"(f));
  199. return r;
  200. }
  201. #else
  202. // FP16 <-> FP32
  203. // ref: https://github.com/Maratyszcza/FP16
  204. static inline float fp32_from_bits(uint32_t w) {
  205. union {
  206. uint32_t as_bits;
  207. float as_value;
  208. } fp32;
  209. fp32.as_bits = w;
  210. return fp32.as_value;
  211. }
  212. static inline uint32_t fp32_to_bits(float f) {
  213. union {
  214. float as_value;
  215. uint32_t as_bits;
  216. } fp32;
  217. fp32.as_value = f;
  218. return fp32.as_bits;
  219. }
  220. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  221. const uint32_t w = (uint32_t) h << 16;
  222. const uint32_t sign = w & UINT32_C(0x80000000);
  223. const uint32_t two_w = w + w;
  224. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  225. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  226. const float exp_scale = 0x1.0p-112f;
  227. #else
  228. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  229. #endif
  230. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  231. const uint32_t magic_mask = UINT32_C(126) << 23;
  232. const float magic_bias = 0.5f;
  233. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  234. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  235. const uint32_t result = sign |
  236. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  237. return fp32_from_bits(result);
  238. }
  239. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  240. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  241. const float scale_to_inf = 0x1.0p+112f;
  242. const float scale_to_zero = 0x1.0p-110f;
  243. #else
  244. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  245. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  246. #endif
  247. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  248. const uint32_t w = fp32_to_bits(f);
  249. const uint32_t shl1_w = w + w;
  250. const uint32_t sign = w & UINT32_C(0x80000000);
  251. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  252. if (bias < UINT32_C(0x71000000)) {
  253. bias = UINT32_C(0x71000000);
  254. }
  255. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  256. const uint32_t bits = fp32_to_bits(base);
  257. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  258. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  259. const uint32_t nonsign = exp_bits + mantissa_bits;
  260. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  261. }
  262. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  263. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  264. #endif // __F16C__
  265. #endif // __ARM_NEON
  266. //
  267. // global data
  268. //
  269. // precomputed gelu table for f16 (128 KB)
  270. static ggml_fp16_t table_gelu_f16[1 << 16];
  271. // precomputed silu table for f16 (128 KB)
  272. static ggml_fp16_t table_silu_f16[1 << 16];
  273. // precomputed exp table for f16 (128 KB)
  274. static ggml_fp16_t table_exp_f16[1 << 16];
  275. // precomputed f32 table for f16 (256 KB)
  276. static float table_f32_f16[1 << 16];
  277. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  278. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  279. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  280. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  281. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  282. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  283. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  284. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  285. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  286. // precomputed tables for expanding 8bits to 8 bytes:
  287. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  288. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  289. #endif
  290. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  291. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  292. // This is also true for POWER9.
  293. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  294. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  295. uint16_t s;
  296. memcpy(&s, &f, sizeof(uint16_t));
  297. return table_f32_f16[s];
  298. }
  299. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  300. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  301. #endif
  302. // note: do not use these inside ggml.c
  303. // these are meant to be used via the ggml.h API
  304. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  305. return (float) GGML_FP16_TO_FP32(x);
  306. }
  307. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  308. return GGML_FP32_TO_FP16(x);
  309. }
  310. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  311. for (size_t i = 0; i < n; i++) {
  312. y[i] = GGML_FP16_TO_FP32(x[i]);
  313. }
  314. }
  315. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  316. size_t i = 0;
  317. #if defined(__F16C__)
  318. for (; i + 7 < n; i += 8) {
  319. __m256 x_vec = _mm256_loadu_ps(x + i);
  320. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  321. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  322. }
  323. for(; i + 3 < n; i += 4) {
  324. __m128 x_vec = _mm_loadu_ps(x + i);
  325. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  326. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  327. }
  328. #endif
  329. for (; i < n; i++) {
  330. y[i] = GGML_FP32_TO_FP16(x[i]);
  331. }
  332. }
  333. //
  334. // timing
  335. //
  336. #if defined(_MSC_VER) || defined(__MINGW32__)
  337. static int64_t timer_freq;
  338. void ggml_time_init(void) {
  339. LARGE_INTEGER frequency;
  340. QueryPerformanceFrequency(&frequency);
  341. timer_freq = frequency.QuadPart;
  342. }
  343. int64_t ggml_time_ms(void) {
  344. LARGE_INTEGER t;
  345. QueryPerformanceCounter(&t);
  346. return (t.QuadPart * 1000) / timer_freq;
  347. }
  348. int64_t ggml_time_us(void) {
  349. LARGE_INTEGER t;
  350. QueryPerformanceCounter(&t);
  351. return (t.QuadPart * 1000000) / timer_freq;
  352. }
  353. #else
  354. void ggml_time_init(void) {}
  355. int64_t ggml_time_ms(void) {
  356. struct timespec ts;
  357. clock_gettime(CLOCK_MONOTONIC, &ts);
  358. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  359. }
  360. int64_t ggml_time_us(void) {
  361. struct timespec ts;
  362. clock_gettime(CLOCK_MONOTONIC, &ts);
  363. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  364. }
  365. #endif
  366. int64_t ggml_cycles(void) {
  367. return clock();
  368. }
  369. int64_t ggml_cycles_per_ms(void) {
  370. return CLOCKS_PER_SEC/1000;
  371. }
  372. #ifdef GGML_PERF
  373. #define ggml_perf_time_ms() ggml_time_ms()
  374. #define ggml_perf_time_us() ggml_time_us()
  375. #define ggml_perf_cycles() ggml_cycles()
  376. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  377. #else
  378. #define ggml_perf_time_ms() 0
  379. #define ggml_perf_time_us() 0
  380. #define ggml_perf_cycles() 0
  381. #define ggml_perf_cycles_per_ms() 0
  382. #endif
  383. //
  384. // cache line
  385. //
  386. #if defined(__cpp_lib_hardware_interference_size)
  387. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  388. #else
  389. #if defined(__POWER9_VECTOR__)
  390. #define CACHE_LINE_SIZE 128
  391. #else
  392. #define CACHE_LINE_SIZE 64
  393. #endif
  394. #endif
  395. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  396. //
  397. // quantization
  398. //
  399. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  400. // multiply int8_t, add results pairwise twice
  401. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  402. // Get absolute values of x vectors
  403. const __m128i ax = _mm_sign_epi8(x, x);
  404. // Sign the values of the y vectors
  405. const __m128i sy = _mm_sign_epi8(y, x);
  406. // Perform multiplication and create 16-bit values
  407. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  408. const __m128i ones = _mm_set1_epi16(1);
  409. return _mm_madd_epi16(ones, dot);
  410. }
  411. #if __AVX__ || __AVX2__ || __AVX512F__
  412. // horizontally add 8 floats
  413. static inline float hsum_float_8(const __m256 x) {
  414. __m128 res = _mm256_extractf128_ps(x, 1);
  415. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  416. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  417. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  418. return _mm_cvtss_f32(res);
  419. }
  420. // horizontally add 8 int32_t
  421. static inline int hsum_i32_8(const __m256i a) {
  422. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  423. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  424. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  425. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  426. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  427. }
  428. // horizontally add 4 int32_t
  429. static inline int hsum_i32_4(const __m128i a) {
  430. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  431. const __m128i sum64 = _mm_add_epi32(hi64, a);
  432. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  433. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  434. }
  435. #if defined(__AVX2__) || defined(__AVX512F__)
  436. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  437. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  438. uint32_t x32;
  439. memcpy(&x32, x, sizeof(uint32_t));
  440. const __m256i shuf_mask = _mm256_set_epi64x(
  441. 0x0303030303030303, 0x0202020202020202,
  442. 0x0101010101010101, 0x0000000000000000);
  443. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  444. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  445. bytes = _mm256_or_si256(bytes, bit_mask);
  446. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  447. }
  448. // Unpack 32 4-bit fields into 32 bytes
  449. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  450. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  451. {
  452. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  453. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  454. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  455. return _mm256_and_si256(lowMask, bytes);
  456. }
  457. // add int16_t pairwise and return as float vector
  458. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  459. const __m256i ones = _mm256_set1_epi16(1);
  460. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  461. return _mm256_cvtepi32_ps(summed_pairs);
  462. }
  463. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  464. #if __AVXVNNI__
  465. const __m256i zero = _mm256_setzero_si256();
  466. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  467. return _mm256_cvtepi32_ps(summed_pairs);
  468. #else
  469. // Perform multiplication and create 16-bit values
  470. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  471. return sum_i16_pairs_float(dot);
  472. #endif
  473. }
  474. // multiply int8_t, add results pairwise twice and return as float vector
  475. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  476. #if __AVXVNNIINT8__
  477. const __m256i zero = _mm256_setzero_si256();
  478. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  479. return _mm256_cvtepi32_ps(summed_pairs);
  480. #else
  481. // Get absolute values of x vectors
  482. const __m256i ax = _mm256_sign_epi8(x, x);
  483. // Sign the values of the y vectors
  484. const __m256i sy = _mm256_sign_epi8(y, x);
  485. return mul_sum_us8_pairs_float(ax, sy);
  486. #endif
  487. }
  488. static inline __m128i packNibbles( __m256i bytes )
  489. {
  490. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  491. #if __AVX512F__
  492. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  493. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  494. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  495. #else
  496. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  497. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  498. __m256i low = _mm256_and_si256( lowByte, bytes );
  499. high = _mm256_srli_epi16( high, 4 );
  500. bytes = _mm256_or_si256( low, high );
  501. // Compress uint16_t lanes into bytes
  502. __m128i r0 = _mm256_castsi256_si128( bytes );
  503. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  504. return _mm_packus_epi16( r0, r1 );
  505. #endif
  506. }
  507. #elif defined(__AVX__)
  508. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  509. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  510. uint32_t x32;
  511. memcpy(&x32, x, sizeof(uint32_t));
  512. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  513. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  514. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  515. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  516. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  517. bytesl = _mm_or_si128(bytesl, bit_mask);
  518. bytesh = _mm_or_si128(bytesh, bit_mask);
  519. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  520. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  521. return _mm256_set_m128i(bytesh, bytesl);
  522. }
  523. // Unpack 32 4-bit fields into 32 bytes
  524. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  525. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  526. {
  527. // Load 16 bytes from memory
  528. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  529. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  530. const __m128i lowMask = _mm_set1_epi8(0xF);
  531. tmpl = _mm_and_si128(lowMask, tmpl);
  532. tmph = _mm_and_si128(lowMask, tmph);
  533. return _mm256_set_m128i(tmph, tmpl);
  534. }
  535. // add int16_t pairwise and return as float vector
  536. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  537. const __m128i ones = _mm_set1_epi16(1);
  538. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  539. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  540. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  541. return _mm256_cvtepi32_ps(summed_pairs);
  542. }
  543. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  544. const __m128i axl = _mm256_castsi256_si128(ax);
  545. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  546. const __m128i syl = _mm256_castsi256_si128(sy);
  547. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  548. // Perform multiplication and create 16-bit values
  549. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  550. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  551. return sum_i16_pairs_float(doth, dotl);
  552. }
  553. // multiply int8_t, add results pairwise twice and return as float vector
  554. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  555. const __m128i xl = _mm256_castsi256_si128(x);
  556. const __m128i xh = _mm256_extractf128_si256(x, 1);
  557. const __m128i yl = _mm256_castsi256_si128(y);
  558. const __m128i yh = _mm256_extractf128_si256(y, 1);
  559. // Get absolute values of x vectors
  560. const __m128i axl = _mm_sign_epi8(xl, xl);
  561. const __m128i axh = _mm_sign_epi8(xh, xh);
  562. // Sign the values of the y vectors
  563. const __m128i syl = _mm_sign_epi8(yl, xl);
  564. const __m128i syh = _mm_sign_epi8(yh, xh);
  565. // Perform multiplication and create 16-bit values
  566. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  567. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  568. return sum_i16_pairs_float(doth, dotl);
  569. }
  570. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  571. {
  572. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  573. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  574. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  575. __m128i low = _mm_and_si128( lowByte, bytes1 );
  576. high = _mm_srli_epi16( high, 4 );
  577. bytes1 = _mm_or_si128( low, high );
  578. high = _mm_andnot_si128( lowByte, bytes2 );
  579. low = _mm_and_si128( lowByte, bytes2 );
  580. high = _mm_srli_epi16( high, 4 );
  581. bytes2 = _mm_or_si128( low, high );
  582. return _mm_packus_epi16( bytes1, bytes2);
  583. }
  584. #endif
  585. #elif defined(__SSSE3__)
  586. // horizontally add 4x4 floats
  587. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  588. __m128 res_0 =_mm_hadd_ps(a, b);
  589. __m128 res_1 =_mm_hadd_ps(c, d);
  590. __m128 res =_mm_hadd_ps(res_0, res_1);
  591. res =_mm_hadd_ps(res, res);
  592. res =_mm_hadd_ps(res, res);
  593. return _mm_cvtss_f32(res);
  594. }
  595. #endif // __AVX__ || __AVX2__ || __AVX512F__
  596. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  597. #if defined(__ARM_NEON)
  598. #if !defined(__aarch64__)
  599. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  600. return
  601. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  602. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  603. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  604. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  605. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  606. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  607. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  608. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  609. }
  610. inline static int16_t vaddvq_s8(int8x16_t v) {
  611. return
  612. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  613. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  614. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  615. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  616. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  617. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  618. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  619. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  620. }
  621. inline static int32_t vaddvq_s16(int16x8_t v) {
  622. return
  623. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  624. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  625. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  626. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  627. }
  628. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  629. return
  630. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  631. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  632. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  633. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  634. }
  635. inline static int32_t vaddvq_s32(int32x4_t v) {
  636. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  637. }
  638. inline static float vaddvq_f32(float32x4_t v) {
  639. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  640. }
  641. inline static float vminvq_f32(float32x4_t v) {
  642. return
  643. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  644. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  645. }
  646. inline static float vmaxvq_f32(float32x4_t v) {
  647. return
  648. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  649. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  650. }
  651. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  652. int32x4_t res;
  653. res[0] = roundf(vgetq_lane_f32(v, 0));
  654. res[1] = roundf(vgetq_lane_f32(v, 1));
  655. res[2] = roundf(vgetq_lane_f32(v, 2));
  656. res[3] = roundf(vgetq_lane_f32(v, 3));
  657. return res;
  658. }
  659. #endif
  660. #endif
  661. #define QK4_0 32
  662. typedef struct {
  663. ggml_fp16_t d; // delta
  664. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  665. } block_q4_0;
  666. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  667. #define QK4_1 32
  668. typedef struct {
  669. ggml_fp16_t d; // delta
  670. ggml_fp16_t m; // min
  671. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  672. } block_q4_1;
  673. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  674. #define QK5_0 32
  675. typedef struct {
  676. ggml_fp16_t d; // delta
  677. uint8_t qh[4]; // 5-th bit of quants
  678. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  679. } block_q5_0;
  680. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  681. #define QK5_1 32
  682. typedef struct {
  683. ggml_fp16_t d; // delta
  684. ggml_fp16_t m; // min
  685. uint8_t qh[4]; // 5-th bit of quants
  686. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  687. } block_q5_1;
  688. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  689. #define QK8_0 32
  690. typedef struct {
  691. ggml_fp16_t d; // delta
  692. int8_t qs[QK8_0]; // quants
  693. } block_q8_0;
  694. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  695. #define QK8_1 32
  696. typedef struct {
  697. float d; // delta
  698. float s; // d * sum(qs[i])
  699. int8_t qs[QK8_1]; // quants
  700. } block_q8_1;
  701. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  702. // reference implementation for deterministic creation of model files
  703. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  704. static const int qk = QK4_0;
  705. assert(k % qk == 0);
  706. const int nb = k / qk;
  707. for (int i = 0; i < nb; i++) {
  708. float amax = 0.0f; // absolute max
  709. float max = 0.0f;
  710. for (int j = 0; j < qk; j++) {
  711. const float v = x[i*qk + j];
  712. if (amax < fabsf(v)) {
  713. amax = fabsf(v);
  714. max = v;
  715. }
  716. }
  717. const float d = max / -8;
  718. const float id = d ? 1.0f/d : 0.0f;
  719. y[i].d = GGML_FP32_TO_FP16(d);
  720. for (int j = 0; j < qk/2; ++j) {
  721. const float x0 = x[i*qk + 0 + j]*id;
  722. const float x1 = x[i*qk + qk/2 + j]*id;
  723. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  724. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  725. y[i].qs[j] = xi0;
  726. y[i].qs[j] |= xi1 << 4;
  727. }
  728. }
  729. }
  730. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  731. quantize_row_q4_0_reference(x, y, k);
  732. }
  733. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  734. const int qk = QK4_1;
  735. assert(k % qk == 0);
  736. const int nb = k / qk;
  737. for (int i = 0; i < nb; i++) {
  738. float min = FLT_MAX;
  739. float max = -FLT_MAX;
  740. for (int j = 0; j < qk; j++) {
  741. const float v = x[i*qk + j];
  742. if (v < min) min = v;
  743. if (v > max) max = v;
  744. }
  745. const float d = (max - min) / ((1 << 4) - 1);
  746. const float id = d ? 1.0f/d : 0.0f;
  747. y[i].d = GGML_FP32_TO_FP16(d);
  748. y[i].m = GGML_FP32_TO_FP16(min);
  749. for (int j = 0; j < qk/2; ++j) {
  750. const float x0 = (x[i*qk + 0 + j] - min)*id;
  751. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  752. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  753. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  754. y[i].qs[j] = xi0;
  755. y[i].qs[j] |= xi1 << 4;
  756. }
  757. }
  758. }
  759. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  760. quantize_row_q4_1_reference(x, y, k);
  761. }
  762. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  763. static const int qk = QK5_0;
  764. assert(k % qk == 0);
  765. const int nb = k / qk;
  766. for (int i = 0; i < nb; i++) {
  767. float amax = 0.0f; // absolute max
  768. float max = 0.0f;
  769. for (int j = 0; j < qk; j++) {
  770. const float v = x[i*qk + j];
  771. if (amax < fabsf(v)) {
  772. amax = fabsf(v);
  773. max = v;
  774. }
  775. }
  776. const float d = max / -16;
  777. const float id = d ? 1.0f/d : 0.0f;
  778. y[i].d = GGML_FP32_TO_FP16(d);
  779. uint32_t qh = 0;
  780. for (int j = 0; j < qk/2; ++j) {
  781. const float x0 = x[i*qk + 0 + j]*id;
  782. const float x1 = x[i*qk + qk/2 + j]*id;
  783. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  784. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  785. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  786. // get the 5-th bit and store it in qh at the right position
  787. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  788. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  789. }
  790. memcpy(&y[i].qh, &qh, sizeof(qh));
  791. }
  792. }
  793. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  794. quantize_row_q5_0_reference(x, y, k);
  795. }
  796. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  797. const int qk = QK5_1;
  798. assert(k % qk == 0);
  799. const int nb = k / qk;
  800. for (int i = 0; i < nb; i++) {
  801. float min = FLT_MAX;
  802. float max = -FLT_MAX;
  803. for (int j = 0; j < qk; j++) {
  804. const float v = x[i*qk + j];
  805. if (v < min) min = v;
  806. if (v > max) max = v;
  807. }
  808. const float d = (max - min) / ((1 << 5) - 1);
  809. const float id = d ? 1.0f/d : 0.0f;
  810. y[i].d = GGML_FP32_TO_FP16(d);
  811. y[i].m = GGML_FP32_TO_FP16(min);
  812. uint32_t qh = 0;
  813. for (int j = 0; j < qk/2; ++j) {
  814. const float x0 = (x[i*qk + 0 + j] - min)*id;
  815. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  816. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  817. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  818. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  819. // get the 5-th bit and store it in qh at the right position
  820. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  821. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  822. }
  823. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  824. }
  825. }
  826. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  827. quantize_row_q5_1_reference(x, y, k);
  828. }
  829. // reference implementation for deterministic creation of model files
  830. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  831. assert(k % QK8_0 == 0);
  832. const int nb = k / QK8_0;
  833. for (int i = 0; i < nb; i++) {
  834. float amax = 0.0f; // absolute max
  835. for (int j = 0; j < QK8_0; j++) {
  836. const float v = x[i*QK8_0 + j];
  837. amax = MAX(amax, fabsf(v));
  838. }
  839. const float d = amax / ((1 << 7) - 1);
  840. const float id = d ? 1.0f/d : 0.0f;
  841. y[i].d = GGML_FP32_TO_FP16(d);
  842. for (int j = 0; j < QK8_0; ++j) {
  843. const float x0 = x[i*QK8_0 + j]*id;
  844. y[i].qs[j] = roundf(x0);
  845. }
  846. }
  847. }
  848. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  849. assert(QK8_0 == 32);
  850. assert(k % QK8_0 == 0);
  851. const int nb = k / QK8_0;
  852. block_q8_0 * restrict y = vy;
  853. #if defined(__ARM_NEON)
  854. for (int i = 0; i < nb; i++) {
  855. float32x4_t srcv [8];
  856. float32x4_t asrcv[8];
  857. float32x4_t amaxv[8];
  858. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  859. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  860. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  861. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  862. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  863. const float amax = vmaxvq_f32(amaxv[0]);
  864. const float d = amax / ((1 << 7) - 1);
  865. const float id = d ? 1.0f/d : 0.0f;
  866. y[i].d = GGML_FP32_TO_FP16(d);
  867. for (int j = 0; j < 8; j++) {
  868. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  869. const int32x4_t vi = vcvtnq_s32_f32(v);
  870. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  871. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  872. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  873. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  874. }
  875. }
  876. #elif defined(__wasm_simd128__)
  877. for (int i = 0; i < nb; i++) {
  878. v128_t srcv [8];
  879. v128_t asrcv[8];
  880. v128_t amaxv[8];
  881. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  882. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  883. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  884. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  885. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  886. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  887. wasm_f32x4_extract_lane(amaxv[0], 1)),
  888. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  889. wasm_f32x4_extract_lane(amaxv[0], 3)));
  890. const float d = amax / ((1 << 7) - 1);
  891. const float id = d ? 1.0f/d : 0.0f;
  892. y[i].d = GGML_FP32_TO_FP16(d);
  893. for (int j = 0; j < 8; j++) {
  894. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  895. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  896. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  897. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  898. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  899. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  900. }
  901. }
  902. #elif defined(__AVX2__) || defined(__AVX__)
  903. for (int i = 0; i < nb; i++) {
  904. // Load elements into 4 AVX vectors
  905. __m256 v0 = _mm256_loadu_ps( x );
  906. __m256 v1 = _mm256_loadu_ps( x + 8 );
  907. __m256 v2 = _mm256_loadu_ps( x + 16 );
  908. __m256 v3 = _mm256_loadu_ps( x + 24 );
  909. x += 32;
  910. // Compute max(abs(e)) for the block
  911. const __m256 signBit = _mm256_set1_ps( -0.0f );
  912. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  913. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  914. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  915. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  916. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  917. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  918. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  919. const float maxScalar = _mm_cvtss_f32( max4 );
  920. // Quantize these floats
  921. const float d = maxScalar / 127.f;
  922. y[i].d = GGML_FP32_TO_FP16(d);
  923. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  924. const __m256 mul = _mm256_set1_ps( id );
  925. // Apply the multiplier
  926. v0 = _mm256_mul_ps( v0, mul );
  927. v1 = _mm256_mul_ps( v1, mul );
  928. v2 = _mm256_mul_ps( v2, mul );
  929. v3 = _mm256_mul_ps( v3, mul );
  930. // Round to nearest integer
  931. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  932. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  933. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  934. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  935. // Convert floats to integers
  936. __m256i i0 = _mm256_cvtps_epi32( v0 );
  937. __m256i i1 = _mm256_cvtps_epi32( v1 );
  938. __m256i i2 = _mm256_cvtps_epi32( v2 );
  939. __m256i i3 = _mm256_cvtps_epi32( v3 );
  940. #if defined(__AVX2__)
  941. // Convert int32 to int16
  942. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  943. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  944. // Convert int16 to int8
  945. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  946. // We got our precious signed bytes, but the order is now wrong
  947. // These AVX2 pack instructions process 16-byte pieces independently
  948. // The following instruction is fixing the order
  949. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  950. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  951. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  952. #else
  953. // Since we don't have in AVX some necessary functions,
  954. // we split the registers in half and call AVX2 analogs from SSE
  955. __m128i ni0 = _mm256_castsi256_si128( i0 );
  956. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  957. __m128i ni2 = _mm256_castsi256_si128( i1 );
  958. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  959. __m128i ni4 = _mm256_castsi256_si128( i2 );
  960. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  961. __m128i ni6 = _mm256_castsi256_si128( i3 );
  962. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  963. // Convert int32 to int16
  964. ni0 = _mm_packs_epi32( ni0, ni1 );
  965. ni2 = _mm_packs_epi32( ni2, ni3 );
  966. ni4 = _mm_packs_epi32( ni4, ni5 );
  967. ni6 = _mm_packs_epi32( ni6, ni7 );
  968. // Convert int16 to int8
  969. ni0 = _mm_packs_epi16( ni0, ni2 );
  970. ni4 = _mm_packs_epi16( ni4, ni6 );
  971. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  972. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  973. #endif
  974. }
  975. #else
  976. // scalar
  977. quantize_row_q8_0_reference(x, y, k);
  978. #endif
  979. }
  980. // reference implementation for deterministic creation of model files
  981. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  982. assert(QK8_1 == 32);
  983. assert(k % QK8_1 == 0);
  984. const int nb = k / QK8_1;
  985. for (int i = 0; i < nb; i++) {
  986. float amax = 0.0f; // absolute max
  987. for (int j = 0; j < QK8_1; j++) {
  988. const float v = x[i*QK8_1 + j];
  989. amax = MAX(amax, fabsf(v));
  990. }
  991. const float d = amax / ((1 << 7) - 1);
  992. const float id = d ? 1.0f/d : 0.0f;
  993. y[i].d = d;
  994. int sum = 0;
  995. for (int j = 0; j < QK8_1/2; ++j) {
  996. const float v0 = x[i*QK8_1 + j]*id;
  997. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  998. y[i].qs[ j] = roundf(v0);
  999. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1000. sum += y[i].qs[ j];
  1001. sum += y[i].qs[QK8_1/2 + j];
  1002. }
  1003. y[i].s = sum*d;
  1004. }
  1005. }
  1006. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1007. assert(k % QK8_1 == 0);
  1008. const int nb = k / QK8_1;
  1009. block_q8_1 * restrict y = vy;
  1010. #if defined(__ARM_NEON)
  1011. for (int i = 0; i < nb; i++) {
  1012. float32x4_t srcv [8];
  1013. float32x4_t asrcv[8];
  1014. float32x4_t amaxv[8];
  1015. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1016. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1017. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1018. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1019. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1020. const float amax = vmaxvq_f32(amaxv[0]);
  1021. const float d = amax / ((1 << 7) - 1);
  1022. const float id = d ? 1.0f/d : 0.0f;
  1023. y[i].d = d;
  1024. int32x4_t accv = vdupq_n_s32(0);
  1025. for (int j = 0; j < 8; j++) {
  1026. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1027. const int32x4_t vi = vcvtnq_s32_f32(v);
  1028. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1029. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1030. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1031. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1032. accv = vaddq_s32(accv, vi);
  1033. }
  1034. y[i].s = d * vaddvq_s32(accv);
  1035. }
  1036. #elif defined(__wasm_simd128__)
  1037. for (int i = 0; i < nb; i++) {
  1038. v128_t srcv [8];
  1039. v128_t asrcv[8];
  1040. v128_t amaxv[8];
  1041. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1042. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1043. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1044. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1045. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1046. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1047. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1048. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1049. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1050. const float d = amax / ((1 << 7) - 1);
  1051. const float id = d ? 1.0f/d : 0.0f;
  1052. y[i].d = d;
  1053. v128_t accv = wasm_i32x4_splat(0);
  1054. for (int j = 0; j < 8; j++) {
  1055. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1056. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1057. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1058. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1059. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1060. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1061. accv = wasm_i32x4_add(accv, vi);
  1062. }
  1063. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1064. wasm_i32x4_extract_lane(accv, 1) +
  1065. wasm_i32x4_extract_lane(accv, 2) +
  1066. wasm_i32x4_extract_lane(accv, 3));
  1067. }
  1068. #elif defined(__AVX2__) || defined(__AVX__)
  1069. for (int i = 0; i < nb; i++) {
  1070. // Load elements into 4 AVX vectors
  1071. __m256 v0 = _mm256_loadu_ps( x );
  1072. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1073. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1074. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1075. x += 32;
  1076. // Compute max(abs(e)) for the block
  1077. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1078. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1079. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1080. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1081. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1082. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1083. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1084. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1085. const float maxScalar = _mm_cvtss_f32( max4 );
  1086. // Quantize these floats
  1087. const float d = maxScalar / 127.f;
  1088. y[i].d = d;
  1089. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1090. const __m256 mul = _mm256_set1_ps( id );
  1091. // Apply the multiplier
  1092. v0 = _mm256_mul_ps( v0, mul );
  1093. v1 = _mm256_mul_ps( v1, mul );
  1094. v2 = _mm256_mul_ps( v2, mul );
  1095. v3 = _mm256_mul_ps( v3, mul );
  1096. // Round to nearest integer
  1097. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1098. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1099. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1100. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1101. // Convert floats to integers
  1102. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1103. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1104. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1105. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1106. #if defined(__AVX2__)
  1107. // Compute the sum of the quants and set y[i].s
  1108. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1109. // Convert int32 to int16
  1110. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1111. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1112. // Convert int16 to int8
  1113. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1114. // We got our precious signed bytes, but the order is now wrong
  1115. // These AVX2 pack instructions process 16-byte pieces independently
  1116. // The following instruction is fixing the order
  1117. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1118. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1119. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1120. #else
  1121. // Since we don't have in AVX some necessary functions,
  1122. // we split the registers in half and call AVX2 analogs from SSE
  1123. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1124. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1125. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1126. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1127. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1128. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1129. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1130. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1131. // Compute the sum of the quants and set y[i].s
  1132. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1133. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1134. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1135. // Convert int32 to int16
  1136. ni0 = _mm_packs_epi32( ni0, ni1 );
  1137. ni2 = _mm_packs_epi32( ni2, ni3 );
  1138. ni4 = _mm_packs_epi32( ni4, ni5 );
  1139. ni6 = _mm_packs_epi32( ni6, ni7 );
  1140. // Convert int16 to int8
  1141. ni0 = _mm_packs_epi16( ni0, ni2 );
  1142. ni4 = _mm_packs_epi16( ni4, ni6 );
  1143. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1144. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1145. #endif
  1146. }
  1147. #else
  1148. // scalar
  1149. quantize_row_q8_1_reference(x, y, k);
  1150. #endif
  1151. }
  1152. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1153. static const int qk = QK4_0;
  1154. assert(k % qk == 0);
  1155. const int nb = k / qk;
  1156. for (int i = 0; i < nb; i++) {
  1157. const float d = GGML_FP16_TO_FP32(x[i].d);
  1158. for (int j = 0; j < qk/2; ++j) {
  1159. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1160. const int x1 = (x[i].qs[j] >> 4) - 8;
  1161. y[i*qk + j + 0 ] = x0*d;
  1162. y[i*qk + j + qk/2] = x1*d;
  1163. }
  1164. }
  1165. }
  1166. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1167. static const int qk = QK4_1;
  1168. assert(k % qk == 0);
  1169. const int nb = k / qk;
  1170. for (int i = 0; i < nb; i++) {
  1171. const float d = GGML_FP16_TO_FP32(x[i].d);
  1172. const float m = GGML_FP16_TO_FP32(x[i].m);
  1173. for (int j = 0; j < qk/2; ++j) {
  1174. const int x0 = (x[i].qs[j] & 0x0F);
  1175. const int x1 = (x[i].qs[j] >> 4);
  1176. y[i*qk + j + 0 ] = x0*d + m;
  1177. y[i*qk + j + qk/2] = x1*d + m;
  1178. }
  1179. }
  1180. }
  1181. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1182. static const int qk = QK5_0;
  1183. assert(k % qk == 0);
  1184. const int nb = k / qk;
  1185. for (int i = 0; i < nb; i++) {
  1186. const float d = GGML_FP16_TO_FP32(x[i].d);
  1187. uint32_t qh;
  1188. memcpy(&qh, x[i].qh, sizeof(qh));
  1189. for (int j = 0; j < qk/2; ++j) {
  1190. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1191. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1192. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1193. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1194. y[i*qk + j + 0 ] = x0*d;
  1195. y[i*qk + j + qk/2] = x1*d;
  1196. }
  1197. }
  1198. }
  1199. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1200. static const int qk = QK5_1;
  1201. assert(k % qk == 0);
  1202. const int nb = k / qk;
  1203. for (int i = 0; i < nb; i++) {
  1204. const float d = GGML_FP16_TO_FP32(x[i].d);
  1205. const float m = GGML_FP16_TO_FP32(x[i].m);
  1206. uint32_t qh;
  1207. memcpy(&qh, x[i].qh, sizeof(qh));
  1208. for (int j = 0; j < qk/2; ++j) {
  1209. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1210. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1211. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1212. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1213. y[i*qk + j + 0 ] = x0*d + m;
  1214. y[i*qk + j + qk/2] = x1*d + m;
  1215. }
  1216. }
  1217. }
  1218. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1219. static const int qk = QK8_0;
  1220. assert(k % qk == 0);
  1221. const int nb = k / qk;
  1222. const block_q8_0 * restrict x = vx;
  1223. for (int i = 0; i < nb; i++) {
  1224. const float d = GGML_FP16_TO_FP32(x[i].d);
  1225. for (int j = 0; j < qk; ++j) {
  1226. y[i*qk + j] = x[i].qs[j]*d;
  1227. }
  1228. }
  1229. }
  1230. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1231. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1232. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1233. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1234. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1235. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1236. [GGML_TYPE_Q4_0] = {
  1237. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1238. .quantize_row_q = quantize_row_q4_0,
  1239. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1240. .quantize_row_q_dot = quantize_row_q8_0,
  1241. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1242. .vec_dot_type = GGML_TYPE_Q8_0,
  1243. },
  1244. [GGML_TYPE_Q4_1] = {
  1245. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1246. .quantize_row_q = quantize_row_q4_1,
  1247. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1248. .quantize_row_q_dot = quantize_row_q8_1,
  1249. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1250. .vec_dot_type = GGML_TYPE_Q8_1,
  1251. },
  1252. [GGML_TYPE_Q5_0] = {
  1253. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1254. .quantize_row_q = quantize_row_q5_0,
  1255. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1256. .quantize_row_q_dot = quantize_row_q8_0,
  1257. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1258. .vec_dot_type = GGML_TYPE_Q8_0,
  1259. },
  1260. [GGML_TYPE_Q5_1] = {
  1261. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1262. .quantize_row_q = quantize_row_q5_1,
  1263. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1264. .quantize_row_q_dot = quantize_row_q8_1,
  1265. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1266. .vec_dot_type = GGML_TYPE_Q8_1,
  1267. },
  1268. [GGML_TYPE_Q8_0] = {
  1269. .dequantize_row_q = dequantize_row_q8_0,
  1270. .quantize_row_q = quantize_row_q8_0,
  1271. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1272. .quantize_row_q_dot = quantize_row_q8_0,
  1273. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1274. .vec_dot_type = GGML_TYPE_Q8_0,
  1275. },
  1276. [GGML_TYPE_Q8_1] = {
  1277. .dequantize_row_q = NULL, // TODO
  1278. .quantize_row_q = quantize_row_q8_1,
  1279. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1280. .quantize_row_q_dot = quantize_row_q8_1,
  1281. .vec_dot_q = NULL, // TODO
  1282. .vec_dot_type = GGML_TYPE_Q8_1,
  1283. },
  1284. };
  1285. // For internal test use
  1286. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1287. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1288. return quantize_fns[i];
  1289. }
  1290. //
  1291. // simd mappings
  1292. //
  1293. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1294. // we then implement the fundamental computation operations below using only these macros
  1295. // adding support for new architectures requires to define the corresponding SIMD macros
  1296. //
  1297. // GGML_F32_STEP / GGML_F16_STEP
  1298. // number of elements to process in a single step
  1299. //
  1300. // GGML_F32_EPR / GGML_F16_EPR
  1301. // number of elements to fit in a single register
  1302. //
  1303. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1304. #define GGML_SIMD
  1305. // F32 NEON
  1306. #define GGML_F32_STEP 16
  1307. #define GGML_F32_EPR 4
  1308. #define GGML_F32x4 float32x4_t
  1309. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1310. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1311. #define GGML_F32x4_LOAD vld1q_f32
  1312. #define GGML_F32x4_STORE vst1q_f32
  1313. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1314. #define GGML_F32x4_ADD vaddq_f32
  1315. #define GGML_F32x4_MUL vmulq_f32
  1316. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1317. #define GGML_F32x4_REDUCE(res, x) \
  1318. { \
  1319. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1320. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1321. } \
  1322. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1323. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1324. } \
  1325. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1326. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1327. } \
  1328. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1329. }
  1330. #define GGML_F32_VEC GGML_F32x4
  1331. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1332. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1333. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1334. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1335. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1336. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1337. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1338. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1339. // F16 NEON
  1340. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1341. #define GGML_F16_STEP 32
  1342. #define GGML_F16_EPR 8
  1343. #define GGML_F16x8 float16x8_t
  1344. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1345. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1346. #define GGML_F16x8_LOAD vld1q_f16
  1347. #define GGML_F16x8_STORE vst1q_f16
  1348. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1349. #define GGML_F16x8_ADD vaddq_f16
  1350. #define GGML_F16x8_MUL vmulq_f16
  1351. #define GGML_F16x8_REDUCE(res, x) \
  1352. { \
  1353. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1354. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1355. } \
  1356. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1357. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1358. } \
  1359. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1360. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1361. } \
  1362. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1363. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1364. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1365. }
  1366. #define GGML_F16_VEC GGML_F16x8
  1367. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1368. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1369. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1370. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1371. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1372. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1373. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1374. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1375. #else
  1376. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1377. // and take advantage of the vcvt_ functions to convert to/from FP16
  1378. #define GGML_F16_STEP 16
  1379. #define GGML_F16_EPR 4
  1380. #define GGML_F32Cx4 float32x4_t
  1381. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1382. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1383. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1384. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1385. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1386. #define GGML_F32Cx4_ADD vaddq_f32
  1387. #define GGML_F32Cx4_MUL vmulq_f32
  1388. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1389. #define GGML_F16_VEC GGML_F32Cx4
  1390. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1391. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1392. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1393. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1394. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1395. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1396. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1397. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1398. #endif
  1399. #elif defined(__AVX__)
  1400. #define GGML_SIMD
  1401. // F32 AVX
  1402. #define GGML_F32_STEP 32
  1403. #define GGML_F32_EPR 8
  1404. #define GGML_F32x8 __m256
  1405. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1406. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1407. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1408. #define GGML_F32x8_STORE _mm256_storeu_ps
  1409. #if defined(__FMA__)
  1410. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1411. #else
  1412. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1413. #endif
  1414. #define GGML_F32x8_ADD _mm256_add_ps
  1415. #define GGML_F32x8_MUL _mm256_mul_ps
  1416. #define GGML_F32x8_REDUCE(res, x) \
  1417. { \
  1418. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1419. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1420. } \
  1421. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1422. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1423. } \
  1424. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1425. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1426. } \
  1427. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1428. _mm256_extractf128_ps(x[0], 1)); \
  1429. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1430. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1431. }
  1432. // TODO: is this optimal ?
  1433. #define GGML_F32_VEC GGML_F32x8
  1434. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1435. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1436. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1437. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1438. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1439. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1440. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1441. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1442. // F16 AVX
  1443. #define GGML_F16_STEP 32
  1444. #define GGML_F16_EPR 8
  1445. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1446. #define GGML_F32Cx8 __m256
  1447. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1448. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1449. #if defined(__F16C__)
  1450. // the _mm256_cvt intrinsics require F16C
  1451. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1452. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1453. #else
  1454. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1455. float tmp[8];
  1456. for (int i = 0; i < 8; i++) {
  1457. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1458. }
  1459. return _mm256_loadu_ps(tmp);
  1460. }
  1461. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1462. float arr[8];
  1463. _mm256_storeu_ps(arr, y);
  1464. for (int i = 0; i < 8; i++)
  1465. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1466. }
  1467. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1468. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1469. #endif
  1470. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1471. #define GGML_F32Cx8_ADD _mm256_add_ps
  1472. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1473. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1474. #define GGML_F16_VEC GGML_F32Cx8
  1475. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1476. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1477. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1478. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1479. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1480. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1481. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1482. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1483. #elif defined(__POWER9_VECTOR__)
  1484. #define GGML_SIMD
  1485. // F32 POWER9
  1486. #define GGML_F32_STEP 32
  1487. #define GGML_F32_EPR 4
  1488. #define GGML_F32x4 vector float
  1489. #define GGML_F32x4_ZERO 0.0f
  1490. #define GGML_F32x4_SET1 vec_splats
  1491. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1492. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1493. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1494. #define GGML_F32x4_ADD vec_add
  1495. #define GGML_F32x4_MUL vec_mul
  1496. #define GGML_F32x4_REDUCE(res, x) \
  1497. { \
  1498. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1499. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1500. } \
  1501. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1502. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1503. } \
  1504. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1505. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1506. } \
  1507. res = vec_extract(x[0], 0) + \
  1508. vec_extract(x[0], 1) + \
  1509. vec_extract(x[0], 2) + \
  1510. vec_extract(x[0], 3); \
  1511. }
  1512. #define GGML_F32_VEC GGML_F32x4
  1513. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1514. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1515. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1516. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1517. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1518. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1519. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1520. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1521. // F16 POWER9
  1522. #define GGML_F16_STEP GGML_F32_STEP
  1523. #define GGML_F16_EPR GGML_F32_EPR
  1524. #define GGML_F16_VEC GGML_F32x4
  1525. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1526. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1527. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1528. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1529. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1530. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1531. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1532. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1533. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1534. #define GGML_F16_VEC_STORE(p, r, i) \
  1535. if (i & 0x1) \
  1536. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1537. r[i - GGML_ENDIAN_BYTE(0)]), \
  1538. 0, p - GGML_F16_EPR)
  1539. #elif defined(__wasm_simd128__)
  1540. #define GGML_SIMD
  1541. // F32 WASM
  1542. #define GGML_F32_STEP 16
  1543. #define GGML_F32_EPR 4
  1544. #define GGML_F32x4 v128_t
  1545. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1546. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1547. #define GGML_F32x4_LOAD wasm_v128_load
  1548. #define GGML_F32x4_STORE wasm_v128_store
  1549. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1550. #define GGML_F32x4_ADD wasm_f32x4_add
  1551. #define GGML_F32x4_MUL wasm_f32x4_mul
  1552. #define GGML_F32x4_REDUCE(res, x) \
  1553. { \
  1554. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1555. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1556. } \
  1557. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1558. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1559. } \
  1560. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1561. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1562. } \
  1563. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1564. wasm_f32x4_extract_lane(x[0], 1) + \
  1565. wasm_f32x4_extract_lane(x[0], 2) + \
  1566. wasm_f32x4_extract_lane(x[0], 3); \
  1567. }
  1568. #define GGML_F32_VEC GGML_F32x4
  1569. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1570. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1571. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1572. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1573. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1574. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1575. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1576. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1577. // F16 WASM
  1578. #define GGML_F16_STEP 16
  1579. #define GGML_F16_EPR 4
  1580. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1581. float tmp[4];
  1582. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1583. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1584. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1585. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1586. return wasm_v128_load(tmp);
  1587. }
  1588. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1589. float tmp[4];
  1590. wasm_v128_store(tmp, x);
  1591. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1592. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1593. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1594. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1595. }
  1596. #define GGML_F16x4 v128_t
  1597. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1598. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1599. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1600. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1601. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1602. #define GGML_F16x4_ADD wasm_f32x4_add
  1603. #define GGML_F16x4_MUL wasm_f32x4_mul
  1604. #define GGML_F16x4_REDUCE(res, x) \
  1605. { \
  1606. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1607. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1608. } \
  1609. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1610. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1611. } \
  1612. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1613. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1614. } \
  1615. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1616. wasm_f32x4_extract_lane(x[0], 1) + \
  1617. wasm_f32x4_extract_lane(x[0], 2) + \
  1618. wasm_f32x4_extract_lane(x[0], 3); \
  1619. }
  1620. #define GGML_F16_VEC GGML_F16x4
  1621. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1629. #elif defined(__SSE3__)
  1630. #define GGML_SIMD
  1631. // F32 SSE
  1632. #define GGML_F32_STEP 32
  1633. #define GGML_F32_EPR 4
  1634. #define GGML_F32x4 __m128
  1635. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1636. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1637. #define GGML_F32x4_LOAD _mm_loadu_ps
  1638. #define GGML_F32x4_STORE _mm_storeu_ps
  1639. #if defined(__FMA__)
  1640. // TODO: Does this work?
  1641. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1642. #else
  1643. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1644. #endif
  1645. #define GGML_F32x4_ADD _mm_add_ps
  1646. #define GGML_F32x4_MUL _mm_mul_ps
  1647. #define GGML_F32x4_REDUCE(res, x) \
  1648. { \
  1649. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1650. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1651. } \
  1652. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1653. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1654. } \
  1655. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1656. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1657. } \
  1658. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1659. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1660. }
  1661. // TODO: is this optimal ?
  1662. #define GGML_F32_VEC GGML_F32x4
  1663. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1664. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1665. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1666. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1667. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1668. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1669. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1670. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1671. // F16 SSE
  1672. #define GGML_F16_STEP 32
  1673. #define GGML_F16_EPR 4
  1674. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1675. float tmp[4];
  1676. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1677. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1678. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1679. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1680. return _mm_loadu_ps(tmp);
  1681. }
  1682. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1683. float arr[4];
  1684. _mm_storeu_ps(arr, y);
  1685. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1686. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1687. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1688. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1689. }
  1690. #define GGML_F32Cx4 __m128
  1691. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1692. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1693. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1694. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1695. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1696. #define GGML_F32Cx4_ADD _mm_add_ps
  1697. #define GGML_F32Cx4_MUL _mm_mul_ps
  1698. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1699. #define GGML_F16_VEC GGML_F32Cx4
  1700. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1701. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1702. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1703. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1704. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1705. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1706. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1707. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1708. #endif
  1709. // GGML_F32_ARR / GGML_F16_ARR
  1710. // number of registers to use per step
  1711. #ifdef GGML_SIMD
  1712. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1713. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1714. #endif
  1715. //
  1716. // fundamental operations
  1717. //
  1718. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1719. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1720. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1721. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1722. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1723. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1724. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1725. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1726. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1727. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1728. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1729. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1730. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1731. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1732. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1733. #ifdef GGML_SIMD
  1734. float sumf = 0.0f;
  1735. const int np = (n & ~(GGML_F32_STEP - 1));
  1736. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1737. GGML_F32_VEC ax[GGML_F32_ARR];
  1738. GGML_F32_VEC ay[GGML_F32_ARR];
  1739. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1740. for (int j = 0; j < GGML_F32_ARR; j++) {
  1741. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1742. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1743. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1744. }
  1745. }
  1746. // reduce sum0..sum3 to sum0
  1747. GGML_F32_VEC_REDUCE(sumf, sum);
  1748. // leftovers
  1749. for (int i = np; i < n; ++i) {
  1750. sumf += x[i]*y[i];
  1751. }
  1752. #else
  1753. // scalar
  1754. ggml_float sumf = 0.0;
  1755. for (int i = 0; i < n; ++i) {
  1756. sumf += (ggml_float)(x[i]*y[i]);
  1757. }
  1758. #endif
  1759. *s = sumf;
  1760. }
  1761. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1762. ggml_float sumf = 0.0;
  1763. #if defined(GGML_SIMD)
  1764. const int np = (n & ~(GGML_F16_STEP - 1));
  1765. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1766. GGML_F16_VEC ax[GGML_F16_ARR];
  1767. GGML_F16_VEC ay[GGML_F16_ARR];
  1768. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1769. for (int j = 0; j < GGML_F16_ARR; j++) {
  1770. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1771. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1772. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1773. }
  1774. }
  1775. // reduce sum0..sum3 to sum0
  1776. GGML_F16_VEC_REDUCE(sumf, sum);
  1777. // leftovers
  1778. for (int i = np; i < n; ++i) {
  1779. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1780. }
  1781. #else
  1782. for (int i = 0; i < n; ++i) {
  1783. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1784. }
  1785. #endif
  1786. *s = sumf;
  1787. }
  1788. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1789. const int qk = QK8_0;
  1790. const int nb = n / qk;
  1791. assert(n % qk == 0);
  1792. assert(nb % 2 == 0);
  1793. const block_q4_0 * restrict x = vx;
  1794. const block_q8_0 * restrict y = vy;
  1795. #if defined(__ARM_NEON)
  1796. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1797. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1798. for (int i = 0; i < nb; i += 2) {
  1799. const block_q4_0 * restrict x0 = &x[i + 0];
  1800. const block_q4_0 * restrict x1 = &x[i + 1];
  1801. const block_q8_0 * restrict y0 = &y[i + 0];
  1802. const block_q8_0 * restrict y1 = &y[i + 1];
  1803. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1804. const int8x16_t s8b = vdupq_n_s8(0x8);
  1805. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1806. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1807. // 4-bit -> 8-bit
  1808. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1809. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1810. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1811. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1812. // sub 8
  1813. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1814. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1815. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1816. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1817. // load y
  1818. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1819. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1820. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1821. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1822. #if defined(__ARM_FEATURE_DOTPROD)
  1823. // dot product into int32x4_t
  1824. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1825. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1826. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1827. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1828. #else
  1829. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1830. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1831. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1832. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1833. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1834. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1835. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1836. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1837. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1838. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1839. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1840. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1841. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1843. #endif
  1844. }
  1845. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1846. #elif defined(__AVX2__)
  1847. // Initialize accumulator with zeros
  1848. __m256 acc = _mm256_setzero_ps();
  1849. // Main loop
  1850. for (int i = 0; i < nb; ++i) {
  1851. /* Compute combined scale for the block */
  1852. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1853. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1854. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1855. const __m256i off = _mm256_set1_epi8( 8 );
  1856. bx = _mm256_sub_epi8( bx, off );
  1857. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1858. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1859. /* Multiply q with scale and accumulate */
  1860. acc = _mm256_fmadd_ps( d, q, acc );
  1861. }
  1862. *s = hsum_float_8(acc);
  1863. #elif defined(__AVX__)
  1864. // Initialize accumulator with zeros
  1865. __m256 acc = _mm256_setzero_ps();
  1866. // Main loop
  1867. for (int i = 0; i < nb; ++i) {
  1868. // Compute combined scale for the block
  1869. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1870. const __m128i lowMask = _mm_set1_epi8(0xF);
  1871. const __m128i off = _mm_set1_epi8(8);
  1872. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1873. __m128i bx = _mm_and_si128(lowMask, tmp);
  1874. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1875. bx = _mm_sub_epi8(bx, off);
  1876. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1877. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1878. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1879. bx = _mm_sub_epi8(bx, off);
  1880. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1881. // Convert int32_t to float
  1882. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1883. // Apply the scale, and accumulate
  1884. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1885. }
  1886. *s = hsum_float_8(acc);
  1887. #elif defined(__SSSE3__)
  1888. // set constants
  1889. const __m128i lowMask = _mm_set1_epi8(0xF);
  1890. const __m128i off = _mm_set1_epi8(8);
  1891. // Initialize accumulator with zeros
  1892. __m128 acc_0 = _mm_setzero_ps();
  1893. __m128 acc_1 = _mm_setzero_ps();
  1894. __m128 acc_2 = _mm_setzero_ps();
  1895. __m128 acc_3 = _mm_setzero_ps();
  1896. // First round without accumulation
  1897. {
  1898. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1899. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1900. // Compute combined scale for the block 0 and 1
  1901. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1902. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1903. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1904. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1905. bx_0 = _mm_sub_epi8(bx_0, off);
  1906. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1907. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1908. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1909. bx_1 = _mm_sub_epi8(bx_1, off);
  1910. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1911. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1912. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1913. // Compute combined scale for the block 2 and 3
  1914. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1915. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1916. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1917. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1918. bx_2 = _mm_sub_epi8(bx_2, off);
  1919. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1920. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1921. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1922. bx_3 = _mm_sub_epi8(bx_3, off);
  1923. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1924. // Convert int32_t to float
  1925. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1926. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1927. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1928. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1929. // Apply the scale
  1930. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1931. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1932. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1933. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1934. }
  1935. // Main loop
  1936. for (int i = 2; i < nb; i+=2) {
  1937. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1938. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1939. // Compute combined scale for the block 0 and 1
  1940. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1941. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1942. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1943. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1944. bx_0 = _mm_sub_epi8(bx_0, off);
  1945. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1946. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1947. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1948. bx_1 = _mm_sub_epi8(bx_1, off);
  1949. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1950. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1951. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1952. // Compute combined scale for the block 2 and 3
  1953. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  1954. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1955. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1956. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1957. bx_2 = _mm_sub_epi8(bx_2, off);
  1958. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1959. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1960. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1961. bx_3 = _mm_sub_epi8(bx_3, off);
  1962. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1963. // Convert int32_t to float
  1964. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1965. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1966. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1967. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1968. // Apply the scale
  1969. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1970. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1971. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1972. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1973. // Acummulate
  1974. acc_0 = _mm_add_ps(p0_d, acc_0);
  1975. acc_1 = _mm_add_ps(p1_d, acc_1);
  1976. acc_2 = _mm_add_ps(p2_d, acc_2);
  1977. acc_3 = _mm_add_ps(p3_d, acc_3);
  1978. }
  1979. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1980. #else
  1981. // scalar
  1982. float sumf = 0.0;
  1983. for (int i = 0; i < nb; i++) {
  1984. int sumi = 0;
  1985. for (int j = 0; j < qk/2; ++j) {
  1986. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1987. const int v1 = (x[i].qs[j] >> 4) - 8;
  1988. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1989. }
  1990. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  1991. }
  1992. *s = sumf;
  1993. #endif
  1994. }
  1995. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1996. const int qk = QK8_1;
  1997. const int nb = n / qk;
  1998. assert(n % qk == 0);
  1999. assert(nb % 2 == 0);
  2000. const block_q4_1 * restrict x = vx;
  2001. const block_q8_1 * restrict y = vy;
  2002. // TODO: add WASM SIMD
  2003. #if defined(__ARM_NEON)
  2004. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2005. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2006. float summs = 0;
  2007. for (int i = 0; i < nb; i += 2) {
  2008. const block_q4_1 * restrict x0 = &x[i + 0];
  2009. const block_q4_1 * restrict x1 = &x[i + 1];
  2010. const block_q8_1 * restrict y0 = &y[i + 0];
  2011. const block_q8_1 * restrict y1 = &y[i + 1];
  2012. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2013. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2014. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2015. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2016. // 4-bit -> 8-bit
  2017. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2018. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2019. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2020. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2021. // load y
  2022. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2023. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2024. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2025. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2026. #if defined(__ARM_FEATURE_DOTPROD)
  2027. // dot product into int32x4_t
  2028. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2029. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2030. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2031. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2032. #else
  2033. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2034. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2035. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2036. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2037. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2038. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2039. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2040. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2041. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2042. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2043. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2044. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2045. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2046. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2047. #endif
  2048. }
  2049. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2050. #elif defined(__AVX2__) || defined(__AVX__)
  2051. // Initialize accumulator with zeros
  2052. __m256 acc = _mm256_setzero_ps();
  2053. float summs = 0;
  2054. // Main loop
  2055. for (int i = 0; i < nb; ++i) {
  2056. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2057. const float d1 = y[i].d;
  2058. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2059. const __m256 d0v = _mm256_set1_ps( d0 );
  2060. const __m256 d1v = _mm256_set1_ps( d1 );
  2061. // Compute combined scales
  2062. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2063. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2064. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2065. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2066. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2067. // Accumulate d0*d1*x*y
  2068. #if defined(__AVX2__)
  2069. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2070. #else
  2071. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2072. #endif
  2073. }
  2074. *s = hsum_float_8(acc) + summs;
  2075. #else
  2076. // scalar
  2077. float sumf = 0.0;
  2078. for (int i = 0; i < nb; i++) {
  2079. int sumi = 0;
  2080. for (int j = 0; j < qk/2; ++j) {
  2081. const int v0 = (x[i].qs[j] & 0x0F);
  2082. const int v1 = (x[i].qs[j] >> 4);
  2083. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2084. }
  2085. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2086. }
  2087. *s = sumf;
  2088. #endif
  2089. }
  2090. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2091. const int qk = QK8_0;
  2092. const int nb = n / qk;
  2093. assert(n % qk == 0);
  2094. assert(nb % 2 == 0);
  2095. assert(qk == QK5_0);
  2096. const block_q5_0 * restrict x = vx;
  2097. const block_q8_0 * restrict y = vy;
  2098. #if defined(__ARM_NEON)
  2099. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2100. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2101. uint32_t qh0;
  2102. uint32_t qh1;
  2103. uint64_t tmp0[4];
  2104. uint64_t tmp1[4];
  2105. for (int i = 0; i < nb; i += 2) {
  2106. const block_q5_0 * restrict x0 = &x[i];
  2107. const block_q5_0 * restrict x1 = &x[i + 1];
  2108. const block_q8_0 * restrict y0 = &y[i];
  2109. const block_q8_0 * restrict y1 = &y[i + 1];
  2110. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2111. // extract the 5th bit via lookup table ((!b) << 4)
  2112. memcpy(&qh0, x0->qh, sizeof(qh0));
  2113. memcpy(&qh1, x1->qh, sizeof(qh1));
  2114. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2115. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2116. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2117. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2118. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2119. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2120. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2121. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2122. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2123. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2124. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2125. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2126. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2127. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2128. // 4-bit -> 8-bit
  2129. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2130. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2131. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2132. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2133. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2134. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2135. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2136. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2137. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2138. // load y
  2139. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2140. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2141. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2142. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2143. #if defined(__ARM_FEATURE_DOTPROD)
  2144. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2145. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2146. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2147. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2148. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2149. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2150. #else
  2151. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2152. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2153. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2154. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2155. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2156. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2157. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2158. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2159. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2160. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2161. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2162. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2163. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2164. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2165. #endif
  2166. }
  2167. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2168. #elif defined(__wasm_simd128__)
  2169. v128_t sumv = wasm_f32x4_splat(0.0f);
  2170. uint32_t qh;
  2171. uint64_t tmp[4];
  2172. // TODO: check if unrolling this is better
  2173. for (int i = 0; i < nb; ++i) {
  2174. const block_q5_0 * restrict x0 = &x[i];
  2175. const block_q8_0 * restrict y0 = &y[i];
  2176. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2177. // extract the 5th bit
  2178. memcpy(&qh, x0->qh, sizeof(qh));
  2179. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2180. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2181. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2182. tmp[3] = table_b2b_1[(qh >> 24) ];
  2183. const v128_t qhl = wasm_v128_load(tmp + 0);
  2184. const v128_t qhh = wasm_v128_load(tmp + 2);
  2185. const v128_t v0 = wasm_v128_load(x0->qs);
  2186. // 4-bit -> 8-bit
  2187. const v128_t v0l = wasm_v128_and (v0, m4b);
  2188. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2189. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2190. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2191. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2192. // load y
  2193. const v128_t v1l = wasm_v128_load(y0->qs);
  2194. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2195. // int8x16 -> int16x8
  2196. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2197. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2198. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2199. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2200. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2201. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2202. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2203. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2204. // dot product
  2205. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2206. wasm_i32x4_add(
  2207. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2208. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2209. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2210. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2211. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2212. }
  2213. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2214. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2215. #elif defined(__AVX2__)
  2216. // Initialize accumulator with zeros
  2217. __m256 acc = _mm256_setzero_ps();
  2218. // Main loop
  2219. for (int i = 0; i < nb; i++) {
  2220. /* Compute combined scale for the block */
  2221. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2222. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2223. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2224. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2225. bx = _mm256_or_si256(bx, bxhi);
  2226. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2227. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2228. /* Multiply q with scale and accumulate */
  2229. acc = _mm256_fmadd_ps(d, q, acc);
  2230. }
  2231. *s = hsum_float_8(acc);
  2232. #elif defined(__AVX__)
  2233. // Initialize accumulator with zeros
  2234. __m256 acc = _mm256_setzero_ps();
  2235. __m128i mask = _mm_set1_epi8((char)0xF0);
  2236. // Main loop
  2237. for (int i = 0; i < nb; i++) {
  2238. /* Compute combined scale for the block */
  2239. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2240. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2241. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2242. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2243. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2244. bxhil = _mm_andnot_si128(bxhil, mask);
  2245. bxhih = _mm_andnot_si128(bxhih, mask);
  2246. __m128i bxl = _mm256_castsi256_si128(bx);
  2247. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2248. bxl = _mm_or_si128(bxl, bxhil);
  2249. bxh = _mm_or_si128(bxh, bxhih);
  2250. bx = _mm256_set_m128i(bxh, bxl);
  2251. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2252. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2253. /* Multiply q with scale and accumulate */
  2254. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2255. }
  2256. *s = hsum_float_8(acc);
  2257. #else
  2258. // scalar
  2259. float sumf = 0.0;
  2260. for (int i = 0; i < nb; i++) {
  2261. uint32_t qh;
  2262. memcpy(&qh, x[i].qh, sizeof(qh));
  2263. int sumi = 0;
  2264. for (int j = 0; j < qk/2; ++j) {
  2265. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2266. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2267. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2268. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2269. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2270. }
  2271. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2272. }
  2273. *s = sumf;
  2274. #endif
  2275. }
  2276. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2277. const int qk = QK8_1;
  2278. const int nb = n / qk;
  2279. assert(n % qk == 0);
  2280. assert(nb % 2 == 0);
  2281. assert(qk == QK5_1);
  2282. const block_q5_1 * restrict x = vx;
  2283. const block_q8_1 * restrict y = vy;
  2284. #if defined(__ARM_NEON)
  2285. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2286. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2287. float summs0 = 0.0f;
  2288. float summs1 = 0.0f;
  2289. uint32_t qh0;
  2290. uint32_t qh1;
  2291. uint64_t tmp0[4];
  2292. uint64_t tmp1[4];
  2293. for (int i = 0; i < nb; i += 2) {
  2294. const block_q5_1 * restrict x0 = &x[i];
  2295. const block_q5_1 * restrict x1 = &x[i + 1];
  2296. const block_q8_1 * restrict y0 = &y[i];
  2297. const block_q8_1 * restrict y1 = &y[i + 1];
  2298. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2299. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2300. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2301. // extract the 5th bit via lookup table ((b) << 4)
  2302. memcpy(&qh0, x0->qh, sizeof(qh0));
  2303. memcpy(&qh1, x1->qh, sizeof(qh1));
  2304. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2305. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2306. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2307. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2308. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2309. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2310. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2311. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2312. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2313. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2314. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2315. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2316. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2317. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2318. // 4-bit -> 8-bit
  2319. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2320. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2321. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2322. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2323. // add high bit
  2324. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2325. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2326. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2327. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2328. // load y
  2329. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2330. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2331. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2332. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2333. #if defined(__ARM_FEATURE_DOTPROD)
  2334. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2335. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2336. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2338. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2339. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2340. #else
  2341. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2342. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2343. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2344. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2345. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2346. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2347. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2348. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2349. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2350. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2351. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2352. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2353. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2354. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2355. #endif
  2356. }
  2357. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2358. #elif defined(__wasm_simd128__)
  2359. v128_t sumv = wasm_f32x4_splat(0.0f);
  2360. float summs = 0.0f;
  2361. uint32_t qh;
  2362. uint64_t tmp[4];
  2363. // TODO: check if unrolling this is better
  2364. for (int i = 0; i < nb; ++i) {
  2365. const block_q5_1 * restrict x0 = &x[i];
  2366. const block_q8_1 * restrict y0 = &y[i];
  2367. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2368. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2369. // extract the 5th bit
  2370. memcpy(&qh, x0->qh, sizeof(qh));
  2371. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2372. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2373. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2374. tmp[3] = table_b2b_0[(qh >> 24) ];
  2375. const v128_t qhl = wasm_v128_load(tmp + 0);
  2376. const v128_t qhh = wasm_v128_load(tmp + 2);
  2377. const v128_t v0 = wasm_v128_load(x0->qs);
  2378. // 4-bit -> 8-bit
  2379. const v128_t v0l = wasm_v128_and (v0, m4b);
  2380. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2381. // add high bit
  2382. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2383. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2384. // load y
  2385. const v128_t v1l = wasm_v128_load(y0->qs);
  2386. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2387. // int8x16 -> int16x8
  2388. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2389. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2390. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2391. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2392. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2393. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2394. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2395. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2396. // dot product
  2397. sumv = wasm_f32x4_add(sumv,
  2398. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2399. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2400. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2401. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2402. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2403. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2404. }
  2405. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2406. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2407. #elif defined(__AVX2__)
  2408. // Initialize accumulator with zeros
  2409. __m256 acc = _mm256_setzero_ps();
  2410. float summs = 0.0f;
  2411. // Main loop
  2412. for (int i = 0; i < nb; i++) {
  2413. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2414. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2415. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2416. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2417. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2418. bx = _mm256_or_si256(bx, bxhi);
  2419. const __m256 dy = _mm256_set1_ps(y[i].d);
  2420. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2421. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2422. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2423. }
  2424. *s = hsum_float_8(acc) + summs;
  2425. #elif defined(__AVX__)
  2426. // Initialize accumulator with zeros
  2427. __m256 acc = _mm256_setzero_ps();
  2428. __m128i mask = _mm_set1_epi8(0x10);
  2429. float summs = 0.0f;
  2430. // Main loop
  2431. for (int i = 0; i < nb; i++) {
  2432. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2433. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2434. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2435. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2436. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2437. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2438. bxhil = _mm_and_si128(bxhil, mask);
  2439. bxhih = _mm_and_si128(bxhih, mask);
  2440. __m128i bxl = _mm256_castsi256_si128(bx);
  2441. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2442. bxl = _mm_or_si128(bxl, bxhil);
  2443. bxh = _mm_or_si128(bxh, bxhih);
  2444. bx = _mm256_set_m128i(bxh, bxl);
  2445. const __m256 dy = _mm256_set1_ps(y[i].d);
  2446. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2447. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2448. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2449. }
  2450. *s = hsum_float_8(acc) + summs;
  2451. #else
  2452. // scalar
  2453. float sumf = 0.0;
  2454. for (int i = 0; i < nb; i++) {
  2455. uint32_t qh;
  2456. memcpy(&qh, x[i].qh, sizeof(qh));
  2457. int sumi = 0;
  2458. for (int j = 0; j < qk/2; ++j) {
  2459. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2460. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2461. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2462. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2463. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2464. }
  2465. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2466. }
  2467. *s = sumf;
  2468. #endif
  2469. }
  2470. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2471. const int qk = QK8_0;
  2472. const int nb = n / qk;
  2473. assert(n % qk == 0);
  2474. assert(nb % 2 == 0);
  2475. const block_q8_0 * restrict x = vx;
  2476. const block_q8_0 * restrict y = vy;
  2477. #if defined(__ARM_NEON)
  2478. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2479. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2480. for (int i = 0; i < nb; i += 2) {
  2481. const block_q8_0 * restrict x0 = &x[i + 0];
  2482. const block_q8_0 * restrict x1 = &x[i + 1];
  2483. const block_q8_0 * restrict y0 = &y[i + 0];
  2484. const block_q8_0 * restrict y1 = &y[i + 1];
  2485. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2486. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2487. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2488. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2489. // load y
  2490. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2491. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2492. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2493. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2494. #if defined(__ARM_FEATURE_DOTPROD)
  2495. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2496. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2497. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2498. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2499. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2500. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2501. #else
  2502. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2503. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2504. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2505. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2506. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2507. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2508. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2509. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2510. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2511. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2512. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2513. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2514. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2515. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2516. #endif
  2517. }
  2518. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2519. #elif defined(__AVX2__) || defined(__AVX__)
  2520. // Initialize accumulator with zeros
  2521. __m256 acc = _mm256_setzero_ps();
  2522. // Main loop
  2523. for (int i = 0; i < nb; ++i) {
  2524. // Compute combined scale for the block
  2525. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2526. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2527. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2528. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2529. // Multiply q with scale and accumulate
  2530. #if defined(__AVX2__)
  2531. acc = _mm256_fmadd_ps( d, q, acc );
  2532. #else
  2533. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2534. #endif
  2535. }
  2536. *s = hsum_float_8(acc);
  2537. #else
  2538. // scalar
  2539. float sumf = 0.0;
  2540. for (int i = 0; i < nb; i++) {
  2541. int sumi = 0;
  2542. for (int j = 0; j < qk; j++) {
  2543. sumi += x[i].qs[j]*y[i].qs[j];
  2544. }
  2545. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2546. }
  2547. *s = sumf;
  2548. #endif
  2549. }
  2550. // compute GGML_VEC_DOT_UNROLL dot products at once
  2551. // xs - x row stride in bytes
  2552. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2553. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2554. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2555. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2556. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2557. }
  2558. #if defined(GGML_SIMD)
  2559. const int np = (n & ~(GGML_F16_STEP - 1));
  2560. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2561. GGML_F16_VEC ax[GGML_F16_ARR];
  2562. GGML_F16_VEC ay[GGML_F16_ARR];
  2563. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2564. for (int j = 0; j < GGML_F16_ARR; j++) {
  2565. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2566. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2567. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2568. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2569. }
  2570. }
  2571. }
  2572. // reduce sum0..sum3 to sum0
  2573. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2574. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2575. }
  2576. // leftovers
  2577. for (int i = np; i < n; ++i) {
  2578. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2579. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2580. }
  2581. }
  2582. #else
  2583. for (int i = 0; i < n; ++i) {
  2584. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2585. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2586. }
  2587. }
  2588. #endif
  2589. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2590. s[i] = sumf[i];
  2591. }
  2592. }
  2593. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2594. #if defined(GGML_SIMD)
  2595. const int np = (n & ~(GGML_F32_STEP - 1));
  2596. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2597. GGML_F32_VEC ax[GGML_F32_ARR];
  2598. GGML_F32_VEC ay[GGML_F32_ARR];
  2599. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2600. for (int j = 0; j < GGML_F32_ARR; j++) {
  2601. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2602. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2603. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2604. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2605. }
  2606. }
  2607. // leftovers
  2608. for (int i = np; i < n; ++i) {
  2609. y[i] += x[i]*v;
  2610. }
  2611. #else
  2612. // scalar
  2613. for (int i = 0; i < n; ++i) {
  2614. y[i] += x[i]*v;
  2615. }
  2616. #endif
  2617. }
  2618. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2619. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2620. #if defined(GGML_SIMD)
  2621. const int np = (n & ~(GGML_F32_STEP - 1));
  2622. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2623. GGML_F32_VEC ay[GGML_F32_ARR];
  2624. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2625. for (int j = 0; j < GGML_F32_ARR; j++) {
  2626. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2627. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2628. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2629. }
  2630. }
  2631. // leftovers
  2632. for (int i = np; i < n; ++i) {
  2633. y[i] *= v;
  2634. }
  2635. #else
  2636. // scalar
  2637. for (int i = 0; i < n; ++i) {
  2638. y[i] *= v;
  2639. }
  2640. #endif
  2641. }
  2642. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2643. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2644. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2645. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2646. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2647. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2648. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2649. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2650. static const float GELU_COEF_A = 0.044715f;
  2651. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2652. inline static float ggml_gelu_f32(float x) {
  2653. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2654. }
  2655. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2656. const uint16_t * i16 = (const uint16_t *) x;
  2657. for (int i = 0; i < n; ++i) {
  2658. y[i] = table_gelu_f16[i16[i]];
  2659. }
  2660. }
  2661. #ifdef GGML_GELU_FP16
  2662. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2663. uint16_t t;
  2664. for (int i = 0; i < n; ++i) {
  2665. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2666. memcpy(&t, &fp16, sizeof(uint16_t));
  2667. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2668. }
  2669. }
  2670. #else
  2671. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2672. for (int i = 0; i < n; ++i) {
  2673. y[i] = ggml_gelu_f32(x[i]);
  2674. }
  2675. }
  2676. #endif
  2677. // Sigmoid Linear Unit (SiLU) function
  2678. inline static float ggml_silu_f32(float x) {
  2679. return x/(1.0f + expf(-x));
  2680. }
  2681. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2682. // const uint16_t * i16 = (const uint16_t *) x;
  2683. // for (int i = 0; i < n; ++i) {
  2684. // y[i] = table_silu_f16[i16[i]];
  2685. // }
  2686. //}
  2687. #ifdef GGML_SILU_FP16
  2688. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2689. uint16_t t;
  2690. for (int i = 0; i < n; ++i) {
  2691. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2692. memcpy(&t, &fp16, sizeof(uint16_t));
  2693. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2694. }
  2695. }
  2696. #else
  2697. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2698. for (int i = 0; i < n; ++i) {
  2699. y[i] = ggml_silu_f32(x[i]);
  2700. }
  2701. }
  2702. #endif
  2703. inline static float ggml_silu_backward_f32(float x, float dy) {
  2704. const float s = 1.0f/(1.0f + expf(-x));
  2705. return dy*s*(1.0f + x*(1.0f - s));
  2706. }
  2707. #ifdef GGML_SILU_FP16
  2708. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2709. for (int i = 0; i < n; ++i) {
  2710. // we did not use x[i] to compute forward silu but its f16 equivalent
  2711. // take derivative at f16 of x[i]:
  2712. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2713. float usedx = GGML_FP16_TO_FP32(fp16);
  2714. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2715. }
  2716. }
  2717. #else
  2718. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2719. for (int i = 0; i < n; ++i) {
  2720. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2721. }
  2722. }
  2723. #endif
  2724. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2725. #ifndef GGML_USE_ACCELERATE
  2726. ggml_float sum = 0.0;
  2727. for (int i = 0; i < n; ++i) {
  2728. sum += (ggml_float)x[i];
  2729. }
  2730. *s = sum;
  2731. #else
  2732. vDSP_sve(x, 1, s, n);
  2733. #endif
  2734. }
  2735. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2736. ggml_float sum = 0.0;
  2737. for (int i = 0; i < n; ++i) {
  2738. sum += (ggml_float)x[i];
  2739. }
  2740. *s = sum;
  2741. }
  2742. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2743. #ifndef GGML_USE_ACCELERATE
  2744. float max = -INFINITY;
  2745. for (int i = 0; i < n; ++i) {
  2746. max = MAX(max, x[i]);
  2747. }
  2748. *s = max;
  2749. #else
  2750. vDSP_maxv(x, 1, s, n);
  2751. #endif
  2752. }
  2753. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2754. ggml_vec_norm_f32(n, s, x);
  2755. *s = 1.f/(*s);
  2756. }
  2757. //
  2758. // logging
  2759. //
  2760. #if (GGML_DEBUG >= 1)
  2761. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2762. #else
  2763. #define GGML_PRINT_DEBUG(...)
  2764. #endif
  2765. #if (GGML_DEBUG >= 5)
  2766. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2767. #else
  2768. #define GGML_PRINT_DEBUG_5(...)
  2769. #endif
  2770. #if (GGML_DEBUG >= 10)
  2771. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2772. #else
  2773. #define GGML_PRINT_DEBUG_10(...)
  2774. #endif
  2775. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2776. //
  2777. // data types
  2778. //
  2779. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2780. [GGML_TYPE_F32] = 1,
  2781. [GGML_TYPE_F16] = 1,
  2782. [GGML_TYPE_Q4_0] = QK4_0,
  2783. [GGML_TYPE_Q4_1] = QK4_1,
  2784. [GGML_TYPE_Q5_0] = QK5_0,
  2785. [GGML_TYPE_Q5_1] = QK5_1,
  2786. [GGML_TYPE_Q8_0] = QK8_0,
  2787. [GGML_TYPE_Q8_1] = QK8_1,
  2788. [GGML_TYPE_I8] = 1,
  2789. [GGML_TYPE_I16] = 1,
  2790. [GGML_TYPE_I32] = 1,
  2791. };
  2792. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2793. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2794. [GGML_TYPE_F32] = sizeof(float),
  2795. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2796. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2797. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2798. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2799. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2800. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2801. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2802. [GGML_TYPE_I8] = sizeof(int8_t),
  2803. [GGML_TYPE_I16] = sizeof(int16_t),
  2804. [GGML_TYPE_I32] = sizeof(int32_t),
  2805. };
  2806. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2807. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2808. [GGML_TYPE_F32] = "f32",
  2809. [GGML_TYPE_F16] = "f16",
  2810. [GGML_TYPE_Q4_0] = "q4_0",
  2811. [GGML_TYPE_Q4_1] = "q4_1",
  2812. [GGML_TYPE_Q5_0] = "q5_0",
  2813. [GGML_TYPE_Q5_1] = "q5_1",
  2814. [GGML_TYPE_Q8_0] = "q8_0",
  2815. [GGML_TYPE_Q8_1] = "q8_1",
  2816. [GGML_TYPE_I8] = "i8",
  2817. [GGML_TYPE_I16] = "i16",
  2818. [GGML_TYPE_I32] = "i32",
  2819. };
  2820. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2821. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2822. [GGML_TYPE_F32] = false,
  2823. [GGML_TYPE_F16] = false,
  2824. [GGML_TYPE_Q4_0] = true,
  2825. [GGML_TYPE_Q4_1] = true,
  2826. [GGML_TYPE_Q5_0] = true,
  2827. [GGML_TYPE_Q5_1] = true,
  2828. [GGML_TYPE_Q8_0] = true,
  2829. [GGML_TYPE_Q8_1] = true,
  2830. [GGML_TYPE_I8] = false,
  2831. [GGML_TYPE_I16] = false,
  2832. [GGML_TYPE_I32] = false,
  2833. };
  2834. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2835. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2836. "NONE",
  2837. "DUP",
  2838. "ADD",
  2839. "ADD1",
  2840. "ACC",
  2841. "SUB",
  2842. "MUL",
  2843. "DIV",
  2844. "SQR",
  2845. "SQRT",
  2846. "LOG",
  2847. "SUM",
  2848. "SUM_ROWS",
  2849. "MEAN",
  2850. "REPEAT",
  2851. "ABS",
  2852. "SGN",
  2853. "NEG",
  2854. "STEP",
  2855. "RELU",
  2856. "GELU",
  2857. "SILU",
  2858. "SILU_BACK",
  2859. "NORM",
  2860. "RMS_NORM",
  2861. "RMS_NORM_BACK",
  2862. "MUL_MAT",
  2863. "SCALE",
  2864. "SET",
  2865. "CPY",
  2866. "CONT",
  2867. "RESHAPE",
  2868. "VIEW",
  2869. "PERMUTE",
  2870. "TRANSPOSE",
  2871. "GET_ROWS",
  2872. "GET_ROWS_BACK",
  2873. "DIAG",
  2874. "DIAG_MASK_INF",
  2875. "DIAG_MASK_ZERO",
  2876. "SOFT_MAX",
  2877. "ROPE",
  2878. "ROPE_BACK",
  2879. "ALIBI",
  2880. "CLAMP",
  2881. "CONV_1D_1S",
  2882. "CONV_1D_2S",
  2883. "FLASH_ATTN",
  2884. "FLASH_FF",
  2885. "MAP_UNARY",
  2886. "MAP_BINARY",
  2887. };
  2888. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2889. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2890. "none",
  2891. "x",
  2892. "x+y",
  2893. "x+y",
  2894. "view(x,nb,offset)+=y->x",
  2895. "x-y",
  2896. "x*y",
  2897. "x/y",
  2898. "x^2",
  2899. "√x",
  2900. "log(x)",
  2901. "Σx",
  2902. "Σx_k",
  2903. "Σx/n",
  2904. "repeat(x)",
  2905. "abs(x)",
  2906. "sgn(x)",
  2907. "-x",
  2908. "step(x)",
  2909. "relu(x)",
  2910. "gelu(x)",
  2911. "silu(x)",
  2912. "silu_back(x)",
  2913. "norm(x)",
  2914. "rms_norm(x)",
  2915. "rms_norm_back(x)",
  2916. "X*Y",
  2917. "x*v",
  2918. "y-\\>view(x)",
  2919. "x-\\>y",
  2920. "cont(x)",
  2921. "reshape(x)",
  2922. "view(x)",
  2923. "permute(x)",
  2924. "transpose(x)",
  2925. "get_rows(x)",
  2926. "get_rows_back(x)",
  2927. "diag(x)",
  2928. "diag_mask_inf(x)",
  2929. "diag_mask_zero(x)",
  2930. "soft_max(x)",
  2931. "rope(x)",
  2932. "rope_back(x)",
  2933. "alibi(x)",
  2934. "clamp(x)",
  2935. "conv_1d_1s(x)",
  2936. "conv_1d_2s(x)",
  2937. "flash_attn(x)",
  2938. "flash_ff(x)",
  2939. "f(x)",
  2940. "f(x,y)",
  2941. };
  2942. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2943. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2944. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2945. //
  2946. // ggml context
  2947. //
  2948. struct ggml_context {
  2949. size_t mem_size;
  2950. void * mem_buffer;
  2951. bool mem_buffer_owned;
  2952. bool no_alloc;
  2953. int n_objects;
  2954. struct ggml_object * objects_begin;
  2955. struct ggml_object * objects_end;
  2956. struct ggml_scratch scratch;
  2957. struct ggml_scratch scratch_save;
  2958. };
  2959. struct ggml_context_container {
  2960. bool used;
  2961. struct ggml_context context;
  2962. };
  2963. //
  2964. // compute types
  2965. //
  2966. enum ggml_task_type {
  2967. GGML_TASK_INIT = 0,
  2968. GGML_TASK_COMPUTE,
  2969. GGML_TASK_FINALIZE,
  2970. };
  2971. struct ggml_compute_params {
  2972. enum ggml_task_type type;
  2973. int ith, nth;
  2974. // work buffer for all threads
  2975. size_t wsize;
  2976. void * wdata;
  2977. };
  2978. //
  2979. // ggml state
  2980. //
  2981. struct ggml_state {
  2982. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2983. };
  2984. // global state
  2985. static struct ggml_state g_state;
  2986. static atomic_int g_state_barrier = 0;
  2987. // barrier via spin lock
  2988. inline static void ggml_critical_section_start(void) {
  2989. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2990. while (processing > 0) {
  2991. // wait for other threads to finish
  2992. atomic_fetch_sub(&g_state_barrier, 1);
  2993. sched_yield(); // TODO: reconsider this
  2994. processing = atomic_fetch_add(&g_state_barrier, 1);
  2995. }
  2996. }
  2997. // TODO: make this somehow automatically executed
  2998. // some sort of "sentry" mechanism
  2999. inline static void ggml_critical_section_end(void) {
  3000. atomic_fetch_sub(&g_state_barrier, 1);
  3001. }
  3002. ////////////////////////////////////////////////////////////////////////////////
  3003. void ggml_print_object(const struct ggml_object * obj) {
  3004. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3005. obj->offs, obj->size, (const void *) obj->next);
  3006. }
  3007. void ggml_print_objects(const struct ggml_context * ctx) {
  3008. struct ggml_object * obj = ctx->objects_begin;
  3009. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3010. while (obj != NULL) {
  3011. ggml_print_object(obj);
  3012. obj = obj->next;
  3013. }
  3014. GGML_PRINT("%s: --- end ---\n", __func__);
  3015. }
  3016. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3017. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3018. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3019. }
  3020. int ggml_nrows(const struct ggml_tensor * tensor) {
  3021. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3022. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3023. }
  3024. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3026. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3027. }
  3028. int ggml_blck_size(enum ggml_type type) {
  3029. return GGML_BLCK_SIZE[type];
  3030. }
  3031. size_t ggml_type_size(enum ggml_type type) {
  3032. return GGML_TYPE_SIZE[type];
  3033. }
  3034. float ggml_type_sizef(enum ggml_type type) {
  3035. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3036. }
  3037. const char * ggml_type_name(enum ggml_type type) {
  3038. return GGML_TYPE_NAME[type];
  3039. }
  3040. const char * ggml_op_name(enum ggml_op op) {
  3041. return GGML_OP_NAME[op];
  3042. }
  3043. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3044. return GGML_TYPE_SIZE[tensor->type];
  3045. }
  3046. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3047. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3048. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3049. }
  3050. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3051. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3052. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3053. }
  3054. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3055. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3056. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3057. }
  3058. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3060. return
  3061. (t0->ne[0] == t1->ne[0]) &&
  3062. (t0->ne[2] == t1->ne[2]) &&
  3063. (t0->ne[3] == t1->ne[3]);
  3064. }
  3065. bool ggml_is_quantized(enum ggml_type type) {
  3066. return GGML_IS_QUANTIZED[type];
  3067. }
  3068. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3069. enum ggml_type wtype = GGML_TYPE_COUNT;
  3070. switch (ftype) {
  3071. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3072. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3073. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3074. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3075. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3076. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3077. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3078. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3079. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3080. }
  3081. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3082. return wtype;
  3083. }
  3084. size_t ggml_tensor_overhead(void) {
  3085. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3086. }
  3087. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3088. return tensor->nb[0] > tensor->nb[1];
  3089. }
  3090. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3091. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3092. return
  3093. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3094. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3095. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3096. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3097. }
  3098. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3099. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3100. return
  3101. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3102. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3103. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3104. }
  3105. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3106. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3107. return
  3108. (t0->ne[0] == t1->ne[0] ) &&
  3109. (t0->ne[1] == t1->ne[1] ) &&
  3110. (t0->ne[2] == t1->ne[2] ) &&
  3111. (t0->ne[3] == t1->ne[3] );
  3112. }
  3113. // check if t1 can be represented as a repeatition of t0
  3114. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3115. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3116. return
  3117. (t1->ne[0]%t0->ne[0] == 0) &&
  3118. (t1->ne[1]%t0->ne[1] == 0) &&
  3119. (t1->ne[2]%t0->ne[2] == 0) &&
  3120. (t1->ne[3]%t0->ne[3] == 0);
  3121. }
  3122. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3123. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3124. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3125. }
  3126. static inline int ggml_up32(int n) {
  3127. return (n + 31) & ~31;
  3128. }
  3129. //static inline int ggml_up64(int n) {
  3130. // return (n + 63) & ~63;
  3131. //}
  3132. static inline int ggml_up(int n, int m) {
  3133. // assert m is a power of 2
  3134. GGML_ASSERT((m & (m - 1)) == 0);
  3135. return (n + m - 1) & ~(m - 1);
  3136. }
  3137. // assert that pointer is aligned to GGML_MEM_ALIGN
  3138. #define ggml_assert_aligned(ptr) \
  3139. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3140. ////////////////////////////////////////////////////////////////////////////////
  3141. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3142. // make this function thread safe
  3143. ggml_critical_section_start();
  3144. static bool is_first_call = true;
  3145. if (is_first_call) {
  3146. // initialize time system (required on Windows)
  3147. ggml_time_init();
  3148. // initialize GELU, SILU and EXP F32 tables
  3149. {
  3150. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3151. ggml_fp16_t ii;
  3152. for (int i = 0; i < (1 << 16); ++i) {
  3153. uint16_t ui = i;
  3154. memcpy(&ii, &ui, sizeof(ii));
  3155. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3156. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3157. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3158. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3159. }
  3160. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3161. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3162. }
  3163. // initialize g_state
  3164. {
  3165. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3166. g_state = (struct ggml_state) {
  3167. /*.contexts =*/ { { 0 } },
  3168. };
  3169. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3170. g_state.contexts[i].used = false;
  3171. }
  3172. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3173. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3174. }
  3175. #if defined(GGML_USE_CUBLAS)
  3176. ggml_init_cublas();
  3177. #elif defined(GGML_USE_CLBLAST)
  3178. ggml_cl_init();
  3179. #endif
  3180. is_first_call = false;
  3181. }
  3182. // find non-used context in g_state
  3183. struct ggml_context * ctx = NULL;
  3184. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3185. if (!g_state.contexts[i].used) {
  3186. g_state.contexts[i].used = true;
  3187. ctx = &g_state.contexts[i].context;
  3188. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3189. break;
  3190. }
  3191. }
  3192. if (ctx == NULL) {
  3193. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3194. ggml_critical_section_end();
  3195. return NULL;
  3196. }
  3197. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3198. *ctx = (struct ggml_context) {
  3199. /*.mem_size =*/ mem_size,
  3200. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3201. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3202. /*.no_alloc =*/ params.no_alloc,
  3203. /*.n_objects =*/ 0,
  3204. /*.objects_begin =*/ NULL,
  3205. /*.objects_end =*/ NULL,
  3206. /*.scratch =*/ { 0, 0, NULL, },
  3207. /*.scratch_save =*/ { 0, 0, NULL, },
  3208. };
  3209. GGML_ASSERT(ctx->mem_buffer != NULL);
  3210. ggml_assert_aligned(ctx->mem_buffer);
  3211. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3212. ggml_critical_section_end();
  3213. return ctx;
  3214. }
  3215. void ggml_free(struct ggml_context * ctx) {
  3216. // make this function thread safe
  3217. ggml_critical_section_start();
  3218. bool found = false;
  3219. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3220. if (&g_state.contexts[i].context == ctx) {
  3221. g_state.contexts[i].used = false;
  3222. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3223. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3224. if (ctx->mem_buffer_owned) {
  3225. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3226. }
  3227. found = true;
  3228. break;
  3229. }
  3230. }
  3231. if (!found) {
  3232. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3233. }
  3234. ggml_critical_section_end();
  3235. }
  3236. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3237. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3238. }
  3239. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3240. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3241. ctx->scratch = scratch;
  3242. return result;
  3243. }
  3244. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3245. ctx->no_alloc = no_alloc;
  3246. }
  3247. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3248. return ctx->mem_buffer;
  3249. }
  3250. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3251. return ctx->mem_size;
  3252. }
  3253. // IMPORTANT:
  3254. // when creating "opt" tensors, always save and load the scratch buffer
  3255. // this is an error prone process, but it is necessary to support inplace
  3256. // operators when using scratch buffers
  3257. // TODO: implement a better way
  3258. void ggml_scratch_save(struct ggml_context * ctx) {
  3259. ctx->scratch_save = ctx->scratch;
  3260. ctx->scratch.data = NULL;
  3261. }
  3262. void ggml_scratch_load(struct ggml_context * ctx) {
  3263. ctx->scratch = ctx->scratch_save;
  3264. }
  3265. ////////////////////////////////////////////////////////////////////////////////
  3266. struct ggml_tensor * ggml_new_tensor_impl(
  3267. struct ggml_context * ctx,
  3268. enum ggml_type type,
  3269. int n_dims,
  3270. const int64_t* ne,
  3271. void* data) {
  3272. // always insert objects at the end of the context's memory pool
  3273. struct ggml_object * obj_cur = ctx->objects_end;
  3274. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3275. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3276. const size_t cur_end = cur_offs + cur_size;
  3277. size_t size_needed = 0;
  3278. if (data == NULL && !ctx->no_alloc) {
  3279. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3280. for (int i = 1; i < n_dims; i++) {
  3281. size_needed *= ne[i];
  3282. }
  3283. // align to GGML_MEM_ALIGN
  3284. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3285. }
  3286. char * const mem_buffer = ctx->mem_buffer;
  3287. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3288. if (ctx->scratch.data == NULL || data != NULL) {
  3289. size_needed += GGML_TENSOR_SIZE;
  3290. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3291. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3292. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3293. assert(false);
  3294. return NULL;
  3295. }
  3296. *obj_new = (struct ggml_object) {
  3297. .offs = cur_end + GGML_OBJECT_SIZE,
  3298. .size = size_needed,
  3299. .next = NULL,
  3300. };
  3301. } else {
  3302. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3303. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3304. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3305. assert(false);
  3306. return NULL;
  3307. }
  3308. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3309. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3310. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3311. assert(false);
  3312. return NULL;
  3313. }
  3314. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3315. *obj_new = (struct ggml_object) {
  3316. .offs = cur_end + GGML_OBJECT_SIZE,
  3317. .size = GGML_TENSOR_SIZE,
  3318. .next = NULL,
  3319. };
  3320. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3321. ctx->scratch.offs += size_needed;
  3322. }
  3323. if (obj_cur != NULL) {
  3324. obj_cur->next = obj_new;
  3325. } else {
  3326. // this is the first object in this context
  3327. ctx->objects_begin = obj_new;
  3328. }
  3329. ctx->objects_end = obj_new;
  3330. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3331. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3332. ggml_assert_aligned(result);
  3333. *result = (struct ggml_tensor) {
  3334. /*.type =*/ type,
  3335. /*.backend =*/ GGML_BACKEND_CPU,
  3336. /*.n_dims =*/ n_dims,
  3337. /*.ne =*/ { 1, 1, 1, 1 },
  3338. /*.nb =*/ { 0, 0, 0, 0 },
  3339. /*.op =*/ GGML_OP_NONE,
  3340. /*.is_param =*/ false,
  3341. /*.grad =*/ NULL,
  3342. /*.src0 =*/ NULL,
  3343. /*.src1 =*/ NULL,
  3344. /*.opt =*/ { NULL },
  3345. /*.n_tasks =*/ 0,
  3346. /*.perf_runs =*/ 0,
  3347. /*.perf_cycles =*/ 0,
  3348. /*.perf_time_us =*/ 0,
  3349. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3350. /*.name =*/ { 0 },
  3351. /*.pad =*/ { 0 },
  3352. };
  3353. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3354. //ggml_assert_aligned(result->data);
  3355. for (int i = 0; i < n_dims; i++) {
  3356. result->ne[i] = ne[i];
  3357. }
  3358. result->nb[0] = GGML_TYPE_SIZE[type];
  3359. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3360. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3361. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3362. }
  3363. ctx->n_objects++;
  3364. return result;
  3365. }
  3366. struct ggml_tensor * ggml_new_tensor(
  3367. struct ggml_context * ctx,
  3368. enum ggml_type type,
  3369. int n_dims,
  3370. const int64_t * ne) {
  3371. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3372. }
  3373. struct ggml_tensor * ggml_new_tensor_1d(
  3374. struct ggml_context * ctx,
  3375. enum ggml_type type,
  3376. int64_t ne0) {
  3377. return ggml_new_tensor(ctx, type, 1, &ne0);
  3378. }
  3379. struct ggml_tensor * ggml_new_tensor_2d(
  3380. struct ggml_context * ctx,
  3381. enum ggml_type type,
  3382. int64_t ne0,
  3383. int64_t ne1) {
  3384. const int64_t ne[2] = { ne0, ne1 };
  3385. return ggml_new_tensor(ctx, type, 2, ne);
  3386. }
  3387. struct ggml_tensor * ggml_new_tensor_3d(
  3388. struct ggml_context * ctx,
  3389. enum ggml_type type,
  3390. int64_t ne0,
  3391. int64_t ne1,
  3392. int64_t ne2) {
  3393. const int64_t ne[3] = { ne0, ne1, ne2 };
  3394. return ggml_new_tensor(ctx, type, 3, ne);
  3395. }
  3396. struct ggml_tensor * ggml_new_tensor_4d(
  3397. struct ggml_context * ctx,
  3398. enum ggml_type type,
  3399. int64_t ne0,
  3400. int64_t ne1,
  3401. int64_t ne2,
  3402. int64_t ne3) {
  3403. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3404. return ggml_new_tensor(ctx, type, 4, ne);
  3405. }
  3406. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3407. ggml_scratch_save(ctx);
  3408. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3409. ggml_scratch_load(ctx);
  3410. ggml_set_i32(result, value);
  3411. return result;
  3412. }
  3413. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3414. ggml_scratch_save(ctx);
  3415. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3416. ggml_scratch_load(ctx);
  3417. ggml_set_f32(result, value);
  3418. return result;
  3419. }
  3420. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3421. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3422. }
  3423. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3424. memset(tensor->data, 0, ggml_nbytes(tensor));
  3425. return tensor;
  3426. }
  3427. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3428. const int n = ggml_nrows(tensor);
  3429. const int nc = tensor->ne[0];
  3430. const size_t n1 = tensor->nb[1];
  3431. char * const data = tensor->data;
  3432. switch (tensor->type) {
  3433. case GGML_TYPE_I8:
  3434. {
  3435. assert(tensor->nb[0] == sizeof(int8_t));
  3436. for (int i = 0; i < n; i++) {
  3437. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3438. }
  3439. } break;
  3440. case GGML_TYPE_I16:
  3441. {
  3442. assert(tensor->nb[0] == sizeof(int16_t));
  3443. for (int i = 0; i < n; i++) {
  3444. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3445. }
  3446. } break;
  3447. case GGML_TYPE_I32:
  3448. {
  3449. assert(tensor->nb[0] == sizeof(int32_t));
  3450. for (int i = 0; i < n; i++) {
  3451. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3452. }
  3453. } break;
  3454. case GGML_TYPE_F16:
  3455. {
  3456. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3457. for (int i = 0; i < n; i++) {
  3458. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3459. }
  3460. } break;
  3461. case GGML_TYPE_F32:
  3462. {
  3463. assert(tensor->nb[0] == sizeof(float));
  3464. for (int i = 0; i < n; i++) {
  3465. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3466. }
  3467. } break;
  3468. default:
  3469. {
  3470. GGML_ASSERT(false);
  3471. } break;
  3472. }
  3473. return tensor;
  3474. }
  3475. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3476. const int n = ggml_nrows(tensor);
  3477. const int nc = tensor->ne[0];
  3478. const size_t n1 = tensor->nb[1];
  3479. char * const data = tensor->data;
  3480. switch (tensor->type) {
  3481. case GGML_TYPE_I8:
  3482. {
  3483. assert(tensor->nb[0] == sizeof(int8_t));
  3484. for (int i = 0; i < n; i++) {
  3485. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3486. }
  3487. } break;
  3488. case GGML_TYPE_I16:
  3489. {
  3490. assert(tensor->nb[0] == sizeof(int16_t));
  3491. for (int i = 0; i < n; i++) {
  3492. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3493. }
  3494. } break;
  3495. case GGML_TYPE_I32:
  3496. {
  3497. assert(tensor->nb[0] == sizeof(int32_t));
  3498. for (int i = 0; i < n; i++) {
  3499. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3500. }
  3501. } break;
  3502. case GGML_TYPE_F16:
  3503. {
  3504. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3505. for (int i = 0; i < n; i++) {
  3506. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3507. }
  3508. } break;
  3509. case GGML_TYPE_F32:
  3510. {
  3511. assert(tensor->nb[0] == sizeof(float));
  3512. for (int i = 0; i < n; i++) {
  3513. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3514. }
  3515. } break;
  3516. default:
  3517. {
  3518. GGML_ASSERT(false);
  3519. } break;
  3520. }
  3521. return tensor;
  3522. }
  3523. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3524. switch (tensor->type) {
  3525. case GGML_TYPE_I8:
  3526. {
  3527. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3528. return ((int8_t *)(tensor->data))[i];
  3529. } break;
  3530. case GGML_TYPE_I16:
  3531. {
  3532. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3533. return ((int16_t *)(tensor->data))[i];
  3534. } break;
  3535. case GGML_TYPE_I32:
  3536. {
  3537. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3538. return ((int32_t *)(tensor->data))[i];
  3539. } break;
  3540. case GGML_TYPE_F16:
  3541. {
  3542. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3543. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3544. } break;
  3545. case GGML_TYPE_F32:
  3546. {
  3547. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3548. return ((float *)(tensor->data))[i];
  3549. } break;
  3550. default:
  3551. {
  3552. GGML_ASSERT(false);
  3553. } break;
  3554. }
  3555. return 0.0f;
  3556. }
  3557. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3558. switch (tensor->type) {
  3559. case GGML_TYPE_I8:
  3560. {
  3561. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3562. ((int8_t *)(tensor->data))[i] = value;
  3563. } break;
  3564. case GGML_TYPE_I16:
  3565. {
  3566. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3567. ((int16_t *)(tensor->data))[i] = value;
  3568. } break;
  3569. case GGML_TYPE_I32:
  3570. {
  3571. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3572. ((int32_t *)(tensor->data))[i] = value;
  3573. } break;
  3574. case GGML_TYPE_F16:
  3575. {
  3576. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3577. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3578. } break;
  3579. case GGML_TYPE_F32:
  3580. {
  3581. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3582. ((float *)(tensor->data))[i] = value;
  3583. } break;
  3584. default:
  3585. {
  3586. GGML_ASSERT(false);
  3587. } break;
  3588. }
  3589. }
  3590. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3591. switch (tensor->type) {
  3592. case GGML_TYPE_I8:
  3593. {
  3594. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3595. return ((int8_t *)(tensor->data))[i];
  3596. } break;
  3597. case GGML_TYPE_I16:
  3598. {
  3599. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3600. return ((int16_t *)(tensor->data))[i];
  3601. } break;
  3602. case GGML_TYPE_I32:
  3603. {
  3604. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3605. return ((int32_t *)(tensor->data))[i];
  3606. } break;
  3607. case GGML_TYPE_F16:
  3608. {
  3609. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3610. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3611. } break;
  3612. case GGML_TYPE_F32:
  3613. {
  3614. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3615. return ((float *)(tensor->data))[i];
  3616. } break;
  3617. default:
  3618. {
  3619. GGML_ASSERT(false);
  3620. } break;
  3621. }
  3622. return 0.0f;
  3623. }
  3624. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3625. switch (tensor->type) {
  3626. case GGML_TYPE_I8:
  3627. {
  3628. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3629. ((int8_t *)(tensor->data))[i] = value;
  3630. } break;
  3631. case GGML_TYPE_I16:
  3632. {
  3633. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3634. ((int16_t *)(tensor->data))[i] = value;
  3635. } break;
  3636. case GGML_TYPE_I32:
  3637. {
  3638. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3639. ((int32_t *)(tensor->data))[i] = value;
  3640. } break;
  3641. case GGML_TYPE_F16:
  3642. {
  3643. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3644. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3645. } break;
  3646. case GGML_TYPE_F32:
  3647. {
  3648. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3649. ((float *)(tensor->data))[i] = value;
  3650. } break;
  3651. default:
  3652. {
  3653. GGML_ASSERT(false);
  3654. } break;
  3655. }
  3656. }
  3657. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3658. return tensor->data;
  3659. }
  3660. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3661. assert(tensor->type == GGML_TYPE_F32);
  3662. return (float *)(tensor->data);
  3663. }
  3664. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3665. return tensor->name;
  3666. }
  3667. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3668. strncpy(tensor->name, name, sizeof(tensor->name));
  3669. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3670. }
  3671. struct ggml_tensor * ggml_view_tensor(
  3672. struct ggml_context * ctx,
  3673. const struct ggml_tensor * src) {
  3674. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3675. result->nb[0] = src->nb[0];
  3676. result->nb[1] = src->nb[1];
  3677. result->nb[2] = src->nb[2];
  3678. result->nb[3] = src->nb[3];
  3679. return result;
  3680. }
  3681. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3682. struct ggml_object * obj = ctx->objects_begin;
  3683. char * const mem_buffer = ctx->mem_buffer;
  3684. while (obj != NULL) {
  3685. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3686. if (strcmp(cur->name, name) == 0) {
  3687. return cur;
  3688. }
  3689. obj = obj->next;
  3690. }
  3691. return NULL;
  3692. }
  3693. ////////////////////////////////////////////////////////////////////////////////
  3694. // ggml_dup
  3695. struct ggml_tensor * ggml_dup_impl(
  3696. struct ggml_context * ctx,
  3697. struct ggml_tensor * a,
  3698. bool inplace) {
  3699. bool is_node = false;
  3700. if (!inplace && (a->grad)) {
  3701. is_node = true;
  3702. }
  3703. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3704. result->op = GGML_OP_DUP;
  3705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3706. result->src0 = a;
  3707. result->src1 = NULL;
  3708. return result;
  3709. }
  3710. struct ggml_tensor * ggml_dup(
  3711. struct ggml_context * ctx,
  3712. struct ggml_tensor * a) {
  3713. return ggml_dup_impl(ctx, a, false);
  3714. }
  3715. struct ggml_tensor * ggml_dup_inplace(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a) {
  3718. return ggml_dup_impl(ctx, a, true);
  3719. }
  3720. // ggml_add
  3721. struct ggml_tensor * ggml_add_impl(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b,
  3725. bool inplace) {
  3726. GGML_ASSERT(ggml_are_same_shape(a, b));
  3727. bool is_node = false;
  3728. if (!inplace && (a->grad || b->grad)) {
  3729. is_node = true;
  3730. }
  3731. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3732. result->op = GGML_OP_ADD;
  3733. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3734. result->src0 = a;
  3735. result->src1 = b;
  3736. return result;
  3737. }
  3738. struct ggml_tensor * ggml_add(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b) {
  3742. return ggml_add_impl(ctx, a, b, false);
  3743. }
  3744. struct ggml_tensor * ggml_add_inplace(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b) {
  3748. return ggml_add_impl(ctx, a, b, true);
  3749. }
  3750. // ggml_add1
  3751. struct ggml_tensor * ggml_add1_impl(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b,
  3755. bool inplace) {
  3756. GGML_ASSERT(ggml_is_scalar(b));
  3757. GGML_ASSERT(ggml_is_padded_1d(a));
  3758. bool is_node = false;
  3759. if (!inplace && (a->grad || b->grad)) {
  3760. is_node = true;
  3761. }
  3762. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3763. result->op = GGML_OP_ADD1;
  3764. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3765. result->src0 = a;
  3766. result->src1 = b;
  3767. return result;
  3768. }
  3769. struct ggml_tensor * ggml_add1(
  3770. struct ggml_context * ctx,
  3771. struct ggml_tensor * a,
  3772. struct ggml_tensor * b) {
  3773. return ggml_add1_impl(ctx, a, b, false);
  3774. }
  3775. struct ggml_tensor * ggml_add1_inplace(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. struct ggml_tensor * b) {
  3779. return ggml_add1_impl(ctx, a, b, true);
  3780. }
  3781. // ggml_acc
  3782. struct ggml_tensor * ggml_acc_impl(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b,
  3786. size_t nb1,
  3787. size_t nb2,
  3788. size_t nb3,
  3789. size_t offset,
  3790. bool inplace) {
  3791. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3792. GGML_ASSERT(ggml_is_contiguous(a));
  3793. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3794. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3795. bool is_node = false;
  3796. if (!inplace && (a->grad || b->grad)) {
  3797. is_node = true;
  3798. }
  3799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3800. ggml_scratch_save(ctx);
  3801. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3802. ((int32_t *) c->data)[0] = nb1;
  3803. ((int32_t *) c->data)[1] = nb2;
  3804. ((int32_t *) c->data)[2] = nb3;
  3805. ((int32_t *) c->data)[3] = offset;
  3806. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3807. ggml_scratch_load(ctx);
  3808. result->op = GGML_OP_ACC;
  3809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3810. result->src0 = a;
  3811. result->src1 = b;
  3812. result->opt[0] = c;
  3813. return result;
  3814. }
  3815. struct ggml_tensor * ggml_acc(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a,
  3818. struct ggml_tensor * b,
  3819. size_t nb1,
  3820. size_t nb2,
  3821. size_t nb3,
  3822. size_t offset) {
  3823. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3824. }
  3825. struct ggml_tensor * ggml_acc_inplace(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. struct ggml_tensor * b,
  3829. size_t nb1,
  3830. size_t nb2,
  3831. size_t nb3,
  3832. size_t offset) {
  3833. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3834. }
  3835. // ggml_sub
  3836. struct ggml_tensor * ggml_sub_impl(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. struct ggml_tensor * b,
  3840. bool inplace) {
  3841. GGML_ASSERT(ggml_are_same_shape(a, b));
  3842. bool is_node = false;
  3843. if (!inplace && (a->grad || b->grad)) {
  3844. is_node = true;
  3845. }
  3846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3847. result->op = GGML_OP_SUB;
  3848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3849. result->src0 = a;
  3850. result->src1 = b;
  3851. return result;
  3852. }
  3853. struct ggml_tensor * ggml_sub(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. struct ggml_tensor * b) {
  3857. return ggml_sub_impl(ctx, a, b, false);
  3858. }
  3859. struct ggml_tensor * ggml_sub_inplace(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. struct ggml_tensor * b) {
  3863. return ggml_sub_impl(ctx, a, b, true);
  3864. }
  3865. // ggml_mul
  3866. struct ggml_tensor * ggml_mul_impl(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. struct ggml_tensor * b,
  3870. bool inplace) {
  3871. // TODO: support less-strict constraint
  3872. // GGML_ASSERT(ggml_can_repeat(b, a));
  3873. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3874. bool is_node = false;
  3875. if (!inplace && (a->grad || b->grad)) {
  3876. // TODO: support backward pass for broadcasting
  3877. GGML_ASSERT(ggml_are_same_shape(a, b));
  3878. is_node = true;
  3879. }
  3880. if (inplace) {
  3881. GGML_ASSERT(is_node == false);
  3882. }
  3883. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3884. result->op = GGML_OP_MUL;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src0 = a;
  3887. result->src1 = b;
  3888. return result;
  3889. }
  3890. struct ggml_tensor * ggml_mul(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b) {
  3894. return ggml_mul_impl(ctx, a, b, false);
  3895. }
  3896. struct ggml_tensor * ggml_mul_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b) {
  3900. return ggml_mul_impl(ctx, a, b, true);
  3901. }
  3902. // ggml_div
  3903. struct ggml_tensor * ggml_div_impl(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b,
  3907. bool inplace) {
  3908. GGML_ASSERT(ggml_are_same_shape(a, b));
  3909. bool is_node = false;
  3910. if (!inplace && (a->grad || b->grad)) {
  3911. is_node = true;
  3912. }
  3913. if (inplace) {
  3914. GGML_ASSERT(is_node == false);
  3915. }
  3916. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3917. result->op = GGML_OP_DIV;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src0 = a;
  3920. result->src1 = b;
  3921. return result;
  3922. }
  3923. struct ggml_tensor * ggml_div(
  3924. struct ggml_context * ctx,
  3925. struct ggml_tensor * a,
  3926. struct ggml_tensor * b) {
  3927. return ggml_div_impl(ctx, a, b, false);
  3928. }
  3929. struct ggml_tensor * ggml_div_inplace(
  3930. struct ggml_context * ctx,
  3931. struct ggml_tensor * a,
  3932. struct ggml_tensor * b) {
  3933. return ggml_div_impl(ctx, a, b, true);
  3934. }
  3935. // ggml_sqr
  3936. struct ggml_tensor * ggml_sqr_impl(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. bool inplace) {
  3940. bool is_node = false;
  3941. if (!inplace && (a->grad)) {
  3942. is_node = true;
  3943. }
  3944. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3945. result->op = GGML_OP_SQR;
  3946. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3947. result->src0 = a;
  3948. result->src1 = NULL;
  3949. return result;
  3950. }
  3951. struct ggml_tensor * ggml_sqr(
  3952. struct ggml_context * ctx,
  3953. struct ggml_tensor * a) {
  3954. return ggml_sqr_impl(ctx, a, false);
  3955. }
  3956. struct ggml_tensor * ggml_sqr_inplace(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a) {
  3959. return ggml_sqr_impl(ctx, a, true);
  3960. }
  3961. // ggml_sqrt
  3962. struct ggml_tensor * ggml_sqrt_impl(
  3963. struct ggml_context * ctx,
  3964. struct ggml_tensor * a,
  3965. bool inplace) {
  3966. bool is_node = false;
  3967. if (!inplace && (a->grad)) {
  3968. is_node = true;
  3969. }
  3970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3971. result->op = GGML_OP_SQRT;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src0 = a;
  3974. result->src1 = NULL;
  3975. return result;
  3976. }
  3977. struct ggml_tensor * ggml_sqrt(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a) {
  3980. return ggml_sqrt_impl(ctx, a, false);
  3981. }
  3982. struct ggml_tensor * ggml_sqrt_inplace(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a) {
  3985. return ggml_sqrt_impl(ctx, a, true);
  3986. }
  3987. // ggml_log
  3988. struct ggml_tensor * ggml_log_impl(
  3989. struct ggml_context * ctx,
  3990. struct ggml_tensor * a,
  3991. bool inplace) {
  3992. bool is_node = false;
  3993. if (!inplace && (a->grad)) {
  3994. is_node = true;
  3995. }
  3996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3997. result->op = GGML_OP_LOG;
  3998. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3999. result->src0 = a;
  4000. result->src1 = NULL;
  4001. return result;
  4002. }
  4003. struct ggml_tensor * ggml_log(
  4004. struct ggml_context * ctx,
  4005. struct ggml_tensor * a) {
  4006. return ggml_log_impl(ctx, a, false);
  4007. }
  4008. struct ggml_tensor * ggml_log_inplace(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a) {
  4011. return ggml_log_impl(ctx, a, true);
  4012. }
  4013. // ggml_sum
  4014. struct ggml_tensor * ggml_sum(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. bool is_node = false;
  4018. if (a->grad) {
  4019. is_node = true;
  4020. }
  4021. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4022. result->op = GGML_OP_SUM;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src0 = a;
  4025. result->src1 = NULL;
  4026. return result;
  4027. }
  4028. // ggml_sum_rows
  4029. struct ggml_tensor * ggml_sum_rows(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a) {
  4032. bool is_node = false;
  4033. if (a->grad) {
  4034. is_node = true;
  4035. }
  4036. int64_t ne[4] = {1,1,1,1};
  4037. for (int i=1; i<a->n_dims; ++i) {
  4038. ne[i] = a->ne[i];
  4039. }
  4040. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4041. result->op = GGML_OP_SUM_ROWS;
  4042. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4043. result->src0 = a;
  4044. result->src1 = NULL;
  4045. return result;
  4046. }
  4047. // ggml_mean
  4048. struct ggml_tensor * ggml_mean(
  4049. struct ggml_context * ctx,
  4050. struct ggml_tensor * a) {
  4051. bool is_node = false;
  4052. if (a->grad) {
  4053. GGML_ASSERT(false); // TODO: implement
  4054. is_node = true;
  4055. }
  4056. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4057. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4058. result->op = GGML_OP_MEAN;
  4059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4060. result->src0 = a;
  4061. result->src1 = NULL;
  4062. return result;
  4063. }
  4064. // ggml_repeat
  4065. struct ggml_tensor * ggml_repeat(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a,
  4068. struct ggml_tensor * b) {
  4069. GGML_ASSERT(ggml_can_repeat(a, b));
  4070. bool is_node = false;
  4071. if (a->grad) {
  4072. is_node = true;
  4073. }
  4074. if (ggml_are_same_shape(a, b) && !is_node) {
  4075. return a;
  4076. }
  4077. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4078. result->op = GGML_OP_REPEAT;
  4079. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4080. result->src0 = a;
  4081. result->src1 = b;
  4082. return result;
  4083. }
  4084. // ggml_abs
  4085. struct ggml_tensor * ggml_abs_impl(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. bool inplace) {
  4089. bool is_node = false;
  4090. if (!inplace && (a->grad)) {
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4094. result->op = GGML_OP_ABS;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = NULL;
  4098. return result;
  4099. }
  4100. struct ggml_tensor * ggml_abs(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a) {
  4103. return ggml_abs_impl(ctx, a, false);
  4104. }
  4105. struct ggml_tensor * ggml_abs_inplace(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a) {
  4108. return ggml_abs_impl(ctx, a, true);
  4109. }
  4110. // ggml_sgn
  4111. struct ggml_tensor * ggml_sgn_impl(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. bool inplace) {
  4115. bool is_node = false;
  4116. if (!inplace && (a->grad)) {
  4117. is_node = true;
  4118. }
  4119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4120. result->op = GGML_OP_SGN;
  4121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4122. result->src0 = a;
  4123. result->src1 = NULL;
  4124. return result;
  4125. }
  4126. struct ggml_tensor * ggml_sgn(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a) {
  4129. return ggml_sgn_impl(ctx, a, false);
  4130. }
  4131. struct ggml_tensor * ggml_sgn_inplace(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a) {
  4134. return ggml_sgn_impl(ctx, a, true);
  4135. }
  4136. // ggml_neg
  4137. struct ggml_tensor * ggml_neg_impl(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. bool inplace) {
  4141. bool is_node = false;
  4142. if (!inplace && (a->grad)) {
  4143. is_node = true;
  4144. }
  4145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4146. result->op = GGML_OP_NEG;
  4147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4148. result->src0 = a;
  4149. result->src1 = NULL;
  4150. return result;
  4151. }
  4152. struct ggml_tensor * ggml_neg(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a) {
  4155. return ggml_neg_impl(ctx, a, false);
  4156. }
  4157. struct ggml_tensor * ggml_neg_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a) {
  4160. return ggml_neg_impl(ctx, a, true);
  4161. }
  4162. // ggml_step
  4163. struct ggml_tensor * ggml_step_impl(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. bool inplace) {
  4167. bool is_node = false;
  4168. if (!inplace && (a->grad)) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4172. result->op = GGML_OP_STEP;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = NULL;
  4176. return result;
  4177. }
  4178. struct ggml_tensor * ggml_step(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a) {
  4181. return ggml_step_impl(ctx, a, false);
  4182. }
  4183. struct ggml_tensor * ggml_step_inplace(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a) {
  4186. return ggml_step_impl(ctx, a, true);
  4187. }
  4188. // ggml_relu
  4189. struct ggml_tensor * ggml_relu_impl(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. bool inplace) {
  4193. bool is_node = false;
  4194. if (!inplace && (a->grad)) {
  4195. is_node = true;
  4196. }
  4197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4198. result->op = GGML_OP_RELU;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = NULL;
  4202. return result;
  4203. }
  4204. struct ggml_tensor * ggml_relu(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_relu_impl(ctx, a, false);
  4208. }
  4209. struct ggml_tensor * ggml_relu_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_relu_impl(ctx, a, true);
  4213. }
  4214. // ggml_gelu
  4215. struct ggml_tensor * ggml_gelu_impl(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. bool inplace) {
  4219. bool is_node = false;
  4220. if (!inplace && (a->grad)) {
  4221. is_node = true;
  4222. }
  4223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4224. result->op = GGML_OP_GELU;
  4225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4226. result->src0 = a;
  4227. result->src1 = NULL;
  4228. return result;
  4229. }
  4230. struct ggml_tensor * ggml_gelu(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_gelu_impl(ctx, a, false);
  4234. }
  4235. struct ggml_tensor * ggml_gelu_inplace(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a) {
  4238. return ggml_gelu_impl(ctx, a, true);
  4239. }
  4240. // ggml_silu
  4241. struct ggml_tensor * ggml_silu_impl(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. bool inplace) {
  4245. bool is_node = false;
  4246. if (!inplace && (a->grad)) {
  4247. is_node = true;
  4248. }
  4249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4250. result->op = GGML_OP_SILU;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src0 = a;
  4253. result->src1 = NULL;
  4254. return result;
  4255. }
  4256. struct ggml_tensor * ggml_silu(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_silu_impl(ctx, a, false);
  4260. }
  4261. struct ggml_tensor * ggml_silu_inplace(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_silu_impl(ctx, a, true);
  4265. }
  4266. // ggml_silu_back
  4267. struct ggml_tensor * ggml_silu_back(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a,
  4270. struct ggml_tensor * b) {
  4271. bool is_node = false;
  4272. if (a->grad || b->grad) {
  4273. // TODO: implement backward
  4274. is_node = true;
  4275. }
  4276. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4277. result->op = GGML_OP_SILU_BACK;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src0 = a;
  4280. result->src1 = b;
  4281. return result;
  4282. }
  4283. // ggml_norm
  4284. struct ggml_tensor * ggml_norm_impl(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. bool inplace) {
  4288. bool is_node = false;
  4289. if (!inplace && (a->grad)) {
  4290. GGML_ASSERT(false); // TODO: implement backward
  4291. is_node = true;
  4292. }
  4293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4294. result->op = GGML_OP_NORM;
  4295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4296. result->src0 = a;
  4297. result->src1 = NULL; // TODO: maybe store epsilon here?
  4298. return result;
  4299. }
  4300. struct ggml_tensor * ggml_norm(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a) {
  4303. return ggml_norm_impl(ctx, a, false);
  4304. }
  4305. struct ggml_tensor * ggml_norm_inplace(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_norm_impl(ctx, a, true);
  4309. }
  4310. struct ggml_tensor * ggml_rms_norm_impl(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. bool inplace) {
  4314. bool is_node = false;
  4315. if (!inplace && (a->grad)) {
  4316. is_node = true;
  4317. }
  4318. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4319. result->op = GGML_OP_RMS_NORM;
  4320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4321. result->src0 = a;
  4322. result->src1 = NULL; // TODO: maybe store epsilon here?
  4323. return result;
  4324. }
  4325. struct ggml_tensor * ggml_rms_norm(
  4326. struct ggml_context * ctx,
  4327. struct ggml_tensor * a) {
  4328. return ggml_rms_norm_impl(ctx, a, false);
  4329. }
  4330. struct ggml_tensor * ggml_rms_norm_inplace(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_rms_norm_impl(ctx, a, true);
  4334. }
  4335. struct ggml_tensor * ggml_rms_norm_back(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a,
  4338. struct ggml_tensor * b) {
  4339. bool is_node = false;
  4340. if (a->grad) {
  4341. // TODO: implement backward
  4342. is_node = true;
  4343. }
  4344. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4345. result->op = GGML_OP_RMS_NORM_BACK;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src0 = a;
  4348. result->src1 = b;
  4349. return result;
  4350. }
  4351. // ggml_mul_mat
  4352. struct ggml_tensor * ggml_mul_mat(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. struct ggml_tensor * b) {
  4356. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4357. GGML_ASSERT(!ggml_is_transposed(a));
  4358. bool is_node = false;
  4359. if (a->grad || b->grad) {
  4360. is_node = true;
  4361. }
  4362. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4363. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4364. result->op = GGML_OP_MUL_MAT;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src0 = a;
  4367. result->src1 = b;
  4368. return result;
  4369. }
  4370. // ggml_scale
  4371. struct ggml_tensor * ggml_scale_impl(
  4372. struct ggml_context * ctx,
  4373. struct ggml_tensor * a,
  4374. struct ggml_tensor * b,
  4375. bool inplace) {
  4376. GGML_ASSERT(ggml_is_scalar(b));
  4377. GGML_ASSERT(ggml_is_padded_1d(a));
  4378. bool is_node = false;
  4379. if (!inplace && (a->grad || b->grad)) {
  4380. is_node = true;
  4381. }
  4382. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4383. result->op = GGML_OP_SCALE;
  4384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4385. result->src0 = a;
  4386. result->src1 = b;
  4387. return result;
  4388. }
  4389. struct ggml_tensor * ggml_scale(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b) {
  4393. return ggml_scale_impl(ctx, a, b, false);
  4394. }
  4395. struct ggml_tensor * ggml_scale_inplace(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. struct ggml_tensor * b) {
  4399. return ggml_scale_impl(ctx, a, b, true);
  4400. }
  4401. // ggml_set
  4402. struct ggml_tensor * ggml_set_impl(
  4403. struct ggml_context * ctx,
  4404. struct ggml_tensor * a,
  4405. struct ggml_tensor * b,
  4406. size_t nb1,
  4407. size_t nb2,
  4408. size_t nb3,
  4409. size_t offset,
  4410. bool inplace) {
  4411. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4412. bool is_node = false;
  4413. if (!inplace && (a->grad || b->grad)) {
  4414. is_node = true;
  4415. }
  4416. // make a view of the destination
  4417. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4418. ggml_scratch_save(ctx);
  4419. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4420. (( int32_t * ) c->data)[0] = nb1;
  4421. (( int32_t * ) c->data)[1] = nb2;
  4422. (( int32_t * ) c->data)[2] = nb3;
  4423. (( int32_t * ) c->data)[3] = offset;
  4424. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4425. ggml_scratch_load(ctx);
  4426. result->op = GGML_OP_SET;
  4427. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4428. result->src0 = a;
  4429. result->src1 = b;
  4430. result->opt[0] = c;
  4431. return result;
  4432. }
  4433. struct ggml_tensor * ggml_set(
  4434. struct ggml_context * ctx,
  4435. struct ggml_tensor * a,
  4436. struct ggml_tensor * b,
  4437. size_t nb1,
  4438. size_t nb2,
  4439. size_t nb3,
  4440. size_t offset) {
  4441. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4442. }
  4443. struct ggml_tensor * ggml_set_inplace(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a,
  4446. struct ggml_tensor * b,
  4447. size_t nb1,
  4448. size_t nb2,
  4449. size_t nb3,
  4450. size_t offset) {
  4451. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4452. }
  4453. struct ggml_tensor * ggml_set_1d(
  4454. struct ggml_context * ctx,
  4455. struct ggml_tensor * a,
  4456. struct ggml_tensor * b,
  4457. size_t offset) {
  4458. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4459. }
  4460. struct ggml_tensor * ggml_set_1d_inplace(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. struct ggml_tensor * b,
  4464. size_t offset) {
  4465. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4466. }
  4467. struct ggml_tensor * ggml_set_2d(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b,
  4471. size_t nb1,
  4472. size_t offset) {
  4473. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4474. }
  4475. struct ggml_tensor * ggml_set_2d_inplace(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. struct ggml_tensor * b,
  4479. size_t nb1,
  4480. size_t offset) {
  4481. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4482. }
  4483. // ggml_cpy
  4484. struct ggml_tensor * ggml_cpy_impl(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a,
  4487. struct ggml_tensor * b,
  4488. bool inplace) {
  4489. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4490. bool is_node = false;
  4491. if (!inplace && (a->grad || b->grad)) {
  4492. is_node = true;
  4493. }
  4494. // make a view of the destination
  4495. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4496. result->op = GGML_OP_CPY;
  4497. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4498. result->src0 = a;
  4499. result->src1 = b;
  4500. return result;
  4501. }
  4502. struct ggml_tensor * ggml_cpy(
  4503. struct ggml_context * ctx,
  4504. struct ggml_tensor * a,
  4505. struct ggml_tensor * b) {
  4506. return ggml_cpy_impl(ctx, a, b, false);
  4507. }
  4508. struct ggml_tensor * ggml_cpy_inplace(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b) {
  4512. return ggml_cpy_impl(ctx, a, b, true);
  4513. }
  4514. // ggml_cont
  4515. struct ggml_tensor * ggml_cont_impl(
  4516. struct ggml_context * ctx,
  4517. struct ggml_tensor * a,
  4518. bool inplace) {
  4519. bool is_node = false;
  4520. if (!inplace && a->grad) {
  4521. is_node = true;
  4522. }
  4523. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4524. result->op = GGML_OP_CONT;
  4525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4526. result->src0 = a;
  4527. result->src1 = NULL;
  4528. return result;
  4529. }
  4530. struct ggml_tensor * ggml_cont(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a) {
  4533. return ggml_cont_impl(ctx, a, false);
  4534. }
  4535. struct ggml_tensor * ggml_cont_inplace(
  4536. struct ggml_context * ctx,
  4537. struct ggml_tensor * a) {
  4538. return ggml_cont_impl(ctx, a, true);
  4539. }
  4540. // ggml_reshape
  4541. struct ggml_tensor * ggml_reshape(
  4542. struct ggml_context * ctx,
  4543. struct ggml_tensor * a,
  4544. struct ggml_tensor * b) {
  4545. GGML_ASSERT(ggml_is_contiguous(a));
  4546. GGML_ASSERT(ggml_is_contiguous(b));
  4547. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4548. bool is_node = false;
  4549. if (a->grad) {
  4550. is_node = true;
  4551. }
  4552. if (b->grad) {
  4553. // gradient propagation is not supported
  4554. //GGML_ASSERT(false);
  4555. }
  4556. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4557. result->op = GGML_OP_RESHAPE;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src0 = a;
  4560. result->src1 = NULL;
  4561. return result;
  4562. }
  4563. struct ggml_tensor * ggml_reshape_1d(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. int64_t ne0) {
  4567. GGML_ASSERT(ggml_is_contiguous(a));
  4568. GGML_ASSERT(ggml_nelements(a) == ne0);
  4569. bool is_node = false;
  4570. if (a->grad) {
  4571. is_node = true;
  4572. }
  4573. const int64_t ne[1] = { ne0 };
  4574. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4575. result->op = GGML_OP_RESHAPE;
  4576. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4577. result->src0 = a;
  4578. result->src1 = NULL;
  4579. return result;
  4580. }
  4581. struct ggml_tensor * ggml_reshape_2d(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a,
  4584. int64_t ne0,
  4585. int64_t ne1) {
  4586. GGML_ASSERT(ggml_is_contiguous(a));
  4587. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4588. bool is_node = false;
  4589. if (a->grad) {
  4590. is_node = true;
  4591. }
  4592. const int64_t ne[2] = { ne0, ne1 };
  4593. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4594. result->op = GGML_OP_RESHAPE;
  4595. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4596. result->src0 = a;
  4597. result->src1 = NULL;
  4598. return result;
  4599. }
  4600. struct ggml_tensor * ggml_reshape_3d(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. int64_t ne0,
  4604. int64_t ne1,
  4605. int64_t ne2) {
  4606. GGML_ASSERT(ggml_is_contiguous(a));
  4607. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4608. bool is_node = false;
  4609. if (a->grad) {
  4610. is_node = true;
  4611. }
  4612. const int64_t ne[3] = { ne0, ne1, ne2 };
  4613. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4614. result->op = GGML_OP_RESHAPE;
  4615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4616. result->src0 = a;
  4617. result->src1 = NULL;
  4618. return result;
  4619. }
  4620. struct ggml_tensor * ggml_reshape_4d(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int64_t ne0,
  4624. int64_t ne1,
  4625. int64_t ne2,
  4626. int64_t ne3) {
  4627. GGML_ASSERT(ggml_is_contiguous(a));
  4628. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4629. bool is_node = false;
  4630. if (a->grad) {
  4631. is_node = true;
  4632. }
  4633. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4634. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4635. result->op = GGML_OP_RESHAPE;
  4636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4637. result->src0 = a;
  4638. result->src1 = NULL;
  4639. return result;
  4640. }
  4641. // ggml_view_1d
  4642. struct ggml_tensor * ggml_view_1d(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. int64_t ne0,
  4646. size_t offset) {
  4647. bool is_node = false;
  4648. if (a->grad) {
  4649. is_node = true;
  4650. }
  4651. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4652. result->op = GGML_OP_VIEW;
  4653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4654. result->src0 = a;
  4655. result->src1 = NULL;
  4656. if (is_node) {
  4657. memcpy(result->padding, &offset, sizeof(offset));
  4658. }
  4659. return result;
  4660. }
  4661. // ggml_view_2d
  4662. struct ggml_tensor * ggml_view_2d(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. int64_t ne0,
  4666. int64_t ne1,
  4667. size_t nb1,
  4668. size_t offset) {
  4669. bool is_node = false;
  4670. if (a->grad) {
  4671. is_node = true;
  4672. }
  4673. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4674. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4675. result->nb[1] = nb1;
  4676. result->nb[2] = result->nb[1]*ne1;
  4677. result->nb[3] = result->nb[2];
  4678. result->op = GGML_OP_VIEW;
  4679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4680. result->src0 = a;
  4681. result->src1 = NULL;
  4682. if (is_node) {
  4683. memcpy(result->padding, &offset, sizeof(offset));
  4684. }
  4685. return result;
  4686. }
  4687. // ggml_view_3d
  4688. struct ggml_tensor * ggml_view_3d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1,
  4693. int64_t ne2,
  4694. size_t nb1,
  4695. size_t nb2,
  4696. size_t offset) {
  4697. bool is_node = false;
  4698. if (a->grad) {
  4699. is_node = true;
  4700. }
  4701. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4702. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4703. result->nb[1] = nb1;
  4704. result->nb[2] = nb2;
  4705. result->nb[3] = result->nb[2]*ne2;
  4706. result->op = GGML_OP_VIEW;
  4707. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4708. result->src0 = a;
  4709. result->src1 = NULL;
  4710. if (is_node) {
  4711. memcpy(result->padding, &offset, sizeof(offset));
  4712. }
  4713. return result;
  4714. }
  4715. // ggml_view_4d
  4716. struct ggml_tensor * ggml_view_4d(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a,
  4719. int64_t ne0,
  4720. int64_t ne1,
  4721. int64_t ne2,
  4722. int64_t ne3,
  4723. size_t nb1,
  4724. size_t nb2,
  4725. size_t nb3,
  4726. size_t offset) {
  4727. bool is_node = false;
  4728. if (a->grad) {
  4729. is_node = true;
  4730. }
  4731. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4732. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4733. result->nb[1] = nb1;
  4734. result->nb[2] = nb2;
  4735. result->nb[3] = nb3;
  4736. result->op = GGML_OP_VIEW;
  4737. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4738. result->src0 = a;
  4739. result->src1 = NULL;
  4740. if (is_node) {
  4741. memcpy(result->padding, &offset, sizeof(offset));
  4742. }
  4743. return result;
  4744. }
  4745. // ggml_permute
  4746. struct ggml_tensor * ggml_permute(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. int axis0,
  4750. int axis1,
  4751. int axis2,
  4752. int axis3) {
  4753. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4754. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4755. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4756. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4757. GGML_ASSERT(axis0 != axis1);
  4758. GGML_ASSERT(axis0 != axis2);
  4759. GGML_ASSERT(axis0 != axis3);
  4760. GGML_ASSERT(axis1 != axis2);
  4761. GGML_ASSERT(axis1 != axis3);
  4762. GGML_ASSERT(axis2 != axis3);
  4763. bool is_node = false;
  4764. if (a->grad) {
  4765. is_node = true;
  4766. }
  4767. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4768. int ne[GGML_MAX_DIMS];
  4769. int nb[GGML_MAX_DIMS];
  4770. ne[axis0] = a->ne[0];
  4771. ne[axis1] = a->ne[1];
  4772. ne[axis2] = a->ne[2];
  4773. ne[axis3] = a->ne[3];
  4774. nb[axis0] = a->nb[0];
  4775. nb[axis1] = a->nb[1];
  4776. nb[axis2] = a->nb[2];
  4777. nb[axis3] = a->nb[3];
  4778. result->ne[0] = ne[0];
  4779. result->ne[1] = ne[1];
  4780. result->ne[2] = ne[2];
  4781. result->ne[3] = ne[3];
  4782. result->nb[0] = nb[0];
  4783. result->nb[1] = nb[1];
  4784. result->nb[2] = nb[2];
  4785. result->nb[3] = nb[3];
  4786. result->op = GGML_OP_PERMUTE;
  4787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4788. result->src0 = a;
  4789. result->src1 = NULL;
  4790. if (is_node) {
  4791. result->padding[0] = axis0;
  4792. result->padding[1] = axis1;
  4793. result->padding[2] = axis2;
  4794. result->padding[3] = axis3;
  4795. }
  4796. return result;
  4797. }
  4798. // ggml_transpose
  4799. struct ggml_tensor * ggml_transpose(
  4800. struct ggml_context * ctx,
  4801. struct ggml_tensor * a) {
  4802. bool is_node = false;
  4803. if (a->grad) {
  4804. is_node = true;
  4805. }
  4806. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4807. result->ne[0] = a->ne[1];
  4808. result->ne[1] = a->ne[0];
  4809. result->nb[0] = a->nb[1];
  4810. result->nb[1] = a->nb[0];
  4811. result->op = GGML_OP_TRANSPOSE;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src0 = a;
  4814. result->src1 = NULL;
  4815. return result;
  4816. }
  4817. // ggml_get_rows
  4818. struct ggml_tensor * ggml_get_rows(
  4819. struct ggml_context * ctx,
  4820. struct ggml_tensor * a,
  4821. struct ggml_tensor * b) {
  4822. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4823. bool is_node = false;
  4824. if (a->grad || b->grad) {
  4825. is_node = true;
  4826. }
  4827. // TODO: implement non F32 return
  4828. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4829. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4830. result->op = GGML_OP_GET_ROWS;
  4831. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4832. result->src0 = a;
  4833. result->src1 = b;
  4834. return result;
  4835. }
  4836. // ggml_get_rows_back
  4837. struct ggml_tensor * ggml_get_rows_back(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b,
  4841. struct ggml_tensor * c) {
  4842. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4843. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4844. bool is_node = false;
  4845. if (a->grad || b->grad) {
  4846. is_node = true;
  4847. }
  4848. // TODO: implement non F32 return
  4849. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4850. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4851. result->op = GGML_OP_GET_ROWS_BACK;
  4852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4853. result->src0 = a;
  4854. result->src1 = b;
  4855. result->opt[0] = c;
  4856. return result;
  4857. }
  4858. // ggml_diag
  4859. struct ggml_tensor * ggml_diag(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a) {
  4862. GGML_ASSERT(a->ne[1] == 1);
  4863. bool is_node = false;
  4864. if (a->grad) {
  4865. is_node = true;
  4866. }
  4867. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4868. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4869. result->op = GGML_OP_DIAG;
  4870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4871. result->src0 = a;
  4872. result->src1 = NULL;
  4873. return result;
  4874. }
  4875. // ggml_diag_mask_inf
  4876. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4877. struct ggml_context * ctx,
  4878. struct ggml_tensor * a,
  4879. int n_past,
  4880. bool inplace) {
  4881. bool is_node = false;
  4882. if (a->grad) {
  4883. is_node = true;
  4884. }
  4885. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4886. ggml_scratch_save(ctx);
  4887. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4888. ((int32_t *) b->data)[0] = n_past;
  4889. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4890. ggml_scratch_load(ctx);
  4891. result->op = GGML_OP_DIAG_MASK_INF;
  4892. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4893. result->src0 = a;
  4894. result->src1 = b;
  4895. return result;
  4896. }
  4897. struct ggml_tensor * ggml_diag_mask_inf(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a,
  4900. int n_past) {
  4901. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4902. }
  4903. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. int n_past) {
  4907. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4908. }
  4909. // ggml_diag_mask_zero
  4910. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4911. struct ggml_context * ctx,
  4912. struct ggml_tensor * a,
  4913. int n_past,
  4914. bool inplace) {
  4915. bool is_node = false;
  4916. if (a->grad) {
  4917. is_node = true;
  4918. }
  4919. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4920. ggml_scratch_save(ctx);
  4921. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4922. ggml_set_name(b, "n_past, inplace");
  4923. ((int32_t *) b->data)[0] = n_past;
  4924. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4925. ggml_scratch_load(ctx);
  4926. result->op = GGML_OP_DIAG_MASK_ZERO;
  4927. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4928. result->src0 = a;
  4929. result->src1 = b;
  4930. return result;
  4931. }
  4932. struct ggml_tensor * ggml_diag_mask_zero(
  4933. struct ggml_context * ctx,
  4934. struct ggml_tensor * a,
  4935. int n_past) {
  4936. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4937. }
  4938. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4939. struct ggml_context * ctx,
  4940. struct ggml_tensor * a,
  4941. int n_past) {
  4942. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4943. }
  4944. // ggml_soft_max
  4945. struct ggml_tensor * ggml_soft_max_impl(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. bool inplace) {
  4949. bool is_node = false;
  4950. if (a->grad) {
  4951. is_node = true;
  4952. }
  4953. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4954. result->op = GGML_OP_SOFT_MAX;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src0 = a;
  4957. result->src1 = NULL;
  4958. return result;
  4959. }
  4960. struct ggml_tensor * ggml_soft_max(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a) {
  4963. return ggml_soft_max_impl(ctx, a, false);
  4964. }
  4965. struct ggml_tensor * ggml_soft_max_inplace(
  4966. struct ggml_context * ctx,
  4967. struct ggml_tensor * a) {
  4968. return ggml_soft_max_impl(ctx, a, true);
  4969. }
  4970. // ggml_rope
  4971. struct ggml_tensor * ggml_rope_impl(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. int n_past,
  4975. int n_dims,
  4976. int mode,
  4977. bool inplace) {
  4978. GGML_ASSERT(n_past >= 0);
  4979. bool is_node = false;
  4980. if (!inplace && a->grad) {
  4981. is_node = true;
  4982. }
  4983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4984. ggml_scratch_save(ctx);
  4985. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4986. ((int32_t *) b->data)[0] = n_past;
  4987. ((int32_t *) b->data)[1] = n_dims;
  4988. ((int32_t *) b->data)[2] = mode;
  4989. ggml_scratch_load(ctx);
  4990. result->op = GGML_OP_ROPE;
  4991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4992. result->src0 = a;
  4993. result->src1 = b;
  4994. return result;
  4995. }
  4996. struct ggml_tensor * ggml_rope(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. int n_past,
  5000. int n_dims,
  5001. int mode) {
  5002. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5003. }
  5004. struct ggml_tensor * ggml_rope_inplace(
  5005. struct ggml_context * ctx,
  5006. struct ggml_tensor * a,
  5007. int n_past,
  5008. int n_dims,
  5009. int mode) {
  5010. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5011. }
  5012. // ggml_rope_back
  5013. struct ggml_tensor * ggml_rope_back(
  5014. struct ggml_context * ctx,
  5015. struct ggml_tensor * a,
  5016. int n_past,
  5017. int n_dims,
  5018. int mode) {
  5019. GGML_ASSERT(n_past >= 0);
  5020. bool is_node = false;
  5021. if (a->grad) {
  5022. GGML_ASSERT(false); // TODO: implement backward
  5023. is_node = true;
  5024. }
  5025. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5026. ggml_scratch_save(ctx);
  5027. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5028. ggml_set_name(b, "n_past, n_dims, mode");
  5029. ((int32_t *) b->data)[0] = n_past;
  5030. ((int32_t *) b->data)[1] = n_dims;
  5031. ((int32_t *) b->data)[2] = mode;
  5032. ggml_scratch_load(ctx);
  5033. result->op = GGML_OP_ROPE_BACK;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src0 = a;
  5036. result->src1 = b;
  5037. return result;
  5038. }
  5039. // ggml_alibi
  5040. struct ggml_tensor * ggml_alibi(
  5041. struct ggml_context * ctx,
  5042. struct ggml_tensor * a,
  5043. int n_past,
  5044. int n_head,
  5045. float bias_max) {
  5046. GGML_ASSERT(n_past >= 0);
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. GGML_ASSERT(false); // TODO: implement backward
  5050. is_node = true;
  5051. }
  5052. // TODO: when implement backward, fix this:
  5053. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5054. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5055. ggml_scratch_save(ctx);
  5056. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5057. ((int32_t *) b->data)[0] = n_past;
  5058. ((int32_t *) b->data)[1] = n_head;
  5059. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5060. (((float *) b->data)[2]) = bias_max;
  5061. ggml_scratch_load(ctx);
  5062. result->op = GGML_OP_ALIBI;
  5063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5064. result->src0 = a;
  5065. result->src1 = b;
  5066. return result;
  5067. }
  5068. // ggml_clamp
  5069. struct ggml_tensor * ggml_clamp(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. float min,
  5073. float max) {
  5074. bool is_node = false;
  5075. if (a->grad) {
  5076. GGML_ASSERT(false); // TODO: implement backward
  5077. is_node = true;
  5078. }
  5079. // TODO: when implement backward, fix this:
  5080. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5081. ggml_scratch_save(ctx);
  5082. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5083. ((float *) b->data)[0] = min;
  5084. ((float *) b->data)[1] = max;
  5085. ggml_scratch_load(ctx);
  5086. result->op = GGML_OP_CLAMP;
  5087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5088. result->src0 = a;
  5089. result->src1 = b;
  5090. return result;
  5091. }
  5092. // ggml_conv_1d_1s
  5093. struct ggml_tensor * ggml_conv_1d_1s(
  5094. struct ggml_context * ctx,
  5095. struct ggml_tensor * a,
  5096. struct ggml_tensor * b) {
  5097. GGML_ASSERT(ggml_is_matrix(b));
  5098. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5099. GGML_ASSERT(a->ne[3] == 1);
  5100. bool is_node = false;
  5101. if (a->grad || b->grad) {
  5102. GGML_ASSERT(false); // TODO: implement backward
  5103. is_node = true;
  5104. }
  5105. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5106. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5107. result->op = GGML_OP_CONV_1D_1S;
  5108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5109. result->src0 = a;
  5110. result->src1 = b;
  5111. return result;
  5112. }
  5113. // ggml_conv_1d_2s
  5114. struct ggml_tensor * ggml_conv_1d_2s(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. struct ggml_tensor * b) {
  5118. GGML_ASSERT(ggml_is_matrix(b));
  5119. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5120. GGML_ASSERT(a->ne[3] == 1);
  5121. bool is_node = false;
  5122. if (a->grad || b->grad) {
  5123. GGML_ASSERT(false); // TODO: implement backward
  5124. is_node = true;
  5125. }
  5126. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5127. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5128. result->op = GGML_OP_CONV_1D_2S;
  5129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5130. result->src0 = a;
  5131. result->src1 = b;
  5132. return result;
  5133. }
  5134. // ggml_flash_attn
  5135. struct ggml_tensor * ggml_flash_attn(
  5136. struct ggml_context * ctx,
  5137. struct ggml_tensor * q,
  5138. struct ggml_tensor * k,
  5139. struct ggml_tensor * v,
  5140. bool masked) {
  5141. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5142. // TODO: check if vT can be multiplied by (k*qT)
  5143. bool is_node = false;
  5144. if (q->grad || k->grad || v->grad) {
  5145. GGML_ASSERT(false); // TODO: implement backward
  5146. is_node = true;
  5147. }
  5148. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5149. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5150. result->op = GGML_OP_FLASH_ATTN;
  5151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5152. result->src0 = q;
  5153. result->src1 = k;
  5154. result->opt[0] = v;
  5155. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5156. return result;
  5157. }
  5158. // ggml_flash_ff
  5159. struct ggml_tensor * ggml_flash_ff(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. struct ggml_tensor * b0,
  5163. struct ggml_tensor * b1,
  5164. struct ggml_tensor * c0,
  5165. struct ggml_tensor * c1) {
  5166. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5167. // TODO: more checks
  5168. bool is_node = false;
  5169. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5170. GGML_ASSERT(false); // TODO: implement backward
  5171. is_node = true;
  5172. }
  5173. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5174. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5175. result->op = GGML_OP_FLASH_FF;
  5176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5177. result->src0 = a;
  5178. result->src1 = b0;
  5179. result->opt[0] = b1;
  5180. result->opt[1] = c0;
  5181. result->opt[2] = c1;
  5182. return result;
  5183. }
  5184. // ggml_map_unary
  5185. struct ggml_tensor * ggml_map_unary_impl_f32(
  5186. struct ggml_context * ctx,
  5187. struct ggml_tensor * a,
  5188. const ggml_unary_op_f32_t fun,
  5189. bool inplace) {
  5190. bool is_node = false;
  5191. if (!inplace && a->grad) {
  5192. is_node = true;
  5193. }
  5194. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5195. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5196. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5197. result->op = GGML_OP_MAP_UNARY;
  5198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5199. result->src0 = a;
  5200. result->opt[0] = addr_tensor;
  5201. return result;
  5202. }
  5203. struct ggml_tensor * ggml_map_unary_f32(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. const ggml_unary_op_f32_t fun) {
  5207. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5208. }
  5209. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. const ggml_unary_op_f32_t fun) {
  5213. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5214. }
  5215. // ggml_map_binary
  5216. struct ggml_tensor * ggml_map_binary_impl_f32(
  5217. struct ggml_context * ctx,
  5218. struct ggml_tensor * a,
  5219. struct ggml_tensor * b,
  5220. const ggml_binary_op_f32_t fun,
  5221. bool inplace) {
  5222. GGML_ASSERT(ggml_are_same_shape(a, b));
  5223. bool is_node = false;
  5224. if (!inplace && (a->grad || b->grad)) {
  5225. is_node = true;
  5226. }
  5227. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5228. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5229. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5230. result->op = GGML_OP_MAP_BINARY;
  5231. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5232. result->src0 = a;
  5233. result->src1 = b;
  5234. result->opt[0] = addr_tensor;
  5235. return result;
  5236. }
  5237. struct ggml_tensor * ggml_map_binary_f32(
  5238. struct ggml_context * ctx,
  5239. struct ggml_tensor * a,
  5240. struct ggml_tensor * b,
  5241. const ggml_binary_op_f32_t fun) {
  5242. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5243. }
  5244. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5245. struct ggml_context * ctx,
  5246. struct ggml_tensor * a,
  5247. struct ggml_tensor * b,
  5248. const ggml_binary_op_f32_t fun) {
  5249. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5250. }
  5251. ////////////////////////////////////////////////////////////////////////////////
  5252. void ggml_set_param(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * tensor) {
  5255. tensor->is_param = true;
  5256. GGML_ASSERT(tensor->grad == NULL);
  5257. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5258. }
  5259. // ggml_compute_forward_dup
  5260. static void ggml_compute_forward_dup_same_cont(
  5261. const struct ggml_compute_params * params,
  5262. const struct ggml_tensor * src0,
  5263. struct ggml_tensor * dst) {
  5264. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5265. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5266. GGML_ASSERT(src0->type == dst->type);
  5267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5268. return;
  5269. }
  5270. const size_t nb00 = src0->nb[0];
  5271. const size_t nb0 = dst->nb[0];
  5272. const int ith = params->ith; // thread index
  5273. const int nth = params->nth; // number of threads
  5274. // parallelize by elements
  5275. const int ne = ggml_nelements(dst);
  5276. const int dr = (ne + nth - 1) / nth;
  5277. const int ie0 = dr * ith;
  5278. const int ie1 = MIN(ie0 + dr, ne);
  5279. if (ie0 < ie1) {
  5280. memcpy(
  5281. ((char *) dst->data + ie0*nb0),
  5282. ((char *) src0->data + ie0*nb00),
  5283. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5284. }
  5285. }
  5286. static void ggml_compute_forward_dup_f16(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. struct ggml_tensor * dst) {
  5290. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5292. return;
  5293. }
  5294. const int64_t ne00 = src0->ne[0];
  5295. const int64_t ne01 = src0->ne[1];
  5296. const int64_t ne02 = src0->ne[2];
  5297. const int64_t ne03 = src0->ne[3];
  5298. const int64_t ne0 = dst->ne[0];
  5299. const int64_t ne1 = dst->ne[1];
  5300. const int64_t ne2 = dst->ne[2];
  5301. const int64_t ne3 = dst->ne[3];
  5302. const size_t nb00 = src0->nb[0];
  5303. const size_t nb01 = src0->nb[1];
  5304. const size_t nb02 = src0->nb[2];
  5305. const size_t nb03 = src0->nb[3];
  5306. const size_t nb0 = dst->nb[0];
  5307. const size_t nb1 = dst->nb[1];
  5308. const size_t nb2 = dst->nb[2];
  5309. const size_t nb3 = dst->nb[3];
  5310. const int ith = params->ith; // thread index
  5311. const int nth = params->nth; // number of threads
  5312. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5313. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5314. return;
  5315. }
  5316. // parallelize by rows
  5317. const int nr = ne01;
  5318. // number of rows per thread
  5319. const int dr = (nr + nth - 1) / nth;
  5320. // row range for this thread
  5321. const int ir0 = dr * ith;
  5322. const int ir1 = MIN(ir0 + dr, nr);
  5323. if (src0->type == dst->type &&
  5324. ne00 == ne0 &&
  5325. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5326. // copy by rows
  5327. const size_t rs = ne00*nb00;
  5328. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5329. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5330. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5331. memcpy(
  5332. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5333. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5334. rs);
  5335. }
  5336. }
  5337. }
  5338. return;
  5339. }
  5340. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5341. if (ggml_is_contiguous(dst)) {
  5342. if (nb00 == sizeof(ggml_fp16_t)) {
  5343. if (dst->type == GGML_TYPE_F16) {
  5344. size_t id = 0;
  5345. const size_t rs = ne00 * nb00;
  5346. char * dst_ptr = (char *) dst->data;
  5347. for (int i03 = 0; i03 < ne03; i03++) {
  5348. for (int i02 = 0; i02 < ne02; i02++) {
  5349. id += rs * ir0;
  5350. for (int i01 = ir0; i01 < ir1; i01++) {
  5351. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5352. memcpy(dst_ptr + id, src0_ptr, rs);
  5353. id += rs;
  5354. }
  5355. id += rs * (ne01 - ir1);
  5356. }
  5357. }
  5358. } else if (dst->type == GGML_TYPE_F32) {
  5359. size_t id = 0;
  5360. float * dst_ptr = (float *) dst->data;
  5361. for (int i03 = 0; i03 < ne03; i03++) {
  5362. for (int i02 = 0; i02 < ne02; i02++) {
  5363. id += ne00 * ir0;
  5364. for (int i01 = ir0; i01 < ir1; i01++) {
  5365. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5366. for (int i00 = 0; i00 < ne00; i00++) {
  5367. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5368. id++;
  5369. }
  5370. }
  5371. id += ne00 * (ne01 - ir1);
  5372. }
  5373. }
  5374. } else if (ggml_is_quantized(dst->type)) {
  5375. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5376. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5377. size_t id = 0;
  5378. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5379. char * dst_ptr = (char *) dst->data;
  5380. for (int i03 = 0; i03 < ne03; i03++) {
  5381. for (int i02 = 0; i02 < ne02; i02++) {
  5382. id += rs * ir0;
  5383. for (int i01 = ir0; i01 < ir1; i01++) {
  5384. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5385. for (int i00 = 0; i00 < ne00; i00++) {
  5386. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5387. }
  5388. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5389. id += rs;
  5390. }
  5391. id += rs * (ne01 - ir1);
  5392. }
  5393. }
  5394. } else {
  5395. GGML_ASSERT(false); // TODO: implement
  5396. }
  5397. } else {
  5398. //printf("%s: this is not optimal - fix me\n", __func__);
  5399. if (dst->type == GGML_TYPE_F32) {
  5400. size_t id = 0;
  5401. float * dst_ptr = (float *) dst->data;
  5402. for (int i03 = 0; i03 < ne03; i03++) {
  5403. for (int i02 = 0; i02 < ne02; i02++) {
  5404. id += ne00 * ir0;
  5405. for (int i01 = ir0; i01 < ir1; i01++) {
  5406. for (int i00 = 0; i00 < ne00; i00++) {
  5407. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5408. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5409. id++;
  5410. }
  5411. }
  5412. id += ne00 * (ne01 - ir1);
  5413. }
  5414. }
  5415. } else if (dst->type == GGML_TYPE_F16) {
  5416. size_t id = 0;
  5417. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5418. for (int i03 = 0; i03 < ne03; i03++) {
  5419. for (int i02 = 0; i02 < ne02; i02++) {
  5420. id += ne00 * ir0;
  5421. for (int i01 = ir0; i01 < ir1; i01++) {
  5422. for (int i00 = 0; i00 < ne00; i00++) {
  5423. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5424. dst_ptr[id] = *src0_ptr;
  5425. id++;
  5426. }
  5427. }
  5428. id += ne00 * (ne01 - ir1);
  5429. }
  5430. }
  5431. } else {
  5432. GGML_ASSERT(false); // TODO: implement
  5433. }
  5434. }
  5435. return;
  5436. }
  5437. // dst counters
  5438. int64_t i10 = 0;
  5439. int64_t i11 = 0;
  5440. int64_t i12 = 0;
  5441. int64_t i13 = 0;
  5442. if (dst->type == GGML_TYPE_F16) {
  5443. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5444. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5445. i10 += ne00 * ir0;
  5446. while (i10 >= ne0) {
  5447. i10 -= ne0;
  5448. if (++i11 == ne1) {
  5449. i11 = 0;
  5450. if (++i12 == ne2) {
  5451. i12 = 0;
  5452. if (++i13 == ne3) {
  5453. i13 = 0;
  5454. }
  5455. }
  5456. }
  5457. }
  5458. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5459. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5460. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5461. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5462. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5463. if (++i10 == ne00) {
  5464. i10 = 0;
  5465. if (++i11 == ne01) {
  5466. i11 = 0;
  5467. if (++i12 == ne02) {
  5468. i12 = 0;
  5469. if (++i13 == ne03) {
  5470. i13 = 0;
  5471. }
  5472. }
  5473. }
  5474. }
  5475. }
  5476. }
  5477. i10 += ne00 * (ne01 - ir1);
  5478. while (i10 >= ne0) {
  5479. i10 -= ne0;
  5480. if (++i11 == ne1) {
  5481. i11 = 0;
  5482. if (++i12 == ne2) {
  5483. i12 = 0;
  5484. if (++i13 == ne3) {
  5485. i13 = 0;
  5486. }
  5487. }
  5488. }
  5489. }
  5490. }
  5491. }
  5492. } else if (dst->type == GGML_TYPE_F32) {
  5493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5495. i10 += ne00 * ir0;
  5496. while (i10 >= ne0) {
  5497. i10 -= ne0;
  5498. if (++i11 == ne1) {
  5499. i11 = 0;
  5500. if (++i12 == ne2) {
  5501. i12 = 0;
  5502. if (++i13 == ne3) {
  5503. i13 = 0;
  5504. }
  5505. }
  5506. }
  5507. }
  5508. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5509. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5510. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5511. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5512. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5513. if (++i10 == ne0) {
  5514. i10 = 0;
  5515. if (++i11 == ne1) {
  5516. i11 = 0;
  5517. if (++i12 == ne2) {
  5518. i12 = 0;
  5519. if (++i13 == ne3) {
  5520. i13 = 0;
  5521. }
  5522. }
  5523. }
  5524. }
  5525. }
  5526. }
  5527. i10 += ne00 * (ne01 - ir1);
  5528. while (i10 >= ne0) {
  5529. i10 -= ne0;
  5530. if (++i11 == ne1) {
  5531. i11 = 0;
  5532. if (++i12 == ne2) {
  5533. i12 = 0;
  5534. if (++i13 == ne3) {
  5535. i13 = 0;
  5536. }
  5537. }
  5538. }
  5539. }
  5540. }
  5541. }
  5542. } else {
  5543. GGML_ASSERT(false); // TODO: implement
  5544. }
  5545. }
  5546. static void ggml_compute_forward_dup_f32(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0,
  5549. struct ggml_tensor * dst) {
  5550. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5552. return;
  5553. }
  5554. const int64_t ne00 = src0->ne[0];
  5555. const int64_t ne01 = src0->ne[1];
  5556. const int64_t ne02 = src0->ne[2];
  5557. const int64_t ne03 = src0->ne[3];
  5558. const int64_t ne0 = dst->ne[0];
  5559. const int64_t ne1 = dst->ne[1];
  5560. const int64_t ne2 = dst->ne[2];
  5561. const int64_t ne3 = dst->ne[3];
  5562. const size_t nb00 = src0->nb[0];
  5563. const size_t nb01 = src0->nb[1];
  5564. const size_t nb02 = src0->nb[2];
  5565. const size_t nb03 = src0->nb[3];
  5566. const size_t nb0 = dst->nb[0];
  5567. const size_t nb1 = dst->nb[1];
  5568. const size_t nb2 = dst->nb[2];
  5569. const size_t nb3 = dst->nb[3];
  5570. const int ith = params->ith; // thread index
  5571. const int nth = params->nth; // number of threads
  5572. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5573. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5574. return;
  5575. }
  5576. // parallelize by rows
  5577. const int nr = ne01;
  5578. // number of rows per thread
  5579. const int dr = (nr + nth - 1) / nth;
  5580. // row range for this thread
  5581. const int ir0 = dr * ith;
  5582. const int ir1 = MIN(ir0 + dr, nr);
  5583. if (src0->type == dst->type &&
  5584. ne00 == ne0 &&
  5585. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5586. // copy by rows
  5587. const size_t rs = ne00*nb00;
  5588. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5589. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5590. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5591. memcpy(
  5592. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5593. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5594. rs);
  5595. }
  5596. }
  5597. }
  5598. return;
  5599. }
  5600. if (ggml_is_contiguous(dst)) {
  5601. // TODO: simplify
  5602. if (nb00 == sizeof(float)) {
  5603. if (dst->type == GGML_TYPE_F32) {
  5604. size_t id = 0;
  5605. const size_t rs = ne00 * nb00;
  5606. char * dst_ptr = (char *) dst->data;
  5607. for (int i03 = 0; i03 < ne03; i03++) {
  5608. for (int i02 = 0; i02 < ne02; i02++) {
  5609. id += rs * ir0;
  5610. for (int i01 = ir0; i01 < ir1; i01++) {
  5611. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5612. memcpy(dst_ptr + id, src0_ptr, rs);
  5613. id += rs;
  5614. }
  5615. id += rs * (ne01 - ir1);
  5616. }
  5617. }
  5618. } else if (dst->type == GGML_TYPE_F16) {
  5619. size_t id = 0;
  5620. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5621. for (int i03 = 0; i03 < ne03; i03++) {
  5622. for (int i02 = 0; i02 < ne02; i02++) {
  5623. id += ne00 * ir0;
  5624. for (int i01 = ir0; i01 < ir1; i01++) {
  5625. for (int i00 = 0; i00 < ne00; i00++) {
  5626. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5627. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5628. id++;
  5629. }
  5630. }
  5631. id += ne00 * (ne01 - ir1);
  5632. }
  5633. }
  5634. } else if (ggml_is_quantized(dst->type)) {
  5635. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5636. size_t id = 0;
  5637. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5638. char * dst_ptr = (char *) dst->data;
  5639. for (int i03 = 0; i03 < ne03; i03++) {
  5640. for (int i02 = 0; i02 < ne02; i02++) {
  5641. id += rs * ir0;
  5642. for (int i01 = ir0; i01 < ir1; i01++) {
  5643. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5644. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5645. id += rs;
  5646. }
  5647. id += rs * (ne01 - ir1);
  5648. }
  5649. }
  5650. } else {
  5651. GGML_ASSERT(false); // TODO: implement
  5652. }
  5653. } else {
  5654. //printf("%s: this is not optimal - fix me\n", __func__);
  5655. if (dst->type == GGML_TYPE_F32) {
  5656. size_t id = 0;
  5657. float * dst_ptr = (float *) dst->data;
  5658. for (int i03 = 0; i03 < ne03; i03++) {
  5659. for (int i02 = 0; i02 < ne02; i02++) {
  5660. id += ne00 * ir0;
  5661. for (int i01 = ir0; i01 < ir1; i01++) {
  5662. for (int i00 = 0; i00 < ne00; i00++) {
  5663. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5664. dst_ptr[id] = *src0_ptr;
  5665. id++;
  5666. }
  5667. }
  5668. id += ne00 * (ne01 - ir1);
  5669. }
  5670. }
  5671. } else if (dst->type == GGML_TYPE_F16) {
  5672. size_t id = 0;
  5673. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5674. for (int i03 = 0; i03 < ne03; i03++) {
  5675. for (int i02 = 0; i02 < ne02; i02++) {
  5676. id += ne00 * ir0;
  5677. for (int i01 = ir0; i01 < ir1; i01++) {
  5678. for (int i00 = 0; i00 < ne00; i00++) {
  5679. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5680. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5681. id++;
  5682. }
  5683. }
  5684. id += ne00 * (ne01 - ir1);
  5685. }
  5686. }
  5687. } else {
  5688. GGML_ASSERT(false); // TODO: implement
  5689. }
  5690. }
  5691. return;
  5692. }
  5693. // dst counters
  5694. int64_t i10 = 0;
  5695. int64_t i11 = 0;
  5696. int64_t i12 = 0;
  5697. int64_t i13 = 0;
  5698. if (dst->type == GGML_TYPE_F32) {
  5699. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5700. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5701. i10 += ne00 * ir0;
  5702. while (i10 >= ne0) {
  5703. i10 -= ne0;
  5704. if (++i11 == ne1) {
  5705. i11 = 0;
  5706. if (++i12 == ne2) {
  5707. i12 = 0;
  5708. if (++i13 == ne3) {
  5709. i13 = 0;
  5710. }
  5711. }
  5712. }
  5713. }
  5714. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5715. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5716. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5717. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5718. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5719. if (++i10 == ne0) {
  5720. i10 = 0;
  5721. if (++i11 == ne1) {
  5722. i11 = 0;
  5723. if (++i12 == ne2) {
  5724. i12 = 0;
  5725. if (++i13 == ne3) {
  5726. i13 = 0;
  5727. }
  5728. }
  5729. }
  5730. }
  5731. }
  5732. }
  5733. i10 += ne00 * (ne01 - ir1);
  5734. while (i10 >= ne0) {
  5735. i10 -= ne0;
  5736. if (++i11 == ne1) {
  5737. i11 = 0;
  5738. if (++i12 == ne2) {
  5739. i12 = 0;
  5740. if (++i13 == ne3) {
  5741. i13 = 0;
  5742. }
  5743. }
  5744. }
  5745. }
  5746. }
  5747. }
  5748. } else if (dst->type == GGML_TYPE_F16) {
  5749. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5750. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5751. i10 += ne00 * ir0;
  5752. while (i10 >= ne0) {
  5753. i10 -= ne0;
  5754. if (++i11 == ne1) {
  5755. i11 = 0;
  5756. if (++i12 == ne2) {
  5757. i12 = 0;
  5758. if (++i13 == ne3) {
  5759. i13 = 0;
  5760. }
  5761. }
  5762. }
  5763. }
  5764. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5765. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5766. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5767. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5768. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5769. if (++i10 == ne0) {
  5770. i10 = 0;
  5771. if (++i11 == ne1) {
  5772. i11 = 0;
  5773. if (++i12 == ne2) {
  5774. i12 = 0;
  5775. if (++i13 == ne3) {
  5776. i13 = 0;
  5777. }
  5778. }
  5779. }
  5780. }
  5781. }
  5782. }
  5783. i10 += ne00 * (ne01 - ir1);
  5784. while (i10 >= ne0) {
  5785. i10 -= ne0;
  5786. if (++i11 == ne1) {
  5787. i11 = 0;
  5788. if (++i12 == ne2) {
  5789. i12 = 0;
  5790. if (++i13 == ne3) {
  5791. i13 = 0;
  5792. }
  5793. }
  5794. }
  5795. }
  5796. }
  5797. }
  5798. } else {
  5799. GGML_ASSERT(false); // TODO: implement
  5800. }
  5801. }
  5802. static void ggml_compute_forward_dup(
  5803. const struct ggml_compute_params * params,
  5804. const struct ggml_tensor * src0,
  5805. struct ggml_tensor * dst) {
  5806. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5807. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5808. return;
  5809. }
  5810. switch (src0->type) {
  5811. case GGML_TYPE_F16:
  5812. {
  5813. ggml_compute_forward_dup_f16(params, src0, dst);
  5814. } break;
  5815. case GGML_TYPE_F32:
  5816. {
  5817. ggml_compute_forward_dup_f32(params, src0, dst);
  5818. } break;
  5819. default:
  5820. {
  5821. GGML_ASSERT(false);
  5822. } break;
  5823. }
  5824. }
  5825. // ggml_compute_forward_add
  5826. static void ggml_compute_forward_add_f32(
  5827. const struct ggml_compute_params * params,
  5828. const struct ggml_tensor * src0,
  5829. const struct ggml_tensor * src1,
  5830. struct ggml_tensor * dst) {
  5831. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5833. return;
  5834. }
  5835. const int ith = params->ith;
  5836. const int nth = params->nth;
  5837. const int nr = ggml_nrows(src0);
  5838. const int64_t ne0 = src0->ne[0];
  5839. const int64_t ne1 = src0->ne[1];
  5840. const int64_t ne2 = src0->ne[2];
  5841. const size_t nb00 = src0->nb[0];
  5842. const size_t nb01 = src0->nb[1];
  5843. const size_t nb02 = src0->nb[2];
  5844. const size_t nb03 = src0->nb[3];
  5845. const size_t nb10 = src1->nb[0];
  5846. const size_t nb11 = src1->nb[1];
  5847. const size_t nb12 = src1->nb[2];
  5848. const size_t nb13 = src1->nb[3];
  5849. const size_t nb0 = dst->nb[0];
  5850. const size_t nb1 = dst->nb[1];
  5851. const size_t nb2 = dst->nb[2];
  5852. const size_t nb3 = dst->nb[3];
  5853. GGML_ASSERT( nb0 == sizeof(float));
  5854. GGML_ASSERT(nb00 == sizeof(float));
  5855. // rows per thread
  5856. const int dr = (nr + nth - 1)/nth;
  5857. // row range for this thread
  5858. const int ir0 = dr*ith;
  5859. const int ir1 = MIN(ir0 + dr, nr);
  5860. if (nb10 == sizeof(float)) {
  5861. for (int ir = ir0; ir < ir1; ++ir) {
  5862. // src0, src1 and dst are same shape => same indices
  5863. const int i3 = ir/(ne2*ne1);
  5864. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5865. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5866. #ifdef GGML_USE_ACCELERATE
  5867. vDSP_vadd(
  5868. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5869. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5870. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5871. ne0);
  5872. #else
  5873. ggml_vec_add_f32(ne0,
  5874. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5875. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5876. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5877. #endif
  5878. // }
  5879. // }
  5880. }
  5881. } else {
  5882. // src1 is not contiguous
  5883. for (int ir = ir0; ir < ir1; ++ir) {
  5884. // src0, src1 and dst are same shape => same indices
  5885. const int i3 = ir/(ne2*ne1);
  5886. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5887. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5888. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5889. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5890. for (int i0 = 0; i0 < ne0; i0++) {
  5891. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5892. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5893. }
  5894. }
  5895. }
  5896. }
  5897. static void ggml_compute_forward_add_f16_f32(
  5898. const struct ggml_compute_params * params,
  5899. const struct ggml_tensor * src0,
  5900. const struct ggml_tensor * src1,
  5901. struct ggml_tensor * dst) {
  5902. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5903. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5904. return;
  5905. }
  5906. const int ith = params->ith;
  5907. const int nth = params->nth;
  5908. const int nr = ggml_nrows(src0);
  5909. const int64_t ne0 = src0->ne[0];
  5910. const int64_t ne1 = src0->ne[1];
  5911. const int64_t ne2 = src0->ne[2];
  5912. const size_t nb00 = src0->nb[0];
  5913. const size_t nb01 = src0->nb[1];
  5914. const size_t nb02 = src0->nb[2];
  5915. const size_t nb03 = src0->nb[3];
  5916. const size_t nb10 = src1->nb[0];
  5917. const size_t nb11 = src1->nb[1];
  5918. const size_t nb12 = src1->nb[2];
  5919. const size_t nb13 = src1->nb[3];
  5920. const size_t nb0 = dst->nb[0];
  5921. const size_t nb1 = dst->nb[1];
  5922. const size_t nb2 = dst->nb[2];
  5923. const size_t nb3 = dst->nb[3];
  5924. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5925. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5926. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5927. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5928. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5929. // rows per thread
  5930. const int dr = (nr + nth - 1)/nth;
  5931. // row range for this thread
  5932. const int ir0 = dr*ith;
  5933. const int ir1 = MIN(ir0 + dr, nr);
  5934. if (nb10 == sizeof(float)) {
  5935. for (int ir = ir0; ir < ir1; ++ir) {
  5936. // src0, src1 and dst are same shape => same indices
  5937. const int i3 = ir/(ne2*ne1);
  5938. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5939. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5940. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5941. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5942. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5943. for (int i = 0; i < ne0; i++) {
  5944. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5945. }
  5946. }
  5947. }
  5948. else {
  5949. // src1 is not contiguous
  5950. GGML_ASSERT(false);
  5951. }
  5952. }
  5953. static void ggml_compute_forward_add_f16_f16(
  5954. const struct ggml_compute_params * params,
  5955. const struct ggml_tensor * src0,
  5956. const struct ggml_tensor * src1,
  5957. struct ggml_tensor * dst) {
  5958. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5960. return;
  5961. }
  5962. const int ith = params->ith;
  5963. const int nth = params->nth;
  5964. const int nr = ggml_nrows(src0);
  5965. const int64_t ne0 = src0->ne[0];
  5966. const int64_t ne1 = src0->ne[1];
  5967. const int64_t ne2 = src0->ne[2];
  5968. const size_t nb00 = src0->nb[0];
  5969. const size_t nb01 = src0->nb[1];
  5970. const size_t nb02 = src0->nb[2];
  5971. const size_t nb03 = src0->nb[3];
  5972. const size_t nb10 = src1->nb[0];
  5973. const size_t nb11 = src1->nb[1];
  5974. const size_t nb12 = src1->nb[2];
  5975. const size_t nb13 = src1->nb[3];
  5976. const size_t nb0 = dst->nb[0];
  5977. const size_t nb1 = dst->nb[1];
  5978. const size_t nb2 = dst->nb[2];
  5979. const size_t nb3 = dst->nb[3];
  5980. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5981. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5982. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5983. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5984. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5985. // rows per thread
  5986. const int dr = (nr + nth - 1)/nth;
  5987. // row range for this thread
  5988. const int ir0 = dr*ith;
  5989. const int ir1 = MIN(ir0 + dr, nr);
  5990. if (nb10 == sizeof(ggml_fp16_t)) {
  5991. for (int ir = ir0; ir < ir1; ++ir) {
  5992. // src0, src1 and dst are same shape => same indices
  5993. const int i3 = ir/(ne2*ne1);
  5994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5996. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5997. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5998. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5999. for (int i = 0; i < ne0; i++) {
  6000. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6001. }
  6002. }
  6003. }
  6004. else {
  6005. // src1 is not contiguous
  6006. GGML_ASSERT(false);
  6007. }
  6008. }
  6009. static void ggml_compute_forward_add_q_f32(
  6010. const struct ggml_compute_params * params,
  6011. const struct ggml_tensor * src0,
  6012. const struct ggml_tensor * src1,
  6013. struct ggml_tensor * dst) {
  6014. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6016. return;
  6017. }
  6018. const int nr = ggml_nrows(src0);
  6019. const int64_t ne00 = src0->ne[0];
  6020. const int64_t ne01 = src0->ne[1];
  6021. const int64_t ne02 = src0->ne[2];
  6022. //const int64_t ne03 = src0->ne[3];
  6023. const size_t nb00 = src0->nb[0];
  6024. const size_t nb01 = src0->nb[1];
  6025. const size_t nb02 = src0->nb[2];
  6026. const size_t nb03 = src0->nb[3];
  6027. const size_t nb10 = src1->nb[0];
  6028. const size_t nb11 = src1->nb[1];
  6029. const size_t nb12 = src1->nb[2];
  6030. const size_t nb13 = src1->nb[3];
  6031. const size_t nb0 = dst->nb[0];
  6032. const size_t nb1 = dst->nb[1];
  6033. const size_t nb2 = dst->nb[2];
  6034. const size_t nb3 = dst->nb[3];
  6035. const int ith = params->ith;
  6036. const int nth = params->nth;
  6037. const enum ggml_type type = src0->type;
  6038. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6039. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6040. // we don't support permuted src0 or src1
  6041. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6042. GGML_ASSERT(nb10 == sizeof(float));
  6043. // dst cannot be transposed or permuted
  6044. GGML_ASSERT(nb0 <= nb1);
  6045. GGML_ASSERT(nb1 <= nb2);
  6046. GGML_ASSERT(nb2 <= nb3);
  6047. GGML_ASSERT(ggml_is_quantized(src0->type));
  6048. GGML_ASSERT(dst->type == src0->type);
  6049. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6050. // rows per thread
  6051. const int dr = (nr + nth - 1)/nth;
  6052. // row range for this thread
  6053. const int ir0 = dr*ith;
  6054. const int ir1 = MIN(ir0 + dr, nr);
  6055. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6056. for (int ir = ir0; ir < ir1; ++ir) {
  6057. // src0 indices
  6058. const int i03 = ir/(ne02*ne01);
  6059. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6060. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6061. // src1 and dst are same shape as src0 => same indices
  6062. const int i13 = i03;
  6063. const int i12 = i02;
  6064. const int i11 = i01;
  6065. const int i3 = i03;
  6066. const int i2 = i02;
  6067. const int i1 = i01;
  6068. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6069. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6070. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6071. assert(ne00 % 32 == 0);
  6072. // unquantize row from src0 to temp buffer
  6073. dequantize_row_q(src0_row, wdata, ne00);
  6074. // add src1
  6075. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6076. // quantize row to dst
  6077. quantize_row_q(wdata, dst_row, ne00);
  6078. }
  6079. }
  6080. static void ggml_compute_forward_add(
  6081. const struct ggml_compute_params * params,
  6082. const struct ggml_tensor * src0,
  6083. const struct ggml_tensor * src1,
  6084. struct ggml_tensor * dst) {
  6085. switch (src0->type) {
  6086. case GGML_TYPE_F32:
  6087. {
  6088. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6089. } break;
  6090. case GGML_TYPE_F16:
  6091. {
  6092. if (src1->type == GGML_TYPE_F16) {
  6093. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6094. }
  6095. else if (src1->type == GGML_TYPE_F32) {
  6096. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6097. }
  6098. else {
  6099. GGML_ASSERT(false);
  6100. }
  6101. } break;
  6102. case GGML_TYPE_Q4_0:
  6103. case GGML_TYPE_Q4_1:
  6104. case GGML_TYPE_Q5_0:
  6105. case GGML_TYPE_Q5_1:
  6106. case GGML_TYPE_Q8_0:
  6107. {
  6108. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6109. } break;
  6110. default:
  6111. {
  6112. GGML_ASSERT(false);
  6113. } break;
  6114. }
  6115. }
  6116. // ggml_compute_forward_add1
  6117. static void ggml_compute_forward_add1_f32(
  6118. const struct ggml_compute_params * params,
  6119. const struct ggml_tensor * src0,
  6120. const struct ggml_tensor * src1,
  6121. struct ggml_tensor * dst) {
  6122. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6123. GGML_ASSERT(ggml_is_scalar(src1));
  6124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. const int ith = params->ith;
  6128. const int nth = params->nth;
  6129. const int nr = ggml_nrows(src0);
  6130. const int64_t ne0 = src0->ne[0];
  6131. const int64_t ne1 = src0->ne[1];
  6132. const int64_t ne2 = src0->ne[2];
  6133. const size_t nb00 = src0->nb[0];
  6134. const size_t nb01 = src0->nb[1];
  6135. const size_t nb02 = src0->nb[2];
  6136. const size_t nb03 = src0->nb[3];
  6137. const size_t nb0 = dst->nb[0];
  6138. const size_t nb1 = dst->nb[1];
  6139. const size_t nb2 = dst->nb[2];
  6140. const size_t nb3 = dst->nb[3];
  6141. GGML_ASSERT( nb0 == sizeof(float));
  6142. GGML_ASSERT(nb00 == sizeof(float));
  6143. // rows per thread
  6144. const int dr = (nr + nth - 1)/nth;
  6145. // row range for this thread
  6146. const int ir0 = dr*ith;
  6147. const int ir1 = MIN(ir0 + dr, nr);
  6148. for (int ir = ir0; ir < ir1; ++ir) {
  6149. // src0 and dst are same shape => same indices
  6150. const int i3 = ir/(ne2*ne1);
  6151. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6152. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6153. #ifdef GGML_USE_ACCELERATE
  6154. UNUSED(ggml_vec_add1_f32);
  6155. vDSP_vadd(
  6156. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6157. (float *) ((char *) src1->data), 0,
  6158. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6159. ne0);
  6160. #else
  6161. ggml_vec_add1_f32(ne0,
  6162. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6163. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6164. *(float *) src1->data);
  6165. #endif
  6166. }
  6167. }
  6168. static void ggml_compute_forward_add1_f16_f32(
  6169. const struct ggml_compute_params * params,
  6170. const struct ggml_tensor * src0,
  6171. const struct ggml_tensor * src1,
  6172. struct ggml_tensor * dst) {
  6173. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6174. GGML_ASSERT(ggml_is_scalar(src1));
  6175. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6176. return;
  6177. }
  6178. // scalar to add
  6179. const float v = *(float *) src1->data;
  6180. const int ith = params->ith;
  6181. const int nth = params->nth;
  6182. const int nr = ggml_nrows(src0);
  6183. const int64_t ne0 = src0->ne[0];
  6184. const int64_t ne1 = src0->ne[1];
  6185. const int64_t ne2 = src0->ne[2];
  6186. const size_t nb00 = src0->nb[0];
  6187. const size_t nb01 = src0->nb[1];
  6188. const size_t nb02 = src0->nb[2];
  6189. const size_t nb03 = src0->nb[3];
  6190. const size_t nb0 = dst->nb[0];
  6191. const size_t nb1 = dst->nb[1];
  6192. const size_t nb2 = dst->nb[2];
  6193. const size_t nb3 = dst->nb[3];
  6194. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6195. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6196. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6197. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6198. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6199. // rows per thread
  6200. const int dr = (nr + nth - 1)/nth;
  6201. // row range for this thread
  6202. const int ir0 = dr*ith;
  6203. const int ir1 = MIN(ir0 + dr, nr);
  6204. for (int ir = ir0; ir < ir1; ++ir) {
  6205. // src0 and dst are same shape => same indices
  6206. const int i3 = ir/(ne2*ne1);
  6207. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6208. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6209. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6210. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6211. for (int i = 0; i < ne0; i++) {
  6212. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6213. }
  6214. }
  6215. }
  6216. static void ggml_compute_forward_add1_f16_f16(
  6217. const struct ggml_compute_params * params,
  6218. const struct ggml_tensor * src0,
  6219. const struct ggml_tensor * src1,
  6220. struct ggml_tensor * dst) {
  6221. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6222. GGML_ASSERT(ggml_is_scalar(src1));
  6223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6224. return;
  6225. }
  6226. // scalar to add
  6227. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6228. const int ith = params->ith;
  6229. const int nth = params->nth;
  6230. const int nr = ggml_nrows(src0);
  6231. const int64_t ne0 = src0->ne[0];
  6232. const int64_t ne1 = src0->ne[1];
  6233. const int64_t ne2 = src0->ne[2];
  6234. const size_t nb00 = src0->nb[0];
  6235. const size_t nb01 = src0->nb[1];
  6236. const size_t nb02 = src0->nb[2];
  6237. const size_t nb03 = src0->nb[3];
  6238. const size_t nb0 = dst->nb[0];
  6239. const size_t nb1 = dst->nb[1];
  6240. const size_t nb2 = dst->nb[2];
  6241. const size_t nb3 = dst->nb[3];
  6242. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6243. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6244. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6245. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6246. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6247. // rows per thread
  6248. const int dr = (nr + nth - 1)/nth;
  6249. // row range for this thread
  6250. const int ir0 = dr*ith;
  6251. const int ir1 = MIN(ir0 + dr, nr);
  6252. for (int ir = ir0; ir < ir1; ++ir) {
  6253. // src0 and dst are same shape => same indices
  6254. const int i3 = ir/(ne2*ne1);
  6255. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6256. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6257. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6258. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6259. for (int i = 0; i < ne0; i++) {
  6260. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6261. }
  6262. }
  6263. }
  6264. static void ggml_compute_forward_add1_q_f32(
  6265. const struct ggml_compute_params * params,
  6266. const struct ggml_tensor * src0,
  6267. const struct ggml_tensor * src1,
  6268. struct ggml_tensor * dst) {
  6269. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6270. GGML_ASSERT(ggml_is_scalar(src1));
  6271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6272. return;
  6273. }
  6274. // scalar to add
  6275. const float v = *(float *) src1->data;
  6276. const int ith = params->ith;
  6277. const int nth = params->nth;
  6278. const int nr = ggml_nrows(src0);
  6279. const int64_t ne0 = src0->ne[0];
  6280. const int64_t ne1 = src0->ne[1];
  6281. const int64_t ne2 = src0->ne[2];
  6282. const size_t nb00 = src0->nb[0];
  6283. const size_t nb01 = src0->nb[1];
  6284. const size_t nb02 = src0->nb[2];
  6285. const size_t nb03 = src0->nb[3];
  6286. const size_t nb0 = dst->nb[0];
  6287. const size_t nb1 = dst->nb[1];
  6288. const size_t nb2 = dst->nb[2];
  6289. const size_t nb3 = dst->nb[3];
  6290. const enum ggml_type type = src0->type;
  6291. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6292. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6293. // we don't support permuted src0
  6294. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6295. // dst cannot be transposed or permuted
  6296. GGML_ASSERT(nb0 <= nb1);
  6297. GGML_ASSERT(nb1 <= nb2);
  6298. GGML_ASSERT(nb2 <= nb3);
  6299. GGML_ASSERT(ggml_is_quantized(src0->type));
  6300. GGML_ASSERT(dst->type == src0->type);
  6301. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6302. // rows per thread
  6303. const int dr = (nr + nth - 1)/nth;
  6304. // row range for this thread
  6305. const int ir0 = dr*ith;
  6306. const int ir1 = MIN(ir0 + dr, nr);
  6307. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6308. for (int ir = ir0; ir < ir1; ++ir) {
  6309. // src0 and dst are same shape => same indices
  6310. const int i3 = ir/(ne2*ne1);
  6311. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6312. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6313. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6314. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6315. assert(ne0 % 32 == 0);
  6316. // unquantize row from src0 to temp buffer
  6317. dequantize_row_q(src0_row, wdata, ne0);
  6318. // add src1
  6319. ggml_vec_acc1_f32(ne0, wdata, v);
  6320. // quantize row to dst
  6321. quantize_row_q(wdata, dst_row, ne0);
  6322. }
  6323. }
  6324. static void ggml_compute_forward_add1(
  6325. const struct ggml_compute_params * params,
  6326. const struct ggml_tensor * src0,
  6327. const struct ggml_tensor * src1,
  6328. struct ggml_tensor * dst) {
  6329. switch (src0->type) {
  6330. case GGML_TYPE_F32:
  6331. {
  6332. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6333. } break;
  6334. case GGML_TYPE_F16:
  6335. {
  6336. if (src1->type == GGML_TYPE_F16) {
  6337. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6338. }
  6339. else if (src1->type == GGML_TYPE_F32) {
  6340. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6341. }
  6342. else {
  6343. GGML_ASSERT(false);
  6344. }
  6345. } break;
  6346. case GGML_TYPE_Q4_0:
  6347. case GGML_TYPE_Q4_1:
  6348. case GGML_TYPE_Q5_0:
  6349. case GGML_TYPE_Q5_1:
  6350. case GGML_TYPE_Q8_0:
  6351. case GGML_TYPE_Q8_1:
  6352. {
  6353. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6354. } break;
  6355. default:
  6356. {
  6357. GGML_ASSERT(false);
  6358. } break;
  6359. }
  6360. }
  6361. // ggml_compute_forward_acc
  6362. static void ggml_compute_forward_acc_f32(
  6363. const struct ggml_compute_params * params,
  6364. const struct ggml_tensor * src0,
  6365. const struct ggml_tensor * src1,
  6366. const struct ggml_tensor * opt0,
  6367. struct ggml_tensor * dst) {
  6368. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6369. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6370. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6371. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6372. // view src0 and dst with these strides and data offset inbytes during acc
  6373. // nb0 is implicitely element_size because src0 and dst are contiguous
  6374. size_t nb1 = ((int32_t *) opt0->data)[0];
  6375. size_t nb2 = ((int32_t *) opt0->data)[1];
  6376. size_t nb3 = ((int32_t *) opt0->data)[2];
  6377. size_t offset = ((int32_t *) opt0->data)[3];
  6378. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6379. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6380. // memcpy needs to be synchronized across threads to avoid race conditions.
  6381. // => do it in INIT phase
  6382. memcpy(
  6383. ((char *) dst->data),
  6384. ((char *) src0->data),
  6385. ggml_nbytes(dst));
  6386. }
  6387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6388. return;
  6389. }
  6390. const int ith = params->ith;
  6391. const int nth = params->nth;
  6392. const int nr = ggml_nrows(src1);
  6393. const int nc = src1->ne[0];
  6394. const int64_t ne10 = src1->ne[0];
  6395. const int64_t ne11 = src1->ne[1];
  6396. const int64_t ne12 = src1->ne[2];
  6397. const int64_t ne13 = src1->ne[3];
  6398. const size_t nb10 = src1->nb[0];
  6399. const size_t nb11 = src1->nb[1];
  6400. const size_t nb12 = src1->nb[2];
  6401. const size_t nb13 = src1->nb[3];
  6402. // src0 and dst as viewed during acc
  6403. const size_t nb0 = ggml_element_size(src0);
  6404. const size_t nb00 = nb0;
  6405. const size_t nb01 = nb1;
  6406. const size_t nb02 = nb2;
  6407. const size_t nb03 = nb3;
  6408. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6409. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6410. GGML_ASSERT(nb10 == sizeof(float));
  6411. // rows per thread
  6412. const int dr = (nr + nth - 1)/nth;
  6413. // row range for this thread
  6414. const int ir0 = dr*ith;
  6415. const int ir1 = MIN(ir0 + dr, nr);
  6416. for (int ir = ir0; ir < ir1; ++ir) {
  6417. // src0 and dst are viewed with shape of src1 and offset
  6418. // => same indices
  6419. const int i3 = ir/(ne12*ne11);
  6420. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6421. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6422. #ifdef GGML_USE_ACCELERATE
  6423. vDSP_vadd(
  6424. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6425. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6426. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6427. #else
  6428. ggml_vec_add_f32(nc,
  6429. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6430. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6431. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6432. #endif
  6433. }
  6434. }
  6435. static void ggml_compute_forward_acc(
  6436. const struct ggml_compute_params * params,
  6437. const struct ggml_tensor * src0,
  6438. const struct ggml_tensor * src1,
  6439. const struct ggml_tensor * opt0,
  6440. struct ggml_tensor * dst) {
  6441. switch (src0->type) {
  6442. case GGML_TYPE_F32:
  6443. {
  6444. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6445. } break;
  6446. case GGML_TYPE_F16:
  6447. case GGML_TYPE_Q4_0:
  6448. case GGML_TYPE_Q4_1:
  6449. case GGML_TYPE_Q5_0:
  6450. case GGML_TYPE_Q5_1:
  6451. case GGML_TYPE_Q8_0:
  6452. case GGML_TYPE_Q8_1:
  6453. default:
  6454. {
  6455. GGML_ASSERT(false);
  6456. } break;
  6457. }
  6458. }
  6459. // ggml_compute_forward_sub
  6460. static void ggml_compute_forward_sub_f32(
  6461. const struct ggml_compute_params * params,
  6462. const struct ggml_tensor * src0,
  6463. const struct ggml_tensor * src1,
  6464. struct ggml_tensor * dst) {
  6465. assert(params->ith == 0);
  6466. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6468. return;
  6469. }
  6470. const int nr = ggml_nrows(src0);
  6471. const int64_t ne0 = src0->ne[0];
  6472. const int64_t ne1 = src0->ne[1];
  6473. const int64_t ne2 = src0->ne[2];
  6474. const size_t nb00 = src0->nb[0];
  6475. const size_t nb01 = src0->nb[1];
  6476. const size_t nb02 = src0->nb[2];
  6477. const size_t nb03 = src0->nb[3];
  6478. const size_t nb10 = src1->nb[0];
  6479. const size_t nb11 = src1->nb[1];
  6480. const size_t nb12 = src1->nb[2];
  6481. const size_t nb13 = src1->nb[3];
  6482. const size_t nb0 = dst->nb[0];
  6483. const size_t nb1 = dst->nb[1];
  6484. const size_t nb2 = dst->nb[2];
  6485. const size_t nb3 = dst->nb[3];
  6486. GGML_ASSERT( nb0 == sizeof(float));
  6487. GGML_ASSERT(nb00 == sizeof(float));
  6488. if (nb10 == sizeof(float)) {
  6489. for (int ir = 0; ir < nr; ++ir) {
  6490. // src0, src1 and dst are same shape => same indices
  6491. const int i3 = ir/(ne2*ne1);
  6492. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6493. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6494. #ifdef GGML_USE_ACCELERATE
  6495. vDSP_vsub(
  6496. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6497. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6498. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6499. ne0);
  6500. #else
  6501. ggml_vec_sub_f32(ne0,
  6502. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6503. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6504. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6505. #endif
  6506. // }
  6507. // }
  6508. }
  6509. } else {
  6510. // src1 is not contiguous
  6511. for (int ir = 0; ir < nr; ++ir) {
  6512. // src0, src1 and dst are same shape => same indices
  6513. const int i3 = ir/(ne2*ne1);
  6514. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6515. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6516. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6517. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6518. for (int i0 = 0; i0 < ne0; i0++) {
  6519. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6520. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6521. }
  6522. }
  6523. }
  6524. }
  6525. static void ggml_compute_forward_sub(
  6526. const struct ggml_compute_params * params,
  6527. const struct ggml_tensor * src0,
  6528. const struct ggml_tensor * src1,
  6529. struct ggml_tensor * dst) {
  6530. switch (src0->type) {
  6531. case GGML_TYPE_F32:
  6532. {
  6533. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6534. } break;
  6535. default:
  6536. {
  6537. GGML_ASSERT(false);
  6538. } break;
  6539. }
  6540. }
  6541. // ggml_compute_forward_mul
  6542. static void ggml_compute_forward_mul_f32(
  6543. const struct ggml_compute_params * params,
  6544. const struct ggml_tensor * src0,
  6545. const struct ggml_tensor * src1,
  6546. struct ggml_tensor * dst) {
  6547. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6549. return;
  6550. }
  6551. const int ith = params->ith;
  6552. const int nth = params->nth;
  6553. #ifdef GGML_USE_CUBLAS
  6554. if (src1->backend == GGML_BACKEND_CUDA) {
  6555. if (ith == 0) {
  6556. ggml_cuda_mul(src0, src1, dst);
  6557. }
  6558. return;
  6559. }
  6560. #endif
  6561. const int64_t nr = ggml_nrows(src0);
  6562. const int64_t ne00 = src0->ne[0];
  6563. const int64_t ne01 = src0->ne[1];
  6564. const int64_t ne02 = src0->ne[2];
  6565. const int64_t ne10 = src1->ne[0];
  6566. const int64_t ne11 = src1->ne[1];
  6567. const int64_t ne12 = src1->ne[2];
  6568. const int64_t ne13 = src1->ne[3];
  6569. const size_t nb00 = src0->nb[0];
  6570. const size_t nb01 = src0->nb[1];
  6571. const size_t nb02 = src0->nb[2];
  6572. const size_t nb03 = src0->nb[3];
  6573. const size_t nb10 = src1->nb[0];
  6574. const size_t nb11 = src1->nb[1];
  6575. const size_t nb12 = src1->nb[2];
  6576. const size_t nb13 = src1->nb[3];
  6577. const size_t nb0 = dst->nb[0];
  6578. const size_t nb1 = dst->nb[1];
  6579. const size_t nb2 = dst->nb[2];
  6580. const size_t nb3 = dst->nb[3];
  6581. GGML_ASSERT( nb0 == sizeof(float));
  6582. GGML_ASSERT(nb00 == sizeof(float));
  6583. GGML_ASSERT(ne00 == ne10);
  6584. if (nb10 == sizeof(float)) {
  6585. for (int64_t ir = ith; ir < nr; ir += nth) {
  6586. // src0 and dst are same shape => same indices
  6587. const int64_t i03 = ir/(ne02*ne01);
  6588. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6589. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6590. const int64_t i13 = i03 % ne13;
  6591. const int64_t i12 = i02 % ne12;
  6592. const int64_t i11 = i01 % ne11;
  6593. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6594. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6595. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6596. #ifdef GGML_USE_ACCELERATE
  6597. UNUSED(ggml_vec_mul_f32);
  6598. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6599. #else
  6600. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6601. #endif
  6602. // }
  6603. // }
  6604. }
  6605. } else {
  6606. // src1 is not contiguous
  6607. for (int64_t ir = ith; ir < nr; ir += nth) {
  6608. // src0 and dst are same shape => same indices
  6609. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6610. const int64_t i03 = ir/(ne02*ne01);
  6611. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6612. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6613. const int64_t i13 = i03 % ne13;
  6614. const int64_t i12 = i02 % ne12;
  6615. const int64_t i11 = i01 % ne11;
  6616. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6617. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6618. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6619. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6620. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6621. }
  6622. }
  6623. }
  6624. }
  6625. static void ggml_compute_forward_mul(
  6626. const struct ggml_compute_params * params,
  6627. const struct ggml_tensor * src0,
  6628. const struct ggml_tensor * src1,
  6629. struct ggml_tensor * dst) {
  6630. switch (src0->type) {
  6631. case GGML_TYPE_F32:
  6632. {
  6633. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6634. } break;
  6635. default:
  6636. {
  6637. GGML_ASSERT(false);
  6638. } break;
  6639. }
  6640. }
  6641. // ggml_compute_forward_div
  6642. static void ggml_compute_forward_div_f32(
  6643. const struct ggml_compute_params * params,
  6644. const struct ggml_tensor * src0,
  6645. const struct ggml_tensor * src1,
  6646. struct ggml_tensor * dst) {
  6647. assert(params->ith == 0);
  6648. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6650. return;
  6651. }
  6652. const int nr = ggml_nrows(src0);
  6653. const int64_t ne0 = src0->ne[0];
  6654. const int64_t ne1 = src0->ne[1];
  6655. const int64_t ne2 = src0->ne[2];
  6656. const size_t nb00 = src0->nb[0];
  6657. const size_t nb01 = src0->nb[1];
  6658. const size_t nb02 = src0->nb[2];
  6659. const size_t nb03 = src0->nb[3];
  6660. const size_t nb10 = src1->nb[0];
  6661. const size_t nb11 = src1->nb[1];
  6662. const size_t nb12 = src1->nb[2];
  6663. const size_t nb13 = src1->nb[3];
  6664. const size_t nb0 = dst->nb[0];
  6665. const size_t nb1 = dst->nb[1];
  6666. const size_t nb2 = dst->nb[2];
  6667. const size_t nb3 = dst->nb[3];
  6668. GGML_ASSERT( nb0 == sizeof(float));
  6669. GGML_ASSERT(nb00 == sizeof(float));
  6670. if (nb10 == sizeof(float)) {
  6671. for (int ir = 0; ir < nr; ++ir) {
  6672. // src0, src1 and dst are same shape => same indices
  6673. const int i3 = ir/(ne2*ne1);
  6674. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6675. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6676. #ifdef GGML_USE_ACCELERATE
  6677. vDSP_vdiv(
  6678. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6679. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6680. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6681. ne0);
  6682. #else
  6683. ggml_vec_div_f32(ne0,
  6684. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6685. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6686. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6687. #endif
  6688. // }
  6689. // }
  6690. }
  6691. } else {
  6692. // src1 is not contiguous
  6693. for (int ir = 0; ir < nr; ++ir) {
  6694. // src0, src1 and dst are same shape => same indices
  6695. const int i3 = ir/(ne2*ne1);
  6696. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6697. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6698. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6699. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6700. for (int i0 = 0; i0 < ne0; i0++) {
  6701. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6702. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6703. }
  6704. }
  6705. }
  6706. }
  6707. static void ggml_compute_forward_div(
  6708. const struct ggml_compute_params * params,
  6709. const struct ggml_tensor * src0,
  6710. const struct ggml_tensor * src1,
  6711. struct ggml_tensor * dst) {
  6712. switch (src0->type) {
  6713. case GGML_TYPE_F32:
  6714. {
  6715. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6716. } break;
  6717. default:
  6718. {
  6719. GGML_ASSERT(false);
  6720. } break;
  6721. }
  6722. }
  6723. // ggml_compute_forward_sqr
  6724. static void ggml_compute_forward_sqr_f32(
  6725. const struct ggml_compute_params * params,
  6726. const struct ggml_tensor * src0,
  6727. struct ggml_tensor * dst) {
  6728. assert(params->ith == 0);
  6729. assert(ggml_are_same_shape(src0, dst));
  6730. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6731. return;
  6732. }
  6733. const int n = ggml_nrows(src0);
  6734. const int nc = src0->ne[0];
  6735. assert( dst->nb[0] == sizeof(float));
  6736. assert(src0->nb[0] == sizeof(float));
  6737. for (int i = 0; i < n; i++) {
  6738. ggml_vec_sqr_f32(nc,
  6739. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6740. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6741. }
  6742. }
  6743. static void ggml_compute_forward_sqr(
  6744. const struct ggml_compute_params * params,
  6745. const struct ggml_tensor * src0,
  6746. struct ggml_tensor * dst) {
  6747. switch (src0->type) {
  6748. case GGML_TYPE_F32:
  6749. {
  6750. ggml_compute_forward_sqr_f32(params, src0, dst);
  6751. } break;
  6752. default:
  6753. {
  6754. GGML_ASSERT(false);
  6755. } break;
  6756. }
  6757. }
  6758. // ggml_compute_forward_sqrt
  6759. static void ggml_compute_forward_sqrt_f32(
  6760. const struct ggml_compute_params * params,
  6761. const struct ggml_tensor * src0,
  6762. struct ggml_tensor * dst) {
  6763. assert(params->ith == 0);
  6764. assert(ggml_are_same_shape(src0, dst));
  6765. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6766. return;
  6767. }
  6768. const int n = ggml_nrows(src0);
  6769. const int nc = src0->ne[0];
  6770. assert( dst->nb[0] == sizeof(float));
  6771. assert(src0->nb[0] == sizeof(float));
  6772. for (int i = 0; i < n; i++) {
  6773. ggml_vec_sqrt_f32(nc,
  6774. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6775. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6776. }
  6777. }
  6778. static void ggml_compute_forward_sqrt(
  6779. const struct ggml_compute_params * params,
  6780. const struct ggml_tensor * src0,
  6781. struct ggml_tensor * dst) {
  6782. switch (src0->type) {
  6783. case GGML_TYPE_F32:
  6784. {
  6785. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6786. } break;
  6787. default:
  6788. {
  6789. GGML_ASSERT(false);
  6790. } break;
  6791. }
  6792. }
  6793. // ggml_compute_forward_log
  6794. static void ggml_compute_forward_log_f32(
  6795. const struct ggml_compute_params * params,
  6796. const struct ggml_tensor * src0,
  6797. struct ggml_tensor * dst) {
  6798. GGML_ASSERT(params->ith == 0);
  6799. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6800. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6801. return;
  6802. }
  6803. const int n = ggml_nrows(src0);
  6804. const int nc = src0->ne[0];
  6805. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6806. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6807. for (int i = 0; i < n; i++) {
  6808. ggml_vec_log_f32(nc,
  6809. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6810. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6811. }
  6812. }
  6813. static void ggml_compute_forward_log(
  6814. const struct ggml_compute_params * params,
  6815. const struct ggml_tensor * src0,
  6816. struct ggml_tensor * dst) {
  6817. switch (src0->type) {
  6818. case GGML_TYPE_F32:
  6819. {
  6820. ggml_compute_forward_log_f32(params, src0, dst);
  6821. } break;
  6822. default:
  6823. {
  6824. GGML_ASSERT(false);
  6825. } break;
  6826. }
  6827. }
  6828. // ggml_compute_forward_sum
  6829. static void ggml_compute_forward_sum_f32(
  6830. const struct ggml_compute_params * params,
  6831. const struct ggml_tensor * src0,
  6832. struct ggml_tensor * dst) {
  6833. assert(params->ith == 0);
  6834. assert(ggml_is_scalar(dst));
  6835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6836. return;
  6837. }
  6838. assert(ggml_is_scalar(dst));
  6839. assert(src0->nb[0] == sizeof(float));
  6840. const int64_t ne00 = src0->ne[0];
  6841. const int64_t ne01 = src0->ne[1];
  6842. const int64_t ne02 = src0->ne[2];
  6843. const int64_t ne03 = src0->ne[3];
  6844. const size_t nb01 = src0->nb[1];
  6845. const size_t nb02 = src0->nb[2];
  6846. const size_t nb03 = src0->nb[3];
  6847. ggml_float sum = 0;
  6848. ggml_float row_sum = 0;
  6849. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6852. ggml_vec_sum_ggf(ne00,
  6853. &row_sum,
  6854. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6855. sum += row_sum;
  6856. }
  6857. }
  6858. }
  6859. ((float *) dst->data)[0] = sum;
  6860. }
  6861. static void ggml_compute_forward_sum(
  6862. const struct ggml_compute_params * params,
  6863. const struct ggml_tensor * src0,
  6864. struct ggml_tensor * dst) {
  6865. switch (src0->type) {
  6866. case GGML_TYPE_F32:
  6867. {
  6868. ggml_compute_forward_sum_f32(params, src0, dst);
  6869. } break;
  6870. default:
  6871. {
  6872. GGML_ASSERT(false);
  6873. } break;
  6874. }
  6875. }
  6876. // ggml_compute_forward_sum_rows
  6877. static void ggml_compute_forward_sum_rows_f32(
  6878. const struct ggml_compute_params * params,
  6879. const struct ggml_tensor * src0,
  6880. struct ggml_tensor * dst) {
  6881. GGML_ASSERT(params->ith == 0);
  6882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6883. return;
  6884. }
  6885. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6886. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6887. const int64_t ne00 = src0->ne[0];
  6888. const int64_t ne01 = src0->ne[1];
  6889. const int64_t ne02 = src0->ne[2];
  6890. const int64_t ne03 = src0->ne[3];
  6891. const int64_t ne0 = dst->ne[0];
  6892. const int64_t ne1 = dst->ne[1];
  6893. const int64_t ne2 = dst->ne[2];
  6894. const int64_t ne3 = dst->ne[3];
  6895. GGML_ASSERT(ne0 == 1);
  6896. GGML_ASSERT(ne1 == ne01);
  6897. GGML_ASSERT(ne2 == ne02);
  6898. GGML_ASSERT(ne3 == ne03);
  6899. const size_t nb01 = src0->nb[1];
  6900. const size_t nb02 = src0->nb[2];
  6901. const size_t nb03 = src0->nb[3];
  6902. const size_t nb1 = dst->nb[1];
  6903. const size_t nb2 = dst->nb[2];
  6904. const size_t nb3 = dst->nb[3];
  6905. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6906. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6907. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6908. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6909. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6910. float row_sum = 0;
  6911. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6912. dst_row[0] = row_sum;
  6913. }
  6914. }
  6915. }
  6916. }
  6917. static void ggml_compute_forward_sum_rows(
  6918. const struct ggml_compute_params * params,
  6919. const struct ggml_tensor * src0,
  6920. struct ggml_tensor * dst) {
  6921. switch (src0->type) {
  6922. case GGML_TYPE_F32:
  6923. {
  6924. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6925. } break;
  6926. default:
  6927. {
  6928. GGML_ASSERT(false);
  6929. } break;
  6930. }
  6931. }
  6932. // ggml_compute_forward_mean
  6933. static void ggml_compute_forward_mean_f32(
  6934. const struct ggml_compute_params * params,
  6935. const struct ggml_tensor * src0,
  6936. struct ggml_tensor * dst) {
  6937. assert(params->ith == 0);
  6938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6939. return;
  6940. }
  6941. assert(src0->nb[0] == sizeof(float));
  6942. const int64_t ne00 = src0->ne[0];
  6943. const int64_t ne01 = src0->ne[1];
  6944. const int64_t ne02 = src0->ne[2];
  6945. const int64_t ne03 = src0->ne[3];
  6946. const size_t nb01 = src0->nb[1];
  6947. const size_t nb02 = src0->nb[2];
  6948. const size_t nb03 = src0->nb[3];
  6949. const int64_t ne0 = dst->ne[0];
  6950. const int64_t ne1 = dst->ne[1];
  6951. const int64_t ne2 = dst->ne[2];
  6952. const int64_t ne3 = dst->ne[3];
  6953. assert(ne0 == 1);
  6954. assert(ne1 == ne01);
  6955. assert(ne2 == ne02);
  6956. assert(ne3 == ne03);
  6957. UNUSED(ne0);
  6958. UNUSED(ne1);
  6959. UNUSED(ne2);
  6960. UNUSED(ne3);
  6961. const size_t nb1 = dst->nb[1];
  6962. const size_t nb2 = dst->nb[2];
  6963. const size_t nb3 = dst->nb[3];
  6964. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6965. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6966. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6967. ggml_vec_sum_f32(ne00,
  6968. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6969. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6970. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6971. }
  6972. }
  6973. }
  6974. }
  6975. static void ggml_compute_forward_mean(
  6976. const struct ggml_compute_params * params,
  6977. const struct ggml_tensor * src0,
  6978. struct ggml_tensor * dst) {
  6979. switch (src0->type) {
  6980. case GGML_TYPE_F32:
  6981. {
  6982. ggml_compute_forward_mean_f32(params, src0, dst);
  6983. } break;
  6984. default:
  6985. {
  6986. GGML_ASSERT(false);
  6987. } break;
  6988. }
  6989. }
  6990. // ggml_compute_forward_repeat
  6991. static void ggml_compute_forward_repeat_f32(
  6992. const struct ggml_compute_params * params,
  6993. const struct ggml_tensor * src0,
  6994. struct ggml_tensor * dst) {
  6995. GGML_ASSERT(params->ith == 0);
  6996. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6998. return;
  6999. }
  7000. const int64_t ne0 = dst->ne[0];
  7001. const int64_t ne1 = dst->ne[1];
  7002. const int64_t ne2 = dst->ne[2];
  7003. const int64_t ne3 = dst->ne[3];
  7004. const int64_t ne00 = src0->ne[0];
  7005. const int64_t ne01 = src0->ne[1];
  7006. const int64_t ne02 = src0->ne[2];
  7007. const int64_t ne03 = src0->ne[3];
  7008. const size_t nb0 = dst->nb[0];
  7009. const size_t nb1 = dst->nb[1];
  7010. const size_t nb2 = dst->nb[2];
  7011. const size_t nb3 = dst->nb[3];
  7012. const size_t nb00 = src0->nb[0];
  7013. const size_t nb01 = src0->nb[1];
  7014. const size_t nb02 = src0->nb[2];
  7015. const size_t nb03 = src0->nb[3];
  7016. // guaranteed to be an integer due to the check in ggml_can_repeat
  7017. const int nr0 = (int)(ne0/ne00);
  7018. const int nr1 = (int)(ne1/ne01);
  7019. const int nr2 = (int)(ne2/ne02);
  7020. const int nr3 = (int)(ne3/ne03);
  7021. // TODO: support for transposed / permuted tensors
  7022. GGML_ASSERT(nb0 == sizeof(float));
  7023. GGML_ASSERT(nb00 == sizeof(float));
  7024. // TODO: maybe this is not optimal?
  7025. for (int i3 = 0; i3 < nr3; i3++) {
  7026. for (int k3 = 0; k3 < ne03; k3++) {
  7027. for (int i2 = 0; i2 < nr2; i2++) {
  7028. for (int k2 = 0; k2 < ne02; k2++) {
  7029. for (int i1 = 0; i1 < nr1; i1++) {
  7030. for (int k1 = 0; k1 < ne01; k1++) {
  7031. for (int i0 = 0; i0 < nr0; i0++) {
  7032. ggml_vec_cpy_f32(ne00,
  7033. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7034. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7035. }
  7036. }
  7037. }
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. static void ggml_compute_forward_repeat(
  7044. const struct ggml_compute_params * params,
  7045. const struct ggml_tensor * src0,
  7046. struct ggml_tensor * dst) {
  7047. switch (src0->type) {
  7048. case GGML_TYPE_F32:
  7049. {
  7050. ggml_compute_forward_repeat_f32(params, src0, dst);
  7051. } break;
  7052. default:
  7053. {
  7054. GGML_ASSERT(false);
  7055. } break;
  7056. }
  7057. }
  7058. // ggml_compute_forward_abs
  7059. static void ggml_compute_forward_abs_f32(
  7060. const struct ggml_compute_params * params,
  7061. const struct ggml_tensor * src0,
  7062. struct ggml_tensor * dst) {
  7063. assert(params->ith == 0);
  7064. assert(ggml_are_same_shape(src0, dst));
  7065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7066. return;
  7067. }
  7068. const int n = ggml_nrows(src0);
  7069. const int nc = src0->ne[0];
  7070. assert(dst->nb[0] == sizeof(float));
  7071. assert(src0->nb[0] == sizeof(float));
  7072. for (int i = 0; i < n; i++) {
  7073. ggml_vec_abs_f32(nc,
  7074. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7075. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7076. }
  7077. }
  7078. static void ggml_compute_forward_abs(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. struct ggml_tensor * dst) {
  7082. switch (src0->type) {
  7083. case GGML_TYPE_F32:
  7084. {
  7085. ggml_compute_forward_abs_f32(params, src0, dst);
  7086. } break;
  7087. default:
  7088. {
  7089. GGML_ASSERT(false);
  7090. } break;
  7091. }
  7092. }
  7093. // ggml_compute_forward_sgn
  7094. static void ggml_compute_forward_sgn_f32(
  7095. const struct ggml_compute_params * params,
  7096. const struct ggml_tensor * src0,
  7097. struct ggml_tensor * dst) {
  7098. assert(params->ith == 0);
  7099. assert(ggml_are_same_shape(src0, dst));
  7100. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7101. return;
  7102. }
  7103. const int n = ggml_nrows(src0);
  7104. const int nc = src0->ne[0];
  7105. assert(dst->nb[0] == sizeof(float));
  7106. assert(src0->nb[0] == sizeof(float));
  7107. for (int i = 0; i < n; i++) {
  7108. ggml_vec_sgn_f32(nc,
  7109. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7110. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7111. }
  7112. }
  7113. static void ggml_compute_forward_sgn(
  7114. const struct ggml_compute_params * params,
  7115. const struct ggml_tensor * src0,
  7116. struct ggml_tensor * dst) {
  7117. switch (src0->type) {
  7118. case GGML_TYPE_F32:
  7119. {
  7120. ggml_compute_forward_sgn_f32(params, src0, dst);
  7121. } break;
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_neg
  7129. static void ggml_compute_forward_neg_f32(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. struct ggml_tensor * dst) {
  7133. assert(params->ith == 0);
  7134. assert(ggml_are_same_shape(src0, dst));
  7135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7136. return;
  7137. }
  7138. const int n = ggml_nrows(src0);
  7139. const int nc = src0->ne[0];
  7140. assert(dst->nb[0] == sizeof(float));
  7141. assert(src0->nb[0] == sizeof(float));
  7142. for (int i = 0; i < n; i++) {
  7143. ggml_vec_neg_f32(nc,
  7144. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7145. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7146. }
  7147. }
  7148. static void ggml_compute_forward_neg(
  7149. const struct ggml_compute_params * params,
  7150. const struct ggml_tensor * src0,
  7151. struct ggml_tensor * dst) {
  7152. switch (src0->type) {
  7153. case GGML_TYPE_F32:
  7154. {
  7155. ggml_compute_forward_neg_f32(params, src0, dst);
  7156. } break;
  7157. default:
  7158. {
  7159. GGML_ASSERT(false);
  7160. } break;
  7161. }
  7162. }
  7163. // ggml_compute_forward_step
  7164. static void ggml_compute_forward_step_f32(
  7165. const struct ggml_compute_params * params,
  7166. const struct ggml_tensor * src0,
  7167. struct ggml_tensor * dst) {
  7168. assert(params->ith == 0);
  7169. assert(ggml_are_same_shape(src0, dst));
  7170. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7171. return;
  7172. }
  7173. const int n = ggml_nrows(src0);
  7174. const int nc = src0->ne[0];
  7175. assert(dst->nb[0] == sizeof(float));
  7176. assert(src0->nb[0] == sizeof(float));
  7177. for (int i = 0; i < n; i++) {
  7178. ggml_vec_step_f32(nc,
  7179. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7180. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7181. }
  7182. }
  7183. static void ggml_compute_forward_step(
  7184. const struct ggml_compute_params * params,
  7185. const struct ggml_tensor * src0,
  7186. struct ggml_tensor * dst) {
  7187. switch (src0->type) {
  7188. case GGML_TYPE_F32:
  7189. {
  7190. ggml_compute_forward_step_f32(params, src0, dst);
  7191. } break;
  7192. default:
  7193. {
  7194. GGML_ASSERT(false);
  7195. } break;
  7196. }
  7197. }
  7198. // ggml_compute_forward_relu
  7199. static void ggml_compute_forward_relu_f32(
  7200. const struct ggml_compute_params * params,
  7201. const struct ggml_tensor * src0,
  7202. struct ggml_tensor * dst) {
  7203. assert(params->ith == 0);
  7204. assert(ggml_are_same_shape(src0, dst));
  7205. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7206. return;
  7207. }
  7208. const int n = ggml_nrows(src0);
  7209. const int nc = src0->ne[0];
  7210. assert(dst->nb[0] == sizeof(float));
  7211. assert(src0->nb[0] == sizeof(float));
  7212. for (int i = 0; i < n; i++) {
  7213. ggml_vec_relu_f32(nc,
  7214. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7215. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7216. }
  7217. }
  7218. static void ggml_compute_forward_relu(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * src0,
  7221. struct ggml_tensor * dst) {
  7222. switch (src0->type) {
  7223. case GGML_TYPE_F32:
  7224. {
  7225. ggml_compute_forward_relu_f32(params, src0, dst);
  7226. } break;
  7227. default:
  7228. {
  7229. GGML_ASSERT(false);
  7230. } break;
  7231. }
  7232. }
  7233. // ggml_compute_forward_gelu
  7234. static void ggml_compute_forward_gelu_f32(
  7235. const struct ggml_compute_params * params,
  7236. const struct ggml_tensor * src0,
  7237. struct ggml_tensor * dst) {
  7238. GGML_ASSERT(ggml_is_contiguous(src0));
  7239. GGML_ASSERT(ggml_is_contiguous(dst));
  7240. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7242. return;
  7243. }
  7244. const int ith = params->ith;
  7245. const int nth = params->nth;
  7246. const int nc = src0->ne[0];
  7247. const int nr = ggml_nrows(src0);
  7248. // rows per thread
  7249. const int dr = (nr + nth - 1)/nth;
  7250. // row range for this thread
  7251. const int ir0 = dr*ith;
  7252. const int ir1 = MIN(ir0 + dr, nr);
  7253. for (int i1 = ir0; i1 < ir1; i1++) {
  7254. ggml_vec_gelu_f32(nc,
  7255. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7256. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7257. #ifndef NDEBUG
  7258. for (int k = 0; k < nc; k++) {
  7259. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7260. UNUSED(x);
  7261. assert(!isnan(x));
  7262. assert(!isinf(x));
  7263. }
  7264. #endif
  7265. }
  7266. }
  7267. static void ggml_compute_forward_gelu(
  7268. const struct ggml_compute_params * params,
  7269. const struct ggml_tensor * src0,
  7270. struct ggml_tensor * dst) {
  7271. switch (src0->type) {
  7272. case GGML_TYPE_F32:
  7273. {
  7274. ggml_compute_forward_gelu_f32(params, src0, dst);
  7275. } break;
  7276. default:
  7277. {
  7278. GGML_ASSERT(false);
  7279. } break;
  7280. }
  7281. //printf("XXXXXXXX gelu\n");
  7282. }
  7283. // ggml_compute_forward_silu
  7284. static void ggml_compute_forward_silu_f32(
  7285. const struct ggml_compute_params * params,
  7286. const struct ggml_tensor * src0,
  7287. struct ggml_tensor * dst) {
  7288. GGML_ASSERT(ggml_is_contiguous(src0));
  7289. GGML_ASSERT(ggml_is_contiguous(dst));
  7290. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7291. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7292. return;
  7293. }
  7294. const int ith = params->ith;
  7295. const int nth = params->nth;
  7296. const int nc = src0->ne[0];
  7297. const int nr = ggml_nrows(src0);
  7298. // rows per thread
  7299. const int dr = (nr + nth - 1)/nth;
  7300. // row range for this thread
  7301. const int ir0 = dr*ith;
  7302. const int ir1 = MIN(ir0 + dr, nr);
  7303. for (int i1 = ir0; i1 < ir1; i1++) {
  7304. ggml_vec_silu_f32(nc,
  7305. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7306. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7307. #ifndef NDEBUG
  7308. for (int k = 0; k < nc; k++) {
  7309. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7310. UNUSED(x);
  7311. assert(!isnan(x));
  7312. assert(!isinf(x));
  7313. }
  7314. #endif
  7315. }
  7316. }
  7317. static void ggml_compute_forward_silu(
  7318. const struct ggml_compute_params * params,
  7319. const struct ggml_tensor * src0,
  7320. struct ggml_tensor * dst) {
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_silu_f32(params, src0, dst);
  7325. } break;
  7326. default:
  7327. {
  7328. GGML_ASSERT(false);
  7329. } break;
  7330. }
  7331. }
  7332. // ggml_compute_forward_silu_back
  7333. static void ggml_compute_forward_silu_back_f32(
  7334. const struct ggml_compute_params * params,
  7335. const struct ggml_tensor * src0,
  7336. const struct ggml_tensor * grad,
  7337. struct ggml_tensor * dst) {
  7338. GGML_ASSERT(ggml_is_contiguous(grad));
  7339. GGML_ASSERT(ggml_is_contiguous(src0));
  7340. GGML_ASSERT(ggml_is_contiguous(dst));
  7341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7342. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7344. return;
  7345. }
  7346. const int ith = params->ith;
  7347. const int nth = params->nth;
  7348. const int nc = src0->ne[0];
  7349. const int nr = ggml_nrows(src0);
  7350. // rows per thread
  7351. const int dr = (nr + nth - 1)/nth;
  7352. // row range for this thread
  7353. const int ir0 = dr*ith;
  7354. const int ir1 = MIN(ir0 + dr, nr);
  7355. for (int i1 = ir0; i1 < ir1; i1++) {
  7356. ggml_vec_silu_backward_f32(nc,
  7357. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7358. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7359. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7360. #ifndef NDEBUG
  7361. for (int k = 0; k < nc; k++) {
  7362. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7363. UNUSED(x);
  7364. assert(!isnan(x));
  7365. assert(!isinf(x));
  7366. }
  7367. #endif
  7368. }
  7369. }
  7370. static void ggml_compute_forward_silu_back(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * grad,
  7374. struct ggml_tensor * dst) {
  7375. switch (src0->type) {
  7376. case GGML_TYPE_F32:
  7377. {
  7378. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7379. } break;
  7380. default:
  7381. {
  7382. GGML_ASSERT(false);
  7383. } break;
  7384. }
  7385. }
  7386. // ggml_compute_forward_norm
  7387. static void ggml_compute_forward_norm_f32(
  7388. const struct ggml_compute_params * params,
  7389. const struct ggml_tensor * src0,
  7390. struct ggml_tensor * dst) {
  7391. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7392. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7393. return;
  7394. }
  7395. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7396. const int ith = params->ith;
  7397. const int nth = params->nth;
  7398. const int64_t ne00 = src0->ne[0];
  7399. const int64_t ne01 = src0->ne[1];
  7400. const int64_t ne02 = src0->ne[2];
  7401. const int64_t ne03 = src0->ne[3];
  7402. const size_t nb01 = src0->nb[1];
  7403. const size_t nb02 = src0->nb[2];
  7404. const size_t nb03 = src0->nb[3];
  7405. const size_t nb1 = dst->nb[1];
  7406. const size_t nb2 = dst->nb[2];
  7407. const size_t nb3 = dst->nb[3];
  7408. const float eps = 1e-5f; // TODO: make this a parameter
  7409. // TODO: optimize
  7410. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7411. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7412. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7413. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7414. ggml_float sum = 0.0;
  7415. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7416. sum += (ggml_float)x[i00];
  7417. }
  7418. float mean = sum/ne00;
  7419. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7420. ggml_float sum2 = 0.0;
  7421. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7422. float v = x[i00] - mean;
  7423. y[i00] = v;
  7424. sum2 += (ggml_float)(v*v);
  7425. }
  7426. float variance = sum2/ne00;
  7427. const float scale = 1.0f/sqrtf(variance + eps);
  7428. ggml_vec_scale_f32(ne00, y, scale);
  7429. }
  7430. }
  7431. }
  7432. }
  7433. static void ggml_compute_forward_norm(
  7434. const struct ggml_compute_params * params,
  7435. const struct ggml_tensor * src0,
  7436. struct ggml_tensor * dst) {
  7437. switch (src0->type) {
  7438. case GGML_TYPE_F32:
  7439. {
  7440. ggml_compute_forward_norm_f32(params, src0, dst);
  7441. } break;
  7442. default:
  7443. {
  7444. GGML_ASSERT(false);
  7445. } break;
  7446. }
  7447. }
  7448. static void ggml_compute_forward_rms_norm_f32(
  7449. const struct ggml_compute_params * params,
  7450. const struct ggml_tensor * src0,
  7451. struct ggml_tensor * dst) {
  7452. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7453. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7454. return;
  7455. }
  7456. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7457. const int ith = params->ith;
  7458. const int nth = params->nth;
  7459. const int64_t ne00 = src0->ne[0];
  7460. const int64_t ne01 = src0->ne[1];
  7461. const int64_t ne02 = src0->ne[2];
  7462. const int64_t ne03 = src0->ne[3];
  7463. const size_t nb01 = src0->nb[1];
  7464. const size_t nb02 = src0->nb[2];
  7465. const size_t nb03 = src0->nb[3];
  7466. const size_t nb1 = dst->nb[1];
  7467. const size_t nb2 = dst->nb[2];
  7468. const size_t nb3 = dst->nb[3];
  7469. const float eps = 1e-6f; // TODO: make this a parameter
  7470. // TODO: optimize
  7471. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7472. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7473. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7474. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7475. ggml_float sum = 0.0;
  7476. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7477. sum += (ggml_float)(x[i00] * x[i00]);
  7478. }
  7479. float mean = sum/ne00;
  7480. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7481. memcpy(y, x, ne00 * sizeof(float));
  7482. // for (int i00 = 0; i00 < ne00; i00++) {
  7483. // y[i00] = x[i00];
  7484. // }
  7485. const float scale = 1.0f/sqrtf(mean + eps);
  7486. ggml_vec_scale_f32(ne00, y, scale);
  7487. }
  7488. }
  7489. }
  7490. }
  7491. static void ggml_compute_forward_rms_norm(
  7492. const struct ggml_compute_params * params,
  7493. const struct ggml_tensor * src0,
  7494. struct ggml_tensor * dst) {
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F32:
  7497. {
  7498. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7499. } break;
  7500. default:
  7501. {
  7502. GGML_ASSERT(false);
  7503. } break;
  7504. }
  7505. }
  7506. static void ggml_compute_forward_rms_norm_back_f32(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. const struct ggml_tensor * src1,
  7510. struct ggml_tensor * dst) {
  7511. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7513. return;
  7514. }
  7515. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7516. const int ith = params->ith;
  7517. const int nth = params->nth;
  7518. const int64_t ne00 = src0->ne[0];
  7519. const int64_t ne01 = src0->ne[1];
  7520. const int64_t ne02 = src0->ne[2];
  7521. const int64_t ne03 = src0->ne[3];
  7522. const size_t nb01 = src0->nb[1];
  7523. const size_t nb02 = src0->nb[2];
  7524. const size_t nb03 = src0->nb[3];
  7525. const size_t nb11 = src1->nb[1];
  7526. const size_t nb12 = src1->nb[2];
  7527. const size_t nb13 = src1->nb[3];
  7528. const size_t nb1 = dst->nb[1];
  7529. const size_t nb2 = dst->nb[2];
  7530. const size_t nb3 = dst->nb[3];
  7531. const float eps = 1e-6f; // TODO: make this a parameter
  7532. // TODO: optimize
  7533. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7534. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7535. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7536. // src1 is same shape as src0 => same indices
  7537. const int64_t i11 = i01;
  7538. const int64_t i12 = i02;
  7539. const int64_t i13 = i03;
  7540. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7541. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7542. ggml_float sum_xx = 0.0;
  7543. ggml_float sum_xdz = 0.0;
  7544. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7545. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7546. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7547. }
  7548. //const float mean = (float)(sum_xx)/ne00;
  7549. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7550. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7551. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7552. // we could cache rms from forward pass to improve performance.
  7553. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7554. //const float rms = sqrtf(mean_eps);
  7555. const float rrms = 1.0f / sqrtf(mean_eps);
  7556. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7557. {
  7558. // z = rms_norm(x)
  7559. //
  7560. // rms_norm(src0) =
  7561. // scale(
  7562. // src0,
  7563. // div(
  7564. // 1,
  7565. // sqrt(
  7566. // add(
  7567. // scale(
  7568. // sum(
  7569. // sqr(
  7570. // src0)),
  7571. // (1.0/N)),
  7572. // eps))));
  7573. // postorder:
  7574. // ## op args grad
  7575. // 00 param src0 grad[#00]
  7576. // 01 const 1
  7577. // 02 sqr (#00) grad[#02]
  7578. // 03 sum (#02) grad[#03]
  7579. // 04 const 1/N
  7580. // 05 scale (#03, #04) grad[#05]
  7581. // 06 const eps
  7582. // 07 add (#05, #06) grad[#07]
  7583. // 08 sqrt (#07) grad[#08]
  7584. // 09 div (#01,#08) grad[#09]
  7585. // 10 scale (#00,#09) grad[#10]
  7586. //
  7587. // backward pass, given grad[#10]
  7588. // #10: scale
  7589. // grad[#00] += scale(grad[#10],#09)
  7590. // grad[#09] += sum(mul(grad[#10],#00))
  7591. // #09: div
  7592. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7593. // #08: sqrt
  7594. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7595. // #07: add
  7596. // grad[#05] += grad[#07]
  7597. // #05: scale
  7598. // grad[#03] += scale(grad[#05],#04)
  7599. // #03: sum
  7600. // grad[#02] += repeat(grad[#03], #02)
  7601. // #02:
  7602. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7603. //
  7604. // substitute and simplify:
  7605. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7606. // grad[#02] = repeat(grad[#03], #02)
  7607. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7608. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7609. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7610. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7611. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7612. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7613. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7614. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7615. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7616. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7617. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7618. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7619. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7620. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7621. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7622. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7623. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7624. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7625. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7626. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7627. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7628. // a = b*c + d*e
  7629. // a = b*c*f/f + d*e*f/f
  7630. // a = (b*c*f + d*e*f)*(1/f)
  7631. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7632. // a = (b + d*e/c)*c
  7633. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7634. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7635. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7636. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7637. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7638. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7639. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7640. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7641. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7642. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7643. }
  7644. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7645. // post-order:
  7646. // dx := x
  7647. // dx := scale(dx,-mean_xdz/mean_eps)
  7648. // dx := add(dx, dz)
  7649. // dx := scale(dx, rrms)
  7650. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7651. ggml_vec_cpy_f32 (ne00, dx, x);
  7652. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7653. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7654. ggml_vec_acc_f32 (ne00, dx, dz);
  7655. ggml_vec_scale_f32(ne00, dx, rrms);
  7656. }
  7657. }
  7658. }
  7659. }
  7660. static void ggml_compute_forward_rms_norm_back(
  7661. const struct ggml_compute_params * params,
  7662. const struct ggml_tensor * src0,
  7663. const struct ggml_tensor * src1,
  7664. struct ggml_tensor * dst) {
  7665. switch (src0->type) {
  7666. case GGML_TYPE_F32:
  7667. {
  7668. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7669. } break;
  7670. default:
  7671. {
  7672. GGML_ASSERT(false);
  7673. } break;
  7674. }
  7675. }
  7676. // ggml_compute_forward_mul_mat
  7677. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7678. // helper function to determine if it is better to use BLAS or not
  7679. // for large matrices, BLAS is faster
  7680. static bool ggml_compute_forward_mul_mat_use_blas(
  7681. const struct ggml_tensor * src0,
  7682. const struct ggml_tensor * src1,
  7683. struct ggml_tensor * dst) {
  7684. //const int64_t ne00 = src0->ne[0];
  7685. //const int64_t ne01 = src0->ne[1];
  7686. const int64_t ne10 = src1->ne[0];
  7687. const int64_t ne0 = dst->ne[0];
  7688. const int64_t ne1 = dst->ne[1];
  7689. // TODO: find the optimal values for these
  7690. if (ggml_is_contiguous(src0) &&
  7691. ggml_is_contiguous(src1) &&
  7692. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7693. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7694. return true;
  7695. }
  7696. return false;
  7697. }
  7698. #endif
  7699. static void ggml_compute_forward_mul_mat_f32(
  7700. const struct ggml_compute_params * params,
  7701. const struct ggml_tensor * src0,
  7702. const struct ggml_tensor * src1,
  7703. struct ggml_tensor * dst) {
  7704. int64_t t0 = ggml_perf_time_us();
  7705. UNUSED(t0);
  7706. const int64_t ne00 = src0->ne[0];
  7707. const int64_t ne01 = src0->ne[1];
  7708. const int64_t ne02 = src0->ne[2];
  7709. const int64_t ne03 = src0->ne[3];
  7710. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7711. const int64_t ne10 = src1->ne[0];
  7712. #endif
  7713. const int64_t ne11 = src1->ne[1];
  7714. #ifndef NDEBUG
  7715. const int64_t ne12 = src1->ne[2];
  7716. const int64_t ne13 = src1->ne[3];
  7717. const int64_t ne0 = dst->ne[0];
  7718. const int64_t ne1 = dst->ne[1];
  7719. const int64_t ne2 = dst->ne[2];
  7720. const int64_t ne3 = dst->ne[3];
  7721. const int nb00 = src0->nb[0];
  7722. #endif
  7723. const int nb01 = src0->nb[1];
  7724. const int nb02 = src0->nb[2];
  7725. const int nb03 = src0->nb[3];
  7726. #ifndef NDEBUG
  7727. const int nb10 = src1->nb[0];
  7728. #endif
  7729. const int nb11 = src1->nb[1];
  7730. const int nb12 = src1->nb[2];
  7731. const int nb13 = src1->nb[3];
  7732. const int nb0 = dst->nb[0];
  7733. const int nb1 = dst->nb[1];
  7734. const int nb2 = dst->nb[2];
  7735. const int nb3 = dst->nb[3];
  7736. const int ith = params->ith;
  7737. const int nth = params->nth;
  7738. assert(ne02 == ne12);
  7739. assert(ne03 == ne13);
  7740. assert(ne2 == ne12);
  7741. assert(ne3 == ne13);
  7742. // we don't support permuted src0 or src1
  7743. assert(nb00 == sizeof(float));
  7744. assert(nb10 == sizeof(float));
  7745. // dst cannot be transposed or permuted
  7746. assert(nb0 == sizeof(float));
  7747. assert(nb0 <= nb1);
  7748. assert(nb1 <= nb2);
  7749. assert(nb2 <= nb3);
  7750. assert(ne0 == ne01);
  7751. assert(ne1 == ne11);
  7752. assert(ne2 == ne02);
  7753. assert(ne3 == ne03);
  7754. // nb01 >= nb00 - src0 is not transposed
  7755. // compute by src0 rows
  7756. #if defined(GGML_USE_CUBLAS)
  7757. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7758. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7759. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7760. }
  7761. return;
  7762. }
  7763. #elif defined(GGML_USE_CLBLAST)
  7764. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7765. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7766. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7767. }
  7768. return;
  7769. }
  7770. #endif
  7771. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7772. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7773. if (params->ith != 0) {
  7774. return;
  7775. }
  7776. if (params->type == GGML_TASK_INIT) {
  7777. return;
  7778. }
  7779. if (params->type == GGML_TASK_FINALIZE) {
  7780. return;
  7781. }
  7782. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7783. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7784. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7785. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7786. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7787. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7788. ne11, ne01, ne10,
  7789. 1.0f, y, ne10,
  7790. x, ne00,
  7791. 0.0f, d, ne01);
  7792. }
  7793. }
  7794. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7795. return;
  7796. }
  7797. #endif
  7798. if (params->type == GGML_TASK_INIT) {
  7799. return;
  7800. }
  7801. if (params->type == GGML_TASK_FINALIZE) {
  7802. return;
  7803. }
  7804. // parallelize by src0 rows using ggml_vec_dot_f32
  7805. // total rows in src0
  7806. const int nr = ne01*ne02*ne03;
  7807. // rows per thread
  7808. const int dr = (nr + nth - 1)/nth;
  7809. // row range for this thread
  7810. const int ir0 = dr*ith;
  7811. const int ir1 = MIN(ir0 + dr, nr);
  7812. for (int ir = ir0; ir < ir1; ++ir) {
  7813. // src0 indices
  7814. const int i03 = ir/(ne02*ne01);
  7815. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7816. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7817. for (int64_t ic = 0; ic < ne11; ++ic) {
  7818. // src1 indices
  7819. const int i13 = i03;
  7820. const int i12 = i02;
  7821. const int i11 = ic;
  7822. // dst indices
  7823. const int i0 = i01;
  7824. const int i1 = i11;
  7825. const int i2 = i02;
  7826. const int i3 = i03;
  7827. ggml_vec_dot_f32(ne00,
  7828. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7829. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7830. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7831. }
  7832. }
  7833. //int64_t t1 = ggml_perf_time_us();
  7834. //static int64_t acc = 0;
  7835. //acc += t1 - t0;
  7836. //if (t1 - t0 > 10) {
  7837. // printf("\n");
  7838. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7839. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7840. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7841. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7842. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7843. //}
  7844. }
  7845. static void ggml_compute_forward_mul_mat_f16_f32(
  7846. const struct ggml_compute_params * params,
  7847. const struct ggml_tensor * src0,
  7848. const struct ggml_tensor * src1,
  7849. struct ggml_tensor * dst) {
  7850. int64_t t0 = ggml_perf_time_us();
  7851. UNUSED(t0);
  7852. const int64_t ne00 = src0->ne[0];
  7853. const int64_t ne01 = src0->ne[1];
  7854. const int64_t ne02 = src0->ne[2];
  7855. const int64_t ne03 = src0->ne[3];
  7856. const int64_t ne10 = src1->ne[0];
  7857. const int64_t ne11 = src1->ne[1];
  7858. const int64_t ne12 = src1->ne[2];
  7859. const int64_t ne13 = src1->ne[3];
  7860. const int64_t ne0 = dst->ne[0];
  7861. const int64_t ne1 = dst->ne[1];
  7862. const int64_t ne2 = dst->ne[2];
  7863. const int64_t ne3 = dst->ne[3];
  7864. //const int64_t ne = ne0*ne1*ne2*ne3;
  7865. const int nb00 = src0->nb[0];
  7866. const int nb01 = src0->nb[1];
  7867. const int nb02 = src0->nb[2];
  7868. const int nb03 = src0->nb[3];
  7869. const int nb10 = src1->nb[0];
  7870. const int nb11 = src1->nb[1];
  7871. const int nb12 = src1->nb[2];
  7872. const int nb13 = src1->nb[3];
  7873. const int nb0 = dst->nb[0];
  7874. const int nb1 = dst->nb[1];
  7875. const int nb2 = dst->nb[2];
  7876. const int nb3 = dst->nb[3];
  7877. const int ith = params->ith;
  7878. const int nth = params->nth;
  7879. GGML_ASSERT(ne02 == ne12);
  7880. GGML_ASSERT(ne03 == ne13);
  7881. GGML_ASSERT(ne2 == ne12);
  7882. GGML_ASSERT(ne3 == ne13);
  7883. // TODO: we don't support permuted src0
  7884. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7885. // dst cannot be transposed or permuted
  7886. GGML_ASSERT(nb0 == sizeof(float));
  7887. GGML_ASSERT(nb0 <= nb1);
  7888. GGML_ASSERT(nb1 <= nb2);
  7889. GGML_ASSERT(nb2 <= nb3);
  7890. GGML_ASSERT(ne0 == ne01);
  7891. GGML_ASSERT(ne1 == ne11);
  7892. GGML_ASSERT(ne2 == ne02);
  7893. GGML_ASSERT(ne3 == ne03);
  7894. // nb01 >= nb00 - src0 is not transposed
  7895. // compute by src0 rows
  7896. #if defined(GGML_USE_CUBLAS)
  7897. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7898. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7899. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7900. }
  7901. return;
  7902. }
  7903. #elif defined(GGML_USE_CLBLAST)
  7904. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7905. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7906. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7907. }
  7908. return;
  7909. }
  7910. #endif
  7911. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7912. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7913. GGML_ASSERT(nb10 == sizeof(float));
  7914. if (params->ith != 0) {
  7915. return;
  7916. }
  7917. if (params->type == GGML_TASK_INIT) {
  7918. return;
  7919. }
  7920. if (params->type == GGML_TASK_FINALIZE) {
  7921. return;
  7922. }
  7923. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7924. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7925. float * const wdata = params->wdata;
  7926. {
  7927. size_t id = 0;
  7928. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7929. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7930. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7931. }
  7932. }
  7933. assert(id*sizeof(float) <= params->wsize);
  7934. }
  7935. const float * x = wdata;
  7936. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7937. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7938. // zT = y * xT
  7939. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7940. ne11, ne01, ne10,
  7941. 1.0f, y, ne10,
  7942. x, ne00,
  7943. 0.0f, d, ne01);
  7944. }
  7945. }
  7946. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7947. return;
  7948. }
  7949. #endif
  7950. if (params->type == GGML_TASK_INIT) {
  7951. ggml_fp16_t * const wdata = params->wdata;
  7952. size_t id = 0;
  7953. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7954. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7955. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7956. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7957. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7958. }
  7959. }
  7960. }
  7961. }
  7962. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7963. return;
  7964. }
  7965. if (params->type == GGML_TASK_FINALIZE) {
  7966. return;
  7967. }
  7968. // fp16 -> half the size, so divide by 2
  7969. // TODO: do not support transposed src1
  7970. assert(nb10/2 == sizeof(ggml_fp16_t));
  7971. // parallelize by src0 rows using ggml_vec_dot_f16
  7972. // total rows in src0
  7973. const int nr = ne01*ne02*ne03;
  7974. // rows per thread
  7975. const int dr = (nr + nth - 1)/nth;
  7976. // row range for this thread
  7977. const int ir0 = dr*ith;
  7978. const int ir1 = MIN(ir0 + dr, nr);
  7979. ggml_fp16_t * wdata = params->wdata;
  7980. for (int ir = ir0; ir < ir1; ++ir) {
  7981. // src0 indices
  7982. const int i03 = ir/(ne02*ne01);
  7983. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7984. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7985. const int i13 = i03;
  7986. const int i12 = i02;
  7987. const int i0 = i01;
  7988. const int i2 = i02;
  7989. const int i3 = i03;
  7990. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7991. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7992. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7993. for (int64_t ic = 0; ic < ne11; ++ic) {
  7994. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7995. }
  7996. }
  7997. //int64_t t1 = ggml_time_us();
  7998. //static int64_t acc = 0;
  7999. //acc += t1 - t0;
  8000. //if (t1 - t0 > 10) {
  8001. // printf("\n");
  8002. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8003. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8004. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8005. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8006. //}
  8007. }
  8008. static void ggml_compute_forward_mul_mat_q_f32(
  8009. const struct ggml_compute_params * params,
  8010. const struct ggml_tensor * src0,
  8011. const struct ggml_tensor * src1,
  8012. struct ggml_tensor * dst) {
  8013. int64_t t0 = ggml_perf_time_us();
  8014. UNUSED(t0);
  8015. const int64_t ne00 = src0->ne[0];
  8016. const int64_t ne01 = src0->ne[1];
  8017. const int64_t ne02 = src0->ne[2];
  8018. const int64_t ne03 = src0->ne[3];
  8019. const int64_t ne10 = src1->ne[0];
  8020. const int64_t ne11 = src1->ne[1];
  8021. const int64_t ne12 = src1->ne[2];
  8022. const int64_t ne13 = src1->ne[3];
  8023. const int64_t ne0 = dst->ne[0];
  8024. const int64_t ne1 = dst->ne[1];
  8025. const int64_t ne2 = dst->ne[2];
  8026. const int64_t ne3 = dst->ne[3];
  8027. const int nb00 = src0->nb[0];
  8028. const int nb01 = src0->nb[1];
  8029. const int nb02 = src0->nb[2];
  8030. const int nb03 = src0->nb[3];
  8031. const int nb10 = src1->nb[0];
  8032. const int nb11 = src1->nb[1];
  8033. const int nb12 = src1->nb[2];
  8034. const int nb13 = src1->nb[3];
  8035. const int nb0 = dst->nb[0];
  8036. const int nb1 = dst->nb[1];
  8037. const int nb2 = dst->nb[2];
  8038. const int nb3 = dst->nb[3];
  8039. const int ith = params->ith;
  8040. const int nth = params->nth;
  8041. GGML_ASSERT(ne02 == ne12);
  8042. GGML_ASSERT(ne03 == ne13);
  8043. GGML_ASSERT(ne2 == ne12);
  8044. GGML_ASSERT(ne3 == ne13);
  8045. const enum ggml_type type = src0->type;
  8046. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8047. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8048. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8049. // we don't support permuted src0 or src1
  8050. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8051. GGML_ASSERT(nb10 == sizeof(float));
  8052. // dst cannot be transposed or permuted
  8053. GGML_ASSERT(nb0 == sizeof(float));
  8054. GGML_ASSERT(nb0 <= nb1);
  8055. GGML_ASSERT(nb1 <= nb2);
  8056. GGML_ASSERT(nb2 <= nb3);
  8057. GGML_ASSERT(ne0 == ne01);
  8058. GGML_ASSERT(ne1 == ne11);
  8059. GGML_ASSERT(ne2 == ne02);
  8060. GGML_ASSERT(ne3 == ne03);
  8061. // nb01 >= nb00 - src0 is not transposed
  8062. // compute by src0 rows
  8063. #if defined(GGML_USE_CUBLAS)
  8064. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  8065. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8066. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8067. }
  8068. return;
  8069. }
  8070. #elif defined(GGML_USE_CLBLAST)
  8071. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8072. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8073. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8074. }
  8075. return;
  8076. }
  8077. #endif
  8078. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8079. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8080. if (params->ith != 0) {
  8081. return;
  8082. }
  8083. if (params->type == GGML_TASK_INIT) {
  8084. return;
  8085. }
  8086. if (params->type == GGML_TASK_FINALIZE) {
  8087. return;
  8088. }
  8089. float * const wdata = params->wdata;
  8090. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8091. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8092. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8093. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8094. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8095. {
  8096. size_t id = 0;
  8097. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8098. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8099. id += ne00;
  8100. }
  8101. assert(id*sizeof(float) <= params->wsize);
  8102. }
  8103. const float * x = wdata;
  8104. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8105. ne11, ne01, ne10,
  8106. 1.0f, y, ne10,
  8107. x, ne00,
  8108. 0.0f, d, ne01);
  8109. }
  8110. }
  8111. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8112. return;
  8113. }
  8114. #endif
  8115. if (params->type == GGML_TASK_INIT) {
  8116. char * wdata = params->wdata;
  8117. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8118. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8119. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8120. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8121. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8122. wdata += row_size;
  8123. }
  8124. }
  8125. }
  8126. return;
  8127. }
  8128. if (params->type == GGML_TASK_FINALIZE) {
  8129. return;
  8130. }
  8131. // parallelize by src0 rows using ggml_vec_dot_q
  8132. // total rows in src0
  8133. const int nr = ne01*ne02*ne03;
  8134. // rows per thread
  8135. const int dr = (nr + nth - 1)/nth;
  8136. // row range for this thread
  8137. const int ir0 = dr*ith;
  8138. const int ir1 = MIN(ir0 + dr, nr);
  8139. void * wdata = params->wdata;
  8140. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8141. for (int ir = ir0; ir < ir1; ++ir) {
  8142. // src0 indices
  8143. const int i03 = ir/(ne02*ne01);
  8144. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8145. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8146. const int i13 = i03;
  8147. const int i12 = i02;
  8148. const int i0 = i01;
  8149. const int i2 = i02;
  8150. const int i3 = i03;
  8151. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8152. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8153. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8154. assert(ne00 % 32 == 0);
  8155. for (int64_t ic = 0; ic < ne11; ++ic) {
  8156. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8157. }
  8158. }
  8159. //int64_t t1 = ggml_time_us();
  8160. //static int64_t acc = 0;
  8161. //acc += t1 - t0;
  8162. //if (t1 - t0 > 10) {
  8163. // printf("\n");
  8164. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8165. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8166. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8167. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8168. //}
  8169. }
  8170. static void ggml_compute_forward_mul_mat(
  8171. const struct ggml_compute_params * params,
  8172. const struct ggml_tensor * src0,
  8173. const struct ggml_tensor * src1,
  8174. struct ggml_tensor * dst) {
  8175. switch (src0->type) {
  8176. case GGML_TYPE_Q4_0:
  8177. case GGML_TYPE_Q4_1:
  8178. case GGML_TYPE_Q5_0:
  8179. case GGML_TYPE_Q5_1:
  8180. case GGML_TYPE_Q8_0:
  8181. case GGML_TYPE_Q8_1:
  8182. {
  8183. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8184. } break;
  8185. case GGML_TYPE_F16:
  8186. {
  8187. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8188. } break;
  8189. case GGML_TYPE_F32:
  8190. {
  8191. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8192. } break;
  8193. default:
  8194. {
  8195. GGML_ASSERT(false);
  8196. } break;
  8197. }
  8198. }
  8199. // ggml_compute_forward_scale
  8200. static void ggml_compute_forward_scale_f32(
  8201. const struct ggml_compute_params * params,
  8202. const struct ggml_tensor * src0,
  8203. const struct ggml_tensor * src1,
  8204. struct ggml_tensor * dst) {
  8205. GGML_ASSERT(ggml_is_contiguous(src0));
  8206. GGML_ASSERT(ggml_is_contiguous(dst));
  8207. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8208. GGML_ASSERT(ggml_is_scalar(src1));
  8209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8210. return;
  8211. }
  8212. // scale factor
  8213. const float v = *(float *) src1->data;
  8214. const int ith = params->ith;
  8215. const int nth = params->nth;
  8216. const int nc = src0->ne[0];
  8217. const int nr = ggml_nrows(src0);
  8218. // rows per thread
  8219. const int dr = (nr + nth - 1)/nth;
  8220. // row range for this thread
  8221. const int ir0 = dr*ith;
  8222. const int ir1 = MIN(ir0 + dr, nr);
  8223. const size_t nb01 = src0->nb[1];
  8224. const size_t nb1 = dst->nb[1];
  8225. for (int i1 = ir0; i1 < ir1; i1++) {
  8226. if (dst->data != src0->data) {
  8227. // src0 is same shape as dst => same indices
  8228. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8229. }
  8230. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8231. }
  8232. }
  8233. static void ggml_compute_forward_scale(
  8234. const struct ggml_compute_params * params,
  8235. const struct ggml_tensor * src0,
  8236. const struct ggml_tensor * src1,
  8237. struct ggml_tensor * dst) {
  8238. switch (src0->type) {
  8239. case GGML_TYPE_F32:
  8240. {
  8241. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8242. } break;
  8243. default:
  8244. {
  8245. GGML_ASSERT(false);
  8246. } break;
  8247. }
  8248. }
  8249. // ggml_compute_forward_set
  8250. static void ggml_compute_forward_set_f32(
  8251. const struct ggml_compute_params * params,
  8252. const struct ggml_tensor * src0,
  8253. const struct ggml_tensor * src1,
  8254. const struct ggml_tensor * opt0,
  8255. struct ggml_tensor * dst) {
  8256. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8257. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8258. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8259. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8260. // view src0 and dst with these strides and data offset inbytes during set
  8261. // nb0 is implicitely element_size because src0 and dst are contiguous
  8262. size_t nb1 = ((int32_t *) opt0->data)[0];
  8263. size_t nb2 = ((int32_t *) opt0->data)[1];
  8264. size_t nb3 = ((int32_t *) opt0->data)[2];
  8265. size_t offset = ((int32_t *) opt0->data)[3];
  8266. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8267. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8268. // memcpy needs to be synchronized across threads to avoid race conditions.
  8269. // => do it in INIT phase
  8270. memcpy(
  8271. ((char *) dst->data),
  8272. ((char *) src0->data),
  8273. ggml_nbytes(dst));
  8274. }
  8275. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8276. return;
  8277. }
  8278. const int ith = params->ith;
  8279. const int nth = params->nth;
  8280. const int nr = ggml_nrows(src1);
  8281. const int nc = src1->ne[0];
  8282. const int64_t ne10 = src1->ne[0];
  8283. const int64_t ne11 = src1->ne[1];
  8284. const int64_t ne12 = src1->ne[2];
  8285. const int64_t ne13 = src1->ne[3];
  8286. const size_t nb10 = src1->nb[0];
  8287. const size_t nb11 = src1->nb[1];
  8288. const size_t nb12 = src1->nb[2];
  8289. const size_t nb13 = src1->nb[3];
  8290. // src0 and dst as viewed during set
  8291. const size_t nb0 = ggml_element_size(src0);
  8292. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8293. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8294. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8295. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8296. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8297. GGML_ASSERT(nb10 == sizeof(float));
  8298. // rows per thread
  8299. const int dr = (nr + nth - 1)/nth;
  8300. // row range for this thread
  8301. const int ir0 = dr*ith;
  8302. const int ir1 = MIN(ir0 + dr, nr);
  8303. for (int ir = ir0; ir < ir1; ++ir) {
  8304. // src0 and dst are viewed with shape of src1 and offset
  8305. // => same indices
  8306. const int i3 = ir/(ne12*ne11);
  8307. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8308. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8309. ggml_vec_cpy_f32(nc,
  8310. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8311. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8312. }
  8313. }
  8314. static void ggml_compute_forward_set(
  8315. const struct ggml_compute_params * params,
  8316. const struct ggml_tensor * src0,
  8317. const struct ggml_tensor * src1,
  8318. const struct ggml_tensor * opt0,
  8319. struct ggml_tensor * dst) {
  8320. switch (src0->type) {
  8321. case GGML_TYPE_F32:
  8322. {
  8323. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8324. } break;
  8325. case GGML_TYPE_F16:
  8326. case GGML_TYPE_Q4_0:
  8327. case GGML_TYPE_Q4_1:
  8328. case GGML_TYPE_Q5_0:
  8329. case GGML_TYPE_Q5_1:
  8330. case GGML_TYPE_Q8_0:
  8331. case GGML_TYPE_Q8_1:
  8332. default:
  8333. {
  8334. GGML_ASSERT(false);
  8335. } break;
  8336. }
  8337. }
  8338. // ggml_compute_forward_cpy
  8339. static void ggml_compute_forward_cpy(
  8340. const struct ggml_compute_params * params,
  8341. const struct ggml_tensor * src0,
  8342. struct ggml_tensor * dst) {
  8343. ggml_compute_forward_dup(params, src0, dst);
  8344. }
  8345. // ggml_compute_forward_cont
  8346. static void ggml_compute_forward_cont(
  8347. const struct ggml_compute_params * params,
  8348. const struct ggml_tensor * src0,
  8349. struct ggml_tensor * dst) {
  8350. ggml_compute_forward_dup(params, src0, dst);
  8351. }
  8352. // ggml_compute_forward_reshape
  8353. static void ggml_compute_forward_reshape(
  8354. const struct ggml_compute_params * params,
  8355. const struct ggml_tensor * src0,
  8356. struct ggml_tensor * dst) {
  8357. // NOP
  8358. UNUSED(params);
  8359. UNUSED(src0);
  8360. UNUSED(dst);
  8361. }
  8362. // ggml_compute_forward_view
  8363. static void ggml_compute_forward_view(
  8364. const struct ggml_compute_params * params,
  8365. const struct ggml_tensor * src0) {
  8366. // NOP
  8367. UNUSED(params);
  8368. UNUSED(src0);
  8369. }
  8370. // ggml_compute_forward_permute
  8371. static void ggml_compute_forward_permute(
  8372. const struct ggml_compute_params * params,
  8373. const struct ggml_tensor * src0) {
  8374. // NOP
  8375. UNUSED(params);
  8376. UNUSED(src0);
  8377. }
  8378. // ggml_compute_forward_transpose
  8379. static void ggml_compute_forward_transpose(
  8380. const struct ggml_compute_params * params,
  8381. const struct ggml_tensor * src0) {
  8382. // NOP
  8383. UNUSED(params);
  8384. UNUSED(src0);
  8385. }
  8386. // ggml_compute_forward_get_rows
  8387. static void ggml_compute_forward_get_rows_q(
  8388. const struct ggml_compute_params * params,
  8389. const struct ggml_tensor * src0,
  8390. const struct ggml_tensor * src1,
  8391. struct ggml_tensor * dst) {
  8392. assert(params->ith == 0);
  8393. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8394. return;
  8395. }
  8396. const int nc = src0->ne[0];
  8397. const int nr = ggml_nelements(src1);
  8398. const enum ggml_type type = src0->type;
  8399. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8400. assert( dst->ne[0] == nc);
  8401. assert( dst->ne[1] == nr);
  8402. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8403. for (int i = 0; i < nr; ++i) {
  8404. const int r = ((int32_t *) src1->data)[i];
  8405. dequantize_row_q(
  8406. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8407. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8408. }
  8409. }
  8410. static void ggml_compute_forward_get_rows_f16(
  8411. const struct ggml_compute_params * params,
  8412. const struct ggml_tensor * src0,
  8413. const struct ggml_tensor * src1,
  8414. struct ggml_tensor * dst) {
  8415. assert(params->ith == 0);
  8416. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8417. return;
  8418. }
  8419. const int nc = src0->ne[0];
  8420. const int nr = ggml_nelements(src1);
  8421. assert( dst->ne[0] == nc);
  8422. assert( dst->ne[1] == nr);
  8423. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8424. for (int i = 0; i < nr; ++i) {
  8425. const int r = ((int32_t *) src1->data)[i];
  8426. for (int j = 0; j < nc; ++j) {
  8427. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8428. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8429. }
  8430. }
  8431. }
  8432. static void ggml_compute_forward_get_rows_f32(
  8433. const struct ggml_compute_params * params,
  8434. const struct ggml_tensor * src0,
  8435. const struct ggml_tensor * src1,
  8436. struct ggml_tensor * dst) {
  8437. assert(params->ith == 0);
  8438. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8439. return;
  8440. }
  8441. const int nc = src0->ne[0];
  8442. const int nr = ggml_nelements(src1);
  8443. assert( dst->ne[0] == nc);
  8444. assert( dst->ne[1] == nr);
  8445. assert(src0->nb[0] == sizeof(float));
  8446. for (int i = 0; i < nr; ++i) {
  8447. const int r = ((int32_t *) src1->data)[i];
  8448. ggml_vec_cpy_f32(nc,
  8449. (float *) ((char *) dst->data + i*dst->nb[1]),
  8450. (float *) ((char *) src0->data + r*src0->nb[1]));
  8451. }
  8452. }
  8453. static void ggml_compute_forward_get_rows(
  8454. const struct ggml_compute_params * params,
  8455. const struct ggml_tensor * src0,
  8456. const struct ggml_tensor * src1,
  8457. struct ggml_tensor * dst) {
  8458. switch (src0->type) {
  8459. case GGML_TYPE_Q4_0:
  8460. case GGML_TYPE_Q4_1:
  8461. case GGML_TYPE_Q5_0:
  8462. case GGML_TYPE_Q5_1:
  8463. case GGML_TYPE_Q8_0:
  8464. case GGML_TYPE_Q8_1:
  8465. {
  8466. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8467. } break;
  8468. case GGML_TYPE_F16:
  8469. {
  8470. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8471. } break;
  8472. case GGML_TYPE_F32:
  8473. {
  8474. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8475. } break;
  8476. default:
  8477. {
  8478. GGML_ASSERT(false);
  8479. } break;
  8480. }
  8481. //static bool first = true;
  8482. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8483. //if (first) {
  8484. // first = false;
  8485. //} else {
  8486. // for (int k = 0; k < dst->ne[1]; ++k) {
  8487. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8488. // for (int i = 0; i < 16; ++i) {
  8489. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8490. // }
  8491. // printf("\n");
  8492. // }
  8493. // printf("\n");
  8494. // }
  8495. // printf("\n");
  8496. // exit(0);
  8497. //}
  8498. }
  8499. // ggml_compute_forward_get_rows_back
  8500. static void ggml_compute_forward_get_rows_back_f32_f16(
  8501. const struct ggml_compute_params * params,
  8502. const struct ggml_tensor * src0,
  8503. const struct ggml_tensor * src1,
  8504. const struct ggml_tensor * opt0,
  8505. struct ggml_tensor * dst) {
  8506. GGML_ASSERT(params->ith == 0);
  8507. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8508. GGML_ASSERT(ggml_is_contiguous(opt0));
  8509. GGML_ASSERT(ggml_is_contiguous(dst));
  8510. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8511. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8512. return;
  8513. }
  8514. const int nc = src0->ne[0];
  8515. const int nr = ggml_nelements(src1);
  8516. GGML_ASSERT( dst->ne[0] == nc);
  8517. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8518. for (int i = 0; i < nr; ++i) {
  8519. const int r = ((int32_t *) src1->data)[i];
  8520. for (int j = 0; j < nc; ++j) {
  8521. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8522. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8523. }
  8524. }
  8525. }
  8526. static void ggml_compute_forward_get_rows_back_f32(
  8527. const struct ggml_compute_params * params,
  8528. const struct ggml_tensor * src0,
  8529. const struct ggml_tensor * src1,
  8530. const struct ggml_tensor * opt0,
  8531. struct ggml_tensor * dst) {
  8532. GGML_ASSERT(params->ith == 0);
  8533. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8534. GGML_ASSERT(ggml_is_contiguous(opt0));
  8535. GGML_ASSERT(ggml_is_contiguous(dst));
  8536. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8537. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8538. return;
  8539. }
  8540. const int nc = src0->ne[0];
  8541. const int nr = ggml_nelements(src1);
  8542. GGML_ASSERT( dst->ne[0] == nc);
  8543. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8544. for (int i = 0; i < nr; ++i) {
  8545. const int r = ((int32_t *) src1->data)[i];
  8546. ggml_vec_add_f32(nc,
  8547. (float *) ((char *) dst->data + r*dst->nb[1]),
  8548. (float *) ((char *) dst->data + r*dst->nb[1]),
  8549. (float *) ((char *) src0->data + i*src0->nb[1]));
  8550. }
  8551. }
  8552. static void ggml_compute_forward_get_rows_back(
  8553. const struct ggml_compute_params * params,
  8554. const struct ggml_tensor * src0,
  8555. const struct ggml_tensor * src1,
  8556. const struct ggml_tensor * opt0,
  8557. struct ggml_tensor * dst) {
  8558. switch (src0->type) {
  8559. case GGML_TYPE_F16:
  8560. {
  8561. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8562. } break;
  8563. case GGML_TYPE_F32:
  8564. {
  8565. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8566. } break;
  8567. default:
  8568. {
  8569. GGML_ASSERT(false);
  8570. } break;
  8571. }
  8572. //static bool first = true;
  8573. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8574. //if (first) {
  8575. // first = false;
  8576. //} else {
  8577. // for (int k = 0; k < dst->ne[1]; ++k) {
  8578. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8579. // for (int i = 0; i < 16; ++i) {
  8580. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8581. // }
  8582. // printf("\n");
  8583. // }
  8584. // printf("\n");
  8585. // }
  8586. // printf("\n");
  8587. // exit(0);
  8588. //}
  8589. }
  8590. // ggml_compute_forward_diag
  8591. static void ggml_compute_forward_diag_f32(
  8592. const struct ggml_compute_params * params,
  8593. const struct ggml_tensor * src0,
  8594. struct ggml_tensor * dst) {
  8595. GGML_ASSERT(params->ith == 0);
  8596. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8597. return;
  8598. }
  8599. // TODO: handle transposed/permuted matrices
  8600. const int ne00 = src0->ne[0];
  8601. const int ne01 = src0->ne[1];
  8602. const int ne02 = src0->ne[2];
  8603. const int ne03 = src0->ne[3];
  8604. const int ne0 = dst->ne[0];
  8605. const int ne1 = dst->ne[1];
  8606. const int ne2 = dst->ne[2];
  8607. const int ne3 = dst->ne[3];
  8608. GGML_ASSERT(ne00 == ne0);
  8609. GGML_ASSERT(ne00 == ne1);
  8610. GGML_ASSERT(ne01 == 1);
  8611. GGML_ASSERT(ne02 == ne2);
  8612. GGML_ASSERT(ne03 == ne3);
  8613. const int nb00 = src0->nb[0];
  8614. //const int nb01 = src0->nb[1];
  8615. const int nb02 = src0->nb[2];
  8616. const int nb03 = src0->nb[3];
  8617. const int nb0 = dst->nb[0];
  8618. const int nb1 = dst->nb[1];
  8619. const int nb2 = dst->nb[2];
  8620. const int nb3 = dst->nb[3];
  8621. GGML_ASSERT(nb00 == sizeof(float));
  8622. GGML_ASSERT(nb0 == sizeof(float));
  8623. for (int i3 = 0; i3 < ne3; i3++) {
  8624. for (int i2 = 0; i2 < ne2; i2++) {
  8625. for (int i1 = 0; i1 < ne1; i1++) {
  8626. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8627. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8628. for (int i0 = 0; i0 < i1; i0++) {
  8629. d[i0] = 0;
  8630. }
  8631. d[i1] = s[i1];
  8632. for (int i0 = i1+1; i0 < ne0; i0++) {
  8633. d[i0] = 0;
  8634. }
  8635. }
  8636. }
  8637. }
  8638. }
  8639. static void ggml_compute_forward_diag(
  8640. const struct ggml_compute_params * params,
  8641. const struct ggml_tensor * src0,
  8642. struct ggml_tensor * dst) {
  8643. switch (src0->type) {
  8644. case GGML_TYPE_F32:
  8645. {
  8646. ggml_compute_forward_diag_f32(params, src0, dst);
  8647. } break;
  8648. default:
  8649. {
  8650. GGML_ASSERT(false);
  8651. } break;
  8652. }
  8653. }
  8654. // ggml_compute_forward_diag_mask_inf
  8655. static void ggml_compute_forward_diag_mask_f32(
  8656. const struct ggml_compute_params * params,
  8657. const struct ggml_tensor * src0,
  8658. const struct ggml_tensor * src1,
  8659. struct ggml_tensor * dst,
  8660. const float value) {
  8661. assert(src1->type == GGML_TYPE_I32);
  8662. assert(ggml_nelements(src1) == 2);
  8663. const int ith = params->ith;
  8664. const int nth = params->nth;
  8665. const int n_past = ((int32_t *) src1->data)[0];
  8666. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8667. assert(n_past >= 0);
  8668. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8669. // memcpy needs to be synchronized across threads to avoid race conditions.
  8670. // => do it in INIT phase
  8671. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8672. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8673. memcpy(
  8674. ((char *) dst->data),
  8675. ((char *) src0->data),
  8676. ggml_nbytes(dst));
  8677. }
  8678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8679. return;
  8680. }
  8681. // TODO: handle transposed/permuted matrices
  8682. const int n = ggml_nrows(src0);
  8683. const int nc = src0->ne[0];
  8684. const int nr = src0->ne[1];
  8685. const int nz = n/nr;
  8686. assert( dst->nb[0] == sizeof(float));
  8687. assert(src0->nb[0] == sizeof(float));
  8688. for (int k = 0; k < nz; k++) {
  8689. for (int j = ith; j < nr; j += nth) {
  8690. for (int i = n_past; i < nc; i++) {
  8691. if (i > n_past + j) {
  8692. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8693. }
  8694. }
  8695. }
  8696. }
  8697. }
  8698. static void ggml_compute_forward_diag_mask_inf(
  8699. const struct ggml_compute_params * params,
  8700. const struct ggml_tensor * src0,
  8701. const struct ggml_tensor * src1,
  8702. struct ggml_tensor * dst) {
  8703. switch (src0->type) {
  8704. case GGML_TYPE_F32:
  8705. {
  8706. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8707. } break;
  8708. default:
  8709. {
  8710. GGML_ASSERT(false);
  8711. } break;
  8712. }
  8713. }
  8714. static void ggml_compute_forward_diag_mask_zero(
  8715. const struct ggml_compute_params * params,
  8716. const struct ggml_tensor * src0,
  8717. const struct ggml_tensor * src1,
  8718. struct ggml_tensor * dst) {
  8719. switch (src0->type) {
  8720. case GGML_TYPE_F32:
  8721. {
  8722. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8723. } break;
  8724. default:
  8725. {
  8726. GGML_ASSERT(false);
  8727. } break;
  8728. }
  8729. }
  8730. // ggml_compute_forward_soft_max
  8731. static void ggml_compute_forward_soft_max_f32(
  8732. const struct ggml_compute_params * params,
  8733. const struct ggml_tensor * src0,
  8734. struct ggml_tensor * dst) {
  8735. GGML_ASSERT(ggml_is_contiguous(src0));
  8736. GGML_ASSERT(ggml_is_contiguous(dst));
  8737. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8738. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8739. return;
  8740. }
  8741. // TODO: handle transposed/permuted matrices
  8742. const int ith = params->ith;
  8743. const int nth = params->nth;
  8744. const int nc = src0->ne[0];
  8745. const int nr = ggml_nrows(src0);
  8746. // rows per thread
  8747. const int dr = (nr + nth - 1)/nth;
  8748. // row range for this thread
  8749. const int ir0 = dr*ith;
  8750. const int ir1 = MIN(ir0 + dr, nr);
  8751. for (int i1 = ir0; i1 < ir1; i1++) {
  8752. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8753. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8754. #ifndef NDEBUG
  8755. for (int i = 0; i < nc; ++i) {
  8756. //printf("p[%d] = %f\n", i, p[i]);
  8757. assert(!isnan(sp[i]));
  8758. }
  8759. #endif
  8760. float max = -INFINITY;
  8761. ggml_vec_max_f32(nc, &max, sp);
  8762. ggml_float sum = 0.0;
  8763. uint16_t scvt;
  8764. for (int i = 0; i < nc; i++) {
  8765. if (sp[i] == -INFINITY) {
  8766. dp[i] = 0.0f;
  8767. } else {
  8768. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8769. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8770. memcpy(&scvt, &s, sizeof(scvt));
  8771. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8772. sum += (ggml_float)val;
  8773. dp[i] = val;
  8774. }
  8775. }
  8776. assert(sum > 0.0);
  8777. sum = 1.0/sum;
  8778. ggml_vec_scale_f32(nc, dp, sum);
  8779. #ifndef NDEBUG
  8780. for (int i = 0; i < nc; ++i) {
  8781. assert(!isnan(dp[i]));
  8782. assert(!isinf(dp[i]));
  8783. }
  8784. #endif
  8785. }
  8786. }
  8787. static void ggml_compute_forward_soft_max(
  8788. const struct ggml_compute_params * params,
  8789. const struct ggml_tensor * src0,
  8790. struct ggml_tensor * dst) {
  8791. switch (src0->type) {
  8792. case GGML_TYPE_F32:
  8793. {
  8794. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8795. } break;
  8796. default:
  8797. {
  8798. GGML_ASSERT(false);
  8799. } break;
  8800. }
  8801. }
  8802. // ggml_compute_forward_alibi
  8803. static void ggml_compute_forward_alibi_f32(
  8804. const struct ggml_compute_params * params,
  8805. const struct ggml_tensor * src0,
  8806. const struct ggml_tensor * src1,
  8807. struct ggml_tensor * dst) {
  8808. assert(params->ith == 0);
  8809. assert(src1->type == GGML_TYPE_I32);
  8810. assert(ggml_nelements(src1) == 3);
  8811. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8812. return;
  8813. }
  8814. const int n_past = ((int32_t *) src1->data)[0];
  8815. const int n_head = ((int32_t *) src1->data)[1];
  8816. const float max_bias = ((float *) src1->data)[2];
  8817. assert(n_past >= 0);
  8818. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8819. const int ne1 = src0->ne[1]; // seq_len_without_past
  8820. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8821. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8822. const int n = ggml_nrows(src0);
  8823. const int ne2_ne3 = n/ne1; // ne2*ne3
  8824. const int nb0 = src0->nb[0];
  8825. const int nb1 = src0->nb[1];
  8826. const int nb2 = src0->nb[2];
  8827. //const int nb3 = src0->nb[3];
  8828. assert(nb0 == sizeof(float));
  8829. assert(ne1 + n_past == ne0); (void) n_past;
  8830. // add alibi to src0 (KQ_scaled)
  8831. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8832. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8833. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8834. for (int i = 0; i < ne0; i++) {
  8835. for (int j = 0; j < ne1; j++) {
  8836. for (int k = 0; k < ne2_ne3; k++) {
  8837. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8838. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8839. // TODO: k*nb2 or k*nb3
  8840. float m_k;
  8841. if (k < n_heads_log2_floor) {
  8842. m_k = powf(m0, k + 1);
  8843. } else {
  8844. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8845. }
  8846. pdst[0] = (i-ne0+1) * m_k + src[0];
  8847. }
  8848. }
  8849. }
  8850. }
  8851. static void ggml_compute_forward_alibi_f16(
  8852. const struct ggml_compute_params * params,
  8853. const struct ggml_tensor * src0,
  8854. const struct ggml_tensor * src1,
  8855. struct ggml_tensor * dst) {
  8856. assert(params->ith == 0);
  8857. assert(src1->type == GGML_TYPE_I32);
  8858. assert(ggml_nelements(src1) == 3);
  8859. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8860. return;
  8861. }
  8862. const int n_past = ((int32_t *) src1->data)[0];
  8863. const int n_head = ((int32_t *) src1->data)[1];
  8864. const float max_bias = ((float *) src1->data)[2];
  8865. assert(n_past >= 0);
  8866. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8867. const int ne1 = src0->ne[1]; // seq_len_without_past
  8868. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8869. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8870. const int n = ggml_nrows(src0);
  8871. const int ne2_ne3 = n/ne1; // ne2*ne3
  8872. const int nb0 = src0->nb[0];
  8873. const int nb1 = src0->nb[1];
  8874. const int nb2 = src0->nb[2];
  8875. //const int nb3 = src0->nb[3];
  8876. assert(nb0 == sizeof(ggml_fp16_t));
  8877. assert(ne1 + n_past == ne0); (void) n_past;
  8878. // add alibi to src0 (KQ_scaled)
  8879. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8880. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8881. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8882. for (int i = 0; i < ne0; i++) {
  8883. for (int j = 0; j < ne1; j++) {
  8884. for (int k = 0; k < ne2_ne3; k++) {
  8885. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8886. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8887. // TODO: k*nb2 or k*nb3
  8888. float m_k;
  8889. if (k < n_heads_log2_floor) {
  8890. m_k = powf(m0, k + 1);
  8891. } else {
  8892. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8893. }
  8894. // we return F32
  8895. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  8896. }
  8897. }
  8898. }
  8899. }
  8900. static void ggml_compute_forward_alibi(
  8901. const struct ggml_compute_params * params,
  8902. const struct ggml_tensor * src0,
  8903. const struct ggml_tensor * src1,
  8904. struct ggml_tensor * dst) {
  8905. switch (src0->type) {
  8906. case GGML_TYPE_F16:
  8907. {
  8908. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8909. } break;
  8910. case GGML_TYPE_F32:
  8911. {
  8912. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8913. } break;
  8914. case GGML_TYPE_Q4_0:
  8915. case GGML_TYPE_Q4_1:
  8916. case GGML_TYPE_Q5_0:
  8917. case GGML_TYPE_Q5_1:
  8918. case GGML_TYPE_Q8_0:
  8919. case GGML_TYPE_Q8_1:
  8920. case GGML_TYPE_I8:
  8921. case GGML_TYPE_I16:
  8922. case GGML_TYPE_I32:
  8923. case GGML_TYPE_COUNT:
  8924. {
  8925. GGML_ASSERT(false);
  8926. } break;
  8927. }
  8928. }
  8929. // ggml_compute_forward_clamp
  8930. static void ggml_compute_forward_clamp_f32(
  8931. const struct ggml_compute_params * params,
  8932. const struct ggml_tensor * src0,
  8933. const struct ggml_tensor * src1,
  8934. struct ggml_tensor * dst) {
  8935. assert(params->ith == 0);
  8936. assert(src1->type == GGML_TYPE_I32);
  8937. assert(ggml_nelements(src1) == 2);
  8938. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8939. return;
  8940. }
  8941. const int min = ((float *) src1->data)[0];
  8942. const int max = ((float *) src1->data)[1];
  8943. const int ith = params->ith;
  8944. const int nth = params->nth;
  8945. const int n = ggml_nrows(src0);
  8946. const int nc = src0->ne[0];
  8947. const size_t nb00 = src0->nb[0];
  8948. const size_t nb01 = src0->nb[1];
  8949. const size_t nb0 = dst->nb[0];
  8950. const size_t nb1 = dst->nb[1];
  8951. GGML_ASSERT( nb0 == sizeof(float));
  8952. GGML_ASSERT(nb00 == sizeof(float));
  8953. for (int j = ith; j < n; j += nth) {
  8954. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  8955. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  8956. for (int i = 0; i < nc; i++) {
  8957. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  8958. }
  8959. }
  8960. }
  8961. static void ggml_compute_forward_clamp(
  8962. const struct ggml_compute_params * params,
  8963. const struct ggml_tensor * src0,
  8964. const struct ggml_tensor * src1,
  8965. struct ggml_tensor * dst) {
  8966. switch (src0->type) {
  8967. case GGML_TYPE_F32:
  8968. {
  8969. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  8970. } break;
  8971. case GGML_TYPE_F16:
  8972. case GGML_TYPE_Q4_0:
  8973. case GGML_TYPE_Q4_1:
  8974. case GGML_TYPE_Q5_0:
  8975. case GGML_TYPE_Q5_1:
  8976. case GGML_TYPE_Q8_0:
  8977. case GGML_TYPE_Q8_1:
  8978. case GGML_TYPE_I8:
  8979. case GGML_TYPE_I16:
  8980. case GGML_TYPE_I32:
  8981. case GGML_TYPE_COUNT:
  8982. {
  8983. GGML_ASSERT(false);
  8984. } break;
  8985. }
  8986. }
  8987. // ggml_compute_forward_rope
  8988. static void ggml_compute_forward_rope_f32(
  8989. const struct ggml_compute_params * params,
  8990. const struct ggml_tensor * src0,
  8991. const struct ggml_tensor * src1,
  8992. struct ggml_tensor * dst) {
  8993. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8994. GGML_ASSERT(ggml_nelements(src1) == 3);
  8995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8996. return;
  8997. }
  8998. const int n_past = ((int32_t *) src1->data)[0];
  8999. const int n_dims = ((int32_t *) src1->data)[1];
  9000. const int mode = ((int32_t *) src1->data)[2];
  9001. assert(n_past >= 0);
  9002. const size_t nb00 = src0->nb[0];
  9003. const size_t nb01 = src0->nb[1];
  9004. const size_t nb02 = src0->nb[2];
  9005. const size_t nb03 = src0->nb[3];
  9006. const int64_t ne0 = dst->ne[0];
  9007. const int64_t ne1 = dst->ne[1];
  9008. const int64_t ne2 = dst->ne[2];
  9009. const int64_t ne3 = dst->ne[3];
  9010. const size_t nb0 = dst->nb[0];
  9011. const size_t nb1 = dst->nb[1];
  9012. const size_t nb2 = dst->nb[2];
  9013. const size_t nb3 = dst->nb[3];
  9014. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9015. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9016. GGML_ASSERT(nb00 == sizeof(float));
  9017. const int ith = params->ith;
  9018. const int nth = params->nth;
  9019. const int nr = ggml_nrows(dst);
  9020. GGML_ASSERT(n_dims <= ne0);
  9021. GGML_ASSERT(n_dims % 2 == 0);
  9022. // rows per thread
  9023. const int dr = (nr + nth - 1)/nth;
  9024. // row range for this thread
  9025. const int ir0 = dr*ith;
  9026. const int ir1 = MIN(ir0 + dr, nr);
  9027. // row index used to determine which thread to use
  9028. int ir = 0;
  9029. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9030. const bool is_neox = mode & 2;
  9031. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9032. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9033. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9034. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9035. if (ir++ < ir0) continue;
  9036. if (ir > ir1) break;
  9037. float theta = (float)p;
  9038. if (!is_neox) {
  9039. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9040. const float cos_theta = cosf(theta);
  9041. const float sin_theta = sinf(theta);
  9042. theta *= theta_scale;
  9043. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9044. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9045. const float x0 = src[0];
  9046. const float x1 = src[1];
  9047. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9048. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9049. }
  9050. } else {
  9051. // TODO: this is probably wrong, but I can't figure it out ..
  9052. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9053. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9054. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9055. const float cos_theta = cosf(theta);
  9056. const float sin_theta = sinf(theta);
  9057. theta *= theta_scale;
  9058. const int64_t i0 = ib*n_dims + ic/2;
  9059. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9060. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9061. const float x0 = src[0];
  9062. const float x1 = src[n_dims/2];
  9063. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9064. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9065. }
  9066. }
  9067. }
  9068. }
  9069. }
  9070. }
  9071. }
  9072. static void ggml_compute_forward_rope_f16(
  9073. const struct ggml_compute_params * params,
  9074. const struct ggml_tensor * src0,
  9075. const struct ggml_tensor * src1,
  9076. struct ggml_tensor * dst) {
  9077. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9078. GGML_ASSERT(ggml_nelements(src1) == 3);
  9079. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9080. return;
  9081. }
  9082. const int n_past = ((int32_t *) src1->data)[0];
  9083. const int n_dims = ((int32_t *) src1->data)[1];
  9084. const int mode = ((int32_t *) src1->data)[2];
  9085. assert(n_past >= 0);
  9086. const size_t nb00 = src0->nb[0];
  9087. const size_t nb01 = src0->nb[1];
  9088. const size_t nb02 = src0->nb[2];
  9089. const size_t nb03 = src0->nb[3];
  9090. const int64_t ne0 = dst->ne[0];
  9091. const int64_t ne1 = dst->ne[1];
  9092. const int64_t ne2 = dst->ne[2];
  9093. const int64_t ne3 = dst->ne[3];
  9094. const size_t nb0 = dst->nb[0];
  9095. const size_t nb1 = dst->nb[1];
  9096. const size_t nb2 = dst->nb[2];
  9097. const size_t nb3 = dst->nb[3];
  9098. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9099. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9100. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9101. const int ith = params->ith;
  9102. const int nth = params->nth;
  9103. const int nr = ggml_nrows(dst);
  9104. GGML_ASSERT(n_dims <= ne0);
  9105. GGML_ASSERT(n_dims % 2 == 0);
  9106. // rows per thread
  9107. const int dr = (nr + nth - 1)/nth;
  9108. // row range for this thread
  9109. const int ir0 = dr*ith;
  9110. const int ir1 = MIN(ir0 + dr, nr);
  9111. // row index used to determine which thread to use
  9112. int ir = 0;
  9113. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9114. const bool is_neox = mode & 2;
  9115. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9116. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9117. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9118. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9119. if (ir++ < ir0) continue;
  9120. if (ir > ir1) break;
  9121. float theta = (float)p;
  9122. if (!is_neox) {
  9123. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9124. const float cos_theta = cosf(theta);
  9125. const float sin_theta = sinf(theta);
  9126. theta *= theta_scale;
  9127. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9128. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9129. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9130. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9131. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9132. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9133. }
  9134. } else {
  9135. // TODO: this is probably wrong, but I can't figure it out ..
  9136. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9137. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9138. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9139. const float cos_theta = cosf(theta);
  9140. const float sin_theta = sinf(theta);
  9141. theta *= theta_scale;
  9142. const int64_t i0 = ib*n_dims + ic/2;
  9143. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9144. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9145. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9146. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9147. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9148. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9149. }
  9150. }
  9151. }
  9152. }
  9153. }
  9154. }
  9155. }
  9156. static void ggml_compute_forward_rope(
  9157. const struct ggml_compute_params * params,
  9158. const struct ggml_tensor * src0,
  9159. const struct ggml_tensor * src1,
  9160. struct ggml_tensor * dst) {
  9161. switch (src0->type) {
  9162. case GGML_TYPE_F16:
  9163. {
  9164. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9165. } break;
  9166. case GGML_TYPE_F32:
  9167. {
  9168. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9169. } break;
  9170. default:
  9171. {
  9172. GGML_ASSERT(false);
  9173. } break;
  9174. }
  9175. }
  9176. // ggml_compute_forward_rope_back
  9177. static void ggml_compute_forward_rope_back_f32(
  9178. const struct ggml_compute_params * params,
  9179. const struct ggml_tensor * src0,
  9180. const struct ggml_tensor * src1,
  9181. struct ggml_tensor * dst) {
  9182. assert(src1->type == GGML_TYPE_I32);
  9183. assert(ggml_nelements(src1) == 3);
  9184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9185. return;
  9186. }
  9187. // y = rope(x, src1)
  9188. // dx = rope_back(dy, src1)
  9189. // src0 is dy, src1 contains options
  9190. const int n_past = ((int32_t *) src1->data)[0];
  9191. const int n_dims = ((int32_t *) src1->data)[1];
  9192. const int mode = ((int32_t *) src1->data)[2];
  9193. assert(n_past >= 0);
  9194. const size_t nb00 = src0->nb[0];
  9195. const size_t nb01 = src0->nb[1];
  9196. const size_t nb02 = src0->nb[2];
  9197. const size_t nb03 = src0->nb[3];
  9198. const int64_t ne0 = dst->ne[0];
  9199. const int64_t ne1 = dst->ne[1];
  9200. const int64_t ne2 = dst->ne[2];
  9201. const int64_t ne3 = dst->ne[3];
  9202. const size_t nb0 = dst->nb[0];
  9203. const size_t nb1 = dst->nb[1];
  9204. const size_t nb2 = dst->nb[2];
  9205. const size_t nb3 = dst->nb[3];
  9206. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9207. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9208. assert(nb0 == sizeof(float));
  9209. const int ith = params->ith;
  9210. const int nth = params->nth;
  9211. const int nr = ggml_nrows(dst);
  9212. // rows per thread
  9213. const int dr = (nr + nth - 1)/nth;
  9214. // row range for this thread
  9215. const int ir0 = dr*ith;
  9216. const int ir1 = MIN(ir0 + dr, nr);
  9217. // row index used to determine which thread to use
  9218. int ir = 0;
  9219. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9220. const bool is_neox = mode & 2;
  9221. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9222. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9223. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9224. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9225. if (ir++ < ir0) continue;
  9226. if (ir > ir1) break;
  9227. float theta = (float)p;
  9228. if (!is_neox) {
  9229. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9230. const float cos_theta = cosf(theta);
  9231. const float sin_theta = sinf(theta);
  9232. theta *= theta_scale;
  9233. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9234. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9235. const float dy0 = dy[0];
  9236. const float dy1 = dy[1];
  9237. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9238. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9239. }
  9240. } else {
  9241. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9242. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9243. const float cos_theta = cosf(theta);
  9244. const float sin_theta = sinf(theta);
  9245. theta *= theta_scale;
  9246. const int64_t i0 = ib*n_dims + ic/2;
  9247. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9248. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9249. const float dy0 = dy[0];
  9250. const float dy1 = dy[n_dims/2];
  9251. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9252. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9253. }
  9254. }
  9255. }
  9256. }
  9257. }
  9258. }
  9259. }
  9260. static void ggml_compute_forward_rope_back_f16(
  9261. const struct ggml_compute_params * params,
  9262. const struct ggml_tensor * src0,
  9263. const struct ggml_tensor * src1,
  9264. struct ggml_tensor * dst) {
  9265. assert(src1->type == GGML_TYPE_I32);
  9266. assert(ggml_nelements(src1) == 3);
  9267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9268. return;
  9269. }
  9270. // y = rope(x, src1)
  9271. // dx = rope_back(dy, src1)
  9272. // src0 is dy, src1 contains options
  9273. const int n_past = ((int32_t *) src1->data)[0];
  9274. const int n_dims = ((int32_t *) src1->data)[1];
  9275. const int mode = ((int32_t *) src1->data)[2];
  9276. assert(n_past >= 0);
  9277. const size_t nb00 = src0->nb[0];
  9278. const size_t nb01 = src0->nb[1];
  9279. const size_t nb02 = src0->nb[2];
  9280. const size_t nb03 = src0->nb[3];
  9281. const int64_t ne0 = dst->ne[0];
  9282. const int64_t ne1 = dst->ne[1];
  9283. const int64_t ne2 = dst->ne[2];
  9284. const int64_t ne3 = dst->ne[3];
  9285. const size_t nb0 = dst->nb[0];
  9286. const size_t nb1 = dst->nb[1];
  9287. const size_t nb2 = dst->nb[2];
  9288. const size_t nb3 = dst->nb[3];
  9289. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9290. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9291. assert(nb0 == sizeof(ggml_fp16_t));
  9292. const int ith = params->ith;
  9293. const int nth = params->nth;
  9294. const int nr = ggml_nrows(dst);
  9295. // rows per thread
  9296. const int dr = (nr + nth - 1)/nth;
  9297. // row range for this thread
  9298. const int ir0 = dr*ith;
  9299. const int ir1 = MIN(ir0 + dr, nr);
  9300. // row index used to determine which thread to use
  9301. int ir = 0;
  9302. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9303. const bool is_neox = mode & 2;
  9304. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9305. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9306. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9307. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9308. if (ir++ < ir0) continue;
  9309. if (ir > ir1) break;
  9310. float theta = (float)p;
  9311. if (!is_neox) {
  9312. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9313. const float cos_theta = cosf(theta);
  9314. const float sin_theta = sinf(theta);
  9315. theta *= theta_scale;
  9316. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9317. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9318. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9319. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9320. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9321. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9322. }
  9323. } else {
  9324. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9325. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9326. const float cos_theta = cosf(theta);
  9327. const float sin_theta = sinf(theta);
  9328. theta *= theta_scale;
  9329. const int64_t i0 = ib*n_dims + ic/2;
  9330. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9331. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9332. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9333. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9334. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9335. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9336. }
  9337. }
  9338. }
  9339. }
  9340. }
  9341. }
  9342. }
  9343. static void ggml_compute_forward_rope_back(
  9344. const struct ggml_compute_params * params,
  9345. const struct ggml_tensor * src0,
  9346. const struct ggml_tensor * src1,
  9347. struct ggml_tensor * dst) {
  9348. switch (src0->type) {
  9349. case GGML_TYPE_F16:
  9350. {
  9351. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9352. } break;
  9353. case GGML_TYPE_F32:
  9354. {
  9355. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9356. } break;
  9357. default:
  9358. {
  9359. GGML_ASSERT(false);
  9360. } break;
  9361. }
  9362. }
  9363. // ggml_compute_forward_conv_1d_1s
  9364. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9365. const struct ggml_compute_params * params,
  9366. const struct ggml_tensor * src0,
  9367. const struct ggml_tensor * src1,
  9368. struct ggml_tensor * dst) {
  9369. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9370. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9371. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9372. int64_t t0 = ggml_perf_time_us();
  9373. UNUSED(t0);
  9374. const int64_t ne00 = src0->ne[0];
  9375. const int64_t ne01 = src0->ne[1];
  9376. const int64_t ne02 = src0->ne[2];
  9377. //const int64_t ne03 = src0->ne[3];
  9378. const int64_t ne10 = src1->ne[0];
  9379. const int64_t ne11 = src1->ne[1];
  9380. //const int64_t ne12 = src1->ne[2];
  9381. //const int64_t ne13 = src1->ne[3];
  9382. //const int64_t ne0 = dst->ne[0];
  9383. //const int64_t ne1 = dst->ne[1];
  9384. //const int64_t ne2 = dst->ne[2];
  9385. //const int64_t ne3 = dst->ne[3];
  9386. //const int64_t ne = ne0*ne1*ne2*ne3;
  9387. const int nb00 = src0->nb[0];
  9388. const int nb01 = src0->nb[1];
  9389. const int nb02 = src0->nb[2];
  9390. //const int nb03 = src0->nb[3];
  9391. const int nb10 = src1->nb[0];
  9392. const int nb11 = src1->nb[1];
  9393. //const int nb12 = src1->nb[2];
  9394. //const int nb13 = src1->nb[3];
  9395. //const int nb0 = dst->nb[0];
  9396. const int nb1 = dst->nb[1];
  9397. //const int nb2 = dst->nb[2];
  9398. //const int nb3 = dst->nb[3];
  9399. const int ith = params->ith;
  9400. const int nth = params->nth;
  9401. const int nk = ne00;
  9402. const int nh = nk/2;
  9403. const int ew0 = ggml_up32(ne01);
  9404. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9405. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9406. GGML_ASSERT(nb10 == sizeof(float));
  9407. if (params->type == GGML_TASK_INIT) {
  9408. // TODO: fix this memset (wsize is overestimated)
  9409. memset(params->wdata, 0, params->wsize);
  9410. // prepare kernel data (src0)
  9411. {
  9412. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9413. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9414. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9415. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9416. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9418. dst_data[i00*ew0 + i01] = src[i00];
  9419. }
  9420. }
  9421. }
  9422. }
  9423. // prepare source data (src1)
  9424. {
  9425. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9426. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9427. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9428. ggml_fp16_t * dst_data = wdata;
  9429. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9430. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9431. }
  9432. }
  9433. }
  9434. return;
  9435. }
  9436. if (params->type == GGML_TASK_FINALIZE) {
  9437. return;
  9438. }
  9439. // total rows in dst
  9440. const int nr = ne02;
  9441. // rows per thread
  9442. const int dr = (nr + nth - 1)/nth;
  9443. // row range for this thread
  9444. const int ir0 = dr*ith;
  9445. const int ir1 = MIN(ir0 + dr, nr);
  9446. for (int i1 = ir0; i1 < ir1; i1++) {
  9447. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9448. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9449. dst_data[i0] = 0;
  9450. for (int k = -nh; k <= nh; k++) {
  9451. float v = 0.0f;
  9452. ggml_vec_dot_f16(ew0, &v,
  9453. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9454. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9455. dst_data[i0] += v;
  9456. }
  9457. }
  9458. }
  9459. }
  9460. static void ggml_compute_forward_conv_1d_1s_f32(
  9461. const struct ggml_compute_params * params,
  9462. const struct ggml_tensor * src0,
  9463. const struct ggml_tensor * src1,
  9464. struct ggml_tensor * dst) {
  9465. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9466. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9467. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9468. int64_t t0 = ggml_perf_time_us();
  9469. UNUSED(t0);
  9470. const int64_t ne00 = src0->ne[0];
  9471. const int64_t ne01 = src0->ne[1];
  9472. const int64_t ne02 = src0->ne[2];
  9473. //const int64_t ne03 = src0->ne[3];
  9474. const int64_t ne10 = src1->ne[0];
  9475. const int64_t ne11 = src1->ne[1];
  9476. //const int64_t ne12 = src1->ne[2];
  9477. //const int64_t ne13 = src1->ne[3];
  9478. //const int64_t ne0 = dst->ne[0];
  9479. //const int64_t ne1 = dst->ne[1];
  9480. //const int64_t ne2 = dst->ne[2];
  9481. //const int64_t ne3 = dst->ne[3];
  9482. //const int64_t ne = ne0*ne1*ne2*ne3;
  9483. const int nb00 = src0->nb[0];
  9484. const int nb01 = src0->nb[1];
  9485. const int nb02 = src0->nb[2];
  9486. //const int nb03 = src0->nb[3];
  9487. const int nb10 = src1->nb[0];
  9488. const int nb11 = src1->nb[1];
  9489. //const int nb12 = src1->nb[2];
  9490. //const int nb13 = src1->nb[3];
  9491. //const int nb0 = dst->nb[0];
  9492. const int nb1 = dst->nb[1];
  9493. //const int nb2 = dst->nb[2];
  9494. //const int nb3 = dst->nb[3];
  9495. const int ith = params->ith;
  9496. const int nth = params->nth;
  9497. const int nk = ne00;
  9498. const int nh = nk/2;
  9499. const int ew0 = ggml_up32(ne01);
  9500. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9501. GGML_ASSERT(nb00 == sizeof(float));
  9502. GGML_ASSERT(nb10 == sizeof(float));
  9503. if (params->type == GGML_TASK_INIT) {
  9504. // TODO: fix this memset (wsize is overestimated)
  9505. memset(params->wdata, 0, params->wsize);
  9506. // prepare kernel data (src0)
  9507. {
  9508. float * const wdata = (float *) params->wdata + 0;
  9509. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9510. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9511. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9512. float * dst_data = wdata + i02*ew0*ne00;
  9513. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9514. dst_data[i00*ew0 + i01] = src[i00];
  9515. }
  9516. }
  9517. }
  9518. }
  9519. // prepare source data (src1)
  9520. {
  9521. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9522. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9523. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9524. float * dst_data = wdata;
  9525. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9526. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9527. }
  9528. }
  9529. }
  9530. return;
  9531. }
  9532. if (params->type == GGML_TASK_FINALIZE) {
  9533. return;
  9534. }
  9535. // total rows in dst
  9536. const int nr = ne02;
  9537. // rows per thread
  9538. const int dr = (nr + nth - 1)/nth;
  9539. // row range for this thread
  9540. const int ir0 = dr*ith;
  9541. const int ir1 = MIN(ir0 + dr, nr);
  9542. for (int i1 = ir0; i1 < ir1; i1++) {
  9543. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9544. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9545. dst_data[i0] = 0;
  9546. for (int k = -nh; k <= nh; k++) {
  9547. float v = 0.0f;
  9548. ggml_vec_dot_f32(ew0, &v,
  9549. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9550. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9551. dst_data[i0] += v;
  9552. }
  9553. }
  9554. }
  9555. }
  9556. static void ggml_compute_forward_conv_1d_1s(
  9557. const struct ggml_compute_params * params,
  9558. const struct ggml_tensor * src0,
  9559. const struct ggml_tensor * src1,
  9560. struct ggml_tensor * dst) {
  9561. switch (src0->type) {
  9562. case GGML_TYPE_F16:
  9563. {
  9564. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9565. } break;
  9566. case GGML_TYPE_F32:
  9567. {
  9568. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9569. } break;
  9570. default:
  9571. {
  9572. GGML_ASSERT(false);
  9573. } break;
  9574. }
  9575. }
  9576. // ggml_compute_forward_conv_1d_2s
  9577. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9578. const struct ggml_compute_params * params,
  9579. const struct ggml_tensor * src0,
  9580. const struct ggml_tensor * src1,
  9581. struct ggml_tensor * dst) {
  9582. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9583. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9584. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9585. int64_t t0 = ggml_perf_time_us();
  9586. UNUSED(t0);
  9587. const int64_t ne00 = src0->ne[0];
  9588. const int64_t ne01 = src0->ne[1];
  9589. const int64_t ne02 = src0->ne[2];
  9590. //const int64_t ne03 = src0->ne[3];
  9591. const int64_t ne10 = src1->ne[0];
  9592. const int64_t ne11 = src1->ne[1];
  9593. //const int64_t ne12 = src1->ne[2];
  9594. //const int64_t ne13 = src1->ne[3];
  9595. //const int64_t ne0 = dst->ne[0];
  9596. //const int64_t ne1 = dst->ne[1];
  9597. //const int64_t ne2 = dst->ne[2];
  9598. //const int64_t ne3 = dst->ne[3];
  9599. //const int64_t ne = ne0*ne1*ne2*ne3;
  9600. const int nb00 = src0->nb[0];
  9601. const int nb01 = src0->nb[1];
  9602. const int nb02 = src0->nb[2];
  9603. //const int nb03 = src0->nb[3];
  9604. const int nb10 = src1->nb[0];
  9605. const int nb11 = src1->nb[1];
  9606. //const int nb12 = src1->nb[2];
  9607. //const int nb13 = src1->nb[3];
  9608. //const int nb0 = dst->nb[0];
  9609. const int nb1 = dst->nb[1];
  9610. //const int nb2 = dst->nb[2];
  9611. //const int nb3 = dst->nb[3];
  9612. const int ith = params->ith;
  9613. const int nth = params->nth;
  9614. const int nk = ne00;
  9615. const int nh = nk/2;
  9616. const int ew0 = ggml_up32(ne01);
  9617. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9618. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9619. GGML_ASSERT(nb10 == sizeof(float));
  9620. if (params->type == GGML_TASK_INIT) {
  9621. // TODO: fix this memset (wsize is overestimated)
  9622. memset(params->wdata, 0, params->wsize);
  9623. // prepare kernel data (src0)
  9624. {
  9625. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9626. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9627. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9628. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9629. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9630. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9631. dst_data[i00*ew0 + i01] = src[i00];
  9632. }
  9633. }
  9634. }
  9635. }
  9636. // prepare source data (src1)
  9637. {
  9638. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9639. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9640. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9641. ggml_fp16_t * dst_data = wdata;
  9642. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9643. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9644. }
  9645. }
  9646. }
  9647. return;
  9648. }
  9649. if (params->type == GGML_TASK_FINALIZE) {
  9650. return;
  9651. }
  9652. // total rows in dst
  9653. const int nr = ne02;
  9654. // rows per thread
  9655. const int dr = (nr + nth - 1)/nth;
  9656. // row range for this thread
  9657. const int ir0 = dr*ith;
  9658. const int ir1 = MIN(ir0 + dr, nr);
  9659. for (int i1 = ir0; i1 < ir1; i1++) {
  9660. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9661. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9662. dst_data[i0/2] = 0;
  9663. for (int k = -nh; k <= nh; k++) {
  9664. float v = 0.0f;
  9665. ggml_vec_dot_f16(ew0, &v,
  9666. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9667. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9668. dst_data[i0/2] += v;
  9669. }
  9670. }
  9671. }
  9672. }
  9673. static void ggml_compute_forward_conv_1d_2s_f32(
  9674. const struct ggml_compute_params * params,
  9675. const struct ggml_tensor * src0,
  9676. const struct ggml_tensor * src1,
  9677. struct ggml_tensor * dst) {
  9678. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9679. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9680. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9681. int64_t t0 = ggml_perf_time_us();
  9682. UNUSED(t0);
  9683. const int64_t ne00 = src0->ne[0];
  9684. const int64_t ne01 = src0->ne[1];
  9685. const int64_t ne02 = src0->ne[2];
  9686. //const int64_t ne03 = src0->ne[3];
  9687. const int64_t ne10 = src1->ne[0];
  9688. const int64_t ne11 = src1->ne[1];
  9689. //const int64_t ne12 = src1->ne[2];
  9690. //const int64_t ne13 = src1->ne[3];
  9691. //const int64_t ne0 = dst->ne[0];
  9692. //const int64_t ne1 = dst->ne[1];
  9693. //const int64_t ne2 = dst->ne[2];
  9694. //const int64_t ne3 = dst->ne[3];
  9695. //const int64_t ne = ne0*ne1*ne2*ne3;
  9696. const int nb00 = src0->nb[0];
  9697. const int nb01 = src0->nb[1];
  9698. const int nb02 = src0->nb[2];
  9699. //const int nb03 = src0->nb[3];
  9700. const int nb10 = src1->nb[0];
  9701. const int nb11 = src1->nb[1];
  9702. //const int nb12 = src1->nb[2];
  9703. //const int nb13 = src1->nb[3];
  9704. //const int nb0 = dst->nb[0];
  9705. const int nb1 = dst->nb[1];
  9706. //const int nb2 = dst->nb[2];
  9707. //const int nb3 = dst->nb[3];
  9708. const int ith = params->ith;
  9709. const int nth = params->nth;
  9710. const int nk = ne00;
  9711. const int nh = nk/2;
  9712. const int ew0 = ggml_up32(ne01);
  9713. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9714. GGML_ASSERT(nb00 == sizeof(float));
  9715. GGML_ASSERT(nb10 == sizeof(float));
  9716. if (params->type == GGML_TASK_INIT) {
  9717. // TODO: fix this memset (wsize is overestimated)
  9718. memset(params->wdata, 0, params->wsize);
  9719. // prepare kernel data (src0)
  9720. {
  9721. float * const wdata = (float *) params->wdata + 0;
  9722. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9723. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9724. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9725. float * dst_data = wdata + i02*ew0*ne00;
  9726. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9727. dst_data[i00*ew0 + i01] = src[i00];
  9728. }
  9729. }
  9730. }
  9731. }
  9732. // prepare source data (src1)
  9733. {
  9734. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9735. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9736. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9737. float * dst_data = wdata;
  9738. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9739. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9740. }
  9741. }
  9742. }
  9743. return;
  9744. }
  9745. if (params->type == GGML_TASK_FINALIZE) {
  9746. return;
  9747. }
  9748. // total rows in dst
  9749. const int nr = ne02;
  9750. // rows per thread
  9751. const int dr = (nr + nth - 1)/nth;
  9752. // row range for this thread
  9753. const int ir0 = dr*ith;
  9754. const int ir1 = MIN(ir0 + dr, nr);
  9755. for (int i1 = ir0; i1 < ir1; i1++) {
  9756. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9757. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9758. dst_data[i0/2] = 0;
  9759. for (int k = -nh; k <= nh; k++) {
  9760. float v = 0.0f;
  9761. ggml_vec_dot_f32(ew0, &v,
  9762. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9763. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9764. dst_data[i0/2] += v;
  9765. }
  9766. }
  9767. }
  9768. }
  9769. static void ggml_compute_forward_conv_1d_2s(
  9770. const struct ggml_compute_params * params,
  9771. const struct ggml_tensor * src0,
  9772. const struct ggml_tensor * src1,
  9773. struct ggml_tensor * dst) {
  9774. switch (src0->type) {
  9775. case GGML_TYPE_F16:
  9776. {
  9777. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9778. } break;
  9779. case GGML_TYPE_F32:
  9780. {
  9781. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9782. } break;
  9783. default:
  9784. {
  9785. GGML_ASSERT(false);
  9786. } break;
  9787. }
  9788. }
  9789. // ggml_compute_forward_flash_attn
  9790. static void ggml_compute_forward_flash_attn_f32(
  9791. const struct ggml_compute_params * params,
  9792. const struct ggml_tensor * q,
  9793. const struct ggml_tensor * k,
  9794. const struct ggml_tensor * v,
  9795. const bool masked,
  9796. struct ggml_tensor * dst) {
  9797. int64_t t0 = ggml_perf_time_us();
  9798. UNUSED(t0);
  9799. const int64_t neq0 = q->ne[0];
  9800. const int64_t neq1 = q->ne[1];
  9801. const int64_t neq2 = q->ne[2];
  9802. const int64_t neq3 = q->ne[3];
  9803. const int64_t nek0 = k->ne[0];
  9804. const int64_t nek1 = k->ne[1];
  9805. //const int64_t nek2 = k->ne[2];
  9806. //const int64_t nek3 = k->ne[3];
  9807. //const int64_t nev0 = v->ne[0];
  9808. const int64_t nev1 = v->ne[1];
  9809. //const int64_t nev2 = v->ne[2];
  9810. //const int64_t nev3 = v->ne[3];
  9811. const int64_t ne0 = dst->ne[0];
  9812. const int64_t ne1 = dst->ne[1];
  9813. //const int64_t ne2 = dst->ne[2];
  9814. //const int64_t ne3 = dst->ne[3];
  9815. const int nbk0 = k->nb[0];
  9816. const int nbk1 = k->nb[1];
  9817. const int nbk2 = k->nb[2];
  9818. const int nbk3 = k->nb[3];
  9819. const int nbq0 = q->nb[0];
  9820. const int nbq1 = q->nb[1];
  9821. const int nbq2 = q->nb[2];
  9822. const int nbq3 = q->nb[3];
  9823. const int nbv0 = v->nb[0];
  9824. const int nbv1 = v->nb[1];
  9825. const int nbv2 = v->nb[2];
  9826. const int nbv3 = v->nb[3];
  9827. const int nb0 = dst->nb[0];
  9828. const int nb1 = dst->nb[1];
  9829. const int nb2 = dst->nb[2];
  9830. const int nb3 = dst->nb[3];
  9831. const int ith = params->ith;
  9832. const int nth = params->nth;
  9833. const int64_t D = neq0;
  9834. const int64_t N = neq1;
  9835. const int64_t P = nek1 - N;
  9836. const int64_t M = P + N;
  9837. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9838. GGML_ASSERT(ne0 == D);
  9839. GGML_ASSERT(ne1 == N);
  9840. GGML_ASSERT(P >= 0);
  9841. GGML_ASSERT(nbq0 == sizeof(float));
  9842. GGML_ASSERT(nbk0 == sizeof(float));
  9843. GGML_ASSERT(nbv0 == sizeof(float));
  9844. GGML_ASSERT(neq0 == D);
  9845. GGML_ASSERT(nek0 == D);
  9846. GGML_ASSERT(nev1 == D);
  9847. GGML_ASSERT(neq1 == N);
  9848. GGML_ASSERT(nek1 == N + P);
  9849. GGML_ASSERT(nev1 == D);
  9850. // dst cannot be transposed or permuted
  9851. GGML_ASSERT(nb0 == sizeof(float));
  9852. GGML_ASSERT(nb0 <= nb1);
  9853. GGML_ASSERT(nb1 <= nb2);
  9854. GGML_ASSERT(nb2 <= nb3);
  9855. if (params->type == GGML_TASK_INIT) {
  9856. return;
  9857. }
  9858. if (params->type == GGML_TASK_FINALIZE) {
  9859. return;
  9860. }
  9861. // parallelize by q rows using ggml_vec_dot_f32
  9862. // total rows in q
  9863. const int nr = neq1*neq2*neq3;
  9864. // rows per thread
  9865. const int dr = (nr + nth - 1)/nth;
  9866. // row range for this thread
  9867. const int ir0 = dr*ith;
  9868. const int ir1 = MIN(ir0 + dr, nr);
  9869. const float scale = 1.0f/sqrtf(D);
  9870. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9871. for (int ir = ir0; ir < ir1; ++ir) {
  9872. // q indices
  9873. const int iq3 = ir/(neq2*neq1);
  9874. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9875. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9876. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9877. for (int i = M; i < Mup; ++i) {
  9878. S[i] = -INFINITY;
  9879. }
  9880. for (int64_t ic = 0; ic < nek1; ++ic) {
  9881. // k indices
  9882. const int ik3 = iq3;
  9883. const int ik2 = iq2;
  9884. const int ik1 = ic;
  9885. // S indices
  9886. const int i1 = ik1;
  9887. ggml_vec_dot_f32(neq0,
  9888. S + i1,
  9889. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9890. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9891. }
  9892. // scale
  9893. ggml_vec_scale_f32(nek1, S, scale);
  9894. if (masked) {
  9895. for (int64_t i = P; i < M; i++) {
  9896. if (i > P + iq1) {
  9897. S[i] = -INFINITY;
  9898. }
  9899. }
  9900. }
  9901. // softmax
  9902. {
  9903. float max = -INFINITY;
  9904. ggml_vec_max_f32(M, &max, S);
  9905. ggml_float sum = 0.0;
  9906. {
  9907. #ifdef GGML_SOFT_MAX_ACCELERATE
  9908. max = -max;
  9909. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9910. vvexpf(S, S, &Mup);
  9911. ggml_vec_sum_f32(Mup, &sum, S);
  9912. #else
  9913. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9914. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9915. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9916. float * SS = S + i;
  9917. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9918. if (SS[j] == -INFINITY) {
  9919. SS[j] = 0.0f;
  9920. } else {
  9921. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9922. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9923. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9924. sump[j] += (ggml_float)val;
  9925. SS[j] = val;
  9926. }
  9927. }
  9928. }
  9929. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9930. sum += sump[i];
  9931. }
  9932. #endif
  9933. }
  9934. assert(sum > 0.0);
  9935. sum = 1.0/sum;
  9936. ggml_vec_scale_f32(M, S, sum);
  9937. #ifndef NDEBUG
  9938. for (int i = 0; i < M; ++i) {
  9939. assert(!isnan(S[i]));
  9940. assert(!isinf(S[i]));
  9941. }
  9942. #endif
  9943. }
  9944. for (int64_t ic = 0; ic < nev1; ++ic) {
  9945. // dst indices
  9946. const int i1 = iq1;
  9947. const int i2 = iq2;
  9948. const int i3 = iq3;
  9949. ggml_vec_dot_f32(nek1,
  9950. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9951. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9952. S);
  9953. }
  9954. }
  9955. }
  9956. static void ggml_compute_forward_flash_attn_f16(
  9957. const struct ggml_compute_params * params,
  9958. const struct ggml_tensor * q,
  9959. const struct ggml_tensor * k,
  9960. const struct ggml_tensor * v,
  9961. const bool masked,
  9962. struct ggml_tensor * dst) {
  9963. int64_t t0 = ggml_perf_time_us();
  9964. UNUSED(t0);
  9965. const int64_t neq0 = q->ne[0];
  9966. const int64_t neq1 = q->ne[1];
  9967. const int64_t neq2 = q->ne[2];
  9968. const int64_t neq3 = q->ne[3];
  9969. const int64_t nek0 = k->ne[0];
  9970. const int64_t nek1 = k->ne[1];
  9971. //const int64_t nek2 = k->ne[2];
  9972. //const int64_t nek3 = k->ne[3];
  9973. //const int64_t nev0 = v->ne[0];
  9974. const int64_t nev1 = v->ne[1];
  9975. //const int64_t nev2 = v->ne[2];
  9976. //const int64_t nev3 = v->ne[3];
  9977. const int64_t ne0 = dst->ne[0];
  9978. const int64_t ne1 = dst->ne[1];
  9979. //const int64_t ne2 = dst->ne[2];
  9980. //const int64_t ne3 = dst->ne[3];
  9981. const int nbk0 = k->nb[0];
  9982. const int nbk1 = k->nb[1];
  9983. const int nbk2 = k->nb[2];
  9984. const int nbk3 = k->nb[3];
  9985. const int nbq0 = q->nb[0];
  9986. const int nbq1 = q->nb[1];
  9987. const int nbq2 = q->nb[2];
  9988. const int nbq3 = q->nb[3];
  9989. const int nbv0 = v->nb[0];
  9990. const int nbv1 = v->nb[1];
  9991. const int nbv2 = v->nb[2];
  9992. const int nbv3 = v->nb[3];
  9993. const int nb0 = dst->nb[0];
  9994. const int nb1 = dst->nb[1];
  9995. const int nb2 = dst->nb[2];
  9996. const int nb3 = dst->nb[3];
  9997. const int ith = params->ith;
  9998. const int nth = params->nth;
  9999. const int64_t D = neq0;
  10000. const int64_t N = neq1;
  10001. const int64_t P = nek1 - N;
  10002. const int64_t M = P + N;
  10003. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10004. GGML_ASSERT(ne0 == D);
  10005. GGML_ASSERT(ne1 == N);
  10006. GGML_ASSERT(P >= 0);
  10007. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10008. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10009. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10010. GGML_ASSERT(neq0 == D);
  10011. GGML_ASSERT(nek0 == D);
  10012. GGML_ASSERT(nev1 == D);
  10013. GGML_ASSERT(neq1 == N);
  10014. GGML_ASSERT(nek1 == N + P);
  10015. GGML_ASSERT(nev1 == D);
  10016. // dst cannot be transposed or permuted
  10017. GGML_ASSERT(nb0 == sizeof(float));
  10018. GGML_ASSERT(nb0 <= nb1);
  10019. GGML_ASSERT(nb1 <= nb2);
  10020. GGML_ASSERT(nb2 <= nb3);
  10021. if (params->type == GGML_TASK_INIT) {
  10022. return;
  10023. }
  10024. if (params->type == GGML_TASK_FINALIZE) {
  10025. return;
  10026. }
  10027. // parallelize by q rows using ggml_vec_dot_f32
  10028. // total rows in q
  10029. const int nr = neq1*neq2*neq3;
  10030. // rows per thread
  10031. const int dr = (nr + nth - 1)/nth;
  10032. // row range for this thread
  10033. const int ir0 = dr*ith;
  10034. const int ir1 = MIN(ir0 + dr, nr);
  10035. const float scale = 1.0f/sqrtf(D);
  10036. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10037. for (int ir = ir0; ir < ir1; ++ir) {
  10038. // q indices
  10039. const int iq3 = ir/(neq2*neq1);
  10040. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10041. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10042. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10043. for (int i = M; i < Mup; ++i) {
  10044. S[i] = -INFINITY;
  10045. }
  10046. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10047. for (int64_t ic = 0; ic < nek1; ++ic) {
  10048. // k indices
  10049. const int ik3 = iq3;
  10050. const int ik2 = iq2;
  10051. const int ik1 = ic;
  10052. // S indices
  10053. const int i1 = ik1;
  10054. ggml_vec_dot_f16(neq0,
  10055. S + i1,
  10056. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10057. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10058. }
  10059. } else {
  10060. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10061. // k indices
  10062. const int ik3 = iq3;
  10063. const int ik2 = iq2;
  10064. const int ik1 = ic;
  10065. // S indices
  10066. const int i1 = ik1;
  10067. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10068. S + i1,
  10069. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10070. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10071. }
  10072. }
  10073. // scale
  10074. ggml_vec_scale_f32(nek1, S, scale);
  10075. if (masked) {
  10076. for (int64_t i = P; i < M; i++) {
  10077. if (i > P + iq1) {
  10078. S[i] = -INFINITY;
  10079. }
  10080. }
  10081. }
  10082. // softmax
  10083. {
  10084. float max = -INFINITY;
  10085. ggml_vec_max_f32(M, &max, S);
  10086. ggml_float sum = 0.0;
  10087. {
  10088. #ifdef GGML_SOFT_MAX_ACCELERATE
  10089. max = -max;
  10090. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10091. vvexpf(S, S, &Mup);
  10092. ggml_vec_sum_f32(Mup, &sum, S);
  10093. #else
  10094. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10095. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10096. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10097. float * SS = S + i;
  10098. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10099. if (SS[j] == -INFINITY) {
  10100. SS[j] = 0.0f;
  10101. } else {
  10102. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10103. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10104. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10105. sump[j] += (ggml_float)val;
  10106. SS[j] = val;
  10107. }
  10108. }
  10109. }
  10110. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10111. sum += sump[i];
  10112. }
  10113. #endif
  10114. }
  10115. assert(sum > 0.0);
  10116. sum = 1.0/sum;
  10117. ggml_vec_scale_f32(M, S, sum);
  10118. #ifndef NDEBUG
  10119. for (int i = 0; i < M; ++i) {
  10120. assert(!isnan(S[i]));
  10121. assert(!isinf(S[i]));
  10122. }
  10123. #endif
  10124. }
  10125. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10126. for (int64_t i = 0; i < M; i++) {
  10127. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10128. }
  10129. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10130. for (int64_t ic = 0; ic < nev1; ++ic) {
  10131. // dst indices
  10132. const int i1 = iq1;
  10133. const int i2 = iq2;
  10134. const int i3 = iq3;
  10135. ggml_vec_dot_f16(nek1,
  10136. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10137. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10138. S16);
  10139. }
  10140. } else {
  10141. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10142. // dst indices
  10143. const int i1 = iq1;
  10144. const int i2 = iq2;
  10145. const int i3 = iq3;
  10146. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10147. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10148. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10149. S16);
  10150. }
  10151. }
  10152. }
  10153. }
  10154. static void ggml_compute_forward_flash_attn(
  10155. const struct ggml_compute_params * params,
  10156. const struct ggml_tensor * q,
  10157. const struct ggml_tensor * k,
  10158. const struct ggml_tensor * v,
  10159. const bool masked,
  10160. struct ggml_tensor * dst) {
  10161. switch (q->type) {
  10162. case GGML_TYPE_F16:
  10163. {
  10164. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10165. } break;
  10166. case GGML_TYPE_F32:
  10167. {
  10168. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10169. } break;
  10170. default:
  10171. {
  10172. GGML_ASSERT(false);
  10173. } break;
  10174. }
  10175. }
  10176. // ggml_compute_forward_flash_ff
  10177. static void ggml_compute_forward_flash_ff_f16(
  10178. const struct ggml_compute_params * params,
  10179. const struct ggml_tensor * a, // F16
  10180. const struct ggml_tensor * b0, // F16 fc_w
  10181. const struct ggml_tensor * b1, // F32 fc_b
  10182. const struct ggml_tensor * c0, // F16 proj_w
  10183. const struct ggml_tensor * c1, // F32 proj_b
  10184. struct ggml_tensor * dst) {
  10185. int64_t t0 = ggml_perf_time_us();
  10186. UNUSED(t0);
  10187. const int64_t nea0 = a->ne[0];
  10188. const int64_t nea1 = a->ne[1];
  10189. const int64_t nea2 = a->ne[2];
  10190. const int64_t nea3 = a->ne[3];
  10191. const int64_t neb00 = b0->ne[0];
  10192. const int64_t neb01 = b0->ne[1];
  10193. //const int64_t neb02 = b0->ne[2];
  10194. //const int64_t neb03 = b0->ne[3];
  10195. const int64_t neb10 = b1->ne[0];
  10196. const int64_t neb11 = b1->ne[1];
  10197. //const int64_t neb12 = b1->ne[2];
  10198. //const int64_t neb13 = b1->ne[3];
  10199. const int64_t nec00 = c0->ne[0];
  10200. const int64_t nec01 = c0->ne[1];
  10201. //const int64_t nec02 = c0->ne[2];
  10202. //const int64_t nec03 = c0->ne[3];
  10203. const int64_t nec10 = c1->ne[0];
  10204. const int64_t nec11 = c1->ne[1];
  10205. //const int64_t nec12 = c1->ne[2];
  10206. //const int64_t nec13 = c1->ne[3];
  10207. const int64_t ne0 = dst->ne[0];
  10208. const int64_t ne1 = dst->ne[1];
  10209. const int64_t ne2 = dst->ne[2];
  10210. //const int64_t ne3 = dst->ne[3];
  10211. const int nba0 = a->nb[0];
  10212. const int nba1 = a->nb[1];
  10213. const int nba2 = a->nb[2];
  10214. const int nba3 = a->nb[3];
  10215. const int nbb00 = b0->nb[0];
  10216. const int nbb01 = b0->nb[1];
  10217. const int nbb02 = b0->nb[2];
  10218. const int nbb03 = b0->nb[3];
  10219. const int nbb10 = b1->nb[0];
  10220. //const int nbb11 = b1->nb[1];
  10221. //const int nbb12 = b1->nb[2];
  10222. //const int nbb13 = b1->nb[3];
  10223. const int nbc00 = c0->nb[0];
  10224. const int nbc01 = c0->nb[1];
  10225. const int nbc02 = c0->nb[2];
  10226. const int nbc03 = c0->nb[3];
  10227. const int nbc10 = c1->nb[0];
  10228. //const int nbc11 = c1->nb[1];
  10229. //const int nbc12 = c1->nb[2];
  10230. //const int nbc13 = c1->nb[3];
  10231. const int nb0 = dst->nb[0];
  10232. const int nb1 = dst->nb[1];
  10233. const int nb2 = dst->nb[2];
  10234. const int nb3 = dst->nb[3];
  10235. const int ith = params->ith;
  10236. const int nth = params->nth;
  10237. const int64_t D = nea0;
  10238. //const int64_t N = nea1;
  10239. const int64_t M = neb01;
  10240. GGML_ASSERT(ne0 == nea0);
  10241. GGML_ASSERT(ne1 == nea1);
  10242. GGML_ASSERT(ne2 == nea2);
  10243. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10244. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10245. GGML_ASSERT(nbb10 == sizeof(float));
  10246. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10247. GGML_ASSERT(nbc10 == sizeof(float));
  10248. GGML_ASSERT(neb00 == D);
  10249. GGML_ASSERT(neb01 == M);
  10250. GGML_ASSERT(neb10 == M);
  10251. GGML_ASSERT(neb11 == 1);
  10252. GGML_ASSERT(nec00 == M);
  10253. GGML_ASSERT(nec01 == D);
  10254. GGML_ASSERT(nec10 == D);
  10255. GGML_ASSERT(nec11 == 1);
  10256. // dst cannot be transposed or permuted
  10257. GGML_ASSERT(nb0 == sizeof(float));
  10258. GGML_ASSERT(nb0 <= nb1);
  10259. GGML_ASSERT(nb1 <= nb2);
  10260. GGML_ASSERT(nb2 <= nb3);
  10261. if (params->type == GGML_TASK_INIT) {
  10262. return;
  10263. }
  10264. if (params->type == GGML_TASK_FINALIZE) {
  10265. return;
  10266. }
  10267. // parallelize by a rows using ggml_vec_dot_f32
  10268. // total rows in a
  10269. const int nr = nea1*nea2*nea3;
  10270. // rows per thread
  10271. const int dr = (nr + nth - 1)/nth;
  10272. // row range for this thread
  10273. const int ir0 = dr*ith;
  10274. const int ir1 = MIN(ir0 + dr, nr);
  10275. for (int ir = ir0; ir < ir1; ++ir) {
  10276. // a indices
  10277. const int ia3 = ir/(nea2*nea1);
  10278. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10279. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10280. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10281. for (int64_t ic = 0; ic < neb01; ++ic) {
  10282. // b0 indices
  10283. const int ib03 = ia3;
  10284. const int ib02 = ia2;
  10285. const int ib01 = ic;
  10286. // S indices
  10287. const int i1 = ib01;
  10288. ggml_vec_dot_f16(nea0,
  10289. S + i1,
  10290. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10291. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10292. }
  10293. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10294. //ggml_vec_gelu_f32(neb01, S, S);
  10295. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10296. for (int64_t i = 0; i < M; i++) {
  10297. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10298. }
  10299. ggml_vec_gelu_f16(neb01, S16, S16);
  10300. {
  10301. // dst indices
  10302. const int i1 = ia1;
  10303. const int i2 = ia2;
  10304. const int i3 = ia3;
  10305. for (int64_t ic = 0; ic < nec01; ++ic) {
  10306. ggml_vec_dot_f16(neb01,
  10307. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10308. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10309. S16);
  10310. }
  10311. ggml_vec_add_f32(nec01,
  10312. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10313. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10314. (float *) c1->data);
  10315. }
  10316. }
  10317. }
  10318. static void ggml_compute_forward_flash_ff(
  10319. const struct ggml_compute_params * params,
  10320. const struct ggml_tensor * a,
  10321. const struct ggml_tensor * b0,
  10322. const struct ggml_tensor * b1,
  10323. const struct ggml_tensor * c0,
  10324. const struct ggml_tensor * c1,
  10325. struct ggml_tensor * dst) {
  10326. switch (b0->type) {
  10327. case GGML_TYPE_F16:
  10328. {
  10329. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10330. } break;
  10331. case GGML_TYPE_F32:
  10332. {
  10333. GGML_ASSERT(false); // TODO
  10334. } break;
  10335. default:
  10336. {
  10337. GGML_ASSERT(false);
  10338. } break;
  10339. }
  10340. }
  10341. // ggml_compute_forward_map_unary
  10342. static void ggml_compute_forward_map_unary_f32(
  10343. const struct ggml_compute_params * params,
  10344. const struct ggml_tensor * src0,
  10345. struct ggml_tensor * dst,
  10346. const ggml_unary_op_f32_t fun) {
  10347. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10348. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10349. return;
  10350. }
  10351. const int n = ggml_nrows(src0);
  10352. const int nc = src0->ne[0];
  10353. assert( dst->nb[0] == sizeof(float));
  10354. assert(src0->nb[0] == sizeof(float));
  10355. for (int i = 0; i < n; i++) {
  10356. fun(nc,
  10357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10358. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10359. }
  10360. }
  10361. static void ggml_compute_forward_map_unary(
  10362. const struct ggml_compute_params * params,
  10363. const struct ggml_tensor * src0,
  10364. struct ggml_tensor * dst,
  10365. const ggml_unary_op_f32_t fun) {
  10366. switch (src0->type) {
  10367. case GGML_TYPE_F32:
  10368. {
  10369. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10370. } break;
  10371. default:
  10372. {
  10373. GGML_ASSERT(false);
  10374. } break;
  10375. }
  10376. }
  10377. // ggml_compute_forward_map_binary
  10378. static void ggml_compute_forward_map_binary_f32(
  10379. const struct ggml_compute_params * params,
  10380. const struct ggml_tensor * src0,
  10381. const struct ggml_tensor * src1,
  10382. struct ggml_tensor * dst,
  10383. const ggml_binary_op_f32_t fun) {
  10384. assert(params->ith == 0);
  10385. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10387. return;
  10388. }
  10389. const int n = ggml_nrows(src0);
  10390. const int nc = src0->ne[0];
  10391. assert( dst->nb[0] == sizeof(float));
  10392. assert(src0->nb[0] == sizeof(float));
  10393. assert(src1->nb[0] == sizeof(float));
  10394. for (int i = 0; i < n; i++) {
  10395. fun(nc,
  10396. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10397. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10398. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10399. }
  10400. }
  10401. static void ggml_compute_forward_map_binary(
  10402. const struct ggml_compute_params * params,
  10403. const struct ggml_tensor * src0,
  10404. const struct ggml_tensor * src1,
  10405. struct ggml_tensor * dst,
  10406. const ggml_binary_op_f32_t fun) {
  10407. switch (src0->type) {
  10408. case GGML_TYPE_F32:
  10409. {
  10410. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10411. } break;
  10412. default:
  10413. {
  10414. GGML_ASSERT(false);
  10415. } break;
  10416. }
  10417. }
  10418. /////////////////////////////////
  10419. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10420. GGML_ASSERT(params);
  10421. switch (tensor->op) {
  10422. case GGML_OP_DUP:
  10423. {
  10424. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10425. } break;
  10426. case GGML_OP_ADD:
  10427. {
  10428. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10429. } break;
  10430. case GGML_OP_ADD1:
  10431. {
  10432. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10433. } break;
  10434. case GGML_OP_ACC:
  10435. {
  10436. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10437. } break;
  10438. case GGML_OP_SUB:
  10439. {
  10440. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10441. } break;
  10442. case GGML_OP_MUL:
  10443. {
  10444. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10445. } break;
  10446. case GGML_OP_DIV:
  10447. {
  10448. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10449. } break;
  10450. case GGML_OP_SQR:
  10451. {
  10452. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10453. } break;
  10454. case GGML_OP_SQRT:
  10455. {
  10456. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10457. } break;
  10458. case GGML_OP_LOG:
  10459. {
  10460. ggml_compute_forward_log(params, tensor->src0, tensor);
  10461. } break;
  10462. case GGML_OP_SUM:
  10463. {
  10464. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10465. } break;
  10466. case GGML_OP_SUM_ROWS:
  10467. {
  10468. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10469. } break;
  10470. case GGML_OP_MEAN:
  10471. {
  10472. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10473. } break;
  10474. case GGML_OP_REPEAT:
  10475. {
  10476. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10477. } break;
  10478. case GGML_OP_ABS:
  10479. {
  10480. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10481. } break;
  10482. case GGML_OP_SGN:
  10483. {
  10484. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10485. } break;
  10486. case GGML_OP_NEG:
  10487. {
  10488. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10489. } break;
  10490. case GGML_OP_STEP:
  10491. {
  10492. ggml_compute_forward_step(params, tensor->src0, tensor);
  10493. } break;
  10494. case GGML_OP_RELU:
  10495. {
  10496. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10497. } break;
  10498. case GGML_OP_GELU:
  10499. {
  10500. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10501. } break;
  10502. case GGML_OP_SILU:
  10503. {
  10504. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10505. } break;
  10506. case GGML_OP_SILU_BACK:
  10507. {
  10508. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10509. } break;
  10510. case GGML_OP_NORM:
  10511. {
  10512. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10513. } break;
  10514. case GGML_OP_RMS_NORM:
  10515. {
  10516. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10517. } break;
  10518. case GGML_OP_RMS_NORM_BACK:
  10519. {
  10520. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10521. } break;
  10522. case GGML_OP_MUL_MAT:
  10523. {
  10524. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10525. } break;
  10526. case GGML_OP_SCALE:
  10527. {
  10528. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10529. } break;
  10530. case GGML_OP_SET:
  10531. {
  10532. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10533. } break;
  10534. case GGML_OP_CPY:
  10535. {
  10536. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10537. } break;
  10538. case GGML_OP_CONT:
  10539. {
  10540. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10541. } break;
  10542. case GGML_OP_RESHAPE:
  10543. {
  10544. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10545. } break;
  10546. case GGML_OP_VIEW:
  10547. {
  10548. ggml_compute_forward_view(params, tensor->src0);
  10549. } break;
  10550. case GGML_OP_PERMUTE:
  10551. {
  10552. ggml_compute_forward_permute(params, tensor->src0);
  10553. } break;
  10554. case GGML_OP_TRANSPOSE:
  10555. {
  10556. ggml_compute_forward_transpose(params, tensor->src0);
  10557. } break;
  10558. case GGML_OP_GET_ROWS:
  10559. {
  10560. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10561. } break;
  10562. case GGML_OP_GET_ROWS_BACK:
  10563. {
  10564. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10565. } break;
  10566. case GGML_OP_DIAG:
  10567. {
  10568. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10569. } break;
  10570. case GGML_OP_DIAG_MASK_INF:
  10571. {
  10572. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10573. } break;
  10574. case GGML_OP_DIAG_MASK_ZERO:
  10575. {
  10576. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10577. } break;
  10578. case GGML_OP_SOFT_MAX:
  10579. {
  10580. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10581. } break;
  10582. case GGML_OP_ROPE:
  10583. {
  10584. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10585. } break;
  10586. case GGML_OP_ROPE_BACK:
  10587. {
  10588. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10589. } break;
  10590. case GGML_OP_ALIBI:
  10591. {
  10592. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10593. } break;
  10594. case GGML_OP_CLAMP:
  10595. {
  10596. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10597. } break;
  10598. case GGML_OP_CONV_1D_1S:
  10599. {
  10600. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10601. } break;
  10602. case GGML_OP_CONV_1D_2S:
  10603. {
  10604. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10605. } break;
  10606. case GGML_OP_FLASH_ATTN:
  10607. {
  10608. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10609. GGML_ASSERT(t == 0 || t == 1);
  10610. bool masked = t != 0;
  10611. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10612. } break;
  10613. case GGML_OP_FLASH_FF:
  10614. {
  10615. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10616. } break;
  10617. case GGML_OP_MAP_UNARY:
  10618. {
  10619. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10620. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10621. }
  10622. break;
  10623. case GGML_OP_MAP_BINARY:
  10624. {
  10625. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10626. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10627. }
  10628. break;
  10629. case GGML_OP_NONE:
  10630. {
  10631. // nop
  10632. } break;
  10633. case GGML_OP_COUNT:
  10634. {
  10635. GGML_ASSERT(false);
  10636. } break;
  10637. }
  10638. }
  10639. ////////////////////////////////////////////////////////////////////////////////
  10640. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10641. struct ggml_tensor * src0 = tensor->src0;
  10642. struct ggml_tensor * src1 = tensor->src1;
  10643. switch (tensor->op) {
  10644. case GGML_OP_DUP:
  10645. {
  10646. if (src0->grad) {
  10647. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10648. }
  10649. } break;
  10650. case GGML_OP_ADD:
  10651. {
  10652. if (src0->grad) {
  10653. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10654. }
  10655. if (src1->grad) {
  10656. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10657. }
  10658. } break;
  10659. case GGML_OP_ADD1:
  10660. {
  10661. if (src0->grad) {
  10662. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10663. }
  10664. if (src1->grad) {
  10665. src1->grad = ggml_add_impl(ctx,
  10666. src1->grad,
  10667. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10668. inplace);
  10669. }
  10670. } break;
  10671. case GGML_OP_ACC:
  10672. {
  10673. if (src0->grad) {
  10674. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10675. }
  10676. if (src1->grad) {
  10677. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10678. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10679. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10680. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10681. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10682. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10683. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10684. tensor->grad,
  10685. src1->grad->ne[0],
  10686. src1->grad->ne[1],
  10687. src1->grad->ne[2],
  10688. src1->grad->ne[3],
  10689. nb1, nb2, nb3, offset);
  10690. src1->grad =
  10691. ggml_add_impl(ctx,
  10692. src1->grad,
  10693. ggml_reshape(ctx,
  10694. ggml_cont(ctx, tensor_grad_view),
  10695. src1->grad),
  10696. inplace);
  10697. }
  10698. } break;
  10699. case GGML_OP_SUB:
  10700. {
  10701. if (src0->grad) {
  10702. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10703. }
  10704. if (src1->grad) {
  10705. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10706. }
  10707. } break;
  10708. case GGML_OP_MUL:
  10709. {
  10710. if (src0->grad) {
  10711. src0->grad =
  10712. ggml_add_impl(ctx,
  10713. src0->grad,
  10714. ggml_mul(ctx, src1, tensor->grad),
  10715. inplace);
  10716. }
  10717. if (src1->grad) {
  10718. src1->grad =
  10719. ggml_add_impl(ctx,
  10720. src1->grad,
  10721. ggml_mul(ctx, src0, tensor->grad),
  10722. inplace);
  10723. }
  10724. } break;
  10725. case GGML_OP_DIV:
  10726. {
  10727. if (src0->grad) {
  10728. src0->grad =
  10729. ggml_add_impl(ctx,
  10730. src0->grad,
  10731. ggml_div(ctx, tensor->grad, src1),
  10732. inplace);
  10733. }
  10734. if (src1->grad) {
  10735. src1->grad =
  10736. ggml_sub_impl(ctx,
  10737. src1->grad,
  10738. ggml_mul(ctx,
  10739. tensor->grad,
  10740. ggml_div(ctx, tensor, src1)),
  10741. inplace);
  10742. }
  10743. } break;
  10744. case GGML_OP_SQR:
  10745. {
  10746. if (src0->grad) {
  10747. src0->grad =
  10748. ggml_add_impl(ctx,
  10749. src0->grad,
  10750. ggml_scale(ctx,
  10751. ggml_mul(ctx, src0, tensor->grad),
  10752. ggml_new_f32(ctx, 2.0f)),
  10753. inplace);
  10754. }
  10755. } break;
  10756. case GGML_OP_SQRT:
  10757. {
  10758. if (src0->grad) {
  10759. src0->grad =
  10760. ggml_add_impl(ctx,
  10761. src0->grad,
  10762. ggml_mul(ctx,
  10763. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10764. ggml_div(ctx,
  10765. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10766. tensor)),
  10767. inplace);
  10768. }
  10769. } break;
  10770. case GGML_OP_LOG:
  10771. {
  10772. if (src0->grad) {
  10773. src0->grad =
  10774. ggml_add_impl(ctx,
  10775. src0->grad,
  10776. ggml_div(ctx,
  10777. tensor->grad,
  10778. src0),
  10779. inplace);
  10780. }
  10781. } break;
  10782. case GGML_OP_SUM:
  10783. {
  10784. if (src0->grad) {
  10785. src0->grad =
  10786. ggml_add1_impl(ctx,
  10787. src0->grad,
  10788. tensor->grad,
  10789. inplace);
  10790. }
  10791. } break;
  10792. case GGML_OP_SUM_ROWS:
  10793. {
  10794. if (src0->grad) {
  10795. src0->grad =
  10796. ggml_add_impl(ctx,
  10797. src0->grad,
  10798. ggml_repeat(ctx,
  10799. tensor->grad,
  10800. src0->grad),
  10801. inplace);
  10802. }
  10803. } break;
  10804. case GGML_OP_MEAN:
  10805. {
  10806. GGML_ASSERT(false); // TODO: implement
  10807. } break;
  10808. case GGML_OP_REPEAT:
  10809. {
  10810. // necessary for llama
  10811. if (src0->grad) {
  10812. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10813. const int nc = tensor->ne[0];
  10814. const int nr = tensor->ne[1];
  10815. const int nc0 = src0->ne[0];
  10816. const int nr0 = src0->ne[1];
  10817. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10818. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10819. // tensor->grad [nc,nr,1,1]
  10820. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10821. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10822. // substitute [nc0,nr0,ncr,nrr]
  10823. // reshape [nc0*nr0,ncr*nrr,1,1]
  10824. // transpose [ncr*nrr,nc0*nr0,1,1]
  10825. // sum rows [1,nc0*nr0,1,1]
  10826. // transpose [nc0*nr0,1,1]
  10827. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10828. // add to src0->grad
  10829. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10830. struct ggml_tensor* F00 = tensor->grad;
  10831. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10832. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10833. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10834. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10835. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10836. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10837. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10838. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10839. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10840. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10841. src0->grad =
  10842. ggml_add_impl(ctx,
  10843. src0->grad,
  10844. F10,
  10845. inplace);
  10846. }
  10847. } break;
  10848. case GGML_OP_ABS:
  10849. {
  10850. if (src0->grad) {
  10851. src0->grad =
  10852. ggml_add_impl(ctx,
  10853. src0->grad,
  10854. ggml_mul(ctx,
  10855. ggml_sgn(ctx, src0),
  10856. tensor->grad),
  10857. inplace);
  10858. }
  10859. } break;
  10860. case GGML_OP_SGN:
  10861. {
  10862. if (src0->grad) {
  10863. // noop
  10864. }
  10865. } break;
  10866. case GGML_OP_NEG:
  10867. {
  10868. if (src0->grad) {
  10869. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10870. }
  10871. } break;
  10872. case GGML_OP_STEP:
  10873. {
  10874. if (src0->grad) {
  10875. // noop
  10876. }
  10877. } break;
  10878. case GGML_OP_RELU:
  10879. {
  10880. if (src0->grad) {
  10881. src0->grad = ggml_sub_impl(ctx,
  10882. src0->grad,
  10883. ggml_mul(ctx,
  10884. ggml_step(ctx, src0),
  10885. tensor->grad),
  10886. inplace);
  10887. }
  10888. } break;
  10889. case GGML_OP_GELU:
  10890. {
  10891. GGML_ASSERT(false); // TODO: not implemented
  10892. } break;
  10893. case GGML_OP_ALIBI:
  10894. {
  10895. GGML_ASSERT(false); // TODO: not implemented
  10896. } break;
  10897. case GGML_OP_CLAMP:
  10898. {
  10899. GGML_ASSERT(false); // TODO: not implemented
  10900. } break;
  10901. case GGML_OP_SILU:
  10902. {
  10903. // necessary for llama
  10904. if (src0->grad) {
  10905. src0->grad = ggml_add_impl(ctx,
  10906. src0->grad,
  10907. ggml_silu_back(ctx, src0, tensor->grad),
  10908. inplace);
  10909. }
  10910. } break;
  10911. case GGML_OP_SILU_BACK:
  10912. {
  10913. GGML_ASSERT(false); // TODO: not implemented
  10914. } break;
  10915. case GGML_OP_NORM:
  10916. {
  10917. GGML_ASSERT(false); // TODO: not implemented
  10918. } break;
  10919. case GGML_OP_RMS_NORM:
  10920. {
  10921. // necessary for llama
  10922. if (src0->grad) {
  10923. src0->grad = ggml_add_impl(ctx,
  10924. src0->grad,
  10925. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10926. inplace);
  10927. }
  10928. } break;
  10929. case GGML_OP_RMS_NORM_BACK:
  10930. {
  10931. GGML_ASSERT(false); // TODO: not implemented
  10932. } break;
  10933. case GGML_OP_MUL_MAT:
  10934. {
  10935. // https://cs231n.github.io/optimization-2/#staged
  10936. // # forward pass
  10937. // s0 = np.random.randn(5, 10)
  10938. // s1 = np.random.randn(10, 3)
  10939. // t = s0.dot(s1)
  10940. // # now suppose we had the gradient on t from above in the circuit
  10941. // dt = np.random.randn(*t.shape) # same shape as t
  10942. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10943. // ds1 = t.T.dot(dt)
  10944. // tensor.shape [m,p]
  10945. // src0.shape [n,m]
  10946. // src1.shape [n,p]
  10947. // necessary for llama
  10948. if (src0->grad) {
  10949. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10950. src0->grad =
  10951. ggml_add_impl(ctx,
  10952. src0->grad,
  10953. // ds0 = dt.dot(s1.T)
  10954. // ggml_out_prod(ctx, // [n,m]
  10955. // src1, // [n,p]
  10956. // tensor->grad), // [m,p]
  10957. // for now just using A*B==(B.T*A.T).T
  10958. ggml_cont(ctx, // [n,m]
  10959. ggml_transpose(ctx, // [n,m]
  10960. ggml_mul_mat(ctx, // [m,n]
  10961. ggml_cont(ctx, // [p,m]
  10962. ggml_transpose(ctx, // [p,m]
  10963. tensor->grad)), // [m,p]
  10964. ggml_cont(ctx, // [p,n]
  10965. ggml_transpose(ctx, // [p,n]
  10966. src1))))), // [n,p]
  10967. inplace);
  10968. }
  10969. if (src1->grad) {
  10970. src1->grad =
  10971. ggml_add_impl(ctx,
  10972. src1->grad,
  10973. // ds1 = s0.T.dot(dt):
  10974. ggml_mul_mat(ctx, // [n,p]
  10975. ggml_cont(ctx, // [m,n]
  10976. ggml_transpose(ctx, src0)), // [m,n]
  10977. tensor->grad), // [m,p]
  10978. inplace);
  10979. }
  10980. } break;
  10981. case GGML_OP_SCALE:
  10982. {
  10983. // necessary for llama
  10984. if (src0->grad) {
  10985. src0->grad =
  10986. ggml_add_impl(ctx,
  10987. src0->grad,
  10988. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10989. inplace);
  10990. }
  10991. if (src1->grad) {
  10992. src1->grad =
  10993. ggml_add_impl(ctx,
  10994. src1->grad,
  10995. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10996. inplace);
  10997. }
  10998. } break;
  10999. case GGML_OP_SET:
  11000. {
  11001. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11002. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11003. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11004. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11005. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11006. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11007. struct ggml_tensor * tensor_grad_view = NULL;
  11008. if (src0->grad || src1->grad) {
  11009. GGML_ASSERT(src0->type == tensor->type);
  11010. GGML_ASSERT(tensor->grad->type == tensor->type);
  11011. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11012. tensor_grad_view = ggml_view_4d(ctx,
  11013. tensor->grad,
  11014. src1->grad->ne[0],
  11015. src1->grad->ne[1],
  11016. src1->grad->ne[2],
  11017. src1->grad->ne[3],
  11018. nb1, nb2, nb3, offset);
  11019. }
  11020. if (src0->grad) {
  11021. src0->grad = ggml_add_impl(ctx,
  11022. src0->grad,
  11023. ggml_acc_impl(ctx,
  11024. tensor->grad,
  11025. ggml_neg(ctx, tensor_grad_view),
  11026. nb1, nb2, nb3, offset, false),
  11027. inplace);
  11028. }
  11029. if (src1->grad) {
  11030. src1->grad =
  11031. ggml_add_impl(ctx,
  11032. src1->grad,
  11033. ggml_reshape(ctx,
  11034. ggml_cont(ctx, tensor_grad_view),
  11035. src1->grad),
  11036. inplace);
  11037. }
  11038. } break;
  11039. case GGML_OP_CPY:
  11040. {
  11041. // necessary for llama
  11042. // cpy overwrites value of src1 by src0 and returns view(src1)
  11043. // the overwriting is mathematically equivalent to:
  11044. // tensor = src0 * 1 + src1 * 0
  11045. if (src0->grad) {
  11046. // dsrc0 = dtensor * 1
  11047. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11048. }
  11049. if (src1->grad) {
  11050. // dsrc1 = dtensor * 0 -> noop
  11051. }
  11052. } break;
  11053. case GGML_OP_CONT:
  11054. {
  11055. // same as cpy
  11056. if (src0->grad) {
  11057. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11058. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11059. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11060. }
  11061. } break;
  11062. case GGML_OP_RESHAPE:
  11063. {
  11064. // necessary for llama
  11065. if (src0->grad) {
  11066. src0->grad =
  11067. ggml_add_impl(ctx, src0->grad,
  11068. ggml_reshape(ctx, tensor->grad, src0->grad),
  11069. inplace);
  11070. }
  11071. } break;
  11072. case GGML_OP_VIEW:
  11073. {
  11074. // necessary for llama
  11075. if (src0->grad) {
  11076. size_t offset;
  11077. memcpy(&offset, tensor->padding, sizeof(offset));
  11078. size_t nb1 = tensor->nb[1];
  11079. size_t nb2 = tensor->nb[2];
  11080. size_t nb3 = tensor->nb[3];
  11081. if (src0->type != src0->grad->type) {
  11082. // gradient is typically F32, but src0 could be other type
  11083. size_t ng = ggml_element_size(src0->grad);
  11084. size_t n0 = ggml_element_size(src0);
  11085. GGML_ASSERT(offset % n0 == 0);
  11086. GGML_ASSERT(nb1 % n0 == 0);
  11087. GGML_ASSERT(nb2 % n0 == 0);
  11088. GGML_ASSERT(nb3 % n0 == 0);
  11089. offset = (offset / n0) * ng;
  11090. nb1 = (nb1 / n0) * ng;
  11091. nb2 = (nb2 / n0) * ng;
  11092. nb3 = (nb3 / n0) * ng;
  11093. }
  11094. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11095. }
  11096. } break;
  11097. case GGML_OP_PERMUTE:
  11098. {
  11099. // necessary for llama
  11100. if (src0->grad) {
  11101. int axis0 = tensor->padding[0] & 0x3;
  11102. int axis1 = tensor->padding[1] & 0x3;
  11103. int axis2 = tensor->padding[2] & 0x3;
  11104. int axis3 = tensor->padding[3] & 0x3;
  11105. int axes_backward[4] = {0,0,0,0};
  11106. axes_backward[axis0] = 0;
  11107. axes_backward[axis1] = 1;
  11108. axes_backward[axis2] = 2;
  11109. axes_backward[axis3] = 3;
  11110. src0->grad =
  11111. ggml_add_impl(ctx, src0->grad,
  11112. ggml_permute(ctx,
  11113. tensor->grad,
  11114. axes_backward[0],
  11115. axes_backward[1],
  11116. axes_backward[2],
  11117. axes_backward[3]),
  11118. inplace);
  11119. }
  11120. } break;
  11121. case GGML_OP_TRANSPOSE:
  11122. {
  11123. // necessary for llama
  11124. if (src0->grad) {
  11125. src0->grad =
  11126. ggml_add_impl(ctx, src0->grad,
  11127. ggml_transpose(ctx, tensor->grad),
  11128. inplace);
  11129. }
  11130. } break;
  11131. case GGML_OP_GET_ROWS:
  11132. {
  11133. // necessary for llama (only for tokenizer)
  11134. if (src0->grad) {
  11135. src0->grad =
  11136. ggml_add_impl(ctx, src0->grad,
  11137. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11138. inplace);
  11139. }
  11140. if (src1->grad) {
  11141. // noop
  11142. }
  11143. } break;
  11144. case GGML_OP_GET_ROWS_BACK:
  11145. {
  11146. GGML_ASSERT(false); // TODO: not implemented
  11147. } break;
  11148. case GGML_OP_DIAG:
  11149. {
  11150. GGML_ASSERT(false); // TODO: not implemented
  11151. } break;
  11152. case GGML_OP_DIAG_MASK_INF:
  11153. {
  11154. // necessary for llama
  11155. if (src0->grad) {
  11156. assert(src1->type == GGML_TYPE_I32);
  11157. assert(ggml_nelements(src1) == 2);
  11158. const int n_past = ((int32_t *) src1->data)[0];
  11159. src0->grad =
  11160. ggml_add_impl(ctx, src0->grad,
  11161. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11162. inplace);
  11163. }
  11164. if (src1->grad) {
  11165. // noop
  11166. }
  11167. } break;
  11168. case GGML_OP_DIAG_MASK_ZERO:
  11169. {
  11170. // necessary for llama
  11171. if (src0->grad) {
  11172. assert(src1->type == GGML_TYPE_I32);
  11173. assert(ggml_nelements(src1) == 2);
  11174. const int n_past = ((int32_t *) src1->data)[0];
  11175. src0->grad =
  11176. ggml_add_impl(ctx, src0->grad,
  11177. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11178. inplace);
  11179. }
  11180. if (src1->grad) {
  11181. // noop
  11182. }
  11183. } break;
  11184. case GGML_OP_SOFT_MAX:
  11185. {
  11186. // necessary for llama
  11187. if (src0->grad) {
  11188. // y = softmax(x)
  11189. //
  11190. // Jii = yi - yi*yi
  11191. // Jij = -yi*yj
  11192. // J = diag(y)-y.*y
  11193. // dx = J * dy
  11194. // dxk = sum(Jkj * dyk)
  11195. int64_t ne2[4] = {
  11196. tensor->ne[0],
  11197. 1,
  11198. tensor->ne[1]*tensor->ne[2],
  11199. tensor->ne[3]
  11200. };
  11201. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11202. ggml_reshape_4d(ctx,
  11203. ggml_cont(ctx, tensor),
  11204. ne2[0], ne2[1], ne2[2], ne2[3]));
  11205. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11206. ggml_reshape_4d(ctx,
  11207. ggml_cont(ctx, tensor->grad),
  11208. ne2[0], ne2[1], ne2[2], ne2[3]));
  11209. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11210. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11211. tensor2, // [ne0,1,ne1*ne2,ne3]
  11212. 1, 0, 2, 3));
  11213. src0->grad =
  11214. ggml_add_impl(ctx,
  11215. src0->grad, // [ne0,ne1,ne2,ne3]
  11216. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11217. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11218. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11219. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11220. tensor2), // [ne0,1,ne1*ne2,ne3]
  11221. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11222. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11223. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11224. grad2), // [ne0,1,ne1*ne2,ne3]
  11225. src0->grad),
  11226. inplace);
  11227. }
  11228. } break;
  11229. case GGML_OP_ROPE:
  11230. {
  11231. // necessary for llama
  11232. if (src0->grad) {
  11233. assert(src1->type == GGML_TYPE_I32);
  11234. assert(ggml_nelements(src1) == 3);
  11235. const int n_past = ((int32_t *) src1->data)[0];
  11236. const int n_dims = ((int32_t *) src1->data)[1];
  11237. const int mode = ((int32_t *) src1->data)[2];
  11238. src0->grad = ggml_add_impl(ctx,
  11239. src0->grad,
  11240. ggml_rope_back(ctx,
  11241. tensor->grad,
  11242. n_past,
  11243. n_dims,
  11244. mode),
  11245. inplace);
  11246. }
  11247. if (src1->grad) {
  11248. // noop
  11249. }
  11250. } break;
  11251. case GGML_OP_ROPE_BACK:
  11252. {
  11253. if (src0->grad) {
  11254. assert(src1->type == GGML_TYPE_I32);
  11255. assert(ggml_nelements(src1) == 3);
  11256. const int n_past = ((int32_t *) src1->data)[0];
  11257. const int n_dims = ((int32_t *) src1->data)[1];
  11258. const int mode = ((int32_t *) src1->data)[2];
  11259. src0->grad = ggml_add_impl(ctx,
  11260. src0->grad,
  11261. ggml_rope(ctx,
  11262. tensor->grad,
  11263. n_past,
  11264. n_dims,
  11265. mode),
  11266. inplace);
  11267. }
  11268. if (src1->grad) {
  11269. // noop
  11270. }
  11271. } break;
  11272. case GGML_OP_CONV_1D_1S:
  11273. {
  11274. GGML_ASSERT(false); // TODO: not implemented
  11275. } break;
  11276. case GGML_OP_CONV_1D_2S:
  11277. {
  11278. GGML_ASSERT(false); // TODO: not implemented
  11279. } break;
  11280. case GGML_OP_FLASH_ATTN:
  11281. {
  11282. GGML_ASSERT(false); // not supported
  11283. } break;
  11284. case GGML_OP_FLASH_FF:
  11285. {
  11286. GGML_ASSERT(false); // not supported
  11287. } break;
  11288. case GGML_OP_MAP_UNARY:
  11289. case GGML_OP_MAP_BINARY:
  11290. {
  11291. GGML_ASSERT(false); // not supported
  11292. } break;
  11293. case GGML_OP_NONE:
  11294. {
  11295. // nop
  11296. } break;
  11297. case GGML_OP_COUNT:
  11298. {
  11299. GGML_ASSERT(false);
  11300. } break;
  11301. }
  11302. }
  11303. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11304. if (node->grad == NULL) {
  11305. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11306. // it can also happen during forward pass, if the user performs computations with constants
  11307. if (node->op != GGML_OP_NONE) {
  11308. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11309. }
  11310. }
  11311. // check if already visited
  11312. for (int i = 0; i < cgraph->n_nodes; i++) {
  11313. if (cgraph->nodes[i] == node) {
  11314. return;
  11315. }
  11316. }
  11317. for (int i = 0; i < cgraph->n_leafs; i++) {
  11318. if (cgraph->leafs[i] == node) {
  11319. return;
  11320. }
  11321. }
  11322. if (node->src0) {
  11323. ggml_visit_parents(cgraph, node->src0);
  11324. }
  11325. if (node->src1) {
  11326. ggml_visit_parents(cgraph, node->src1);
  11327. }
  11328. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11329. if (node->opt[i]) {
  11330. ggml_visit_parents(cgraph, node->opt[i]);
  11331. }
  11332. }
  11333. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11334. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11335. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11336. if (strlen(node->name) == 0) {
  11337. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11338. }
  11339. cgraph->leafs[cgraph->n_leafs] = node;
  11340. cgraph->n_leafs++;
  11341. } else {
  11342. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11343. if (strlen(node->name) == 0) {
  11344. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11345. }
  11346. cgraph->nodes[cgraph->n_nodes] = node;
  11347. cgraph->grads[cgraph->n_nodes] = node->grad;
  11348. cgraph->n_nodes++;
  11349. }
  11350. }
  11351. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11352. if (!expand) {
  11353. cgraph->n_nodes = 0;
  11354. cgraph->n_leafs = 0;
  11355. }
  11356. const int n0 = cgraph->n_nodes;
  11357. UNUSED(n0);
  11358. ggml_visit_parents(cgraph, tensor);
  11359. const int n_new = cgraph->n_nodes - n0;
  11360. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11361. if (n_new > 0) {
  11362. // the last added node should always be starting point
  11363. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11364. }
  11365. }
  11366. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11367. ggml_build_forward_impl(cgraph, tensor, true);
  11368. }
  11369. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11370. struct ggml_cgraph result = {
  11371. /*.n_nodes =*/ 0,
  11372. /*.n_leafs =*/ 0,
  11373. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11374. /*.work_size =*/ 0,
  11375. /*.work =*/ NULL,
  11376. /*.nodes =*/ { NULL },
  11377. /*.grads =*/ { NULL },
  11378. /*.leafs =*/ { NULL },
  11379. /*.perf_runs =*/ 0,
  11380. /*.perf_cycles =*/ 0,
  11381. /*.perf_time_us =*/ 0,
  11382. };
  11383. ggml_build_forward_impl(&result, tensor, false);
  11384. return result;
  11385. }
  11386. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11387. struct ggml_cgraph result = *gf;
  11388. GGML_ASSERT(gf->n_nodes > 0);
  11389. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11390. if (keep) {
  11391. for (int i = 0; i < gf->n_nodes; i++) {
  11392. struct ggml_tensor * node = gf->nodes[i];
  11393. if (node->grad) {
  11394. node->grad = ggml_dup_tensor(ctx, node);
  11395. gf->grads[i] = node->grad;
  11396. }
  11397. }
  11398. }
  11399. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11400. struct ggml_tensor * node = gf->nodes[i];
  11401. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11402. if (node->grad) {
  11403. ggml_compute_backward(ctx, node, keep);
  11404. }
  11405. }
  11406. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11407. struct ggml_tensor * node = gf->nodes[i];
  11408. if (node->is_param) {
  11409. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11410. ggml_build_forward_impl(&result, node->grad, true);
  11411. }
  11412. }
  11413. return result;
  11414. }
  11415. //
  11416. // thread data
  11417. //
  11418. // synchronization is done via busy loops
  11419. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11420. //
  11421. #ifdef __APPLE__
  11422. //#include <os/lock.h>
  11423. //
  11424. //typedef os_unfair_lock ggml_lock_t;
  11425. //
  11426. //#define ggml_lock_init(x) UNUSED(x)
  11427. //#define ggml_lock_destroy(x) UNUSED(x)
  11428. //#define ggml_lock_lock os_unfair_lock_lock
  11429. //#define ggml_lock_unlock os_unfair_lock_unlock
  11430. //
  11431. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11432. typedef int ggml_lock_t;
  11433. #define ggml_lock_init(x) UNUSED(x)
  11434. #define ggml_lock_destroy(x) UNUSED(x)
  11435. #define ggml_lock_lock(x) UNUSED(x)
  11436. #define ggml_lock_unlock(x) UNUSED(x)
  11437. #define GGML_LOCK_INITIALIZER 0
  11438. typedef pthread_t ggml_thread_t;
  11439. #define ggml_thread_create pthread_create
  11440. #define ggml_thread_join pthread_join
  11441. #else
  11442. //typedef pthread_spinlock_t ggml_lock_t;
  11443. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11444. //#define ggml_lock_destroy pthread_spin_destroy
  11445. //#define ggml_lock_lock pthread_spin_lock
  11446. //#define ggml_lock_unlock pthread_spin_unlock
  11447. typedef int ggml_lock_t;
  11448. #define ggml_lock_init(x) UNUSED(x)
  11449. #define ggml_lock_destroy(x) UNUSED(x)
  11450. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11451. #define ggml_lock_lock(x) _mm_pause()
  11452. #else
  11453. #define ggml_lock_lock(x) UNUSED(x)
  11454. #endif
  11455. #define ggml_lock_unlock(x) UNUSED(x)
  11456. #define GGML_LOCK_INITIALIZER 0
  11457. typedef pthread_t ggml_thread_t;
  11458. #define ggml_thread_create pthread_create
  11459. #define ggml_thread_join pthread_join
  11460. #endif
  11461. struct ggml_compute_state_shared {
  11462. ggml_lock_t spin;
  11463. int n_threads;
  11464. // synchronization primitives
  11465. atomic_int n_ready;
  11466. atomic_bool has_work;
  11467. atomic_bool stop; // stop all threads
  11468. };
  11469. struct ggml_compute_state {
  11470. ggml_thread_t thrd;
  11471. struct ggml_compute_params params;
  11472. struct ggml_tensor * node;
  11473. struct ggml_compute_state_shared * shared;
  11474. };
  11475. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11476. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11477. const int n_threads = state->shared->n_threads;
  11478. while (true) {
  11479. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11480. atomic_store(&state->shared->has_work, false);
  11481. } else {
  11482. while (atomic_load(&state->shared->has_work)) {
  11483. if (atomic_load(&state->shared->stop)) {
  11484. return 0;
  11485. }
  11486. ggml_lock_lock (&state->shared->spin);
  11487. ggml_lock_unlock(&state->shared->spin);
  11488. }
  11489. }
  11490. atomic_fetch_sub(&state->shared->n_ready, 1);
  11491. // wait for work
  11492. while (!atomic_load(&state->shared->has_work)) {
  11493. if (atomic_load(&state->shared->stop)) {
  11494. return 0;
  11495. }
  11496. ggml_lock_lock (&state->shared->spin);
  11497. ggml_lock_unlock(&state->shared->spin);
  11498. }
  11499. // check if we should stop
  11500. if (atomic_load(&state->shared->stop)) {
  11501. break;
  11502. }
  11503. if (state->node) {
  11504. if (state->params.ith < state->params.nth) {
  11505. ggml_compute_forward(&state->params, state->node);
  11506. }
  11507. state->node = NULL;
  11508. } else {
  11509. break;
  11510. }
  11511. }
  11512. return 0;
  11513. }
  11514. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11515. const int n_threads = cgraph->n_threads;
  11516. struct ggml_compute_state_shared state_shared = {
  11517. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11518. /*.n_threads =*/ n_threads,
  11519. /*.n_ready =*/ 0,
  11520. /*.has_work =*/ false,
  11521. /*.stop =*/ false,
  11522. };
  11523. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11524. // create thread pool
  11525. if (n_threads > 1) {
  11526. ggml_lock_init(&state_shared.spin);
  11527. atomic_store(&state_shared.has_work, true);
  11528. for (int j = 0; j < n_threads - 1; j++) {
  11529. workers[j] = (struct ggml_compute_state) {
  11530. .thrd = 0,
  11531. .params = {
  11532. .type = GGML_TASK_COMPUTE,
  11533. .ith = j + 1,
  11534. .nth = n_threads,
  11535. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11536. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11537. },
  11538. .node = NULL,
  11539. .shared = &state_shared,
  11540. };
  11541. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11542. GGML_ASSERT(rc == 0);
  11543. UNUSED(rc);
  11544. }
  11545. }
  11546. // initialize tasks + work buffer
  11547. {
  11548. size_t work_size = 0;
  11549. // thread scheduling for the different operations
  11550. for (int i = 0; i < cgraph->n_nodes; i++) {
  11551. struct ggml_tensor * node = cgraph->nodes[i];
  11552. switch (node->op) {
  11553. case GGML_OP_CPY:
  11554. case GGML_OP_DUP:
  11555. {
  11556. node->n_tasks = n_threads;
  11557. size_t cur = 0;
  11558. if (ggml_is_quantized(node->type)) {
  11559. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11560. }
  11561. work_size = MAX(work_size, cur);
  11562. } break;
  11563. case GGML_OP_ADD:
  11564. case GGML_OP_ADD1:
  11565. {
  11566. node->n_tasks = n_threads;
  11567. size_t cur = 0;
  11568. if (ggml_is_quantized(node->src0->type)) {
  11569. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11570. }
  11571. work_size = MAX(work_size, cur);
  11572. } break;
  11573. case GGML_OP_ACC:
  11574. {
  11575. node->n_tasks = n_threads;
  11576. size_t cur = 0;
  11577. if (ggml_is_quantized(node->src0->type)) {
  11578. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11579. }
  11580. work_size = MAX(work_size, cur);
  11581. } break;
  11582. case GGML_OP_SUB:
  11583. case GGML_OP_DIV:
  11584. case GGML_OP_SQR:
  11585. case GGML_OP_SQRT:
  11586. case GGML_OP_LOG:
  11587. case GGML_OP_SUM:
  11588. case GGML_OP_SUM_ROWS:
  11589. case GGML_OP_MEAN:
  11590. case GGML_OP_REPEAT:
  11591. case GGML_OP_ABS:
  11592. case GGML_OP_SGN:
  11593. case GGML_OP_NEG:
  11594. case GGML_OP_STEP:
  11595. case GGML_OP_RELU:
  11596. {
  11597. node->n_tasks = 1;
  11598. } break;
  11599. case GGML_OP_MUL:
  11600. case GGML_OP_GELU:
  11601. case GGML_OP_SILU:
  11602. case GGML_OP_SILU_BACK:
  11603. case GGML_OP_NORM:
  11604. case GGML_OP_RMS_NORM:
  11605. case GGML_OP_RMS_NORM_BACK:
  11606. {
  11607. node->n_tasks = n_threads;
  11608. } break;
  11609. case GGML_OP_MUL_MAT:
  11610. {
  11611. node->n_tasks = n_threads;
  11612. // TODO: use different scheduling for different matrix sizes
  11613. //const int nr0 = ggml_nrows(node->src0);
  11614. //const int nr1 = ggml_nrows(node->src1);
  11615. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11616. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11617. size_t cur = 0;
  11618. #if defined(GGML_USE_CUBLAS)
  11619. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11620. node->n_tasks = 1; // TODO: this actually is doing nothing
  11621. // the threads are still spinning
  11622. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11623. }
  11624. else
  11625. #elif defined(GGML_USE_CLBLAST)
  11626. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11627. node->n_tasks = 1; // TODO: this actually is doing nothing
  11628. // the threads are still spinning
  11629. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11630. }
  11631. else
  11632. #endif
  11633. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11634. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11635. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11636. node->n_tasks = 1; // TODO: this actually is doing nothing
  11637. // the threads are still spinning
  11638. // here we need memory just for single 2D matrix from src0
  11639. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11640. } else {
  11641. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11642. }
  11643. #else
  11644. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11645. #endif
  11646. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11647. cur = 0;
  11648. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11649. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11650. node->n_tasks = 1;
  11651. }
  11652. #endif
  11653. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11654. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11655. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11656. node->n_tasks = 1;
  11657. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11658. } else
  11659. #endif
  11660. {
  11661. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11662. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11663. }
  11664. } else {
  11665. GGML_ASSERT(false);
  11666. }
  11667. work_size = MAX(work_size, cur);
  11668. } break;
  11669. case GGML_OP_SCALE:
  11670. {
  11671. node->n_tasks = n_threads;
  11672. } break;
  11673. case GGML_OP_SET:
  11674. case GGML_OP_CONT:
  11675. case GGML_OP_RESHAPE:
  11676. case GGML_OP_VIEW:
  11677. case GGML_OP_PERMUTE:
  11678. case GGML_OP_TRANSPOSE:
  11679. case GGML_OP_GET_ROWS:
  11680. case GGML_OP_GET_ROWS_BACK:
  11681. case GGML_OP_DIAG:
  11682. case GGML_OP_DIAG_MASK_ZERO:
  11683. {
  11684. node->n_tasks = 1;
  11685. } break;
  11686. case GGML_OP_DIAG_MASK_INF:
  11687. case GGML_OP_SOFT_MAX:
  11688. case GGML_OP_ROPE:
  11689. case GGML_OP_ROPE_BACK:
  11690. {
  11691. node->n_tasks = n_threads;
  11692. } break;
  11693. case GGML_OP_ALIBI:
  11694. {
  11695. node->n_tasks = 1; //TODO
  11696. } break;
  11697. case GGML_OP_CLAMP:
  11698. {
  11699. node->n_tasks = 1; //TODO
  11700. } break;
  11701. case GGML_OP_CONV_1D_1S:
  11702. case GGML_OP_CONV_1D_2S:
  11703. {
  11704. node->n_tasks = n_threads;
  11705. GGML_ASSERT(node->src0->ne[3] == 1);
  11706. GGML_ASSERT(node->src1->ne[2] == 1);
  11707. GGML_ASSERT(node->src1->ne[3] == 1);
  11708. size_t cur = 0;
  11709. const int nk = node->src0->ne[0];
  11710. if (node->src0->type == GGML_TYPE_F16 &&
  11711. node->src1->type == GGML_TYPE_F32) {
  11712. cur = sizeof(ggml_fp16_t)*(
  11713. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11714. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11715. );
  11716. } else if (node->src0->type == GGML_TYPE_F32 &&
  11717. node->src1->type == GGML_TYPE_F32) {
  11718. cur = sizeof(float)*(
  11719. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11720. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11721. );
  11722. } else {
  11723. GGML_ASSERT(false);
  11724. }
  11725. work_size = MAX(work_size, cur);
  11726. } break;
  11727. case GGML_OP_FLASH_ATTN:
  11728. {
  11729. node->n_tasks = n_threads;
  11730. size_t cur = 0;
  11731. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11732. if (node->src1->type == GGML_TYPE_F32) {
  11733. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11734. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11735. }
  11736. if (node->src1->type == GGML_TYPE_F16) {
  11737. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11738. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11739. }
  11740. work_size = MAX(work_size, cur);
  11741. } break;
  11742. case GGML_OP_FLASH_FF:
  11743. {
  11744. node->n_tasks = n_threads;
  11745. size_t cur = 0;
  11746. if (node->src1->type == GGML_TYPE_F32) {
  11747. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11748. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11749. }
  11750. if (node->src1->type == GGML_TYPE_F16) {
  11751. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11752. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11753. }
  11754. work_size = MAX(work_size, cur);
  11755. } break;
  11756. case GGML_OP_MAP_UNARY:
  11757. case GGML_OP_MAP_BINARY:
  11758. {
  11759. node->n_tasks = 1;
  11760. } break;
  11761. case GGML_OP_NONE:
  11762. {
  11763. node->n_tasks = 1;
  11764. } break;
  11765. case GGML_OP_COUNT:
  11766. {
  11767. GGML_ASSERT(false);
  11768. } break;
  11769. }
  11770. }
  11771. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11772. GGML_ASSERT(false); // TODO: better handling
  11773. }
  11774. if (work_size > 0 && cgraph->work == NULL) {
  11775. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11776. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11777. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11778. }
  11779. }
  11780. const int64_t perf_start_cycles = ggml_perf_cycles();
  11781. const int64_t perf_start_time_us = ggml_perf_time_us();
  11782. for (int i = 0; i < cgraph->n_nodes; i++) {
  11783. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11784. struct ggml_tensor * node = cgraph->nodes[i];
  11785. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11786. //if (node->grad == NULL && node->perf_runs > 0) {
  11787. // continue;
  11788. //}
  11789. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11790. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11791. // INIT
  11792. struct ggml_compute_params params = {
  11793. /*.type =*/ GGML_TASK_INIT,
  11794. /*.ith =*/ 0,
  11795. /*.nth =*/ node->n_tasks,
  11796. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11797. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11798. };
  11799. ggml_compute_forward(&params, node);
  11800. // COMPUTE
  11801. if (node->n_tasks > 1) {
  11802. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11803. atomic_store(&state_shared.has_work, false);
  11804. }
  11805. while (atomic_load(&state_shared.has_work)) {
  11806. ggml_lock_lock (&state_shared.spin);
  11807. ggml_lock_unlock(&state_shared.spin);
  11808. }
  11809. // launch thread pool
  11810. for (int j = 0; j < n_threads - 1; j++) {
  11811. workers[j].params = (struct ggml_compute_params) {
  11812. .type = GGML_TASK_COMPUTE,
  11813. .ith = j + 1,
  11814. .nth = node->n_tasks,
  11815. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11816. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11817. };
  11818. workers[j].node = node;
  11819. }
  11820. atomic_fetch_sub(&state_shared.n_ready, 1);
  11821. while (atomic_load(&state_shared.n_ready) > 0) {
  11822. ggml_lock_lock (&state_shared.spin);
  11823. ggml_lock_unlock(&state_shared.spin);
  11824. }
  11825. atomic_store(&state_shared.has_work, true);
  11826. }
  11827. params.type = GGML_TASK_COMPUTE;
  11828. ggml_compute_forward(&params, node);
  11829. // wait for thread pool
  11830. if (node->n_tasks > 1) {
  11831. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11832. atomic_store(&state_shared.has_work, false);
  11833. }
  11834. while (atomic_load(&state_shared.has_work)) {
  11835. ggml_lock_lock (&state_shared.spin);
  11836. ggml_lock_unlock(&state_shared.spin);
  11837. }
  11838. atomic_fetch_sub(&state_shared.n_ready, 1);
  11839. while (atomic_load(&state_shared.n_ready) != 0) {
  11840. ggml_lock_lock (&state_shared.spin);
  11841. ggml_lock_unlock(&state_shared.spin);
  11842. }
  11843. }
  11844. // FINALIZE
  11845. if (node->n_tasks > 1) {
  11846. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11847. atomic_store(&state_shared.has_work, false);
  11848. }
  11849. while (atomic_load(&state_shared.has_work)) {
  11850. ggml_lock_lock (&state_shared.spin);
  11851. ggml_lock_unlock(&state_shared.spin);
  11852. }
  11853. // launch thread pool
  11854. for (int j = 0; j < n_threads - 1; j++) {
  11855. workers[j].params = (struct ggml_compute_params) {
  11856. .type = GGML_TASK_FINALIZE,
  11857. .ith = j + 1,
  11858. .nth = node->n_tasks,
  11859. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11860. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11861. };
  11862. workers[j].node = node;
  11863. }
  11864. atomic_fetch_sub(&state_shared.n_ready, 1);
  11865. while (atomic_load(&state_shared.n_ready) > 0) {
  11866. ggml_lock_lock (&state_shared.spin);
  11867. ggml_lock_unlock(&state_shared.spin);
  11868. }
  11869. atomic_store(&state_shared.has_work, true);
  11870. }
  11871. params.type = GGML_TASK_FINALIZE;
  11872. ggml_compute_forward(&params, node);
  11873. // wait for thread pool
  11874. if (node->n_tasks > 1) {
  11875. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11876. atomic_store(&state_shared.has_work, false);
  11877. }
  11878. while (atomic_load(&state_shared.has_work)) {
  11879. ggml_lock_lock (&state_shared.spin);
  11880. ggml_lock_unlock(&state_shared.spin);
  11881. }
  11882. atomic_fetch_sub(&state_shared.n_ready, 1);
  11883. while (atomic_load(&state_shared.n_ready) != 0) {
  11884. ggml_lock_lock (&state_shared.spin);
  11885. ggml_lock_unlock(&state_shared.spin);
  11886. }
  11887. }
  11888. // performance stats (node)
  11889. {
  11890. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11891. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11892. node->perf_runs++;
  11893. node->perf_cycles += perf_cycles_cur;
  11894. node->perf_time_us += perf_time_us_cur;
  11895. }
  11896. }
  11897. // join thread pool
  11898. if (n_threads > 1) {
  11899. atomic_store(&state_shared.stop, true);
  11900. atomic_store(&state_shared.has_work, true);
  11901. for (int j = 0; j < n_threads - 1; j++) {
  11902. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11903. GGML_ASSERT(rc == 0);
  11904. UNUSED(rc);
  11905. }
  11906. ggml_lock_destroy(&state_shared.spin);
  11907. }
  11908. // performance stats (graph)
  11909. {
  11910. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11911. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11912. cgraph->perf_runs++;
  11913. cgraph->perf_cycles += perf_cycles_cur;
  11914. cgraph->perf_time_us += perf_time_us_cur;
  11915. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11916. __func__, cgraph->perf_runs,
  11917. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11918. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11919. (double) perf_time_us_cur / 1000.0,
  11920. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11921. }
  11922. }
  11923. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11924. for (int i = 0; i < cgraph->n_nodes; i++) {
  11925. struct ggml_tensor * grad = cgraph->grads[i];
  11926. if (grad) {
  11927. ggml_set_zero(grad);
  11928. }
  11929. }
  11930. }
  11931. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  11932. for (int i = 0; i < cgraph->n_leafs; i++) {
  11933. struct ggml_tensor * leaf = cgraph->leafs[i];
  11934. if (strcmp(leaf->name, name) == 0) {
  11935. return leaf;
  11936. }
  11937. }
  11938. for (int i = 0; i < cgraph->n_nodes; i++) {
  11939. struct ggml_tensor * node = cgraph->nodes[i];
  11940. if (strcmp(node->name, name) == 0) {
  11941. return node;
  11942. }
  11943. }
  11944. return NULL;
  11945. }
  11946. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  11947. const int64_t * ne = tensor->ne;
  11948. const size_t * nb = tensor->nb;
  11949. fprintf(fout, "%-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %16p %16s\n",
  11950. ggml_type_name(tensor->type),
  11951. ggml_op_name (tensor->op),
  11952. tensor->n_dims,
  11953. ne[0], ne[1], ne[2], ne[3],
  11954. nb[0], nb[1], nb[2], nb[3],
  11955. tensor->data,
  11956. tensor->name);
  11957. }
  11958. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  11959. const int64_t * ne = tensor->ne;
  11960. const size_t * nb = tensor->nb;
  11961. fprintf(fout, "%-6s %-6s %-12s %8d %8lld %8lld %8lld %8lld %16zu %16zu %16zu %16zu %8d %16p %16s\n",
  11962. arg,
  11963. ggml_type_name(tensor->type),
  11964. ggml_op_name (tensor->op),
  11965. tensor->n_dims,
  11966. ne[0], ne[1], ne[2], ne[3],
  11967. nb[0], nb[1], nb[2], nb[3],
  11968. tensor->n_tasks,
  11969. tensor->data,
  11970. tensor->name);
  11971. }
  11972. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  11973. assert(cgraph->work == NULL);
  11974. assert(cgraph->work_size == 0);
  11975. uint64_t size_eval = 0;
  11976. // compute size of intermediate results
  11977. // TODO: does not take into account scratch buffers !!!!
  11978. for (int i = 0; i < cgraph->n_nodes; ++i) {
  11979. size_eval += ggml_nbytes(cgraph->nodes[i]);
  11980. }
  11981. // print
  11982. {
  11983. FILE * fout = stdout;
  11984. fprintf(fout, "\n");
  11985. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  11986. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  11987. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  11988. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  11989. fprintf(fout, "%-16s %8llu\n", "eval", size_eval);
  11990. // header
  11991. fprintf(fout, "\n");
  11992. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  11993. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  11994. for (int i = 0; i < cgraph->n_leafs; ++i) {
  11995. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  11996. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  11997. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  11998. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  11999. }
  12000. // header
  12001. fprintf(fout, "\n");
  12002. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12003. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12004. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12005. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12006. if (cgraph->nodes[i]->src0) {
  12007. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12008. }
  12009. if (cgraph->nodes[i]->src1) {
  12010. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12011. }
  12012. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12013. if (cgraph->nodes[i]->opt[j]) {
  12014. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12015. }
  12016. }
  12017. fprintf(fout, "\n");
  12018. }
  12019. fprintf(fout, "\n");
  12020. }
  12021. // write binary data
  12022. {
  12023. FILE * fout = fopen(fname, "wb");
  12024. if (!fout) {
  12025. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12026. return;
  12027. }
  12028. // header
  12029. {
  12030. const uint32_t magic = GGML_FILE_MAGIC;
  12031. const uint32_t version = GGML_FILE_VERSION;
  12032. const uint32_t n_leafs = cgraph->n_leafs;
  12033. const uint32_t nodes = cgraph->n_nodes;
  12034. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12035. fwrite(&version, sizeof(uint32_t), 1, fout);
  12036. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12037. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12038. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12039. }
  12040. // leafs
  12041. {
  12042. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12043. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12044. const uint32_t type = tensor->type;
  12045. const uint32_t op = tensor->op;
  12046. const uint32_t n_dims = tensor->n_dims;
  12047. fwrite(&type, sizeof(uint32_t), 1, fout);
  12048. fwrite(&op, sizeof(uint32_t), 1, fout);
  12049. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12050. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12051. const uint64_t ne = tensor->ne[j];
  12052. const uint64_t nb = tensor->nb[j];
  12053. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12054. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12055. }
  12056. // store the pointer address
  12057. {
  12058. const uint64_t ptr = (uint64_t) tensor->data;
  12059. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12060. }
  12061. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12062. // dump the data
  12063. // TODO: pad this to 32 byte boundary
  12064. {
  12065. const size_t size = ggml_nbytes(tensor);
  12066. fwrite(tensor->data, sizeof(char), size, fout);
  12067. }
  12068. }
  12069. }
  12070. // nodes
  12071. {
  12072. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12073. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12074. const uint32_t type = tensor->type;
  12075. const uint32_t op = tensor->op;
  12076. const uint32_t n_dims = tensor->n_dims;
  12077. fwrite(&type, sizeof(uint32_t), 1, fout);
  12078. fwrite(&op, sizeof(uint32_t), 1, fout);
  12079. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12080. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12081. const uint64_t ne = tensor->ne[j];
  12082. const uint64_t nb = tensor->nb[j];
  12083. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12084. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12085. }
  12086. // store the pointer address
  12087. {
  12088. const uint64_t ptr = (uint64_t) tensor->data;
  12089. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12090. }
  12091. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12092. // output the op arguments
  12093. {
  12094. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12095. args[0] = tensor->src0;
  12096. args[1] = tensor->src1;
  12097. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12098. args[2 + j] = tensor->opt[j];
  12099. }
  12100. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12101. if (args[j]) {
  12102. int32_t idx = -1;
  12103. // check if leaf
  12104. {
  12105. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12106. if (args[j] == cgraph->leafs[k]) {
  12107. idx = k;
  12108. break;
  12109. }
  12110. }
  12111. }
  12112. // check if node
  12113. if (idx == -1) {
  12114. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12115. if (args[j] == cgraph->nodes[k]) {
  12116. idx = GGML_MAX_NODES + k;
  12117. break;
  12118. }
  12119. }
  12120. }
  12121. if (idx == -1) {
  12122. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12123. return;
  12124. }
  12125. fwrite(&idx, sizeof(int32_t), 1, fout);
  12126. } else {
  12127. const int32_t nul = -1;
  12128. fwrite(&nul, sizeof(int32_t), 1, fout);
  12129. }
  12130. }
  12131. }
  12132. }
  12133. }
  12134. fclose(fout);
  12135. }
  12136. }
  12137. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12138. assert(*ctx_data == NULL);
  12139. assert(*ctx_eval == NULL);
  12140. struct ggml_cgraph result = { 0 };
  12141. struct ggml_tensor * data = NULL;
  12142. // read file into data
  12143. {
  12144. FILE * fin = fopen(fname, "rb");
  12145. if (!fin) {
  12146. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12147. return result;
  12148. }
  12149. size_t fsize = 0;
  12150. fseek(fin, 0, SEEK_END);
  12151. fsize = ftell(fin);
  12152. fseek(fin, 0, SEEK_SET);
  12153. // create the data context
  12154. {
  12155. const size_t overhead = 1*ggml_tensor_overhead();
  12156. struct ggml_init_params params = {
  12157. .mem_size = fsize + overhead,
  12158. .mem_buffer = NULL,
  12159. .no_alloc = false,
  12160. };
  12161. *ctx_data = ggml_init(params);
  12162. if (!*ctx_data) {
  12163. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12164. return result;
  12165. }
  12166. }
  12167. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12168. fread(data->data, sizeof(char), fsize, fin);
  12169. fclose(fin);
  12170. }
  12171. // populate result
  12172. {
  12173. char * ptr = (char *) data->data;
  12174. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12175. if (magic != GGML_FILE_MAGIC) {
  12176. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12177. return result;
  12178. }
  12179. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12180. if (version != GGML_FILE_VERSION) {
  12181. fprintf(stderr, "%s: invalid version number\n", __func__);
  12182. return result;
  12183. }
  12184. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12185. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12186. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12187. result.n_leafs = n_leafs;
  12188. result.n_nodes = n_nodes;
  12189. // create the data context
  12190. {
  12191. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12192. struct ggml_init_params params = {
  12193. .mem_size = size_eval + overhead,
  12194. .mem_buffer = NULL,
  12195. .no_alloc = true,
  12196. };
  12197. *ctx_eval = ggml_init(params);
  12198. if (!*ctx_eval) {
  12199. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12200. return result;
  12201. }
  12202. }
  12203. // leafs
  12204. {
  12205. uint32_t type;
  12206. uint32_t op;
  12207. uint32_t n_dims;
  12208. for (uint32_t i = 0; i < n_leafs; ++i) {
  12209. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12210. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12211. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12212. int64_t ne[GGML_MAX_DIMS];
  12213. size_t nb[GGML_MAX_DIMS];
  12214. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12215. uint64_t ne_cur;
  12216. uint64_t nb_cur;
  12217. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12218. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12219. ne[j] = ne_cur;
  12220. nb[j] = nb_cur;
  12221. }
  12222. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12223. tensor->op = (enum ggml_op) op;
  12224. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12225. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12226. tensor->data = (void *) ptr;
  12227. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12228. tensor->nb[j] = nb[j];
  12229. }
  12230. result.leafs[i] = tensor;
  12231. ptr += ggml_nbytes(tensor);
  12232. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12233. }
  12234. }
  12235. ggml_set_no_alloc(*ctx_eval, false);
  12236. // nodes
  12237. {
  12238. uint32_t type;
  12239. uint32_t op;
  12240. uint32_t n_dims;
  12241. for (uint32_t i = 0; i < n_nodes; ++i) {
  12242. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12243. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12244. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12245. int64_t ne[GGML_MAX_DIMS];
  12246. size_t nb[GGML_MAX_DIMS];
  12247. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12248. uint64_t ne_cur;
  12249. uint64_t nb_cur;
  12250. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12251. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12252. ne[j] = ne_cur;
  12253. nb[j] = nb_cur;
  12254. }
  12255. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12256. tensor->op = (enum ggml_op) op;
  12257. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12258. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12259. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12260. tensor->nb[j] = nb[j];
  12261. }
  12262. // parse args
  12263. {
  12264. struct ggml_tensor ** args[2 + GGML_MAX_OPT] = {
  12265. &tensor->src0,
  12266. &tensor->src1,
  12267. };
  12268. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12269. args[2 + j] = &tensor->opt[j];
  12270. }
  12271. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12272. const int32_t arg_idx = *(const int32_t *) ptr; ptr += sizeof(arg_idx);
  12273. if (arg_idx == -1) {
  12274. continue;
  12275. }
  12276. if (arg_idx < GGML_MAX_NODES) {
  12277. *args[j] = result.leafs[arg_idx];
  12278. } else {
  12279. *args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12280. }
  12281. }
  12282. }
  12283. result.nodes[i] = tensor;
  12284. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12285. }
  12286. }
  12287. }
  12288. return result;
  12289. }
  12290. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12291. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12292. GGML_PRINT("=== GRAPH ===\n");
  12293. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12294. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12295. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12296. for (int i = 0; i < cgraph->n_nodes; i++) {
  12297. struct ggml_tensor * node = cgraph->nodes[i];
  12298. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12299. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12300. i,
  12301. node->ne[0], node->ne[1], node->ne[2],
  12302. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12303. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12304. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12305. (double) node->perf_time_us / 1000.0,
  12306. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12307. }
  12308. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12309. for (int i = 0; i < cgraph->n_leafs; i++) {
  12310. struct ggml_tensor * node = cgraph->leafs[i];
  12311. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12312. i,
  12313. node->ne[0], node->ne[1],
  12314. GGML_OP_NAME[node->op]);
  12315. }
  12316. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12317. if (perf_total_per_op_us[i] == 0) {
  12318. continue;
  12319. }
  12320. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12321. }
  12322. GGML_PRINT("========================================\n");
  12323. }
  12324. // check if node is part of the graph
  12325. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12326. if (cgraph == NULL) {
  12327. return true;
  12328. }
  12329. for (int i = 0; i < cgraph->n_nodes; i++) {
  12330. if (cgraph->nodes[i] == node) {
  12331. return true;
  12332. }
  12333. }
  12334. return false;
  12335. }
  12336. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12337. for (int i = 0; i < cgraph->n_nodes; i++) {
  12338. struct ggml_tensor * parent = cgraph->nodes[i];
  12339. if (parent->grad == node) {
  12340. return parent;
  12341. }
  12342. }
  12343. return NULL;
  12344. }
  12345. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12346. char color[16];
  12347. FILE * fp = fopen(filename, "w");
  12348. GGML_ASSERT(fp);
  12349. fprintf(fp, "digraph G {\n");
  12350. fprintf(fp, " newrank = true;\n");
  12351. fprintf(fp, " rankdir = LR;\n");
  12352. for (int i = 0; i < gb->n_nodes; i++) {
  12353. struct ggml_tensor * node = gb->nodes[i];
  12354. if (ggml_graph_get_parent(gb, node) != NULL) {
  12355. continue;
  12356. }
  12357. if (node->is_param) {
  12358. snprintf(color, sizeof(color), "yellow");
  12359. } else if (node->grad) {
  12360. if (ggml_graph_find(gf, node)) {
  12361. snprintf(color, sizeof(color), "green");
  12362. } else {
  12363. snprintf(color, sizeof(color), "lightblue");
  12364. }
  12365. } else {
  12366. snprintf(color, sizeof(color), "white");
  12367. }
  12368. fprintf(fp, " \"%p\" [ "
  12369. "style = filled; fillcolor = %s; shape = record; "
  12370. "label=\"",
  12371. (void *) node, color);
  12372. if (strlen(node->name) > 0) {
  12373. fprintf(fp, "%s |", node->name);
  12374. }
  12375. if (node->n_dims == 2) {
  12376. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12377. } else {
  12378. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12379. }
  12380. if (node->grad) {
  12381. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12382. } else {
  12383. fprintf(fp, "\"; ]\n");
  12384. }
  12385. }
  12386. for (int i = 0; i < gb->n_leafs; i++) {
  12387. struct ggml_tensor * node = gb->leafs[i];
  12388. snprintf(color, sizeof(color), "pink");
  12389. fprintf(fp, " \"%p\" [ "
  12390. "style = filled; fillcolor = %s; shape = record; "
  12391. "label=\"<x>",
  12392. (void *) node, color);
  12393. if (strlen(node->name) > 0) {
  12394. fprintf(fp, "%s | ", node->name);
  12395. }
  12396. if (ggml_nelements(node) == 1) {
  12397. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12398. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12399. }
  12400. else {
  12401. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12402. }
  12403. }
  12404. else {
  12405. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12406. }
  12407. fprintf(fp, "\"; ]\n");
  12408. }
  12409. for (int i = 0; i < gb->n_nodes; i++) {
  12410. struct ggml_tensor * node = gb->nodes[i];
  12411. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12412. if (node->src0) {
  12413. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12414. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12415. parent0 ? (void *) parent0 : (void *) node->src0,
  12416. parent0 ? "g" : "x",
  12417. parent ? (void *) parent : (void *) node,
  12418. parent ? "g" : "x",
  12419. parent ? "empty" : "vee",
  12420. parent ? "dashed" : "solid");
  12421. }
  12422. if (node->src1) {
  12423. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12424. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12425. parent1 ? (void *) parent1 : (void *) node->src1,
  12426. parent1 ? "g" : "x",
  12427. parent ? (void *) parent : (void *) node,
  12428. parent ? "g" : "x",
  12429. parent ? "empty" : "vee",
  12430. parent ? "dashed" : "solid");
  12431. }
  12432. }
  12433. for (int i = 0; i < gb->n_leafs; i++) {
  12434. struct ggml_tensor * node = gb->leafs[i];
  12435. if (node->src0) {
  12436. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12437. (void *) node->src0, "x",
  12438. (void *) node, "x");
  12439. }
  12440. if (node->src1) {
  12441. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12442. (void *) node->src1, "x",
  12443. (void *) node, "x");
  12444. }
  12445. }
  12446. fprintf(fp, "}\n");
  12447. fclose(fp);
  12448. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12449. }
  12450. ////////////////////////////////////////////////////////////////////////////////
  12451. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12452. int i = 0;
  12453. for (int p = 0; p < np; ++p) {
  12454. const int64_t ne = ggml_nelements(ps[p]) ;
  12455. // TODO: add function to set tensor from array
  12456. for (int64_t j = 0; j < ne; ++j) {
  12457. ggml_set_f32_1d(ps[p], j, x[i++]);
  12458. }
  12459. }
  12460. }
  12461. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12462. int i = 0;
  12463. for (int p = 0; p < np; ++p) {
  12464. const int64_t ne = ggml_nelements(ps[p]) ;
  12465. // TODO: add function to get all elements at once
  12466. for (int64_t j = 0; j < ne; ++j) {
  12467. x[i++] = ggml_get_f32_1d(ps[p], j);
  12468. }
  12469. }
  12470. }
  12471. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12472. int i = 0;
  12473. for (int p = 0; p < np; ++p) {
  12474. const int64_t ne = ggml_nelements(ps[p]) ;
  12475. // TODO: add function to get all elements at once
  12476. for (int64_t j = 0; j < ne; ++j) {
  12477. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12478. }
  12479. }
  12480. }
  12481. //
  12482. // ADAM
  12483. //
  12484. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12485. //
  12486. static enum ggml_opt_result ggml_opt_adam(
  12487. struct ggml_context * ctx,
  12488. struct ggml_opt_params params,
  12489. struct ggml_tensor * f,
  12490. struct ggml_cgraph * gf,
  12491. struct ggml_cgraph * gb) {
  12492. GGML_ASSERT(ggml_is_scalar(f));
  12493. gf->n_threads = params.n_threads;
  12494. gb->n_threads = params.n_threads;
  12495. // these will store the parameters we want to optimize
  12496. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12497. int np = 0;
  12498. int nx = 0;
  12499. for (int i = 0; i < gf->n_nodes; ++i) {
  12500. if (gf->nodes[i]->is_param) {
  12501. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12502. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12503. ps[np++] = gf->nodes[i];
  12504. nx += ggml_nelements(gf->nodes[i]);
  12505. }
  12506. }
  12507. // constants
  12508. const float alpha = params.adam.alpha;
  12509. const float beta1 = params.adam.beta1;
  12510. const float beta2 = params.adam.beta2;
  12511. const float eps = params.adam.eps;
  12512. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12513. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12514. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12515. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12516. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12517. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12518. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12519. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12520. // initialize
  12521. ggml_vec_set_f32(nx, m, 0.0f);
  12522. ggml_vec_set_f32(nx, v, 0.0f);
  12523. // update view
  12524. ggml_opt_get_params(np, ps, x);
  12525. // compute the function value
  12526. ggml_graph_reset (gf);
  12527. ggml_set_f32 (f->grad, 1.0f);
  12528. ggml_graph_compute(ctx, gb);
  12529. float fx_prev = ggml_get_f32_1d(f, 0);
  12530. if (pf) {
  12531. pf[0] = fx_prev;
  12532. }
  12533. int n_no_improvement = 0;
  12534. float fx_best = fx_prev;
  12535. // run the optimizer
  12536. for (int t = 0; t < params.adam.n_iter; ++t) {
  12537. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12538. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12539. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12540. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12541. for (int i = 0; i < np; ++i) {
  12542. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12543. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12544. }
  12545. const int64_t t_start_wall = ggml_time_us();
  12546. const int64_t t_start_cpu = ggml_cycles();
  12547. UNUSED(t_start_wall);
  12548. UNUSED(t_start_cpu);
  12549. {
  12550. // update the gradient
  12551. ggml_opt_get_grad(np, ps, g1);
  12552. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12553. ggml_vec_scale_f32(nx, m, beta1);
  12554. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12555. // g2 = g1^2
  12556. ggml_vec_sqr_f32 (nx, g2, g1);
  12557. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12558. ggml_vec_scale_f32(nx, v, beta2);
  12559. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12560. // m^hat = m_t / (1 - beta1^t)
  12561. // v^hat = v_t / (1 - beta2^t)
  12562. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12563. ggml_vec_cpy_f32 (nx, mh, m);
  12564. ggml_vec_cpy_f32 (nx, vh, v);
  12565. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12566. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12567. ggml_vec_sqrt_f32 (nx, vh, vh);
  12568. ggml_vec_acc1_f32 (nx, vh, eps);
  12569. ggml_vec_div_f32 (nx, mh, mh, vh);
  12570. ggml_vec_sub_f32 (nx, x, x, mh);
  12571. // update the parameters
  12572. ggml_opt_set_params(np, ps, x);
  12573. }
  12574. ggml_graph_reset (gf);
  12575. ggml_set_f32 (f->grad, 1.0f);
  12576. ggml_graph_compute(ctx, gb);
  12577. const float fx = ggml_get_f32_1d(f, 0);
  12578. // check convergence
  12579. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12580. GGML_PRINT_DEBUG("converged\n");
  12581. return GGML_OPT_OK;
  12582. }
  12583. // delta-based convergence test
  12584. if (pf != NULL) {
  12585. // need at least params.past iterations to start checking for convergence
  12586. if (params.past <= t) {
  12587. const float rate = (pf[t%params.past] - fx)/fx;
  12588. if (fabsf(rate) < params.delta) {
  12589. return GGML_OPT_OK;
  12590. }
  12591. }
  12592. pf[t%params.past] = fx;
  12593. }
  12594. // check for improvement
  12595. if (params.max_no_improvement > 0) {
  12596. if (fx_best > fx) {
  12597. fx_best = fx;
  12598. n_no_improvement = 0;
  12599. } else {
  12600. ++n_no_improvement;
  12601. if (n_no_improvement >= params.max_no_improvement) {
  12602. return GGML_OPT_OK;
  12603. }
  12604. }
  12605. }
  12606. fx_prev = fx;
  12607. {
  12608. const int64_t t_end_cpu = ggml_cycles();
  12609. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12610. UNUSED(t_end_cpu);
  12611. const int64_t t_end_wall = ggml_time_us();
  12612. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12613. UNUSED(t_end_wall);
  12614. }
  12615. }
  12616. return GGML_OPT_DID_NOT_CONVERGE;
  12617. }
  12618. //
  12619. // L-BFGS
  12620. //
  12621. // the L-BFGS implementation below is based on the following implementation:
  12622. //
  12623. // https://github.com/chokkan/liblbfgs
  12624. //
  12625. struct ggml_lbfgs_iteration_data {
  12626. float alpha;
  12627. float ys;
  12628. float * s;
  12629. float * y;
  12630. };
  12631. static enum ggml_opt_result linesearch_backtracking(
  12632. struct ggml_context * ctx,
  12633. const struct ggml_opt_params * params,
  12634. int nx,
  12635. float * x,
  12636. float * fx,
  12637. float * g,
  12638. float * d,
  12639. float * step,
  12640. const float * xp,
  12641. struct ggml_tensor * f,
  12642. struct ggml_cgraph * gf,
  12643. struct ggml_cgraph * gb,
  12644. const int np,
  12645. struct ggml_tensor * ps[]) {
  12646. int count = 0;
  12647. float width = 0.0f;
  12648. float dg = 0.0f;
  12649. float finit = 0.0f;
  12650. float dginit = 0.0f;
  12651. float dgtest = 0.0f;
  12652. const float dec = 0.5f;
  12653. const float inc = 2.1f;
  12654. if (*step <= 0.f) {
  12655. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12656. }
  12657. // compute the initial gradient in the search direction
  12658. ggml_vec_dot_f32(nx, &dginit, g, d);
  12659. // make sure that d points to a descent direction
  12660. if (0 < dginit) {
  12661. return GGML_LINESEARCH_FAIL;
  12662. }
  12663. // initialize local variables
  12664. finit = *fx;
  12665. dgtest = params->lbfgs.ftol*dginit;
  12666. while (true) {
  12667. ggml_vec_cpy_f32(nx, x, xp);
  12668. ggml_vec_mad_f32(nx, x, d, *step);
  12669. // evaluate the function and gradient values
  12670. {
  12671. ggml_opt_set_params(np, ps, x);
  12672. ggml_graph_reset (gf);
  12673. ggml_set_f32 (f->grad, 1.0f);
  12674. ggml_graph_compute(ctx, gb);
  12675. ggml_opt_get_grad(np, ps, g);
  12676. *fx = ggml_get_f32_1d(f, 0);
  12677. }
  12678. ++count;
  12679. if (*fx > finit + (*step)*dgtest) {
  12680. width = dec;
  12681. } else {
  12682. // Armijo condition is satisfied
  12683. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12684. return count;
  12685. }
  12686. ggml_vec_dot_f32(nx, &dg, g, d);
  12687. // check the Wolfe condition
  12688. if (dg < params->lbfgs.wolfe * dginit) {
  12689. width = inc;
  12690. } else {
  12691. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12692. // regular Wolfe conditions
  12693. return count;
  12694. }
  12695. if(dg > -params->lbfgs.wolfe*dginit) {
  12696. width = dec;
  12697. } else {
  12698. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12699. return count;
  12700. }
  12701. return count;
  12702. }
  12703. }
  12704. if (*step < params->lbfgs.min_step) {
  12705. return GGML_LINESEARCH_MINIMUM_STEP;
  12706. }
  12707. if (*step > params->lbfgs.max_step) {
  12708. return GGML_LINESEARCH_MAXIMUM_STEP;
  12709. }
  12710. if (params->lbfgs.max_linesearch <= count) {
  12711. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12712. }
  12713. (*step) *= width;
  12714. }
  12715. return GGML_LINESEARCH_FAIL;
  12716. }
  12717. static enum ggml_opt_result ggml_opt_lbfgs(
  12718. struct ggml_context * ctx,
  12719. struct ggml_opt_params params,
  12720. struct ggml_tensor * f,
  12721. struct ggml_cgraph * gf,
  12722. struct ggml_cgraph * gb) {
  12723. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12724. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12725. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12726. return GGML_OPT_INVALID_WOLFE;
  12727. }
  12728. }
  12729. gf->n_threads = params.n_threads;
  12730. gb->n_threads = params.n_threads;
  12731. const int m = params.lbfgs.m;
  12732. // these will store the parameters we want to optimize
  12733. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12734. int np = 0;
  12735. int nx = 0;
  12736. for (int i = 0; i < gf->n_nodes; ++i) {
  12737. if (gf->nodes[i]->is_param) {
  12738. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12739. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12740. ps[np++] = gf->nodes[i];
  12741. nx += ggml_nelements(gf->nodes[i]);
  12742. }
  12743. }
  12744. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12745. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12746. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12747. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12748. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12749. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12750. float fx = 0.0f; // cost function value
  12751. float xnorm = 0.0f; // ||x||
  12752. float gnorm = 0.0f; // ||g||
  12753. float step = 0.0f;
  12754. // initialize x from the graph nodes
  12755. ggml_opt_get_params(np, ps, x);
  12756. // the L-BFGS memory
  12757. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12758. for (int i = 0; i < m; ++i) {
  12759. lm[i].alpha = 0.0f;
  12760. lm[i].ys = 0.0f;
  12761. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12762. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12763. }
  12764. // evaluate the function value and its gradient
  12765. {
  12766. ggml_opt_set_params(np, ps, x);
  12767. ggml_graph_reset (gf);
  12768. ggml_set_f32 (f->grad, 1.0f);
  12769. ggml_graph_compute(ctx, gb);
  12770. ggml_opt_get_grad(np, ps, g);
  12771. fx = ggml_get_f32_1d(f, 0);
  12772. }
  12773. if (pf) {
  12774. pf[0] = fx;
  12775. }
  12776. float fx_best = fx;
  12777. // search direction = -gradient
  12778. ggml_vec_neg_f32(nx, d, g);
  12779. // ||x||, ||g||
  12780. ggml_vec_norm_f32(nx, &xnorm, x);
  12781. ggml_vec_norm_f32(nx, &gnorm, g);
  12782. if (xnorm < 1.0f) {
  12783. xnorm = 1.0f;
  12784. }
  12785. // already optimized
  12786. if (gnorm/xnorm <= params.lbfgs.eps) {
  12787. return GGML_OPT_OK;
  12788. }
  12789. // initial step
  12790. ggml_vec_norm_inv_f32(nx, &step, d);
  12791. int j = 0;
  12792. int k = 1;
  12793. int ls = 0;
  12794. int end = 0;
  12795. int bound = 0;
  12796. int n_no_improvement = 0;
  12797. float ys = 0.0f;
  12798. float yy = 0.0f;
  12799. float beta = 0.0f;
  12800. while (true) {
  12801. // store the current position and gradient vectors
  12802. ggml_vec_cpy_f32(nx, xp, x);
  12803. ggml_vec_cpy_f32(nx, gp, g);
  12804. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12805. if (ls < 0) {
  12806. // linesearch failed - go back to the previous point and return
  12807. ggml_vec_cpy_f32(nx, x, xp);
  12808. ggml_vec_cpy_f32(nx, g, gp);
  12809. return ls;
  12810. }
  12811. ggml_vec_norm_f32(nx, &xnorm, x);
  12812. ggml_vec_norm_f32(nx, &gnorm, g);
  12813. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12814. if (xnorm < 1.0f) {
  12815. xnorm = 1.0f;
  12816. }
  12817. if (gnorm/xnorm <= params.lbfgs.eps) {
  12818. // converged
  12819. return GGML_OPT_OK;
  12820. }
  12821. // delta-based convergence test
  12822. if (pf != NULL) {
  12823. // need at least params.past iterations to start checking for convergence
  12824. if (params.past <= k) {
  12825. const float rate = (pf[k%params.past] - fx)/fx;
  12826. if (fabsf(rate) < params.delta) {
  12827. return GGML_OPT_OK;
  12828. }
  12829. }
  12830. pf[k%params.past] = fx;
  12831. }
  12832. // check for improvement
  12833. if (params.max_no_improvement > 0) {
  12834. if (fx < fx_best) {
  12835. fx_best = fx;
  12836. n_no_improvement = 0;
  12837. } else {
  12838. n_no_improvement++;
  12839. if (n_no_improvement >= params.max_no_improvement) {
  12840. return GGML_OPT_OK;
  12841. }
  12842. }
  12843. }
  12844. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12845. // reached the maximum number of iterations
  12846. return GGML_OPT_DID_NOT_CONVERGE;
  12847. }
  12848. // update vectors s and y:
  12849. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12850. // y_{k+1} = g_{k+1} - g_{k}.
  12851. //
  12852. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12853. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12854. // compute scalars ys and yy:
  12855. // ys = y^t \cdot s -> 1 / \rho.
  12856. // yy = y^t \cdot y.
  12857. //
  12858. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12859. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12860. lm[end].ys = ys;
  12861. // find new search direction
  12862. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12863. bound = (m <= k) ? m : k;
  12864. k++;
  12865. end = (end + 1)%m;
  12866. // initialize search direction with -g
  12867. ggml_vec_neg_f32(nx, d, g);
  12868. j = end;
  12869. for (int i = 0; i < bound; ++i) {
  12870. j = (j + m - 1) % m;
  12871. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12872. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12873. lm[j].alpha /= lm[j].ys;
  12874. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12875. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12876. }
  12877. ggml_vec_scale_f32(nx, d, ys/yy);
  12878. for (int i = 0; i < bound; ++i) {
  12879. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12880. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12881. beta /= lm[j].ys;
  12882. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12883. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12884. j = (j + 1)%m;
  12885. }
  12886. step = 1.0;
  12887. }
  12888. return GGML_OPT_DID_NOT_CONVERGE;
  12889. }
  12890. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12891. struct ggml_opt_params result;
  12892. switch (type) {
  12893. case GGML_OPT_ADAM:
  12894. {
  12895. result = (struct ggml_opt_params) {
  12896. .type = GGML_OPT_ADAM,
  12897. .n_threads = 1,
  12898. .past = 0,
  12899. .delta = 1e-5f,
  12900. .max_no_improvement = 100,
  12901. .print_forward_graph = true,
  12902. .print_backward_graph = true,
  12903. .adam = {
  12904. .n_iter = 10000,
  12905. .alpha = 0.001f,
  12906. .beta1 = 0.9f,
  12907. .beta2 = 0.999f,
  12908. .eps = 1e-8f,
  12909. .eps_f = 1e-5f,
  12910. .eps_g = 1e-3f,
  12911. },
  12912. };
  12913. } break;
  12914. case GGML_OPT_LBFGS:
  12915. {
  12916. result = (struct ggml_opt_params) {
  12917. .type = GGML_OPT_LBFGS,
  12918. .n_threads = 1,
  12919. .past = 0,
  12920. .delta = 1e-5f,
  12921. .max_no_improvement = 0,
  12922. .print_forward_graph = true,
  12923. .print_backward_graph = true,
  12924. .lbfgs = {
  12925. .m = 6,
  12926. .n_iter = 100,
  12927. .max_linesearch = 20,
  12928. .eps = 1e-5f,
  12929. .ftol = 1e-4f,
  12930. .wolfe = 0.9f,
  12931. .min_step = 1e-20f,
  12932. .max_step = 1e+20f,
  12933. .linesearch = GGML_LINESEARCH_DEFAULT,
  12934. },
  12935. };
  12936. } break;
  12937. }
  12938. return result;
  12939. }
  12940. enum ggml_opt_result ggml_opt(
  12941. struct ggml_context * ctx,
  12942. struct ggml_opt_params params,
  12943. struct ggml_tensor * f) {
  12944. bool free_ctx = false;
  12945. if (ctx == NULL) {
  12946. struct ggml_init_params params_ctx = {
  12947. .mem_size = 16*1024*1024,
  12948. .mem_buffer = NULL,
  12949. .no_alloc = false,
  12950. };
  12951. ctx = ggml_init(params_ctx);
  12952. if (ctx == NULL) {
  12953. return GGML_OPT_NO_CONTEXT;
  12954. }
  12955. free_ctx = true;
  12956. }
  12957. enum ggml_opt_result result = GGML_OPT_OK;
  12958. // build forward + backward compute graphs
  12959. struct ggml_cgraph gf = ggml_build_forward (f);
  12960. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12961. switch (params.type) {
  12962. case GGML_OPT_ADAM:
  12963. {
  12964. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12965. } break;
  12966. case GGML_OPT_LBFGS:
  12967. {
  12968. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12969. } break;
  12970. }
  12971. if (params.print_forward_graph) {
  12972. ggml_graph_print (&gf);
  12973. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12974. }
  12975. if (params.print_backward_graph) {
  12976. ggml_graph_print (&gb);
  12977. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12978. }
  12979. if (free_ctx) {
  12980. ggml_free(ctx);
  12981. }
  12982. return result;
  12983. }
  12984. ////////////////////////////////////////////////////////////////////////////////
  12985. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12986. assert(k % QK4_0 == 0);
  12987. const int nb = k / QK4_0;
  12988. for (int b = 0; b < n; b += k) {
  12989. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12990. quantize_row_q4_0_reference(src + b, y, k);
  12991. for (int i = 0; i < nb; i++) {
  12992. for (int j = 0; j < QK4_0; j += 2) {
  12993. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12994. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12995. hist[vi0]++;
  12996. hist[vi1]++;
  12997. }
  12998. }
  12999. }
  13000. return (n/QK4_0*sizeof(block_q4_0));
  13001. }
  13002. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13003. assert(k % QK4_1 == 0);
  13004. const int nb = k / QK4_1;
  13005. for (int b = 0; b < n; b += k) {
  13006. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13007. quantize_row_q4_1_reference(src + b, y, k);
  13008. for (int i = 0; i < nb; i++) {
  13009. for (int j = 0; j < QK4_1; j += 2) {
  13010. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13011. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13012. hist[vi0]++;
  13013. hist[vi1]++;
  13014. }
  13015. }
  13016. }
  13017. return (n/QK4_1*sizeof(block_q4_1));
  13018. }
  13019. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13020. assert(k % QK5_0 == 0);
  13021. const int nb = k / QK5_0;
  13022. for (int b = 0; b < n; b += k) {
  13023. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13024. quantize_row_q5_0_reference(src + b, y, k);
  13025. for (int i = 0; i < nb; i++) {
  13026. uint32_t qh;
  13027. memcpy(&qh, &y[i].qh, sizeof(qh));
  13028. for (int j = 0; j < QK5_0; j += 2) {
  13029. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13030. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13031. // cast to 16 bins
  13032. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13033. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13034. hist[vi0]++;
  13035. hist[vi1]++;
  13036. }
  13037. }
  13038. }
  13039. return (n/QK5_0*sizeof(block_q5_0));
  13040. }
  13041. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13042. assert(k % QK5_1 == 0);
  13043. const int nb = k / QK5_1;
  13044. for (int b = 0; b < n; b += k) {
  13045. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13046. quantize_row_q5_1_reference(src + b, y, k);
  13047. for (int i = 0; i < nb; i++) {
  13048. uint32_t qh;
  13049. memcpy(&qh, &y[i].qh, sizeof(qh));
  13050. for (int j = 0; j < QK5_1; j += 2) {
  13051. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13052. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13053. // cast to 16 bins
  13054. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13055. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13056. hist[vi0]++;
  13057. hist[vi1]++;
  13058. }
  13059. }
  13060. }
  13061. return (n/QK5_1*sizeof(block_q5_1));
  13062. }
  13063. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13064. assert(k % QK8_0 == 0);
  13065. const int nb = k / QK8_0;
  13066. for (int b = 0; b < n; b += k) {
  13067. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13068. quantize_row_q8_0_reference(src + b, y, k);
  13069. for (int i = 0; i < nb; i++) {
  13070. for (int j = 0; j < QK8_0; ++j) {
  13071. const int8_t vi = y[i].qs[j];
  13072. hist[vi/16 + 8]++;
  13073. }
  13074. }
  13075. }
  13076. return (n/QK8_0*sizeof(block_q8_0));
  13077. }
  13078. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13079. size_t result = 0;
  13080. switch (type) {
  13081. case GGML_TYPE_Q4_0:
  13082. {
  13083. GGML_ASSERT(start % QK4_0 == 0);
  13084. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13085. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13086. } break;
  13087. case GGML_TYPE_Q4_1:
  13088. {
  13089. GGML_ASSERT(start % QK4_1 == 0);
  13090. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13091. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13092. } break;
  13093. case GGML_TYPE_Q5_0:
  13094. {
  13095. GGML_ASSERT(start % QK5_0 == 0);
  13096. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13097. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13098. } break;
  13099. case GGML_TYPE_Q5_1:
  13100. {
  13101. GGML_ASSERT(start % QK5_1 == 0);
  13102. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13103. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13104. } break;
  13105. case GGML_TYPE_Q8_0:
  13106. {
  13107. GGML_ASSERT(start % QK8_0 == 0);
  13108. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13109. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13110. } break;
  13111. default:
  13112. assert(false);
  13113. }
  13114. return result;
  13115. }
  13116. ////////////////////////////////////////////////////////////////////////////////
  13117. int ggml_cpu_has_avx(void) {
  13118. #if defined(__AVX__)
  13119. return 1;
  13120. #else
  13121. return 0;
  13122. #endif
  13123. }
  13124. int ggml_cpu_has_avx2(void) {
  13125. #if defined(__AVX2__)
  13126. return 1;
  13127. #else
  13128. return 0;
  13129. #endif
  13130. }
  13131. int ggml_cpu_has_avx512(void) {
  13132. #if defined(__AVX512F__)
  13133. return 1;
  13134. #else
  13135. return 0;
  13136. #endif
  13137. }
  13138. int ggml_cpu_has_avx512_vbmi(void) {
  13139. #if defined(__AVX512VBMI__)
  13140. return 1;
  13141. #else
  13142. return 0;
  13143. #endif
  13144. }
  13145. int ggml_cpu_has_avx512_vnni(void) {
  13146. #if defined(__AVX512VNNI__)
  13147. return 1;
  13148. #else
  13149. return 0;
  13150. #endif
  13151. }
  13152. int ggml_cpu_has_fma(void) {
  13153. #if defined(__FMA__)
  13154. return 1;
  13155. #else
  13156. return 0;
  13157. #endif
  13158. }
  13159. int ggml_cpu_has_neon(void) {
  13160. #if defined(__ARM_NEON)
  13161. return 1;
  13162. #else
  13163. return 0;
  13164. #endif
  13165. }
  13166. int ggml_cpu_has_arm_fma(void) {
  13167. #if defined(__ARM_FEATURE_FMA)
  13168. return 1;
  13169. #else
  13170. return 0;
  13171. #endif
  13172. }
  13173. int ggml_cpu_has_f16c(void) {
  13174. #if defined(__F16C__)
  13175. return 1;
  13176. #else
  13177. return 0;
  13178. #endif
  13179. }
  13180. int ggml_cpu_has_fp16_va(void) {
  13181. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13182. return 1;
  13183. #else
  13184. return 0;
  13185. #endif
  13186. }
  13187. int ggml_cpu_has_wasm_simd(void) {
  13188. #if defined(__wasm_simd128__)
  13189. return 1;
  13190. #else
  13191. return 0;
  13192. #endif
  13193. }
  13194. int ggml_cpu_has_blas(void) {
  13195. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13196. return 1;
  13197. #else
  13198. return 0;
  13199. #endif
  13200. }
  13201. int ggml_cpu_has_cublas(void) {
  13202. #if defined(GGML_USE_CUBLAS)
  13203. return 1;
  13204. #else
  13205. return 0;
  13206. #endif
  13207. }
  13208. int ggml_cpu_has_clblast(void) {
  13209. #if defined(GGML_USE_CLBLAST)
  13210. return 1;
  13211. #else
  13212. return 0;
  13213. #endif
  13214. }
  13215. int ggml_cpu_has_gpublas(void) {
  13216. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13217. }
  13218. int ggml_cpu_has_sse3(void) {
  13219. #if defined(__SSE3__)
  13220. return 1;
  13221. #else
  13222. return 0;
  13223. #endif
  13224. }
  13225. int ggml_cpu_has_vsx(void) {
  13226. #if defined(__POWER9_VECTOR__)
  13227. return 1;
  13228. #else
  13229. return 0;
  13230. #endif
  13231. }
  13232. ////////////////////////////////////////////////////////////////////////////////