ggml.h 38 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph gf = ggml_build_forward(f);
  61. //
  62. // // set the input variable and parameter values
  63. // ggml_set_f32(x, 2.0f);
  64. // ggml_set_f32(a, 3.0f);
  65. // ggml_set_f32(b, 4.0f);
  66. //
  67. // ggml_graph_compute(ctx0, &gf);
  68. //
  69. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  70. //
  71. // ...
  72. // }
  73. //
  74. // The actual computation is performed in the ggml_graph_compute() function.
  75. //
  76. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  77. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  78. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  79. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  80. // actually needed.
  81. //
  82. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  83. // differentiation and optimization algorithms.
  84. //
  85. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  86. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  87. // the user can avoid the memory allocation overhead at runtime.
  88. //
  89. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  90. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  91. //
  92. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  93. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  94. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  95. // yet, but a few examples are demonstrated in the following operations:
  96. //
  97. // - ggml_permute()
  98. // - ggml_conv_1d_1s()
  99. // - ggml_conv_1d_2s()
  100. //
  101. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  102. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  103. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  104. // calculus class, or watch the following video:
  105. //
  106. // What is Automatic Differentiation?
  107. // https://www.youtube.com/watch?v=wG_nF1awSSY
  108. //
  109. //
  110. // ## Tensor data (struct ggml_tensor)
  111. //
  112. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  113. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  114. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  115. //
  116. // {
  117. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  118. //
  119. // assert(c->src[0] == a);
  120. // assert(c->src[1] == b);
  121. // }
  122. //
  123. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  124. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  125. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  126. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  127. // contiguous in memory.
  128. //
  129. // The data of the tensor is accessed via the "data" pointer. For example:
  130. //
  131. // {
  132. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 2, 3);
  133. //
  134. // // a[1, 2] = 1.0f;
  135. // *(float *) ((char *) a->data + 2*a->nb[1] + 1*a->nb[0]) = 1.0f;
  136. //
  137. // // a[2, 0] = 2.0f;
  138. // *(float *) ((char *) a->data + 0*a->nb[1] + 2*a->nb[0]) = 2.0f;
  139. //
  140. // ...
  141. // }
  142. //
  143. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  144. //
  145. // ## The matrix multiplication operator (ggml_mul_mat)
  146. //
  147. // TODO
  148. //
  149. //
  150. // ## Multi-threading
  151. //
  152. // TODO
  153. //
  154. //
  155. // ## Overview of ggml.c
  156. //
  157. // TODO
  158. //
  159. //
  160. // ## SIMD optimizations
  161. //
  162. // TODO
  163. //
  164. //
  165. // ## Debugging ggml
  166. //
  167. // TODO
  168. //
  169. //
  170. #ifdef GGML_SHARED
  171. # if defined(_WIN32) && !defined(__MINGW32__)
  172. # ifdef GGML_BUILD
  173. # define GGML_API __declspec(dllexport)
  174. # else
  175. # define GGML_API __declspec(dllimport)
  176. # endif
  177. # else
  178. # define GGML_API __attribute__ ((visibility ("default")))
  179. # endif
  180. #else
  181. # define GGML_API
  182. #endif
  183. #include <stdint.h>
  184. #include <stddef.h>
  185. #include <stdbool.h>
  186. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  187. #define GGML_FILE_VERSION 1
  188. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  189. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  190. #define GGML_MAX_DIMS 4
  191. #define GGML_MAX_NODES 4096
  192. #define GGML_MAX_PARAMS 256
  193. #define GGML_MAX_CONTEXTS 64
  194. #define GGML_MAX_OPT 4
  195. #define GGML_MAX_NAME 32
  196. #define GGML_DEFAULT_N_THREADS 4
  197. #define GGML_ASSERT(x) \
  198. do { \
  199. if (!(x)) { \
  200. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  201. abort(); \
  202. } \
  203. } while (0)
  204. #ifdef __cplusplus
  205. extern "C" {
  206. #endif
  207. #ifdef __ARM_NEON
  208. // we use the built-in 16-bit float type
  209. typedef __fp16 ggml_fp16_t;
  210. #else
  211. typedef uint16_t ggml_fp16_t;
  212. #endif
  213. // convert FP16 <-> FP32
  214. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  215. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  216. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n);
  217. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n);
  218. struct ggml_object;
  219. struct ggml_context;
  220. enum ggml_type {
  221. GGML_TYPE_F32 = 0,
  222. GGML_TYPE_F16 = 1,
  223. GGML_TYPE_Q4_0 = 2,
  224. GGML_TYPE_Q4_1 = 3,
  225. // GGML_TYPE_Q4_2 = 4, support has been removed
  226. // GGML_TYPE_Q4_3 (5) support has been removed
  227. GGML_TYPE_Q5_0 = 6,
  228. GGML_TYPE_Q5_1 = 7,
  229. GGML_TYPE_Q8_0 = 8,
  230. GGML_TYPE_Q8_1 = 9,
  231. GGML_TYPE_I8,
  232. GGML_TYPE_I16,
  233. GGML_TYPE_I32,
  234. GGML_TYPE_COUNT,
  235. };
  236. enum ggml_backend {
  237. GGML_BACKEND_CPU = 0,
  238. GGML_BACKEND_CUDA = 1,
  239. GGML_BACKEND_CL = 2,
  240. };
  241. // model file types
  242. enum ggml_ftype {
  243. GGML_FTYPE_UNKNOWN = -1,
  244. GGML_FTYPE_ALL_F32 = 0,
  245. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  246. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  247. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  248. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  249. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  250. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  251. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  252. };
  253. // available tensor operations:
  254. enum ggml_op {
  255. GGML_OP_NONE = 0,
  256. GGML_OP_DUP,
  257. GGML_OP_ADD,
  258. GGML_OP_ADD1,
  259. GGML_OP_ACC,
  260. GGML_OP_SUB,
  261. GGML_OP_MUL,
  262. GGML_OP_DIV,
  263. GGML_OP_SQR,
  264. GGML_OP_SQRT,
  265. GGML_OP_LOG,
  266. GGML_OP_SUM,
  267. GGML_OP_SUM_ROWS,
  268. GGML_OP_MEAN,
  269. GGML_OP_REPEAT,
  270. GGML_OP_ABS,
  271. GGML_OP_SGN,
  272. GGML_OP_NEG,
  273. GGML_OP_STEP,
  274. GGML_OP_RELU,
  275. GGML_OP_GELU,
  276. GGML_OP_SILU,
  277. GGML_OP_SILU_BACK,
  278. GGML_OP_NORM, // normalize
  279. GGML_OP_RMS_NORM,
  280. GGML_OP_RMS_NORM_BACK,
  281. GGML_OP_MUL_MAT,
  282. GGML_OP_SCALE,
  283. GGML_OP_SET,
  284. GGML_OP_CPY,
  285. GGML_OP_CONT,
  286. GGML_OP_RESHAPE,
  287. GGML_OP_VIEW,
  288. GGML_OP_PERMUTE,
  289. GGML_OP_TRANSPOSE,
  290. GGML_OP_GET_ROWS,
  291. GGML_OP_GET_ROWS_BACK,
  292. GGML_OP_DIAG,
  293. GGML_OP_DIAG_MASK_INF,
  294. GGML_OP_DIAG_MASK_ZERO,
  295. GGML_OP_SOFT_MAX,
  296. GGML_OP_ROPE,
  297. GGML_OP_ROPE_BACK,
  298. GGML_OP_ALIBI,
  299. GGML_OP_CLAMP,
  300. GGML_OP_CONV_1D_1S,
  301. GGML_OP_CONV_1D_2S,
  302. GGML_OP_FLASH_ATTN,
  303. GGML_OP_FLASH_FF,
  304. GGML_OP_MAP_UNARY,
  305. GGML_OP_MAP_BINARY,
  306. GGML_OP_COUNT,
  307. };
  308. // ggml object
  309. struct ggml_object {
  310. size_t offs;
  311. size_t size;
  312. struct ggml_object * next;
  313. char padding[8];
  314. };
  315. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  316. // n-dimensional tensor
  317. struct ggml_tensor {
  318. enum ggml_type type;
  319. enum ggml_backend backend;
  320. int n_dims;
  321. int64_t ne[GGML_MAX_DIMS]; // number of elements
  322. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  323. // nb[0] = sizeof(type)
  324. // nb[1] = nb[0] * ne[0] + padding
  325. // nb[i] = nb[i-1] * ne[i-1]
  326. // compute data
  327. enum ggml_op op;
  328. bool is_param;
  329. struct ggml_tensor * grad;
  330. struct ggml_tensor * src0;
  331. struct ggml_tensor * src1;
  332. struct ggml_tensor * opt[GGML_MAX_OPT];
  333. // thread scheduling
  334. int n_tasks;
  335. // performance
  336. int perf_runs;
  337. int64_t perf_cycles;
  338. int64_t perf_time_us;
  339. void * data;
  340. char name[GGML_MAX_NAME];
  341. char padding[16];
  342. };
  343. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  344. // computation graph
  345. struct ggml_cgraph {
  346. int n_nodes;
  347. int n_leafs;
  348. int n_threads;
  349. size_t work_size;
  350. struct ggml_tensor * work;
  351. struct ggml_tensor * nodes[GGML_MAX_NODES];
  352. struct ggml_tensor * grads[GGML_MAX_NODES];
  353. struct ggml_tensor * leafs[GGML_MAX_NODES];
  354. // performance
  355. int perf_runs;
  356. int64_t perf_cycles;
  357. int64_t perf_time_us;
  358. };
  359. // scratch buffer
  360. struct ggml_scratch {
  361. size_t offs;
  362. size_t size;
  363. void * data;
  364. };
  365. struct ggml_init_params {
  366. // memory pool
  367. size_t mem_size; // bytes
  368. void * mem_buffer; // if NULL, memory will be allocated internally
  369. bool no_alloc; // don't allocate memory for the tensor data
  370. };
  371. // misc
  372. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  373. GGML_API int64_t ggml_time_ms(void);
  374. GGML_API int64_t ggml_time_us(void);
  375. GGML_API int64_t ggml_cycles(void);
  376. GGML_API int64_t ggml_cycles_per_ms(void);
  377. GGML_API void ggml_print_object (const struct ggml_object * obj);
  378. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  379. GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor);
  380. GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
  381. GGML_API int ggml_blck_size (enum ggml_type type);
  382. GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block
  383. GGML_API float ggml_type_sizef(enum ggml_type type); // ggml_type_size()/ggml_blck_size() as float
  384. GGML_API const char * ggml_type_name(enum ggml_type type);
  385. GGML_API const char * ggml_op_name (enum ggml_op op);
  386. GGML_API size_t ggml_element_size(const struct ggml_tensor * tensor);
  387. GGML_API bool ggml_is_quantized(enum ggml_type type);
  388. // TODO: temporary until model loading of ggml examples is refactored
  389. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  390. // use this to compute the memory overhead of a tensor
  391. GGML_API size_t ggml_tensor_overhead(void);
  392. // main
  393. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  394. GGML_API void ggml_free(struct ggml_context * ctx);
  395. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  396. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  397. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  398. GGML_API void * ggml_get_mem_buffer(struct ggml_context * ctx);
  399. GGML_API size_t ggml_get_mem_size (struct ggml_context * ctx);
  400. GGML_API struct ggml_tensor * ggml_new_tensor(
  401. struct ggml_context * ctx,
  402. enum ggml_type type,
  403. int n_dims,
  404. const int64_t *ne);
  405. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  406. struct ggml_context * ctx,
  407. enum ggml_type type,
  408. int64_t ne0);
  409. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  410. struct ggml_context * ctx,
  411. enum ggml_type type,
  412. int64_t ne0,
  413. int64_t ne1);
  414. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  415. struct ggml_context * ctx,
  416. enum ggml_type type,
  417. int64_t ne0,
  418. int64_t ne1,
  419. int64_t ne2);
  420. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  421. struct ggml_context * ctx,
  422. enum ggml_type type,
  423. int64_t ne0,
  424. int64_t ne1,
  425. int64_t ne2,
  426. int64_t ne3);
  427. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  428. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  429. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  430. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, const struct ggml_tensor * src);
  431. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  432. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  433. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  434. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  435. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  436. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  437. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  438. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  439. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  440. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  441. GGML_API const char * ggml_get_name(const struct ggml_tensor * tensor);
  442. GGML_API void ggml_set_name(struct ggml_tensor * tensor, const char * name);
  443. //
  444. // operations on tensors with backpropagation
  445. //
  446. GGML_API struct ggml_tensor * ggml_dup(
  447. struct ggml_context * ctx,
  448. struct ggml_tensor * a);
  449. GGML_API struct ggml_tensor * ggml_add(
  450. struct ggml_context * ctx,
  451. struct ggml_tensor * a,
  452. struct ggml_tensor * b);
  453. GGML_API struct ggml_tensor * ggml_add_inplace(
  454. struct ggml_context * ctx,
  455. struct ggml_tensor * a,
  456. struct ggml_tensor * b);
  457. GGML_API struct ggml_tensor * ggml_add1(
  458. struct ggml_context * ctx,
  459. struct ggml_tensor * a,
  460. struct ggml_tensor * b);
  461. GGML_API struct ggml_tensor * ggml_acc(
  462. struct ggml_context * ctx,
  463. struct ggml_tensor * a,
  464. struct ggml_tensor * b,
  465. size_t nb1,
  466. size_t nb2,
  467. size_t nb3,
  468. size_t offset);
  469. GGML_API struct ggml_tensor * ggml_acc_inplace(
  470. struct ggml_context * ctx,
  471. struct ggml_tensor * a,
  472. struct ggml_tensor * b,
  473. size_t nb1,
  474. size_t nb2,
  475. size_t nb3,
  476. size_t offset);
  477. GGML_API struct ggml_tensor * ggml_sub(
  478. struct ggml_context * ctx,
  479. struct ggml_tensor * a,
  480. struct ggml_tensor * b);
  481. GGML_API struct ggml_tensor * ggml_mul(
  482. struct ggml_context * ctx,
  483. struct ggml_tensor * a,
  484. struct ggml_tensor * b);
  485. GGML_API struct ggml_tensor * ggml_div(
  486. struct ggml_context * ctx,
  487. struct ggml_tensor * a,
  488. struct ggml_tensor * b);
  489. GGML_API struct ggml_tensor * ggml_sqr(
  490. struct ggml_context * ctx,
  491. struct ggml_tensor * a);
  492. GGML_API struct ggml_tensor * ggml_sqrt(
  493. struct ggml_context * ctx,
  494. struct ggml_tensor * a);
  495. GGML_API struct ggml_tensor * ggml_log(
  496. struct ggml_context * ctx,
  497. struct ggml_tensor * a);
  498. GGML_API struct ggml_tensor * ggml_log_inplace(
  499. struct ggml_context * ctx,
  500. struct ggml_tensor * a);
  501. // return scalar
  502. GGML_API struct ggml_tensor * ggml_sum(
  503. struct ggml_context * ctx,
  504. struct ggml_tensor * a);
  505. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  506. GGML_API struct ggml_tensor * ggml_sum_rows(
  507. struct ggml_context * ctx,
  508. struct ggml_tensor * a);
  509. // mean along rows
  510. GGML_API struct ggml_tensor * ggml_mean(
  511. struct ggml_context * ctx,
  512. struct ggml_tensor * a);
  513. // if a is the same shape as b, and a is not parameter, return a
  514. // otherwise, return a new tensor: repeat(a) to fit in b
  515. GGML_API struct ggml_tensor * ggml_repeat(
  516. struct ggml_context * ctx,
  517. struct ggml_tensor * a,
  518. struct ggml_tensor * b);
  519. GGML_API struct ggml_tensor * ggml_abs(
  520. struct ggml_context * ctx,
  521. struct ggml_tensor * a);
  522. GGML_API struct ggml_tensor * ggml_sgn(
  523. struct ggml_context * ctx,
  524. struct ggml_tensor * a);
  525. GGML_API struct ggml_tensor * ggml_neg(
  526. struct ggml_context * ctx,
  527. struct ggml_tensor * a);
  528. GGML_API struct ggml_tensor * ggml_step(
  529. struct ggml_context * ctx,
  530. struct ggml_tensor * a);
  531. GGML_API struct ggml_tensor * ggml_relu(
  532. struct ggml_context * ctx,
  533. struct ggml_tensor * a);
  534. // TODO: double-check this computation is correct
  535. GGML_API struct ggml_tensor * ggml_gelu(
  536. struct ggml_context * ctx,
  537. struct ggml_tensor * a);
  538. GGML_API struct ggml_tensor * ggml_silu(
  539. struct ggml_context * ctx,
  540. struct ggml_tensor * a);
  541. // a - x
  542. // b - dy
  543. GGML_API struct ggml_tensor * ggml_silu_back(
  544. struct ggml_context * ctx,
  545. struct ggml_tensor * a,
  546. struct ggml_tensor * b);
  547. // normalize along rows
  548. // TODO: eps is hardcoded to 1e-5 for now
  549. GGML_API struct ggml_tensor * ggml_norm(
  550. struct ggml_context * ctx,
  551. struct ggml_tensor * a);
  552. GGML_API struct ggml_tensor * ggml_rms_norm(
  553. struct ggml_context * ctx,
  554. struct ggml_tensor * a);
  555. // a - x
  556. // b - dy
  557. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  558. struct ggml_context * ctx,
  559. struct ggml_tensor * a,
  560. struct ggml_tensor * b);
  561. // A: m rows, n columns
  562. // B: p rows, n columns (i.e. we transpose it internally)
  563. // result is m columns, p rows
  564. GGML_API struct ggml_tensor * ggml_mul_mat(
  565. struct ggml_context * ctx,
  566. struct ggml_tensor * a,
  567. struct ggml_tensor * b);
  568. //
  569. // operations on tensors without backpropagation
  570. //
  571. GGML_API struct ggml_tensor * ggml_scale(
  572. struct ggml_context * ctx,
  573. struct ggml_tensor * a,
  574. struct ggml_tensor * b);
  575. // in-place, returns view(a)
  576. GGML_API struct ggml_tensor * ggml_scale_inplace(
  577. struct ggml_context * ctx,
  578. struct ggml_tensor * a,
  579. struct ggml_tensor * b);
  580. // b -> view(a,offset,nb1,nb2,3), return modified a
  581. GGML_API struct ggml_tensor * ggml_set(
  582. struct ggml_context * ctx,
  583. struct ggml_tensor * a,
  584. struct ggml_tensor * b,
  585. size_t nb1,
  586. size_t nb2,
  587. size_t nb3,
  588. size_t offset);
  589. // b -> view(a,offset,nb1,nb2,3), return view(a)
  590. GGML_API struct ggml_tensor * ggml_set_inplace(
  591. struct ggml_context * ctx,
  592. struct ggml_tensor * a,
  593. struct ggml_tensor * b,
  594. size_t nb1,
  595. size_t nb2,
  596. size_t nb3,
  597. size_t offset);
  598. GGML_API struct ggml_tensor * ggml_set_1d(
  599. struct ggml_context * ctx,
  600. struct ggml_tensor * a,
  601. struct ggml_tensor * b,
  602. size_t offset);
  603. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  604. struct ggml_context * ctx,
  605. struct ggml_tensor * a,
  606. struct ggml_tensor * b,
  607. size_t offset);
  608. // b -> view(a,offset,nb1,nb2,3), return modified a
  609. GGML_API struct ggml_tensor * ggml_set_2d(
  610. struct ggml_context * ctx,
  611. struct ggml_tensor * a,
  612. struct ggml_tensor * b,
  613. size_t nb1,
  614. size_t offset);
  615. // b -> view(a,offset,nb1,nb2,3), return view(a)
  616. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  617. struct ggml_context * ctx,
  618. struct ggml_tensor * a,
  619. struct ggml_tensor * b,
  620. size_t nb1,
  621. size_t offset);
  622. // a -> b, return view(b)
  623. GGML_API struct ggml_tensor * ggml_cpy(
  624. struct ggml_context * ctx,
  625. struct ggml_tensor * a,
  626. struct ggml_tensor * b);
  627. // make contiguous
  628. GGML_API struct ggml_tensor * ggml_cont(
  629. struct ggml_context * ctx,
  630. struct ggml_tensor * a);
  631. // return view(a), b specifies the new shape
  632. // TODO: when we start computing gradient, make a copy instead of view
  633. GGML_API struct ggml_tensor * ggml_reshape(
  634. struct ggml_context * ctx,
  635. struct ggml_tensor * a,
  636. struct ggml_tensor * b);
  637. // return view(a)
  638. // TODO: when we start computing gradient, make a copy instead of view
  639. GGML_API struct ggml_tensor * ggml_reshape_1d(
  640. struct ggml_context * ctx,
  641. struct ggml_tensor * a,
  642. int64_t ne0);
  643. GGML_API struct ggml_tensor * ggml_reshape_2d(
  644. struct ggml_context * ctx,
  645. struct ggml_tensor * a,
  646. int64_t ne0,
  647. int64_t ne1);
  648. // return view(a)
  649. // TODO: when we start computing gradient, make a copy instead of view
  650. GGML_API struct ggml_tensor * ggml_reshape_3d(
  651. struct ggml_context * ctx,
  652. struct ggml_tensor * a,
  653. int64_t ne0,
  654. int64_t ne1,
  655. int64_t ne2);
  656. GGML_API struct ggml_tensor * ggml_reshape_4d(
  657. struct ggml_context * ctx,
  658. struct ggml_tensor * a,
  659. int64_t ne0,
  660. int64_t ne1,
  661. int64_t ne2,
  662. int64_t ne3);
  663. // offset in bytes
  664. GGML_API struct ggml_tensor * ggml_view_1d(
  665. struct ggml_context * ctx,
  666. struct ggml_tensor * a,
  667. int64_t ne0,
  668. size_t offset);
  669. GGML_API struct ggml_tensor * ggml_view_2d(
  670. struct ggml_context * ctx,
  671. struct ggml_tensor * a,
  672. int64_t ne0,
  673. int64_t ne1,
  674. size_t nb1, // row stride in bytes
  675. size_t offset);
  676. GGML_API struct ggml_tensor * ggml_view_3d(
  677. struct ggml_context * ctx,
  678. struct ggml_tensor * a,
  679. int64_t ne0,
  680. int64_t ne1,
  681. int64_t ne2,
  682. size_t nb1, // row stride in bytes
  683. size_t nb2, // slice stride in bytes
  684. size_t offset);
  685. GGML_API struct ggml_tensor * ggml_view_4d(
  686. struct ggml_context * ctx,
  687. struct ggml_tensor * a,
  688. int64_t ne0,
  689. int64_t ne1,
  690. int64_t ne2,
  691. int64_t ne3,
  692. size_t nb1, // row stride in bytes
  693. size_t nb2, // slice stride in bytes
  694. size_t nb3,
  695. size_t offset);
  696. GGML_API struct ggml_tensor * ggml_permute(
  697. struct ggml_context * ctx,
  698. struct ggml_tensor * a,
  699. int axis0,
  700. int axis1,
  701. int axis2,
  702. int axis3);
  703. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  704. GGML_API struct ggml_tensor * ggml_transpose(
  705. struct ggml_context * ctx,
  706. struct ggml_tensor * a);
  707. GGML_API struct ggml_tensor * ggml_get_rows(
  708. struct ggml_context * ctx,
  709. struct ggml_tensor * a,
  710. struct ggml_tensor * b);
  711. GGML_API struct ggml_tensor * ggml_get_rows_back(
  712. struct ggml_context * ctx,
  713. struct ggml_tensor * a,
  714. struct ggml_tensor * b,
  715. struct ggml_tensor * c);
  716. GGML_API struct ggml_tensor * ggml_diag(
  717. struct ggml_context * ctx,
  718. struct ggml_tensor * a);
  719. // set elements above the diagonal to -INF
  720. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  721. struct ggml_context * ctx,
  722. struct ggml_tensor * a,
  723. int n_past);
  724. // in-place, returns view(a)
  725. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  726. struct ggml_context * ctx,
  727. struct ggml_tensor * a,
  728. int n_past);
  729. // set elements above the diagonal to 0
  730. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. int n_past);
  734. // in-place, returns view(a)
  735. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  736. struct ggml_context * ctx,
  737. struct ggml_tensor * a,
  738. int n_past);
  739. GGML_API struct ggml_tensor * ggml_soft_max(
  740. struct ggml_context * ctx,
  741. struct ggml_tensor * a);
  742. // in-place, returns view(a)
  743. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  744. struct ggml_context * ctx,
  745. struct ggml_tensor * a);
  746. // rotary position embedding
  747. // if mode & 1 == 1, skip n_past elements
  748. // if mode & 2 == 1, GPT-NeoX style
  749. // TODO: avoid creating a new tensor every time
  750. GGML_API struct ggml_tensor * ggml_rope(
  751. struct ggml_context * ctx,
  752. struct ggml_tensor * a,
  753. int n_past,
  754. int n_dims,
  755. int mode);
  756. // in-place, returns view(a)
  757. GGML_API struct ggml_tensor * ggml_rope_inplace(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a,
  760. int n_past,
  761. int n_dims,
  762. int mode);
  763. // rotary position embedding backward, i.e compute dx from dy
  764. // a - dy
  765. GGML_API struct ggml_tensor * ggml_rope_back(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a,
  768. int n_past,
  769. int n_dims,
  770. int mode);
  771. // alibi position embedding
  772. // in-place, returns view(a)
  773. struct ggml_tensor * ggml_alibi(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a,
  776. int n_past,
  777. int n_head,
  778. float bias_max);
  779. // clamp
  780. // in-place, returns view(a)
  781. struct ggml_tensor * ggml_clamp(
  782. struct ggml_context * ctx,
  783. struct ggml_tensor * a,
  784. float min,
  785. float max);
  786. // padding = 1
  787. // TODO: we don't support extra parameters for now
  788. // that's why we are hard-coding the stride, padding, and dilation
  789. // not great ..
  790. GGML_API struct ggml_tensor * ggml_conv_1d_1s(
  791. struct ggml_context * ctx,
  792. struct ggml_tensor * a,
  793. struct ggml_tensor * b);
  794. GGML_API struct ggml_tensor * ggml_conv_1d_2s(
  795. struct ggml_context * ctx,
  796. struct ggml_tensor * a,
  797. struct ggml_tensor * b);
  798. GGML_API struct ggml_tensor * ggml_flash_attn(
  799. struct ggml_context * ctx,
  800. struct ggml_tensor * q,
  801. struct ggml_tensor * k,
  802. struct ggml_tensor * v,
  803. bool masked);
  804. GGML_API struct ggml_tensor * ggml_flash_ff(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a,
  807. struct ggml_tensor * b0,
  808. struct ggml_tensor * b1,
  809. struct ggml_tensor * c0,
  810. struct ggml_tensor * c1);
  811. // Mapping operations
  812. typedef void (*ggml_unary_op_f32_t)(const int, float *, const float *);
  813. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  814. GGML_API struct ggml_tensor * ggml_map_unary_f32(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a,
  817. ggml_unary_op_f32_t fun);
  818. GGML_API struct ggml_tensor * ggml_map_binary_f32(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a,
  821. struct ggml_tensor * b,
  822. ggml_binary_op_f32_t fun);
  823. //
  824. // automatic differentiation
  825. //
  826. GGML_API void ggml_set_param(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * tensor);
  829. GGML_API void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  830. GGML_API struct ggml_cgraph ggml_build_forward (struct ggml_tensor * tensor);
  831. GGML_API struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep);
  832. GGML_API void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  833. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph);
  834. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  835. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  836. GGML_API struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  837. // print info and performance information for the graph
  838. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  839. // dump the graph into a file using the dot format
  840. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  841. //
  842. // optimization
  843. //
  844. // optimization methods
  845. enum ggml_opt_type {
  846. GGML_OPT_ADAM,
  847. GGML_OPT_LBFGS,
  848. };
  849. // linesearch methods
  850. enum ggml_linesearch {
  851. GGML_LINESEARCH_DEFAULT = 1,
  852. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  853. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  854. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  855. };
  856. // optimization return values
  857. enum ggml_opt_result {
  858. GGML_OPT_OK = 0,
  859. GGML_OPT_DID_NOT_CONVERGE,
  860. GGML_OPT_NO_CONTEXT,
  861. GGML_OPT_INVALID_WOLFE,
  862. GGML_OPT_FAIL,
  863. GGML_LINESEARCH_FAIL = -128,
  864. GGML_LINESEARCH_MINIMUM_STEP,
  865. GGML_LINESEARCH_MAXIMUM_STEP,
  866. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  867. GGML_LINESEARCH_INVALID_PARAMETERS,
  868. };
  869. // optimization parameters
  870. //
  871. // see ggml.c (ggml_opt_default_params) for default values
  872. //
  873. struct ggml_opt_params {
  874. enum ggml_opt_type type;
  875. int n_threads;
  876. // delta-based convergence test
  877. //
  878. // if past == 0 - disabled
  879. // if past > 0:
  880. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  881. //
  882. int past;
  883. float delta;
  884. // maximum number of iterations without improvement
  885. //
  886. // if 0 - disabled
  887. // if > 0:
  888. // assume convergence if no cost improvement in this number of iterations
  889. //
  890. int max_no_improvement;
  891. bool print_forward_graph;
  892. bool print_backward_graph;
  893. // ADAM parameters
  894. struct {
  895. int n_iter;
  896. float alpha; // learning rate
  897. float beta1;
  898. float beta2;
  899. float eps; // epsilon for numerical stability
  900. float eps_f; // epsilon for convergence test
  901. float eps_g; // epsilon for convergence test
  902. } adam;
  903. // LBFGS parameters
  904. struct {
  905. int m; // number of corrections to approximate the inv. Hessian
  906. int n_iter;
  907. int max_linesearch;
  908. float eps; // convergence tolerance
  909. float ftol; // line search tolerance
  910. float wolfe;
  911. float min_step;
  912. float max_step;
  913. enum ggml_linesearch linesearch;
  914. } lbfgs;
  915. };
  916. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  917. // optimize the function defined by the tensor f
  918. GGML_API enum ggml_opt_result ggml_opt(
  919. struct ggml_context * ctx,
  920. struct ggml_opt_params params,
  921. struct ggml_tensor * f);
  922. //
  923. // quantization
  924. //
  925. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  926. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  927. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  928. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  929. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  930. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist);
  931. //
  932. // system info
  933. //
  934. GGML_API int ggml_cpu_has_avx (void);
  935. GGML_API int ggml_cpu_has_avx2 (void);
  936. GGML_API int ggml_cpu_has_avx512 (void);
  937. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  938. GGML_API int ggml_cpu_has_avx512_vnni(void);
  939. GGML_API int ggml_cpu_has_fma (void);
  940. GGML_API int ggml_cpu_has_neon (void);
  941. GGML_API int ggml_cpu_has_arm_fma (void);
  942. GGML_API int ggml_cpu_has_f16c (void);
  943. GGML_API int ggml_cpu_has_fp16_va (void);
  944. GGML_API int ggml_cpu_has_wasm_simd (void);
  945. GGML_API int ggml_cpu_has_blas (void);
  946. GGML_API int ggml_cpu_has_cublas (void);
  947. GGML_API int ggml_cpu_has_clblast (void);
  948. GGML_API int ggml_cpu_has_gpublas (void);
  949. GGML_API int ggml_cpu_has_sse3 (void);
  950. GGML_API int ggml_cpu_has_vsx (void);
  951. //
  952. // Internal types and functions exposed for tests and benchmarks
  953. //
  954. #ifdef __cplusplus
  955. // restrict not standard in C++
  956. #define GGML_RESTRICT
  957. #else
  958. #define GGML_RESTRICT restrict
  959. #endif
  960. typedef void (*dequantize_row_q_t)(const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  961. typedef void (*quantize_row_q_t) (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  962. typedef void (*vec_dot_q_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  963. typedef struct {
  964. dequantize_row_q_t dequantize_row_q;
  965. quantize_row_q_t quantize_row_q;
  966. quantize_row_q_t quantize_row_q_reference;
  967. quantize_row_q_t quantize_row_q_dot;
  968. vec_dot_q_t vec_dot_q;
  969. enum ggml_type vec_dot_type;
  970. } quantize_fns_t;
  971. quantize_fns_t ggml_internal_get_quantize_fn(size_t i);
  972. #ifdef __cplusplus
  973. }
  974. #endif