ggml.c 324 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. // if C99 - static_assert is noop
  20. // ref: https://stackoverflow.com/a/53923785/4039976
  21. #ifndef static_assert
  22. #define static_assert(cond, msg) struct global_scope_noop_trick
  23. #endif
  24. #if defined _MSC_VER || defined(__MINGW32__)
  25. #if !defined(__MINGW32__)
  26. #include <Windows.h>
  27. #else
  28. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  29. #include <windows.h>
  30. #endif
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  49. if (handle == NULL)
  50. {
  51. return EAGAIN;
  52. }
  53. *out = handle;
  54. return 0;
  55. }
  56. static int pthread_join(pthread_t thread, void* unused) {
  57. return (int) WaitForSingleObject(thread, INFINITE);
  58. }
  59. static int sched_yield (void) {
  60. Sleep (0);
  61. return 0;
  62. }
  63. #else
  64. #include <pthread.h>
  65. #include <stdatomic.h>
  66. typedef void* thread_ret_t;
  67. #endif
  68. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  69. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  70. #ifndef __FMA__
  71. #define __FMA__
  72. #endif
  73. #ifndef __F16C__
  74. #define __F16C__
  75. #endif
  76. #ifndef __SSE3__
  77. #define __SSE3__
  78. #endif
  79. #endif
  80. #ifdef __HAIKU__
  81. #define static_assert(cond, msg) _Static_assert(cond, msg)
  82. #endif
  83. #define GGML_MLOCK_SUPPORT 0
  84. #ifdef __has_include
  85. #if __has_include(<sys/mman.h>)
  86. #undef GGML_MLOCK_SUPPORT
  87. #define GGML_MLOCK_SUPPORT 1
  88. #include <sys/mman.h>
  89. #endif
  90. #endif
  91. /*#define GGML_PERF*/
  92. #define GGML_DEBUG 0
  93. #define GGML_GELU_FP16
  94. #define GGML_SILU_FP16
  95. #define GGML_SOFT_MAX_UNROLL 4
  96. #define GGML_VEC_DOT_UNROLL 2
  97. #ifdef GGML_USE_ACCELERATE
  98. // uncomment to use vDSP for soft max computation
  99. // note: not sure if it is actually faster
  100. //#define GGML_SOFT_MAX_ACCELERATE
  101. #endif
  102. #if UINTPTR_MAX == 0xFFFFFFFF
  103. #define GGML_MEM_ALIGN 4
  104. #else
  105. #define GGML_MEM_ALIGN 16
  106. #endif
  107. #define UNUSED(x) (void)(x)
  108. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  109. #define GGML_ASSERT(x) \
  110. do { \
  111. if (!(x)) { \
  112. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  113. abort(); \
  114. } \
  115. } while (0)
  116. #ifdef GGML_USE_ACCELERATE
  117. #include <Accelerate/Accelerate.h>
  118. #elif GGML_USE_OPENBLAS
  119. #include <cblas.h>
  120. #endif
  121. #undef MIN
  122. #undef MAX
  123. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  124. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  125. // floating point type used to accumulate sums
  126. typedef double ggml_float;
  127. // 16-bit float
  128. // on Arm, we use __fp16
  129. // on x86, we use uint16_t
  130. #ifdef __ARM_NEON
  131. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  132. //
  133. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  134. //
  135. #include <arm_neon.h>
  136. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  137. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  138. #define GGML_FP16_TO_FP32(x) ((float) (x))
  139. #define GGML_FP32_TO_FP16(x) (x)
  140. #else
  141. #ifdef __wasm_simd128__
  142. #include <wasm_simd128.h>
  143. #else
  144. #ifdef __POWER9_VECTOR__
  145. #include <altivec.h>
  146. #undef bool
  147. #define bool _Bool
  148. #else
  149. #include <immintrin.h>
  150. #endif
  151. #endif
  152. #ifdef __F16C__
  153. #ifdef _MSC_VER
  154. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  155. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  156. #else
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  159. #endif
  160. #elif defined(__POWER9_VECTOR__)
  161. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  162. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  163. /* the inline asm below is about 12% faster than the lookup method */
  164. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  165. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  166. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  167. register float f;
  168. register double d;
  169. __asm__(
  170. "mtfprd %0,%2\n"
  171. "xscvhpdp %0,%0\n"
  172. "frsp %1,%0\n" :
  173. /* temp */ "=d"(d),
  174. /* out */ "=f"(f):
  175. /* in */ "r"(h));
  176. return f;
  177. }
  178. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  179. register double d;
  180. register ggml_fp16_t r;
  181. __asm__( /* xscvdphp can work on double or single precision */
  182. "xscvdphp %0,%2\n"
  183. "mffprd %1,%0\n" :
  184. /* temp */ "=d"(d),
  185. /* out */ "=r"(r):
  186. /* in */ "f"(f));
  187. return r;
  188. }
  189. #else
  190. // FP16 <-> FP32
  191. // ref: https://github.com/Maratyszcza/FP16
  192. static inline float fp32_from_bits(uint32_t w) {
  193. union {
  194. uint32_t as_bits;
  195. float as_value;
  196. } fp32;
  197. fp32.as_bits = w;
  198. return fp32.as_value;
  199. }
  200. static inline uint32_t fp32_to_bits(float f) {
  201. union {
  202. float as_value;
  203. uint32_t as_bits;
  204. } fp32;
  205. fp32.as_value = f;
  206. return fp32.as_bits;
  207. }
  208. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  209. const uint32_t w = (uint32_t) h << 16;
  210. const uint32_t sign = w & UINT32_C(0x80000000);
  211. const uint32_t two_w = w + w;
  212. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  213. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  214. const float exp_scale = 0x1.0p-112f;
  215. #else
  216. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  217. #endif
  218. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  219. const uint32_t magic_mask = UINT32_C(126) << 23;
  220. const float magic_bias = 0.5f;
  221. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  222. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  223. const uint32_t result = sign |
  224. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  225. return fp32_from_bits(result);
  226. }
  227. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  228. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  229. const float scale_to_inf = 0x1.0p+112f;
  230. const float scale_to_zero = 0x1.0p-110f;
  231. #else
  232. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  233. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  234. #endif
  235. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  236. const uint32_t w = fp32_to_bits(f);
  237. const uint32_t shl1_w = w + w;
  238. const uint32_t sign = w & UINT32_C(0x80000000);
  239. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  240. if (bias < UINT32_C(0x71000000)) {
  241. bias = UINT32_C(0x71000000);
  242. }
  243. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  244. const uint32_t bits = fp32_to_bits(base);
  245. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  246. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  247. const uint32_t nonsign = exp_bits + mantissa_bits;
  248. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  249. }
  250. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  251. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  252. #endif // __F16C__
  253. #endif // __ARM_NEON
  254. //
  255. // global data
  256. //
  257. // precomputed gelu table for f16 (128 KB)
  258. static ggml_fp16_t table_gelu_f16[1 << 16];
  259. // precomputed silu table for f16 (128 KB)
  260. static ggml_fp16_t table_silu_f16[1 << 16];
  261. // precomputed exp table for f16 (128 KB)
  262. static ggml_fp16_t table_exp_f16[1 << 16];
  263. // precomputed f32 table for f16 (256 KB)
  264. static float table_f32_f16[1 << 16];
  265. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  266. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  267. // This is also true for POWER9.
  268. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  269. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  270. uint16_t s;
  271. memcpy(&s, &f, sizeof(uint16_t));
  272. return table_f32_f16[s];
  273. }
  274. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  275. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  276. #endif
  277. // note: do not use these inside ggml.c
  278. // these are meant to be used via the ggml.h API
  279. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  280. return (float) GGML_FP16_TO_FP32(x);
  281. }
  282. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  283. return GGML_FP32_TO_FP16(x);
  284. }
  285. //
  286. // timing
  287. //
  288. #if defined(_MSC_VER) || defined(__MINGW32__)
  289. static int64_t timer_freq;
  290. void ggml_time_init(void) {
  291. LARGE_INTEGER frequency;
  292. QueryPerformanceFrequency(&frequency);
  293. timer_freq = frequency.QuadPart;
  294. }
  295. int64_t ggml_time_ms(void) {
  296. LARGE_INTEGER t;
  297. QueryPerformanceCounter(&t);
  298. return (t.QuadPart * 1000) / timer_freq;
  299. }
  300. int64_t ggml_time_us(void) {
  301. LARGE_INTEGER t;
  302. QueryPerformanceCounter(&t);
  303. return (t.QuadPart * 1000000) / timer_freq;
  304. }
  305. #else
  306. void ggml_time_init(void) {}
  307. int64_t ggml_time_ms(void) {
  308. struct timespec ts;
  309. clock_gettime(CLOCK_MONOTONIC, &ts);
  310. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  311. }
  312. int64_t ggml_time_us(void) {
  313. struct timespec ts;
  314. clock_gettime(CLOCK_MONOTONIC, &ts);
  315. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  316. }
  317. #endif
  318. int64_t ggml_cycles(void) {
  319. return clock();
  320. }
  321. int64_t ggml_cycles_per_ms(void) {
  322. return CLOCKS_PER_SEC/1000;
  323. }
  324. #ifdef GGML_PERF
  325. #define ggml_perf_time_ms() ggml_time_ms()
  326. #define ggml_perf_time_us() ggml_time_us()
  327. #define ggml_perf_cycles() ggml_cycles()
  328. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  329. #else
  330. #define ggml_perf_time_ms() 0
  331. #define ggml_perf_time_us() 0
  332. #define ggml_perf_cycles() 0
  333. #define ggml_perf_cycles_per_ms() 0
  334. #endif
  335. //
  336. // cache line
  337. //
  338. #if defined(__cpp_lib_hardware_interference_size)
  339. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  340. #else
  341. #if defined(__POWER9_VECTOR__)
  342. #define CACHE_LINE_SIZE 128
  343. #else
  344. #define CACHE_LINE_SIZE 64
  345. #endif
  346. #endif
  347. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  348. //
  349. // quantization
  350. //
  351. #define QK 32
  352. // AVX routines provided by GH user Const-me
  353. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  354. #if __AVX2__ || __AVX512F__
  355. // Unpack 32 4-bit fields into 32 bytes
  356. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  357. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  358. {
  359. // Load 16 bytes from memory
  360. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  361. // Expand bytes into uint16_t values
  362. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  363. // Unpack values into individual bytes
  364. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  365. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  366. __m256i low = _mm256_and_si256( lowMask, bytes );
  367. high = _mm256_slli_epi16( high, 4 );
  368. bytes = _mm256_or_si256( low, high );
  369. return bytes;
  370. }
  371. static inline __m128i packNibbles( __m256i bytes )
  372. {
  373. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  374. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  375. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  376. __m256i low = _mm256_and_si256( lowByte, bytes );
  377. high = _mm256_srli_epi16( high, 4 );
  378. bytes = _mm256_or_si256( low, high );
  379. // Compress uint16_t lanes into bytes
  380. __m128i r0 = _mm256_castsi256_si128( bytes );
  381. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  382. return _mm_packus_epi16( r0, r1 );
  383. }
  384. #elif __AVX__
  385. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  386. {
  387. // Load 8 bytes from memory
  388. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  389. // Expand bytes into uint16_t values
  390. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  391. // Unpack values into individual bytes
  392. const __m128i lowMask = _mm_set1_epi8( 0xF );
  393. __m128i high = _mm_andnot_si128( lowMask, bytes );
  394. __m128i low = _mm_and_si128( lowMask, bytes );
  395. high = _mm_slli_epi16( high, 4 );
  396. bytes = _mm_or_si128( low, high );
  397. return bytes;
  398. }
  399. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  400. {
  401. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  402. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  403. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  404. __m128i low = _mm_and_si128( lowByte, bytes1 );
  405. high = _mm_srli_epi16( high, 4 );
  406. bytes1 = _mm_or_si128( low, high );
  407. high = _mm_andnot_si128( lowByte, bytes2 );
  408. low = _mm_and_si128( lowByte, bytes2 );
  409. high = _mm_srli_epi16( high, 4 );
  410. bytes2 = _mm_or_si128( low, high );
  411. return _mm_packus_epi16( bytes1, bytes2);
  412. }
  413. #endif
  414. // method 5
  415. // blocks of QK elements
  416. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  417. typedef struct {
  418. float d; // delta
  419. uint8_t qs[QK / 2]; // nibbles / quants
  420. } block_q4_0;
  421. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  422. // method 4
  423. // blocks of QK elements
  424. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  425. typedef struct {
  426. float d;
  427. float m;
  428. uint8_t qs[QK / 2]; // nibbles / quants
  429. } block_q4_1;
  430. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  431. // reference implementation for deterministic creation of model files
  432. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  433. assert(k % QK == 0);
  434. const int nb = k / QK;
  435. uint8_t pp[QK/2];
  436. for (int i = 0; i < nb; i++) {
  437. float amax = 0.0f; // absolute max
  438. for (int l = 0; l < QK; l++) {
  439. const float v = x[i*QK + l];
  440. amax = MAX(amax, fabsf(v));
  441. }
  442. const float d = amax / ((1 << 3) - 1);
  443. const float id = d ? 1.0f/d : 0.0f;
  444. y[i].d = d;
  445. for (int l = 0; l < QK; l += 2) {
  446. const float v0 = x[i*QK + l + 0]*id;
  447. const float v1 = x[i*QK + l + 1]*id;
  448. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  449. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  450. assert(vi0 < 16);
  451. assert(vi1 < 16);
  452. pp[l/2] = vi0 | (vi1 << 4);
  453. }
  454. memcpy(y[i].qs, pp, sizeof(pp));
  455. }
  456. }
  457. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  458. assert(k % QK == 0);
  459. const int nb = k / QK;
  460. block_q4_0 * restrict y = vy;
  461. #if defined(__POWER9_VECTOR__)
  462. const vector float v85 = vec_splats(8.5f);
  463. for (int i = 0; i < nb; i++) {
  464. float amax = 0.0f; // absolute max
  465. vector float srcv [8];
  466. vector float asrcv[8];
  467. vector float amaxv[8];
  468. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  469. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  470. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  471. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  472. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  473. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  474. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  475. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  476. amax = MAX(
  477. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  478. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  479. const float d = amax / ((1 << 3) - 1);
  480. const float id = d ? 1.0/d : 0.0;
  481. y[i].d = d;
  482. const vector float vid = vec_splats(id);
  483. uint8_t * restrict pb = y[i].qs;
  484. for (int l = 0; l < 8; l++) {
  485. const vector float vf = vec_madd(srcv[l], vid, v85);
  486. const vector signed int vi = vec_signed(vf);
  487. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  488. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  489. }
  490. }
  491. #elif __ARM_NEON
  492. for (int i = 0; i < nb; i++) {
  493. float32x4_t srcv [8];
  494. float32x4_t asrcv[8];
  495. float32x4_t amaxv[8];
  496. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  497. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  498. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  499. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  500. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  501. // absolute max
  502. const float amax = MAX(
  503. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  504. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  505. const float d = amax / ((1 << 3) - 1);
  506. const float id = d ? 1.0f/d : 0.0f;
  507. y[i].d = d;
  508. for (int l = 0; l < 8; l++) {
  509. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  510. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  511. const int32x4_t vi = vcvtq_s32_f32(vf);
  512. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  513. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  514. }
  515. }
  516. #elif defined(__AVX2__)
  517. for (int i = 0; i < nb; i++) {
  518. // Load elements into 4 AVX vectors
  519. __m256 v0 = _mm256_loadu_ps( x );
  520. __m256 v1 = _mm256_loadu_ps( x + 8 );
  521. __m256 v2 = _mm256_loadu_ps( x + 16 );
  522. __m256 v3 = _mm256_loadu_ps( x + 24 );
  523. x += 32;
  524. // Compute max(abs(e)) for the block
  525. const __m256 signBit = _mm256_set1_ps( -0.0f );
  526. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  527. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  528. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  529. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  530. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  531. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  532. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  533. const float maxScalar = _mm_cvtss_f32( max4 );
  534. // Quantize these floats
  535. const float d = maxScalar / 7.0f;
  536. y[i].d = d;
  537. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  538. const __m256 mul = _mm256_set1_ps( id );
  539. // Apply the multiplier
  540. v0 = _mm256_mul_ps( v0, mul );
  541. v1 = _mm256_mul_ps( v1, mul );
  542. v2 = _mm256_mul_ps( v2, mul );
  543. v3 = _mm256_mul_ps( v3, mul );
  544. // Round to nearest integer
  545. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  546. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  547. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  548. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  549. // Convert floats to integers
  550. __m256i i0 = _mm256_cvtps_epi32( v0 );
  551. __m256i i1 = _mm256_cvtps_epi32( v1 );
  552. __m256i i2 = _mm256_cvtps_epi32( v2 );
  553. __m256i i3 = _mm256_cvtps_epi32( v3 );
  554. // Convert int32 to int16
  555. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  556. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  557. // Convert int16 to int8
  558. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  559. // We got our precious signed bytes, but the order is now wrong
  560. // These AVX2 pack instructions process 16-byte pieces independently
  561. // The following instruction is fixing the order
  562. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  563. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  564. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  565. const __m256i off = _mm256_set1_epi8( 8 );
  566. i0 = _mm256_add_epi8( i0, off );
  567. // Compress the vector into 4 bit/value, and store
  568. __m128i res = packNibbles( i0 );
  569. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  570. }
  571. #elif defined(__AVX__)
  572. for (int i = 0; i < nb; i++) {
  573. // Load elements into 4 AVX vectors
  574. __m256 v0 = _mm256_loadu_ps( x );
  575. __m256 v1 = _mm256_loadu_ps( x + 8 );
  576. __m256 v2 = _mm256_loadu_ps( x + 16 );
  577. __m256 v3 = _mm256_loadu_ps( x + 24 );
  578. x += 32;
  579. // Compute max(abs(e)) for the block
  580. const __m256 signBit = _mm256_set1_ps( -0.0f );
  581. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  582. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  583. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  584. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  585. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  586. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  587. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  588. const float maxScalar = _mm_cvtss_f32( max4 );
  589. // Quantize these floats
  590. const float d = maxScalar / 7.0f;
  591. y[i].d = d;
  592. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  593. const __m256 mul = _mm256_set1_ps( id );
  594. // Apply the multiplier
  595. v0 = _mm256_mul_ps( v0, mul );
  596. v1 = _mm256_mul_ps( v1, mul );
  597. v2 = _mm256_mul_ps( v2, mul );
  598. v3 = _mm256_mul_ps( v3, mul );
  599. // Round to nearest integer
  600. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  601. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  602. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  603. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  604. // Convert floats to integers
  605. __m256i i0 = _mm256_cvtps_epi32( v0 );
  606. __m256i i1 = _mm256_cvtps_epi32( v1 );
  607. __m256i i2 = _mm256_cvtps_epi32( v2 );
  608. __m256i i3 = _mm256_cvtps_epi32( v3 );
  609. // Since we don't have in AVX some necessary functions,
  610. // we split the registers in half and call AVX2 analogs from SSE
  611. __m128i ni0 = _mm256_castsi256_si128( i0 );
  612. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  613. __m128i ni2 = _mm256_castsi256_si128( i1 );
  614. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  615. __m128i ni4 = _mm256_castsi256_si128( i2 );
  616. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  617. __m128i ni6 = _mm256_castsi256_si128( i3 );
  618. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  619. // Convert int32 to int16
  620. ni0 = _mm_packs_epi32( ni0, ni1 );
  621. ni2 = _mm_packs_epi32( ni2, ni3 );
  622. ni4 = _mm_packs_epi32( ni4, ni5 );
  623. ni6 = _mm_packs_epi32( ni6, ni7 );
  624. // Convert int16 to int8
  625. ni0 = _mm_packs_epi16( ni0, ni2 );
  626. ni4 = _mm_packs_epi16( ni4, ni6 );
  627. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  628. const __m128i off = _mm_set1_epi8( 8);
  629. ni0 = _mm_add_epi8( ni0, off );
  630. ni4 = _mm_add_epi8( ni4, off );
  631. // Compress the vector into 4 bit/value, and store
  632. __m128i res = packNibbles( ni0, ni4 );
  633. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  634. }
  635. #elif defined(__wasm_simd128__)
  636. for (int i = 0; i < nb; i++) {
  637. float amax = 0.0f; // absolute max
  638. v128_t srcv [8];
  639. v128_t asrcv[8];
  640. v128_t amaxv[8];
  641. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  642. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  643. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  644. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  645. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  646. amax = MAX(
  647. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  648. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  649. const float d = amax / ((1 << 3) - 1);
  650. const float id = d ? 1.0/d : 0.0;
  651. y[i].d = d;
  652. for (int l = 0; l < 8; l++) {
  653. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  654. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  655. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  656. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  657. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  658. }
  659. }
  660. #else
  661. // scalar
  662. quantize_row_q4_0_reference(x, y, k);
  663. #endif
  664. }
  665. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  666. assert(k % QK == 0);
  667. const int nb = k / QK;
  668. block_q4_1 * restrict y = vy;
  669. uint8_t pp[QK/2];
  670. for (int i = 0; i < nb; i++) {
  671. float min = FLT_MAX;
  672. float max = -FLT_MAX;
  673. for (int l = 0; l < QK; l++) {
  674. const float v = x[i*QK + l];
  675. if (v < min) min = v;
  676. if (v > max) max = v;
  677. }
  678. const float d = (max - min) / ((1 << 4) - 1);
  679. const float id = d ? 1.0f/d : 0.0f;
  680. y[i].d = d;
  681. y[i].m = min;
  682. for (int l = 0; l < QK; l += 2) {
  683. const float v0 = (x[i*QK + l + 0] - min)*id;
  684. const float v1 = (x[i*QK + l + 1] - min)*id;
  685. const uint8_t vi0 = roundf(v0);
  686. const uint8_t vi1 = roundf(v1);
  687. assert(vi0 < 16);
  688. assert(vi1 < 16);
  689. pp[l/2] = vi0 | (vi1 << 4);
  690. }
  691. memcpy(y[i].qs, pp, sizeof(pp));
  692. }
  693. }
  694. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  695. assert(k % QK == 0);
  696. const int nb = k / QK;
  697. block_q4_1 * restrict y = vy;
  698. #if defined(__AVX2__)
  699. for (int i = 0; i < nb; i++) {
  700. // Load elements into 4 AVX vectors
  701. __m256 v0 = _mm256_loadu_ps( x );
  702. __m256 v1 = _mm256_loadu_ps( x + 8 );
  703. __m256 v2 = _mm256_loadu_ps( x + 16 );
  704. __m256 v3 = _mm256_loadu_ps( x + 24 );
  705. x += 32;
  706. // Compute max for the block
  707. __m256 vmax;
  708. vmax = _mm256_max_ps( v0, v1 );
  709. vmax = _mm256_max_ps( vmax, v2 );
  710. vmax = _mm256_max_ps( vmax, v3 );
  711. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  712. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  713. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  714. const float maxScalar = _mm_cvtss_f32( max4 );
  715. // Compute min for the block
  716. __m256 vmin;
  717. vmin = _mm256_min_ps( v0, v1 );
  718. vmin = _mm256_min_ps( vmin, v2 );
  719. vmin = _mm256_min_ps( vmin, v3 );
  720. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  721. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  722. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  723. const float minScalar = _mm_cvtss_f32( min4 );
  724. // Quantize these floats
  725. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  726. const float id = d ? 1.0f/d : 0.0f;
  727. y[i].m = minScalar;
  728. y[i].d = d;
  729. // x = (x-min)*id
  730. const __m256 mul = _mm256_set1_ps( id );
  731. const __m256 off = _mm256_set1_ps( minScalar );
  732. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  733. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  734. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  735. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  736. // Round to nearest integer
  737. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  738. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  739. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  740. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  741. // Convert floats to integers
  742. __m256i i0 = _mm256_cvtps_epi32( v0 );
  743. __m256i i1 = _mm256_cvtps_epi32( v1 );
  744. __m256i i2 = _mm256_cvtps_epi32( v2 );
  745. __m256i i3 = _mm256_cvtps_epi32( v3 );
  746. // Convert int32 to int16
  747. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  748. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  749. // Convert int16 to int8
  750. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  751. // We got our precious signed bytes, but the order is now wrong
  752. // These AVX2 pack instructions process 16-byte pieces independently
  753. // The following instruction is fixing the order
  754. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  755. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  756. // Compress the vector into 4 bit/value, and store
  757. __m128i res = packNibbles( i0 );
  758. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  759. }
  760. #elif __ARM_NEON
  761. for (int i = 0; i < nb; i++) {
  762. float32x4_t srcv[8];
  763. float32x4_t minv[8];
  764. float32x4_t maxv[8];
  765. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  766. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  767. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  768. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  769. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  770. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  771. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  772. const float min = vminvq_f32(minv[0]);
  773. const float max = vmaxvq_f32(maxv[0]);
  774. const float d = (max - min) / ((1 << 4) - 1);
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = d;
  777. y[i].m = min;
  778. const float32x4_t minv0 = vdupq_n_f32(min);
  779. for (int l = 0; l < 8; l++) {
  780. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  781. const int32x4_t vi = vcvtq_s32_f32(v);
  782. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  783. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  784. }
  785. }
  786. #else
  787. // scalar
  788. quantize_row_q4_1_reference(x, vy, k);
  789. #endif
  790. }
  791. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  792. assert(k % QK == 0);
  793. const int nb = k / QK;
  794. const block_q4_0 * restrict x = vx;
  795. #if defined(__AVX2__)
  796. for (int i = 0; i < nb; i++) {
  797. // scale factor
  798. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  799. const uint8_t * restrict pp = x[i].qs;
  800. for (int l = 0; l < QK; l += 32) {
  801. // Load 32x4-bit integers into 32x8-bit integers
  802. __m256i vx8 = bytesFromNibbles(pp+l/2);
  803. // Subtract 8 from the integers
  804. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  805. // Convert to 16-bit int
  806. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  807. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  808. // Convert to 32-bit int -> float 32
  809. const __m256 vf[4] = {
  810. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  811. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  812. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  813. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  814. };
  815. // Scale and store
  816. for (int j = 0; j < 4; j++) {
  817. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  818. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  819. }
  820. }
  821. }
  822. #elif defined(__ARM_NEON)
  823. for (int i = 0; i < nb; i++) {
  824. const float32x4_t vd = vdupq_n_f32(x[i].d);
  825. const uint8_t * restrict pp = x[i].qs;
  826. for (int l = 0; l < QK; l += 16) {
  827. // Load 16x4-bit integers into 8x8-bit integers
  828. const uint8x8_t v8 = vld1_u8(pp + l/2);
  829. // Expand 4-bit qs to 8-bit bytes
  830. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  831. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  832. // Convert to signed 8-bit integers
  833. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  834. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  835. // Subtract 8 from each byte
  836. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  837. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  838. // Interleave and combine
  839. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  840. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  841. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  842. // convert to 2x int16x8_t
  843. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  844. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  845. // convert to 4x float32x4_t
  846. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  847. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  848. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  849. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  850. // Multiply by d
  851. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  852. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  853. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  854. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  855. // Store
  856. vst1q_f32(y + i*QK + l + 0, r0);
  857. vst1q_f32(y + i*QK + l + 4, r1);
  858. vst1q_f32(y + i*QK + l + 8, r2);
  859. vst1q_f32(y + i*QK + l + 12, r3);
  860. }
  861. }
  862. #else
  863. // scalar
  864. for (int i = 0; i < nb; i++) {
  865. const float d = x[i].d;
  866. const uint8_t * restrict pp = x[i].qs;
  867. for (int l = 0; l < QK; l += 2) {
  868. const uint8_t vi = pp[l/2];
  869. const int8_t vi0 = vi & 0xf;
  870. const int8_t vi1 = vi >> 4;
  871. const float v0 = (vi0 - 8)*d;
  872. const float v1 = (vi1 - 8)*d;
  873. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  874. y[i*QK + l + 0] = v0;
  875. y[i*QK + l + 1] = v1;
  876. assert(!isnan(y[i*QK + l + 0]));
  877. assert(!isnan(y[i*QK + l + 1]));
  878. }
  879. }
  880. #endif
  881. }
  882. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  883. assert(k % QK == 0);
  884. const int nb = k / QK;
  885. const block_q4_1 * restrict x = vx;
  886. #if defined(__AVX2__)
  887. for (int i = 0; i < nb; i++) {
  888. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  889. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  890. const uint8_t * restrict pp = x[i].qs;
  891. for (int l = 0; l < QK; l += 32) {
  892. // Load 32x4-bit integers into 32x8-bit integers
  893. __m256i vx8 = bytesFromNibbles(pp+l/2);
  894. // Convert to 16-bit int
  895. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  896. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  897. // Convert to 32-bit int -> float 32
  898. const __m256 vf[4] = {
  899. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  900. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  901. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  902. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  903. };
  904. // Scale, add m and store
  905. for (int j = 0; j < 4; j++) {
  906. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  907. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  908. }
  909. }
  910. }
  911. #elif defined(__ARM_NEON)
  912. for (int i = 0; i < nb; i++) {
  913. const float32x4_t vd = vdupq_n_f32(x[i].d);
  914. const float32x4_t vm = vdupq_n_f32(x[i].m);
  915. const uint8_t * restrict pp = x[i].qs;
  916. for (int l = 0; l < QK; l += 16) {
  917. // Load 16x4-bit integers into 8x8-bit integers
  918. const uint8x8_t v8 = vld1_u8(pp + l/2);
  919. // Expand 4-bit qs to 8-bit bytes
  920. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  921. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  922. // Interleave and combine
  923. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  924. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  925. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  926. // convert to 2x uint16x8_t
  927. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  928. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  929. // convert to 4x float32x4_t
  930. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  931. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  932. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  933. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  934. // multiply by d and add m
  935. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  936. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  937. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  938. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  939. // Store
  940. vst1q_f32(y + i*QK + l + 0, r0);
  941. vst1q_f32(y + i*QK + l + 4, r1);
  942. vst1q_f32(y + i*QK + l + 8, r2);
  943. vst1q_f32(y + i*QK + l + 12, r3);
  944. }
  945. }
  946. #else
  947. for (int i = 0; i < nb; i++) {
  948. const float d = x[i].d;
  949. const float m = x[i].m;
  950. const uint8_t * restrict pp = x[i].qs;
  951. for (int l = 0; l < QK; l += 2) {
  952. const uint8_t vi = pp[l/2];
  953. const int8_t vi0 = vi & 0xf;
  954. const int8_t vi1 = vi >> 4;
  955. const float v0 = vi0*d + m;
  956. const float v1 = vi1*d + m;
  957. y[i*QK + l + 0] = v0;
  958. y[i*QK + l + 1] = v1;
  959. assert(!isnan(y[i*QK + l + 0]));
  960. assert(!isnan(y[i*QK + l + 1]));
  961. }
  962. }
  963. #endif
  964. }
  965. //
  966. // simd mappings
  967. //
  968. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  969. // we then implement the fundamental computation operations below using only these macros
  970. // adding support for new architectures requires to define the corresponding SIMD macros
  971. //
  972. // GGML_F32_STEP / GGML_F16_STEP
  973. // number of elements to process in a single step
  974. //
  975. // GGML_F32_EPR / GGML_F16_EPR
  976. // number of elements to fit in a single register
  977. //
  978. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  979. #define GGML_SIMD
  980. // F32 NEON
  981. #define GGML_F32_STEP 16
  982. #define GGML_F32_EPR 4
  983. #define GGML_F32x4 float32x4_t
  984. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  985. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  986. #define GGML_F32x4_LOAD vld1q_f32
  987. #define GGML_F32x4_STORE vst1q_f32
  988. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  989. #define GGML_F32x4_ADD vaddq_f32
  990. #define GGML_F32x4_MUL vmulq_f32
  991. #if defined(__ARM_FEATURE_QRDMX)
  992. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  993. #else
  994. #define GGML_F32x4_REDUCE_ONE(x) \
  995. (vgetq_lane_f32(x, 0) + \
  996. vgetq_lane_f32(x, 1) + \
  997. vgetq_lane_f32(x, 2) + \
  998. vgetq_lane_f32(x, 3))
  999. #endif
  1000. #define GGML_F32x4_REDUCE(res, x) \
  1001. { \
  1002. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1003. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1004. } \
  1005. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1006. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1007. } \
  1008. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1009. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1010. } \
  1011. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1012. }
  1013. #define GGML_F32_VEC GGML_F32x4
  1014. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1015. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1016. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1017. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1018. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1019. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1020. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1021. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1022. // F16 NEON
  1023. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1024. #define GGML_F16_STEP 32
  1025. #define GGML_F16_EPR 8
  1026. #define GGML_F16x8 float16x8_t
  1027. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1028. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1029. #define GGML_F16x8_LOAD vld1q_f16
  1030. #define GGML_F16x8_STORE vst1q_f16
  1031. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1032. #define GGML_F16x8_ADD vaddq_f16
  1033. #define GGML_F16x8_MUL vmulq_f16
  1034. #define GGML_F16x8_REDUCE(res, x) \
  1035. { \
  1036. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1037. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1038. } \
  1039. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1040. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1041. } \
  1042. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1043. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1044. } \
  1045. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1046. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1047. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1048. }
  1049. #define GGML_F16_VEC GGML_F16x8
  1050. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1051. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1052. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1053. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1054. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1055. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1056. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1057. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1058. #else
  1059. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1060. // and take advantage of the vcvt_ functions to convert to/from FP16
  1061. #define GGML_F16_STEP 16
  1062. #define GGML_F16_EPR 4
  1063. #define GGML_F32Cx4 float32x4_t
  1064. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1065. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1066. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1067. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1068. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1069. #define GGML_F32Cx4_ADD vaddq_f32
  1070. #define GGML_F32Cx4_MUL vmulq_f32
  1071. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1072. #define GGML_F16_VEC GGML_F32Cx4
  1073. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1074. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1075. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1076. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1077. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1078. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1079. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1080. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1081. #endif
  1082. #elif defined(__AVX__)
  1083. #define GGML_SIMD
  1084. // F32 AVX
  1085. #define GGML_F32_STEP 32
  1086. #define GGML_F32_EPR 8
  1087. #define GGML_F32x8 __m256
  1088. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1089. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1090. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1091. #define GGML_F32x8_STORE _mm256_storeu_ps
  1092. #if defined(__FMA__)
  1093. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1094. #else
  1095. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1096. #endif
  1097. #define GGML_F32x8_ADD _mm256_add_ps
  1098. #define GGML_F32x8_MUL _mm256_mul_ps
  1099. #define GGML_F32x8_REDUCE(res, x) \
  1100. { \
  1101. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1102. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1103. } \
  1104. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1105. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1106. } \
  1107. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1108. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1109. } \
  1110. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1111. _mm256_extractf128_ps(x[0], 1)); \
  1112. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1113. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1114. }
  1115. // TODO: is this optimal ?
  1116. #define GGML_F32_VEC GGML_F32x8
  1117. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1118. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1119. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1120. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1121. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1122. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1123. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1124. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1125. // F16 AVX
  1126. #define GGML_F16_STEP 32
  1127. #define GGML_F16_EPR 8
  1128. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1129. #define GGML_F32Cx8 __m256
  1130. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1131. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1132. #if defined(__F16C__)
  1133. // the _mm256_cvt intrinsics require F16C
  1134. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1135. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1136. #else
  1137. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1138. float tmp[8];
  1139. for (int i = 0; i < 8; i++)
  1140. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1141. return _mm256_loadu_ps(tmp);
  1142. }
  1143. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1144. float arr[8];
  1145. _mm256_storeu_ps(arr, y);
  1146. for (int i = 0; i < 8; i++)
  1147. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1148. }
  1149. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1150. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1151. #endif
  1152. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1153. #define GGML_F32Cx8_ADD _mm256_add_ps
  1154. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1155. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1156. #define GGML_F16_VEC GGML_F32Cx8
  1157. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1159. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1160. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1161. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1162. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1163. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1164. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1165. #elif defined(__POWER9_VECTOR__)
  1166. #define GGML_SIMD
  1167. // F32 POWER9
  1168. #define GGML_F32_STEP 32
  1169. #define GGML_F32_EPR 4
  1170. #define GGML_F32x4 vector float
  1171. #define GGML_F32x4_ZERO 0.0f
  1172. #define GGML_F32x4_SET1 vec_splats
  1173. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1174. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1175. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1176. #define GGML_F32x4_ADD vec_add
  1177. #define GGML_F32x4_MUL vec_mul
  1178. #define GGML_F32x4_REDUCE(res, x) \
  1179. { \
  1180. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1181. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1182. } \
  1183. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1184. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1185. } \
  1186. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1187. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1188. } \
  1189. res = vec_extract(x[0], 0) + \
  1190. vec_extract(x[0], 1) + \
  1191. vec_extract(x[0], 2) + \
  1192. vec_extract(x[0], 3); \
  1193. }
  1194. #define GGML_F32_VEC GGML_F32x4
  1195. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1196. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1197. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1198. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1199. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1200. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1201. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1202. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1203. // F16 POWER9
  1204. #define GGML_F16_STEP GGML_F32_STEP
  1205. #define GGML_F16_EPR GGML_F32_EPR
  1206. #define GGML_F16_VEC GGML_F32x4
  1207. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1208. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1209. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1210. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1211. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1212. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1213. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1214. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1215. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1216. #define GGML_F16_VEC_STORE(p, r, i) \
  1217. if (i & 0x1) \
  1218. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1219. r[i - GGML_ENDIAN_BYTE(0)]), \
  1220. 0, p - GGML_F16_EPR)
  1221. #elif defined(__wasm_simd128__)
  1222. #define GGML_SIMD
  1223. // F32 WASM
  1224. #define GGML_F32_STEP 16
  1225. #define GGML_F32_EPR 4
  1226. #define GGML_F32x4 v128_t
  1227. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1228. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1229. #define GGML_F32x4_LOAD wasm_v128_load
  1230. #define GGML_F32x4_STORE wasm_v128_store
  1231. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1232. #define GGML_F32x4_ADD wasm_f32x4_add
  1233. #define GGML_F32x4_MUL wasm_f32x4_mul
  1234. #define GGML_F32x4_REDUCE(res, x) \
  1235. { \
  1236. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1237. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1238. } \
  1239. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1240. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1241. } \
  1242. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1243. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1244. } \
  1245. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1246. wasm_f32x4_extract_lane(x[0], 1) + \
  1247. wasm_f32x4_extract_lane(x[0], 2) + \
  1248. wasm_f32x4_extract_lane(x[0], 3); \
  1249. }
  1250. #define GGML_F32_VEC GGML_F32x4
  1251. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1252. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1253. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1254. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1255. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1256. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1257. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1258. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1259. // F16 WASM
  1260. #define GGML_F16_STEP 16
  1261. #define GGML_F16_EPR 4
  1262. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1263. float tmp[4];
  1264. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1265. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1266. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1267. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1268. return wasm_v128_load(tmp);
  1269. }
  1270. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1271. float tmp[4];
  1272. wasm_v128_store(tmp, x);
  1273. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1274. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1275. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1276. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1277. }
  1278. #define GGML_F16x4 v128_t
  1279. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1280. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1281. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1282. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1283. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1284. #define GGML_F16x4_ADD wasm_f32x4_add
  1285. #define GGML_F16x4_MUL wasm_f32x4_mul
  1286. #define GGML_F16x4_REDUCE(res, x) \
  1287. { \
  1288. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1289. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1290. } \
  1291. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1292. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1293. } \
  1294. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1295. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1296. } \
  1297. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1298. wasm_f32x4_extract_lane(x[0], 1) + \
  1299. wasm_f32x4_extract_lane(x[0], 2) + \
  1300. wasm_f32x4_extract_lane(x[0], 3); \
  1301. }
  1302. #define GGML_F16_VEC GGML_F16x4
  1303. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1304. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1305. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1306. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1307. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1308. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1309. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1310. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1311. #elif defined(__SSE3__)
  1312. #define GGML_SIMD
  1313. // F32 SSE
  1314. #define GGML_F32_STEP 32
  1315. #define GGML_F32_EPR 4
  1316. #define GGML_F32x4 __m128
  1317. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1318. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1319. #define GGML_F32x4_LOAD _mm_loadu_ps
  1320. #define GGML_F32x4_STORE _mm_storeu_ps
  1321. #if defined(__FMA__)
  1322. // TODO: Does this work?
  1323. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1324. #else
  1325. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1326. #endif
  1327. #define GGML_F32x4_ADD _mm_add_ps
  1328. #define GGML_F32x4_MUL _mm_mul_ps
  1329. #define GGML_F32x4_REDUCE(res, x) \
  1330. { \
  1331. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1332. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1333. } \
  1334. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1335. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1336. } \
  1337. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1338. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1339. } \
  1340. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1341. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1342. }
  1343. // TODO: is this optimal ?
  1344. #define GGML_F32_VEC GGML_F32x4
  1345. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1346. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1347. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1348. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1349. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1350. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1351. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1352. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1353. // F16 SSE
  1354. #define GGML_F16_STEP 32
  1355. #define GGML_F16_EPR 4
  1356. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1357. float tmp[4];
  1358. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1359. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1360. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1361. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1362. return _mm_loadu_ps(tmp);
  1363. }
  1364. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1365. float arr[4];
  1366. _mm_storeu_ps(arr, y);
  1367. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1368. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1369. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1370. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1371. }
  1372. #define GGML_F32Cx4 __m128
  1373. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1374. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1375. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1376. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1377. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1378. #define GGML_F32Cx4_ADD _mm_add_ps
  1379. #define GGML_F32Cx4_MUL _mm_mul_ps
  1380. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1381. #define GGML_F16_VEC GGML_F32Cx4
  1382. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1383. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1384. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1385. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1386. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1387. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1388. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1389. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1390. #endif
  1391. // GGML_F32_ARR / GGML_F16_ARR
  1392. // number of registers to use per step
  1393. #ifdef GGML_SIMD
  1394. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1395. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1396. #endif
  1397. //
  1398. // fundamental operations
  1399. //
  1400. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1402. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1404. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1405. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1406. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1407. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1408. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1409. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1410. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1411. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1412. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1413. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1414. #ifdef GGML_SIMD
  1415. float sumf = 0.0f;
  1416. const int np = (n & ~(GGML_F32_STEP - 1));
  1417. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1418. GGML_F32_VEC ax[GGML_F32_ARR];
  1419. GGML_F32_VEC ay[GGML_F32_ARR];
  1420. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1421. for (int j = 0; j < GGML_F32_ARR; j++) {
  1422. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1423. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1424. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1425. }
  1426. }
  1427. // reduce sum0..sum3 to sum0
  1428. GGML_F32_VEC_REDUCE(sumf, sum);
  1429. // leftovers
  1430. for (int i = np; i < n; ++i) {
  1431. sumf += x[i]*y[i];
  1432. }
  1433. #else
  1434. // scalar
  1435. ggml_float sumf = 0.0;
  1436. for (int i = 0; i < n; ++i) {
  1437. sumf += (ggml_float)(x[i]*y[i]);
  1438. }
  1439. #endif
  1440. *s = sumf;
  1441. }
  1442. #if __AVX512F__ && QK == 32
  1443. static inline __m512 dot_q4_0_oneblock_avx512(
  1444. __m512 acc,
  1445. const block_q4_0 * restrict x,
  1446. const block_q4_0 * restrict y,
  1447. int i
  1448. ) {
  1449. // Compute combined scale for the block
  1450. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1451. __m256i bx = bytesFromNibbles( x[i].qs );
  1452. __m256i by = bytesFromNibbles( y[i].qs );
  1453. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1454. const __m256i off = _mm256_set1_epi8( 8 );
  1455. bx = _mm256_sub_epi8( bx, off );
  1456. by = _mm256_sub_epi8( by, off );
  1457. // Sign-extend 16 signed bytes into int16_t
  1458. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1459. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1460. // Compute products of int16_t integers, add pairwise
  1461. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1462. // Convert int32_t to float
  1463. __m512 p = _mm512_cvtepi32_ps( i64 );
  1464. // Apply the scale, and accumulate
  1465. return _mm512_fmadd_ps( d, p, acc );
  1466. }
  1467. #endif
  1468. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1469. ggml_float sumf = 0.0;
  1470. #if defined(GGML_SIMD)
  1471. const int np = (n & ~(GGML_F16_STEP - 1));
  1472. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1473. GGML_F16_VEC ax[GGML_F16_ARR];
  1474. GGML_F16_VEC ay[GGML_F16_ARR];
  1475. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1476. for (int j = 0; j < GGML_F16_ARR; j++) {
  1477. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1478. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1479. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1480. }
  1481. }
  1482. // reduce sum0..sum3 to sum0
  1483. GGML_F16_VEC_REDUCE(sumf, sum);
  1484. // leftovers
  1485. for (int i = np; i < n; ++i) {
  1486. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1487. }
  1488. #else
  1489. for (int i = 0; i < n; ++i) {
  1490. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1491. }
  1492. #endif
  1493. *s = sumf;
  1494. }
  1495. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1496. const int nb = n / QK;
  1497. assert(n % QK == 0);
  1498. assert(nb % 2 == 0);
  1499. const block_q4_0 * restrict x = vx;
  1500. const block_q4_0 * restrict y = vy;
  1501. float sumf = 0.0;
  1502. #if defined(__ARM_NEON)
  1503. float sum0 = 0.0f;
  1504. float sum1 = 0.0f;
  1505. for (int i = 0; i < nb; i += 2) {
  1506. const block_q4_0 * restrict x0 = &x[i + 0];
  1507. const block_q4_0 * restrict y0 = &y[i + 0];
  1508. const block_q4_0 * restrict x1 = &x[i + 1];
  1509. const block_q4_0 * restrict y1 = &y[i + 1];
  1510. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1511. const int8x16_t s8b = vdupq_n_s8(0x8);
  1512. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1513. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1514. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1515. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1516. // 4-bit -> 8-bit
  1517. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1518. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1519. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1520. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1521. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1522. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1523. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1524. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1525. // sub 8
  1526. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1527. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1528. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1529. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1530. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1531. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1532. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1533. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1534. #if defined(__ARM_FEATURE_DOTPROD)
  1535. // dot product into int16x8_t
  1536. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1537. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1538. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1539. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1540. // scalar
  1541. #if defined(__ARM_FEATURE_QRDMX)
  1542. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1543. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1544. #else
  1545. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1546. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1547. #endif
  1548. #else
  1549. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1550. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1551. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1552. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1553. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1554. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1555. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1556. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1557. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1558. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1559. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1560. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1561. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1562. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1563. // scalar
  1564. #if defined(__ARM_FEATURE_QRDMX)
  1565. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1566. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1567. #else
  1568. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1569. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1570. #endif
  1571. #endif
  1572. }
  1573. sumf = sum0 + sum1;
  1574. #elif defined(__AVX512F__)
  1575. // Initialize accumulator with zeros
  1576. __m512 acc0 = _mm512_setzero_ps();
  1577. __m512 acc1 = _mm512_setzero_ps();
  1578. const int superblock_size = 8;
  1579. const int superblock_count = nb / superblock_size;
  1580. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1581. int i = superblock_ix * superblock_size;
  1582. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1583. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1584. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1585. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1586. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1587. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1588. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1589. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1590. }
  1591. // Remainders
  1592. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1593. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1594. }
  1595. // Horizontal sum of all lanes of the accumulator
  1596. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1597. #elif defined(__AVX2__)
  1598. // Initialize accumulator with zeros
  1599. __m256 acc = _mm256_setzero_ps();
  1600. // Main loop
  1601. // TODO: figure a way to do this in a portable way
  1602. #ifdef __GNUC__
  1603. #pragma GCC unroll 16
  1604. #endif
  1605. for (int i = 0; i < nb; ++i) {
  1606. // Compute combined scale for the block
  1607. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1608. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1609. __m256i bx = bytesFromNibbles( x[i].qs );
  1610. __m256i by = bytesFromNibbles( y[i].qs );
  1611. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1612. const __m256i off = _mm256_set1_epi8( 8 );
  1613. bx = _mm256_sub_epi8( bx, off );
  1614. by = _mm256_sub_epi8( by, off );
  1615. // Get absolute values of x vectors
  1616. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1617. // Sign the values of the y vectors
  1618. const __m256i sy = _mm256_sign_epi8(by, bx);
  1619. // Perform multiplication and create 16-bit values
  1620. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1621. const __m256i ones = _mm256_set1_epi16(1);
  1622. const __m256i i32 = _mm256_madd_epi16(ones, dot);
  1623. // Convert int32_t to float
  1624. const __m256 p = _mm256_cvtepi32_ps( i32 );
  1625. // Apply the scale, and accumulate
  1626. acc = _mm256_fmadd_ps( d, p, acc );
  1627. }
  1628. // Return horizontal sum of the acc vector
  1629. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1630. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1631. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1632. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1633. sumf = _mm_cvtss_f32( res );
  1634. #elif defined(__AVX__)
  1635. // Initialize accumulator with zeros
  1636. __m256 acc = _mm256_setzero_ps();
  1637. // Main loop
  1638. for (int i = 0; i < nb; ++i) {
  1639. // Compute combined scale for the block
  1640. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1641. __m128i i32[2];
  1642. for (int j = 0; j < 2; ++j) {
  1643. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1644. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1645. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1646. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1647. const __m128i off = _mm_set1_epi8( 8 );
  1648. bx = _mm_sub_epi8( bx, off );
  1649. by = _mm_sub_epi8( by, off );
  1650. // Get absolute values of x vectors
  1651. const __m128i ax = _mm_sign_epi8(bx, bx);
  1652. // Sign the values of the y vectors
  1653. const __m128i sy = _mm_sign_epi8(by, bx);
  1654. // Perform multiplication and create 16-bit values
  1655. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1656. const __m128i ones = _mm_set1_epi16(1);
  1657. i32[j] = _mm_madd_epi16(ones, dot);
  1658. }
  1659. // Convert int32_t to float
  1660. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1661. // Apply the scale, and accumulate
  1662. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1663. }
  1664. // Return horizontal sum of the acc vector
  1665. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1666. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1667. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1668. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1669. sumf = _mm_cvtss_f32( res );
  1670. #elif defined(__wasm_simd128__)
  1671. // wasm simd
  1672. float sum0 = 0.0f;
  1673. float sum1 = 0.0f;
  1674. for (int i = 0; i < nb; i += 2) {
  1675. const block_q4_0 * restrict x0 = &px[i + 0];
  1676. const block_q4_0 * restrict y0 = &py[i + 0];
  1677. const block_q4_0 * restrict x1 = &px[i + 1];
  1678. const block_q4_0 * restrict y1 = &py[i + 1];
  1679. const v128_t m4b = wasm_u8x16_splat(0xf);
  1680. const v128_t s8b = wasm_i8x16_splat(0x8);
  1681. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1682. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1683. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1684. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1685. // 4-bit -> 8-bit
  1686. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1687. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1688. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1689. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1690. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1691. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1692. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1693. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1694. // sub 8
  1695. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1696. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1697. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1698. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1699. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1700. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1701. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1702. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1703. // dot product into int16x8_t
  1704. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1705. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1706. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1707. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1708. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1709. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1710. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1711. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1712. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1713. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1714. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1715. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1716. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1717. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1718. sum0 += x0->d * y0->d * (
  1719. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1720. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1721. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1722. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1723. sum1 += x1->d * y1->d * (
  1724. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1725. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1726. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1727. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1728. }
  1729. sumf = sum0 + sum1;
  1730. #else
  1731. // scalar
  1732. for (int i = 0; i < nb; i++) {
  1733. const float d0 = x[i].d;
  1734. const float d1 = y[i].d;
  1735. const uint8_t * restrict p0 = x[i].qs;
  1736. const uint8_t * restrict p1 = y[i].qs;
  1737. for (int j = 0; j < QK/2; j++) {
  1738. const uint8_t v0 = p0[j];
  1739. const uint8_t v1 = p1[j];
  1740. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1741. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1742. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1743. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1744. sumf += f0*f2 + f1*f3;
  1745. }
  1746. }
  1747. #endif
  1748. *s = sumf;
  1749. }
  1750. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1751. const int nb = n / QK;
  1752. const block_q4_1 * restrict x = vx;
  1753. const block_q4_1 * restrict y = vy;
  1754. float sumf = 0.0;
  1755. #if defined(__AVX2__)
  1756. // Initialize accumulator with zeros
  1757. __m256 acc = _mm256_setzero_ps();
  1758. // Accumulator for constant offsets
  1759. float acc_offset = 0.0f;
  1760. // Main loop
  1761. for (int i = 0; i < nb; ++i) {
  1762. const float * d0 = &x[i].d;
  1763. const float * d1 = &y[i].d;
  1764. const float * m0 = &x[i].m;
  1765. const float * m1 = &y[i].m;
  1766. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1767. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1768. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1769. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1770. // Compute combined scale for the block
  1771. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1772. // Compute cross scales for the block
  1773. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1774. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1775. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1776. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1777. __m256i bx = bytesFromNibbles( x[i].qs );
  1778. __m256i by = bytesFromNibbles( y[i].qs );
  1779. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1780. // Sign-extend first 16 signed bytes into int16_t
  1781. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1782. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1783. // Compute products of int16_t integers, add pairwise
  1784. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1785. // Sign-extend last 16 signed bytes into int16_t vectors
  1786. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1787. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1788. // Accumulate products of int16_t integers
  1789. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1790. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1791. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1792. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1793. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1794. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1795. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1796. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1797. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1798. // Convert int32_t to float
  1799. __m256 p = _mm256_cvtepi32_ps( i32 );
  1800. // Apply the scale, and accumulate
  1801. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1802. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1803. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1804. // acc_offset += m0*m1 (for each entry in the block)
  1805. acc_offset += (*m0)*(*m1);
  1806. }
  1807. // Return horizontal sum of the acc vector
  1808. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1809. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1810. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1811. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1812. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1813. #elif defined(__ARM_NEON)
  1814. float sum00 = 0.0f;
  1815. float sum01 = 0.0f;
  1816. float sum10 = 0.0f;
  1817. float sum11 = 0.0f;
  1818. for (int i = 0; i < nb; ++i) {
  1819. const block_q4_1 * restrict x0 = &x[i + 0];
  1820. const block_q4_1 * restrict y0 = &y[i + 0];
  1821. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1822. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1823. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1824. // and with 0xf
  1825. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1826. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1827. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1828. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1829. // dot product into uint16x8_t
  1830. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1831. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1832. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1833. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1834. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1835. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1836. sum00 += x0->m*y0->m;
  1837. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1838. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1839. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1840. }
  1841. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1842. #else
  1843. // scalar
  1844. for (int i = 0; i < nb; i++) {
  1845. const float d0 = x[i].d;
  1846. const float d1 = y[i].d;
  1847. const float m0 = x[i].m;
  1848. const float m1 = y[i].m;
  1849. const uint8_t * restrict p0 = x[i].qs;
  1850. const uint8_t * restrict p1 = y[i].qs;
  1851. for (int j = 0; j < QK/2; j++) {
  1852. const uint8_t v0 = p0[j];
  1853. const uint8_t v1 = p1[j];
  1854. const float f0 = d0*(v0 & 0xf) + m0;
  1855. const float f1 = d0*(v0 >> 4) + m0;
  1856. const float f2 = d1*(v1 & 0xf) + m1;
  1857. const float f3 = d1*(v1 >> 4) + m1;
  1858. sumf += f0*f2 + f1*f3;
  1859. }
  1860. }
  1861. #endif
  1862. *s = sumf;
  1863. }
  1864. // compute GGML_VEC_DOT_UNROLL dot products at once
  1865. // xs - x row stride in bytes
  1866. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1867. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1868. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1869. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1870. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1871. }
  1872. #if defined(GGML_SIMD)
  1873. const int np = (n & ~(GGML_F16_STEP - 1));
  1874. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1875. GGML_F16_VEC ax[GGML_F16_ARR];
  1876. GGML_F16_VEC ay[GGML_F16_ARR];
  1877. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1878. for (int j = 0; j < GGML_F16_ARR; j++) {
  1879. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1880. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1881. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1882. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1883. }
  1884. }
  1885. }
  1886. // reduce sum0..sum3 to sum0
  1887. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1888. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1889. }
  1890. // leftovers
  1891. for (int i = np; i < n; ++i) {
  1892. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1893. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1894. }
  1895. }
  1896. #else
  1897. for (int i = 0; i < n; ++i) {
  1898. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1899. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1900. }
  1901. }
  1902. #endif
  1903. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1904. s[i] = sumf[i];
  1905. }
  1906. }
  1907. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1908. #if defined(GGML_SIMD)
  1909. const int np = (n & ~(GGML_F32_STEP - 1));
  1910. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1911. GGML_F32_VEC ax[GGML_F32_ARR];
  1912. GGML_F32_VEC ay[GGML_F32_ARR];
  1913. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1914. for (int j = 0; j < GGML_F32_ARR; j++) {
  1915. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1916. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1917. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1918. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1919. }
  1920. }
  1921. // leftovers
  1922. for (int i = np; i < n; ++i) {
  1923. y[i] += x[i]*v;
  1924. }
  1925. #else
  1926. // scalar
  1927. for (int i = 0; i < n; ++i) {
  1928. y[i] += x[i]*v;
  1929. }
  1930. #endif
  1931. }
  1932. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1933. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1934. #if defined(GGML_SIMD)
  1935. const int np = (n & ~(GGML_F32_STEP - 1));
  1936. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1937. GGML_F32_VEC ay[GGML_F32_ARR];
  1938. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1939. for (int j = 0; j < GGML_F32_ARR; j++) {
  1940. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1941. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1942. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1943. }
  1944. }
  1945. // leftovers
  1946. for (int i = np; i < n; ++i) {
  1947. y[i] *= v;
  1948. }
  1949. #else
  1950. // scalar
  1951. for (int i = 0; i < n; ++i) {
  1952. y[i] *= v;
  1953. }
  1954. #endif
  1955. }
  1956. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1957. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1958. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1959. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1960. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1961. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1962. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1963. static const float GELU_COEF_A = 0.044715f;
  1964. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1965. inline static float ggml_gelu_f32(float x) {
  1966. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1967. }
  1968. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1969. const uint16_t * i16 = (const uint16_t *) x;
  1970. for (int i = 0; i < n; ++i) {
  1971. y[i] = table_gelu_f16[i16[i]];
  1972. }
  1973. }
  1974. #ifdef GGML_GELU_FP16
  1975. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1976. uint16_t t;
  1977. for (int i = 0; i < n; ++i) {
  1978. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1979. memcpy(&t, &fp16, sizeof(uint16_t));
  1980. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1981. }
  1982. }
  1983. #else
  1984. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1985. for (int i = 0; i < n; ++i) {
  1986. y[i] = ggml_gelu_f32(x[i]);
  1987. }
  1988. }
  1989. #endif
  1990. // Sigmoid Linear Unit (SiLU) function
  1991. inline static float ggml_silu_f32(float x) {
  1992. return x/(1.0f + expf(-x));
  1993. }
  1994. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1995. const uint16_t * i16 = (const uint16_t *) x;
  1996. for (int i = 0; i < n; ++i) {
  1997. y[i] = table_silu_f16[i16[i]];
  1998. }
  1999. }
  2000. #ifdef GGML_SILU_FP16
  2001. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2002. uint16_t t;
  2003. for (int i = 0; i < n; ++i) {
  2004. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2005. memcpy(&t, &fp16, sizeof(uint16_t));
  2006. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2007. }
  2008. }
  2009. #else
  2010. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2011. for (int i = 0; i < n; ++i) {
  2012. y[i] = ggml_silu_f32(x[i]);
  2013. }
  2014. }
  2015. #endif
  2016. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2017. #ifndef GGML_USE_ACCELERATE
  2018. ggml_float sum = 0.0;
  2019. for (int i = 0; i < n; ++i) {
  2020. sum += (ggml_float)x[i];
  2021. }
  2022. *s = sum;
  2023. #else
  2024. vDSP_sve(x, 1, s, n);
  2025. #endif
  2026. }
  2027. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2028. #ifndef GGML_USE_ACCELERATE
  2029. float max = -INFINITY;
  2030. for (int i = 0; i < n; ++i) {
  2031. max = MAX(max, x[i]);
  2032. }
  2033. *s = max;
  2034. #else
  2035. vDSP_maxv(x, 1, s, n);
  2036. #endif
  2037. }
  2038. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2039. ggml_vec_norm_f32(n, s, x);
  2040. *s = 1.f/(*s);
  2041. }
  2042. //
  2043. // logging
  2044. //
  2045. #if (GGML_DEBUG >= 1)
  2046. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2047. #else
  2048. #define GGML_PRINT_DEBUG(...)
  2049. #endif
  2050. #if (GGML_DEBUG >= 5)
  2051. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2052. #else
  2053. #define GGML_PRINT_DEBUG_5(...)
  2054. #endif
  2055. #if (GGML_DEBUG >= 10)
  2056. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2057. #else
  2058. #define GGML_PRINT_DEBUG_10(...)
  2059. #endif
  2060. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2061. //
  2062. // data types
  2063. //
  2064. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2065. QK,
  2066. QK,
  2067. 1,
  2068. 1,
  2069. 1,
  2070. 1,
  2071. 1,
  2072. };
  2073. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2074. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2075. sizeof(block_q4_0),
  2076. sizeof(block_q4_1),
  2077. sizeof(int8_t ),
  2078. sizeof(int16_t),
  2079. sizeof(int32_t),
  2080. sizeof(ggml_fp16_t),
  2081. sizeof(float ),
  2082. };
  2083. // don't forget to update the array above when adding new types
  2084. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2085. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2086. "NONE",
  2087. "DUP",
  2088. "ADD",
  2089. "SUB",
  2090. "MUL",
  2091. "DIV",
  2092. "SQR",
  2093. "SQRT",
  2094. "SUM",
  2095. "MEAN",
  2096. "REPEAT",
  2097. "ABS",
  2098. "SGN",
  2099. "NEG",
  2100. "STEP",
  2101. "RELU",
  2102. "GELU",
  2103. "SILU",
  2104. "NORM",
  2105. "RMS_NORM",
  2106. "MUL_MAT",
  2107. "SCALE",
  2108. "CPY",
  2109. "RESHAPE",
  2110. "VIEW",
  2111. "PERMUTE",
  2112. "TRANSPOSE",
  2113. "GET_ROWS",
  2114. "DIAG_MASK_INF",
  2115. "SOFT_MAX",
  2116. "ROPE",
  2117. "CONV_1D_1S",
  2118. "CONV_1D_2S",
  2119. "FLASH_ATTN",
  2120. "FLASH_FF",
  2121. };
  2122. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2123. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2124. "none",
  2125. "x",
  2126. "x+y",
  2127. "x-y",
  2128. "x*y",
  2129. "x/y",
  2130. "x^2",
  2131. "√x",
  2132. "Σx",
  2133. "Σx/n",
  2134. "repeat(x)",
  2135. "abs(x)",
  2136. "sgn(x)",
  2137. "-x",
  2138. "step(x)",
  2139. "relu(x)",
  2140. "gelu(x)",
  2141. "silu(x)",
  2142. "norm(x)",
  2143. "rms_norm(x)",
  2144. "X*Y",
  2145. "x*v",
  2146. "x-\\>y",
  2147. "reshape(x)",
  2148. "view(x)",
  2149. "permute(x)",
  2150. "transpose(x)",
  2151. "get_rows(x)",
  2152. "diag_mask_inf(x)",
  2153. "soft_max(x)",
  2154. "rope(x)",
  2155. "conv_1d_1s(x)",
  2156. "conv_1d_2s(x)",
  2157. "flash_attn(x)",
  2158. "flash_ff(x)",
  2159. };
  2160. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2161. //
  2162. // ggml object
  2163. //
  2164. struct ggml_object {
  2165. size_t offs;
  2166. size_t size;
  2167. struct ggml_object * next;
  2168. char padding[8];
  2169. };
  2170. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2171. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2172. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2173. //
  2174. // ggml context
  2175. //
  2176. struct ggml_context {
  2177. size_t mem_size;
  2178. void * mem_buffer;
  2179. bool mem_buffer_owned;
  2180. bool mem_buffer_mlocked;
  2181. bool no_alloc;
  2182. int n_objects;
  2183. struct ggml_object * objects_begin;
  2184. struct ggml_object * objects_end;
  2185. struct ggml_scratch scratch;
  2186. struct ggml_scratch scratch_save;
  2187. };
  2188. struct ggml_context_container {
  2189. bool used;
  2190. struct ggml_context context;
  2191. };
  2192. //
  2193. // compute types
  2194. //
  2195. enum ggml_task_type {
  2196. GGML_TASK_INIT = 0,
  2197. GGML_TASK_COMPUTE,
  2198. GGML_TASK_FINALIZE,
  2199. };
  2200. struct ggml_compute_params {
  2201. enum ggml_task_type type;
  2202. int ith, nth;
  2203. // work buffer for all threads
  2204. size_t wsize;
  2205. void * wdata;
  2206. };
  2207. //
  2208. // ggml state
  2209. //
  2210. struct ggml_state {
  2211. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2212. };
  2213. // global state
  2214. static struct ggml_state g_state;
  2215. static atomic_int g_state_barrier = 0;
  2216. // barrier via spin lock
  2217. inline static void ggml_critical_section_start(void) {
  2218. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2219. while (processing > 0) {
  2220. // wait for other threads to finish
  2221. atomic_fetch_sub(&g_state_barrier, 1);
  2222. sched_yield(); // TODO: reconsider this
  2223. processing = atomic_fetch_add(&g_state_barrier, 1);
  2224. }
  2225. }
  2226. // TODO: make this somehow automatically executed
  2227. // some sort of "sentry" mechanism
  2228. inline static void ggml_critical_section_end(void) {
  2229. atomic_fetch_sub(&g_state_barrier, 1);
  2230. }
  2231. ////////////////////////////////////////////////////////////////////////////////
  2232. void ggml_print_object(const struct ggml_object * obj) {
  2233. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2234. obj->offs, obj->size, (const void *) obj->next);
  2235. }
  2236. void ggml_print_objects(const struct ggml_context * ctx) {
  2237. struct ggml_object * obj = ctx->objects_begin;
  2238. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2239. while (obj != NULL) {
  2240. ggml_print_object(obj);
  2241. obj = obj->next;
  2242. }
  2243. GGML_PRINT("%s: --- end ---\n", __func__);
  2244. }
  2245. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2246. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2247. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2248. }
  2249. int ggml_nrows(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2254. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2255. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2256. }
  2257. int ggml_blck_size(enum ggml_type type) {
  2258. return GGML_BLCK_SIZE[type];
  2259. }
  2260. size_t ggml_type_size(enum ggml_type type) {
  2261. return GGML_TYPE_SIZE[type];
  2262. }
  2263. float ggml_type_sizef(enum ggml_type type) {
  2264. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2265. }
  2266. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2267. return GGML_TYPE_SIZE[tensor->type];
  2268. }
  2269. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2270. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2271. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2272. }
  2273. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2274. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2275. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2276. }
  2277. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2278. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2279. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2280. }
  2281. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2282. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2283. return
  2284. (t0->ne[0] == t1->ne[0]) &&
  2285. (t0->ne[2] == t1->ne[2]) &&
  2286. (t0->ne[3] == t1->ne[3]);
  2287. }
  2288. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2289. return tensor->nb[0] > tensor->nb[1];
  2290. }
  2291. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2292. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2293. return
  2294. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2295. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2296. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2297. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2298. }
  2299. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2300. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2301. return
  2302. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2303. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2304. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2305. }
  2306. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2307. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2308. return
  2309. (t0->ne[0] == t1->ne[0] ) &&
  2310. (t0->ne[1] == t1->ne[1] ) &&
  2311. (t0->ne[2] == t1->ne[2] ) &&
  2312. (t0->ne[3] == t1->ne[3] );
  2313. }
  2314. // check if t1 can be represented as a repeatition of t0
  2315. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2316. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2317. return
  2318. (t1->ne[0]%t0->ne[0] == 0) &&
  2319. (t1->ne[1]%t0->ne[1] == 0) &&
  2320. (t1->ne[2]%t0->ne[2] == 0) &&
  2321. (t1->ne[3]%t0->ne[3] == 0);
  2322. }
  2323. static inline int ggml_up32(int n) {
  2324. return (n + 31) & ~31;
  2325. }
  2326. static inline int ggml_up64(int n) {
  2327. return (n + 63) & ~63;
  2328. }
  2329. static inline int ggml_up(int n, int m) {
  2330. // assert m is a power of 2
  2331. GGML_ASSERT((m & (m - 1)) == 0);
  2332. return (n + m - 1) & ~(m - 1);
  2333. }
  2334. // assert that pointer is aligned to GGML_MEM_ALIGN
  2335. #define ggml_assert_aligned(ptr) \
  2336. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2337. ////////////////////////////////////////////////////////////////////////////////
  2338. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2339. // make this function thread safe
  2340. ggml_critical_section_start();
  2341. static bool is_first_call = true;
  2342. if (is_first_call) {
  2343. // initialize time system (required on Windows)
  2344. ggml_time_init();
  2345. // initialize GELU, SILU and EXP F32 tables
  2346. {
  2347. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2348. ggml_fp16_t ii;
  2349. for (int i = 0; i < (1 << 16); ++i) {
  2350. uint16_t ui = i;
  2351. memcpy(&ii, &ui, sizeof(ii));
  2352. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2353. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2354. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2355. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2356. }
  2357. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2358. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2359. }
  2360. // initialize g_state
  2361. {
  2362. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2363. g_state = (struct ggml_state) {
  2364. /*.contexts =*/ { { 0 } },
  2365. };
  2366. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2367. g_state.contexts[i].used = false;
  2368. }
  2369. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2370. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2371. }
  2372. is_first_call = false;
  2373. }
  2374. // find non-used context in g_state
  2375. struct ggml_context * ctx = NULL;
  2376. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2377. if (!g_state.contexts[i].used) {
  2378. g_state.contexts[i].used = true;
  2379. ctx = &g_state.contexts[i].context;
  2380. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2381. break;
  2382. }
  2383. }
  2384. if (ctx == NULL) {
  2385. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2386. ggml_critical_section_end();
  2387. return NULL;
  2388. }
  2389. *ctx = (struct ggml_context) {
  2390. /*.mem_size =*/ params.mem_size,
  2391. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2392. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2393. /*.mem_buffer_mlocked =*/ false,
  2394. /*.no_alloc =*/ params.no_alloc,
  2395. /*.n_objects =*/ 0,
  2396. /*.objects_begin =*/ NULL,
  2397. /*.objects_end =*/ NULL,
  2398. /*.scratch =*/ { 0, 0, NULL, },
  2399. /*.scratch_save =*/ { 0, 0, NULL, },
  2400. };
  2401. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2402. ggml_assert_aligned(ctx->mem_buffer);
  2403. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2404. ggml_critical_section_end();
  2405. return ctx;
  2406. }
  2407. void ggml_free(struct ggml_context * ctx) {
  2408. // make this function thread safe
  2409. ggml_critical_section_start();
  2410. bool found = false;
  2411. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2412. if (&g_state.contexts[i].context == ctx) {
  2413. g_state.contexts[i].used = false;
  2414. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2415. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2416. #if GGML_MLOCK_SUPPORT
  2417. if (ctx->mem_buffer_mlocked) {
  2418. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2419. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2420. }
  2421. }
  2422. #endif
  2423. if (ctx->mem_buffer_owned) {
  2424. free(ctx->mem_buffer);
  2425. }
  2426. found = true;
  2427. break;
  2428. }
  2429. }
  2430. if (!found) {
  2431. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2432. }
  2433. ggml_critical_section_end();
  2434. }
  2435. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2436. return ctx->objects_end->offs + ctx->objects_end->size;
  2437. }
  2438. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2439. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2440. ctx->scratch = scratch;
  2441. return result;
  2442. }
  2443. #ifdef __APPLE__
  2444. #define MLOCK_SUGGESTION \
  2445. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  2446. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  2447. #else
  2448. #define MLOCK_SUGGESTION \
  2449. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  2450. #endif
  2451. bool ggml_mlock_supported(void) {
  2452. return GGML_MLOCK_SUPPORT;
  2453. }
  2454. bool ggml_mlock(
  2455. struct ggml_context * ctx,
  2456. const void *opt_extra_addr,
  2457. size_t opt_extra_len,
  2458. char **err_p) {
  2459. // TODO: Use SetProcessWorkingSetSize() + VirtualLock() on WIN32
  2460. #if GGML_MLOCK_SUPPORT
  2461. if (ctx->mem_buffer_mlocked) {
  2462. return true;
  2463. }
  2464. if (mlock(ctx->mem_buffer, ctx->mem_size) ||
  2465. (opt_extra_len &&
  2466. mlock(opt_extra_addr, opt_extra_len))) {
  2467. if ((*err_p = malloc(1024))) {
  2468. snprintf(*err_p, 1024,
  2469. "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2470. ctx->mem_size + opt_extra_len,
  2471. strerror(errno));
  2472. }
  2473. return false;
  2474. }
  2475. ctx->mem_buffer_mlocked = true;
  2476. return true;
  2477. #else // GGML_MLOCK_SUPPORT
  2478. *err_p = strdup("can't mlock because it's not supported on this system");
  2479. return false;
  2480. #endif // GGML_MLOCK_SUPPORT
  2481. }
  2482. ////////////////////////////////////////////////////////////////////////////////
  2483. struct ggml_tensor * ggml_new_tensor_impl(
  2484. struct ggml_context * ctx,
  2485. enum ggml_type type,
  2486. int n_dims,
  2487. const int64_t* ne,
  2488. void* data) {
  2489. // always insert objects at the end of the context's memory pool
  2490. struct ggml_object * obj_cur = ctx->objects_end;
  2491. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2492. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2493. const size_t cur_end = cur_offs + cur_size;
  2494. size_t size_needed = 0;
  2495. if (data == NULL && !ctx->no_alloc) {
  2496. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2497. for (int i = 1; i < n_dims; i++) {
  2498. size_needed *= ne[i];
  2499. }
  2500. // align to GGML_MEM_ALIGN
  2501. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2502. }
  2503. char * const mem_buffer = ctx->mem_buffer;
  2504. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2505. if (ctx->scratch.data == NULL || data != NULL) {
  2506. size_needed += sizeof(struct ggml_tensor);
  2507. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2508. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2509. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2510. assert(false);
  2511. return NULL;
  2512. }
  2513. *obj_new = (struct ggml_object) {
  2514. .offs = cur_end + GGML_OBJECT_SIZE,
  2515. .size = size_needed,
  2516. .next = NULL,
  2517. };
  2518. } else {
  2519. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2520. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2521. assert(false);
  2522. return NULL;
  2523. }
  2524. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2525. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2526. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2527. assert(false);
  2528. return NULL;
  2529. }
  2530. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2531. *obj_new = (struct ggml_object) {
  2532. .offs = cur_end + GGML_OBJECT_SIZE,
  2533. .size = sizeof(struct ggml_tensor),
  2534. .next = NULL,
  2535. };
  2536. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2537. ctx->scratch.offs += size_needed;
  2538. }
  2539. if (obj_cur != NULL) {
  2540. obj_cur->next = obj_new;
  2541. } else {
  2542. // this is the first object in this context
  2543. ctx->objects_begin = obj_new;
  2544. }
  2545. ctx->objects_end = obj_new;
  2546. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2547. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2548. ggml_assert_aligned(result);
  2549. *result = (struct ggml_tensor) {
  2550. /*.type =*/ type,
  2551. /*.n_dims =*/ n_dims,
  2552. /*.ne =*/ { 1, 1, 1, 1 },
  2553. /*.nb =*/ { 0, 0, 0, 0 },
  2554. /*.op =*/ GGML_OP_NONE,
  2555. /*.is_param =*/ false,
  2556. /*.grad =*/ NULL,
  2557. /*.src0 =*/ NULL,
  2558. /*.src1 =*/ NULL,
  2559. /*.opt =*/ { NULL },
  2560. /*.n_tasks =*/ 0,
  2561. /*.perf_runs =*/ 0,
  2562. /*.perf_cycles =*/ 0,
  2563. /*.perf_time_us =*/ 0,
  2564. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2565. /*.pad =*/ { 0 },
  2566. };
  2567. ggml_assert_aligned(result->data);
  2568. for (int i = 0; i < n_dims; i++) {
  2569. result->ne[i] = ne[i];
  2570. }
  2571. result->nb[0] = GGML_TYPE_SIZE[type];
  2572. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2573. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2574. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2575. }
  2576. ctx->n_objects++;
  2577. return result;
  2578. }
  2579. struct ggml_tensor * ggml_new_tensor(
  2580. struct ggml_context * ctx,
  2581. enum ggml_type type,
  2582. int n_dims,
  2583. const int64_t * ne) {
  2584. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2585. }
  2586. struct ggml_tensor * ggml_new_tensor_1d(
  2587. struct ggml_context * ctx,
  2588. enum ggml_type type,
  2589. int64_t ne0) {
  2590. return ggml_new_tensor(ctx, type, 1, &ne0);
  2591. }
  2592. struct ggml_tensor * ggml_new_tensor_2d(
  2593. struct ggml_context * ctx,
  2594. enum ggml_type type,
  2595. int64_t ne0,
  2596. int64_t ne1) {
  2597. const int64_t ne[2] = { ne0, ne1 };
  2598. return ggml_new_tensor(ctx, type, 2, ne);
  2599. }
  2600. struct ggml_tensor * ggml_new_tensor_3d(
  2601. struct ggml_context * ctx,
  2602. enum ggml_type type,
  2603. int64_t ne0,
  2604. int64_t ne1,
  2605. int64_t ne2) {
  2606. const int64_t ne[3] = { ne0, ne1, ne2 };
  2607. return ggml_new_tensor(ctx, type, 3, ne);
  2608. }
  2609. struct ggml_tensor * ggml_new_tensor_4d(
  2610. struct ggml_context * ctx,
  2611. enum ggml_type type,
  2612. int64_t ne0,
  2613. int64_t ne1,
  2614. int64_t ne2,
  2615. int64_t ne3) {
  2616. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2617. return ggml_new_tensor(ctx, type, 4, ne);
  2618. }
  2619. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2620. ctx->scratch_save = ctx->scratch;
  2621. ctx->scratch.data = NULL;
  2622. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2623. ctx->scratch = ctx->scratch_save;
  2624. ggml_set_i32(result, value);
  2625. return result;
  2626. }
  2627. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2628. ctx->scratch_save = ctx->scratch;
  2629. ctx->scratch.data = NULL;
  2630. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2631. ctx->scratch = ctx->scratch_save;
  2632. ggml_set_f32(result, value);
  2633. return result;
  2634. }
  2635. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2636. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2637. }
  2638. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2639. memset(tensor->data, 0, ggml_nbytes(tensor));
  2640. return tensor;
  2641. }
  2642. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2643. const int n = ggml_nrows(tensor);
  2644. const int nc = tensor->ne[0];
  2645. const size_t n1 = tensor->nb[1];
  2646. char * const data = tensor->data;
  2647. switch (tensor->type) {
  2648. case GGML_TYPE_Q4_0:
  2649. {
  2650. GGML_ASSERT(false);
  2651. } break;
  2652. case GGML_TYPE_Q4_1:
  2653. {
  2654. GGML_ASSERT(false);
  2655. } break;
  2656. case GGML_TYPE_I8:
  2657. {
  2658. assert(tensor->nb[0] == sizeof(int8_t));
  2659. for (int i = 0; i < n; i++) {
  2660. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2661. }
  2662. } break;
  2663. case GGML_TYPE_I16:
  2664. {
  2665. assert(tensor->nb[0] == sizeof(int16_t));
  2666. for (int i = 0; i < n; i++) {
  2667. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2668. }
  2669. } break;
  2670. case GGML_TYPE_I32:
  2671. {
  2672. assert(tensor->nb[0] == sizeof(int32_t));
  2673. for (int i = 0; i < n; i++) {
  2674. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2675. }
  2676. } break;
  2677. case GGML_TYPE_F16:
  2678. {
  2679. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2680. for (int i = 0; i < n; i++) {
  2681. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2682. }
  2683. } break;
  2684. case GGML_TYPE_F32:
  2685. {
  2686. assert(tensor->nb[0] == sizeof(float));
  2687. for (int i = 0; i < n; i++) {
  2688. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2689. }
  2690. } break;
  2691. case GGML_TYPE_COUNT:
  2692. {
  2693. GGML_ASSERT(false);
  2694. } break;
  2695. }
  2696. return tensor;
  2697. }
  2698. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2699. const int n = ggml_nrows(tensor);
  2700. const int nc = tensor->ne[0];
  2701. const size_t n1 = tensor->nb[1];
  2702. char * const data = tensor->data;
  2703. switch (tensor->type) {
  2704. case GGML_TYPE_Q4_0:
  2705. {
  2706. GGML_ASSERT(false);
  2707. } break;
  2708. case GGML_TYPE_Q4_1:
  2709. {
  2710. GGML_ASSERT(false);
  2711. } break;
  2712. case GGML_TYPE_I8:
  2713. {
  2714. assert(tensor->nb[0] == sizeof(int8_t));
  2715. for (int i = 0; i < n; i++) {
  2716. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2717. }
  2718. } break;
  2719. case GGML_TYPE_I16:
  2720. {
  2721. assert(tensor->nb[0] == sizeof(int16_t));
  2722. for (int i = 0; i < n; i++) {
  2723. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2724. }
  2725. } break;
  2726. case GGML_TYPE_I32:
  2727. {
  2728. assert(tensor->nb[0] == sizeof(int32_t));
  2729. for (int i = 0; i < n; i++) {
  2730. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2731. }
  2732. } break;
  2733. case GGML_TYPE_F16:
  2734. {
  2735. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2736. for (int i = 0; i < n; i++) {
  2737. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2738. }
  2739. } break;
  2740. case GGML_TYPE_F32:
  2741. {
  2742. assert(tensor->nb[0] == sizeof(float));
  2743. for (int i = 0; i < n; i++) {
  2744. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2745. }
  2746. } break;
  2747. case GGML_TYPE_COUNT:
  2748. {
  2749. GGML_ASSERT(false);
  2750. } break;
  2751. }
  2752. return tensor;
  2753. }
  2754. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2755. switch (tensor->type) {
  2756. case GGML_TYPE_Q4_0:
  2757. {
  2758. GGML_ASSERT(false);
  2759. } break;
  2760. case GGML_TYPE_Q4_1:
  2761. {
  2762. GGML_ASSERT(false);
  2763. } break;
  2764. case GGML_TYPE_I8:
  2765. {
  2766. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2767. return ((int8_t *)(tensor->data))[i];
  2768. } break;
  2769. case GGML_TYPE_I16:
  2770. {
  2771. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2772. return ((int16_t *)(tensor->data))[i];
  2773. } break;
  2774. case GGML_TYPE_I32:
  2775. {
  2776. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2777. return ((int32_t *)(tensor->data))[i];
  2778. } break;
  2779. case GGML_TYPE_F16:
  2780. {
  2781. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2782. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2783. } break;
  2784. case GGML_TYPE_F32:
  2785. {
  2786. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2787. return ((float *)(tensor->data))[i];
  2788. } break;
  2789. case GGML_TYPE_COUNT:
  2790. {
  2791. GGML_ASSERT(false);
  2792. } break;
  2793. }
  2794. return 0.0f;
  2795. }
  2796. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2797. switch (tensor->type) {
  2798. case GGML_TYPE_Q4_0:
  2799. {
  2800. GGML_ASSERT(false);
  2801. } break;
  2802. case GGML_TYPE_Q4_1:
  2803. {
  2804. GGML_ASSERT(false);
  2805. } break;
  2806. case GGML_TYPE_I8:
  2807. {
  2808. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2809. ((int8_t *)(tensor->data))[i] = value;
  2810. } break;
  2811. case GGML_TYPE_I16:
  2812. {
  2813. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2814. ((int16_t *)(tensor->data))[i] = value;
  2815. } break;
  2816. case GGML_TYPE_I32:
  2817. {
  2818. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2819. ((int32_t *)(tensor->data))[i] = value;
  2820. } break;
  2821. case GGML_TYPE_F16:
  2822. {
  2823. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2824. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2825. } break;
  2826. case GGML_TYPE_F32:
  2827. {
  2828. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2829. ((float *)(tensor->data))[i] = value;
  2830. } break;
  2831. case GGML_TYPE_COUNT:
  2832. {
  2833. GGML_ASSERT(false);
  2834. } break;
  2835. }
  2836. }
  2837. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2838. switch (tensor->type) {
  2839. case GGML_TYPE_Q4_0:
  2840. {
  2841. GGML_ASSERT(false);
  2842. } break;
  2843. case GGML_TYPE_Q4_1:
  2844. {
  2845. GGML_ASSERT(false);
  2846. } break;
  2847. case GGML_TYPE_I8:
  2848. {
  2849. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2850. return ((int8_t *)(tensor->data))[i];
  2851. } break;
  2852. case GGML_TYPE_I16:
  2853. {
  2854. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2855. return ((int16_t *)(tensor->data))[i];
  2856. } break;
  2857. case GGML_TYPE_I32:
  2858. {
  2859. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2860. return ((int32_t *)(tensor->data))[i];
  2861. } break;
  2862. case GGML_TYPE_F16:
  2863. {
  2864. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2865. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2866. } break;
  2867. case GGML_TYPE_F32:
  2868. {
  2869. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2870. return ((float *)(tensor->data))[i];
  2871. } break;
  2872. case GGML_TYPE_COUNT:
  2873. {
  2874. GGML_ASSERT(false);
  2875. } break;
  2876. }
  2877. return 0.0f;
  2878. }
  2879. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2880. switch (tensor->type) {
  2881. case GGML_TYPE_Q4_0:
  2882. {
  2883. GGML_ASSERT(false);
  2884. } break;
  2885. case GGML_TYPE_Q4_1:
  2886. {
  2887. GGML_ASSERT(false);
  2888. } break;
  2889. case GGML_TYPE_I8:
  2890. {
  2891. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2892. ((int8_t *)(tensor->data))[i] = value;
  2893. } break;
  2894. case GGML_TYPE_I16:
  2895. {
  2896. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2897. ((int16_t *)(tensor->data))[i] = value;
  2898. } break;
  2899. case GGML_TYPE_I32:
  2900. {
  2901. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2902. ((int32_t *)(tensor->data))[i] = value;
  2903. } break;
  2904. case GGML_TYPE_F16:
  2905. {
  2906. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2907. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2908. } break;
  2909. case GGML_TYPE_F32:
  2910. {
  2911. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2912. ((float *)(tensor->data))[i] = value;
  2913. } break;
  2914. case GGML_TYPE_COUNT:
  2915. {
  2916. GGML_ASSERT(false);
  2917. } break;
  2918. }
  2919. }
  2920. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2921. return tensor->data;
  2922. }
  2923. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2924. assert(tensor->type == GGML_TYPE_F32);
  2925. return (float *)(tensor->data);
  2926. }
  2927. struct ggml_tensor * ggml_view_tensor(
  2928. struct ggml_context * ctx,
  2929. const struct ggml_tensor * src) {
  2930. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2931. }
  2932. ////////////////////////////////////////////////////////////////////////////////
  2933. // ggml_dup
  2934. struct ggml_tensor * ggml_dup_impl(
  2935. struct ggml_context * ctx,
  2936. struct ggml_tensor * a,
  2937. bool inplace) {
  2938. bool is_node = false;
  2939. if (!inplace && (a->grad)) {
  2940. is_node = true;
  2941. }
  2942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2943. result->op = GGML_OP_DUP;
  2944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2945. result->src0 = a;
  2946. result->src1 = NULL;
  2947. return result;
  2948. }
  2949. struct ggml_tensor * ggml_dup(
  2950. struct ggml_context * ctx,
  2951. struct ggml_tensor * a) {
  2952. return ggml_dup_impl(ctx, a, false);
  2953. }
  2954. struct ggml_tensor * ggml_dup_inplace(
  2955. struct ggml_context * ctx,
  2956. struct ggml_tensor * a) {
  2957. return ggml_dup_impl(ctx, a, true);
  2958. }
  2959. // ggml_add
  2960. struct ggml_tensor * ggml_add_impl(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a,
  2963. struct ggml_tensor * b,
  2964. bool inplace) {
  2965. GGML_ASSERT(ggml_are_same_shape(a, b));
  2966. bool is_node = false;
  2967. if (!inplace && (a->grad || b->grad)) {
  2968. is_node = true;
  2969. }
  2970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2971. result->op = GGML_OP_ADD;
  2972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2973. result->src0 = a;
  2974. result->src1 = b;
  2975. return result;
  2976. }
  2977. struct ggml_tensor * ggml_add(
  2978. struct ggml_context * ctx,
  2979. struct ggml_tensor * a,
  2980. struct ggml_tensor * b) {
  2981. return ggml_add_impl(ctx, a, b, false);
  2982. }
  2983. struct ggml_tensor * ggml_add_inplace(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a,
  2986. struct ggml_tensor * b) {
  2987. return ggml_add_impl(ctx, a, b, true);
  2988. }
  2989. // ggml_sub
  2990. struct ggml_tensor * ggml_sub_impl(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a,
  2993. struct ggml_tensor * b,
  2994. bool inplace) {
  2995. GGML_ASSERT(ggml_are_same_shape(a, b));
  2996. bool is_node = false;
  2997. if (!inplace && (a->grad || b->grad)) {
  2998. is_node = true;
  2999. }
  3000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3001. result->op = GGML_OP_SUB;
  3002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3003. result->src0 = a;
  3004. result->src1 = b;
  3005. return result;
  3006. }
  3007. struct ggml_tensor * ggml_sub(
  3008. struct ggml_context * ctx,
  3009. struct ggml_tensor * a,
  3010. struct ggml_tensor * b) {
  3011. return ggml_sub_impl(ctx, a, b, false);
  3012. }
  3013. struct ggml_tensor * ggml_sub_inplace(
  3014. struct ggml_context * ctx,
  3015. struct ggml_tensor * a,
  3016. struct ggml_tensor * b) {
  3017. return ggml_sub_impl(ctx, a, b, true);
  3018. }
  3019. // ggml_mul
  3020. struct ggml_tensor * ggml_mul_impl(
  3021. struct ggml_context * ctx,
  3022. struct ggml_tensor * a,
  3023. struct ggml_tensor * b,
  3024. bool inplace) {
  3025. GGML_ASSERT(ggml_are_same_shape(a, b));
  3026. bool is_node = false;
  3027. if (!inplace && (a->grad || b->grad)) {
  3028. is_node = true;
  3029. }
  3030. if (inplace) {
  3031. GGML_ASSERT(is_node == false);
  3032. }
  3033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3034. result->op = GGML_OP_MUL;
  3035. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3036. result->src0 = a;
  3037. result->src1 = b;
  3038. return result;
  3039. }
  3040. struct ggml_tensor * ggml_mul(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a,
  3043. struct ggml_tensor * b) {
  3044. return ggml_mul_impl(ctx, a, b, false);
  3045. }
  3046. struct ggml_tensor * ggml_mul_inplace(
  3047. struct ggml_context * ctx,
  3048. struct ggml_tensor * a,
  3049. struct ggml_tensor * b) {
  3050. return ggml_mul_impl(ctx, a, b, true);
  3051. }
  3052. // ggml_div
  3053. struct ggml_tensor * ggml_div_impl(
  3054. struct ggml_context * ctx,
  3055. struct ggml_tensor * a,
  3056. struct ggml_tensor * b,
  3057. bool inplace) {
  3058. GGML_ASSERT(ggml_are_same_shape(a, b));
  3059. bool is_node = false;
  3060. if (!inplace && (a->grad || b->grad)) {
  3061. is_node = true;
  3062. }
  3063. if (inplace) {
  3064. GGML_ASSERT(is_node == false);
  3065. }
  3066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3067. result->op = GGML_OP_DIV;
  3068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3069. result->src0 = a;
  3070. result->src1 = b;
  3071. return result;
  3072. }
  3073. struct ggml_tensor * ggml_div(
  3074. struct ggml_context * ctx,
  3075. struct ggml_tensor * a,
  3076. struct ggml_tensor * b) {
  3077. return ggml_div_impl(ctx, a, b, false);
  3078. }
  3079. struct ggml_tensor * ggml_div_inplace(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a,
  3082. struct ggml_tensor * b) {
  3083. return ggml_div_impl(ctx, a, b, true);
  3084. }
  3085. // ggml_sqr
  3086. struct ggml_tensor * ggml_sqr_impl(
  3087. struct ggml_context * ctx,
  3088. struct ggml_tensor * a,
  3089. bool inplace) {
  3090. bool is_node = false;
  3091. if (!inplace && (a->grad)) {
  3092. is_node = true;
  3093. }
  3094. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3095. result->op = GGML_OP_SQR;
  3096. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3097. result->src0 = a;
  3098. result->src1 = NULL;
  3099. return result;
  3100. }
  3101. struct ggml_tensor * ggml_sqr(
  3102. struct ggml_context * ctx,
  3103. struct ggml_tensor * a) {
  3104. return ggml_sqr_impl(ctx, a, false);
  3105. }
  3106. struct ggml_tensor * ggml_sqr_inplace(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a) {
  3109. return ggml_sqr_impl(ctx, a, true);
  3110. }
  3111. // ggml_sqrt
  3112. struct ggml_tensor * ggml_sqrt_impl(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a,
  3115. bool inplace) {
  3116. bool is_node = false;
  3117. if (!inplace && (a->grad)) {
  3118. is_node = true;
  3119. }
  3120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3121. result->op = GGML_OP_SQRT;
  3122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3123. result->src0 = a;
  3124. result->src1 = NULL;
  3125. return result;
  3126. }
  3127. struct ggml_tensor * ggml_sqrt(
  3128. struct ggml_context * ctx,
  3129. struct ggml_tensor * a) {
  3130. return ggml_sqrt_impl(ctx, a, false);
  3131. }
  3132. struct ggml_tensor * ggml_sqrt_inplace(
  3133. struct ggml_context * ctx,
  3134. struct ggml_tensor * a) {
  3135. return ggml_sqrt_impl(ctx, a, true);
  3136. }
  3137. // ggml_sum
  3138. struct ggml_tensor * ggml_sum(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. bool is_node = false;
  3142. if (a->grad) {
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3146. result->op = GGML_OP_SUM;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src0 = a;
  3149. result->src1 = NULL;
  3150. return result;
  3151. }
  3152. // ggml_mean
  3153. struct ggml_tensor * ggml_mean(
  3154. struct ggml_context * ctx,
  3155. struct ggml_tensor * a) {
  3156. bool is_node = false;
  3157. if (a->grad) {
  3158. GGML_ASSERT(false); // TODO: implement
  3159. is_node = true;
  3160. }
  3161. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3162. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3163. result->op = GGML_OP_MEAN;
  3164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3165. result->src0 = a;
  3166. result->src1 = NULL;
  3167. return result;
  3168. }
  3169. // ggml_repeat
  3170. struct ggml_tensor * ggml_repeat(
  3171. struct ggml_context * ctx,
  3172. struct ggml_tensor * a,
  3173. struct ggml_tensor * b) {
  3174. GGML_ASSERT(ggml_can_repeat(a, b));
  3175. bool is_node = false;
  3176. if (a->grad) {
  3177. is_node = true;
  3178. }
  3179. if (ggml_are_same_shape(a, b) && !is_node) {
  3180. return a;
  3181. }
  3182. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3183. result->op = GGML_OP_REPEAT;
  3184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3185. result->src0 = a;
  3186. result->src1 = b;
  3187. return result;
  3188. }
  3189. // ggml_abs
  3190. struct ggml_tensor * ggml_abs_impl(
  3191. struct ggml_context * ctx,
  3192. struct ggml_tensor * a,
  3193. bool inplace) {
  3194. bool is_node = false;
  3195. if (!inplace && (a->grad)) {
  3196. is_node = true;
  3197. }
  3198. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3199. result->op = GGML_OP_ABS;
  3200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3201. result->src0 = a;
  3202. result->src1 = NULL;
  3203. return result;
  3204. }
  3205. struct ggml_tensor * ggml_abs(
  3206. struct ggml_context * ctx,
  3207. struct ggml_tensor * a) {
  3208. return ggml_abs_impl(ctx, a, false);
  3209. }
  3210. struct ggml_tensor * ggml_abs_inplace(
  3211. struct ggml_context * ctx,
  3212. struct ggml_tensor * a) {
  3213. return ggml_abs_impl(ctx, a, true);
  3214. }
  3215. // ggml_sgn
  3216. struct ggml_tensor * ggml_sgn_impl(
  3217. struct ggml_context * ctx,
  3218. struct ggml_tensor * a,
  3219. bool inplace) {
  3220. bool is_node = false;
  3221. if (!inplace && (a->grad)) {
  3222. is_node = true;
  3223. }
  3224. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3225. result->op = GGML_OP_SGN;
  3226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3227. result->src0 = a;
  3228. result->src1 = NULL;
  3229. return result;
  3230. }
  3231. struct ggml_tensor * ggml_sgn(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_sgn_impl(ctx, a, false);
  3235. }
  3236. struct ggml_tensor * ggml_sgn_inplace(
  3237. struct ggml_context * ctx,
  3238. struct ggml_tensor * a) {
  3239. return ggml_sgn_impl(ctx, a, true);
  3240. }
  3241. // ggml_neg
  3242. struct ggml_tensor * ggml_neg_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. bool inplace) {
  3246. bool is_node = false;
  3247. if (!inplace && (a->grad)) {
  3248. is_node = true;
  3249. }
  3250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3251. result->op = GGML_OP_NEG;
  3252. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3253. result->src0 = a;
  3254. result->src1 = NULL;
  3255. return result;
  3256. }
  3257. struct ggml_tensor * ggml_neg(
  3258. struct ggml_context * ctx,
  3259. struct ggml_tensor * a) {
  3260. return ggml_neg_impl(ctx, a, false);
  3261. }
  3262. struct ggml_tensor * ggml_neg_inplace(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a) {
  3265. return ggml_neg_impl(ctx, a, true);
  3266. }
  3267. // ggml_step
  3268. struct ggml_tensor * ggml_step_impl(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. bool inplace) {
  3272. bool is_node = false;
  3273. if (!inplace && (a->grad)) {
  3274. is_node = true;
  3275. }
  3276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3277. result->op = GGML_OP_STEP;
  3278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3279. result->src0 = a;
  3280. result->src1 = NULL;
  3281. return result;
  3282. }
  3283. struct ggml_tensor * ggml_step(
  3284. struct ggml_context * ctx,
  3285. struct ggml_tensor * a) {
  3286. return ggml_step_impl(ctx, a, false);
  3287. }
  3288. struct ggml_tensor * ggml_step_inplace(
  3289. struct ggml_context * ctx,
  3290. struct ggml_tensor * a) {
  3291. return ggml_step_impl(ctx, a, true);
  3292. }
  3293. // ggml_relu
  3294. struct ggml_tensor * ggml_relu_impl(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a,
  3297. bool inplace) {
  3298. bool is_node = false;
  3299. if (!inplace && (a->grad)) {
  3300. is_node = true;
  3301. }
  3302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3303. result->op = GGML_OP_RELU;
  3304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3305. result->src0 = a;
  3306. result->src1 = NULL;
  3307. return result;
  3308. }
  3309. struct ggml_tensor * ggml_relu(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a) {
  3312. return ggml_relu_impl(ctx, a, false);
  3313. }
  3314. struct ggml_tensor * ggml_relu_inplace(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a) {
  3317. return ggml_relu_impl(ctx, a, true);
  3318. }
  3319. // ggml_gelu
  3320. struct ggml_tensor * ggml_gelu_impl(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a,
  3323. bool inplace) {
  3324. bool is_node = false;
  3325. if (!inplace && (a->grad)) {
  3326. is_node = true;
  3327. }
  3328. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3329. result->op = GGML_OP_GELU;
  3330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3331. result->src0 = a;
  3332. result->src1 = NULL;
  3333. return result;
  3334. }
  3335. struct ggml_tensor * ggml_gelu(
  3336. struct ggml_context * ctx,
  3337. struct ggml_tensor * a) {
  3338. return ggml_gelu_impl(ctx, a, false);
  3339. }
  3340. struct ggml_tensor * ggml_gelu_inplace(
  3341. struct ggml_context * ctx,
  3342. struct ggml_tensor * a) {
  3343. return ggml_gelu_impl(ctx, a, true);
  3344. }
  3345. // ggml_silu
  3346. struct ggml_tensor * ggml_silu_impl(
  3347. struct ggml_context * ctx,
  3348. struct ggml_tensor * a,
  3349. bool inplace) {
  3350. bool is_node = false;
  3351. if (!inplace && (a->grad)) {
  3352. is_node = true;
  3353. }
  3354. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3355. result->op = GGML_OP_SILU;
  3356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3357. result->src0 = a;
  3358. result->src1 = NULL;
  3359. return result;
  3360. }
  3361. struct ggml_tensor * ggml_silu(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a) {
  3364. return ggml_silu_impl(ctx, a, false);
  3365. }
  3366. struct ggml_tensor * ggml_silu_inplace(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_silu_impl(ctx, a, true);
  3370. }
  3371. // ggml_norm
  3372. struct ggml_tensor * ggml_norm_impl(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a,
  3375. bool inplace) {
  3376. bool is_node = false;
  3377. if (!inplace && (a->grad)) {
  3378. GGML_ASSERT(false); // TODO: implement backward
  3379. is_node = true;
  3380. }
  3381. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3382. result->op = GGML_OP_NORM;
  3383. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3384. result->src0 = a;
  3385. result->src1 = NULL; // TODO: maybe store epsilon here?
  3386. return result;
  3387. }
  3388. struct ggml_tensor * ggml_norm(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a) {
  3391. return ggml_norm_impl(ctx, a, false);
  3392. }
  3393. struct ggml_tensor * ggml_norm_inplace(
  3394. struct ggml_context * ctx,
  3395. struct ggml_tensor * a) {
  3396. return ggml_norm_impl(ctx, a, true);
  3397. }
  3398. struct ggml_tensor * ggml_rms_norm_impl(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a,
  3401. bool inplace) {
  3402. bool is_node = false;
  3403. if (!inplace && (a->grad)) {
  3404. GGML_ASSERT(false); // TODO: implement backward
  3405. is_node = true;
  3406. }
  3407. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3408. result->op = GGML_OP_RMS_NORM;
  3409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3410. result->src0 = a;
  3411. result->src1 = NULL; // TODO: maybe store epsilon here?
  3412. return result;
  3413. }
  3414. struct ggml_tensor * ggml_rms_norm(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a) {
  3417. return ggml_rms_norm_impl(ctx, a, false);
  3418. }
  3419. struct ggml_tensor * ggml_rms_norm_inplace(
  3420. struct ggml_context * ctx,
  3421. struct ggml_tensor * a) {
  3422. return ggml_rms_norm_impl(ctx, a, true);
  3423. }
  3424. // ggml_mul_mat
  3425. struct ggml_tensor * ggml_mul_mat(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a,
  3428. struct ggml_tensor * b) {
  3429. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3430. GGML_ASSERT(!ggml_is_transposed(a));
  3431. bool is_node = false;
  3432. if (a->grad || b->grad) {
  3433. is_node = true;
  3434. }
  3435. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3437. result->op = GGML_OP_MUL_MAT;
  3438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3439. result->src0 = a;
  3440. result->src1 = b;
  3441. return result;
  3442. }
  3443. // ggml_scale
  3444. struct ggml_tensor * ggml_scale_impl(
  3445. struct ggml_context * ctx,
  3446. struct ggml_tensor * a,
  3447. struct ggml_tensor * b,
  3448. bool inplace) {
  3449. GGML_ASSERT(ggml_is_scalar(b));
  3450. GGML_ASSERT(ggml_is_padded_1d(a));
  3451. bool is_node = false;
  3452. if (!inplace && (a->grad || b->grad)) {
  3453. GGML_ASSERT(false); // TODO: implement backward
  3454. is_node = true;
  3455. }
  3456. // TODO: when implement backward, fix this:
  3457. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3458. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3459. result->op = GGML_OP_SCALE;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src0 = a;
  3462. result->src1 = b;
  3463. return result;
  3464. }
  3465. struct ggml_tensor * ggml_scale(
  3466. struct ggml_context * ctx,
  3467. struct ggml_tensor * a,
  3468. struct ggml_tensor * b) {
  3469. return ggml_scale_impl(ctx, a, b, false);
  3470. }
  3471. struct ggml_tensor * ggml_scale_inplace(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a,
  3474. struct ggml_tensor * b) {
  3475. return ggml_scale_impl(ctx, a, b, true);
  3476. }
  3477. // ggml_cpy
  3478. struct ggml_tensor * ggml_cpy_impl(
  3479. struct ggml_context * ctx,
  3480. struct ggml_tensor * a,
  3481. struct ggml_tensor * b,
  3482. bool inplace) {
  3483. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3484. bool is_node = false;
  3485. if (!inplace && (a->grad || b->grad)) {
  3486. GGML_ASSERT(false); // TODO: implement backward
  3487. is_node = true;
  3488. }
  3489. // make a view of the destination
  3490. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3491. result->op = GGML_OP_CPY;
  3492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3493. result->src0 = a;
  3494. result->src1 = b;
  3495. return result;
  3496. }
  3497. struct ggml_tensor * ggml_cpy(
  3498. struct ggml_context * ctx,
  3499. struct ggml_tensor * a,
  3500. struct ggml_tensor * b) {
  3501. return ggml_cpy_impl(ctx, a, b, false);
  3502. }
  3503. struct ggml_tensor * ggml_cpy_inplace(
  3504. struct ggml_context * ctx,
  3505. struct ggml_tensor * a,
  3506. struct ggml_tensor * b) {
  3507. return ggml_cpy_impl(ctx, a, b, true);
  3508. }
  3509. // ggml_reshape
  3510. struct ggml_tensor * ggml_reshape(
  3511. struct ggml_context * ctx,
  3512. struct ggml_tensor * a,
  3513. struct ggml_tensor * b) {
  3514. GGML_ASSERT(ggml_is_contiguous(a));
  3515. GGML_ASSERT(ggml_is_contiguous(b));
  3516. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3517. bool is_node = false;
  3518. if (a->grad || b->grad) {
  3519. GGML_ASSERT(false); // TODO: implement backward
  3520. is_node = true;
  3521. }
  3522. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3523. result->op = GGML_OP_RESHAPE;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src0 = a;
  3526. result->src1 = NULL;
  3527. return result;
  3528. }
  3529. struct ggml_tensor * ggml_reshape_2d(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a,
  3532. int64_t ne0,
  3533. int64_t ne1) {
  3534. GGML_ASSERT(ggml_is_contiguous(a));
  3535. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3536. bool is_node = false;
  3537. if (a->grad) {
  3538. GGML_ASSERT(false); // TODO: implement backward
  3539. is_node = true;
  3540. }
  3541. const int64_t ne[2] = { ne0, ne1 };
  3542. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3543. result->op = GGML_OP_RESHAPE;
  3544. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3545. result->src0 = a;
  3546. result->src1 = NULL;
  3547. return result;
  3548. }
  3549. struct ggml_tensor * ggml_reshape_3d(
  3550. struct ggml_context * ctx,
  3551. struct ggml_tensor * a,
  3552. int64_t ne0,
  3553. int64_t ne1,
  3554. int64_t ne2) {
  3555. GGML_ASSERT(ggml_is_contiguous(a));
  3556. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3557. bool is_node = false;
  3558. if (a->grad) {
  3559. GGML_ASSERT(false); // TODO: implement backward
  3560. is_node = true;
  3561. }
  3562. const int64_t ne[3] = { ne0, ne1, ne2 };
  3563. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3564. result->op = GGML_OP_RESHAPE;
  3565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3566. result->src0 = a;
  3567. result->src1 = NULL;
  3568. return result;
  3569. }
  3570. // ggml_view_1d
  3571. struct ggml_tensor * ggml_view_1d(
  3572. struct ggml_context * ctx,
  3573. struct ggml_tensor * a,
  3574. int64_t ne0,
  3575. size_t offset) {
  3576. if (a->grad) {
  3577. GGML_ASSERT(false); // gradient propagation is not supported
  3578. }
  3579. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3580. result->op = GGML_OP_VIEW;
  3581. result->grad = NULL;
  3582. result->src0 = a;
  3583. result->src1 = NULL; // TODO: maybe store the offset here?
  3584. return result;
  3585. }
  3586. // ggml_view_2d
  3587. struct ggml_tensor * ggml_view_2d(
  3588. struct ggml_context * ctx,
  3589. struct ggml_tensor * a,
  3590. int64_t ne0,
  3591. int64_t ne1,
  3592. size_t nb1,
  3593. size_t offset) {
  3594. if (a->grad) {
  3595. GGML_ASSERT(false); // gradient propagation is not supported
  3596. }
  3597. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3598. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3599. result->nb[1] = nb1;
  3600. result->nb[2] = result->nb[1]*ne1;
  3601. result->nb[3] = result->nb[2];
  3602. result->op = GGML_OP_VIEW;
  3603. result->grad = NULL;
  3604. result->src0 = a;
  3605. result->src1 = NULL; // TODO: maybe store the offset here?
  3606. return result;
  3607. }
  3608. // ggml_permute
  3609. struct ggml_tensor * ggml_permute(
  3610. struct ggml_context * ctx,
  3611. struct ggml_tensor * a,
  3612. int axis0,
  3613. int axis1,
  3614. int axis2,
  3615. int axis3) {
  3616. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3617. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3618. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3619. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3620. GGML_ASSERT(axis0 != axis1);
  3621. GGML_ASSERT(axis0 != axis2);
  3622. GGML_ASSERT(axis0 != axis3);
  3623. GGML_ASSERT(axis1 != axis2);
  3624. GGML_ASSERT(axis1 != axis3);
  3625. GGML_ASSERT(axis2 != axis3);
  3626. bool is_node = false;
  3627. if (a->grad) {
  3628. GGML_ASSERT(false); // TODO: implement backward
  3629. is_node = true;
  3630. }
  3631. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3632. int ne[GGML_MAX_DIMS];
  3633. int nb[GGML_MAX_DIMS];
  3634. ne[axis0] = a->ne[0];
  3635. ne[axis1] = a->ne[1];
  3636. ne[axis2] = a->ne[2];
  3637. ne[axis3] = a->ne[3];
  3638. nb[axis0] = a->nb[0];
  3639. nb[axis1] = a->nb[1];
  3640. nb[axis2] = a->nb[2];
  3641. nb[axis3] = a->nb[3];
  3642. result->ne[0] = ne[0];
  3643. result->ne[1] = ne[1];
  3644. result->ne[2] = ne[2];
  3645. result->ne[3] = ne[3];
  3646. result->nb[0] = nb[0];
  3647. result->nb[1] = nb[1];
  3648. result->nb[2] = nb[2];
  3649. result->nb[3] = nb[3];
  3650. result->op = GGML_OP_PERMUTE;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src0 = a;
  3653. result->src1 = NULL; // TODO: maybe store the permutation here?
  3654. return result;
  3655. }
  3656. // ggml_transpose
  3657. struct ggml_tensor * ggml_transpose(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a) {
  3660. bool is_node = false;
  3661. if (a->grad) {
  3662. GGML_ASSERT(false); // TODO: implement backward
  3663. is_node = true;
  3664. }
  3665. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3666. result->ne[0] = a->ne[1];
  3667. result->ne[1] = a->ne[0];
  3668. result->nb[0] = a->nb[1];
  3669. result->nb[1] = a->nb[0];
  3670. result->op = GGML_OP_TRANSPOSE;
  3671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3672. result->src0 = a;
  3673. result->src1 = NULL;
  3674. return result;
  3675. }
  3676. // ggml_get_rows
  3677. struct ggml_tensor * ggml_get_rows(
  3678. struct ggml_context * ctx,
  3679. struct ggml_tensor * a,
  3680. struct ggml_tensor * b) {
  3681. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3682. bool is_node = false;
  3683. if (a->grad || b->grad) {
  3684. GGML_ASSERT(false); // TODO: implement backward
  3685. is_node = true;
  3686. }
  3687. // TODO: implement non F32 return
  3688. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3689. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3690. result->op = GGML_OP_GET_ROWS;
  3691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3692. result->src0 = a;
  3693. result->src1 = b;
  3694. return result;
  3695. }
  3696. // ggml_diag_mask_inf
  3697. struct ggml_tensor * ggml_diag_mask_inf(
  3698. struct ggml_context * ctx,
  3699. struct ggml_tensor * a,
  3700. int n_past) {
  3701. bool is_node = false;
  3702. if (a->grad) {
  3703. GGML_ASSERT(false); // TODO: implement backward
  3704. is_node = true;
  3705. }
  3706. // TODO: when implement backward, fix this:
  3707. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3708. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3709. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3710. result->op = GGML_OP_DIAG_MASK_INF;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src0 = a;
  3713. result->src1 = b;
  3714. return result;
  3715. }
  3716. // ggml_soft_max
  3717. struct ggml_tensor * ggml_soft_max(
  3718. struct ggml_context * ctx,
  3719. struct ggml_tensor * a) {
  3720. bool is_node = false;
  3721. if (a->grad) {
  3722. GGML_ASSERT(false); // TODO: implement backward
  3723. is_node = true;
  3724. }
  3725. // TODO: when implement backward, fix this:
  3726. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3727. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3728. result->op = GGML_OP_SOFT_MAX;
  3729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3730. result->src0 = a;
  3731. result->src1 = NULL;
  3732. return result;
  3733. }
  3734. // ggml_rope
  3735. struct ggml_tensor * ggml_rope(
  3736. struct ggml_context * ctx,
  3737. struct ggml_tensor * a,
  3738. int n_past,
  3739. int n_dims,
  3740. int mode) {
  3741. GGML_ASSERT(n_past >= 0);
  3742. bool is_node = false;
  3743. if (a->grad) {
  3744. GGML_ASSERT(false); // TODO: implement backward
  3745. is_node = true;
  3746. }
  3747. // TODO: when implement backward, fix this:
  3748. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3749. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3750. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3751. ((int32_t *) b->data)[0] = n_past;
  3752. ((int32_t *) b->data)[1] = n_dims;
  3753. ((int32_t *) b->data)[2] = mode;
  3754. result->op = GGML_OP_ROPE;
  3755. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3756. result->src0 = a;
  3757. result->src1 = b;
  3758. return result;
  3759. }
  3760. // ggml_conv_1d_1s
  3761. struct ggml_tensor * ggml_conv_1d_1s(
  3762. struct ggml_context * ctx,
  3763. struct ggml_tensor * a,
  3764. struct ggml_tensor * b) {
  3765. GGML_ASSERT(ggml_is_matrix(b));
  3766. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3767. GGML_ASSERT(a->ne[3] == 1);
  3768. bool is_node = false;
  3769. if (a->grad || b->grad) {
  3770. GGML_ASSERT(false); // TODO: implement backward
  3771. is_node = true;
  3772. }
  3773. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3774. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3775. result->op = GGML_OP_CONV_1D_1S;
  3776. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3777. result->src0 = a;
  3778. result->src1 = b;
  3779. return result;
  3780. }
  3781. // ggml_conv_1d_2s
  3782. struct ggml_tensor * ggml_conv_1d_2s(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b) {
  3786. GGML_ASSERT(ggml_is_matrix(b));
  3787. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3788. GGML_ASSERT(a->ne[3] == 1);
  3789. bool is_node = false;
  3790. if (a->grad || b->grad) {
  3791. GGML_ASSERT(false); // TODO: implement backward
  3792. is_node = true;
  3793. }
  3794. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3795. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3796. result->op = GGML_OP_CONV_1D_2S;
  3797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3798. result->src0 = a;
  3799. result->src1 = b;
  3800. return result;
  3801. }
  3802. // ggml_flash_attn
  3803. struct ggml_tensor * ggml_flash_attn(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * q,
  3806. struct ggml_tensor * k,
  3807. struct ggml_tensor * v,
  3808. bool masked) {
  3809. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3810. // TODO: check if vT can be multiplied by (k*qT)
  3811. bool is_node = false;
  3812. if (q->grad || k->grad || v->grad) {
  3813. GGML_ASSERT(false); // TODO: implement backward
  3814. is_node = true;
  3815. }
  3816. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3817. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3818. result->op = GGML_OP_FLASH_ATTN;
  3819. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3820. result->src0 = q;
  3821. result->src1 = k;
  3822. result->opt[0] = v;
  3823. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3824. return result;
  3825. }
  3826. // ggml_flash_ff
  3827. struct ggml_tensor * ggml_flash_ff(
  3828. struct ggml_context * ctx,
  3829. struct ggml_tensor * a,
  3830. struct ggml_tensor * b0,
  3831. struct ggml_tensor * b1,
  3832. struct ggml_tensor * c0,
  3833. struct ggml_tensor * c1) {
  3834. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3835. // TODO: more checks
  3836. bool is_node = false;
  3837. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3838. GGML_ASSERT(false); // TODO: implement backward
  3839. is_node = true;
  3840. }
  3841. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3842. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3843. result->op = GGML_OP_FLASH_FF;
  3844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3845. result->src0 = a;
  3846. result->src1 = b0;
  3847. result->opt[0] = b1;
  3848. result->opt[1] = c0;
  3849. result->opt[2] = c1;
  3850. return result;
  3851. }
  3852. ////////////////////////////////////////////////////////////////////////////////
  3853. void ggml_set_param(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * tensor) {
  3856. tensor->is_param = true;
  3857. GGML_ASSERT(tensor->grad == NULL);
  3858. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3859. }
  3860. // ggml_compute_forward_dup
  3861. static void ggml_compute_forward_dup_f16(
  3862. const struct ggml_compute_params * params,
  3863. const struct ggml_tensor * src0,
  3864. struct ggml_tensor * dst) {
  3865. GGML_ASSERT(params->ith == 0);
  3866. GGML_ASSERT(ggml_is_contiguous(dst));
  3867. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3869. return;
  3870. }
  3871. const int64_t ne00 = src0->ne[0];
  3872. const int64_t ne01 = src0->ne[1];
  3873. const int64_t ne02 = src0->ne[2];
  3874. const int64_t ne03 = src0->ne[3];
  3875. const size_t nb00 = src0->nb[0];
  3876. const size_t nb01 = src0->nb[1];
  3877. const size_t nb02 = src0->nb[2];
  3878. const size_t nb03 = src0->nb[3];
  3879. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3880. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3881. return;
  3882. }
  3883. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3884. if (dst->type == GGML_TYPE_F16) {
  3885. size_t id = 0;
  3886. const size_t rs = ne00*nb00;
  3887. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3888. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3889. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3890. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3891. char * dst_ptr = (char *) dst->data + id*rs;
  3892. memcpy(dst_ptr, src0_ptr, rs);
  3893. id++;
  3894. }
  3895. }
  3896. }
  3897. } else if (dst->type == GGML_TYPE_F32) {
  3898. size_t id = 0;
  3899. float * dst_ptr = (float *) dst->data;
  3900. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3901. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3902. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3903. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3904. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3905. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3906. id++;
  3907. }
  3908. }
  3909. }
  3910. }
  3911. } else {
  3912. GGML_ASSERT(false); // TODO: implement
  3913. }
  3914. } else {
  3915. //printf("%s: this is not optimal - fix me\n", __func__);
  3916. if (dst->type == GGML_TYPE_F32) {
  3917. size_t id = 0;
  3918. float * dst_ptr = (float *) dst->data;
  3919. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3920. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3921. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3922. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3923. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3924. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3925. id++;
  3926. }
  3927. }
  3928. }
  3929. }
  3930. } else if (dst->type == GGML_TYPE_F16) {
  3931. size_t id = 0;
  3932. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3935. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3936. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3937. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3938. dst_ptr[id] = *src0_ptr;
  3939. id++;
  3940. }
  3941. }
  3942. }
  3943. }
  3944. } else {
  3945. GGML_ASSERT(false); // TODO: implement
  3946. }
  3947. }
  3948. }
  3949. static void ggml_compute_forward_dup_f32(
  3950. const struct ggml_compute_params * params,
  3951. const struct ggml_tensor * src0,
  3952. struct ggml_tensor * dst) {
  3953. GGML_ASSERT(params->ith == 0);
  3954. GGML_ASSERT(ggml_is_contiguous(dst));
  3955. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3956. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3957. return;
  3958. }
  3959. const int64_t ne00 = src0->ne[0];
  3960. const int64_t ne01 = src0->ne[1];
  3961. const int64_t ne02 = src0->ne[2];
  3962. const int64_t ne03 = src0->ne[3];
  3963. const size_t nb00 = src0->nb[0];
  3964. const size_t nb01 = src0->nb[1];
  3965. const size_t nb02 = src0->nb[2];
  3966. const size_t nb03 = src0->nb[3];
  3967. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3968. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3969. return;
  3970. }
  3971. if (src0->nb[0] == sizeof(float)) {
  3972. if (dst->type == GGML_TYPE_F32) {
  3973. size_t id = 0;
  3974. const size_t rs = ne00*nb00;
  3975. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3976. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3977. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3978. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3979. char * dst_ptr = (char *) dst->data + id*rs;
  3980. memcpy(dst_ptr, src0_ptr, rs);
  3981. id++;
  3982. }
  3983. }
  3984. }
  3985. } else if (dst->type == GGML_TYPE_F16) {
  3986. size_t id = 0;
  3987. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3988. for (int64_t i03 = 0; i03 < ne03; i03++) {
  3989. for (int64_t i02 = 0; i02 < ne02; i02++) {
  3990. for (int64_t i01 = 0; i01 < ne01; i01++) {
  3991. for (int64_t i00 = 0; i00 < ne00; i00++) {
  3992. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3993. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3994. id++;
  3995. }
  3996. }
  3997. }
  3998. }
  3999. } else {
  4000. GGML_ASSERT(false); // TODO: implement
  4001. }
  4002. } else {
  4003. //printf("%s: this is not optimal - fix me\n", __func__);
  4004. if (dst->type == GGML_TYPE_F32) {
  4005. size_t id = 0;
  4006. float * dst_ptr = (float *) dst->data;
  4007. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4008. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4009. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4010. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4011. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4012. dst_ptr[id] = *src0_ptr;
  4013. id++;
  4014. }
  4015. }
  4016. }
  4017. }
  4018. } else if (dst->type == GGML_TYPE_F16) {
  4019. size_t id = 0;
  4020. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4021. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4022. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4023. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4024. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4025. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4026. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4027. id++;
  4028. }
  4029. }
  4030. }
  4031. }
  4032. } else {
  4033. GGML_ASSERT(false); // TODO: implement
  4034. }
  4035. }
  4036. }
  4037. static void ggml_compute_forward_dup(
  4038. const struct ggml_compute_params * params,
  4039. const struct ggml_tensor * src0,
  4040. struct ggml_tensor * dst) {
  4041. switch (src0->type) {
  4042. case GGML_TYPE_F16:
  4043. {
  4044. ggml_compute_forward_dup_f16(params, src0, dst);
  4045. } break;
  4046. case GGML_TYPE_F32:
  4047. {
  4048. ggml_compute_forward_dup_f32(params, src0, dst);
  4049. } break;
  4050. case GGML_TYPE_Q4_0:
  4051. case GGML_TYPE_Q4_1:
  4052. case GGML_TYPE_I8:
  4053. case GGML_TYPE_I16:
  4054. case GGML_TYPE_I32:
  4055. case GGML_TYPE_COUNT:
  4056. {
  4057. GGML_ASSERT(false);
  4058. } break;
  4059. }
  4060. }
  4061. // ggml_compute_forward_add
  4062. static void ggml_compute_forward_add_f32(
  4063. const struct ggml_compute_params * params,
  4064. const struct ggml_tensor * src0,
  4065. const struct ggml_tensor * src1,
  4066. struct ggml_tensor * dst) {
  4067. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4068. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4069. return;
  4070. }
  4071. const int ith = params->ith;
  4072. const int nth = params->nth;
  4073. const int n = ggml_nrows(src0);
  4074. const int nc = src0->ne[0];
  4075. const size_t nb00 = src0->nb[0];
  4076. const size_t nb01 = src0->nb[1];
  4077. const size_t nb10 = src1->nb[0];
  4078. const size_t nb11 = src1->nb[1];
  4079. const size_t nb0 = dst->nb[0];
  4080. const size_t nb1 = dst->nb[1];
  4081. GGML_ASSERT( nb0 == sizeof(float));
  4082. GGML_ASSERT(nb00 == sizeof(float));
  4083. if (nb10 == sizeof(float)) {
  4084. const int j0 = (n/nth)*ith;
  4085. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4086. for (int j = j0; j < j1; j++) {
  4087. ggml_vec_add_f32(nc,
  4088. (float *) ((char *) dst->data + j*nb1),
  4089. (float *) ((char *) src0->data + j*nb01),
  4090. (float *) ((char *) src1->data + j*nb11));
  4091. }
  4092. } else {
  4093. // src1 is not contiguous
  4094. for (int j = ith; j < n; j += nth) {
  4095. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4096. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4097. for (int i = 0; i < nc; i++) {
  4098. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4099. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4100. }
  4101. }
  4102. }
  4103. }
  4104. static void ggml_compute_forward_add(
  4105. const struct ggml_compute_params * params,
  4106. const struct ggml_tensor * src0,
  4107. const struct ggml_tensor * src1,
  4108. struct ggml_tensor * dst) {
  4109. switch (src0->type) {
  4110. case GGML_TYPE_F32:
  4111. {
  4112. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4113. } break;
  4114. case GGML_TYPE_Q4_0:
  4115. case GGML_TYPE_Q4_1:
  4116. case GGML_TYPE_I8:
  4117. case GGML_TYPE_I16:
  4118. case GGML_TYPE_I32:
  4119. case GGML_TYPE_F16:
  4120. case GGML_TYPE_COUNT:
  4121. {
  4122. GGML_ASSERT(false);
  4123. } break;
  4124. }
  4125. }
  4126. // ggml_compute_forward_sub
  4127. static void ggml_compute_forward_sub_f32(
  4128. const struct ggml_compute_params * params,
  4129. const struct ggml_tensor * src0,
  4130. const struct ggml_tensor * src1,
  4131. struct ggml_tensor * dst) {
  4132. assert(params->ith == 0);
  4133. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4134. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4135. return;
  4136. }
  4137. const int n = ggml_nrows(src0);
  4138. const int nc = src0->ne[0];
  4139. assert( dst->nb[0] == sizeof(float));
  4140. assert(src0->nb[0] == sizeof(float));
  4141. assert(src1->nb[0] == sizeof(float));
  4142. for (int i = 0; i < n; i++) {
  4143. ggml_vec_sub_f32(nc,
  4144. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4145. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4146. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4147. }
  4148. }
  4149. static void ggml_compute_forward_sub(
  4150. const struct ggml_compute_params * params,
  4151. const struct ggml_tensor * src0,
  4152. const struct ggml_tensor * src1,
  4153. struct ggml_tensor * dst) {
  4154. switch (src0->type) {
  4155. case GGML_TYPE_F32:
  4156. {
  4157. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4158. } break;
  4159. case GGML_TYPE_Q4_0:
  4160. case GGML_TYPE_Q4_1:
  4161. case GGML_TYPE_I8:
  4162. case GGML_TYPE_I16:
  4163. case GGML_TYPE_I32:
  4164. case GGML_TYPE_F16:
  4165. case GGML_TYPE_COUNT:
  4166. {
  4167. GGML_ASSERT(false);
  4168. } break;
  4169. }
  4170. }
  4171. // ggml_compute_forward_mul
  4172. static void ggml_compute_forward_mul_f32(
  4173. const struct ggml_compute_params * params,
  4174. const struct ggml_tensor * src0,
  4175. const struct ggml_tensor * src1,
  4176. struct ggml_tensor * dst) {
  4177. assert(params->ith == 0);
  4178. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4180. return;
  4181. }
  4182. const int n = ggml_nrows(src0);
  4183. const int nc = src0->ne[0];
  4184. assert( dst->nb[0] == sizeof(float));
  4185. assert(src0->nb[0] == sizeof(float));
  4186. assert(src1->nb[0] == sizeof(float));
  4187. for (int i = 0; i < n; i++) {
  4188. ggml_vec_mul_f32(nc,
  4189. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4190. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4191. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4192. }
  4193. }
  4194. static void ggml_compute_forward_mul(
  4195. const struct ggml_compute_params * params,
  4196. const struct ggml_tensor * src0,
  4197. const struct ggml_tensor * src1,
  4198. struct ggml_tensor * dst) {
  4199. switch (src0->type) {
  4200. case GGML_TYPE_F32:
  4201. {
  4202. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4203. } break;
  4204. case GGML_TYPE_Q4_0:
  4205. case GGML_TYPE_Q4_1:
  4206. case GGML_TYPE_I8:
  4207. case GGML_TYPE_I16:
  4208. case GGML_TYPE_I32:
  4209. case GGML_TYPE_F16:
  4210. case GGML_TYPE_COUNT:
  4211. {
  4212. GGML_ASSERT(false);
  4213. } break;
  4214. }
  4215. }
  4216. // ggml_compute_forward_div
  4217. static void ggml_compute_forward_div_f32(
  4218. const struct ggml_compute_params * params,
  4219. const struct ggml_tensor * src0,
  4220. const struct ggml_tensor * src1,
  4221. struct ggml_tensor * dst) {
  4222. assert(params->ith == 0);
  4223. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4224. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4225. return;
  4226. }
  4227. const int n = ggml_nrows(src0);
  4228. const int nc = src0->ne[0];
  4229. assert( dst->nb[0] == sizeof(float));
  4230. assert(src0->nb[0] == sizeof(float));
  4231. assert(src1->nb[0] == sizeof(float));
  4232. for (int i = 0; i < n; i++) {
  4233. ggml_vec_div_f32(nc,
  4234. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4235. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4236. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4237. }
  4238. }
  4239. static void ggml_compute_forward_div(
  4240. const struct ggml_compute_params * params,
  4241. const struct ggml_tensor * src0,
  4242. const struct ggml_tensor * src1,
  4243. struct ggml_tensor * dst) {
  4244. switch (src0->type) {
  4245. case GGML_TYPE_F32:
  4246. {
  4247. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4248. } break;
  4249. case GGML_TYPE_Q4_0:
  4250. case GGML_TYPE_Q4_1:
  4251. case GGML_TYPE_I8:
  4252. case GGML_TYPE_I16:
  4253. case GGML_TYPE_I32:
  4254. case GGML_TYPE_F16:
  4255. case GGML_TYPE_COUNT:
  4256. {
  4257. GGML_ASSERT(false);
  4258. } break;
  4259. }
  4260. }
  4261. // ggml_compute_forward_sqr
  4262. static void ggml_compute_forward_sqr_f32(
  4263. const struct ggml_compute_params * params,
  4264. const struct ggml_tensor * src0,
  4265. struct ggml_tensor * dst) {
  4266. assert(params->ith == 0);
  4267. assert(ggml_are_same_shape(src0, dst));
  4268. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4269. return;
  4270. }
  4271. const int n = ggml_nrows(src0);
  4272. const int nc = src0->ne[0];
  4273. assert( dst->nb[0] == sizeof(float));
  4274. assert(src0->nb[0] == sizeof(float));
  4275. for (int i = 0; i < n; i++) {
  4276. ggml_vec_sqr_f32(nc,
  4277. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4278. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4279. }
  4280. }
  4281. static void ggml_compute_forward_sqr(
  4282. const struct ggml_compute_params * params,
  4283. const struct ggml_tensor * src0,
  4284. struct ggml_tensor * dst) {
  4285. switch (src0->type) {
  4286. case GGML_TYPE_F32:
  4287. {
  4288. ggml_compute_forward_sqr_f32(params, src0, dst);
  4289. } break;
  4290. case GGML_TYPE_Q4_0:
  4291. case GGML_TYPE_Q4_1:
  4292. case GGML_TYPE_I8:
  4293. case GGML_TYPE_I16:
  4294. case GGML_TYPE_I32:
  4295. case GGML_TYPE_F16:
  4296. case GGML_TYPE_COUNT:
  4297. {
  4298. GGML_ASSERT(false);
  4299. } break;
  4300. }
  4301. }
  4302. // ggml_compute_forward_sqrt
  4303. static void ggml_compute_forward_sqrt_f32(
  4304. const struct ggml_compute_params * params,
  4305. const struct ggml_tensor * src0,
  4306. struct ggml_tensor * dst) {
  4307. assert(params->ith == 0);
  4308. assert(ggml_are_same_shape(src0, dst));
  4309. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4310. return;
  4311. }
  4312. const int n = ggml_nrows(src0);
  4313. const int nc = src0->ne[0];
  4314. assert( dst->nb[0] == sizeof(float));
  4315. assert(src0->nb[0] == sizeof(float));
  4316. for (int i = 0; i < n; i++) {
  4317. ggml_vec_sqrt_f32(nc,
  4318. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4319. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4320. }
  4321. }
  4322. static void ggml_compute_forward_sqrt(
  4323. const struct ggml_compute_params * params,
  4324. const struct ggml_tensor * src0,
  4325. struct ggml_tensor * dst) {
  4326. switch (src0->type) {
  4327. case GGML_TYPE_F32:
  4328. {
  4329. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4330. } break;
  4331. case GGML_TYPE_Q4_0:
  4332. case GGML_TYPE_Q4_1:
  4333. case GGML_TYPE_I8:
  4334. case GGML_TYPE_I16:
  4335. case GGML_TYPE_I32:
  4336. case GGML_TYPE_F16:
  4337. case GGML_TYPE_COUNT:
  4338. {
  4339. GGML_ASSERT(false);
  4340. } break;
  4341. }
  4342. }
  4343. // ggml_compute_forward_sum
  4344. static void ggml_compute_forward_sum_f32(
  4345. const struct ggml_compute_params * params,
  4346. const struct ggml_tensor * src0,
  4347. struct ggml_tensor * dst) {
  4348. assert(params->ith == 0);
  4349. assert(ggml_is_scalar(dst));
  4350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4351. return;
  4352. }
  4353. assert(ggml_is_scalar(dst));
  4354. assert(src0->nb[0] == sizeof(float));
  4355. const int64_t ne00 = src0->ne[0];
  4356. const int64_t ne01 = src0->ne[1];
  4357. const int64_t ne02 = src0->ne[2];
  4358. const int64_t ne03 = src0->ne[3];
  4359. const size_t nb01 = src0->nb[1];
  4360. const size_t nb02 = src0->nb[2];
  4361. const size_t nb03 = src0->nb[3];
  4362. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4363. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4364. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4365. ggml_vec_sum_f32(ne00,
  4366. (float *) (dst->data),
  4367. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4368. }
  4369. }
  4370. }
  4371. }
  4372. static void ggml_compute_forward_sum(
  4373. const struct ggml_compute_params * params,
  4374. const struct ggml_tensor * src0,
  4375. struct ggml_tensor * dst) {
  4376. switch (src0->type) {
  4377. case GGML_TYPE_F32:
  4378. {
  4379. ggml_compute_forward_sum_f32(params, src0, dst);
  4380. } break;
  4381. case GGML_TYPE_Q4_0:
  4382. case GGML_TYPE_Q4_1:
  4383. case GGML_TYPE_I8:
  4384. case GGML_TYPE_I16:
  4385. case GGML_TYPE_I32:
  4386. case GGML_TYPE_F16:
  4387. case GGML_TYPE_COUNT:
  4388. {
  4389. GGML_ASSERT(false);
  4390. } break;
  4391. }
  4392. }
  4393. // ggml_compute_forward_mean
  4394. static void ggml_compute_forward_mean_f32(
  4395. const struct ggml_compute_params * params,
  4396. const struct ggml_tensor * src0,
  4397. struct ggml_tensor * dst) {
  4398. assert(params->ith == 0);
  4399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4400. return;
  4401. }
  4402. assert(src0->nb[0] == sizeof(float));
  4403. const int64_t ne00 = src0->ne[0];
  4404. const int64_t ne01 = src0->ne[1];
  4405. const int64_t ne02 = src0->ne[2];
  4406. const int64_t ne03 = src0->ne[3];
  4407. const size_t nb01 = src0->nb[1];
  4408. const size_t nb02 = src0->nb[2];
  4409. const size_t nb03 = src0->nb[3];
  4410. const int64_t ne0 = dst->ne[0];
  4411. const int64_t ne1 = dst->ne[1];
  4412. const int64_t ne2 = dst->ne[2];
  4413. const int64_t ne3 = dst->ne[3];
  4414. assert(ne0 == 1);
  4415. assert(ne1 == ne01);
  4416. assert(ne2 == ne02);
  4417. assert(ne3 == ne03);
  4418. UNUSED(ne0);
  4419. UNUSED(ne1);
  4420. UNUSED(ne2);
  4421. UNUSED(ne3);
  4422. const size_t nb1 = dst->nb[1];
  4423. const size_t nb2 = dst->nb[2];
  4424. const size_t nb3 = dst->nb[3];
  4425. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4426. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4427. for (int64_t i01 = 0; i01 < ne01; i01++) {
  4428. ggml_vec_sum_f32(ne00,
  4429. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4430. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4431. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4432. }
  4433. }
  4434. }
  4435. }
  4436. static void ggml_compute_forward_mean(
  4437. const struct ggml_compute_params * params,
  4438. const struct ggml_tensor * src0,
  4439. struct ggml_tensor * dst) {
  4440. switch (src0->type) {
  4441. case GGML_TYPE_F32:
  4442. {
  4443. ggml_compute_forward_mean_f32(params, src0, dst);
  4444. } break;
  4445. case GGML_TYPE_Q4_0:
  4446. case GGML_TYPE_Q4_1:
  4447. case GGML_TYPE_I8:
  4448. case GGML_TYPE_I16:
  4449. case GGML_TYPE_I32:
  4450. case GGML_TYPE_F16:
  4451. case GGML_TYPE_COUNT:
  4452. {
  4453. GGML_ASSERT(false);
  4454. } break;
  4455. }
  4456. }
  4457. // ggml_compute_forward_repeat
  4458. static void ggml_compute_forward_repeat_f32(
  4459. const struct ggml_compute_params * params,
  4460. const struct ggml_tensor * src0,
  4461. struct ggml_tensor * dst) {
  4462. assert(params->ith == 0);
  4463. assert(ggml_can_repeat(src0, dst));
  4464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4465. return;
  4466. }
  4467. // TODO: implement support for rank > 2 tensors
  4468. assert(src0->ne[2] == 1);
  4469. assert(src0->ne[3] == 1);
  4470. assert( dst->ne[2] == 1);
  4471. assert( dst->ne[3] == 1);
  4472. const int nc = dst->ne[0];
  4473. const int nr = dst->ne[1];
  4474. const int nc0 = src0->ne[0];
  4475. const int nr0 = src0->ne[1];
  4476. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4477. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4478. // TODO: support for transposed / permuted tensors
  4479. assert( dst->nb[0] == sizeof(float));
  4480. assert(src0->nb[0] == sizeof(float));
  4481. // TODO: maybe this is not optimal?
  4482. for (int i = 0; i < nrr; i++) {
  4483. for (int j = 0; j < ncr; j++) {
  4484. for (int k = 0; k < nr0; k++) {
  4485. ggml_vec_cpy_f32(nc0,
  4486. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4487. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4488. }
  4489. }
  4490. }
  4491. }
  4492. static void ggml_compute_forward_repeat(
  4493. const struct ggml_compute_params * params,
  4494. const struct ggml_tensor * src0,
  4495. struct ggml_tensor * dst) {
  4496. switch (src0->type) {
  4497. case GGML_TYPE_F32:
  4498. {
  4499. ggml_compute_forward_repeat_f32(params, src0, dst);
  4500. } break;
  4501. case GGML_TYPE_Q4_0:
  4502. case GGML_TYPE_Q4_1:
  4503. case GGML_TYPE_I8:
  4504. case GGML_TYPE_I16:
  4505. case GGML_TYPE_I32:
  4506. case GGML_TYPE_F16:
  4507. case GGML_TYPE_COUNT:
  4508. {
  4509. GGML_ASSERT(false);
  4510. } break;
  4511. }
  4512. }
  4513. // ggml_compute_forward_abs
  4514. static void ggml_compute_forward_abs_f32(
  4515. const struct ggml_compute_params * params,
  4516. const struct ggml_tensor * src0,
  4517. struct ggml_tensor * dst) {
  4518. assert(params->ith == 0);
  4519. assert(ggml_are_same_shape(src0, dst));
  4520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4521. return;
  4522. }
  4523. const int n = ggml_nrows(src0);
  4524. const int nc = src0->ne[0];
  4525. assert(dst->nb[0] == sizeof(float));
  4526. assert(src0->nb[0] == sizeof(float));
  4527. for (int i = 0; i < n; i++) {
  4528. ggml_vec_abs_f32(nc,
  4529. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4530. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4531. }
  4532. }
  4533. static void ggml_compute_forward_abs(
  4534. const struct ggml_compute_params * params,
  4535. const struct ggml_tensor * src0,
  4536. struct ggml_tensor * dst) {
  4537. switch (src0->type) {
  4538. case GGML_TYPE_F32:
  4539. {
  4540. ggml_compute_forward_abs_f32(params, src0, dst);
  4541. } break;
  4542. case GGML_TYPE_Q4_0:
  4543. case GGML_TYPE_Q4_1:
  4544. case GGML_TYPE_I8:
  4545. case GGML_TYPE_I16:
  4546. case GGML_TYPE_I32:
  4547. case GGML_TYPE_F16:
  4548. case GGML_TYPE_COUNT:
  4549. {
  4550. GGML_ASSERT(false);
  4551. } break;
  4552. }
  4553. }
  4554. // ggml_compute_forward_sgn
  4555. static void ggml_compute_forward_sgn_f32(
  4556. const struct ggml_compute_params * params,
  4557. const struct ggml_tensor * src0,
  4558. struct ggml_tensor * dst) {
  4559. assert(params->ith == 0);
  4560. assert(ggml_are_same_shape(src0, dst));
  4561. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4562. return;
  4563. }
  4564. const int n = ggml_nrows(src0);
  4565. const int nc = src0->ne[0];
  4566. assert(dst->nb[0] == sizeof(float));
  4567. assert(src0->nb[0] == sizeof(float));
  4568. for (int i = 0; i < n; i++) {
  4569. ggml_vec_sgn_f32(nc,
  4570. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4571. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4572. }
  4573. }
  4574. static void ggml_compute_forward_sgn(
  4575. const struct ggml_compute_params * params,
  4576. const struct ggml_tensor * src0,
  4577. struct ggml_tensor * dst) {
  4578. switch (src0->type) {
  4579. case GGML_TYPE_F32:
  4580. {
  4581. ggml_compute_forward_sgn_f32(params, src0, dst);
  4582. } break;
  4583. case GGML_TYPE_Q4_0:
  4584. case GGML_TYPE_Q4_1:
  4585. case GGML_TYPE_I8:
  4586. case GGML_TYPE_I16:
  4587. case GGML_TYPE_I32:
  4588. case GGML_TYPE_F16:
  4589. case GGML_TYPE_COUNT:
  4590. {
  4591. GGML_ASSERT(false);
  4592. } break;
  4593. }
  4594. }
  4595. // ggml_compute_forward_neg
  4596. static void ggml_compute_forward_neg_f32(
  4597. const struct ggml_compute_params * params,
  4598. const struct ggml_tensor * src0,
  4599. struct ggml_tensor * dst) {
  4600. assert(params->ith == 0);
  4601. assert(ggml_are_same_shape(src0, dst));
  4602. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4603. return;
  4604. }
  4605. const int n = ggml_nrows(src0);
  4606. const int nc = src0->ne[0];
  4607. assert(dst->nb[0] == sizeof(float));
  4608. assert(src0->nb[0] == sizeof(float));
  4609. for (int i = 0; i < n; i++) {
  4610. ggml_vec_neg_f32(nc,
  4611. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4612. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4613. }
  4614. }
  4615. static void ggml_compute_forward_neg(
  4616. const struct ggml_compute_params * params,
  4617. const struct ggml_tensor * src0,
  4618. struct ggml_tensor * dst) {
  4619. switch (src0->type) {
  4620. case GGML_TYPE_F32:
  4621. {
  4622. ggml_compute_forward_neg_f32(params, src0, dst);
  4623. } break;
  4624. case GGML_TYPE_Q4_0:
  4625. case GGML_TYPE_Q4_1:
  4626. case GGML_TYPE_I8:
  4627. case GGML_TYPE_I16:
  4628. case GGML_TYPE_I32:
  4629. case GGML_TYPE_F16:
  4630. case GGML_TYPE_COUNT:
  4631. {
  4632. GGML_ASSERT(false);
  4633. } break;
  4634. }
  4635. }
  4636. // ggml_compute_forward_step
  4637. static void ggml_compute_forward_step_f32(
  4638. const struct ggml_compute_params * params,
  4639. const struct ggml_tensor * src0,
  4640. struct ggml_tensor * dst) {
  4641. assert(params->ith == 0);
  4642. assert(ggml_are_same_shape(src0, dst));
  4643. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4644. return;
  4645. }
  4646. const int n = ggml_nrows(src0);
  4647. const int nc = src0->ne[0];
  4648. assert(dst->nb[0] == sizeof(float));
  4649. assert(src0->nb[0] == sizeof(float));
  4650. for (int i = 0; i < n; i++) {
  4651. ggml_vec_step_f32(nc,
  4652. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4653. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4654. }
  4655. }
  4656. static void ggml_compute_forward_step(
  4657. const struct ggml_compute_params * params,
  4658. const struct ggml_tensor * src0,
  4659. struct ggml_tensor * dst) {
  4660. switch (src0->type) {
  4661. case GGML_TYPE_F32:
  4662. {
  4663. ggml_compute_forward_step_f32(params, src0, dst);
  4664. } break;
  4665. case GGML_TYPE_Q4_0:
  4666. case GGML_TYPE_Q4_1:
  4667. case GGML_TYPE_I8:
  4668. case GGML_TYPE_I16:
  4669. case GGML_TYPE_I32:
  4670. case GGML_TYPE_F16:
  4671. case GGML_TYPE_COUNT:
  4672. {
  4673. GGML_ASSERT(false);
  4674. } break;
  4675. }
  4676. }
  4677. // ggml_compute_forward_relu
  4678. static void ggml_compute_forward_relu_f32(
  4679. const struct ggml_compute_params * params,
  4680. const struct ggml_tensor * src0,
  4681. struct ggml_tensor * dst) {
  4682. assert(params->ith == 0);
  4683. assert(ggml_are_same_shape(src0, dst));
  4684. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4685. return;
  4686. }
  4687. const int n = ggml_nrows(src0);
  4688. const int nc = src0->ne[0];
  4689. assert(dst->nb[0] == sizeof(float));
  4690. assert(src0->nb[0] == sizeof(float));
  4691. for (int i = 0; i < n; i++) {
  4692. ggml_vec_relu_f32(nc,
  4693. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4694. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4695. }
  4696. }
  4697. static void ggml_compute_forward_relu(
  4698. const struct ggml_compute_params * params,
  4699. const struct ggml_tensor * src0,
  4700. struct ggml_tensor * dst) {
  4701. switch (src0->type) {
  4702. case GGML_TYPE_F32:
  4703. {
  4704. ggml_compute_forward_relu_f32(params, src0, dst);
  4705. } break;
  4706. case GGML_TYPE_Q4_0:
  4707. case GGML_TYPE_Q4_1:
  4708. case GGML_TYPE_I8:
  4709. case GGML_TYPE_I16:
  4710. case GGML_TYPE_I32:
  4711. case GGML_TYPE_F16:
  4712. case GGML_TYPE_COUNT:
  4713. {
  4714. GGML_ASSERT(false);
  4715. } break;
  4716. }
  4717. }
  4718. // ggml_compute_forward_gelu
  4719. static void ggml_compute_forward_gelu_f32(
  4720. const struct ggml_compute_params * params,
  4721. const struct ggml_tensor * src0,
  4722. struct ggml_tensor * dst) {
  4723. GGML_ASSERT(ggml_is_contiguous(src0));
  4724. GGML_ASSERT(ggml_is_contiguous(dst));
  4725. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4726. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4727. return;
  4728. }
  4729. const int ith = params->ith;
  4730. const int nth = params->nth;
  4731. const int nc = src0->ne[0];
  4732. const int nr = ggml_nrows(src0);
  4733. // rows per thread
  4734. const int dr = (nr + nth - 1)/nth;
  4735. // row range for this thread
  4736. const int ir0 = dr*ith;
  4737. const int ir1 = MIN(ir0 + dr, nr);
  4738. for (int i1 = ir0; i1 < ir1; i1++) {
  4739. ggml_vec_gelu_f32(nc,
  4740. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4741. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4742. #ifndef NDEBUG
  4743. for (int k = 0; k < nc; k++) {
  4744. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4745. UNUSED(x);
  4746. assert(!isnan(x));
  4747. assert(!isinf(x));
  4748. }
  4749. #endif
  4750. }
  4751. }
  4752. static void ggml_compute_forward_gelu(
  4753. const struct ggml_compute_params * params,
  4754. const struct ggml_tensor * src0,
  4755. struct ggml_tensor * dst) {
  4756. switch (src0->type) {
  4757. case GGML_TYPE_F32:
  4758. {
  4759. ggml_compute_forward_gelu_f32(params, src0, dst);
  4760. } break;
  4761. case GGML_TYPE_Q4_0:
  4762. case GGML_TYPE_Q4_1:
  4763. case GGML_TYPE_I8:
  4764. case GGML_TYPE_I16:
  4765. case GGML_TYPE_I32:
  4766. case GGML_TYPE_F16:
  4767. case GGML_TYPE_COUNT:
  4768. {
  4769. GGML_ASSERT(false);
  4770. } break;
  4771. }
  4772. //printf("XXXXXXXX gelu\n");
  4773. }
  4774. // ggml_compute_forward_silu
  4775. static void ggml_compute_forward_silu_f32(
  4776. const struct ggml_compute_params * params,
  4777. const struct ggml_tensor * src0,
  4778. struct ggml_tensor * dst) {
  4779. GGML_ASSERT(ggml_is_contiguous(src0));
  4780. GGML_ASSERT(ggml_is_contiguous(dst));
  4781. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4783. return;
  4784. }
  4785. const int ith = params->ith;
  4786. const int nth = params->nth;
  4787. const int nc = src0->ne[0];
  4788. const int nr = ggml_nrows(src0);
  4789. // rows per thread
  4790. const int dr = (nr + nth - 1)/nth;
  4791. // row range for this thread
  4792. const int ir0 = dr*ith;
  4793. const int ir1 = MIN(ir0 + dr, nr);
  4794. for (int i1 = ir0; i1 < ir1; i1++) {
  4795. ggml_vec_silu_f32(nc,
  4796. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4797. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4798. #ifndef NDEBUG
  4799. for (int k = 0; k < nc; k++) {
  4800. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4801. UNUSED(x);
  4802. assert(!isnan(x));
  4803. assert(!isinf(x));
  4804. }
  4805. #endif
  4806. }
  4807. }
  4808. static void ggml_compute_forward_silu(
  4809. const struct ggml_compute_params * params,
  4810. const struct ggml_tensor * src0,
  4811. struct ggml_tensor * dst) {
  4812. switch (src0->type) {
  4813. case GGML_TYPE_F32:
  4814. {
  4815. ggml_compute_forward_silu_f32(params, src0, dst);
  4816. } break;
  4817. case GGML_TYPE_Q4_0:
  4818. case GGML_TYPE_Q4_1:
  4819. case GGML_TYPE_I8:
  4820. case GGML_TYPE_I16:
  4821. case GGML_TYPE_I32:
  4822. case GGML_TYPE_F16:
  4823. case GGML_TYPE_COUNT:
  4824. {
  4825. GGML_ASSERT(false);
  4826. } break;
  4827. }
  4828. }
  4829. // ggml_compute_forward_norm
  4830. static void ggml_compute_forward_norm_f32(
  4831. const struct ggml_compute_params * params,
  4832. const struct ggml_tensor * src0,
  4833. struct ggml_tensor * dst) {
  4834. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4836. return;
  4837. }
  4838. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4839. const int ith = params->ith;
  4840. const int nth = params->nth;
  4841. const int64_t ne00 = src0->ne[0];
  4842. const int64_t ne01 = src0->ne[1];
  4843. const int64_t ne02 = src0->ne[2];
  4844. const int64_t ne03 = src0->ne[3];
  4845. const size_t nb01 = src0->nb[1];
  4846. const size_t nb02 = src0->nb[2];
  4847. const size_t nb03 = src0->nb[3];
  4848. const size_t nb1 = dst->nb[1];
  4849. const size_t nb2 = dst->nb[2];
  4850. const size_t nb3 = dst->nb[3];
  4851. const float eps = 1e-5f; // TODO: make this a parameter
  4852. // TODO: optimize
  4853. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4854. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4855. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4856. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4857. ggml_float sum = 0.0;
  4858. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4859. sum += (ggml_float)x[i00];
  4860. }
  4861. float mean = sum/ne00;
  4862. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4863. ggml_float sum2 = 0.0;
  4864. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4865. float v = x[i00] - mean;
  4866. y[i00] = v;
  4867. sum2 += (ggml_float)(v*v);
  4868. }
  4869. float variance = sum2/ne00;
  4870. const float scale = 1.0f/sqrtf(variance + eps);
  4871. ggml_vec_scale_f32(ne00, y, scale);
  4872. }
  4873. }
  4874. }
  4875. }
  4876. static void ggml_compute_forward_norm(
  4877. const struct ggml_compute_params * params,
  4878. const struct ggml_tensor * src0,
  4879. struct ggml_tensor * dst) {
  4880. switch (src0->type) {
  4881. case GGML_TYPE_F32:
  4882. {
  4883. ggml_compute_forward_norm_f32(params, src0, dst);
  4884. } break;
  4885. case GGML_TYPE_Q4_0:
  4886. case GGML_TYPE_Q4_1:
  4887. case GGML_TYPE_I8:
  4888. case GGML_TYPE_I16:
  4889. case GGML_TYPE_I32:
  4890. case GGML_TYPE_F16:
  4891. case GGML_TYPE_COUNT:
  4892. {
  4893. GGML_ASSERT(false);
  4894. } break;
  4895. }
  4896. }
  4897. static void ggml_compute_forward_rms_norm_f32(
  4898. const struct ggml_compute_params * params,
  4899. const struct ggml_tensor * src0,
  4900. struct ggml_tensor * dst) {
  4901. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4902. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4903. return;
  4904. }
  4905. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4906. const int ith = params->ith;
  4907. const int nth = params->nth;
  4908. const int64_t ne00 = src0->ne[0];
  4909. const int64_t ne01 = src0->ne[1];
  4910. const int64_t ne02 = src0->ne[2];
  4911. const int64_t ne03 = src0->ne[3];
  4912. const size_t nb01 = src0->nb[1];
  4913. const size_t nb02 = src0->nb[2];
  4914. const size_t nb03 = src0->nb[3];
  4915. const size_t nb1 = dst->nb[1];
  4916. const size_t nb2 = dst->nb[2];
  4917. const size_t nb3 = dst->nb[3];
  4918. const float eps = 1e-6f; // TODO: make this a parameter
  4919. // TODO: optimize
  4920. for (int64_t i03 = 0; i03 < ne03; i03++) {
  4921. for (int64_t i02 = 0; i02 < ne02; i02++) {
  4922. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  4923. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4924. ggml_float sum = 0.0;
  4925. for (int64_t i00 = 0; i00 < ne00; i00++) {
  4926. sum += (ggml_float)(x[i00] * x[i00]);
  4927. }
  4928. float mean = sum/ne00;
  4929. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4930. memcpy(y, x, ne00 * sizeof(float));
  4931. // for (int i00 = 0; i00 < ne00; i00++) {
  4932. // y[i00] = x[i00];
  4933. // }
  4934. const float scale = 1.0f/sqrtf(mean + eps);
  4935. ggml_vec_scale_f32(ne00, y, scale);
  4936. }
  4937. }
  4938. }
  4939. }
  4940. static void ggml_compute_forward_rms_norm(
  4941. const struct ggml_compute_params * params,
  4942. const struct ggml_tensor * src0,
  4943. struct ggml_tensor * dst) {
  4944. switch (src0->type) {
  4945. case GGML_TYPE_F32:
  4946. {
  4947. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4948. } break;
  4949. case GGML_TYPE_Q4_0:
  4950. case GGML_TYPE_Q4_1:
  4951. case GGML_TYPE_I8:
  4952. case GGML_TYPE_I16:
  4953. case GGML_TYPE_I32:
  4954. case GGML_TYPE_F16:
  4955. case GGML_TYPE_COUNT:
  4956. {
  4957. GGML_ASSERT(false);
  4958. } break;
  4959. }
  4960. }
  4961. // ggml_compute_forward_mul_mat
  4962. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4963. // helper function to determine if it is better to use BLAS or not
  4964. // for large matrices, BLAS is faster
  4965. static bool ggml_compute_forward_mul_mat_use_blas(
  4966. const struct ggml_tensor * src0,
  4967. const struct ggml_tensor * src1,
  4968. struct ggml_tensor * dst) {
  4969. //const int64_t ne00 = src0->ne[0];
  4970. //const int64_t ne01 = src0->ne[1];
  4971. const int64_t ne10 = src1->ne[0];
  4972. const int64_t ne0 = dst->ne[0];
  4973. const int64_t ne1 = dst->ne[1];
  4974. // TODO: find the optimal values for these
  4975. if (ggml_is_contiguous(src0) &&
  4976. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4977. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4978. return true;
  4979. }
  4980. return false;
  4981. }
  4982. #endif
  4983. static void ggml_compute_forward_mul_mat_f32(
  4984. const struct ggml_compute_params * params,
  4985. const struct ggml_tensor * src0,
  4986. const struct ggml_tensor * src1,
  4987. struct ggml_tensor * dst) {
  4988. int64_t t0 = ggml_perf_time_us();
  4989. UNUSED(t0);
  4990. const int64_t ne00 = src0->ne[0];
  4991. const int64_t ne01 = src0->ne[1];
  4992. const int64_t ne02 = src0->ne[2];
  4993. const int64_t ne03 = src0->ne[3];
  4994. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4995. const int64_t ne10 = src1->ne[0];
  4996. #endif
  4997. const int64_t ne11 = src1->ne[1];
  4998. #ifndef NDEBUG
  4999. const int64_t ne12 = src1->ne[2];
  5000. const int64_t ne13 = src1->ne[3];
  5001. const int64_t ne0 = dst->ne[0];
  5002. const int64_t ne1 = dst->ne[1];
  5003. const int64_t ne2 = dst->ne[2];
  5004. const int64_t ne3 = dst->ne[3];
  5005. const int nb00 = src0->nb[0];
  5006. #endif
  5007. const int nb01 = src0->nb[1];
  5008. const int nb02 = src0->nb[2];
  5009. const int nb03 = src0->nb[3];
  5010. #ifndef NDEBUG
  5011. const int nb10 = src1->nb[0];
  5012. #endif
  5013. const int nb11 = src1->nb[1];
  5014. const int nb12 = src1->nb[2];
  5015. const int nb13 = src1->nb[3];
  5016. const int nb0 = dst->nb[0];
  5017. const int nb1 = dst->nb[1];
  5018. const int nb2 = dst->nb[2];
  5019. const int nb3 = dst->nb[3];
  5020. const int ith = params->ith;
  5021. const int nth = params->nth;
  5022. assert(ne02 == ne12);
  5023. assert(ne03 == ne13);
  5024. assert(ne2 == ne12);
  5025. assert(ne3 == ne13);
  5026. // we don't support permuted src0 or src1
  5027. assert(nb00 == sizeof(float));
  5028. assert(nb10 == sizeof(float));
  5029. // dst cannot be transposed or permuted
  5030. assert(nb0 == sizeof(float));
  5031. assert(nb0 <= nb1);
  5032. assert(nb1 <= nb2);
  5033. assert(nb2 <= nb3);
  5034. assert(ne0 == ne01);
  5035. assert(ne1 == ne11);
  5036. assert(ne2 == ne02);
  5037. assert(ne3 == ne03);
  5038. // nb01 >= nb00 - src0 is not transposed
  5039. // compute by src0 rows
  5040. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5041. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5042. if (params->ith != 0) {
  5043. return;
  5044. }
  5045. if (params->type == GGML_TASK_INIT) {
  5046. return;
  5047. }
  5048. if (params->type == GGML_TASK_FINALIZE) {
  5049. return;
  5050. }
  5051. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5052. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5053. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5054. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5055. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5056. // zT = y * xT
  5057. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5058. ne11, ne01, ne10,
  5059. 1.0f, y, ne10,
  5060. x, ne10,
  5061. 0.0f, d, ne01);
  5062. }
  5063. }
  5064. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5065. return;
  5066. }
  5067. #endif
  5068. if (params->type == GGML_TASK_INIT) {
  5069. return;
  5070. }
  5071. if (params->type == GGML_TASK_FINALIZE) {
  5072. return;
  5073. }
  5074. // parallelize by src0 rows using ggml_vec_dot_f32
  5075. // total rows in src0
  5076. const int nr = ne01*ne02*ne03;
  5077. // rows per thread
  5078. const int dr = (nr + nth - 1)/nth;
  5079. // row range for this thread
  5080. const int ir0 = dr*ith;
  5081. const int ir1 = MIN(ir0 + dr, nr);
  5082. for (int ir = ir0; ir < ir1; ++ir) {
  5083. // src0 indices
  5084. const int i03 = ir/(ne02*ne01);
  5085. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5086. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5087. for (int64_t ic = 0; ic < ne11; ++ic) {
  5088. // src1 indices
  5089. const int i13 = i03;
  5090. const int i12 = i02;
  5091. const int i11 = ic;
  5092. // dst indices
  5093. const int i0 = i01;
  5094. const int i1 = i11;
  5095. const int i2 = i02;
  5096. const int i3 = i03;
  5097. ggml_vec_dot_f32(ne00,
  5098. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5099. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5100. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5101. }
  5102. }
  5103. //int64_t t1 = ggml_perf_time_us();
  5104. //static int64_t acc = 0;
  5105. //acc += t1 - t0;
  5106. //if (t1 - t0 > 10) {
  5107. // printf("\n");
  5108. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5109. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5110. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5111. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5112. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5113. //}
  5114. }
  5115. static void ggml_compute_forward_mul_mat_f16_f32(
  5116. const struct ggml_compute_params * params,
  5117. const struct ggml_tensor * src0,
  5118. const struct ggml_tensor * src1,
  5119. struct ggml_tensor * dst) {
  5120. int64_t t0 = ggml_perf_time_us();
  5121. UNUSED(t0);
  5122. const int64_t ne00 = src0->ne[0];
  5123. const int64_t ne01 = src0->ne[1];
  5124. const int64_t ne02 = src0->ne[2];
  5125. const int64_t ne03 = src0->ne[3];
  5126. const int64_t ne10 = src1->ne[0];
  5127. const int64_t ne11 = src1->ne[1];
  5128. const int64_t ne12 = src1->ne[2];
  5129. const int64_t ne13 = src1->ne[3];
  5130. const int64_t ne0 = dst->ne[0];
  5131. const int64_t ne1 = dst->ne[1];
  5132. const int64_t ne2 = dst->ne[2];
  5133. const int64_t ne3 = dst->ne[3];
  5134. //const int64_t ne = ne0*ne1*ne2*ne3;
  5135. const int nb00 = src0->nb[0];
  5136. const int nb01 = src0->nb[1];
  5137. const int nb02 = src0->nb[2];
  5138. const int nb03 = src0->nb[3];
  5139. const int nb10 = src1->nb[0];
  5140. const int nb11 = src1->nb[1];
  5141. const int nb12 = src1->nb[2];
  5142. const int nb13 = src1->nb[3];
  5143. const int nb0 = dst->nb[0];
  5144. const int nb1 = dst->nb[1];
  5145. const int nb2 = dst->nb[2];
  5146. const int nb3 = dst->nb[3];
  5147. const int ith = params->ith;
  5148. const int nth = params->nth;
  5149. GGML_ASSERT(ne02 == ne12);
  5150. GGML_ASSERT(ne03 == ne13);
  5151. GGML_ASSERT(ne2 == ne12);
  5152. GGML_ASSERT(ne3 == ne13);
  5153. // TODO: we don't support permuted src0
  5154. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5155. // dst cannot be transposed or permuted
  5156. GGML_ASSERT(nb0 == sizeof(float));
  5157. GGML_ASSERT(nb0 <= nb1);
  5158. GGML_ASSERT(nb1 <= nb2);
  5159. GGML_ASSERT(nb2 <= nb3);
  5160. GGML_ASSERT(ne0 == ne01);
  5161. GGML_ASSERT(ne1 == ne11);
  5162. GGML_ASSERT(ne2 == ne02);
  5163. GGML_ASSERT(ne3 == ne03);
  5164. // nb01 >= nb00 - src0 is not transposed
  5165. // compute by src0 rows
  5166. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5167. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5168. GGML_ASSERT(nb10 == sizeof(float));
  5169. if (params->ith != 0) {
  5170. return;
  5171. }
  5172. if (params->type == GGML_TASK_INIT) {
  5173. return;
  5174. }
  5175. if (params->type == GGML_TASK_FINALIZE) {
  5176. return;
  5177. }
  5178. float * const wdata = params->wdata;
  5179. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5180. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5181. {
  5182. size_t id = 0;
  5183. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5184. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  5185. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5186. }
  5187. }
  5188. }
  5189. const float * x = wdata;
  5190. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5191. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5192. // zT = y * xT
  5193. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5194. ne11, ne01, ne10,
  5195. 1.0f, y, ne10,
  5196. x, ne10,
  5197. 0.0f, d, ne01);
  5198. }
  5199. }
  5200. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5201. return;
  5202. }
  5203. #endif
  5204. if (params->type == GGML_TASK_INIT) {
  5205. ggml_fp16_t * const wdata = params->wdata;
  5206. size_t id = 0;
  5207. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5208. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5209. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5210. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  5211. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5212. }
  5213. }
  5214. }
  5215. }
  5216. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5217. return;
  5218. }
  5219. if (params->type == GGML_TASK_FINALIZE) {
  5220. return;
  5221. }
  5222. // fp16 -> half the size, so divide by 2
  5223. // TODO: do not support transposed src1
  5224. assert(nb10/2 == sizeof(ggml_fp16_t));
  5225. // parallelize by src0 rows using ggml_vec_dot_f16
  5226. // total rows in src0
  5227. const int nr = ne01*ne02*ne03;
  5228. // rows per thread
  5229. const int dr = (nr + nth - 1)/nth;
  5230. // row range for this thread
  5231. const int ir0 = dr*ith;
  5232. const int ir1 = MIN(ir0 + dr, nr);
  5233. ggml_fp16_t * wdata = params->wdata;
  5234. for (int ir = ir0; ir < ir1; ++ir) {
  5235. // src0 indices
  5236. const int i03 = ir/(ne02*ne01);
  5237. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5238. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5239. const int i13 = i03;
  5240. const int i12 = i02;
  5241. const int i0 = i01;
  5242. const int i2 = i02;
  5243. const int i3 = i03;
  5244. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5245. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5246. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5247. for (int64_t ic = 0; ic < ne11; ++ic) {
  5248. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5249. }
  5250. }
  5251. //int64_t t1 = ggml_time_us();
  5252. //static int64_t acc = 0;
  5253. //acc += t1 - t0;
  5254. //if (t1 - t0 > 10) {
  5255. // printf("\n");
  5256. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5257. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5258. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5259. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5260. //}
  5261. }
  5262. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5263. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5264. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5265. typedef struct {
  5266. dequantize_row_q_t dequantize_row_q;
  5267. quantize_row_q_t quantize_row_q;
  5268. vec_dot_q_t vec_dot_q;
  5269. } quantize_fns_t;
  5270. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5271. [GGML_TYPE_Q4_0] = {
  5272. .dequantize_row_q = dequantize_row_q4_0,
  5273. .quantize_row_q = quantize_row_q4_0,
  5274. .vec_dot_q = ggml_vec_dot_q4_0,
  5275. },
  5276. [GGML_TYPE_Q4_1] = {
  5277. .dequantize_row_q = dequantize_row_q4_1,
  5278. .quantize_row_q = quantize_row_q4_1,
  5279. .vec_dot_q = ggml_vec_dot_q4_1,
  5280. },
  5281. };
  5282. static void ggml_compute_forward_mul_mat_q_f32(
  5283. const struct ggml_compute_params * params,
  5284. const struct ggml_tensor * src0,
  5285. const struct ggml_tensor * src1,
  5286. struct ggml_tensor * dst) {
  5287. int64_t t0 = ggml_perf_time_us();
  5288. UNUSED(t0);
  5289. const int64_t ne00 = src0->ne[0];
  5290. const int64_t ne01 = src0->ne[1];
  5291. const int64_t ne02 = src0->ne[2];
  5292. const int64_t ne03 = src0->ne[3];
  5293. const int64_t ne10 = src1->ne[0];
  5294. const int64_t ne11 = src1->ne[1];
  5295. const int64_t ne12 = src1->ne[2];
  5296. const int64_t ne13 = src1->ne[3];
  5297. const int64_t ne0 = dst->ne[0];
  5298. const int64_t ne1 = dst->ne[1];
  5299. const int64_t ne2 = dst->ne[2];
  5300. const int64_t ne3 = dst->ne[3];
  5301. const int nb00 = src0->nb[0];
  5302. const int nb01 = src0->nb[1];
  5303. const int nb02 = src0->nb[2];
  5304. const int nb03 = src0->nb[3];
  5305. const int nb10 = src1->nb[0];
  5306. const int nb11 = src1->nb[1];
  5307. const int nb12 = src1->nb[2];
  5308. const int nb13 = src1->nb[3];
  5309. const int nb0 = dst->nb[0];
  5310. const int nb1 = dst->nb[1];
  5311. const int nb2 = dst->nb[2];
  5312. const int nb3 = dst->nb[3];
  5313. const int ith = params->ith;
  5314. const int nth = params->nth;
  5315. GGML_ASSERT(ne02 == ne12);
  5316. GGML_ASSERT(ne03 == ne13);
  5317. GGML_ASSERT(ne2 == ne12);
  5318. GGML_ASSERT(ne3 == ne13);
  5319. const enum ggml_type type = src0->type;
  5320. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5321. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5322. // we don't support permuted src0 or src1
  5323. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5324. GGML_ASSERT(nb10 == sizeof(float));
  5325. // dst cannot be transposed or permuted
  5326. GGML_ASSERT(nb0 == sizeof(float));
  5327. GGML_ASSERT(nb0 <= nb1);
  5328. GGML_ASSERT(nb1 <= nb2);
  5329. GGML_ASSERT(nb2 <= nb3);
  5330. GGML_ASSERT(ne0 == ne01);
  5331. GGML_ASSERT(ne1 == ne11);
  5332. GGML_ASSERT(ne2 == ne02);
  5333. GGML_ASSERT(ne3 == ne03);
  5334. // nb01 >= nb00 - src0 is not transposed
  5335. // compute by src0 rows
  5336. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5337. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5338. if (params->ith != 0) {
  5339. return;
  5340. }
  5341. if (params->type == GGML_TASK_INIT) {
  5342. return;
  5343. }
  5344. if (params->type == GGML_TASK_FINALIZE) {
  5345. return;
  5346. }
  5347. float * const wdata = params->wdata;
  5348. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5351. {
  5352. size_t id = 0;
  5353. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  5354. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5355. id += ne00;
  5356. }
  5357. }
  5358. const float * x = wdata;
  5359. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5360. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5361. // zT = y * xT
  5362. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5363. ne11, ne01, ne10,
  5364. 1.0f, y, ne10,
  5365. x, ne10,
  5366. 0.0f, d, ne01);
  5367. }
  5368. }
  5369. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5370. return;
  5371. }
  5372. #endif
  5373. if (params->type == GGML_TASK_INIT) {
  5374. char * wdata = params->wdata;
  5375. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5376. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  5377. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  5378. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  5379. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5380. wdata += row_size;
  5381. }
  5382. }
  5383. }
  5384. return;
  5385. }
  5386. if (params->type == GGML_TASK_FINALIZE) {
  5387. return;
  5388. }
  5389. // parallelize by src0 rows using ggml_vec_dot_q
  5390. // total rows in src0
  5391. const int nr = ne01*ne02*ne03;
  5392. // rows per thread
  5393. const int dr = (nr + nth - 1)/nth;
  5394. // row range for this thread
  5395. const int ir0 = dr*ith;
  5396. const int ir1 = MIN(ir0 + dr, nr);
  5397. void * wdata = params->wdata;
  5398. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5399. for (int ir = ir0; ir < ir1; ++ir) {
  5400. // src0 indices
  5401. const int i03 = ir/(ne02*ne01);
  5402. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5403. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5404. const int i13 = i03;
  5405. const int i12 = i02;
  5406. const int i0 = i01;
  5407. const int i2 = i02;
  5408. const int i3 = i03;
  5409. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5410. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5411. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5412. assert(ne00 % 32 == 0);
  5413. for (int64_t ic = 0; ic < ne11; ++ic) {
  5414. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5415. }
  5416. }
  5417. //int64_t t1 = ggml_time_us();
  5418. //static int64_t acc = 0;
  5419. //acc += t1 - t0;
  5420. //if (t1 - t0 > 10) {
  5421. // printf("\n");
  5422. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5423. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5424. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5425. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5426. //}
  5427. }
  5428. static void ggml_compute_forward_mul_mat(
  5429. const struct ggml_compute_params * params,
  5430. const struct ggml_tensor * src0,
  5431. const struct ggml_tensor * src1,
  5432. struct ggml_tensor * dst) {
  5433. switch (src0->type) {
  5434. case GGML_TYPE_Q4_0:
  5435. case GGML_TYPE_Q4_1:
  5436. {
  5437. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5438. } break;
  5439. case GGML_TYPE_F16:
  5440. {
  5441. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5442. } break;
  5443. case GGML_TYPE_F32:
  5444. {
  5445. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5446. } break;
  5447. case GGML_TYPE_I8:
  5448. case GGML_TYPE_I16:
  5449. case GGML_TYPE_I32:
  5450. case GGML_TYPE_COUNT:
  5451. {
  5452. GGML_ASSERT(false);
  5453. } break;
  5454. }
  5455. #if 0
  5456. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5457. static int first = 8;
  5458. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5459. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5460. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5461. if (first) {
  5462. --first;
  5463. } else {
  5464. for (int k = 0; k < dst->ne[1]; ++k) {
  5465. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5466. for (int i = 0; i < 16; ++i) {
  5467. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5468. }
  5469. printf("\n");
  5470. }
  5471. printf("\n");
  5472. }
  5473. printf("\n");
  5474. exit(0);
  5475. }
  5476. } else {
  5477. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5478. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5479. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5480. }
  5481. #endif
  5482. }
  5483. // ggml_compute_forward_scale
  5484. static void ggml_compute_forward_scale_f32(
  5485. const struct ggml_compute_params * params,
  5486. const struct ggml_tensor * src0,
  5487. const struct ggml_tensor * src1,
  5488. struct ggml_tensor * dst) {
  5489. GGML_ASSERT(ggml_is_contiguous(src0));
  5490. GGML_ASSERT(ggml_is_contiguous(dst));
  5491. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5492. GGML_ASSERT(ggml_is_scalar(src1));
  5493. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5494. return;
  5495. }
  5496. // scale factor
  5497. const float v = *(float *) src1->data;
  5498. const int ith = params->ith;
  5499. const int nth = params->nth;
  5500. const int nc = src0->ne[0];
  5501. const int nr = ggml_nrows(src0);
  5502. // rows per thread
  5503. const int dr = (nr + nth - 1)/nth;
  5504. // row range for this thread
  5505. const int ir0 = dr*ith;
  5506. const int ir1 = MIN(ir0 + dr, nr);
  5507. for (int i1 = ir0; i1 < ir1; i1++) {
  5508. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5509. }
  5510. }
  5511. static void ggml_compute_forward_scale(
  5512. const struct ggml_compute_params * params,
  5513. const struct ggml_tensor * src0,
  5514. const struct ggml_tensor * src1,
  5515. struct ggml_tensor * dst) {
  5516. switch (src0->type) {
  5517. case GGML_TYPE_F32:
  5518. {
  5519. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5520. } break;
  5521. case GGML_TYPE_Q4_0:
  5522. case GGML_TYPE_Q4_1:
  5523. case GGML_TYPE_I8:
  5524. case GGML_TYPE_I16:
  5525. case GGML_TYPE_I32:
  5526. case GGML_TYPE_F16:
  5527. case GGML_TYPE_COUNT:
  5528. {
  5529. GGML_ASSERT(false);
  5530. } break;
  5531. }
  5532. }
  5533. // ggml_compute_forward_cpy
  5534. static void ggml_compute_forward_cpy(
  5535. const struct ggml_compute_params * params,
  5536. const struct ggml_tensor * src0,
  5537. struct ggml_tensor * dst) {
  5538. ggml_compute_forward_dup(params, src0, dst);
  5539. }
  5540. // ggml_compute_forward_reshape
  5541. static void ggml_compute_forward_reshape(
  5542. const struct ggml_compute_params * params,
  5543. const struct ggml_tensor * src0,
  5544. struct ggml_tensor * dst) {
  5545. // NOP
  5546. UNUSED(params);
  5547. UNUSED(src0);
  5548. UNUSED(dst);
  5549. }
  5550. // ggml_compute_forward_view
  5551. static void ggml_compute_forward_view(
  5552. const struct ggml_compute_params * params,
  5553. const struct ggml_tensor * src0) {
  5554. // NOP
  5555. UNUSED(params);
  5556. UNUSED(src0);
  5557. }
  5558. // ggml_compute_forward_permute
  5559. static void ggml_compute_forward_permute(
  5560. const struct ggml_compute_params * params,
  5561. const struct ggml_tensor * src0) {
  5562. // NOP
  5563. UNUSED(params);
  5564. UNUSED(src0);
  5565. }
  5566. // ggml_compute_forward_transpose
  5567. static void ggml_compute_forward_transpose(
  5568. const struct ggml_compute_params * params,
  5569. const struct ggml_tensor * src0) {
  5570. // NOP
  5571. UNUSED(params);
  5572. UNUSED(src0);
  5573. }
  5574. // ggml_compute_forward_get_rows
  5575. static void ggml_compute_forward_get_rows_q(
  5576. const struct ggml_compute_params * params,
  5577. const struct ggml_tensor * src0,
  5578. const struct ggml_tensor * src1,
  5579. struct ggml_tensor * dst) {
  5580. assert(params->ith == 0);
  5581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5582. return;
  5583. }
  5584. const int nc = src0->ne[0];
  5585. const int nr = ggml_nelements(src1);
  5586. const enum ggml_type type = src0->type;
  5587. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5588. assert( dst->ne[0] == nc);
  5589. assert( dst->ne[1] == nr);
  5590. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5591. for (int i = 0; i < nr; ++i) {
  5592. const int r = ((int32_t *) src1->data)[i];
  5593. dequantize_row_q(
  5594. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5595. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5596. }
  5597. }
  5598. static void ggml_compute_forward_get_rows_f16(
  5599. const struct ggml_compute_params * params,
  5600. const struct ggml_tensor * src0,
  5601. const struct ggml_tensor * src1,
  5602. struct ggml_tensor * dst) {
  5603. assert(params->ith == 0);
  5604. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5605. return;
  5606. }
  5607. const int nc = src0->ne[0];
  5608. const int nr = ggml_nelements(src1);
  5609. assert( dst->ne[0] == nc);
  5610. assert( dst->ne[1] == nr);
  5611. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5612. for (int i = 0; i < nr; ++i) {
  5613. const int r = ((int32_t *) src1->data)[i];
  5614. for (int j = 0; j < nc; ++j) {
  5615. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5616. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5617. }
  5618. }
  5619. }
  5620. static void ggml_compute_forward_get_rows_f32(
  5621. const struct ggml_compute_params * params,
  5622. const struct ggml_tensor * src0,
  5623. const struct ggml_tensor * src1,
  5624. struct ggml_tensor * dst) {
  5625. assert(params->ith == 0);
  5626. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5627. return;
  5628. }
  5629. const int nc = src0->ne[0];
  5630. const int nr = ggml_nelements(src1);
  5631. assert( dst->ne[0] == nc);
  5632. assert( dst->ne[1] == nr);
  5633. assert(src0->nb[0] == sizeof(float));
  5634. for (int i = 0; i < nr; ++i) {
  5635. const int r = ((int32_t *) src1->data)[i];
  5636. ggml_vec_cpy_f32(nc,
  5637. (float *) ((char *) dst->data + i*dst->nb[1]),
  5638. (float *) ((char *) src0->data + r*src0->nb[1]));
  5639. }
  5640. }
  5641. static void ggml_compute_forward_get_rows(
  5642. const struct ggml_compute_params * params,
  5643. const struct ggml_tensor * src0,
  5644. const struct ggml_tensor * src1,
  5645. struct ggml_tensor * dst) {
  5646. switch (src0->type) {
  5647. case GGML_TYPE_Q4_0:
  5648. case GGML_TYPE_Q4_1:
  5649. {
  5650. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5651. } break;
  5652. case GGML_TYPE_F16:
  5653. {
  5654. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5655. } break;
  5656. case GGML_TYPE_F32:
  5657. {
  5658. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5659. } break;
  5660. case GGML_TYPE_I8:
  5661. case GGML_TYPE_I16:
  5662. case GGML_TYPE_I32:
  5663. case GGML_TYPE_COUNT:
  5664. {
  5665. GGML_ASSERT(false);
  5666. } break;
  5667. }
  5668. //static bool first = true;
  5669. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5670. //if (first) {
  5671. // first = false;
  5672. //} else {
  5673. // for (int k = 0; k < dst->ne[1]; ++k) {
  5674. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5675. // for (int i = 0; i < 16; ++i) {
  5676. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5677. // }
  5678. // printf("\n");
  5679. // }
  5680. // printf("\n");
  5681. // }
  5682. // printf("\n");
  5683. // exit(0);
  5684. //}
  5685. }
  5686. // ggml_compute_forward_diag_mask_inf
  5687. static void ggml_compute_forward_diag_mask_inf_f32(
  5688. const struct ggml_compute_params * params,
  5689. const struct ggml_tensor * src0,
  5690. const struct ggml_tensor * src1,
  5691. struct ggml_tensor * dst) {
  5692. assert(params->ith == 0);
  5693. assert(src1->type == GGML_TYPE_I32);
  5694. assert(ggml_nelements(src1) == 1);
  5695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5696. return;
  5697. }
  5698. const int n_past = ((int32_t *) src1->data)[0];
  5699. // TODO: handle transposed/permuted matrices
  5700. const int n = ggml_nrows(src0);
  5701. const int nc = src0->ne[0];
  5702. const int nr = src0->ne[1];
  5703. const int nz = n/nr;
  5704. assert( dst->nb[0] == sizeof(float));
  5705. assert(src0->nb[0] == sizeof(float));
  5706. for (int k = 0; k < nz; k++) {
  5707. for (int j = 0; j < nr; j++) {
  5708. for (int i = n_past; i < nc; i++) {
  5709. if (i > n_past + j) {
  5710. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5711. }
  5712. }
  5713. }
  5714. }
  5715. }
  5716. static void ggml_compute_forward_diag_mask_inf(
  5717. const struct ggml_compute_params * params,
  5718. const struct ggml_tensor * src0,
  5719. const struct ggml_tensor * src1,
  5720. struct ggml_tensor * dst) {
  5721. switch (src0->type) {
  5722. case GGML_TYPE_F32:
  5723. {
  5724. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5725. } break;
  5726. case GGML_TYPE_Q4_0:
  5727. case GGML_TYPE_Q4_1:
  5728. case GGML_TYPE_I8:
  5729. case GGML_TYPE_I16:
  5730. case GGML_TYPE_I32:
  5731. case GGML_TYPE_F16:
  5732. case GGML_TYPE_COUNT:
  5733. {
  5734. GGML_ASSERT(false);
  5735. } break;
  5736. }
  5737. }
  5738. // ggml_compute_forward_soft_max
  5739. static void ggml_compute_forward_soft_max_f32(
  5740. const struct ggml_compute_params * params,
  5741. const struct ggml_tensor * src0,
  5742. struct ggml_tensor * dst) {
  5743. GGML_ASSERT(ggml_is_contiguous(src0));
  5744. GGML_ASSERT(ggml_is_contiguous(dst));
  5745. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5747. return;
  5748. }
  5749. // TODO: handle transposed/permuted matrices
  5750. const int ith = params->ith;
  5751. const int nth = params->nth;
  5752. const int nc = src0->ne[0];
  5753. const int nr = ggml_nrows(src0);
  5754. // rows per thread
  5755. const int dr = (nr + nth - 1)/nth;
  5756. // row range for this thread
  5757. const int ir0 = dr*ith;
  5758. const int ir1 = MIN(ir0 + dr, nr);
  5759. for (int i1 = ir0; i1 < ir1; i1++) {
  5760. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5761. #ifndef NDEBUG
  5762. for (int i = 0; i < nc; ++i) {
  5763. //printf("p[%d] = %f\n", i, p[i]);
  5764. assert(!isnan(p[i]));
  5765. }
  5766. #endif
  5767. float max = -INFINITY;
  5768. ggml_vec_max_f32(nc, &max, p);
  5769. ggml_float sum = 0.0;
  5770. uint16_t scvt;
  5771. for (int i = 0; i < nc; i++) {
  5772. if (p[i] == -INFINITY) {
  5773. p[i] = 0.0f;
  5774. } else {
  5775. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5776. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5777. memcpy(&scvt, &s, sizeof(scvt));
  5778. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5779. sum += (ggml_float)val;
  5780. p[i] = val;
  5781. }
  5782. }
  5783. assert(sum > 0.0);
  5784. sum = 1.0/sum;
  5785. ggml_vec_scale_f32(nc, p, sum);
  5786. #ifndef NDEBUG
  5787. for (int i = 0; i < nc; ++i) {
  5788. assert(!isnan(p[i]));
  5789. assert(!isinf(p[i]));
  5790. }
  5791. #endif
  5792. }
  5793. }
  5794. static void ggml_compute_forward_soft_max(
  5795. const struct ggml_compute_params * params,
  5796. const struct ggml_tensor * src0,
  5797. struct ggml_tensor * dst) {
  5798. switch (src0->type) {
  5799. case GGML_TYPE_F32:
  5800. {
  5801. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5802. } break;
  5803. case GGML_TYPE_Q4_0:
  5804. case GGML_TYPE_Q4_1:
  5805. case GGML_TYPE_I8:
  5806. case GGML_TYPE_I16:
  5807. case GGML_TYPE_I32:
  5808. case GGML_TYPE_F16:
  5809. case GGML_TYPE_COUNT:
  5810. {
  5811. GGML_ASSERT(false);
  5812. } break;
  5813. }
  5814. }
  5815. // ggml_compute_forward_rope
  5816. static void ggml_compute_forward_rope_f32(
  5817. const struct ggml_compute_params * params,
  5818. const struct ggml_tensor * src0,
  5819. const struct ggml_tensor * src1,
  5820. struct ggml_tensor * dst) {
  5821. assert(params->ith == 0);
  5822. assert(src1->type == GGML_TYPE_I32);
  5823. assert(ggml_nelements(src1) == 3);
  5824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5825. return;
  5826. }
  5827. const int n_past = ((int32_t *) src1->data)[0];
  5828. const int n_dims = ((int32_t *) src1->data)[1];
  5829. const int mode = ((int32_t *) src1->data)[2];
  5830. //const int64_t ne0 = src0->ne[0];
  5831. const int64_t ne1 = src0->ne[1];
  5832. const int64_t ne2 = src0->ne[2];
  5833. const int64_t ne3 = src0->ne[3];
  5834. const int nb0 = src0->nb[0];
  5835. const int nb1 = src0->nb[1];
  5836. const int nb2 = src0->nb[2];
  5837. const int nb3 = src0->nb[3];
  5838. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5839. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5840. assert(nb0 == sizeof(float));
  5841. // TODO: optimize
  5842. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5843. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5844. const int p = (mode == 0 ? n_past + i2 : i2);
  5845. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5846. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5847. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5848. const float cos_theta = cosf(p*theta);
  5849. const float sin_theta = sinf(p*theta);
  5850. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5851. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5852. const float x0 = src[0];
  5853. const float x1 = src[1];
  5854. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5855. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5856. }
  5857. }
  5858. }
  5859. }
  5860. }
  5861. static void ggml_compute_forward_rope_f16(
  5862. const struct ggml_compute_params * params,
  5863. const struct ggml_tensor * src0,
  5864. const struct ggml_tensor * src1,
  5865. struct ggml_tensor * dst) {
  5866. assert(params->ith == 0);
  5867. assert(src1->type == GGML_TYPE_I32);
  5868. assert(ggml_nelements(src1) == 3);
  5869. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5870. return;
  5871. }
  5872. const int n_past = ((int32_t *) src1->data)[0];
  5873. const int n_dims = ((int32_t *) src1->data)[1];
  5874. const int mode = ((int32_t *) src1->data)[2];
  5875. //const int64_t ne0 = src0->ne[0];
  5876. const int64_t ne1 = src0->ne[1];
  5877. const int64_t ne2 = src0->ne[2];
  5878. const int64_t ne3 = src0->ne[3];
  5879. const int nb0 = src0->nb[0];
  5880. const int nb1 = src0->nb[1];
  5881. const int nb2 = src0->nb[2];
  5882. const int nb3 = src0->nb[3];
  5883. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5884. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5885. assert(nb0 == sizeof(ggml_fp16_t));
  5886. for (int64_t i3 = 0; i3 < ne3; i3++) {
  5887. for (int64_t i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5888. const int p = (mode == 0 ? n_past + i2 : i2);
  5889. for (int64_t i1 = 0; i1 < ne1; i1++) {
  5890. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5891. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5892. const float cos_theta = cosf(p*theta);
  5893. const float sin_theta = sinf(p*theta);
  5894. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5895. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5896. const float x0 = ggml_fp16_to_fp32(src[0]);
  5897. const float x1 = ggml_fp16_to_fp32(src[1]);
  5898. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5899. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5900. }
  5901. }
  5902. }
  5903. }
  5904. }
  5905. static void ggml_compute_forward_rope(
  5906. const struct ggml_compute_params * params,
  5907. const struct ggml_tensor * src0,
  5908. const struct ggml_tensor * src1,
  5909. struct ggml_tensor * dst) {
  5910. switch (src0->type) {
  5911. case GGML_TYPE_F16:
  5912. {
  5913. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5914. } break;
  5915. case GGML_TYPE_F32:
  5916. {
  5917. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5918. } break;
  5919. case GGML_TYPE_Q4_0:
  5920. case GGML_TYPE_Q4_1:
  5921. case GGML_TYPE_I8:
  5922. case GGML_TYPE_I16:
  5923. case GGML_TYPE_I32:
  5924. case GGML_TYPE_COUNT:
  5925. {
  5926. GGML_ASSERT(false);
  5927. } break;
  5928. }
  5929. }
  5930. // ggml_compute_forward_conv_1d_1s
  5931. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5932. const struct ggml_compute_params * params,
  5933. const struct ggml_tensor * src0,
  5934. const struct ggml_tensor * src1,
  5935. struct ggml_tensor * dst) {
  5936. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5937. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5938. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5939. int64_t t0 = ggml_perf_time_us();
  5940. UNUSED(t0);
  5941. const int64_t ne00 = src0->ne[0];
  5942. const int64_t ne01 = src0->ne[1];
  5943. const int64_t ne02 = src0->ne[2];
  5944. //const int64_t ne03 = src0->ne[3];
  5945. const int64_t ne10 = src1->ne[0];
  5946. const int64_t ne11 = src1->ne[1];
  5947. //const int64_t ne12 = src1->ne[2];
  5948. //const int64_t ne13 = src1->ne[3];
  5949. //const int64_t ne0 = dst->ne[0];
  5950. //const int64_t ne1 = dst->ne[1];
  5951. //const int64_t ne2 = dst->ne[2];
  5952. //const int64_t ne3 = dst->ne[3];
  5953. //const int64_t ne = ne0*ne1*ne2*ne3;
  5954. const int nb00 = src0->nb[0];
  5955. const int nb01 = src0->nb[1];
  5956. const int nb02 = src0->nb[2];
  5957. //const int nb03 = src0->nb[3];
  5958. const int nb10 = src1->nb[0];
  5959. const int nb11 = src1->nb[1];
  5960. //const int nb12 = src1->nb[2];
  5961. //const int nb13 = src1->nb[3];
  5962. //const int nb0 = dst->nb[0];
  5963. const int nb1 = dst->nb[1];
  5964. //const int nb2 = dst->nb[2];
  5965. //const int nb3 = dst->nb[3];
  5966. const int ith = params->ith;
  5967. const int nth = params->nth;
  5968. const int nk = ne00;
  5969. const int nh = nk/2;
  5970. const int ew0 = ggml_up32(ne01);
  5971. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5972. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5973. GGML_ASSERT(nb10 == sizeof(float));
  5974. if (params->type == GGML_TASK_INIT) {
  5975. // TODO: fix this memset (wsize is overestimated)
  5976. memset(params->wdata, 0, params->wsize);
  5977. // prepare kernel data (src0)
  5978. {
  5979. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  5982. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5983. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5984. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5985. dst_data[i00*ew0 + i01] = src[i00];
  5986. }
  5987. }
  5988. }
  5989. }
  5990. // prepare source data (src1)
  5991. {
  5992. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5993. for (int64_t i11 = 0; i11 < ne11; i11++) {
  5994. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5995. ggml_fp16_t * dst_data = wdata;
  5996. for (int64_t i10 = 0; i10 < ne10; i10++) {
  5997. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5998. }
  5999. }
  6000. }
  6001. return;
  6002. }
  6003. if (params->type == GGML_TASK_FINALIZE) {
  6004. return;
  6005. }
  6006. // total rows in dst
  6007. const int nr = ne02;
  6008. // rows per thread
  6009. const int dr = (nr + nth - 1)/nth;
  6010. // row range for this thread
  6011. const int ir0 = dr*ith;
  6012. const int ir1 = MIN(ir0 + dr, nr);
  6013. for (int i1 = ir0; i1 < ir1; i1++) {
  6014. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6015. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6016. dst_data[i0] = 0;
  6017. for (int k = -nh; k <= nh; k++) {
  6018. float v = 0.0f;
  6019. ggml_vec_dot_f16(ew0, &v,
  6020. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6021. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6022. dst_data[i0] += v;
  6023. }
  6024. }
  6025. }
  6026. }
  6027. static void ggml_compute_forward_conv_1d_1s_f32(
  6028. const struct ggml_compute_params * params,
  6029. const struct ggml_tensor * src0,
  6030. const struct ggml_tensor * src1,
  6031. struct ggml_tensor * dst) {
  6032. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6033. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6034. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6035. int64_t t0 = ggml_perf_time_us();
  6036. UNUSED(t0);
  6037. const int64_t ne00 = src0->ne[0];
  6038. const int64_t ne01 = src0->ne[1];
  6039. const int64_t ne02 = src0->ne[2];
  6040. //const int64_t ne03 = src0->ne[3];
  6041. const int64_t ne10 = src1->ne[0];
  6042. const int64_t ne11 = src1->ne[1];
  6043. //const int64_t ne12 = src1->ne[2];
  6044. //const int64_t ne13 = src1->ne[3];
  6045. //const int64_t ne0 = dst->ne[0];
  6046. //const int64_t ne1 = dst->ne[1];
  6047. //const int64_t ne2 = dst->ne[2];
  6048. //const int64_t ne3 = dst->ne[3];
  6049. //const int64_t ne = ne0*ne1*ne2*ne3;
  6050. const int nb00 = src0->nb[0];
  6051. const int nb01 = src0->nb[1];
  6052. const int nb02 = src0->nb[2];
  6053. //const int nb03 = src0->nb[3];
  6054. const int nb10 = src1->nb[0];
  6055. const int nb11 = src1->nb[1];
  6056. //const int nb12 = src1->nb[2];
  6057. //const int nb13 = src1->nb[3];
  6058. //const int nb0 = dst->nb[0];
  6059. const int nb1 = dst->nb[1];
  6060. //const int nb2 = dst->nb[2];
  6061. //const int nb3 = dst->nb[3];
  6062. const int ith = params->ith;
  6063. const int nth = params->nth;
  6064. const int nk = ne00;
  6065. const int nh = nk/2;
  6066. const int ew0 = ggml_up32(ne01);
  6067. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6068. GGML_ASSERT(nb00 == sizeof(float));
  6069. GGML_ASSERT(nb10 == sizeof(float));
  6070. if (params->type == GGML_TASK_INIT) {
  6071. // TODO: fix this memset (wsize is overestimated)
  6072. memset(params->wdata, 0, params->wsize);
  6073. // prepare kernel data (src0)
  6074. {
  6075. float * const wdata = (float *) params->wdata + 0;
  6076. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6077. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6078. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6079. float * dst_data = wdata + i02*ew0*ne00;
  6080. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6081. dst_data[i00*ew0 + i01] = src[i00];
  6082. }
  6083. }
  6084. }
  6085. }
  6086. // prepare source data (src1)
  6087. {
  6088. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6089. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6090. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6091. float * dst_data = wdata;
  6092. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6093. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6094. }
  6095. }
  6096. }
  6097. return;
  6098. }
  6099. if (params->type == GGML_TASK_FINALIZE) {
  6100. return;
  6101. }
  6102. // total rows in dst
  6103. const int nr = ne02;
  6104. // rows per thread
  6105. const int dr = (nr + nth - 1)/nth;
  6106. // row range for this thread
  6107. const int ir0 = dr*ith;
  6108. const int ir1 = MIN(ir0 + dr, nr);
  6109. for (int i1 = ir0; i1 < ir1; i1++) {
  6110. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6111. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  6112. dst_data[i0] = 0;
  6113. for (int k = -nh; k <= nh; k++) {
  6114. float v = 0.0f;
  6115. ggml_vec_dot_f32(ew0, &v,
  6116. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6117. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6118. dst_data[i0] += v;
  6119. }
  6120. }
  6121. }
  6122. }
  6123. static void ggml_compute_forward_conv_1d_1s(
  6124. const struct ggml_compute_params * params,
  6125. const struct ggml_tensor * src0,
  6126. const struct ggml_tensor * src1,
  6127. struct ggml_tensor * dst) {
  6128. switch (src0->type) {
  6129. case GGML_TYPE_F16:
  6130. {
  6131. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6132. } break;
  6133. case GGML_TYPE_F32:
  6134. {
  6135. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6136. } break;
  6137. case GGML_TYPE_Q4_0:
  6138. case GGML_TYPE_Q4_1:
  6139. case GGML_TYPE_I8:
  6140. case GGML_TYPE_I16:
  6141. case GGML_TYPE_I32:
  6142. case GGML_TYPE_COUNT:
  6143. {
  6144. GGML_ASSERT(false);
  6145. } break;
  6146. }
  6147. }
  6148. // ggml_compute_forward_conv_1d_2s
  6149. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6150. const struct ggml_compute_params * params,
  6151. const struct ggml_tensor * src0,
  6152. const struct ggml_tensor * src1,
  6153. struct ggml_tensor * dst) {
  6154. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6155. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6156. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6157. int64_t t0 = ggml_perf_time_us();
  6158. UNUSED(t0);
  6159. const int64_t ne00 = src0->ne[0];
  6160. const int64_t ne01 = src0->ne[1];
  6161. const int64_t ne02 = src0->ne[2];
  6162. //const int64_t ne03 = src0->ne[3];
  6163. const int64_t ne10 = src1->ne[0];
  6164. const int64_t ne11 = src1->ne[1];
  6165. //const int64_t ne12 = src1->ne[2];
  6166. //const int64_t ne13 = src1->ne[3];
  6167. //const int64_t ne0 = dst->ne[0];
  6168. //const int64_t ne1 = dst->ne[1];
  6169. //const int64_t ne2 = dst->ne[2];
  6170. //const int64_t ne3 = dst->ne[3];
  6171. //const int64_t ne = ne0*ne1*ne2*ne3;
  6172. const int nb00 = src0->nb[0];
  6173. const int nb01 = src0->nb[1];
  6174. const int nb02 = src0->nb[2];
  6175. //const int nb03 = src0->nb[3];
  6176. const int nb10 = src1->nb[0];
  6177. const int nb11 = src1->nb[1];
  6178. //const int nb12 = src1->nb[2];
  6179. //const int nb13 = src1->nb[3];
  6180. //const int nb0 = dst->nb[0];
  6181. const int nb1 = dst->nb[1];
  6182. //const int nb2 = dst->nb[2];
  6183. //const int nb3 = dst->nb[3];
  6184. const int ith = params->ith;
  6185. const int nth = params->nth;
  6186. const int nk = ne00;
  6187. const int nh = nk/2;
  6188. const int ew0 = ggml_up32(ne01);
  6189. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6190. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6191. GGML_ASSERT(nb10 == sizeof(float));
  6192. if (params->type == GGML_TASK_INIT) {
  6193. // TODO: fix this memset (wsize is overestimated)
  6194. memset(params->wdata, 0, params->wsize);
  6195. // prepare kernel data (src0)
  6196. {
  6197. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6198. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6199. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6200. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6201. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6202. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6203. dst_data[i00*ew0 + i01] = src[i00];
  6204. }
  6205. }
  6206. }
  6207. }
  6208. // prepare source data (src1)
  6209. {
  6210. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6211. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6212. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6213. ggml_fp16_t * dst_data = wdata;
  6214. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6215. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6216. }
  6217. }
  6218. }
  6219. return;
  6220. }
  6221. if (params->type == GGML_TASK_FINALIZE) {
  6222. return;
  6223. }
  6224. // total rows in dst
  6225. const int nr = ne02;
  6226. // rows per thread
  6227. const int dr = (nr + nth - 1)/nth;
  6228. // row range for this thread
  6229. const int ir0 = dr*ith;
  6230. const int ir1 = MIN(ir0 + dr, nr);
  6231. for (int i1 = ir0; i1 < ir1; i1++) {
  6232. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6233. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6234. dst_data[i0/2] = 0;
  6235. for (int k = -nh; k <= nh; k++) {
  6236. float v = 0.0f;
  6237. ggml_vec_dot_f16(ew0, &v,
  6238. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6239. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6240. dst_data[i0/2] += v;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. static void ggml_compute_forward_conv_1d_2s_f32(
  6246. const struct ggml_compute_params * params,
  6247. const struct ggml_tensor * src0,
  6248. const struct ggml_tensor * src1,
  6249. struct ggml_tensor * dst) {
  6250. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6251. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6252. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6253. int64_t t0 = ggml_perf_time_us();
  6254. UNUSED(t0);
  6255. const int64_t ne00 = src0->ne[0];
  6256. const int64_t ne01 = src0->ne[1];
  6257. const int64_t ne02 = src0->ne[2];
  6258. //const int64_t ne03 = src0->ne[3];
  6259. const int64_t ne10 = src1->ne[0];
  6260. const int64_t ne11 = src1->ne[1];
  6261. //const int64_t ne12 = src1->ne[2];
  6262. //const int64_t ne13 = src1->ne[3];
  6263. //const int64_t ne0 = dst->ne[0];
  6264. //const int64_t ne1 = dst->ne[1];
  6265. //const int64_t ne2 = dst->ne[2];
  6266. //const int64_t ne3 = dst->ne[3];
  6267. //const int64_t ne = ne0*ne1*ne2*ne3;
  6268. const int nb00 = src0->nb[0];
  6269. const int nb01 = src0->nb[1];
  6270. const int nb02 = src0->nb[2];
  6271. //const int nb03 = src0->nb[3];
  6272. const int nb10 = src1->nb[0];
  6273. const int nb11 = src1->nb[1];
  6274. //const int nb12 = src1->nb[2];
  6275. //const int nb13 = src1->nb[3];
  6276. //const int nb0 = dst->nb[0];
  6277. const int nb1 = dst->nb[1];
  6278. //const int nb2 = dst->nb[2];
  6279. //const int nb3 = dst->nb[3];
  6280. const int ith = params->ith;
  6281. const int nth = params->nth;
  6282. const int nk = ne00;
  6283. const int nh = nk/2;
  6284. const int ew0 = ggml_up32(ne01);
  6285. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6286. GGML_ASSERT(nb00 == sizeof(float));
  6287. GGML_ASSERT(nb10 == sizeof(float));
  6288. if (params->type == GGML_TASK_INIT) {
  6289. // TODO: fix this memset (wsize is overestimated)
  6290. memset(params->wdata, 0, params->wsize);
  6291. // prepare kernel data (src0)
  6292. {
  6293. float * const wdata = (float *) params->wdata + 0;
  6294. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6295. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6296. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6297. float * dst_data = wdata + i02*ew0*ne00;
  6298. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6299. dst_data[i00*ew0 + i01] = src[i00];
  6300. }
  6301. }
  6302. }
  6303. }
  6304. // prepare source data (src1)
  6305. {
  6306. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6307. for (int64_t i11 = 0; i11 < ne11; i11++) {
  6308. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6309. float * dst_data = wdata;
  6310. for (int64_t i10 = 0; i10 < ne10; i10++) {
  6311. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6312. }
  6313. }
  6314. }
  6315. return;
  6316. }
  6317. if (params->type == GGML_TASK_FINALIZE) {
  6318. return;
  6319. }
  6320. // total rows in dst
  6321. const int nr = ne02;
  6322. // rows per thread
  6323. const int dr = (nr + nth - 1)/nth;
  6324. // row range for this thread
  6325. const int ir0 = dr*ith;
  6326. const int ir1 = MIN(ir0 + dr, nr);
  6327. for (int i1 = ir0; i1 < ir1; i1++) {
  6328. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6329. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  6330. dst_data[i0/2] = 0;
  6331. for (int k = -nh; k <= nh; k++) {
  6332. float v = 0.0f;
  6333. ggml_vec_dot_f32(ew0, &v,
  6334. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6335. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6336. dst_data[i0/2] += v;
  6337. }
  6338. }
  6339. }
  6340. }
  6341. static void ggml_compute_forward_conv_1d_2s(
  6342. const struct ggml_compute_params * params,
  6343. const struct ggml_tensor * src0,
  6344. const struct ggml_tensor * src1,
  6345. struct ggml_tensor * dst) {
  6346. switch (src0->type) {
  6347. case GGML_TYPE_F16:
  6348. {
  6349. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6350. } break;
  6351. case GGML_TYPE_F32:
  6352. {
  6353. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6354. } break;
  6355. case GGML_TYPE_Q4_0:
  6356. case GGML_TYPE_Q4_1:
  6357. case GGML_TYPE_I8:
  6358. case GGML_TYPE_I16:
  6359. case GGML_TYPE_I32:
  6360. case GGML_TYPE_COUNT:
  6361. {
  6362. GGML_ASSERT(false);
  6363. } break;
  6364. }
  6365. }
  6366. // ggml_compute_forward_flash_attn
  6367. static void ggml_compute_forward_flash_attn_f32(
  6368. const struct ggml_compute_params * params,
  6369. const struct ggml_tensor * q,
  6370. const struct ggml_tensor * k,
  6371. const struct ggml_tensor * v,
  6372. const bool masked,
  6373. struct ggml_tensor * dst) {
  6374. int64_t t0 = ggml_perf_time_us();
  6375. UNUSED(t0);
  6376. const int64_t neq0 = q->ne[0];
  6377. const int64_t neq1 = q->ne[1];
  6378. const int64_t neq2 = q->ne[2];
  6379. const int64_t neq3 = q->ne[3];
  6380. const int64_t nek0 = k->ne[0];
  6381. const int64_t nek1 = k->ne[1];
  6382. //const int64_t nek2 = k->ne[2];
  6383. //const int64_t nek3 = k->ne[3];
  6384. //const int64_t nev0 = v->ne[0];
  6385. const int64_t nev1 = v->ne[1];
  6386. //const int64_t nev2 = v->ne[2];
  6387. //const int64_t nev3 = v->ne[3];
  6388. const int64_t ne0 = dst->ne[0];
  6389. const int64_t ne1 = dst->ne[1];
  6390. //const int64_t ne2 = dst->ne[2];
  6391. //const int64_t ne3 = dst->ne[3];
  6392. const int nbk0 = k->nb[0];
  6393. const int nbk1 = k->nb[1];
  6394. const int nbk2 = k->nb[2];
  6395. const int nbk3 = k->nb[3];
  6396. const int nbq0 = q->nb[0];
  6397. const int nbq1 = q->nb[1];
  6398. const int nbq2 = q->nb[2];
  6399. const int nbq3 = q->nb[3];
  6400. const int nbv0 = v->nb[0];
  6401. const int nbv1 = v->nb[1];
  6402. const int nbv2 = v->nb[2];
  6403. const int nbv3 = v->nb[3];
  6404. const int nb0 = dst->nb[0];
  6405. const int nb1 = dst->nb[1];
  6406. const int nb2 = dst->nb[2];
  6407. const int nb3 = dst->nb[3];
  6408. const int ith = params->ith;
  6409. const int nth = params->nth;
  6410. const int64_t D = neq0;
  6411. const int64_t N = neq1;
  6412. const int64_t P = nek1 - N;
  6413. const int64_t M = P + N;
  6414. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6415. GGML_ASSERT(ne0 == D);
  6416. GGML_ASSERT(ne1 == N);
  6417. GGML_ASSERT(P >= 0);
  6418. GGML_ASSERT(nbq0 == sizeof(float));
  6419. GGML_ASSERT(nbk0 == sizeof(float));
  6420. GGML_ASSERT(nbv0 == sizeof(float));
  6421. GGML_ASSERT(neq0 == D);
  6422. GGML_ASSERT(nek0 == D);
  6423. GGML_ASSERT(nev1 == D);
  6424. GGML_ASSERT(neq1 == N);
  6425. GGML_ASSERT(nek1 == N + P);
  6426. GGML_ASSERT(nev1 == D);
  6427. // dst cannot be transposed or permuted
  6428. GGML_ASSERT(nb0 == sizeof(float));
  6429. GGML_ASSERT(nb0 <= nb1);
  6430. GGML_ASSERT(nb1 <= nb2);
  6431. GGML_ASSERT(nb2 <= nb3);
  6432. if (params->type == GGML_TASK_INIT) {
  6433. return;
  6434. }
  6435. if (params->type == GGML_TASK_FINALIZE) {
  6436. return;
  6437. }
  6438. // parallelize by q rows using ggml_vec_dot_f32
  6439. // total rows in q
  6440. const int nr = neq1*neq2*neq3;
  6441. // rows per thread
  6442. const int dr = (nr + nth - 1)/nth;
  6443. // row range for this thread
  6444. const int ir0 = dr*ith;
  6445. const int ir1 = MIN(ir0 + dr, nr);
  6446. const float scale = 1.0f/sqrtf(D);
  6447. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6448. for (int ir = ir0; ir < ir1; ++ir) {
  6449. // q indices
  6450. const int iq3 = ir/(neq2*neq1);
  6451. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6452. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6453. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6454. for (int i = M; i < Mup; ++i) {
  6455. S[i] = -INFINITY;
  6456. }
  6457. for (int64_t ic = 0; ic < nek1; ++ic) {
  6458. // k indices
  6459. const int ik3 = iq3;
  6460. const int ik2 = iq2;
  6461. const int ik1 = ic;
  6462. // S indices
  6463. const int i1 = ik1;
  6464. ggml_vec_dot_f32(neq0,
  6465. S + i1,
  6466. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6467. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6468. }
  6469. // scale
  6470. ggml_vec_scale_f32(nek1, S, scale);
  6471. if (masked) {
  6472. for (int64_t i = P; i < M; i++) {
  6473. if (i > P + iq1) {
  6474. S[i] = -INFINITY;
  6475. }
  6476. }
  6477. }
  6478. // softmax
  6479. {
  6480. float max = -INFINITY;
  6481. ggml_vec_max_f32(M, &max, S);
  6482. ggml_float sum = 0.0;
  6483. {
  6484. #ifdef GGML_SOFT_MAX_ACCELERATE
  6485. max = -max;
  6486. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6487. vvexpf(S, S, &Mup);
  6488. ggml_vec_sum_f32(Mup, &sum, S);
  6489. #else
  6490. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6491. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6492. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6493. float * SS = S + i;
  6494. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6495. if (SS[j] == -INFINITY) {
  6496. SS[j] = 0.0f;
  6497. } else {
  6498. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6499. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6500. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6501. sump[j] += (ggml_float)val;
  6502. SS[j] = val;
  6503. }
  6504. }
  6505. }
  6506. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6507. sum += sump[i];
  6508. }
  6509. #endif
  6510. }
  6511. assert(sum > 0.0);
  6512. sum = 1.0/sum;
  6513. ggml_vec_scale_f32(M, S, sum);
  6514. #ifndef NDEBUG
  6515. for (int i = 0; i < M; ++i) {
  6516. assert(!isnan(S[i]));
  6517. assert(!isinf(S[i]));
  6518. }
  6519. #endif
  6520. }
  6521. for (int64_t ic = 0; ic < nev1; ++ic) {
  6522. // dst indices
  6523. const int i1 = iq1;
  6524. const int i2 = iq2;
  6525. const int i3 = iq3;
  6526. ggml_vec_dot_f32(nek1,
  6527. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6528. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6529. S);
  6530. }
  6531. }
  6532. }
  6533. static void ggml_compute_forward_flash_attn_f16(
  6534. const struct ggml_compute_params * params,
  6535. const struct ggml_tensor * q,
  6536. const struct ggml_tensor * k,
  6537. const struct ggml_tensor * v,
  6538. const bool masked,
  6539. struct ggml_tensor * dst) {
  6540. int64_t t0 = ggml_perf_time_us();
  6541. UNUSED(t0);
  6542. const int64_t neq0 = q->ne[0];
  6543. const int64_t neq1 = q->ne[1];
  6544. const int64_t neq2 = q->ne[2];
  6545. const int64_t neq3 = q->ne[3];
  6546. const int64_t nek0 = k->ne[0];
  6547. const int64_t nek1 = k->ne[1];
  6548. //const int64_t nek2 = k->ne[2];
  6549. //const int64_t nek3 = k->ne[3];
  6550. //const int64_t nev0 = v->ne[0];
  6551. const int64_t nev1 = v->ne[1];
  6552. //const int64_t nev2 = v->ne[2];
  6553. //const int64_t nev3 = v->ne[3];
  6554. const int64_t ne0 = dst->ne[0];
  6555. const int64_t ne1 = dst->ne[1];
  6556. //const int64_t ne2 = dst->ne[2];
  6557. //const int64_t ne3 = dst->ne[3];
  6558. const int nbk0 = k->nb[0];
  6559. const int nbk1 = k->nb[1];
  6560. const int nbk2 = k->nb[2];
  6561. const int nbk3 = k->nb[3];
  6562. const int nbq0 = q->nb[0];
  6563. const int nbq1 = q->nb[1];
  6564. const int nbq2 = q->nb[2];
  6565. const int nbq3 = q->nb[3];
  6566. const int nbv0 = v->nb[0];
  6567. const int nbv1 = v->nb[1];
  6568. const int nbv2 = v->nb[2];
  6569. const int nbv3 = v->nb[3];
  6570. const int nb0 = dst->nb[0];
  6571. const int nb1 = dst->nb[1];
  6572. const int nb2 = dst->nb[2];
  6573. const int nb3 = dst->nb[3];
  6574. const int ith = params->ith;
  6575. const int nth = params->nth;
  6576. const int64_t D = neq0;
  6577. const int64_t N = neq1;
  6578. const int64_t P = nek1 - N;
  6579. const int64_t M = P + N;
  6580. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6581. GGML_ASSERT(ne0 == D);
  6582. GGML_ASSERT(ne1 == N);
  6583. GGML_ASSERT(P >= 0);
  6584. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6585. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6586. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6587. GGML_ASSERT(neq0 == D);
  6588. GGML_ASSERT(nek0 == D);
  6589. GGML_ASSERT(nev1 == D);
  6590. GGML_ASSERT(neq1 == N);
  6591. GGML_ASSERT(nek1 == N + P);
  6592. GGML_ASSERT(nev1 == D);
  6593. // dst cannot be transposed or permuted
  6594. GGML_ASSERT(nb0 == sizeof(float));
  6595. GGML_ASSERT(nb0 <= nb1);
  6596. GGML_ASSERT(nb1 <= nb2);
  6597. GGML_ASSERT(nb2 <= nb3);
  6598. if (params->type == GGML_TASK_INIT) {
  6599. return;
  6600. }
  6601. if (params->type == GGML_TASK_FINALIZE) {
  6602. return;
  6603. }
  6604. // parallelize by q rows using ggml_vec_dot_f32
  6605. // total rows in q
  6606. const int nr = neq1*neq2*neq3;
  6607. // rows per thread
  6608. const int dr = (nr + nth - 1)/nth;
  6609. // row range for this thread
  6610. const int ir0 = dr*ith;
  6611. const int ir1 = MIN(ir0 + dr, nr);
  6612. const float scale = 1.0f/sqrtf(D);
  6613. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6614. for (int ir = ir0; ir < ir1; ++ir) {
  6615. // q indices
  6616. const int iq3 = ir/(neq2*neq1);
  6617. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6618. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6619. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6620. for (int i = M; i < Mup; ++i) {
  6621. S[i] = -INFINITY;
  6622. }
  6623. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6624. for (int64_t ic = 0; ic < nek1; ++ic) {
  6625. // k indices
  6626. const int ik3 = iq3;
  6627. const int ik2 = iq2;
  6628. const int ik1 = ic;
  6629. // S indices
  6630. const int i1 = ik1;
  6631. ggml_vec_dot_f16(neq0,
  6632. S + i1,
  6633. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6634. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6635. }
  6636. } else {
  6637. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6638. // k indices
  6639. const int ik3 = iq3;
  6640. const int ik2 = iq2;
  6641. const int ik1 = ic;
  6642. // S indices
  6643. const int i1 = ik1;
  6644. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6645. S + i1,
  6646. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6647. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6648. }
  6649. }
  6650. // scale
  6651. ggml_vec_scale_f32(nek1, S, scale);
  6652. if (masked) {
  6653. for (int64_t i = P; i < M; i++) {
  6654. if (i > P + iq1) {
  6655. S[i] = -INFINITY;
  6656. }
  6657. }
  6658. }
  6659. // softmax
  6660. {
  6661. float max = -INFINITY;
  6662. ggml_vec_max_f32(M, &max, S);
  6663. ggml_float sum = 0.0;
  6664. {
  6665. #ifdef GGML_SOFT_MAX_ACCELERATE
  6666. max = -max;
  6667. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6668. vvexpf(S, S, &Mup);
  6669. ggml_vec_sum_f32(Mup, &sum, S);
  6670. #else
  6671. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6672. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6673. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6674. float * SS = S + i;
  6675. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6676. if (SS[j] == -INFINITY) {
  6677. SS[j] = 0.0f;
  6678. } else {
  6679. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6680. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6681. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6682. sump[j] += (ggml_float)val;
  6683. SS[j] = val;
  6684. }
  6685. }
  6686. }
  6687. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6688. sum += sump[i];
  6689. }
  6690. #endif
  6691. }
  6692. assert(sum > 0.0);
  6693. sum = 1.0/sum;
  6694. ggml_vec_scale_f32(M, S, sum);
  6695. #ifndef NDEBUG
  6696. for (int i = 0; i < M; ++i) {
  6697. assert(!isnan(S[i]));
  6698. assert(!isinf(S[i]));
  6699. }
  6700. #endif
  6701. }
  6702. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6703. for (int64_t i = 0; i < M; i++) {
  6704. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6705. }
  6706. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6707. for (int64_t ic = 0; ic < nev1; ++ic) {
  6708. // dst indices
  6709. const int i1 = iq1;
  6710. const int i2 = iq2;
  6711. const int i3 = iq3;
  6712. ggml_vec_dot_f16(nek1,
  6713. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6714. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6715. S16);
  6716. }
  6717. } else {
  6718. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6719. // dst indices
  6720. const int i1 = iq1;
  6721. const int i2 = iq2;
  6722. const int i3 = iq3;
  6723. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6724. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6725. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6726. S16);
  6727. }
  6728. }
  6729. }
  6730. }
  6731. static void ggml_compute_forward_flash_attn(
  6732. const struct ggml_compute_params * params,
  6733. const struct ggml_tensor * q,
  6734. const struct ggml_tensor * k,
  6735. const struct ggml_tensor * v,
  6736. const bool masked,
  6737. struct ggml_tensor * dst) {
  6738. switch (q->type) {
  6739. case GGML_TYPE_F16:
  6740. {
  6741. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6742. } break;
  6743. case GGML_TYPE_F32:
  6744. {
  6745. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6746. } break;
  6747. case GGML_TYPE_Q4_0:
  6748. case GGML_TYPE_Q4_1:
  6749. case GGML_TYPE_I8:
  6750. case GGML_TYPE_I16:
  6751. case GGML_TYPE_I32:
  6752. case GGML_TYPE_COUNT:
  6753. {
  6754. GGML_ASSERT(false);
  6755. } break;
  6756. }
  6757. }
  6758. // ggml_compute_forward_flash_ff
  6759. static void ggml_compute_forward_flash_ff_f16(
  6760. const struct ggml_compute_params * params,
  6761. const struct ggml_tensor * a, // F16
  6762. const struct ggml_tensor * b0, // F16 fc_w
  6763. const struct ggml_tensor * b1, // F32 fc_b
  6764. const struct ggml_tensor * c0, // F16 proj_w
  6765. const struct ggml_tensor * c1, // F32 proj_b
  6766. struct ggml_tensor * dst) {
  6767. int64_t t0 = ggml_perf_time_us();
  6768. UNUSED(t0);
  6769. const int64_t nea0 = a->ne[0];
  6770. const int64_t nea1 = a->ne[1];
  6771. const int64_t nea2 = a->ne[2];
  6772. const int64_t nea3 = a->ne[3];
  6773. const int64_t neb00 = b0->ne[0];
  6774. const int64_t neb01 = b0->ne[1];
  6775. //const int64_t neb02 = b0->ne[2];
  6776. //const int64_t neb03 = b0->ne[3];
  6777. const int64_t neb10 = b1->ne[0];
  6778. const int64_t neb11 = b1->ne[1];
  6779. //const int64_t neb12 = b1->ne[2];
  6780. //const int64_t neb13 = b1->ne[3];
  6781. const int64_t nec00 = c0->ne[0];
  6782. const int64_t nec01 = c0->ne[1];
  6783. //const int64_t nec02 = c0->ne[2];
  6784. //const int64_t nec03 = c0->ne[3];
  6785. const int64_t nec10 = c1->ne[0];
  6786. const int64_t nec11 = c1->ne[1];
  6787. //const int64_t nec12 = c1->ne[2];
  6788. //const int64_t nec13 = c1->ne[3];
  6789. const int64_t ne0 = dst->ne[0];
  6790. const int64_t ne1 = dst->ne[1];
  6791. const int64_t ne2 = dst->ne[2];
  6792. //const int64_t ne3 = dst->ne[3];
  6793. const int nba0 = a->nb[0];
  6794. const int nba1 = a->nb[1];
  6795. const int nba2 = a->nb[2];
  6796. const int nba3 = a->nb[3];
  6797. const int nbb00 = b0->nb[0];
  6798. const int nbb01 = b0->nb[1];
  6799. const int nbb02 = b0->nb[2];
  6800. const int nbb03 = b0->nb[3];
  6801. const int nbb10 = b1->nb[0];
  6802. //const int nbb11 = b1->nb[1];
  6803. //const int nbb12 = b1->nb[2];
  6804. //const int nbb13 = b1->nb[3];
  6805. const int nbc00 = c0->nb[0];
  6806. const int nbc01 = c0->nb[1];
  6807. const int nbc02 = c0->nb[2];
  6808. const int nbc03 = c0->nb[3];
  6809. const int nbc10 = c1->nb[0];
  6810. //const int nbc11 = c1->nb[1];
  6811. //const int nbc12 = c1->nb[2];
  6812. //const int nbc13 = c1->nb[3];
  6813. const int nb0 = dst->nb[0];
  6814. const int nb1 = dst->nb[1];
  6815. const int nb2 = dst->nb[2];
  6816. const int nb3 = dst->nb[3];
  6817. const int ith = params->ith;
  6818. const int nth = params->nth;
  6819. const int64_t D = nea0;
  6820. //const int64_t N = nea1;
  6821. const int64_t M = neb01;
  6822. GGML_ASSERT(ne0 == nea0);
  6823. GGML_ASSERT(ne1 == nea1);
  6824. GGML_ASSERT(ne2 == nea2);
  6825. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6826. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6827. GGML_ASSERT(nbb10 == sizeof(float));
  6828. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6829. GGML_ASSERT(nbc10 == sizeof(float));
  6830. GGML_ASSERT(neb00 == D);
  6831. GGML_ASSERT(neb01 == M);
  6832. GGML_ASSERT(neb10 == M);
  6833. GGML_ASSERT(neb11 == 1);
  6834. GGML_ASSERT(nec00 == M);
  6835. GGML_ASSERT(nec01 == D);
  6836. GGML_ASSERT(nec10 == D);
  6837. GGML_ASSERT(nec11 == 1);
  6838. // dst cannot be transposed or permuted
  6839. GGML_ASSERT(nb0 == sizeof(float));
  6840. GGML_ASSERT(nb0 <= nb1);
  6841. GGML_ASSERT(nb1 <= nb2);
  6842. GGML_ASSERT(nb2 <= nb3);
  6843. if (params->type == GGML_TASK_INIT) {
  6844. return;
  6845. }
  6846. if (params->type == GGML_TASK_FINALIZE) {
  6847. return;
  6848. }
  6849. // parallelize by a rows using ggml_vec_dot_f32
  6850. // total rows in a
  6851. const int nr = nea1*nea2*nea3;
  6852. // rows per thread
  6853. const int dr = (nr + nth - 1)/nth;
  6854. // row range for this thread
  6855. const int ir0 = dr*ith;
  6856. const int ir1 = MIN(ir0 + dr, nr);
  6857. for (int ir = ir0; ir < ir1; ++ir) {
  6858. // a indices
  6859. const int ia3 = ir/(nea2*nea1);
  6860. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6861. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6862. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6863. for (int64_t ic = 0; ic < neb01; ++ic) {
  6864. // b0 indices
  6865. const int ib03 = ia3;
  6866. const int ib02 = ia2;
  6867. const int ib01 = ic;
  6868. // S indices
  6869. const int i1 = ib01;
  6870. ggml_vec_dot_f16(nea0,
  6871. S + i1,
  6872. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6873. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6874. }
  6875. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6876. //ggml_vec_gelu_f32(neb01, S, S);
  6877. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6878. for (int64_t i = 0; i < M; i++) {
  6879. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6880. }
  6881. ggml_vec_gelu_f16(neb01, S16, S16);
  6882. {
  6883. // dst indices
  6884. const int i1 = ia1;
  6885. const int i2 = ia2;
  6886. const int i3 = ia3;
  6887. for (int64_t ic = 0; ic < nec01; ++ic) {
  6888. ggml_vec_dot_f16(neb01,
  6889. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6890. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6891. S16);
  6892. }
  6893. ggml_vec_add_f32(nec01,
  6894. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6895. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6896. (float *) c1->data);
  6897. }
  6898. }
  6899. }
  6900. static void ggml_compute_forward_flash_ff(
  6901. const struct ggml_compute_params * params,
  6902. const struct ggml_tensor * a,
  6903. const struct ggml_tensor * b0,
  6904. const struct ggml_tensor * b1,
  6905. const struct ggml_tensor * c0,
  6906. const struct ggml_tensor * c1,
  6907. struct ggml_tensor * dst) {
  6908. switch (b0->type) {
  6909. case GGML_TYPE_F16:
  6910. {
  6911. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6912. } break;
  6913. case GGML_TYPE_F32:
  6914. {
  6915. GGML_ASSERT(false); // TODO
  6916. } break;
  6917. case GGML_TYPE_Q4_0:
  6918. case GGML_TYPE_Q4_1:
  6919. case GGML_TYPE_I8:
  6920. case GGML_TYPE_I16:
  6921. case GGML_TYPE_I32:
  6922. case GGML_TYPE_COUNT:
  6923. {
  6924. GGML_ASSERT(false);
  6925. } break;
  6926. }
  6927. }
  6928. /////////////////////////////////
  6929. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6930. GGML_ASSERT(params);
  6931. switch (tensor->op) {
  6932. case GGML_OP_DUP:
  6933. {
  6934. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6935. } break;
  6936. case GGML_OP_ADD:
  6937. {
  6938. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6939. } break;
  6940. case GGML_OP_SUB:
  6941. {
  6942. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6943. } break;
  6944. case GGML_OP_MUL:
  6945. {
  6946. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6947. } break;
  6948. case GGML_OP_DIV:
  6949. {
  6950. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6951. } break;
  6952. case GGML_OP_SQR:
  6953. {
  6954. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6955. } break;
  6956. case GGML_OP_SQRT:
  6957. {
  6958. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6959. } break;
  6960. case GGML_OP_SUM:
  6961. {
  6962. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6963. } break;
  6964. case GGML_OP_MEAN:
  6965. {
  6966. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6967. } break;
  6968. case GGML_OP_REPEAT:
  6969. {
  6970. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6971. } break;
  6972. case GGML_OP_ABS:
  6973. {
  6974. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6975. } break;
  6976. case GGML_OP_SGN:
  6977. {
  6978. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6979. } break;
  6980. case GGML_OP_NEG:
  6981. {
  6982. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6983. } break;
  6984. case GGML_OP_STEP:
  6985. {
  6986. ggml_compute_forward_step(params, tensor->src0, tensor);
  6987. } break;
  6988. case GGML_OP_RELU:
  6989. {
  6990. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6991. } break;
  6992. case GGML_OP_GELU:
  6993. {
  6994. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6995. } break;
  6996. case GGML_OP_SILU:
  6997. {
  6998. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6999. } break;
  7000. case GGML_OP_NORM:
  7001. {
  7002. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7003. } break;
  7004. case GGML_OP_RMS_NORM:
  7005. {
  7006. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7007. } break;
  7008. case GGML_OP_MUL_MAT:
  7009. {
  7010. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7011. } break;
  7012. case GGML_OP_SCALE:
  7013. {
  7014. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7015. } break;
  7016. case GGML_OP_CPY:
  7017. {
  7018. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7019. } break;
  7020. case GGML_OP_RESHAPE:
  7021. {
  7022. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7023. } break;
  7024. case GGML_OP_VIEW:
  7025. {
  7026. ggml_compute_forward_view(params, tensor->src0);
  7027. } break;
  7028. case GGML_OP_PERMUTE:
  7029. {
  7030. ggml_compute_forward_permute(params, tensor->src0);
  7031. } break;
  7032. case GGML_OP_TRANSPOSE:
  7033. {
  7034. ggml_compute_forward_transpose(params, tensor->src0);
  7035. } break;
  7036. case GGML_OP_GET_ROWS:
  7037. {
  7038. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7039. } break;
  7040. case GGML_OP_DIAG_MASK_INF:
  7041. {
  7042. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7043. } break;
  7044. case GGML_OP_SOFT_MAX:
  7045. {
  7046. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7047. } break;
  7048. case GGML_OP_ROPE:
  7049. {
  7050. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7051. } break;
  7052. case GGML_OP_CONV_1D_1S:
  7053. {
  7054. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7055. } break;
  7056. case GGML_OP_CONV_1D_2S:
  7057. {
  7058. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7059. } break;
  7060. case GGML_OP_FLASH_ATTN:
  7061. {
  7062. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7063. GGML_ASSERT(t == 0 || t == 1);
  7064. bool masked = t != 0;
  7065. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7066. } break;
  7067. case GGML_OP_FLASH_FF:
  7068. {
  7069. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7070. } break;
  7071. case GGML_OP_NONE:
  7072. {
  7073. // nop
  7074. } break;
  7075. case GGML_OP_COUNT:
  7076. {
  7077. GGML_ASSERT(false);
  7078. } break;
  7079. }
  7080. }
  7081. ////////////////////////////////////////////////////////////////////////////////
  7082. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7083. struct ggml_tensor * src0 = tensor->src0;
  7084. struct ggml_tensor * src1 = tensor->src1;
  7085. switch (tensor->op) {
  7086. case GGML_OP_DUP:
  7087. {
  7088. if (src0->grad) {
  7089. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7090. }
  7091. } break;
  7092. case GGML_OP_ADD:
  7093. {
  7094. if (src0->grad) {
  7095. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7096. }
  7097. if (src1->grad) {
  7098. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7099. }
  7100. } break;
  7101. case GGML_OP_SUB:
  7102. {
  7103. if (src0->grad) {
  7104. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7105. }
  7106. if (src1->grad) {
  7107. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7108. }
  7109. } break;
  7110. case GGML_OP_MUL:
  7111. {
  7112. if (src0->grad) {
  7113. src0->grad =
  7114. ggml_add_impl(ctx,
  7115. src0->grad,
  7116. ggml_mul(ctx, src1, tensor->grad),
  7117. inplace);
  7118. }
  7119. if (src1->grad) {
  7120. src1->grad =
  7121. ggml_add_impl(ctx,
  7122. src1->grad,
  7123. ggml_mul(ctx, src0, tensor->grad),
  7124. inplace);
  7125. }
  7126. } break;
  7127. case GGML_OP_DIV:
  7128. {
  7129. if (src0->grad) {
  7130. src0->grad =
  7131. ggml_add_impl(ctx,
  7132. src0->grad,
  7133. ggml_div(ctx, tensor->grad, src1),
  7134. inplace);
  7135. }
  7136. if (src1->grad) {
  7137. src1->grad =
  7138. ggml_sub_impl(ctx,
  7139. src1->grad,
  7140. ggml_mul(ctx,
  7141. tensor->grad,
  7142. ggml_div(ctx, tensor, src1)),
  7143. inplace);
  7144. }
  7145. } break;
  7146. case GGML_OP_SQR:
  7147. {
  7148. if (src0->grad) {
  7149. src0->grad =
  7150. ggml_add_impl(ctx,
  7151. src0->grad,
  7152. ggml_mul(ctx,
  7153. ggml_mul(ctx, src0, tensor->grad),
  7154. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7155. inplace);
  7156. }
  7157. } break;
  7158. case GGML_OP_SQRT:
  7159. {
  7160. if (src0->grad) {
  7161. src0->grad =
  7162. ggml_add_impl(ctx,
  7163. src0->grad,
  7164. ggml_div(ctx,
  7165. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7166. tensor),
  7167. inplace);
  7168. }
  7169. } break;
  7170. case GGML_OP_SUM:
  7171. {
  7172. if (src0->grad) {
  7173. src0->grad =
  7174. ggml_add_impl(ctx,
  7175. src0->grad,
  7176. ggml_repeat(ctx, tensor->grad, src0->grad),
  7177. inplace);
  7178. }
  7179. } break;
  7180. case GGML_OP_MEAN:
  7181. {
  7182. GGML_ASSERT(false); // TODO: implement
  7183. } break;
  7184. case GGML_OP_REPEAT:
  7185. {
  7186. if (src0->grad) {
  7187. src0->grad =
  7188. ggml_add_impl(ctx,
  7189. src0->grad,
  7190. ggml_sum(ctx, tensor->grad),
  7191. inplace);
  7192. }
  7193. } break;
  7194. case GGML_OP_ABS:
  7195. {
  7196. if (src0->grad) {
  7197. src0->grad =
  7198. ggml_add_impl(ctx,
  7199. src0->grad,
  7200. ggml_mul(ctx,
  7201. ggml_sgn(ctx, src0),
  7202. tensor->grad),
  7203. inplace);
  7204. }
  7205. } break;
  7206. case GGML_OP_SGN:
  7207. {
  7208. if (src0->grad) {
  7209. // noop
  7210. }
  7211. } break;
  7212. case GGML_OP_NEG:
  7213. {
  7214. if (src0->grad) {
  7215. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7216. }
  7217. } break;
  7218. case GGML_OP_STEP:
  7219. {
  7220. if (src0->grad) {
  7221. // noop
  7222. }
  7223. } break;
  7224. case GGML_OP_RELU:
  7225. {
  7226. if (src0->grad) {
  7227. src0->grad = ggml_sub_impl(ctx,
  7228. src0->grad,
  7229. ggml_mul(ctx,
  7230. ggml_step(ctx, src0),
  7231. tensor->grad),
  7232. inplace);
  7233. }
  7234. } break;
  7235. case GGML_OP_GELU:
  7236. {
  7237. GGML_ASSERT(false); // TODO: not implemented
  7238. } break;
  7239. case GGML_OP_SILU:
  7240. {
  7241. GGML_ASSERT(false); // TODO: not implemented
  7242. } break;
  7243. case GGML_OP_NORM:
  7244. {
  7245. GGML_ASSERT(false); // TODO: not implemented
  7246. } break;
  7247. case GGML_OP_RMS_NORM:
  7248. {
  7249. GGML_ASSERT(false); // TODO: not implemented
  7250. } break;
  7251. case GGML_OP_MUL_MAT:
  7252. {
  7253. if (src0->grad) {
  7254. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7255. GGML_ASSERT(false);
  7256. }
  7257. if (src1->grad) {
  7258. src1->grad =
  7259. ggml_add_impl(ctx,
  7260. src1->grad,
  7261. // TODO: fix transpose, the node will break the graph connections
  7262. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7263. inplace);
  7264. }
  7265. } break;
  7266. case GGML_OP_SCALE:
  7267. {
  7268. GGML_ASSERT(false); // TODO: not implemented
  7269. } break;
  7270. case GGML_OP_CPY:
  7271. {
  7272. GGML_ASSERT(false); // TODO: not implemented
  7273. } break;
  7274. case GGML_OP_RESHAPE:
  7275. {
  7276. GGML_ASSERT(false); // TODO: not implemented
  7277. } break;
  7278. case GGML_OP_VIEW:
  7279. {
  7280. GGML_ASSERT(false); // not supported
  7281. } break;
  7282. case GGML_OP_PERMUTE:
  7283. {
  7284. GGML_ASSERT(false); // TODO: not implemented
  7285. } break;
  7286. case GGML_OP_TRANSPOSE:
  7287. {
  7288. GGML_ASSERT(false); // TODO: not implemented
  7289. } break;
  7290. case GGML_OP_GET_ROWS:
  7291. {
  7292. GGML_ASSERT(false); // TODO: not implemented
  7293. } break;
  7294. case GGML_OP_DIAG_MASK_INF:
  7295. {
  7296. GGML_ASSERT(false); // TODO: not implemented
  7297. } break;
  7298. case GGML_OP_SOFT_MAX:
  7299. {
  7300. GGML_ASSERT(false); // TODO: not implemented
  7301. } break;
  7302. case GGML_OP_ROPE:
  7303. {
  7304. GGML_ASSERT(false); // TODO: not implemented
  7305. } break;
  7306. case GGML_OP_CONV_1D_1S:
  7307. {
  7308. GGML_ASSERT(false); // TODO: not implemented
  7309. } break;
  7310. case GGML_OP_CONV_1D_2S:
  7311. {
  7312. GGML_ASSERT(false); // TODO: not implemented
  7313. } break;
  7314. case GGML_OP_FLASH_ATTN:
  7315. {
  7316. GGML_ASSERT(false); // not supported
  7317. } break;
  7318. case GGML_OP_FLASH_FF:
  7319. {
  7320. GGML_ASSERT(false); // not supported
  7321. } break;
  7322. case GGML_OP_NONE:
  7323. {
  7324. // nop
  7325. } break;
  7326. case GGML_OP_COUNT:
  7327. {
  7328. GGML_ASSERT(false);
  7329. } break;
  7330. }
  7331. }
  7332. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7333. if (node->grad == NULL) {
  7334. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7335. // it can also happen during forward pass, if the user performs computations with constants
  7336. if (node->op != GGML_OP_NONE) {
  7337. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7338. }
  7339. }
  7340. // check if already visited
  7341. for (int i = 0; i < cgraph->n_nodes; i++) {
  7342. if (cgraph->nodes[i] == node) {
  7343. return;
  7344. }
  7345. }
  7346. for (int i = 0; i < cgraph->n_leafs; i++) {
  7347. if (cgraph->leafs[i] == node) {
  7348. return;
  7349. }
  7350. }
  7351. if (node->src0) {
  7352. ggml_visit_parents(cgraph, node->src0);
  7353. }
  7354. if (node->src1) {
  7355. ggml_visit_parents(cgraph, node->src1);
  7356. }
  7357. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7358. if (node->opt[i]) {
  7359. ggml_visit_parents(cgraph, node->opt[i]);
  7360. }
  7361. }
  7362. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7363. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7364. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7365. cgraph->leafs[cgraph->n_leafs] = node;
  7366. cgraph->n_leafs++;
  7367. } else {
  7368. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7369. cgraph->nodes[cgraph->n_nodes] = node;
  7370. cgraph->grads[cgraph->n_nodes] = node->grad;
  7371. cgraph->n_nodes++;
  7372. }
  7373. }
  7374. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7375. if (!expand) {
  7376. cgraph->n_nodes = 0;
  7377. cgraph->n_leafs = 0;
  7378. }
  7379. const int n0 = cgraph->n_nodes;
  7380. UNUSED(n0);
  7381. ggml_visit_parents(cgraph, tensor);
  7382. const int n_new = cgraph->n_nodes - n0;
  7383. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7384. if (n_new > 0) {
  7385. // the last added node should always be starting point
  7386. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7387. }
  7388. }
  7389. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7390. ggml_build_forward_impl(cgraph, tensor, true);
  7391. }
  7392. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7393. struct ggml_cgraph result = {
  7394. /*.n_nodes =*/ 0,
  7395. /*.n_leafs =*/ 0,
  7396. /*.n_threads =*/ 0,
  7397. /*.work_size =*/ 0,
  7398. /*.work =*/ NULL,
  7399. /*.nodes =*/ { NULL },
  7400. /*.grads =*/ { NULL },
  7401. /*.leafs =*/ { NULL },
  7402. /*.perf_runs =*/ 0,
  7403. /*.perf_cycles =*/ 0,
  7404. /*.perf_time_us =*/ 0,
  7405. };
  7406. ggml_build_forward_impl(&result, tensor, false);
  7407. return result;
  7408. }
  7409. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7410. struct ggml_cgraph result = *gf;
  7411. GGML_ASSERT(gf->n_nodes > 0);
  7412. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7413. if (keep) {
  7414. for (int i = 0; i < gf->n_nodes; i++) {
  7415. struct ggml_tensor * node = gf->nodes[i];
  7416. if (node->grad) {
  7417. node->grad = ggml_dup_tensor(ctx, node);
  7418. gf->grads[i] = node->grad;
  7419. }
  7420. }
  7421. }
  7422. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7423. struct ggml_tensor * node = gf->nodes[i];
  7424. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7425. if (node->grad) {
  7426. ggml_compute_backward(ctx, node, keep);
  7427. }
  7428. }
  7429. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7430. struct ggml_tensor * node = gf->nodes[i];
  7431. if (node->is_param) {
  7432. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7433. ggml_build_forward_impl(&result, node->grad, true);
  7434. }
  7435. }
  7436. return result;
  7437. }
  7438. //
  7439. // thread data
  7440. //
  7441. // synchronization is done via busy loops
  7442. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7443. //
  7444. #ifdef __APPLE__
  7445. //#include <os/lock.h>
  7446. //
  7447. //typedef os_unfair_lock ggml_lock_t;
  7448. //
  7449. //#define ggml_lock_init(x) UNUSED(x)
  7450. //#define ggml_lock_destroy(x) UNUSED(x)
  7451. //#define ggml_lock_lock os_unfair_lock_lock
  7452. //#define ggml_lock_unlock os_unfair_lock_unlock
  7453. //
  7454. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7455. typedef int ggml_lock_t;
  7456. #define ggml_lock_init(x) UNUSED(x)
  7457. #define ggml_lock_destroy(x) UNUSED(x)
  7458. #define ggml_lock_lock(x) UNUSED(x)
  7459. #define ggml_lock_unlock(x) UNUSED(x)
  7460. #define GGML_LOCK_INITIALIZER 0
  7461. typedef pthread_t ggml_thread_t;
  7462. #define ggml_thread_create pthread_create
  7463. #define ggml_thread_join pthread_join
  7464. #else
  7465. //typedef pthread_spinlock_t ggml_lock_t;
  7466. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7467. //#define ggml_lock_destroy pthread_spin_destroy
  7468. //#define ggml_lock_lock pthread_spin_lock
  7469. //#define ggml_lock_unlock pthread_spin_unlock
  7470. typedef int ggml_lock_t;
  7471. #define ggml_lock_init(x) UNUSED(x)
  7472. #define ggml_lock_destroy(x) UNUSED(x)
  7473. #define ggml_lock_lock(x) UNUSED(x)
  7474. #define ggml_lock_unlock(x) UNUSED(x)
  7475. #define GGML_LOCK_INITIALIZER 0
  7476. typedef pthread_t ggml_thread_t;
  7477. #define ggml_thread_create pthread_create
  7478. #define ggml_thread_join pthread_join
  7479. #endif
  7480. struct ggml_compute_state_shared {
  7481. ggml_lock_t spin;
  7482. int n_threads;
  7483. // synchronization primitives
  7484. atomic_int n_ready;
  7485. atomic_bool has_work;
  7486. atomic_bool stop; // stop all threads
  7487. };
  7488. struct ggml_compute_state {
  7489. ggml_thread_t thrd;
  7490. struct ggml_compute_params params;
  7491. struct ggml_tensor * node;
  7492. struct ggml_compute_state_shared * shared;
  7493. };
  7494. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7495. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7496. const int n_threads = state->shared->n_threads;
  7497. while (true) {
  7498. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7499. atomic_store(&state->shared->has_work, false);
  7500. } else {
  7501. while (atomic_load(&state->shared->has_work)) {
  7502. if (atomic_load(&state->shared->stop)) {
  7503. return 0;
  7504. }
  7505. ggml_lock_lock (&state->shared->spin);
  7506. ggml_lock_unlock(&state->shared->spin);
  7507. }
  7508. }
  7509. atomic_fetch_sub(&state->shared->n_ready, 1);
  7510. // wait for work
  7511. while (!atomic_load(&state->shared->has_work)) {
  7512. if (atomic_load(&state->shared->stop)) {
  7513. return 0;
  7514. }
  7515. ggml_lock_lock (&state->shared->spin);
  7516. ggml_lock_unlock(&state->shared->spin);
  7517. }
  7518. // check if we should stop
  7519. if (atomic_load(&state->shared->stop)) {
  7520. break;
  7521. }
  7522. if (state->node) {
  7523. if (state->params.ith < state->params.nth) {
  7524. ggml_compute_forward(&state->params, state->node);
  7525. }
  7526. state->node = NULL;
  7527. } else {
  7528. break;
  7529. }
  7530. }
  7531. return 0;
  7532. }
  7533. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7534. const int n_threads = cgraph->n_threads;
  7535. struct ggml_compute_state_shared state_shared = {
  7536. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7537. /*.n_threads =*/ n_threads,
  7538. /*.n_ready =*/ 0,
  7539. /*.has_work =*/ false,
  7540. /*.stop =*/ false,
  7541. };
  7542. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7543. // create thread pool
  7544. if (n_threads > 1) {
  7545. ggml_lock_init(&state_shared.spin);
  7546. atomic_store(&state_shared.has_work, true);
  7547. for (int j = 0; j < n_threads - 1; j++) {
  7548. workers[j] = (struct ggml_compute_state) {
  7549. .thrd = 0,
  7550. .params = {
  7551. .type = GGML_TASK_COMPUTE,
  7552. .ith = j + 1,
  7553. .nth = n_threads,
  7554. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7555. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7556. },
  7557. .node = NULL,
  7558. .shared = &state_shared,
  7559. };
  7560. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7561. GGML_ASSERT(rc == 0);
  7562. UNUSED(rc);
  7563. }
  7564. }
  7565. // initialize tasks + work buffer
  7566. {
  7567. size_t work_size = 0;
  7568. // thread scheduling for the different operations
  7569. for (int i = 0; i < cgraph->n_nodes; i++) {
  7570. struct ggml_tensor * node = cgraph->nodes[i];
  7571. switch (node->op) {
  7572. case GGML_OP_DUP:
  7573. {
  7574. node->n_tasks = 1;
  7575. } break;
  7576. case GGML_OP_ADD:
  7577. {
  7578. node->n_tasks = n_threads;
  7579. } break;
  7580. case GGML_OP_SUB:
  7581. case GGML_OP_MUL:
  7582. case GGML_OP_DIV:
  7583. case GGML_OP_SQR:
  7584. case GGML_OP_SQRT:
  7585. case GGML_OP_SUM:
  7586. case GGML_OP_MEAN:
  7587. case GGML_OP_REPEAT:
  7588. case GGML_OP_ABS:
  7589. case GGML_OP_SGN:
  7590. case GGML_OP_NEG:
  7591. case GGML_OP_STEP:
  7592. case GGML_OP_RELU:
  7593. {
  7594. node->n_tasks = 1;
  7595. } break;
  7596. case GGML_OP_GELU:
  7597. {
  7598. node->n_tasks = n_threads;
  7599. } break;
  7600. case GGML_OP_SILU:
  7601. {
  7602. node->n_tasks = n_threads;
  7603. } break;
  7604. case GGML_OP_NORM:
  7605. case GGML_OP_RMS_NORM:
  7606. {
  7607. node->n_tasks = n_threads;
  7608. } break;
  7609. case GGML_OP_MUL_MAT:
  7610. {
  7611. node->n_tasks = n_threads;
  7612. // TODO: use different scheduling for different matrix sizes
  7613. //const int nr0 = ggml_nrows(node->src0);
  7614. //const int nr1 = ggml_nrows(node->src1);
  7615. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7616. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7617. size_t cur = 0;
  7618. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7619. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7620. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7621. node->n_tasks = 1; // TODO: this actually is doing nothing
  7622. // the threads are still spinning
  7623. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7624. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7625. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7626. //printf("cur = %zu\n", cur);
  7627. } else {
  7628. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7629. }
  7630. #else
  7631. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7632. #endif
  7633. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7634. cur = 0;
  7635. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7636. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7637. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7638. node->n_tasks = 1;
  7639. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7640. } else
  7641. #endif
  7642. {
  7643. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7644. }
  7645. } else {
  7646. GGML_ASSERT(false);
  7647. }
  7648. work_size = MAX(work_size, cur);
  7649. } break;
  7650. case GGML_OP_SCALE:
  7651. {
  7652. node->n_tasks = n_threads;
  7653. } break;
  7654. case GGML_OP_CPY:
  7655. case GGML_OP_RESHAPE:
  7656. case GGML_OP_VIEW:
  7657. case GGML_OP_PERMUTE:
  7658. case GGML_OP_TRANSPOSE:
  7659. case GGML_OP_GET_ROWS:
  7660. case GGML_OP_DIAG_MASK_INF:
  7661. {
  7662. node->n_tasks = 1;
  7663. } break;
  7664. case GGML_OP_SOFT_MAX:
  7665. {
  7666. node->n_tasks = n_threads;
  7667. } break;
  7668. case GGML_OP_ROPE:
  7669. {
  7670. node->n_tasks = 1;
  7671. } break;
  7672. case GGML_OP_CONV_1D_1S:
  7673. case GGML_OP_CONV_1D_2S:
  7674. {
  7675. node->n_tasks = n_threads;
  7676. GGML_ASSERT(node->src0->ne[3] == 1);
  7677. GGML_ASSERT(node->src1->ne[2] == 1);
  7678. GGML_ASSERT(node->src1->ne[3] == 1);
  7679. size_t cur = 0;
  7680. const int nk = node->src0->ne[0];
  7681. if (node->src0->type == GGML_TYPE_F16 &&
  7682. node->src1->type == GGML_TYPE_F32) {
  7683. cur = sizeof(ggml_fp16_t)*(
  7684. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7685. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7686. );
  7687. } else if (node->src0->type == GGML_TYPE_F32 &&
  7688. node->src1->type == GGML_TYPE_F32) {
  7689. cur = sizeof(float)*(
  7690. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7691. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7692. );
  7693. } else {
  7694. GGML_ASSERT(false);
  7695. }
  7696. work_size = MAX(work_size, cur);
  7697. } break;
  7698. case GGML_OP_FLASH_ATTN:
  7699. {
  7700. node->n_tasks = n_threads;
  7701. size_t cur = 0;
  7702. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7703. if (node->src1->type == GGML_TYPE_F32) {
  7704. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7705. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7706. }
  7707. if (node->src1->type == GGML_TYPE_F16) {
  7708. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7709. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7710. }
  7711. work_size = MAX(work_size, cur);
  7712. } break;
  7713. case GGML_OP_FLASH_FF:
  7714. {
  7715. node->n_tasks = n_threads;
  7716. size_t cur = 0;
  7717. if (node->src1->type == GGML_TYPE_F32) {
  7718. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7719. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7720. }
  7721. if (node->src1->type == GGML_TYPE_F16) {
  7722. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7723. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7724. }
  7725. work_size = MAX(work_size, cur);
  7726. } break;
  7727. case GGML_OP_NONE:
  7728. {
  7729. node->n_tasks = 1;
  7730. } break;
  7731. case GGML_OP_COUNT:
  7732. {
  7733. GGML_ASSERT(false);
  7734. } break;
  7735. }
  7736. }
  7737. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7738. GGML_ASSERT(false); // TODO: better handling
  7739. }
  7740. if (work_size > 0 && cgraph->work == NULL) {
  7741. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7742. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7743. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7744. }
  7745. }
  7746. const int64_t perf_start_cycles = ggml_perf_cycles();
  7747. const int64_t perf_start_time_us = ggml_perf_time_us();
  7748. for (int i = 0; i < cgraph->n_nodes; i++) {
  7749. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7750. struct ggml_tensor * node = cgraph->nodes[i];
  7751. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7752. //if (node->grad == NULL && node->perf_runs > 0) {
  7753. // continue;
  7754. //}
  7755. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7756. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7757. // INIT
  7758. struct ggml_compute_params params = {
  7759. /*.type =*/ GGML_TASK_INIT,
  7760. /*.ith =*/ 0,
  7761. /*.nth =*/ node->n_tasks,
  7762. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7763. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7764. };
  7765. ggml_compute_forward(&params, node);
  7766. // COMPUTE
  7767. if (node->n_tasks > 1) {
  7768. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7769. atomic_store(&state_shared.has_work, false);
  7770. }
  7771. while (atomic_load(&state_shared.has_work)) {
  7772. ggml_lock_lock (&state_shared.spin);
  7773. ggml_lock_unlock(&state_shared.spin);
  7774. }
  7775. // launch thread pool
  7776. for (int j = 0; j < n_threads - 1; j++) {
  7777. workers[j].params = (struct ggml_compute_params) {
  7778. .type = GGML_TASK_COMPUTE,
  7779. .ith = j + 1,
  7780. .nth = node->n_tasks,
  7781. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7782. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7783. };
  7784. workers[j].node = node;
  7785. }
  7786. atomic_fetch_sub(&state_shared.n_ready, 1);
  7787. while (atomic_load(&state_shared.n_ready) > 0) {
  7788. ggml_lock_lock (&state_shared.spin);
  7789. ggml_lock_unlock(&state_shared.spin);
  7790. }
  7791. atomic_store(&state_shared.has_work, true);
  7792. }
  7793. params.type = GGML_TASK_COMPUTE;
  7794. ggml_compute_forward(&params, node);
  7795. // wait for thread pool
  7796. if (node->n_tasks > 1) {
  7797. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7798. atomic_store(&state_shared.has_work, false);
  7799. }
  7800. while (atomic_load(&state_shared.has_work)) {
  7801. ggml_lock_lock (&state_shared.spin);
  7802. ggml_lock_unlock(&state_shared.spin);
  7803. }
  7804. atomic_fetch_sub(&state_shared.n_ready, 1);
  7805. while (atomic_load(&state_shared.n_ready) != 0) {
  7806. ggml_lock_lock (&state_shared.spin);
  7807. ggml_lock_unlock(&state_shared.spin);
  7808. }
  7809. }
  7810. // FINALIZE
  7811. if (node->n_tasks > 1) {
  7812. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7813. atomic_store(&state_shared.has_work, false);
  7814. }
  7815. while (atomic_load(&state_shared.has_work)) {
  7816. ggml_lock_lock (&state_shared.spin);
  7817. ggml_lock_unlock(&state_shared.spin);
  7818. }
  7819. // launch thread pool
  7820. for (int j = 0; j < n_threads - 1; j++) {
  7821. workers[j].params = (struct ggml_compute_params) {
  7822. .type = GGML_TASK_FINALIZE,
  7823. .ith = j + 1,
  7824. .nth = node->n_tasks,
  7825. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7826. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7827. };
  7828. workers[j].node = node;
  7829. }
  7830. atomic_fetch_sub(&state_shared.n_ready, 1);
  7831. while (atomic_load(&state_shared.n_ready) > 0) {
  7832. ggml_lock_lock (&state_shared.spin);
  7833. ggml_lock_unlock(&state_shared.spin);
  7834. }
  7835. atomic_store(&state_shared.has_work, true);
  7836. }
  7837. params.type = GGML_TASK_FINALIZE;
  7838. ggml_compute_forward(&params, node);
  7839. // wait for thread pool
  7840. if (node->n_tasks > 1) {
  7841. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7842. atomic_store(&state_shared.has_work, false);
  7843. }
  7844. while (atomic_load(&state_shared.has_work)) {
  7845. ggml_lock_lock (&state_shared.spin);
  7846. ggml_lock_unlock(&state_shared.spin);
  7847. }
  7848. atomic_fetch_sub(&state_shared.n_ready, 1);
  7849. while (atomic_load(&state_shared.n_ready) != 0) {
  7850. ggml_lock_lock (&state_shared.spin);
  7851. ggml_lock_unlock(&state_shared.spin);
  7852. }
  7853. }
  7854. // performance stats (node)
  7855. {
  7856. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7857. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7858. node->perf_runs++;
  7859. node->perf_cycles += perf_cycles_cur;
  7860. node->perf_time_us += perf_time_us_cur;
  7861. }
  7862. }
  7863. // join thread pool
  7864. if (n_threads > 1) {
  7865. atomic_store(&state_shared.stop, true);
  7866. atomic_store(&state_shared.has_work, true);
  7867. for (int j = 0; j < n_threads - 1; j++) {
  7868. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7869. GGML_ASSERT(rc == 0);
  7870. UNUSED(rc);
  7871. }
  7872. ggml_lock_destroy(&state_shared.spin);
  7873. }
  7874. // performance stats (graph)
  7875. {
  7876. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7877. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7878. cgraph->perf_runs++;
  7879. cgraph->perf_cycles += perf_cycles_cur;
  7880. cgraph->perf_time_us += perf_time_us_cur;
  7881. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7882. __func__, cgraph->perf_runs,
  7883. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7884. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7885. (double) perf_time_us_cur / 1000.0,
  7886. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7887. }
  7888. }
  7889. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7890. for (int i = 0; i < cgraph->n_nodes; i++) {
  7891. struct ggml_tensor * grad = cgraph->grads[i];
  7892. if (grad) {
  7893. ggml_set_zero(grad);
  7894. }
  7895. }
  7896. }
  7897. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7898. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7899. GGML_PRINT("=== GRAPH ===\n");
  7900. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7901. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7902. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7903. for (int i = 0; i < cgraph->n_nodes; i++) {
  7904. struct ggml_tensor * node = cgraph->nodes[i];
  7905. perf_total_per_op_us[node->op] += node->perf_time_us;
  7906. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 ", %" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7907. i,
  7908. node->ne[0], node->ne[1], node->ne[2],
  7909. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7910. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7911. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7912. (double) node->perf_time_us / 1000.0,
  7913. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7914. }
  7915. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7916. for (int i = 0; i < cgraph->n_leafs; i++) {
  7917. struct ggml_tensor * node = cgraph->leafs[i];
  7918. GGML_PRINT(" - %3d: [ %" PRId64 ", %" PRId64 "] %8s\n",
  7919. i,
  7920. node->ne[0], node->ne[1],
  7921. GGML_OP_LABEL[node->op]);
  7922. }
  7923. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7924. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7925. }
  7926. GGML_PRINT("========================================\n");
  7927. }
  7928. // check if node is part of the graph
  7929. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7930. if (cgraph == NULL) {
  7931. return true;
  7932. }
  7933. for (int i = 0; i < cgraph->n_nodes; i++) {
  7934. if (cgraph->nodes[i] == node) {
  7935. return true;
  7936. }
  7937. }
  7938. return false;
  7939. }
  7940. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7941. for (int i = 0; i < cgraph->n_nodes; i++) {
  7942. struct ggml_tensor * parent = cgraph->nodes[i];
  7943. if (parent->grad == node) {
  7944. return parent;
  7945. }
  7946. }
  7947. return NULL;
  7948. }
  7949. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7950. char color[16];
  7951. FILE * fp = fopen(filename, "w");
  7952. GGML_ASSERT(fp);
  7953. fprintf(fp, "digraph G {\n");
  7954. fprintf(fp, " newrank = true;\n");
  7955. fprintf(fp, " rankdir = LR;\n");
  7956. for (int i = 0; i < gb->n_nodes; i++) {
  7957. struct ggml_tensor * node = gb->nodes[i];
  7958. if (ggml_graph_get_parent(gb, node) != NULL) {
  7959. continue;
  7960. }
  7961. if (node->is_param) {
  7962. snprintf(color, sizeof(color), "yellow");
  7963. } else if (node->grad) {
  7964. if (ggml_graph_find(gf, node)) {
  7965. snprintf(color, sizeof(color), "green");
  7966. } else {
  7967. snprintf(color, sizeof(color), "lightblue");
  7968. }
  7969. } else {
  7970. snprintf(color, sizeof(color), "white");
  7971. }
  7972. fprintf(fp, " \"%p\" [ \
  7973. style = filled; fillcolor = %s; shape = record; \
  7974. label=\"%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  7975. (void *) node, color,
  7976. i, node->ne[0], node->ne[1],
  7977. GGML_OP_SYMBOL[node->op]);
  7978. if (node->grad) {
  7979. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7980. } else {
  7981. fprintf(fp, "\"; ]\n");
  7982. }
  7983. }
  7984. for (int i = 0; i < gb->n_leafs; i++) {
  7985. struct ggml_tensor * node = gb->leafs[i];
  7986. snprintf(color, sizeof(color), "pink");
  7987. if (ggml_nelements(node) == 1) {
  7988. fprintf(fp, " \"%p\" [ \
  7989. style = filled; fillcolor = %s; shape = record; \
  7990. label=\"<x>%.1e\"; ]\n",
  7991. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7992. } else {
  7993. fprintf(fp, " \"%p\" [ \
  7994. style = filled; fillcolor = %s; shape = record; \
  7995. label=\"<x>CONST %d [%" PRId64 ", %" PRId64 "]\"; ]\n",
  7996. (void *) node, color,
  7997. i, node->ne[0], node->ne[1]);
  7998. }
  7999. }
  8000. for (int i = 0; i < gb->n_nodes; i++) {
  8001. struct ggml_tensor * node = gb->nodes[i];
  8002. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8003. if (node->src0) {
  8004. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8005. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8006. parent0 ? (void *) parent0 : (void *) node->src0,
  8007. parent0 ? "g" : "x",
  8008. parent ? (void *) parent : (void *) node,
  8009. parent ? "g" : "x",
  8010. parent ? "empty" : "vee",
  8011. parent ? "dashed" : "solid");
  8012. }
  8013. if (node->src1) {
  8014. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8015. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8016. parent1 ? (void *) parent1 : (void *) node->src1,
  8017. parent1 ? "g" : "x",
  8018. parent ? (void *) parent : (void *) node,
  8019. parent ? "g" : "x",
  8020. parent ? "empty" : "vee",
  8021. parent ? "dashed" : "solid");
  8022. }
  8023. }
  8024. for (int i = 0; i < gb->n_leafs; i++) {
  8025. struct ggml_tensor * node = gb->leafs[i];
  8026. if (node->src0) {
  8027. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8028. (void *) node->src0, "x",
  8029. (void *) node, "x");
  8030. }
  8031. if (node->src1) {
  8032. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8033. (void *) node->src1, "x",
  8034. (void *) node, "x");
  8035. }
  8036. }
  8037. fprintf(fp, "}\n");
  8038. fclose(fp);
  8039. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8040. }
  8041. ////////////////////////////////////////////////////////////////////////////////
  8042. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8043. int i = 0;
  8044. for (int p = 0; p < np; ++p) {
  8045. const int64_t ne = ggml_nelements(ps[p]) ;
  8046. // TODO: add function to set tensor from array
  8047. for (int64_t j = 0; j < ne; ++j) {
  8048. ggml_set_f32_1d(ps[p], j, x[i++]);
  8049. }
  8050. }
  8051. }
  8052. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8053. int i = 0;
  8054. for (int p = 0; p < np; ++p) {
  8055. const int64_t ne = ggml_nelements(ps[p]) ;
  8056. // TODO: add function to get all elements at once
  8057. for (int64_t j = 0; j < ne; ++j) {
  8058. x[i++] = ggml_get_f32_1d(ps[p], j);
  8059. }
  8060. }
  8061. }
  8062. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8063. int i = 0;
  8064. for (int p = 0; p < np; ++p) {
  8065. const int64_t ne = ggml_nelements(ps[p]) ;
  8066. // TODO: add function to get all elements at once
  8067. for (int64_t j = 0; j < ne; ++j) {
  8068. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8069. }
  8070. }
  8071. }
  8072. //
  8073. // ADAM
  8074. //
  8075. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8076. //
  8077. static enum ggml_opt_result ggml_opt_adam(
  8078. struct ggml_context * ctx,
  8079. struct ggml_opt_params params,
  8080. struct ggml_tensor * f,
  8081. struct ggml_cgraph * gf,
  8082. struct ggml_cgraph * gb) {
  8083. GGML_ASSERT(ggml_is_scalar(f));
  8084. gf->n_threads = params.n_threads;
  8085. gb->n_threads = params.n_threads;
  8086. // these will store the parameters we want to optimize
  8087. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8088. int np = 0;
  8089. int nx = 0;
  8090. for (int i = 0; i < gf->n_nodes; ++i) {
  8091. if (gf->nodes[i]->is_param) {
  8092. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8093. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8094. ps[np++] = gf->nodes[i];
  8095. nx += ggml_nelements(gf->nodes[i]);
  8096. }
  8097. }
  8098. // constants
  8099. const float alpha = params.adam.alpha;
  8100. const float beta1 = params.adam.beta1;
  8101. const float beta2 = params.adam.beta2;
  8102. const float eps = params.adam.eps;
  8103. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8104. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8105. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8106. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8107. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8108. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8109. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8110. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8111. // initialize
  8112. ggml_vec_set_f32(nx, m, 0.0f);
  8113. ggml_vec_set_f32(nx, v, 0.0f);
  8114. // update view
  8115. ggml_opt_get_params(np, ps, x);
  8116. // compute the function value
  8117. ggml_graph_reset (gf);
  8118. ggml_set_f32 (f->grad, 1.0f);
  8119. ggml_graph_compute(ctx, gb);
  8120. float fx_prev = ggml_get_f32_1d(f, 0);
  8121. if (pf) {
  8122. pf[0] = fx_prev;
  8123. }
  8124. int n_no_improvement = 0;
  8125. float fx_best = fx_prev;
  8126. // run the optimizer
  8127. for (int t = 0; t < params.adam.n_iter; ++t) {
  8128. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8129. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8130. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8131. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8132. for (int i = 0; i < np; ++i) {
  8133. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8134. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8135. }
  8136. const int64_t t_start_wall = ggml_time_us();
  8137. const int64_t t_start_cpu = ggml_cycles();
  8138. UNUSED(t_start_wall);
  8139. UNUSED(t_start_cpu);
  8140. {
  8141. // update the gradient
  8142. ggml_opt_get_grad(np, ps, g1);
  8143. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8144. ggml_vec_scale_f32(nx, m, beta1);
  8145. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8146. // g2 = g1^2
  8147. ggml_vec_sqr_f32 (nx, g2, g1);
  8148. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8149. ggml_vec_scale_f32(nx, v, beta2);
  8150. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8151. // m^hat = m_t / (1 - beta1^t)
  8152. // v^hat = v_t / (1 - beta2^t)
  8153. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8154. ggml_vec_cpy_f32 (nx, mh, m);
  8155. ggml_vec_cpy_f32 (nx, vh, v);
  8156. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8157. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8158. ggml_vec_sqrt_f32 (nx, vh, vh);
  8159. ggml_vec_acc1_f32 (nx, vh, eps);
  8160. ggml_vec_div_f32 (nx, mh, mh, vh);
  8161. ggml_vec_sub_f32 (nx, x, x, mh);
  8162. // update the parameters
  8163. ggml_opt_set_params(np, ps, x);
  8164. }
  8165. ggml_graph_reset (gf);
  8166. ggml_set_f32 (f->grad, 1.0f);
  8167. ggml_graph_compute(ctx, gb);
  8168. const float fx = ggml_get_f32_1d(f, 0);
  8169. // check convergence
  8170. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8171. GGML_PRINT_DEBUG("converged\n");
  8172. return GGML_OPT_OK;
  8173. }
  8174. // delta-based convergence test
  8175. if (pf != NULL) {
  8176. // need at least params.past iterations to start checking for convergence
  8177. if (params.past <= t) {
  8178. const float rate = (pf[t%params.past] - fx)/fx;
  8179. if (fabsf(rate) < params.delta) {
  8180. return GGML_OPT_OK;
  8181. }
  8182. }
  8183. pf[t%params.past] = fx;
  8184. }
  8185. // check for improvement
  8186. if (params.max_no_improvement > 0) {
  8187. if (fx_best > fx) {
  8188. fx_best = fx;
  8189. n_no_improvement = 0;
  8190. } else {
  8191. ++n_no_improvement;
  8192. if (n_no_improvement >= params.max_no_improvement) {
  8193. return GGML_OPT_OK;
  8194. }
  8195. }
  8196. }
  8197. fx_prev = fx;
  8198. {
  8199. const int64_t t_end_cpu = ggml_cycles();
  8200. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8201. UNUSED(t_end_cpu);
  8202. const int64_t t_end_wall = ggml_time_us();
  8203. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8204. UNUSED(t_end_wall);
  8205. }
  8206. }
  8207. return GGML_OPT_DID_NOT_CONVERGE;
  8208. }
  8209. //
  8210. // L-BFGS
  8211. //
  8212. // the L-BFGS implementation below is based on the following implementation:
  8213. //
  8214. // https://github.com/chokkan/liblbfgs
  8215. //
  8216. struct ggml_lbfgs_iteration_data {
  8217. float alpha;
  8218. float ys;
  8219. float * s;
  8220. float * y;
  8221. };
  8222. static enum ggml_opt_result linesearch_backtracking(
  8223. struct ggml_context * ctx,
  8224. const struct ggml_opt_params * params,
  8225. int nx,
  8226. float * x,
  8227. float * fx,
  8228. float * g,
  8229. float * d,
  8230. float * step,
  8231. const float * xp,
  8232. struct ggml_tensor * f,
  8233. struct ggml_cgraph * gf,
  8234. struct ggml_cgraph * gb,
  8235. const int np,
  8236. struct ggml_tensor * ps[]) {
  8237. int count = 0;
  8238. float width = 0.0f;
  8239. float dg = 0.0f;
  8240. float finit = 0.0f;
  8241. float dginit = 0.0f;
  8242. float dgtest = 0.0f;
  8243. const float dec = 0.5f;
  8244. const float inc = 2.1f;
  8245. if (*step <= 0.f) {
  8246. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8247. }
  8248. // compute the initial gradient in the search direction
  8249. ggml_vec_dot_f32(nx, &dginit, g, d);
  8250. // make sure that d points to a descent direction
  8251. if (0 < dginit) {
  8252. return GGML_LINESEARCH_FAIL;
  8253. }
  8254. // initialize local variables
  8255. finit = *fx;
  8256. dgtest = params->lbfgs.ftol*dginit;
  8257. while (true) {
  8258. ggml_vec_cpy_f32(nx, x, xp);
  8259. ggml_vec_mad_f32(nx, x, d, *step);
  8260. // evaluate the function and gradient values
  8261. {
  8262. ggml_opt_set_params(np, ps, x);
  8263. ggml_graph_reset (gf);
  8264. ggml_set_f32 (f->grad, 1.0f);
  8265. ggml_graph_compute(ctx, gb);
  8266. ggml_opt_get_grad(np, ps, g);
  8267. *fx = ggml_get_f32_1d(f, 0);
  8268. }
  8269. ++count;
  8270. if (*fx > finit + (*step)*dgtest) {
  8271. width = dec;
  8272. } else {
  8273. // Armijo condition is satisfied
  8274. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8275. return count;
  8276. }
  8277. ggml_vec_dot_f32(nx, &dg, g, d);
  8278. // check the Wolfe condition
  8279. if (dg < params->lbfgs.wolfe * dginit) {
  8280. width = inc;
  8281. } else {
  8282. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8283. // regular Wolfe conditions
  8284. return count;
  8285. }
  8286. if(dg > -params->lbfgs.wolfe*dginit) {
  8287. width = dec;
  8288. } else {
  8289. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8290. return count;
  8291. }
  8292. return count;
  8293. }
  8294. }
  8295. if (*step < params->lbfgs.min_step) {
  8296. return GGML_LINESEARCH_MINIMUM_STEP;
  8297. }
  8298. if (*step > params->lbfgs.max_step) {
  8299. return GGML_LINESEARCH_MAXIMUM_STEP;
  8300. }
  8301. if (params->lbfgs.max_linesearch <= count) {
  8302. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8303. }
  8304. (*step) *= width;
  8305. }
  8306. return GGML_LINESEARCH_FAIL;
  8307. }
  8308. static enum ggml_opt_result ggml_opt_lbfgs(
  8309. struct ggml_context * ctx,
  8310. struct ggml_opt_params params,
  8311. struct ggml_tensor * f,
  8312. struct ggml_cgraph * gf,
  8313. struct ggml_cgraph * gb) {
  8314. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8315. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8316. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8317. return GGML_OPT_INVALID_WOLFE;
  8318. }
  8319. }
  8320. gf->n_threads = params.n_threads;
  8321. gb->n_threads = params.n_threads;
  8322. const int m = params.lbfgs.m;
  8323. // these will store the parameters we want to optimize
  8324. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8325. int np = 0;
  8326. int nx = 0;
  8327. for (int i = 0; i < gf->n_nodes; ++i) {
  8328. if (gf->nodes[i]->is_param) {
  8329. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8330. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8331. ps[np++] = gf->nodes[i];
  8332. nx += ggml_nelements(gf->nodes[i]);
  8333. }
  8334. }
  8335. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8336. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8337. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8338. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8339. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8340. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8341. float fx = 0.0f; // cost function value
  8342. float xnorm = 0.0f; // ||x||
  8343. float gnorm = 0.0f; // ||g||
  8344. float step = 0.0f;
  8345. // initialize x from the graph nodes
  8346. ggml_opt_get_params(np, ps, x);
  8347. // the L-BFGS memory
  8348. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8349. for (int i = 0; i < m; ++i) {
  8350. lm[i].alpha = 0.0f;
  8351. lm[i].ys = 0.0f;
  8352. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8353. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8354. }
  8355. // evaluate the function value and its gradient
  8356. {
  8357. ggml_opt_set_params(np, ps, x);
  8358. ggml_graph_reset (gf);
  8359. ggml_set_f32 (f->grad, 1.0f);
  8360. ggml_graph_compute(ctx, gb);
  8361. ggml_opt_get_grad(np, ps, g);
  8362. fx = ggml_get_f32_1d(f, 0);
  8363. }
  8364. if (pf) {
  8365. pf[0] = fx;
  8366. }
  8367. float fx_best = fx;
  8368. // search direction = -gradient
  8369. ggml_vec_neg_f32(nx, d, g);
  8370. // ||x||, ||g||
  8371. ggml_vec_norm_f32(nx, &xnorm, x);
  8372. ggml_vec_norm_f32(nx, &gnorm, g);
  8373. if (xnorm < 1.0f) {
  8374. xnorm = 1.0f;
  8375. }
  8376. // already optimized
  8377. if (gnorm/xnorm <= params.lbfgs.eps) {
  8378. return GGML_OPT_OK;
  8379. }
  8380. // initial step
  8381. ggml_vec_norm_inv_f32(nx, &step, d);
  8382. int j = 0;
  8383. int k = 1;
  8384. int ls = 0;
  8385. int end = 0;
  8386. int bound = 0;
  8387. int n_no_improvement = 0;
  8388. float ys = 0.0f;
  8389. float yy = 0.0f;
  8390. float beta = 0.0f;
  8391. while (true) {
  8392. // store the current position and gradient vectors
  8393. ggml_vec_cpy_f32(nx, xp, x);
  8394. ggml_vec_cpy_f32(nx, gp, g);
  8395. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8396. if (ls < 0) {
  8397. // linesearch failed - go back to the previous point and return
  8398. ggml_vec_cpy_f32(nx, x, xp);
  8399. ggml_vec_cpy_f32(nx, g, gp);
  8400. return ls;
  8401. }
  8402. ggml_vec_norm_f32(nx, &xnorm, x);
  8403. ggml_vec_norm_f32(nx, &gnorm, g);
  8404. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8405. if (xnorm < 1.0f) {
  8406. xnorm = 1.0f;
  8407. }
  8408. if (gnorm/xnorm <= params.lbfgs.eps) {
  8409. // converged
  8410. return GGML_OPT_OK;
  8411. }
  8412. // delta-based convergence test
  8413. if (pf != NULL) {
  8414. // need at least params.past iterations to start checking for convergence
  8415. if (params.past <= k) {
  8416. const float rate = (pf[k%params.past] - fx)/fx;
  8417. if (fabsf(rate) < params.delta) {
  8418. return GGML_OPT_OK;
  8419. }
  8420. }
  8421. pf[k%params.past] = fx;
  8422. }
  8423. // check for improvement
  8424. if (params.max_no_improvement > 0) {
  8425. if (fx < fx_best) {
  8426. fx_best = fx;
  8427. n_no_improvement = 0;
  8428. } else {
  8429. n_no_improvement++;
  8430. if (n_no_improvement >= params.max_no_improvement) {
  8431. return GGML_OPT_OK;
  8432. }
  8433. }
  8434. }
  8435. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8436. // reached the maximum number of iterations
  8437. return GGML_OPT_DID_NOT_CONVERGE;
  8438. }
  8439. // update vectors s and y:
  8440. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8441. // y_{k+1} = g_{k+1} - g_{k}.
  8442. //
  8443. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8444. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8445. // compute scalars ys and yy:
  8446. // ys = y^t \cdot s -> 1 / \rho.
  8447. // yy = y^t \cdot y.
  8448. //
  8449. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8450. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8451. lm[end].ys = ys;
  8452. // find new search direction
  8453. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8454. bound = (m <= k) ? m : k;
  8455. k++;
  8456. end = (end + 1)%m;
  8457. // initialize search direction with -g
  8458. ggml_vec_neg_f32(nx, d, g);
  8459. j = end;
  8460. for (int i = 0; i < bound; ++i) {
  8461. j = (j + m - 1) % m;
  8462. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8463. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8464. lm[j].alpha /= lm[j].ys;
  8465. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8466. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8467. }
  8468. ggml_vec_scale_f32(nx, d, ys/yy);
  8469. for (int i = 0; i < bound; ++i) {
  8470. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8471. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8472. beta /= lm[j].ys;
  8473. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8474. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8475. j = (j + 1)%m;
  8476. }
  8477. step = 1.0;
  8478. }
  8479. return GGML_OPT_DID_NOT_CONVERGE;
  8480. }
  8481. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8482. struct ggml_opt_params result;
  8483. switch (type) {
  8484. case GGML_OPT_ADAM:
  8485. {
  8486. result = (struct ggml_opt_params) {
  8487. .type = GGML_OPT_ADAM,
  8488. .n_threads = 1,
  8489. .past = 0,
  8490. .delta = 1e-5f,
  8491. .max_no_improvement = 100,
  8492. .print_forward_graph = true,
  8493. .print_backward_graph = true,
  8494. .adam = {
  8495. .n_iter = 10000,
  8496. .alpha = 0.001f,
  8497. .beta1 = 0.9f,
  8498. .beta2 = 0.999f,
  8499. .eps = 1e-8f,
  8500. .eps_f = 1e-5f,
  8501. .eps_g = 1e-3f,
  8502. },
  8503. };
  8504. } break;
  8505. case GGML_OPT_LBFGS:
  8506. {
  8507. result = (struct ggml_opt_params) {
  8508. .type = GGML_OPT_LBFGS,
  8509. .n_threads = 1,
  8510. .past = 0,
  8511. .delta = 1e-5f,
  8512. .max_no_improvement = 0,
  8513. .print_forward_graph = true,
  8514. .print_backward_graph = true,
  8515. .lbfgs = {
  8516. .m = 6,
  8517. .n_iter = 100,
  8518. .max_linesearch = 20,
  8519. .eps = 1e-5f,
  8520. .ftol = 1e-4f,
  8521. .wolfe = 0.9f,
  8522. .min_step = 1e-20f,
  8523. .max_step = 1e+20f,
  8524. .linesearch = GGML_LINESEARCH_DEFAULT,
  8525. },
  8526. };
  8527. } break;
  8528. }
  8529. return result;
  8530. }
  8531. enum ggml_opt_result ggml_opt(
  8532. struct ggml_context * ctx,
  8533. struct ggml_opt_params params,
  8534. struct ggml_tensor * f) {
  8535. bool free_ctx = false;
  8536. if (ctx == NULL) {
  8537. struct ggml_init_params params_ctx = {
  8538. .mem_size = 16*1024*1024,
  8539. .mem_buffer = NULL,
  8540. .no_alloc = false,
  8541. };
  8542. ctx = ggml_init(params_ctx);
  8543. if (ctx == NULL) {
  8544. return GGML_OPT_NO_CONTEXT;
  8545. }
  8546. free_ctx = true;
  8547. }
  8548. enum ggml_opt_result result = GGML_OPT_OK;
  8549. // build forward + backward compute graphs
  8550. struct ggml_cgraph gf = ggml_build_forward (f);
  8551. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8552. switch (params.type) {
  8553. case GGML_OPT_ADAM:
  8554. {
  8555. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8556. } break;
  8557. case GGML_OPT_LBFGS:
  8558. {
  8559. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8560. } break;
  8561. }
  8562. if (params.print_forward_graph) {
  8563. ggml_graph_print (&gf);
  8564. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8565. }
  8566. if (params.print_backward_graph) {
  8567. ggml_graph_print (&gb);
  8568. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8569. }
  8570. if (free_ctx) {
  8571. ggml_free(ctx);
  8572. }
  8573. return result;
  8574. }
  8575. ////////////////////////////////////////////////////////////////////////////////
  8576. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8577. assert(k % QK == 0);
  8578. const int nb = k / QK;
  8579. for (int j = 0; j < n; j += k) {
  8580. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8581. quantize_row_q4_0_reference(src + j, y, k);
  8582. for (int i = 0; i < nb; i++) {
  8583. for (int l = 0; l < QK; l += 2) {
  8584. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8585. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8586. hist[vi0]++;
  8587. hist[vi1]++;
  8588. }
  8589. }
  8590. }
  8591. return (n/QK*sizeof(block_q4_0));
  8592. }
  8593. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8594. assert(k % QK == 0);
  8595. const int nb = k / QK;
  8596. for (int j = 0; j < n; j += k) {
  8597. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8598. quantize_row_q4_1_reference(src + j, y, k);
  8599. for (int i = 0; i < nb; i++) {
  8600. for (int l = 0; l < QK; l += 2) {
  8601. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8602. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8603. hist[vi0]++;
  8604. hist[vi1]++;
  8605. }
  8606. }
  8607. }
  8608. return (n/QK*sizeof(block_q4_1));
  8609. }
  8610. ////////////////////////////////////////////////////////////////////////////////
  8611. int ggml_cpu_has_avx(void) {
  8612. #if defined(__AVX__)
  8613. return 1;
  8614. #else
  8615. return 0;
  8616. #endif
  8617. }
  8618. int ggml_cpu_has_avx2(void) {
  8619. #if defined(__AVX2__)
  8620. return 1;
  8621. #else
  8622. return 0;
  8623. #endif
  8624. }
  8625. int ggml_cpu_has_avx512(void) {
  8626. #if defined(__AVX512F__)
  8627. return 1;
  8628. #else
  8629. return 0;
  8630. #endif
  8631. }
  8632. int ggml_cpu_has_fma(void) {
  8633. #if defined(__FMA__)
  8634. return 1;
  8635. #else
  8636. return 0;
  8637. #endif
  8638. }
  8639. int ggml_cpu_has_neon(void) {
  8640. #if defined(__ARM_NEON)
  8641. return 1;
  8642. #else
  8643. return 0;
  8644. #endif
  8645. }
  8646. int ggml_cpu_has_arm_fma(void) {
  8647. #if defined(__ARM_FEATURE_FMA)
  8648. return 1;
  8649. #else
  8650. return 0;
  8651. #endif
  8652. }
  8653. int ggml_cpu_has_f16c(void) {
  8654. #if defined(__F16C__)
  8655. return 1;
  8656. #else
  8657. return 0;
  8658. #endif
  8659. }
  8660. int ggml_cpu_has_fp16_va(void) {
  8661. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8662. return 1;
  8663. #else
  8664. return 0;
  8665. #endif
  8666. }
  8667. int ggml_cpu_has_wasm_simd(void) {
  8668. #if defined(__wasm_simd128__)
  8669. return 1;
  8670. #else
  8671. return 0;
  8672. #endif
  8673. }
  8674. int ggml_cpu_has_blas(void) {
  8675. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8676. return 1;
  8677. #else
  8678. return 0;
  8679. #endif
  8680. }
  8681. int ggml_cpu_has_sse3(void) {
  8682. #if defined(__SSE3__)
  8683. return 1;
  8684. #else
  8685. return 0;
  8686. #endif
  8687. }
  8688. int ggml_cpu_has_vsx(void) {
  8689. #if defined(__POWER9_VECTOR__)
  8690. return 1;
  8691. #else
  8692. return 0;
  8693. #endif
  8694. }
  8695. ////////////////////////////////////////////////////////////////////////////////