| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- #include "debug.h"
- #include "arg.h"
- #include "common.h"
- #include "log.h"
- #include "llama.h"
- #include <cstdlib>
- #include <string>
- #include <vector>
- #include <filesystem>
- #include <fstream>
- #include <regex>
- static void print_usage(int /*argc*/, char ** argv) {
- const std::string usage_template = R"(
- example usage:
- Print tensors:
- {prog} -m model.gguf -p "Hello my name is" --verbose
- The tensors to be printed can be filtered with --tensor-filter option.
- Save logits/embeddings:
- {prog} -m model.gguf -p "Hello my name is" --save-logits
- Add --embedding to save embeddings)" "\n";
- // Fix the source code indentation above that is introduced by the raw string literal.
- std::string usage = std::regex_replace(usage_template, std::regex("\\n {8}"), "\n");
- usage = std::regex_replace(usage, std::regex("\\{prog\\}"), argv[0]);
- LOG("%s\n", usage.c_str());
- }
- static bool has_pooling(llama_context * ctx) {
- switch (llama_pooling_type(ctx)) {
- case LLAMA_POOLING_TYPE_NONE:
- case LLAMA_POOLING_TYPE_UNSPECIFIED:
- return false;
- default:
- return true;
- }
- }
- struct output_data {
- float * data_ptr = nullptr;
- int data_size = 0;
- std::string type_suffix;
- std::vector<float> embd_norm;
- std::string prompt;
- std::vector<llama_token> tokens;
- output_data(llama_context * ctx, const llama_model * model, const common_params & params) {
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- tokens = common_tokenize(ctx, params.prompt, add_bos);
- prompt = params.prompt;
- if (params.embedding) {
- const int n_embd = llama_model_n_embd_out(model);
- const bool pooling = has_pooling(ctx);
- const int n_embd_count = pooling ? 1 : tokens.size();
- const int n_floats = n_embd * n_embd_count;
- float * embd_raw = pooling ? llama_get_embeddings_seq(ctx, 0) : llama_get_embeddings(ctx);
- if (embd_raw == nullptr) {
- throw std::runtime_error("failed to get embeddings from the model");
- }
- LOG_DBG("pooling_enabled: %s\n", pooling ? "true" : "false");
- LOG_DBG("n_embd: %d\n", n_embd);
- LOG_DBG("n_floats: %d\n", n_floats);
- LOG_DBG("n_embd_count: %d\n", n_embd_count);
- data_ptr = embd_raw;
- data_size = n_floats;
- type_suffix = "-embeddings";
- if (params.embd_normalize >= 0) {
- embd_norm.resize(n_floats);
- for (int i = 0; i < n_embd_count; i++) {
- common_embd_normalize(embd_raw+i*n_embd, embd_norm.data()+i*n_embd, n_embd, params.embd_normalize);
- }
- data_ptr = embd_norm.data();
- }
- } else {
- const float * logits = llama_get_logits_ith(ctx, tokens.size() - 1);
- const int n_logits = llama_vocab_n_tokens(vocab);
- data_ptr = const_cast<float*>(logits);
- data_size = n_logits;
- type_suffix = "";
- }
- }
- };
- static void save_output_data(const output_data & output, const std::string & model_name, const std::string & output_dir) {
- std::filesystem::create_directory(output_dir);
- auto base_path = std::filesystem::path{output_dir} / ("llamacpp-" + model_name + output.type_suffix);
- // Save logits/embeddings to binary file.
- {
- std::filesystem::path filepath{base_path.string() + ".bin"};
- std::ofstream file{filepath, std::ios::binary};
- if (!file) {
- throw std::runtime_error("failed to open binary output file: " + filepath.string());
- }
- file.write(reinterpret_cast<const char*>(output.data_ptr), output.data_size * sizeof(float));
- LOG("Data saved to %s\n", filepath.c_str());
- }
- // Save logits/embeddings to text file.
- {
- std::filesystem::path filepath{base_path.string() + ".txt"};
- std::ofstream file{filepath};
- if (!file) {
- throw std::runtime_error("failed to open text output file: " + filepath.string());
- }
- for (int i = 0; i < output.data_size; i++) {
- file << i << ": " << output.data_ptr[i] << '\n';
- }
- LOG("Data saved to %s\n", filepath.c_str());
- }
- // Save prompt and tokens to text file.
- {
- std::filesystem::path filepath{base_path.string() + "-prompt.txt"};
- std::ofstream file{filepath};
- if (!file) {
- throw std::runtime_error("failed to open prompt output file: " + filepath.string());
- }
- file << "prompt: " << output.prompt << '\n';
- file << "n_tokens: " << output.tokens.size() << '\n';
- file << "token ids: ";
- for (size_t i = 0; i < output.tokens.size(); i++) {
- file << output.tokens[i];
- if (i + 1 < output.tokens.size()) {
- file << ", ";
- }
- }
- file << '\n';
- LOG("Prompt saved to %s\n", filepath.c_str());
- }
- // Save token ids to binary file.
- {
- std::filesystem::path filepath{base_path.string() + "-tokens.bin"};
- std::ofstream file{filepath, std::ios::binary};
- if (!file) {
- throw std::runtime_error("failed to open tokens binary file: " + filepath.string());
- }
- file.write(reinterpret_cast<const char*>(output.tokens.data()), output.tokens.size() * sizeof(llama_token));
- LOG("Tokens saved to %s\n", filepath.c_str());
- }
- }
- static void print_tokenized_prompt(llama_context * ctx, const std::vector<llama_token> & tokens, const std::string & prompt) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- LOG("Model add_bos: %s\n", llama_vocab_get_add_bos(vocab) ? "true" : "false");
- LOG("Input prompt: \"%s\"\n", prompt.c_str());
- LOG("Token ids (%zu):\n", tokens.size());
- for (auto id : tokens) {
- std::string piece(128, '\0');
- int n = llama_token_to_piece(vocab, id, piece.data(), piece.size(), 0, true);
- if (n < 0) {
- LOG_ERR("failed to convert token %d to piece\n", id);
- continue;
- }
- piece.resize(n);
- LOG("%s(%d) ", piece.c_str(), id);
- }
- LOG("\n");
- }
- static bool run(llama_context * ctx, const common_params & params) {
- const llama_model * model = llama_get_model(ctx);
- const llama_vocab * vocab = llama_model_get_vocab(model);
- const bool add_bos = llama_vocab_get_add_bos(vocab);
- std::vector<llama_token> tokens = common_tokenize(ctx, params.prompt, add_bos);
- if (tokens.empty()) {
- LOG_ERR("%s : there are not input tokens to process - (try to provide a prompt with '-p')\n", __func__);
- return false;
- }
- if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
- LOG_ERR("%s : failed to eval\n", __func__);
- return false;
- }
- print_tokenized_prompt(ctx, tokens, params.prompt);
- if (params.save_logits) {
- output_data output {ctx, model, params};
- std::filesystem::path model_path{params.model.path};
- std::string model_name{model_path.stem().string()};
- save_output_data(output, model_name, params.logits_output_dir);
- }
- return true;
- }
- int main(int argc, char ** argv) {
- common_params params;
- if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_DEBUG, print_usage)) {
- return 1;
- }
- common_init();
- llama_backend_init();
- llama_numa_init(params.numa);
- base_callback_data cb_data(params, params.tensor_filter);
- auto llama_init = common_init_from_params(params);
- auto * model = llama_init->model();
- auto * ctx = llama_init->context();
- if (model == nullptr || ctx == nullptr) {
- LOG_ERR("%s : failed to init\n", __func__);
- return 1;
- }
- {
- LOG_INF("\n");
- LOG_INF("%s\n", common_params_get_system_info(params).c_str());
- LOG_INF("\n");
- }
- if (!run(ctx, params)) {
- return 1;
- }
- LOG("\n");
- llama_perf_context_print(ctx);
- llama_backend_free();
- return 0;
- }
|