convert_hf_to_gguf.py 293 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  252. gguf.MODEL_TENSOR.TIME_MIX_W1,
  253. gguf.MODEL_TENSOR.TIME_MIX_W2,
  254. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  256. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  257. gguf.MODEL_TENSOR.POSNET_NORM1,
  258. gguf.MODEL_TENSOR.POSNET_NORM2,
  259. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  260. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  261. )
  262. )
  263. or not new_name.endswith(".weight")
  264. ):
  265. data_qtype = gguf.GGMLQuantizationType.F32
  266. if data_qtype is False and any(
  267. self.match_model_tensor_name(new_name, key, bid)
  268. for key in (
  269. gguf.MODEL_TENSOR.TOKEN_EMBD,
  270. gguf.MODEL_TENSOR.OUTPUT,
  271. )
  272. ):
  273. if self.ftype in (
  274. gguf.LlamaFileType.MOSTLY_TQ1_0,
  275. gguf.LlamaFileType.MOSTLY_TQ2_0,
  276. ):
  277. # TODO: use Q4_K and Q6_K
  278. data_qtype = gguf.GGMLQuantizationType.F16
  279. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  280. if isinstance(data_qtype, bool):
  281. if self.ftype == gguf.LlamaFileType.ALL_F32:
  282. data_qtype = gguf.GGMLQuantizationType.F32
  283. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  284. data_qtype = gguf.GGMLQuantizationType.F16
  285. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  286. data_qtype = gguf.GGMLQuantizationType.BF16
  287. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  288. data_qtype = gguf.GGMLQuantizationType.Q8_0
  289. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  290. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  291. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  292. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  293. else:
  294. raise ValueError(f"Unknown file type: {self.ftype.name}")
  295. try:
  296. data = gguf.quants.quantize(data, data_qtype)
  297. except gguf.QuantError as e:
  298. logger.warning("%s, %s", e, "falling back to F16")
  299. data_qtype = gguf.GGMLQuantizationType.F16
  300. data = gguf.quants.quantize(data, data_qtype)
  301. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  302. # reverse shape to make it similar to the internal ggml dimension order
  303. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  304. # n_dims is implicit in the shape
  305. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  306. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  307. def set_type(self):
  308. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  309. def prepare_metadata(self, vocab_only: bool):
  310. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  311. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  312. # If we are using HF model id, set the metadata name to the model id
  313. if self.remote_hf_model_id:
  314. self.metadata.name = self.remote_hf_model_id
  315. # Fallback to model directory name if metadata name is still missing
  316. if self.metadata.name is None:
  317. self.metadata.name = self.dir_model.name
  318. # Generate parameter weight class (useful for leader boards) if not yet determined
  319. if self.metadata.size_label is None and total_params > 0:
  320. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  321. self.set_type()
  322. logger.info("Set meta model")
  323. self.metadata.set_gguf_meta_model(self.gguf_writer)
  324. logger.info("Set model parameters")
  325. self.set_gguf_parameters()
  326. logger.info("Set model quantization version")
  327. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  328. def write_vocab(self):
  329. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  330. def write(self):
  331. self.prepare_tensors()
  332. self.prepare_metadata(vocab_only=False)
  333. self.gguf_writer.write_header_to_file(path=self.fname_out)
  334. self.gguf_writer.write_kv_data_to_file()
  335. self.gguf_writer.write_tensors_to_file(progress=True)
  336. self.gguf_writer.close()
  337. @staticmethod
  338. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  339. part_names: list[str] = []
  340. for filename in os.listdir(dir_model):
  341. if filename.startswith(prefix) and filename.endswith(suffix):
  342. part_names.append(filename)
  343. part_names.sort()
  344. return part_names
  345. @staticmethod
  346. def load_hparams(dir_model: Path):
  347. try:
  348. # for security reason, we don't allow loading remote code by default
  349. # if a model need remote code, we will fallback to config.json
  350. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  351. except Exception as e:
  352. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  353. logger.warning("Trying to load config.json instead")
  354. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  355. config = json.load(f)
  356. if "llm_config" in config:
  357. # rename for InternVL
  358. config["text_config"] = config["llm_config"]
  359. if "thinker_config" in config:
  360. # rename for Qwen2.5-Omni
  361. config["text_config"] = config["thinker_config"]["text_config"]
  362. return config
  363. @classmethod
  364. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  365. assert names
  366. def func(modelcls: AnyModel) -> AnyModel:
  367. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  368. for name in names:
  369. cls._model_classes[model_type][name] = modelcls
  370. return modelcls
  371. return func
  372. @classmethod
  373. def print_registered_models(cls):
  374. for model_type, model_classes in cls._model_classes.items():
  375. logger.error(f"{model_type.name} models:")
  376. for name in sorted(model_classes.keys()):
  377. logger.error(f" - {name}")
  378. @classmethod
  379. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  380. try:
  381. return cls._model_classes[model_type][arch]
  382. except KeyError:
  383. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  384. class TextModel(ModelBase):
  385. model_type = ModelType.TEXT
  386. hf_arch: str
  387. def __init__(self, *args, **kwargs):
  388. super().__init__(*args, **kwargs)
  389. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  390. if "text_config" in self.hparams:
  391. # move the text_config to the root level
  392. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  393. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  394. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  395. @classmethod
  396. def __init_subclass__(cls):
  397. # can't use an abstract property, because overriding it without type errors
  398. # would require using decorated functions instead of simply defining the property
  399. if "model_arch" not in cls.__dict__:
  400. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  401. def set_vocab(self):
  402. self._set_vocab_gpt2()
  403. def prepare_metadata(self, vocab_only: bool):
  404. super().prepare_metadata(vocab_only=vocab_only)
  405. total_params = self.gguf_writer.get_total_parameter_count()[0]
  406. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  407. output_type: str = self.ftype.name.partition("_")[2]
  408. # Filename Output
  409. if self.fname_out.is_dir():
  410. # Generate default filename based on model specification and available metadata
  411. if not vocab_only:
  412. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  413. else:
  414. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  415. # Use the default filename
  416. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  417. else:
  418. # Output path is a custom defined templated filename
  419. # Note: `not is_dir()` is used because `.is_file()` will not detect
  420. # file template strings as it doesn't actually exist as a file
  421. # Process templated file name with the output ftype, useful with the "auto" ftype
  422. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  423. logger.info("Set model tokenizer")
  424. self.set_vocab()
  425. def set_gguf_parameters(self):
  426. self.gguf_writer.add_block_count(self.block_count)
  427. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions"], optional=True)) is not None:
  428. self.gguf_writer.add_context_length(n_ctx)
  429. logger.info(f"gguf: context length = {n_ctx}")
  430. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  431. self.gguf_writer.add_embedding_length(n_embd)
  432. logger.info(f"gguf: embedding length = {n_embd}")
  433. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  434. self.gguf_writer.add_feed_forward_length(n_ff)
  435. logger.info(f"gguf: feed forward length = {n_ff}")
  436. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  437. self.gguf_writer.add_head_count(n_head)
  438. logger.info(f"gguf: head count = {n_head}")
  439. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  440. self.gguf_writer.add_head_count_kv(n_head_kv)
  441. logger.info(f"gguf: key-value head count = {n_head_kv}")
  442. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  443. self.gguf_writer.add_rope_freq_base(rope_theta)
  444. logger.info(f"gguf: rope theta = {rope_theta}")
  445. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  446. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  447. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  448. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  449. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  450. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  451. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  452. self.gguf_writer.add_expert_count(n_experts)
  453. logger.info(f"gguf: expert count = {n_experts}")
  454. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  455. self.gguf_writer.add_expert_used_count(n_experts_used)
  456. logger.info(f"gguf: experts used count = {n_experts_used}")
  457. if (head_dim := self.hparams.get("head_dim")) is not None:
  458. self.gguf_writer.add_key_length(head_dim)
  459. self.gguf_writer.add_value_length(head_dim)
  460. self.gguf_writer.add_file_type(self.ftype)
  461. logger.info(f"gguf: file type = {self.ftype}")
  462. def write_vocab(self):
  463. if len(self.gguf_writer.tensors) != 1:
  464. raise ValueError('Splitting the vocabulary is not supported')
  465. self.prepare_metadata(vocab_only=True)
  466. self.gguf_writer.write_header_to_file(path=self.fname_out)
  467. self.gguf_writer.write_kv_data_to_file()
  468. self.gguf_writer.close()
  469. def does_token_look_special(self, token: str | bytes) -> bool:
  470. if isinstance(token, (bytes, bytearray)):
  471. token_text = token.decode(encoding="utf-8")
  472. elif isinstance(token, memoryview):
  473. token_text = token.tobytes().decode(encoding="utf-8")
  474. else:
  475. token_text = token
  476. # Some models mark some added tokens which ought to be control tokens as not special.
  477. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  478. seems_special = token_text in (
  479. "<pad>", # deepseek-coder
  480. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  481. )
  482. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  483. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  484. # TODO: should these be marked as UNUSED instead? (maybe not)
  485. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  486. return seems_special
  487. # used for GPT-2 BPE and WordPiece vocabs
  488. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  489. tokens: list[str] = []
  490. toktypes: list[int] = []
  491. from transformers import AutoTokenizer
  492. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  493. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  494. assert max(tokenizer.vocab.values()) < vocab_size
  495. tokpre = self.get_vocab_base_pre(tokenizer)
  496. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  497. added_vocab = tokenizer.get_added_vocab()
  498. added_tokens_decoder = tokenizer.added_tokens_decoder
  499. for i in range(vocab_size):
  500. if i not in reverse_vocab:
  501. tokens.append(f"[PAD{i}]")
  502. toktypes.append(gguf.TokenType.UNUSED)
  503. else:
  504. token: str = reverse_vocab[i]
  505. if token in added_vocab:
  506. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  507. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  508. if not added_tokens_decoder[i].normalized:
  509. previous_token = token
  510. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  511. if previous_token != token:
  512. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  513. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  514. toktypes.append(gguf.TokenType.CONTROL)
  515. else:
  516. # NOTE: this was added for Gemma.
  517. # Encoding and decoding the tokens above isn't sufficient for this case.
  518. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  519. toktypes.append(gguf.TokenType.USER_DEFINED)
  520. else:
  521. toktypes.append(gguf.TokenType.NORMAL)
  522. tokens.append(token)
  523. return tokens, toktypes, tokpre
  524. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  525. # do not modify it manually!
  526. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  527. # Marker: Start get_vocab_base_pre
  528. def get_vocab_base_pre(self, tokenizer) -> str:
  529. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  530. # is specific for the BPE pre-tokenizer used by the model
  531. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  532. # use in llama.cpp to implement the same pre-tokenizer
  533. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  534. chktok = tokenizer.encode(chktxt)
  535. chkhsh = sha256(str(chktok).encode()).hexdigest()
  536. logger.debug(f"chktok: {chktok}")
  537. logger.debug(f"chkhsh: {chkhsh}")
  538. res = None
  539. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  540. # or pull the latest version of the model from Huggingface
  541. # don't edit the hashes manually!
  542. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  543. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  544. res = "llama-bpe"
  545. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  546. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  547. res = "deepseek-llm"
  548. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  549. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  550. res = "deepseek-coder"
  551. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  552. # ref: https://huggingface.co/tiiuae/falcon-7b
  553. res = "falcon"
  554. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  555. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  556. res = "falcon3"
  557. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  558. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  559. res = "bert-bge"
  560. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  561. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  562. res = "bert-bge-large"
  563. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  564. # ref: https://huggingface.co/mosaicml/mpt-7b
  565. res = "mpt"
  566. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  567. # ref: https://huggingface.co/bigcode/starcoder2-3b
  568. res = "starcoder"
  569. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  570. # ref: https://huggingface.co/openai-community/gpt2
  571. res = "gpt-2"
  572. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  573. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  574. res = "stablelm2"
  575. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  576. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  577. res = "refact"
  578. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  579. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  580. res = "command-r"
  581. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  582. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  583. res = "qwen2"
  584. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  585. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  586. res = "olmo"
  587. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  588. # ref: https://huggingface.co/databricks/dbrx-base
  589. res = "dbrx"
  590. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  591. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  592. res = "jina-v1-en"
  593. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  594. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  595. res = "jina-v2-en"
  596. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  597. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  598. res = "jina-v2-es"
  599. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  600. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  601. res = "jina-v2-de"
  602. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  603. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  604. res = "smaug-bpe"
  605. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  606. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  607. res = "poro-chat"
  608. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  609. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  610. res = "jina-v2-code"
  611. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  612. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  613. res = "chatglm-bpe"
  614. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  615. # ref: https://huggingface.co/LumiOpen/Viking-7B
  616. res = "viking"
  617. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  618. # ref: https://huggingface.co/core42/jais-13b
  619. res = "jais"
  620. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  621. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  622. res = "codeshell"
  623. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  624. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  625. res = "tekken"
  626. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  627. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  628. res = "smollm"
  629. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  630. # ref: https://huggingface.co/bigscience/bloom
  631. res = "bloom"
  632. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  633. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  634. res = "gpt3-finnish"
  635. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  636. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  637. res = "exaone"
  638. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  639. # ref: https://huggingface.co/microsoft/phi-2
  640. res = "phi-2"
  641. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  642. # ref: https://huggingface.co/facebook/chameleon-7b
  643. res = "chameleon"
  644. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  645. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  646. res = "minerva-7b"
  647. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  648. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  649. res = "roberta-bpe"
  650. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  651. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  652. res = "gigachat"
  653. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  654. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  655. res = "megrez"
  656. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  657. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  658. res = "deepseek-v3"
  659. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  660. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  661. res = "deepseek-r1-qwen"
  662. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  663. # ref: https://huggingface.co/Xenova/gpt-4o
  664. res = "gpt-4o"
  665. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  666. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  667. res = "superbpe"
  668. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  669. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  670. res = "trillion"
  671. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  672. # ref: https://huggingface.co/inclusionAI/Ling-lite
  673. res = "bailingmoe"
  674. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  675. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  676. res = "llama4"
  677. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  678. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  679. res = "glm4"
  680. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  681. # ref: https://huggingface.co/mistral-community/pixtral-12b
  682. res = "pixtral"
  683. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  684. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  685. res = "seed-coder"
  686. if res is None:
  687. logger.warning("\n")
  688. logger.warning("**************************************************************************************")
  689. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  690. logger.warning("** There are 2 possible reasons for this:")
  691. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  692. logger.warning("** - the pre-tokenization config has changed upstream")
  693. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  694. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  695. logger.warning("**")
  696. logger.warning(f"** chkhsh: {chkhsh}")
  697. logger.warning("**************************************************************************************")
  698. logger.warning("\n")
  699. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  700. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  701. logger.debug(f"chkhsh: {chkhsh}")
  702. return res
  703. # Marker: End get_vocab_base_pre
  704. def _set_vocab_none(self) -> None:
  705. self.gguf_writer.add_tokenizer_model("none")
  706. def _set_vocab_gpt2(self) -> None:
  707. tokens, toktypes, tokpre = self.get_vocab_base()
  708. self.gguf_writer.add_tokenizer_model("gpt2")
  709. self.gguf_writer.add_tokenizer_pre(tokpre)
  710. self.gguf_writer.add_token_list(tokens)
  711. self.gguf_writer.add_token_types(toktypes)
  712. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  713. special_vocab.add_to_gguf(self.gguf_writer)
  714. def _set_vocab_qwen(self):
  715. dir_model = self.dir_model
  716. hparams = self.hparams
  717. tokens: list[str] = []
  718. toktypes: list[int] = []
  719. from transformers import AutoTokenizer
  720. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  721. vocab_size = hparams["vocab_size"]
  722. assert max(tokenizer.get_vocab().values()) < vocab_size
  723. tokpre = self.get_vocab_base_pre(tokenizer)
  724. merges = []
  725. vocab = {}
  726. mergeable_ranks = tokenizer.mergeable_ranks
  727. for token, rank in mergeable_ranks.items():
  728. vocab[QwenModel.token_bytes_to_string(token)] = rank
  729. if len(token) == 1:
  730. continue
  731. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  732. assert len(merged) == 2
  733. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  734. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  735. added_vocab = tokenizer.special_tokens
  736. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  737. for i in range(vocab_size):
  738. if i not in reverse_vocab:
  739. tokens.append(f"[PAD{i}]")
  740. toktypes.append(gguf.TokenType.UNUSED)
  741. elif reverse_vocab[i] in added_vocab:
  742. tokens.append(reverse_vocab[i])
  743. toktypes.append(gguf.TokenType.CONTROL)
  744. else:
  745. tokens.append(reverse_vocab[i])
  746. toktypes.append(gguf.TokenType.NORMAL)
  747. self.gguf_writer.add_tokenizer_model("gpt2")
  748. self.gguf_writer.add_tokenizer_pre(tokpre)
  749. self.gguf_writer.add_token_list(tokens)
  750. self.gguf_writer.add_token_types(toktypes)
  751. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  752. special_vocab.merges = merges
  753. # only add special tokens when they were not already loaded from config.json
  754. if len(special_vocab.special_token_ids) == 0:
  755. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  756. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  757. # this one is usually not in config.json anyway
  758. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  759. special_vocab.add_to_gguf(self.gguf_writer)
  760. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  761. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  762. self.gguf_writer.add_tokenizer_model("llama")
  763. self.gguf_writer.add_tokenizer_pre("default")
  764. self.gguf_writer.add_token_list(tokens)
  765. self.gguf_writer.add_token_scores(scores)
  766. self.gguf_writer.add_token_types(toktypes)
  767. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  768. special_vocab.add_to_gguf(self.gguf_writer)
  769. def _create_vocab_sentencepiece(self):
  770. from sentencepiece import SentencePieceProcessor
  771. tokenizer_path = self.dir_model / 'tokenizer.model'
  772. if not tokenizer_path.is_file():
  773. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  774. tokenizer = SentencePieceProcessor()
  775. tokenizer.LoadFromFile(str(tokenizer_path))
  776. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  777. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  778. scores: list[float] = [-10000.0] * vocab_size
  779. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  780. for token_id in range(tokenizer.vocab_size()):
  781. piece = tokenizer.IdToPiece(token_id)
  782. text = piece.encode("utf-8")
  783. score = tokenizer.GetScore(token_id)
  784. toktype = SentencePieceTokenTypes.NORMAL
  785. if tokenizer.IsUnknown(token_id):
  786. toktype = SentencePieceTokenTypes.UNKNOWN
  787. elif tokenizer.IsControl(token_id):
  788. toktype = SentencePieceTokenTypes.CONTROL
  789. elif tokenizer.IsUnused(token_id):
  790. toktype = SentencePieceTokenTypes.UNUSED
  791. elif tokenizer.IsByte(token_id):
  792. toktype = SentencePieceTokenTypes.BYTE
  793. tokens[token_id] = text
  794. scores[token_id] = score
  795. toktypes[token_id] = toktype
  796. added_tokens_file = self.dir_model / 'added_tokens.json'
  797. if added_tokens_file.is_file():
  798. with open(added_tokens_file, "r", encoding="utf-8") as f:
  799. added_tokens_json = json.load(f)
  800. for key in added_tokens_json:
  801. token_id = added_tokens_json[key]
  802. if token_id >= vocab_size:
  803. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  804. continue
  805. tokens[token_id] = key.encode("utf-8")
  806. scores[token_id] = -1000.0
  807. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  808. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  809. if tokenizer_config_file.is_file():
  810. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  811. tokenizer_config_json = json.load(f)
  812. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  813. for token_id, token_data in added_tokens_decoder.items():
  814. token_id = int(token_id)
  815. token: str = token_data["content"]
  816. if token_id >= vocab_size:
  817. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  818. continue
  819. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  820. if tokens[token_id] != token.encode("utf-8"):
  821. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  822. if token_data.get("special") or self.does_token_look_special(token):
  823. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  824. else:
  825. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  826. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  827. scores[token_id] = -1000.0
  828. tokens[token_id] = token.encode("utf-8")
  829. if vocab_size > len(tokens):
  830. pad_count = vocab_size - len(tokens)
  831. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  832. for i in range(1, pad_count + 1):
  833. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  834. scores.append(-1000.0)
  835. toktypes.append(SentencePieceTokenTypes.UNUSED)
  836. return tokens, scores, toktypes
  837. def _set_vocab_llama_hf(self):
  838. vocab = gguf.LlamaHfVocab(self.dir_model)
  839. tokens = []
  840. scores = []
  841. toktypes = []
  842. for text, score, toktype in vocab.all_tokens():
  843. tokens.append(text)
  844. scores.append(score)
  845. toktypes.append(toktype)
  846. assert len(tokens) == vocab.vocab_size
  847. self.gguf_writer.add_tokenizer_model("llama")
  848. self.gguf_writer.add_tokenizer_pre("default")
  849. self.gguf_writer.add_token_list(tokens)
  850. self.gguf_writer.add_token_scores(scores)
  851. self.gguf_writer.add_token_types(toktypes)
  852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  853. special_vocab.add_to_gguf(self.gguf_writer)
  854. def _set_vocab_rwkv_world(self):
  855. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  856. vocab_size = self.hparams.get("vocab_size", 65536)
  857. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  858. toktypes: list[int] = [gguf.TokenType.CONTROL]
  859. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  860. lines = f.readlines()
  861. for line in lines:
  862. parts = line.split(' ')
  863. assert len(parts) >= 3
  864. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  865. token = token.encode("utf-8") if isinstance(token, str) else token
  866. assert isinstance(token, bytes)
  867. assert len(token) == token_len
  868. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  869. tokens.append(token_text.encode("utf-8"))
  870. toktypes.append(gguf.TokenType.NORMAL)
  871. remainder = vocab_size - len(tokens)
  872. assert remainder >= 0
  873. for i in range(len(tokens), vocab_size):
  874. tokens.append(f"[PAD{i}]".encode("utf-8"))
  875. toktypes.append(gguf.TokenType.UNUSED)
  876. self.gguf_writer.add_tokenizer_model("rwkv")
  877. self.gguf_writer.add_token_list(tokens)
  878. self.gguf_writer.add_token_types(toktypes)
  879. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  880. special_vocab.chat_template = "rwkv-world"
  881. # hack: Add '\n\n' as the EOT token to make it chat normally
  882. special_vocab._set_special_token("eot", 261)
  883. special_vocab.add_to_gguf(self.gguf_writer)
  884. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  885. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  886. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  887. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  888. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  889. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  890. assert field # tokenizer model
  891. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  892. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  893. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  894. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  895. assert field # token list
  896. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  897. if model_name == "llama-spm":
  898. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  899. assert field # token scores
  900. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  901. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  902. assert field # token types
  903. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  904. if model_name != "llama-spm":
  905. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  906. assert field # token merges
  907. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  908. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  909. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  910. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  911. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  912. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  913. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  914. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  915. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  916. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  917. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  918. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  919. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  920. def _try_set_pooling_type(self) -> None:
  921. # get pooling path
  922. pooling_path = None
  923. module_path = self.dir_model / "modules.json"
  924. if module_path.is_file():
  925. with open(module_path, encoding="utf-8") as f:
  926. modules = json.load(f)
  927. for mod in modules:
  928. if mod["type"] == "sentence_transformers.models.Pooling":
  929. pooling_path = mod["path"]
  930. break
  931. # get pooling type
  932. if pooling_path is not None:
  933. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  934. pooling = json.load(f)
  935. if pooling["pooling_mode_mean_tokens"]:
  936. pooling_type = gguf.PoolingType.MEAN
  937. elif pooling["pooling_mode_cls_token"]:
  938. pooling_type = gguf.PoolingType.CLS
  939. elif pooling["pooling_mode_lasttoken"]:
  940. pooling_type = gguf.PoolingType.LAST
  941. else:
  942. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  943. self.gguf_writer.add_pooling_type(pooling_type)
  944. class MmprojModel(ModelBase):
  945. model_type = ModelType.MMPROJ
  946. model_arch = gguf.MODEL_ARCH.MMPROJ
  947. preprocessor_config: dict[str, Any]
  948. global_config: dict[str, Any]
  949. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  950. has_vision_encoder: bool = True # by default
  951. has_audio_encoder: bool = False
  952. # for models having multiple encoders, we need to separate their hparams
  953. hparams_vision: dict[str, Any] | None = None
  954. hparams_audio: dict[str, Any] | None = None
  955. def __init__(self, *args, **kwargs):
  956. super().__init__(*args, **kwargs)
  957. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  958. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  959. # get n_embd of the text model
  960. if "text_config" not in self.hparams:
  961. self.hparams["text_config"] = {}
  962. if "audio_config" not in self.hparams:
  963. self.hparams["audio_config"] = {}
  964. text_config = {**self.hparams, **self.hparams["text_config"]}
  965. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  966. assert self.n_embd_text > 0, "n_embd not found in hparams"
  967. # move vision config to the top level, while preserving the original hparams in global_config
  968. import copy
  969. self.global_config = copy.deepcopy(self.hparams)
  970. self.hparams_vision = self.get_vision_config()
  971. self.hparams_audio = self.get_audio_config()
  972. if self.hparams_vision is None and self.hparams_audio is None:
  973. raise ValueError("vision_config / audio_config not found in hparams")
  974. # for compat with vision-only models
  975. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  976. # TODO @ngxson : this is a hack to support both vision and audio encoders
  977. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  978. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  979. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  980. # load preprocessor config
  981. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  982. self.preprocessor_config = json.load(f)
  983. def get_vision_config(self) -> dict[str, Any] | None:
  984. return self.global_config.get("vision_config")
  985. def get_audio_config(self) -> dict[str, Any] | None:
  986. return self.global_config.get("audio_config")
  987. def set_type(self):
  988. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  989. def set_gguf_parameters(self):
  990. self.gguf_writer.add_file_type(self.ftype)
  991. if self.has_vision_encoder:
  992. self.gguf_writer.add_clip_has_vision_encoder(True)
  993. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  994. # vision config
  995. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  996. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  997. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  998. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  999. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1000. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1001. # preprocessor config
  1002. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1003. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1004. if self.has_audio_encoder:
  1005. self.gguf_writer.add_clip_has_audio_encoder(True)
  1006. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1007. # audio config
  1008. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1009. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1010. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1011. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1012. if not self.has_vision_encoder and not self.has_audio_encoder:
  1013. raise ValueError("MmprojModel must have either vision or audio encoder")
  1014. def write_vocab(self):
  1015. raise ValueError("MmprojModel does not support vocab writing")
  1016. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1017. assert self.hparams_vision is not None
  1018. return self._find_param(self.hparams_vision, keys, optional)
  1019. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1020. assert self.hparams_audio is not None
  1021. return self._find_param(self.hparams_audio, keys, optional)
  1022. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1023. key = next((k for k in keys if k in obj), None)
  1024. if key is not None:
  1025. return obj[key]
  1026. if optional:
  1027. return None
  1028. raise KeyError(f"could not find any of: {keys}")
  1029. @ModelBase.register("GPTNeoXForCausalLM")
  1030. class GPTNeoXModel(TextModel):
  1031. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1032. def set_gguf_parameters(self):
  1033. block_count = self.hparams["num_hidden_layers"]
  1034. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1035. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1036. self.gguf_writer.add_block_count(block_count)
  1037. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1038. self.gguf_writer.add_rope_dimension_count(
  1039. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1040. )
  1041. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1042. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1043. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1045. del bid # unused
  1046. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1047. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1048. tensors: list[tuple[str, Tensor]] = []
  1049. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1050. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1051. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1052. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1053. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1054. data_torch = torch.cat(
  1055. (
  1056. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1057. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1058. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1059. ),
  1060. dim=0,
  1061. )
  1062. logger.info("re-format attention.linear_qkv.weight")
  1063. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1064. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1065. data_torch = torch.cat(
  1066. (
  1067. qkv_bias[:, 0, :].reshape((n_embed,)),
  1068. qkv_bias[:, 1, :].reshape((n_embed,)),
  1069. qkv_bias[:, 2, :].reshape((n_embed,)),
  1070. ),
  1071. dim=0,
  1072. )
  1073. logger.info("re-format attention.linear_qkv.bias")
  1074. tensors.append((self.map_tensor_name(name), data_torch))
  1075. return tensors
  1076. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1077. class BloomModel(TextModel):
  1078. model_arch = gguf.MODEL_ARCH.BLOOM
  1079. def set_gguf_parameters(self):
  1080. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1081. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1082. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1083. self.gguf_writer.add_embedding_length(n_embed)
  1084. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1085. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1086. self.gguf_writer.add_head_count(n_head)
  1087. self.gguf_writer.add_head_count_kv(n_head)
  1088. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1089. self.gguf_writer.add_file_type(self.ftype)
  1090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1091. del bid # unused
  1092. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1093. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1094. name = re.sub(r'transformer\.', '', name)
  1095. tensors: list[tuple[str, Tensor]] = []
  1096. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1097. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1098. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1099. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1100. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1101. data_torch = torch.cat(
  1102. (
  1103. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1104. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1105. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1106. ),
  1107. dim=0,
  1108. )
  1109. logger.info("re-format attention.linear_qkv.weight")
  1110. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1111. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1112. data_torch = torch.cat(
  1113. (
  1114. qkv_bias[:, 0, :].reshape((n_embed,)),
  1115. qkv_bias[:, 1, :].reshape((n_embed,)),
  1116. qkv_bias[:, 2, :].reshape((n_embed,)),
  1117. ),
  1118. dim=0,
  1119. )
  1120. logger.info("re-format attention.linear_qkv.bias")
  1121. tensors.append((self.map_tensor_name(name), data_torch))
  1122. return tensors
  1123. @ModelBase.register("MPTForCausalLM")
  1124. class MPTModel(TextModel):
  1125. model_arch = gguf.MODEL_ARCH.MPT
  1126. def set_vocab(self):
  1127. try:
  1128. self._set_vocab_gpt2()
  1129. except Exception:
  1130. # Fallback for SEA-LION model
  1131. self._set_vocab_sentencepiece()
  1132. self.gguf_writer.add_add_bos_token(False)
  1133. self.gguf_writer.add_pad_token_id(3)
  1134. self.gguf_writer.add_eos_token_id(1)
  1135. self.gguf_writer.add_unk_token_id(0)
  1136. def set_gguf_parameters(self):
  1137. block_count = self.hparams["n_layers"]
  1138. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1139. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1140. self.gguf_writer.add_block_count(block_count)
  1141. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1142. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1143. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1144. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1145. self.gguf_writer.add_layer_norm_eps(1e-5)
  1146. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1147. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1148. if self.hparams["attn_config"]["alibi"]:
  1149. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1150. else:
  1151. self.gguf_writer.add_max_alibi_bias(0.0)
  1152. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1153. del bid # unused
  1154. if "scales" in name:
  1155. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1156. new_name = new_name.replace("scales", "act.scales")
  1157. else:
  1158. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1159. return [(new_name, data_torch)]
  1160. @ModelBase.register("OrionForCausalLM")
  1161. class OrionModel(TextModel):
  1162. model_arch = gguf.MODEL_ARCH.ORION
  1163. def set_vocab(self):
  1164. self._set_vocab_sentencepiece()
  1165. def set_gguf_parameters(self):
  1166. block_count = self.hparams["num_hidden_layers"]
  1167. head_count = self.hparams["num_attention_heads"]
  1168. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1169. ctx_length = 0
  1170. if "max_sequence_length" in self.hparams:
  1171. ctx_length = self.hparams["max_sequence_length"]
  1172. elif "max_position_embeddings" in self.hparams:
  1173. ctx_length = self.hparams["max_position_embeddings"]
  1174. elif "model_max_length" in self.hparams:
  1175. ctx_length = self.hparams["model_max_length"]
  1176. else:
  1177. raise ValueError("gguf: can not find ctx length parameter.")
  1178. self.gguf_writer.add_file_type(self.ftype)
  1179. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1180. self.gguf_writer.add_context_length(ctx_length)
  1181. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1182. self.gguf_writer.add_block_count(block_count)
  1183. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1184. self.gguf_writer.add_head_count(head_count)
  1185. self.gguf_writer.add_head_count_kv(head_count_kv)
  1186. # note: config provides rms norm but it is actually layer norm
  1187. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1188. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1189. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1190. class BaichuanModel(TextModel):
  1191. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1192. def set_vocab(self):
  1193. self._set_vocab_sentencepiece()
  1194. def set_gguf_parameters(self):
  1195. block_count = self.hparams["num_hidden_layers"]
  1196. head_count = self.hparams["num_attention_heads"]
  1197. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1198. ctx_length = 0
  1199. if "max_sequence_length" in self.hparams:
  1200. ctx_length = self.hparams["max_sequence_length"]
  1201. elif "max_position_embeddings" in self.hparams:
  1202. ctx_length = self.hparams["max_position_embeddings"]
  1203. elif "model_max_length" in self.hparams:
  1204. ctx_length = self.hparams["model_max_length"]
  1205. else:
  1206. raise ValueError("gguf: can not find ctx length parameter.")
  1207. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1208. self.gguf_writer.add_context_length(ctx_length)
  1209. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1210. self.gguf_writer.add_block_count(block_count)
  1211. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1212. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count(head_count)
  1214. self.gguf_writer.add_head_count_kv(head_count_kv)
  1215. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1216. self.gguf_writer.add_file_type(self.ftype)
  1217. rope_scaling = self.hparams.get("rope_scaling") or {}
  1218. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1219. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1220. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1222. head_count = self.hparams["num_attention_heads"]
  1223. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1224. tensors: list[tuple[str, Tensor]] = []
  1225. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1226. logger.info(f"Unpacking and permuting layer {bid}")
  1227. tensors = [
  1228. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1229. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1230. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1231. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1232. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1233. self._reverse_hf_part(data_torch, 2)),
  1234. ]
  1235. else:
  1236. tensors = [(self.map_tensor_name(name), data_torch)]
  1237. return tensors
  1238. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1239. if n_kv_head is not None and n_head != n_kv_head:
  1240. n_head //= n_kv_head
  1241. return (
  1242. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1243. .swapaxes(1, 2)
  1244. .reshape(weights.shape)
  1245. )
  1246. def _reverse_hf_permute_part(
  1247. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1248. ) -> Tensor:
  1249. r = weights.shape[0] // 3
  1250. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1251. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1252. r = weights.shape[0] // 3
  1253. return weights[r * n_part:r * n_part + r, ...]
  1254. @ModelBase.register("XverseForCausalLM")
  1255. class XverseModel(TextModel):
  1256. model_arch = gguf.MODEL_ARCH.XVERSE
  1257. def set_vocab(self):
  1258. assert (self.dir_model / "tokenizer.json").is_file()
  1259. dir_model = self.dir_model
  1260. hparams = self.hparams
  1261. tokens: list[bytes] = []
  1262. toktypes: list[int] = []
  1263. from transformers import AutoTokenizer
  1264. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1265. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1266. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1267. # because vocab_size is the count of items, and indexes start at 0.
  1268. max_vocab_index = max(tokenizer.get_vocab().values())
  1269. if max_vocab_index >= vocab_size:
  1270. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1271. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1272. added_vocab = tokenizer.get_added_vocab()
  1273. for token_id in range(vocab_size):
  1274. token_text = reverse_vocab[token_id].encode('utf-8')
  1275. # replace "\x00" to string with length > 0
  1276. if token_text == b"\x00":
  1277. toktype = gguf.TokenType.BYTE # special
  1278. token_text = f"<{token_text}>".encode('utf-8')
  1279. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1280. toktype = gguf.TokenType.BYTE # special
  1281. elif reverse_vocab[token_id] in added_vocab:
  1282. if tokenizer.added_tokens_decoder[token_id].special:
  1283. toktype = gguf.TokenType.CONTROL
  1284. else:
  1285. toktype = gguf.TokenType.USER_DEFINED
  1286. else:
  1287. toktype = gguf.TokenType.NORMAL
  1288. tokens.append(token_text)
  1289. toktypes.append(toktype)
  1290. self.gguf_writer.add_tokenizer_model("llama")
  1291. self.gguf_writer.add_tokenizer_pre("default")
  1292. self.gguf_writer.add_token_list(tokens)
  1293. self.gguf_writer.add_token_types(toktypes)
  1294. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1295. special_vocab.add_to_gguf(self.gguf_writer)
  1296. def set_gguf_parameters(self):
  1297. block_count = self.hparams["num_hidden_layers"]
  1298. head_count = self.hparams["num_attention_heads"]
  1299. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1300. ctx_length = 0
  1301. if "max_sequence_length" in self.hparams:
  1302. ctx_length = self.hparams["max_sequence_length"]
  1303. elif "max_position_embeddings" in self.hparams:
  1304. ctx_length = self.hparams["max_position_embeddings"]
  1305. elif "model_max_length" in self.hparams:
  1306. ctx_length = self.hparams["model_max_length"]
  1307. else:
  1308. raise ValueError("gguf: can not find ctx length parameter.")
  1309. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1310. self.gguf_writer.add_context_length(ctx_length)
  1311. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1312. self.gguf_writer.add_block_count(block_count)
  1313. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1314. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1315. self.gguf_writer.add_head_count(head_count)
  1316. self.gguf_writer.add_head_count_kv(head_count_kv)
  1317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1318. self.gguf_writer.add_file_type(self.ftype)
  1319. rope_scaling = self.hparams.get("rope_scaling") or {}
  1320. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1321. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1322. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1324. del bid # unused
  1325. head_count = self.hparams["num_attention_heads"]
  1326. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1327. # HF models permute some of the tensors, so we need to undo that
  1328. if name.endswith("q_proj.weight"):
  1329. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1330. if name.endswith("k_proj.weight"):
  1331. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1332. return [(self.map_tensor_name(name), data_torch)]
  1333. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1334. if n_kv_head is not None and n_head != n_kv_head:
  1335. n_head //= n_kv_head
  1336. return (
  1337. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1338. .swapaxes(1, 2)
  1339. .reshape(weights.shape)
  1340. )
  1341. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1342. class FalconModel(TextModel):
  1343. model_arch = gguf.MODEL_ARCH.FALCON
  1344. def set_gguf_parameters(self):
  1345. block_count = self.hparams.get("num_hidden_layers")
  1346. if block_count is None:
  1347. block_count = self.hparams["n_layer"] # old name
  1348. n_head = self.hparams.get("num_attention_heads")
  1349. if n_head is None:
  1350. n_head = self.hparams["n_head"] # old name
  1351. n_head_kv = self.hparams.get("num_kv_heads")
  1352. if n_head_kv is None:
  1353. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1354. self.gguf_writer.add_context_length(2048) # not in config.json
  1355. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1356. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1357. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1358. self.gguf_writer.add_block_count(block_count)
  1359. self.gguf_writer.add_head_count(n_head)
  1360. self.gguf_writer.add_head_count_kv(n_head_kv)
  1361. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1362. self.gguf_writer.add_file_type(self.ftype)
  1363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1364. del bid # unused
  1365. # QKV tensor transform
  1366. # The original query_key_value tensor contains n_head_kv "kv groups",
  1367. # each consisting of n_head/n_head_kv query weights followed by one key
  1368. # and one value weight (shared by all query heads in the kv group).
  1369. # This layout makes it a big pain to work with in GGML.
  1370. # So we rearrange them here,, so that we have n_head query weights
  1371. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1372. # in contiguous fashion.
  1373. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1374. if "query_key_value" in name:
  1375. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1376. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1377. head_dim = self.hparams["hidden_size"] // n_head
  1378. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1379. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1380. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1381. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1382. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1383. return [(self.map_tensor_name(name), data_torch)]
  1384. @ModelBase.register("GPTBigCodeForCausalLM")
  1385. class StarCoderModel(TextModel):
  1386. model_arch = gguf.MODEL_ARCH.STARCODER
  1387. def set_gguf_parameters(self):
  1388. block_count = self.hparams["n_layer"]
  1389. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1390. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1391. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1392. self.gguf_writer.add_block_count(block_count)
  1393. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1394. self.gguf_writer.add_head_count_kv(1)
  1395. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1396. self.gguf_writer.add_file_type(self.ftype)
  1397. @ModelBase.register("GPTRefactForCausalLM")
  1398. class RefactModel(TextModel):
  1399. model_arch = gguf.MODEL_ARCH.REFACT
  1400. def set_vocab(self):
  1401. super().set_vocab()
  1402. # TODO: how to determine special FIM tokens automatically?
  1403. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1404. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1405. special_vocab._set_special_token("prefix", 1)
  1406. special_vocab._set_special_token("suffix", 3)
  1407. special_vocab._set_special_token("middle", 2)
  1408. special_vocab.chat_template = None # do not add it twice
  1409. special_vocab.add_to_gguf(self.gguf_writer)
  1410. def set_gguf_parameters(self):
  1411. hidden_dim = self.hparams["n_embd"]
  1412. inner_dim = 4 * hidden_dim
  1413. hidden_dim = int(2 * inner_dim / 3)
  1414. multiple_of = 256
  1415. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1416. block_count = self.hparams["n_layer"]
  1417. # refact uses Alibi. So this is from config.json which might be used by training.
  1418. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1419. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1420. self.gguf_writer.add_feed_forward_length(ff_dim)
  1421. self.gguf_writer.add_block_count(block_count)
  1422. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1423. self.gguf_writer.add_head_count_kv(1)
  1424. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1425. self.gguf_writer.add_file_type(self.ftype)
  1426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1427. hidden_dim = self.hparams["n_embd"]
  1428. inner_dim = 4 * hidden_dim
  1429. hidden_dim = int(2 * inner_dim / 3)
  1430. multiple_of = 256
  1431. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1432. n_head = self.hparams["n_head"]
  1433. n_head_kv = 1
  1434. head_dim = self.hparams["n_embd"] // n_head
  1435. tensors: list[tuple[str, Tensor]] = []
  1436. if bid is not None:
  1437. if name == f"transformer.h.{bid}.attn.kv.weight":
  1438. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1439. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1440. elif name == f"transformer.h.{bid}.attn.q.weight":
  1441. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1442. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1443. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1444. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1445. if len(tensors) == 0:
  1446. tensors.append((self.map_tensor_name(name), data_torch))
  1447. return tensors
  1448. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1449. class StableLMModel(TextModel):
  1450. model_arch = gguf.MODEL_ARCH.STABLELM
  1451. def set_vocab(self):
  1452. if (self.dir_model / "tokenizer.json").is_file():
  1453. self._set_vocab_gpt2()
  1454. else:
  1455. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1456. self._set_vocab_qwen()
  1457. def set_gguf_parameters(self):
  1458. hparams = self.hparams
  1459. block_count = hparams["num_hidden_layers"]
  1460. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1461. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1462. self.gguf_writer.add_block_count(block_count)
  1463. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1464. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1465. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1466. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1467. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1468. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1469. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1470. self.gguf_writer.add_file_type(self.ftype)
  1471. _q_norms: list[dict[str, Tensor]] | None = None
  1472. _k_norms: list[dict[str, Tensor]] | None = None
  1473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1474. n_head = self.hparams["num_attention_heads"]
  1475. n_kv_head = self.hparams["num_key_value_heads"]
  1476. if name.find("q_layernorm.norms") != -1:
  1477. assert bid is not None
  1478. if self._q_norms is None:
  1479. self._q_norms = [{} for _ in range(self.block_count)]
  1480. self._q_norms[bid][name] = data_torch
  1481. if len(self._q_norms[bid]) >= n_head:
  1482. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1483. else:
  1484. return []
  1485. if name.find("k_layernorm.norms") != -1:
  1486. assert bid is not None
  1487. if self._k_norms is None:
  1488. self._k_norms = [{} for _ in range(self.block_count)]
  1489. self._k_norms[bid][name] = data_torch
  1490. if len(self._k_norms[bid]) >= n_kv_head:
  1491. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1492. else:
  1493. return []
  1494. return [(self.map_tensor_name(name), data_torch)]
  1495. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1496. datas: list[Tensor] = []
  1497. # extract the norms in order
  1498. for xid in range(n_head):
  1499. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1500. datas.append(norms[ename])
  1501. del norms[ename]
  1502. data_torch = torch.stack(datas, dim=0)
  1503. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1504. new_name = self.map_tensor_name(merged_name)
  1505. return [(new_name, data_torch)]
  1506. def prepare_tensors(self):
  1507. super().prepare_tensors()
  1508. if self._q_norms is not None or self._k_norms is not None:
  1509. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1510. norms = (
  1511. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1512. ) + (
  1513. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1514. )
  1515. if len(norms) > 0:
  1516. raise ValueError(f"Unprocessed norms: {norms}")
  1517. @ModelBase.register(
  1518. "LLaMAForCausalLM",
  1519. "LlamaForCausalLM",
  1520. "MistralForCausalLM",
  1521. "MixtralForCausalLM",
  1522. "VLlama3ForCausalLM",
  1523. "LlavaForConditionalGeneration",
  1524. "LlamaModel")
  1525. class LlamaModel(TextModel):
  1526. model_arch = gguf.MODEL_ARCH.LLAMA
  1527. undo_permute = True
  1528. def __init__(self, *args, **kwargs):
  1529. super().__init__(*args, **kwargs)
  1530. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1531. if self.hf_arch == "VLlama3ForCausalLM":
  1532. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1533. def set_vocab(self):
  1534. try:
  1535. self._set_vocab_sentencepiece()
  1536. except FileNotFoundError:
  1537. try:
  1538. self._set_vocab_llama_hf()
  1539. except (FileNotFoundError, TypeError):
  1540. # Llama 3
  1541. self._set_vocab_gpt2()
  1542. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1543. if self.hparams.get("vocab_size", 32000) == 32016:
  1544. special_vocab = gguf.SpecialVocab(
  1545. self.dir_model, load_merges=False,
  1546. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1547. )
  1548. special_vocab._set_special_token("prefix", 32007)
  1549. special_vocab._set_special_token("suffix", 32008)
  1550. special_vocab._set_special_token("middle", 32009)
  1551. special_vocab._set_special_token("eot", 32010)
  1552. special_vocab.add_to_gguf(self.gguf_writer)
  1553. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1554. if tokenizer_config_file.is_file():
  1555. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1556. tokenizer_config_json = json.load(f)
  1557. if "add_prefix_space" in tokenizer_config_json:
  1558. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1559. # Apply to granite small models only
  1560. if self.hparams.get("vocab_size", 32000) == 49152:
  1561. self.gguf_writer.add_add_bos_token(False)
  1562. def set_gguf_parameters(self):
  1563. super().set_gguf_parameters()
  1564. hparams = self.hparams
  1565. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1566. if "head_dim" in hparams:
  1567. rope_dim = hparams["head_dim"]
  1568. else:
  1569. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1570. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1571. rope_scaling = self.hparams.get("rope_scaling") or {}
  1572. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1573. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1574. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1575. @staticmethod
  1576. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1577. if n_head_kv is not None and n_head != n_head_kv:
  1578. n_head = n_head_kv
  1579. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1580. .swapaxes(1, 2)
  1581. .reshape(weights.shape))
  1582. _experts: list[dict[str, Tensor]] | None = None
  1583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1584. n_head = self.hparams["num_attention_heads"]
  1585. n_kv_head = self.hparams.get("num_key_value_heads")
  1586. is_vision_tensor = "vision_tower" in name \
  1587. or "vision_model" in name \
  1588. or "model.connector" in name \
  1589. or "multi_modal_projector" in name
  1590. if is_vision_tensor:
  1591. return [] # skip vision tensors
  1592. elif self.hf_arch == "LlamaModel":
  1593. name = "model." + name
  1594. elif name.startswith("model.text_model"):
  1595. name = name.replace("text_model.", "") # for SmolVLM
  1596. elif name.startswith("language_model."):
  1597. name = name.replace("language_model.", "") # for the rest
  1598. if self.undo_permute:
  1599. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1600. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1601. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1602. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1603. # process the experts separately
  1604. if name.find("block_sparse_moe.experts") != -1:
  1605. n_experts = self.hparams["num_local_experts"]
  1606. assert bid is not None
  1607. if self._experts is None:
  1608. self._experts = [{} for _ in range(self.block_count)]
  1609. self._experts[bid][name] = data_torch
  1610. if len(self._experts[bid]) >= n_experts * 3:
  1611. tensors: list[tuple[str, Tensor]] = []
  1612. # merge the experts into a single 3d tensor
  1613. for wid in ["w1", "w2", "w3"]:
  1614. datas: list[Tensor] = []
  1615. for xid in range(n_experts):
  1616. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1617. datas.append(self._experts[bid][ename])
  1618. del self._experts[bid][ename]
  1619. data_torch = torch.stack(datas, dim=0)
  1620. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1621. new_name = self.map_tensor_name(merged_name)
  1622. tensors.append((new_name, data_torch))
  1623. return tensors
  1624. else:
  1625. return []
  1626. return [(self.map_tensor_name(name), data_torch)]
  1627. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1628. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1629. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1630. base = self.hparams.get("rope_theta", 10000.0)
  1631. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1632. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1633. factor = rope_scaling.get("factor", 8.0)
  1634. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1635. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1636. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1637. low_freq_wavelen = old_context_len / low_freq_factor
  1638. high_freq_wavelen = old_context_len / high_freq_factor
  1639. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1640. rope_factors = []
  1641. for freq in freqs:
  1642. wavelen = 2 * math.pi / freq
  1643. if wavelen < high_freq_wavelen:
  1644. rope_factors.append(1)
  1645. elif wavelen > low_freq_wavelen:
  1646. rope_factors.append(factor)
  1647. else:
  1648. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1649. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1650. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1651. def prepare_tensors(self):
  1652. super().prepare_tensors()
  1653. if self._experts is not None:
  1654. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1655. experts = [k for d in self._experts for k in d.keys()]
  1656. if len(experts) > 0:
  1657. raise ValueError(f"Unprocessed experts: {experts}")
  1658. @ModelBase.register(
  1659. "LlavaForConditionalGeneration", # pixtral
  1660. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1661. )
  1662. class LlavaVisionModel(MmprojModel):
  1663. img_break_tok_id = -1
  1664. def __init__(self, *args, **kwargs):
  1665. super().__init__(*args, **kwargs)
  1666. if self.hparams["model_type"] == "pixtral":
  1667. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1668. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1669. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1670. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1671. else:
  1672. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1673. def get_token_id(self, token: str) -> int:
  1674. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1675. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1676. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1677. for id_, token_data in added_tokens_decoder.items():
  1678. if token_data["content"] == token:
  1679. return int(id_)
  1680. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1681. def set_gguf_parameters(self):
  1682. super().set_gguf_parameters()
  1683. hparams = self.hparams
  1684. if hparams["model_type"] == "pixtral":
  1685. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1686. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1687. # hidden_act
  1688. if hparams["hidden_act"] == "silu":
  1689. self.gguf_writer.add_vision_use_silu(True)
  1690. elif hparams["hidden_act"] == "gelu":
  1691. self.gguf_writer.add_vision_use_gelu(True)
  1692. else:
  1693. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1694. # spatial_merge_size
  1695. if "spatial_merge_size" in self.global_config:
  1696. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1697. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1698. del bid # unused
  1699. n_head = self.hparams["num_attention_heads"]
  1700. n_kv_head = n_head
  1701. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1702. # process vision tensors
  1703. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1704. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1705. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1706. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1707. return [(self.map_tensor_name(name), data_torch)]
  1708. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1709. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1710. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1711. img_break_embd = data_torch[self.img_break_tok_id]
  1712. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1713. return [(self.map_tensor_name(name), img_break_embd)]
  1714. return [] # skip other tensors
  1715. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1716. class SmolVLMModel(MmprojModel):
  1717. def __init__(self, *args, **kwargs):
  1718. super().__init__(*args, **kwargs)
  1719. if self.hparams["model_type"] == "smolvlm_vision":
  1720. # fix for SmolVLM2, missing some keys in config.json
  1721. # default values are taken from transformers code
  1722. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1723. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1724. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1725. def set_gguf_parameters(self):
  1726. super().set_gguf_parameters()
  1727. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1728. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1729. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1730. self.gguf_writer.add_vision_use_gelu(True)
  1731. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1732. del bid, new_name, n_dims # unused
  1733. if ".embeddings." in name:
  1734. return gguf.GGMLQuantizationType.F32
  1735. return False
  1736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1737. del bid # unused
  1738. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1739. if is_vision_tensor:
  1740. return [(self.map_tensor_name(name), data_torch)]
  1741. return [] # skip other tensors
  1742. @ModelBase.register("Llama4ForConditionalGeneration")
  1743. class Llama4Model(LlamaModel):
  1744. model_arch = gguf.MODEL_ARCH.LLAMA4
  1745. undo_permute = False
  1746. def __init__(self, *args, **kwargs):
  1747. super().__init__(*args, **kwargs)
  1748. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1749. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1750. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1751. def set_vocab(self):
  1752. self._set_vocab_gpt2()
  1753. self.gguf_writer.add_add_bos_token(True)
  1754. def set_gguf_parameters(self):
  1755. super().set_gguf_parameters()
  1756. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1757. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1758. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1759. if name.startswith("language_model."):
  1760. name = name.replace("language_model.", "")
  1761. # split the gate_up into gate and up
  1762. if "gate_up_proj" in name:
  1763. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1764. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1765. dim_half = data_torch.shape[-1] // 2
  1766. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1767. return [
  1768. (self.map_tensor_name(name_gate), gate_proj_weight),
  1769. (self.map_tensor_name(name_up), up_proj_weight)
  1770. ]
  1771. if name.endswith("down_proj"):
  1772. name += ".weight"
  1773. data_torch = data_torch.transpose(-1, -2)
  1774. if "multi_modal_projector" in name or "vision_model" in name:
  1775. return []
  1776. return super().modify_tensors(data_torch, name, bid)
  1777. @ModelBase.register("Llama4ForConditionalGeneration")
  1778. class Llama4VisionModel(MmprojModel):
  1779. def set_gguf_parameters(self):
  1780. super().set_gguf_parameters()
  1781. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1782. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1783. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1784. assert self.hparams["hidden_act"] == "gelu"
  1785. self.gguf_writer.add_vision_use_gelu(True)
  1786. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1787. del bid # unused
  1788. if "multi_modal_projector" in name or "vision_model" in name:
  1789. # process vision tensors
  1790. if "positional_embedding_vlm" in name and ".weight" not in name:
  1791. name += ".weight"
  1792. if "multi_modal_projector.linear_1" in name:
  1793. # despite the name with number postfix, this is a single fully connected layer
  1794. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC], data_torch)]
  1795. return [(self.map_tensor_name(name), data_torch)]
  1796. return []
  1797. @ModelBase.register("Mistral3ForConditionalGeneration")
  1798. class Mistral3Model(LlamaModel):
  1799. model_arch = gguf.MODEL_ARCH.LLAMA
  1800. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1801. name = name.replace("language_model.", "")
  1802. if "multi_modal_projector" in name or "vision_tower" in name:
  1803. return []
  1804. return super().modify_tensors(data_torch, name, bid)
  1805. @ModelBase.register("DeciLMForCausalLM")
  1806. class DeciModel(TextModel):
  1807. model_arch = gguf.MODEL_ARCH.DECI
  1808. @staticmethod
  1809. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1810. # DeciLM-specific code
  1811. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1812. return DeciModel._find_multiple(intermediate_size, 256)
  1813. @staticmethod
  1814. def _find_multiple(n: int, k: int) -> int:
  1815. # DeciLM-specific code
  1816. if n % k == 0:
  1817. return n
  1818. return n + k - (n % k)
  1819. def __init__(self, *args, **kwargs):
  1820. super().__init__(*args, **kwargs)
  1821. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1822. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1823. assert self.block_count == len(_block_configs)
  1824. self._num_kv_heads = list()
  1825. self._num_heads = list()
  1826. _ffn_multipliers = list()
  1827. # ***linear attention layer***
  1828. # if n_heads_in_group is None and replace_with_linear is True
  1829. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1830. # ***attention-free layer***
  1831. # if n_heads_in_group is None and replace_with_linear is False
  1832. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1833. # ***normal attention-layer***
  1834. # if n_heads_in_group is not None, then
  1835. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1836. # _num_heads[il] is num_attention_head
  1837. # ***dummy layer*** for nemotron 253B
  1838. # if n_heads_in_group is None and ffn_mult is None
  1839. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1840. for il in range(len(_block_configs)):
  1841. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1842. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1843. self._num_kv_heads.append(0)
  1844. self._num_heads.append(self.hparams["num_attention_heads"])
  1845. else:
  1846. self._num_kv_heads.append(0)
  1847. self._num_heads.append(0)
  1848. else:
  1849. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1850. self._num_heads.append(self.hparams["num_attention_heads"])
  1851. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1852. _ffn_multipliers.append(0.0)
  1853. else:
  1854. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1855. assert self.block_count == len(self._num_kv_heads)
  1856. assert self.block_count == len(self._num_heads)
  1857. assert self.block_count == len(_ffn_multipliers)
  1858. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1859. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1860. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1861. self._ffn_dims: list[int] = [
  1862. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1863. for multiplier in _ffn_multipliers
  1864. ]
  1865. def set_vocab(self):
  1866. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1867. # eos_token from '|eot_id|' to '|end_of_text|'
  1868. if self.hparams.get("vocab_size", 128256) == 128256:
  1869. tokens, toktypes, tokpre = self.get_vocab_base()
  1870. self.gguf_writer.add_tokenizer_model("gpt2")
  1871. self.gguf_writer.add_tokenizer_pre(tokpre)
  1872. self.gguf_writer.add_token_list(tokens)
  1873. self.gguf_writer.add_token_types(toktypes)
  1874. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1875. special_vocab.add_to_gguf(self.gguf_writer)
  1876. else:
  1877. # DeciLM-7B
  1878. self._set_vocab_llama_hf()
  1879. def set_gguf_parameters(self):
  1880. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1881. assert self.block_count == len(self._num_kv_heads)
  1882. assert self.block_count == len(self._num_heads)
  1883. assert self.block_count == len(self._ffn_dims)
  1884. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1885. self.gguf_writer.add_rope_freq_base(rope_theta)
  1886. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1887. self.gguf_writer.add_head_count(self._num_heads)
  1888. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1889. self.gguf_writer.add_block_count(self.block_count)
  1890. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1891. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1892. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1893. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1894. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1895. self.gguf_writer.add_file_type(self.ftype)
  1896. else: # DeciLM-7B
  1897. super().set_gguf_parameters()
  1898. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1899. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1900. assert self.block_count == len(self._num_kv_heads)
  1901. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1902. hparams = self.hparams
  1903. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1904. if "head_dim" in hparams:
  1905. rope_dim = hparams["head_dim"]
  1906. else:
  1907. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1908. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1909. rope_scaling = self.hparams.get("rope_scaling") or {}
  1910. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1911. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1912. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1913. @staticmethod
  1914. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1915. if n_head_kv is not None and n_head != n_head_kv:
  1916. n_head = n_head_kv
  1917. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1918. .swapaxes(1, 2)
  1919. .reshape(weights.shape))
  1920. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1921. n_head = self.hparams["num_attention_heads"]
  1922. if bid is not None:
  1923. if "num_key_value_heads_per_layer" in self.hparams:
  1924. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1925. elif "block_configs" in self.hparams:
  1926. n_kv_head = self._num_kv_heads[bid]
  1927. n_head = self._num_heads[bid]
  1928. else:
  1929. n_kv_head = self.hparams.get("num_key_value_heads")
  1930. else:
  1931. n_kv_head = self.hparams.get("num_key_value_heads")
  1932. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1933. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1934. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1935. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1936. return [(self.map_tensor_name(name), data_torch)]
  1937. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1938. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1939. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1940. base = self.hparams.get("rope_theta", 10000.0)
  1941. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1942. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1943. factor = rope_scaling.get("factor", 8.0)
  1944. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1945. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1946. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1947. low_freq_wavelen = old_context_len / low_freq_factor
  1948. high_freq_wavelen = old_context_len / high_freq_factor
  1949. assert low_freq_wavelen != high_freq_wavelen
  1950. rope_factors = []
  1951. for freq in freqs:
  1952. wavelen = 2 * math.pi / freq
  1953. if wavelen < high_freq_wavelen:
  1954. rope_factors.append(1)
  1955. elif wavelen > low_freq_wavelen:
  1956. rope_factors.append(factor)
  1957. else:
  1958. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1959. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1960. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1961. def prepare_tensors(self):
  1962. super().prepare_tensors()
  1963. @ModelBase.register("BitnetForCausalLM")
  1964. class BitnetModel(TextModel):
  1965. model_arch = gguf.MODEL_ARCH.BITNET
  1966. def set_vocab(self):
  1967. self._set_vocab_sentencepiece()
  1968. def set_gguf_parameters(self):
  1969. super().set_gguf_parameters()
  1970. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1971. self.gguf_writer.add_rope_scaling_factor(1.0)
  1972. def weight_quant(self, weight: Tensor) -> Tensor:
  1973. dtype = weight.dtype
  1974. weight = weight.float()
  1975. scale = weight.abs().mean().clamp(min=1e-5)
  1976. iscale = 1 / scale
  1977. # TODO: multiply by the scale directly instead of inverting it twice
  1978. # (this is also unnecessarily doubly inverted upstream)
  1979. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1980. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1981. return result.type(dtype)
  1982. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1983. new_name = self.map_tensor_name(name)
  1984. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1985. gguf.MODEL_TENSOR.ATTN_Q,
  1986. gguf.MODEL_TENSOR.ATTN_K,
  1987. gguf.MODEL_TENSOR.ATTN_V,
  1988. gguf.MODEL_TENSOR.ATTN_OUT,
  1989. gguf.MODEL_TENSOR.FFN_UP,
  1990. gguf.MODEL_TENSOR.FFN_DOWN,
  1991. gguf.MODEL_TENSOR.FFN_GATE,
  1992. ]):
  1993. # transform weight into 1/0/-1 (in fp32)
  1994. data_torch = self.weight_quant(data_torch)
  1995. yield (new_name, data_torch)
  1996. @ModelBase.register("GrokForCausalLM")
  1997. class GrokModel(TextModel):
  1998. model_arch = gguf.MODEL_ARCH.GROK
  1999. def set_vocab(self):
  2000. self._set_vocab_sentencepiece()
  2001. def __init__(self, *args, **kwargs):
  2002. super().__init__(*args, **kwargs)
  2003. def set_gguf_parameters(self):
  2004. super().set_gguf_parameters()
  2005. _experts: list[dict[str, Tensor]] | None = None
  2006. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2007. # process the experts separately
  2008. if name.find(".moe.") != -1:
  2009. n_experts = self.hparams["num_local_experts"]
  2010. assert bid is not None
  2011. if self._experts is None:
  2012. self._experts = [{} for _ in range(self.block_count)]
  2013. self._experts[bid][name] = data_torch
  2014. if len(self._experts[bid]) >= n_experts * 3:
  2015. tensors: list[tuple[str, Tensor]] = []
  2016. # merge the experts into a single 3d tensor
  2017. for wid in ["linear", "linear_1", "linear_v"]:
  2018. datas: list[Tensor] = []
  2019. for xid in range(n_experts):
  2020. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2021. datas.append(self._experts[bid][ename])
  2022. del self._experts[bid][ename]
  2023. data_torch = torch.stack(datas, dim=0)
  2024. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2025. new_name = self.map_tensor_name(merged_name)
  2026. tensors.append((new_name, data_torch))
  2027. return tensors
  2028. else:
  2029. return []
  2030. return [(self.map_tensor_name(name), data_torch)]
  2031. @ModelBase.register("DbrxForCausalLM")
  2032. class DbrxModel(TextModel):
  2033. model_arch = gguf.MODEL_ARCH.DBRX
  2034. def set_gguf_parameters(self):
  2035. ffn_config = self.hparams["ffn_config"]
  2036. attn_config = self.hparams["attn_config"]
  2037. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2038. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2039. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2040. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2041. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2042. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2043. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2044. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2045. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2046. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2047. self.gguf_writer.add_layer_norm_eps(1e-5)
  2048. self.gguf_writer.add_file_type(self.ftype)
  2049. logger.info(f"gguf: file type = {self.ftype}")
  2050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2051. del bid # unused
  2052. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2053. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2054. n_embd = self.hparams["d_model"]
  2055. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2056. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2057. # But llama.cpp moe graph works differently
  2058. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2059. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2060. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2061. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2062. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2063. experts = False
  2064. for exp_tensor_name in exp_tensor_names.keys():
  2065. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2066. experts = True
  2067. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2068. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2069. data_torch = data_torch.permute(*permute_tensor)
  2070. break
  2071. # map tensor names
  2072. # In MoE models the ffn tensors are typically most of the model weights,
  2073. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2074. # Every other model has the weight names ending in .weight,
  2075. # let's assume that is the convention which is not the case for dbrx:
  2076. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2077. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2078. return [(new_name, data_torch)]
  2079. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2080. del name, new_name, bid # unused
  2081. return n_dims > 1
  2082. @ModelBase.register("MiniCPMForCausalLM")
  2083. class MiniCPMModel(TextModel):
  2084. model_arch = gguf.MODEL_ARCH.MINICPM
  2085. def set_gguf_parameters(self):
  2086. super().set_gguf_parameters()
  2087. embedding_scale = float(self.hparams["scale_emb"])
  2088. self.gguf_writer.add_embedding_scale(embedding_scale)
  2089. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2090. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2091. self.gguf_writer.add_residual_scale(residual_scale)
  2092. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2093. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2094. self.gguf_writer.add_logit_scale(logit_scale)
  2095. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2096. rope_scaling = self.hparams.get("rope_scaling") or {}
  2097. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2098. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2099. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2100. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2101. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2102. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2103. if rope_scaling is not None:
  2104. long_factors = rope_scaling.get('long_factor', None)
  2105. short_factors = rope_scaling.get('short_factor', None)
  2106. if long_factors is None or short_factors is None:
  2107. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2108. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2109. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2110. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2111. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2112. def set_vocab(self):
  2113. self._set_vocab_sentencepiece()
  2114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2115. del bid # unused
  2116. n_head = self.hparams["num_attention_heads"]
  2117. n_kv_head = self.hparams.get("num_key_value_heads")
  2118. # HF models permute some of the tensors, so we need to undo that
  2119. if name.endswith(("q_proj.weight")):
  2120. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2121. if name.endswith(("k_proj.weight")):
  2122. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2123. return [(self.map_tensor_name(name), data_torch)]
  2124. @ModelBase.register("MiniCPM3ForCausalLM")
  2125. class MiniCPM3Model(TextModel):
  2126. model_arch = gguf.MODEL_ARCH.MINICPM3
  2127. def set_gguf_parameters(self):
  2128. hparams = self.hparams
  2129. self.gguf_writer.add_file_type(self.ftype)
  2130. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2131. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2132. self.gguf_writer.add_block_count(self.block_count)
  2133. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2134. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2135. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2136. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2137. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2138. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2139. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2140. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2141. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2142. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2143. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2144. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2145. if rope_scaling is not None:
  2146. rope_dims = self.hparams["qk_rope_head_dim"]
  2147. long_factors = rope_scaling.get('long_factor', None)
  2148. short_factors = rope_scaling.get('short_factor', None)
  2149. if long_factors is None or short_factors is None:
  2150. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2151. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2152. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2153. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2154. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2155. def set_vocab(self):
  2156. self._set_vocab_sentencepiece()
  2157. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2158. if n_kv_head is not None and n_head != n_kv_head:
  2159. n_head //= n_kv_head
  2160. return (
  2161. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2162. .swapaxes(1, 2)
  2163. .reshape(weights.shape)
  2164. )
  2165. @ModelBase.register("QWenLMHeadModel")
  2166. class QwenModel(TextModel):
  2167. model_arch = gguf.MODEL_ARCH.QWEN
  2168. @staticmethod
  2169. def token_bytes_to_string(b):
  2170. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2171. byte_encoder = bytes_to_unicode()
  2172. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2173. @staticmethod
  2174. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2175. parts = [bytes([b]) for b in token]
  2176. while True:
  2177. min_idx = None
  2178. min_rank = None
  2179. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2180. rank = mergeable_ranks.get(pair[0] + pair[1])
  2181. if rank is not None and (min_rank is None or rank < min_rank):
  2182. min_idx = i
  2183. min_rank = rank
  2184. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2185. break
  2186. assert min_idx is not None
  2187. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2188. return parts
  2189. def set_vocab(self):
  2190. self._set_vocab_qwen()
  2191. def set_gguf_parameters(self):
  2192. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2193. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2194. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2195. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2196. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2197. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2198. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2199. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2200. self.gguf_writer.add_file_type(self.ftype)
  2201. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2202. class Qwen2Model(TextModel):
  2203. model_arch = gguf.MODEL_ARCH.QWEN2
  2204. def set_vocab(self):
  2205. try:
  2206. self._set_vocab_sentencepiece()
  2207. except FileNotFoundError:
  2208. self._set_vocab_gpt2()
  2209. def set_gguf_parameters(self):
  2210. super().set_gguf_parameters()
  2211. self._try_set_pooling_type()
  2212. rope_scaling = self.hparams.get("rope_scaling") or {}
  2213. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2214. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2215. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2216. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2218. if self.hf_arch == "Qwen2Model":
  2219. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2220. if "language_model." in name:
  2221. name = name.replace("language_model.", "") # for InternVL
  2222. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2223. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2224. # skip vision and audio tensors
  2225. return []
  2226. yield from super().modify_tensors(data_torch, name, bid)
  2227. @ModelBase.register(
  2228. "Qwen2VLModel",
  2229. "Qwen2VLForConditionalGeneration",
  2230. "Qwen2_5_VLForConditionalGeneration",
  2231. "Qwen2_5OmniModel",
  2232. )
  2233. class Qwen2VLModel(TextModel):
  2234. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2235. def set_gguf_parameters(self):
  2236. super().set_gguf_parameters()
  2237. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2238. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2239. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2240. def set_vocab(self):
  2241. try:
  2242. self._set_vocab_sentencepiece()
  2243. except FileNotFoundError:
  2244. self._set_vocab_gpt2()
  2245. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2246. del bid # unused
  2247. if name.startswith("thinker."):
  2248. name = name.replace("thinker.", "")
  2249. if name.startswith("visual") or name.startswith("audio") or \
  2250. name.startswith("talker") or name.startswith("token2wav"):
  2251. # skip multimodal tensors
  2252. return []
  2253. return [(self.map_tensor_name(name), data_torch)]
  2254. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2255. class Qwen2VLVisionModel(MmprojModel):
  2256. def __init__(self, *args, **kwargs):
  2257. super().__init__(*args, **kwargs)
  2258. assert self.hparams_vision is not None
  2259. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2260. # rename config.json values
  2261. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2262. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2263. if "embed_dim" in self.hparams_vision: # qwen2vl
  2264. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2265. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2266. def set_gguf_parameters(self):
  2267. super().set_gguf_parameters()
  2268. assert self.hparams_vision is not None
  2269. hparams = self.hparams_vision
  2270. model_type = self.global_config['model_type']
  2271. if model_type == 'qwen2_vl':
  2272. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2273. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2274. if model_type == 'qwen2_5_omni':
  2275. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2276. else:
  2277. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2278. self.gguf_writer.add_vision_use_silu(True)
  2279. # find n_wa_pattern (window attention pattern)
  2280. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2281. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2282. n_wa_pattern = fullatt_block_indexes[0] + 1
  2283. # validate n_wa_pattern
  2284. for i in range(1, len(fullatt_block_indexes)):
  2285. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2286. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2287. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2288. else:
  2289. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2290. # default values below are taken from HF tranformers code
  2291. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2292. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2293. del bid, name, n_dims # unused
  2294. if ".patch_embd." in new_name:
  2295. return gguf.GGMLQuantizationType.F16
  2296. if ".position_embd." in new_name:
  2297. return gguf.GGMLQuantizationType.F32
  2298. return False
  2299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2300. del bid # unused
  2301. if name.startswith("visual."):
  2302. # process visual tensors
  2303. # split QKV tensors if needed
  2304. if ".qkv." in name:
  2305. if data_torch.ndim == 2: # weight
  2306. c3, _ = data_torch.shape
  2307. else: # bias
  2308. c3 = data_torch.shape[0]
  2309. assert c3 % 3 == 0
  2310. c = c3 // 3
  2311. wq = data_torch[:c]
  2312. wk = data_torch[c: c * 2]
  2313. wv = data_torch[c * 2:]
  2314. return [
  2315. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2316. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2317. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2318. ]
  2319. elif 'patch_embed.proj.weight' in name:
  2320. # split Conv3D into Conv2Ds
  2321. c1, c2, kt, kh, kw = data_torch.shape
  2322. del c1, c2, kh, kw # unused
  2323. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2324. return [
  2325. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2326. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2327. ]
  2328. else:
  2329. return [(self.map_tensor_name(name), data_torch)]
  2330. return [] # skip other tensors
  2331. @ModelBase.register("Qwen2_5OmniModel")
  2332. class Qwen25OmniModel(Qwen2VLVisionModel):
  2333. has_vision_encoder = True
  2334. has_audio_encoder = True
  2335. def __init__(self, *args, **kwargs):
  2336. super().__init__(*args, **kwargs)
  2337. assert self.hparams_audio is not None
  2338. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2339. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2340. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2341. def set_gguf_parameters(self):
  2342. super().set_gguf_parameters()
  2343. assert self.hparams_audio is not None
  2344. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2345. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2346. def get_vision_config(self) -> dict[str, Any] | None:
  2347. return self.global_config["thinker_config"].get("vision_config")
  2348. def get_audio_config(self) -> dict[str, Any] | None:
  2349. return self.global_config["thinker_config"].get("audio_config")
  2350. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2351. # SinusoidsPositionEmbedding
  2352. assert self.hparams_audio is not None
  2353. max_timescale = 10000
  2354. length = 1500
  2355. channels = self.hparams_audio["hidden_size"]
  2356. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2357. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2358. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2359. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2360. yield ("audio_tower.embed_positions.weight", pos_embd)
  2361. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2362. del bid, new_name, n_dims # unused
  2363. if ".conv" in name and ".weight" in name:
  2364. return gguf.GGMLQuantizationType.F16
  2365. return False
  2366. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2367. if name.startswith("thinker."):
  2368. name = name.replace("thinker.", "")
  2369. if name.startswith("audio_tower"):
  2370. # process audio tensors
  2371. if "conv1.bias" in name or "conv2.bias" in name:
  2372. # transpose conv1 and conv2 bias
  2373. data_torch = data_torch.unsqueeze(-1)
  2374. if "audio_bos_eos_token" in name:
  2375. # this tensor is left unused in transformers code
  2376. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2377. return []
  2378. return [(self.map_tensor_name(name), data_torch)]
  2379. return super().modify_tensors(data_torch, name, bid)
  2380. @ModelBase.register("InternVisionModel")
  2381. class InternVisionModel(MmprojModel):
  2382. def set_gguf_parameters(self):
  2383. super().set_gguf_parameters()
  2384. hparams = self.hparams
  2385. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2386. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2387. # hidden_act
  2388. if hparams["hidden_act"] == "silu":
  2389. self.gguf_writer.add_vision_use_silu(True)
  2390. elif hparams["hidden_act"] == "gelu":
  2391. self.gguf_writer.add_vision_use_gelu(True)
  2392. else:
  2393. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2394. # downsample_ratio
  2395. downsample_ratio = self.global_config.get("downsample_ratio")
  2396. assert downsample_ratio is not None
  2397. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2398. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2399. del bid, name, n_dims # unused
  2400. if ".patch_embd." in new_name:
  2401. return gguf.GGMLQuantizationType.F16
  2402. if ".position_embd." in new_name:
  2403. return gguf.GGMLQuantizationType.F32
  2404. return False
  2405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2406. del bid # unused
  2407. if name.startswith("vision_model") or name.startswith("mlp"):
  2408. # process visual tensors
  2409. # correct name
  2410. if name.startswith("vision_model"):
  2411. name = "vision_tower." + name
  2412. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2413. name += ".weight"
  2414. # split QKV tensors if needed
  2415. if ".qkv." in name:
  2416. if data_torch.ndim == 2: # weight
  2417. c3, _ = data_torch.shape
  2418. else: # bias
  2419. c3 = data_torch.shape[0]
  2420. assert c3 % 3 == 0
  2421. c = c3 // 3
  2422. wq = data_torch[:c]
  2423. wk = data_torch[c: c * 2]
  2424. wv = data_torch[c * 2:]
  2425. return [
  2426. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2427. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2428. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2429. ]
  2430. return [(self.map_tensor_name(name), data_torch)]
  2431. return [] # skip other tensors
  2432. @ModelBase.register("WavTokenizerDec")
  2433. class WavTokenizerDecModel(TextModel):
  2434. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2435. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2436. del bid # unused
  2437. if \
  2438. name.endswith("codebook.cluster_size") or \
  2439. name.endswith("codebook.embed_avg") or \
  2440. name.endswith("codebook.inited"):
  2441. logger.debug(f"Skipping {name!r}")
  2442. return []
  2443. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2444. return [(self.map_tensor_name(name), data_torch)]
  2445. def set_vocab(self):
  2446. self._set_vocab_none()
  2447. def set_gguf_parameters(self):
  2448. super().set_gguf_parameters()
  2449. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2450. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2451. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2452. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2453. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2454. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2455. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2456. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2457. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2458. self.gguf_writer.add_causal_attention(False)
  2459. @ModelBase.register("Qwen2MoeForCausalLM")
  2460. class Qwen2MoeModel(TextModel):
  2461. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2462. def set_gguf_parameters(self):
  2463. super().set_gguf_parameters()
  2464. if (n_experts := self.hparams.get("num_experts")) is not None:
  2465. self.gguf_writer.add_expert_count(n_experts)
  2466. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2467. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2468. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2469. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2470. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2471. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2472. # YaRN is not enabled by default
  2473. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2474. rope_scaling = self.hparams.get("rope_scaling") or {}
  2475. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2476. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2477. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2478. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2479. _experts: list[dict[str, Tensor]] | None = None
  2480. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2481. # process the experts separately
  2482. if name.find("experts") != -1:
  2483. n_experts = self.hparams["num_experts"]
  2484. assert bid is not None
  2485. if self._experts is None:
  2486. self._experts = [{} for _ in range(self.block_count)]
  2487. self._experts[bid][name] = data_torch
  2488. if len(self._experts[bid]) >= n_experts * 3:
  2489. tensors: list[tuple[str, Tensor]] = []
  2490. # merge the experts into a single 3d tensor
  2491. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2492. datas: list[Tensor] = []
  2493. for xid in range(n_experts):
  2494. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2495. datas.append(self._experts[bid][ename])
  2496. del self._experts[bid][ename]
  2497. data_torch = torch.stack(datas, dim=0)
  2498. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2499. new_name = self.map_tensor_name(merged_name)
  2500. tensors.append((new_name, data_torch))
  2501. return tensors
  2502. else:
  2503. return []
  2504. return [(self.map_tensor_name(name), data_torch)]
  2505. def prepare_tensors(self):
  2506. super().prepare_tensors()
  2507. if self._experts is not None:
  2508. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2509. experts = [k for d in self._experts for k in d.keys()]
  2510. if len(experts) > 0:
  2511. raise ValueError(f"Unprocessed experts: {experts}")
  2512. @ModelBase.register("Qwen3ForCausalLM")
  2513. class Qwen3Model(Qwen2Model):
  2514. model_arch = gguf.MODEL_ARCH.QWEN3
  2515. @ModelBase.register("Qwen3MoeForCausalLM")
  2516. class Qwen3MoeModel(Qwen2MoeModel):
  2517. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2518. @ModelBase.register("GPT2LMHeadModel")
  2519. class GPT2Model(TextModel):
  2520. model_arch = gguf.MODEL_ARCH.GPT2
  2521. def set_gguf_parameters(self):
  2522. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2523. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2524. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2525. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2526. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2527. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2528. self.gguf_writer.add_file_type(self.ftype)
  2529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2530. del bid # unused
  2531. tensors: list[tuple[str, Tensor]] = []
  2532. # we don't need these
  2533. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2534. return tensors
  2535. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2536. data_torch = data_torch.transpose(1, 0)
  2537. new_name = self.map_tensor_name(name)
  2538. tensors.append((new_name, data_torch))
  2539. return tensors
  2540. @ModelBase.register("PhiForCausalLM")
  2541. class Phi2Model(TextModel):
  2542. model_arch = gguf.MODEL_ARCH.PHI2
  2543. def set_gguf_parameters(self):
  2544. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2545. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2546. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2547. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2548. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2549. self.gguf_writer.add_embedding_length(n_embd)
  2550. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2551. self.gguf_writer.add_block_count(block_count)
  2552. self.gguf_writer.add_head_count(n_head)
  2553. self.gguf_writer.add_head_count_kv(n_head)
  2554. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2555. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2556. self.gguf_writer.add_file_type(self.ftype)
  2557. self.gguf_writer.add_add_bos_token(False)
  2558. @ModelBase.register("Phi3ForCausalLM")
  2559. class Phi3MiniModel(TextModel):
  2560. model_arch = gguf.MODEL_ARCH.PHI3
  2561. def set_vocab(self):
  2562. # Phi-4 model uses GPT2Tokenizer
  2563. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2564. if tokenizer_config_file.is_file():
  2565. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2566. tokenizer_config_json = json.load(f)
  2567. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2568. if tokenizer_class == 'GPT2Tokenizer':
  2569. return self._set_vocab_gpt2()
  2570. from sentencepiece import SentencePieceProcessor
  2571. tokenizer_path = self.dir_model / 'tokenizer.model'
  2572. if not tokenizer_path.is_file():
  2573. raise ValueError(f'Error: Missing {tokenizer_path}')
  2574. tokenizer = SentencePieceProcessor()
  2575. tokenizer.LoadFromFile(str(tokenizer_path))
  2576. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2577. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2578. scores: list[float] = [-10000.0] * vocab_size
  2579. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2580. for token_id in range(tokenizer.vocab_size()):
  2581. piece = tokenizer.IdToPiece(token_id)
  2582. text = piece.encode("utf-8")
  2583. score = tokenizer.GetScore(token_id)
  2584. toktype = SentencePieceTokenTypes.NORMAL
  2585. if tokenizer.IsUnknown(token_id):
  2586. toktype = SentencePieceTokenTypes.UNKNOWN
  2587. elif tokenizer.IsControl(token_id):
  2588. toktype = SentencePieceTokenTypes.CONTROL
  2589. elif tokenizer.IsUnused(token_id):
  2590. toktype = SentencePieceTokenTypes.UNUSED
  2591. elif tokenizer.IsByte(token_id):
  2592. toktype = SentencePieceTokenTypes.BYTE
  2593. tokens[token_id] = text
  2594. scores[token_id] = score
  2595. toktypes[token_id] = toktype
  2596. added_tokens_file = self.dir_model / 'added_tokens.json'
  2597. if added_tokens_file.is_file():
  2598. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2599. added_tokens_json = json.load(f)
  2600. for key in added_tokens_json:
  2601. token_id = added_tokens_json[key]
  2602. if token_id >= vocab_size:
  2603. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2604. continue
  2605. tokens[token_id] = key.encode("utf-8")
  2606. scores[token_id] = -1000.0
  2607. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2608. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2609. if tokenizer_config_file.is_file():
  2610. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2611. tokenizer_config_json = json.load(f)
  2612. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2613. for token_id, foken_data in added_tokens_decoder.items():
  2614. token_id = int(token_id)
  2615. token = foken_data["content"].encode("utf-8")
  2616. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2617. if tokens[token_id] != token:
  2618. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2619. tokens[token_id] = token
  2620. scores[token_id] = -1000.0
  2621. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2622. if foken_data.get("special"):
  2623. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2624. tokenizer_file = self.dir_model / 'tokenizer.json'
  2625. if tokenizer_file.is_file():
  2626. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2627. tokenizer_json = json.load(f)
  2628. added_tokens = tokenizer_json.get("added_tokens", [])
  2629. for foken_data in added_tokens:
  2630. token_id = int(foken_data["id"])
  2631. token = foken_data["content"].encode("utf-8")
  2632. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2633. if tokens[token_id] != token:
  2634. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2635. tokens[token_id] = token
  2636. scores[token_id] = -1000.0
  2637. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2638. if foken_data.get("special"):
  2639. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2640. self.gguf_writer.add_tokenizer_model("llama")
  2641. self.gguf_writer.add_tokenizer_pre("default")
  2642. self.gguf_writer.add_token_list(tokens)
  2643. self.gguf_writer.add_token_scores(scores)
  2644. self.gguf_writer.add_token_types(toktypes)
  2645. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2646. special_vocab.add_to_gguf(self.gguf_writer)
  2647. def set_gguf_parameters(self):
  2648. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2649. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2650. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2651. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2652. rms_eps = self.find_hparam(["rms_norm_eps"])
  2653. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2654. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2655. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2656. rope_dims = int(rot_pct * n_embd) // n_head
  2657. self.gguf_writer.add_context_length(max_pos_embds)
  2658. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2659. self.gguf_writer.add_embedding_length(n_embd)
  2660. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2661. self.gguf_writer.add_block_count(block_count)
  2662. self.gguf_writer.add_head_count(n_head)
  2663. self.gguf_writer.add_head_count_kv(n_head_kv)
  2664. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2665. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2666. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2667. self.gguf_writer.add_file_type(self.ftype)
  2668. sliding_window = self.hparams.get("sliding_window")
  2669. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2670. if sliding_window is None:
  2671. sliding_window = 0
  2672. self.gguf_writer.add_sliding_window(sliding_window)
  2673. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2674. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2675. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2676. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2677. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2678. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2679. rope_dims = int(rot_pct * n_embd) // n_head
  2680. # write rope scaling for long context (128k) model
  2681. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2682. if rope_scaling is None:
  2683. return
  2684. scale = max_pos_embds / orig_max_pos_embds
  2685. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  2686. if len(rope_scaling_type) == 0:
  2687. raise KeyError('Missing the required key rope_scaling.type')
  2688. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2689. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2690. elif rope_scaling_type == 'yarn':
  2691. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2692. else:
  2693. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2694. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2695. long_factors = rope_scaling.get('long_factor', None)
  2696. short_factors = rope_scaling.get('short_factor', None)
  2697. if long_factors is None or short_factors is None:
  2698. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2699. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2700. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2701. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2702. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2703. @ModelBase.register("PhiMoEForCausalLM")
  2704. class PhiMoeModel(Phi3MiniModel):
  2705. model_arch = gguf.MODEL_ARCH.PHIMOE
  2706. _experts: list[dict[str, Tensor]] | None = None
  2707. def set_gguf_parameters(self):
  2708. super().set_gguf_parameters()
  2709. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2710. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2711. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2712. # process the experts separately
  2713. if name.find("block_sparse_moe.experts") != -1:
  2714. n_experts = self.hparams["num_local_experts"]
  2715. assert bid is not None
  2716. if self._experts is None:
  2717. self._experts = [{} for _ in range(self.block_count)]
  2718. self._experts[bid][name] = data_torch
  2719. if len(self._experts[bid]) >= n_experts * 3:
  2720. tensors: list[tuple[str, Tensor]] = []
  2721. # merge the experts into a single 3d tensor
  2722. for w_name in ["w1", "w2", "w3"]:
  2723. datas: list[Tensor] = []
  2724. for xid in range(n_experts):
  2725. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2726. datas.append(self._experts[bid][ename])
  2727. del self._experts[bid][ename]
  2728. data_torch = torch.stack(datas, dim=0)
  2729. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2730. new_name = self.map_tensor_name(merged_name)
  2731. tensors.append((new_name, data_torch))
  2732. return tensors
  2733. else:
  2734. return []
  2735. return [(self.map_tensor_name(name), data_torch)]
  2736. def prepare_tensors(self):
  2737. super().prepare_tensors()
  2738. if self._experts is not None:
  2739. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2740. experts = [k for d in self._experts for k in d.keys()]
  2741. if len(experts) > 0:
  2742. raise ValueError(f"Unprocessed experts: {experts}")
  2743. @ModelBase.register("PlamoForCausalLM")
  2744. class PlamoModel(TextModel):
  2745. model_arch = gguf.MODEL_ARCH.PLAMO
  2746. def set_vocab(self):
  2747. self._set_vocab_sentencepiece()
  2748. def set_gguf_parameters(self):
  2749. hparams = self.hparams
  2750. block_count = hparams["num_hidden_layers"]
  2751. self.gguf_writer.add_context_length(4096) # not in config.json
  2752. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2753. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2754. self.gguf_writer.add_block_count(block_count)
  2755. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2756. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2757. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2758. self.gguf_writer.add_file_type(self.ftype)
  2759. def shuffle_attn_q_weight(self, data_torch):
  2760. assert data_torch.size() == (5120, 5120)
  2761. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2762. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2763. data_torch = torch.reshape(data_torch, (5120, 5120))
  2764. return data_torch
  2765. def shuffle_attn_output_weight(self, data_torch):
  2766. assert data_torch.size() == (5120, 5120)
  2767. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2768. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2769. data_torch = torch.reshape(data_torch, (5120, 5120))
  2770. return data_torch
  2771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2772. del bid # unused
  2773. new_name = self.map_tensor_name(name)
  2774. # shuffle for broadcasting of gqa in ggml_mul_mat
  2775. if new_name.endswith("attn_q.weight"):
  2776. data_torch = self.shuffle_attn_q_weight(data_torch)
  2777. elif new_name.endswith("attn_output.weight"):
  2778. data_torch = self.shuffle_attn_output_weight(data_torch)
  2779. return [(new_name, data_torch)]
  2780. @ModelBase.register("CodeShellForCausalLM")
  2781. class CodeShellModel(TextModel):
  2782. model_arch = gguf.MODEL_ARCH.CODESHELL
  2783. def set_gguf_parameters(self):
  2784. block_count = self.hparams["n_layer"]
  2785. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2786. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2787. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2788. self.gguf_writer.add_block_count(block_count)
  2789. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2790. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2791. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2792. self.gguf_writer.add_file_type(self.ftype)
  2793. self.gguf_writer.add_rope_freq_base(10000.0)
  2794. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2795. self.gguf_writer.add_rope_scaling_factor(1.0)
  2796. _has_tok_embd = False
  2797. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2798. del bid # unused
  2799. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2800. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2801. new_name = self.map_tensor_name(name)
  2802. # assuming token_embd.weight is seen before output.weight
  2803. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2804. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2805. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2806. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2807. self.tensor_names.remove("transformer.wte.weight")
  2808. elif new_name == tok_embd_name:
  2809. self._has_tok_embd = True
  2810. return [(new_name, data_torch)]
  2811. @ModelBase.register("InternLM2ForCausalLM")
  2812. class InternLM2Model(TextModel):
  2813. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2814. def set_vocab(self):
  2815. # (TODO): Is there a better way?
  2816. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2817. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2818. # recognized as an empty string in C++.
  2819. from sentencepiece import SentencePieceProcessor
  2820. from sentencepiece import sentencepiece_model_pb2 as model
  2821. tokenizer_path = self.dir_model / 'tokenizer.model'
  2822. tokens: list[bytes] = []
  2823. scores: list[float] = []
  2824. toktypes: list[int] = []
  2825. if not tokenizer_path.is_file():
  2826. logger.error(f'Error: Missing {tokenizer_path}')
  2827. sys.exit(1)
  2828. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2829. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2830. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2831. tokenizer = SentencePieceProcessor()
  2832. tokenizer.LoadFromFile(str(tokenizer_path))
  2833. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2834. for token_id in range(vocab_size):
  2835. piece = tokenizer.IdToPiece(token_id)
  2836. text = piece.encode("utf-8")
  2837. score = tokenizer.GetScore(token_id)
  2838. if text == b"\x00":
  2839. # (TODO): fixme
  2840. # Hack here and replace the \x00 characters.
  2841. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2842. text = "🐉".encode("utf-8")
  2843. toktype = SentencePieceTokenTypes.NORMAL
  2844. if tokenizer.IsUnknown(token_id):
  2845. toktype = SentencePieceTokenTypes.UNKNOWN
  2846. elif tokenizer.IsControl(token_id):
  2847. toktype = SentencePieceTokenTypes.CONTROL
  2848. elif tokenizer.IsUnused(token_id):
  2849. toktype = SentencePieceTokenTypes.UNUSED
  2850. elif tokenizer.IsByte(token_id):
  2851. toktype = SentencePieceTokenTypes.BYTE
  2852. # take care of ununsed raw token
  2853. if piece.startswith('[UNUSED'):
  2854. toktype = SentencePieceTokenTypes.UNUSED
  2855. tokens.append(text)
  2856. scores.append(score)
  2857. toktypes.append(toktype)
  2858. added_tokens_file = self.dir_model / 'added_tokens.json'
  2859. if added_tokens_file.is_file():
  2860. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2861. added_tokens_json = json.load(f)
  2862. for key in added_tokens_json:
  2863. tokens.append(key.encode("utf-8"))
  2864. scores.append(-1000.0)
  2865. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2866. chat_eos_token = '<|im_end|>'
  2867. chat_eos_token_id = None
  2868. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2869. if tokenizer_config_file.is_file():
  2870. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2871. tokenizer_config_json = json.load(f)
  2872. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2873. for token_id, foken_data in added_tokens_decoder.items():
  2874. token_id = int(token_id)
  2875. token = foken_data["content"]
  2876. if token == chat_eos_token:
  2877. chat_eos_token_id = token_id
  2878. token = token.encode("utf-8")
  2879. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2880. if tokens[token_id] != token:
  2881. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2882. tokens[token_id] = token
  2883. scores[token_id] = -1000.0
  2884. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2885. if foken_data.get("special"):
  2886. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2887. tokenizer_file = self.dir_model / 'tokenizer.json'
  2888. if tokenizer_file.is_file():
  2889. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2890. tokenizer_json = json.load(f)
  2891. added_tokens = tokenizer_json.get("added_tokens", [])
  2892. for foken_data in added_tokens:
  2893. token_id = int(foken_data["id"])
  2894. token = foken_data["content"]
  2895. if token == chat_eos_token:
  2896. chat_eos_token_id = token_id
  2897. token = token.encode("utf-8")
  2898. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2899. if tokens[token_id] != token:
  2900. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2901. tokens[token_id] = token
  2902. scores[token_id] = -1000.0
  2903. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2904. if foken_data.get("special"):
  2905. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2906. self.gguf_writer.add_tokenizer_model("llama")
  2907. self.gguf_writer.add_tokenizer_pre("default")
  2908. self.gguf_writer.add_token_list(tokens)
  2909. self.gguf_writer.add_token_scores(scores)
  2910. self.gguf_writer.add_token_types(toktypes)
  2911. self.gguf_writer.add_add_space_prefix(add_prefix)
  2912. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2913. old_eos = special_vocab.special_token_ids["eos"]
  2914. if chat_eos_token_id is not None:
  2915. # For the chat model, we replace the eos with '<|im_end|>'.
  2916. # TODO: this is a hack, should be fixed
  2917. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2918. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2919. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2920. " in chat mode so that the conversation can end normally.")
  2921. special_vocab.add_to_gguf(self.gguf_writer)
  2922. def set_gguf_parameters(self):
  2923. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2924. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2925. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2926. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2927. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2928. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2929. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2930. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2931. self.gguf_writer.add_file_type(self.ftype)
  2932. rope_scaling = self.hparams.get("rope_scaling") or {}
  2933. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2934. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2935. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2937. num_heads = self.hparams["num_attention_heads"]
  2938. num_kv_heads = self.hparams["num_key_value_heads"]
  2939. n_embd = self.hparams["hidden_size"]
  2940. q_per_kv = num_heads // num_kv_heads
  2941. head_dim = n_embd // num_heads
  2942. num_groups = num_heads // q_per_kv
  2943. name = name.replace("language_model.", "") # InternVL
  2944. if name.startswith("mlp") or name.startswith("vision_model"):
  2945. # skip visual tensors
  2946. return []
  2947. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2948. qkv = data_torch
  2949. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2950. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2951. # The model weights of q and k equire additional reshape.
  2952. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2953. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2954. v = v.reshape((-1, v.shape[-1]))
  2955. return [
  2956. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2957. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2958. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2959. ]
  2960. else:
  2961. return [(self.map_tensor_name(name), data_torch)]
  2962. @ModelBase.register("InternLM3ForCausalLM")
  2963. class InternLM3Model(TextModel):
  2964. model_arch = gguf.MODEL_ARCH.LLAMA
  2965. def set_vocab(self):
  2966. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2967. self.gguf_writer.add_tokenizer_model("llama")
  2968. self.gguf_writer.add_tokenizer_pre("default")
  2969. self.gguf_writer.add_token_list(tokens)
  2970. self.gguf_writer.add_token_scores(scores)
  2971. self.gguf_writer.add_token_types(toktypes)
  2972. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2973. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2974. if tokenizer_config_file.is_file():
  2975. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2976. tokenizer_config_json = json.load(f)
  2977. if "add_prefix_space" in tokenizer_config_json:
  2978. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2979. if "added_tokens_decoder" in tokenizer_config_json:
  2980. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2981. if token_data.get("special"):
  2982. token_id = int(token_id)
  2983. token = token_data["content"]
  2984. special_vocab._set_special_token(token, token_id)
  2985. # update eos token
  2986. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2987. special_vocab.special_token_ids["eos"] = token_id
  2988. special_vocab.add_to_gguf(self.gguf_writer)
  2989. def set_gguf_parameters(self):
  2990. super().set_gguf_parameters()
  2991. hparams = self.hparams
  2992. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2993. if "head_dim" in hparams:
  2994. rope_dim = hparams["head_dim"]
  2995. else:
  2996. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2997. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2998. rope_scaling = self.hparams.get("rope_scaling") or {}
  2999. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3000. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3001. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3002. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3003. n_head = self.hparams["num_attention_heads"]
  3004. n_kv_head = self.hparams.get("num_key_value_heads")
  3005. name = name.replace("language_model.", "") # InternVL
  3006. if name.startswith("mlp") or name.startswith("vision_model"):
  3007. # skip visual tensors
  3008. return []
  3009. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3010. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3011. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3012. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3013. return [(self.map_tensor_name(name), data_torch)]
  3014. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3015. class BertModel(TextModel):
  3016. model_arch = gguf.MODEL_ARCH.BERT
  3017. def __init__(self, *args, **kwargs):
  3018. super().__init__(*args, **kwargs)
  3019. self.vocab_size = None
  3020. def set_gguf_parameters(self):
  3021. super().set_gguf_parameters()
  3022. self.gguf_writer.add_causal_attention(False)
  3023. self._try_set_pooling_type()
  3024. def set_vocab(self):
  3025. tokens, toktypes, tokpre = self.get_vocab_base()
  3026. self.vocab_size = len(tokens)
  3027. # we need this to validate the size of the token_type embeddings
  3028. # though currently we are passing all zeros to the token_type embeddings
  3029. # "Sequence A" or "Sequence B"
  3030. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3031. # convert to phantom space vocab
  3032. def phantom(tok):
  3033. if tok.startswith("[") and tok.endswith("]"):
  3034. return tok
  3035. if tok.startswith("##"):
  3036. return tok[2:]
  3037. return "\u2581" + tok
  3038. tokens = list(map(phantom, tokens))
  3039. # add vocab to gguf
  3040. self.gguf_writer.add_tokenizer_model("bert")
  3041. self.gguf_writer.add_tokenizer_pre(tokpre)
  3042. self.gguf_writer.add_token_list(tokens)
  3043. self.gguf_writer.add_token_types(toktypes)
  3044. # handle special tokens
  3045. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3046. special_vocab.add_to_gguf(self.gguf_writer)
  3047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3048. del bid # unused
  3049. if name.startswith("bert."):
  3050. name = name[5:]
  3051. if name.endswith(".gamma"):
  3052. name = name[:-6] + ".weight"
  3053. if name.endswith(".beta"):
  3054. name = name[:-5] + ".bias"
  3055. # we are only using BERT for embeddings so we don't need the pooling layer
  3056. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3057. return [] # we don't need these
  3058. if name.startswith("cls.predictions"):
  3059. return []
  3060. if name.startswith("cls.seq_relationship"):
  3061. return []
  3062. # For BertForSequenceClassification (direct projection layer)
  3063. if name == "classifier.weight":
  3064. name = "classifier.out_proj.weight"
  3065. if name == "classifier.bias":
  3066. name = "classifier.out_proj.bias"
  3067. return [(self.map_tensor_name(name), data_torch)]
  3068. def _xlmroberta_tokenizer_init(self) -> None:
  3069. # we need the pad_token_id to know how to chop down position_embd matrix
  3070. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3071. self._position_offset = 1 + pad_token_id
  3072. if "max_position_embeddings" in self.hparams:
  3073. self.hparams["max_position_embeddings"] -= self._position_offset
  3074. else:
  3075. self._position_offset = None
  3076. def _xlmroberta_set_vocab(self) -> None:
  3077. # to avoid TypeError: Descriptors cannot be created directly
  3078. # exception when importing sentencepiece_model_pb2
  3079. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3080. from sentencepiece import SentencePieceProcessor
  3081. from sentencepiece import sentencepiece_model_pb2 as model
  3082. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3083. if not tokenizer_path.is_file():
  3084. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3085. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3086. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3087. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3088. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3089. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3090. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3091. tokenizer = SentencePieceProcessor()
  3092. tokenizer.LoadFromFile(str(tokenizer_path))
  3093. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3094. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3095. scores: list[float] = [-10000.0] * vocab_size
  3096. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3097. for token_id in range(tokenizer.vocab_size()):
  3098. piece = tokenizer.IdToPiece(token_id)
  3099. text = piece.encode("utf-8")
  3100. score = tokenizer.GetScore(token_id)
  3101. toktype = SentencePieceTokenTypes.NORMAL
  3102. if tokenizer.IsUnknown(token_id):
  3103. toktype = SentencePieceTokenTypes.UNKNOWN
  3104. elif tokenizer.IsControl(token_id):
  3105. toktype = SentencePieceTokenTypes.CONTROL
  3106. elif tokenizer.IsUnused(token_id):
  3107. toktype = SentencePieceTokenTypes.UNUSED
  3108. elif tokenizer.IsByte(token_id):
  3109. toktype = SentencePieceTokenTypes.BYTE
  3110. tokens[token_id] = text
  3111. scores[token_id] = score
  3112. toktypes[token_id] = toktype
  3113. if vocab_size > len(tokens):
  3114. pad_count = vocab_size - len(tokens)
  3115. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3116. for i in range(1, pad_count + 1):
  3117. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3118. scores.append(-1000.0)
  3119. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3120. # realign tokens (see HF tokenizer code)
  3121. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3122. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3123. toktypes = [
  3124. SentencePieceTokenTypes.CONTROL,
  3125. SentencePieceTokenTypes.CONTROL,
  3126. SentencePieceTokenTypes.CONTROL,
  3127. SentencePieceTokenTypes.UNKNOWN,
  3128. ] + toktypes[3:-1]
  3129. self.gguf_writer.add_tokenizer_model("t5")
  3130. self.gguf_writer.add_tokenizer_pre("default")
  3131. self.gguf_writer.add_token_list(tokens)
  3132. self.gguf_writer.add_token_scores(scores)
  3133. self.gguf_writer.add_token_types(toktypes)
  3134. self.gguf_writer.add_add_space_prefix(add_prefix)
  3135. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3136. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3137. if precompiled_charsmap:
  3138. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3139. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3140. special_vocab.add_to_gguf(self.gguf_writer)
  3141. self.gguf_writer.add_add_bos_token(True)
  3142. self.gguf_writer.add_add_eos_token(True)
  3143. @ModelBase.register("RobertaModel")
  3144. class RobertaModel(BertModel):
  3145. model_arch = gguf.MODEL_ARCH.BERT
  3146. def __init__(self, *args, **kwargs):
  3147. super().__init__(*args, **kwargs)
  3148. # we need the pad_token_id to know how to chop down position_embd matrix
  3149. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3150. self._position_offset = 1 + pad_token_id
  3151. if "max_position_embeddings" in self.hparams:
  3152. self.hparams["max_position_embeddings"] -= self._position_offset
  3153. else:
  3154. self._position_offset = None
  3155. def set_vocab(self):
  3156. """Support BPE tokenizers for roberta models"""
  3157. bpe_tok_path = self.dir_model / "tokenizer.json"
  3158. if bpe_tok_path.exists():
  3159. self._set_vocab_gpt2()
  3160. self.gguf_writer.add_add_bos_token(True)
  3161. self.gguf_writer.add_add_eos_token(True)
  3162. # we need this to validate the size of the token_type embeddings
  3163. # though currently we are passing all zeros to the token_type embeddings
  3164. # "Sequence A" or "Sequence B"
  3165. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3166. else:
  3167. return super().set_vocab()
  3168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3169. # if name starts with "roberta.", remove the prefix
  3170. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3171. if name.startswith("roberta."):
  3172. name = name[8:]
  3173. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3174. if name == "embeddings.position_embeddings.weight":
  3175. if self._position_offset is not None:
  3176. data_torch = data_torch[self._position_offset:,:]
  3177. return super().modify_tensors(data_torch, name, bid)
  3178. @ModelBase.register("NomicBertModel")
  3179. class NomicBertModel(BertModel):
  3180. model_arch = gguf.MODEL_ARCH.BERT
  3181. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3182. hparams = kwargs.pop("hparams", None)
  3183. if hparams is None:
  3184. hparams = ModelBase.load_hparams(dir_model)
  3185. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3186. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3187. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3188. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3189. if self._tokenizer_is_xlmroberta:
  3190. self._xlmroberta_tokenizer_init()
  3191. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3192. if npos == 8192 and mtp == 2048:
  3193. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3194. elif npos == 2048 and mtp == 2048:
  3195. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3196. else:
  3197. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3198. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3199. # this doesn't do anything in the HF version
  3200. assert self.hparams["causal"] is False
  3201. # no bias tensors unless MoE
  3202. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3203. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3204. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3205. # norm at end of layer
  3206. assert self.hparams["prenorm"] is False
  3207. # standard RoPE
  3208. assert self.hparams["rotary_emb_fraction"] == 1.0
  3209. assert self.hparams["rotary_emb_interleaved"] is False
  3210. assert self.hparams["rotary_emb_scale_base"] is None
  3211. def set_vocab(self) -> None:
  3212. if self._tokenizer_is_xlmroberta:
  3213. return self._xlmroberta_set_vocab()
  3214. return super().set_vocab()
  3215. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3216. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3217. if "mlp.experts.bias" in name:
  3218. return [] # Explicitly return an empty list.
  3219. if "mlp.experts.mlp.w1" in name:
  3220. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3221. name += ".weight"
  3222. if "mlp.experts.mlp.w2" in name:
  3223. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3224. data_torch = data_torch.transpose(1, 2)
  3225. name += ".weight"
  3226. return [(self.map_tensor_name(name), data_torch)]
  3227. def set_gguf_parameters(self):
  3228. super().set_gguf_parameters()
  3229. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3230. if self.is_moe:
  3231. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3232. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3233. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3234. def _is_tokenizer_xlmroberta(self) -> bool:
  3235. with open(self.dir_model / "tokenizer.json") as f:
  3236. tokenizer_json = json.load(f)
  3237. toktyp = tokenizer_json["model"]["type"]
  3238. if toktyp == "Unigram":
  3239. return True
  3240. if toktyp == "WordPiece":
  3241. return False
  3242. raise ValueError(f"unknown tokenizer: {toktyp}")
  3243. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3244. class XLMRobertaModel(BertModel):
  3245. model_arch = gguf.MODEL_ARCH.BERT
  3246. def __init__(self, *args, **kwargs):
  3247. super().__init__(*args, **kwargs)
  3248. self._xlmroberta_tokenizer_init()
  3249. def set_vocab(self):
  3250. self._xlmroberta_set_vocab()
  3251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3252. # if name starts with "roberta.", remove the prefix
  3253. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3254. if name.startswith("roberta."):
  3255. name = name[8:]
  3256. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3257. if name == "embeddings.position_embeddings.weight":
  3258. if self._position_offset is not None:
  3259. data_torch = data_torch[self._position_offset:,:]
  3260. return super().modify_tensors(data_torch, name, bid)
  3261. @ModelBase.register("GemmaForCausalLM")
  3262. class GemmaModel(TextModel):
  3263. model_arch = gguf.MODEL_ARCH.GEMMA
  3264. def set_vocab(self):
  3265. self._set_vocab_sentencepiece()
  3266. # TODO: these special tokens should be exported only for the CodeGemma family
  3267. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3268. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3269. special_vocab._set_special_token("prefix", 67)
  3270. special_vocab._set_special_token("suffix", 69)
  3271. special_vocab._set_special_token("middle", 68)
  3272. special_vocab._set_special_token("fsep", 70)
  3273. special_vocab._set_special_token("eot", 107)
  3274. special_vocab.chat_template = None # do not add it twice
  3275. special_vocab.add_to_gguf(self.gguf_writer)
  3276. self.gguf_writer.add_add_space_prefix(False)
  3277. def set_gguf_parameters(self):
  3278. hparams = self.hparams
  3279. block_count = hparams["num_hidden_layers"]
  3280. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3281. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3282. self.gguf_writer.add_block_count(block_count)
  3283. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3284. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3285. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3286. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3287. self.gguf_writer.add_key_length(hparams["head_dim"])
  3288. self.gguf_writer.add_value_length(hparams["head_dim"])
  3289. self.gguf_writer.add_file_type(self.ftype)
  3290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3291. del bid # unused
  3292. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3293. # To prevent errors, skip loading lm_head.weight.
  3294. if name == "lm_head.weight":
  3295. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3296. return []
  3297. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3298. if name.endswith("norm.weight"):
  3299. data_torch = data_torch + 1
  3300. return [(self.map_tensor_name(name), data_torch)]
  3301. @ModelBase.register("Gemma2ForCausalLM")
  3302. class Gemma2Model(TextModel):
  3303. model_arch = gguf.MODEL_ARCH.GEMMA2
  3304. def set_vocab(self):
  3305. self._set_vocab_sentencepiece()
  3306. self.gguf_writer.add_add_space_prefix(False)
  3307. def set_gguf_parameters(self):
  3308. hparams = self.hparams
  3309. block_count = hparams["num_hidden_layers"]
  3310. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3311. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3312. self.gguf_writer.add_block_count(block_count)
  3313. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3314. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3315. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3316. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3317. self.gguf_writer.add_key_length(hparams["head_dim"])
  3318. self.gguf_writer.add_value_length(hparams["head_dim"])
  3319. self.gguf_writer.add_file_type(self.ftype)
  3320. self.gguf_writer.add_attn_logit_softcapping(
  3321. self.hparams["attn_logit_softcapping"]
  3322. )
  3323. self.gguf_writer.add_final_logit_softcapping(
  3324. self.hparams["final_logit_softcapping"]
  3325. )
  3326. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3328. del bid # unused
  3329. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3330. # To prevent errors, skip loading lm_head.weight.
  3331. if name == "lm_head.weight":
  3332. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3333. return []
  3334. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3335. if name.endswith("norm.weight"):
  3336. data_torch = data_torch + 1
  3337. return [(self.map_tensor_name(name), data_torch)]
  3338. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3339. class Gemma3Model(TextModel):
  3340. model_arch = gguf.MODEL_ARCH.GEMMA3
  3341. def set_vocab(self):
  3342. self._set_vocab_sentencepiece()
  3343. self.gguf_writer.add_add_space_prefix(False)
  3344. def set_gguf_parameters(self):
  3345. hparams = self.hparams
  3346. block_count = hparams["num_hidden_layers"]
  3347. # some default values are not specified in the hparams
  3348. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3349. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3350. self.gguf_writer.add_block_count(block_count)
  3351. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3352. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3353. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3354. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3355. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3356. self.gguf_writer.add_file_type(self.ftype)
  3357. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3358. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  3359. assert hparams.get("attn_logit_softcapping") is None
  3360. assert hparams.get("final_logit_softcapping") is None
  3361. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3362. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3363. if hparams.get("rope_scaling") is not None:
  3364. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3365. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3366. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3367. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3369. del bid # unused
  3370. if name.startswith("language_model."):
  3371. name = name.replace("language_model.", "")
  3372. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3373. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3374. return [] # skip vision tensors
  3375. # remove OOV (out-of-vocabulary) rows in token_embd
  3376. if "embed_tokens.weight" in name:
  3377. vocab = self._create_vocab_sentencepiece()
  3378. tokens = vocab[0]
  3379. data_torch = data_torch[:len(tokens)]
  3380. # ref code in Gemma3RMSNorm
  3381. # output = output * (1.0 + self.weight.float())
  3382. if name.endswith("norm.weight"):
  3383. data_torch = data_torch + 1
  3384. return [(self.map_tensor_name(name), data_torch)]
  3385. @ModelBase.register("Gemma3ForConditionalGeneration")
  3386. class Gemma3VisionModel(MmprojModel):
  3387. def set_gguf_parameters(self):
  3388. super().set_gguf_parameters()
  3389. hparams = self.hparams
  3390. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3391. # default values below are taken from HF tranformers code
  3392. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3393. self.gguf_writer.add_vision_use_gelu(True)
  3394. # calculate proj_scale_factor (used by tinygemma3 test model)
  3395. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3396. n_per_side = int(image_seq_length ** 0.5)
  3397. image_size = self.hparams["image_size"]
  3398. patch_size = self.hparams["patch_size"]
  3399. proj_scale_factor = (image_size // patch_size) // n_per_side
  3400. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3401. # we only need to write this if it's not the default value
  3402. # in this case, we are converting a test model
  3403. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3404. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3405. del bid, new_name, n_dims # unused
  3406. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3407. if "input_projection" in name:
  3408. return gguf.GGMLQuantizationType.F16
  3409. if ".embeddings." in name:
  3410. return gguf.GGMLQuantizationType.F32
  3411. return False
  3412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3413. del bid # unused
  3414. if "vision_model.head." in name:
  3415. return [] # skip redundant tensors for tinygemma3
  3416. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3417. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3418. # process vision tensors
  3419. name = name.replace("_weight", ".weight")
  3420. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3421. # the other norm values are part of SigLIP model, and they are already correct
  3422. # ref code: Gemma3RMSNorm
  3423. if "soft_emb_norm.weight" in name:
  3424. logger.info(f"Correcting norm value for '{name}'")
  3425. data_torch = data_torch + 1
  3426. return [(self.map_tensor_name(name), data_torch)]
  3427. return [] # skip other tensors
  3428. @ModelBase.register("Starcoder2ForCausalLM")
  3429. class StarCoder2Model(TextModel):
  3430. model_arch = gguf.MODEL_ARCH.STARCODER2
  3431. @ModelBase.register("Rwkv6ForCausalLM")
  3432. class Rwkv6Model(TextModel):
  3433. model_arch = gguf.MODEL_ARCH.RWKV6
  3434. def set_vocab(self):
  3435. self._set_vocab_rwkv_world()
  3436. def set_gguf_parameters(self):
  3437. block_count = self.hparams["num_hidden_layers"]
  3438. head_size = self.hparams["head_size"]
  3439. hidden_size = self.hparams["hidden_size"]
  3440. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3441. rescale_every_n_layers = self.hparams["rescale_every"]
  3442. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  3443. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  3444. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  3445. # RWKV isn't context limited
  3446. self.gguf_writer.add_context_length(1048576)
  3447. self.gguf_writer.add_embedding_length(hidden_size)
  3448. self.gguf_writer.add_block_count(block_count)
  3449. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3450. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  3451. self.gguf_writer.add_wkv_head_size(head_size)
  3452. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3453. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3454. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3455. self.gguf_writer.add_file_type(self.ftype)
  3456. # required by llama.cpp, unused
  3457. self.gguf_writer.add_head_count(0)
  3458. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3459. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3460. new_name = self.map_tensor_name(name)
  3461. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3462. new_name += ".weight"
  3463. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  3464. data_torch = data_torch.transpose(0, 1)
  3465. if new_name.endswith("time_mix_w2.weight"):
  3466. data_torch = data_torch.permute(0, 2, 1)
  3467. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  3468. data_torch = data_torch.squeeze()
  3469. try:
  3470. rescale_every_n_layers = self.hparams["rescale_every"]
  3471. if rescale_every_n_layers > 0:
  3472. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  3473. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  3474. except KeyError:
  3475. pass
  3476. # concat time_mix_lerp weights to reduce some cpu overhead
  3477. # also reduces the number of tensors in the model
  3478. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  3479. try:
  3480. self.lerp_weights[bid][new_name] = data_torch
  3481. except KeyError:
  3482. self.lerp_weights[bid] = {new_name: data_torch}
  3483. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  3484. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3485. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  3486. yield (new_name, data)
  3487. return
  3488. yield (new_name, data_torch)
  3489. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  3490. class RWKV6Qwen2Model(Rwkv6Model):
  3491. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  3492. def set_vocab(self):
  3493. try:
  3494. self._set_vocab_sentencepiece()
  3495. except FileNotFoundError:
  3496. self._set_vocab_gpt2()
  3497. def set_gguf_parameters(self):
  3498. block_count = self.hparams["num_hidden_layers"]
  3499. num_attention_heads = self.hparams["num_attention_heads"]
  3500. num_key_value_heads = self.hparams["num_key_value_heads"]
  3501. hidden_size = self.hparams["hidden_size"]
  3502. head_size = hidden_size // num_attention_heads
  3503. rms_norm_eps = self.hparams["rms_norm_eps"]
  3504. intermediate_size = self.hparams["intermediate_size"]
  3505. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  3506. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  3507. # RWKV isn't context limited
  3508. self.gguf_writer.add_context_length(1048576)
  3509. self.gguf_writer.add_embedding_length(hidden_size)
  3510. self.gguf_writer.add_block_count(block_count)
  3511. self.gguf_writer.add_wkv_head_size(head_size)
  3512. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  3513. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  3514. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3515. self.gguf_writer.add_file_type(self.ftype)
  3516. # special parameters for time_mixing in RWKV6QWEN2
  3517. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3518. self.gguf_writer.add_token_shift_count(1)
  3519. # RWKV6QWEN2 use grouped key/value like GQA
  3520. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  3521. # required by llama.cpp, unused
  3522. self.gguf_writer.add_head_count(0)
  3523. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3524. for new_name, data in super().modify_tensors(data_torch, name, bid):
  3525. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  3526. data = data.view(5, -1, data.shape[-1])
  3527. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  3528. # permute them here to avoid code changes
  3529. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  3530. if "w2" in new_name:
  3531. data = data.view(5, -1, data.shape[-1])
  3532. yield (new_name, data)
  3533. continue
  3534. yield (new_name, data)
  3535. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  3536. class Rwkv7Model(TextModel):
  3537. model_arch = gguf.MODEL_ARCH.RWKV7
  3538. def set_vocab(self):
  3539. self._set_vocab_rwkv_world()
  3540. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  3541. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  3542. def set_gguf_parameters(self):
  3543. block_count = self.hparams["num_hidden_layers"]
  3544. try:
  3545. head_size = self.hparams["head_size"]
  3546. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  3547. except KeyError:
  3548. head_size = self.hparams["head_dim"]
  3549. layer_norm_eps = self.hparams["norm_eps"]
  3550. hidden_size = self.hparams["hidden_size"]
  3551. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  3552. # ICLR: In-Context-Learning-Rate
  3553. try:
  3554. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3555. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3556. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3557. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3558. except KeyError:
  3559. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3560. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  3561. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  3562. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  3563. # RWKV isn't context limited
  3564. self.gguf_writer.add_context_length(1048576)
  3565. self.gguf_writer.add_embedding_length(hidden_size)
  3566. self.gguf_writer.add_block_count(block_count)
  3567. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3568. self.gguf_writer.add_wkv_head_size(head_size)
  3569. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3570. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3571. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3572. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3573. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3574. self.gguf_writer.add_file_type(self.ftype)
  3575. # required by llama.cpp, unused
  3576. self.gguf_writer.add_head_count(0)
  3577. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3578. lora_needs_transpose: bool = True
  3579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3580. # unify tensor names here to make life easier
  3581. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3582. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3583. name = name.replace("time_mixer.", "")
  3584. # lora layer names in fla-hub's impl
  3585. if "_lora.lora" in name:
  3586. self.lora_needs_transpose = False
  3587. name = name.replace("_lora.lora.0.weight", "1.weight")
  3588. name = name.replace("_lora.lora.2.weight", "2.weight")
  3589. name = name.replace("_lora.lora.2.bias", "0.weight")
  3590. name = name.replace("feed_forward_norm", "ln2")
  3591. name = name.replace("g_norm", "ln_x")
  3592. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3593. # some models have dummy v0/v1/v2 on first layer while others don't
  3594. # ignore them all since they are not used
  3595. return
  3596. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3597. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3598. if bid is not None and "attention.x_" in name:
  3599. if "attention.x_x" in name:
  3600. # already concatenated
  3601. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3602. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3603. yield (new_name, data)
  3604. else:
  3605. try:
  3606. self.lerp_weights[bid][name] = data_torch
  3607. except KeyError:
  3608. self.lerp_weights[bid] = {name: data_torch}
  3609. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3610. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3611. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3612. yield (new_name, data)
  3613. return
  3614. else:
  3615. data_torch = data_torch.squeeze()
  3616. new_name = self.map_tensor_name(name)
  3617. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3618. new_name += ".weight"
  3619. if self.lora_needs_transpose and any(
  3620. new_name.endswith(t) for t in [
  3621. "time_mix_w1.weight", "time_mix_w2.weight",
  3622. "time_mix_a1.weight", "time_mix_a2.weight",
  3623. "time_mix_v1.weight", "time_mix_v2.weight",
  3624. "time_mix_g1.weight", "time_mix_g2.weight",
  3625. ]
  3626. ):
  3627. data_torch = data_torch.transpose(0, 1)
  3628. if 'r_k' in new_name:
  3629. data_torch = data_torch.flatten()
  3630. if bid == 0 and "time_mix_a" in new_name:
  3631. # dummy v0/v1/v2 on first layer
  3632. # easist way to make llama happy
  3633. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3634. yield (new_name, data_torch)
  3635. @ModelBase.register("RwkvHybridForCausalLM")
  3636. class ARwkv7Model(Rwkv7Model):
  3637. model_arch = gguf.MODEL_ARCH.ARWKV7
  3638. def set_vocab(self):
  3639. try:
  3640. self._set_vocab_sentencepiece()
  3641. except FileNotFoundError:
  3642. self._set_vocab_gpt2()
  3643. def set_gguf_parameters(self):
  3644. block_count = self.hparams["num_hidden_layers"]
  3645. hidden_size = self.hparams["hidden_size"]
  3646. head_size = self.hparams["head_size"]
  3647. rms_norm_eps = self.hparams["rms_norm_eps"]
  3648. intermediate_size = self.hparams["intermediate_size"]
  3649. wkv_has_gate = self.hparams["wkv_has_gate"]
  3650. assert self.hparams["wkv_version"] == 7
  3651. # ICLR: In-Context-Learning-Rate
  3652. lora_rank_decay = 64
  3653. lora_rank_iclr = 64
  3654. lora_rank_value_residual_mix = 32
  3655. lora_rank_gate = 128 if wkv_has_gate else 0
  3656. # RWKV isn't context limited
  3657. self.gguf_writer.add_context_length(1048576)
  3658. self.gguf_writer.add_embedding_length(hidden_size)
  3659. self.gguf_writer.add_block_count(block_count)
  3660. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3661. self.gguf_writer.add_wkv_head_size(head_size)
  3662. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3663. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3664. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3665. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3666. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3667. self.gguf_writer.add_file_type(self.ftype)
  3668. self.gguf_writer.add_token_shift_count(1)
  3669. # required by llama.cpp, unused
  3670. self.gguf_writer.add_head_count(0)
  3671. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3672. class MambaModel(TextModel):
  3673. model_arch = gguf.MODEL_ARCH.MAMBA
  3674. def set_vocab(self):
  3675. vocab_size = self.hparams["vocab_size"]
  3676. # Round vocab size to next multiple of 8
  3677. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3678. # pad using ceiling division
  3679. # ref: https://stackoverflow.com/a/17511341/22827863
  3680. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3681. self.hparams["vocab_size"] = vocab_size
  3682. if (self.dir_model / "tokenizer.json").is_file():
  3683. self._set_vocab_gpt2()
  3684. elif (self.dir_model / "tokenizer.model").is_file():
  3685. self._set_vocab_sentencepiece()
  3686. else:
  3687. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3688. self._set_vocab_builtin("gpt-neox", vocab_size)
  3689. def set_gguf_parameters(self):
  3690. d_model = self.find_hparam(["hidden_size", "d_model"])
  3691. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3692. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3693. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3694. # ceiling division
  3695. # ref: https://stackoverflow.com/a/17511341/22827863
  3696. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3697. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3698. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3699. use_dt_b_c_norm = False
  3700. # For falconmamba we do apply RMS norm on B / DT and C layers
  3701. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3702. use_dt_b_c_norm = True
  3703. # Fail early for models which don't have a block expansion factor of 2
  3704. assert d_inner == 2 * d_model
  3705. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3706. self.gguf_writer.add_embedding_length(d_model)
  3707. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3708. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3709. self.gguf_writer.add_block_count(self.block_count)
  3710. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3711. self.gguf_writer.add_ssm_inner_size(d_inner)
  3712. self.gguf_writer.add_ssm_state_size(d_state)
  3713. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3714. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3715. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3716. self.gguf_writer.add_file_type(self.ftype)
  3717. _tok_embd = None
  3718. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3719. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3720. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3721. new_name = self.map_tensor_name(name)
  3722. if name.endswith(".A_log"):
  3723. logger.debug("A_log --> A ==> " + new_name)
  3724. data_torch = -torch.exp(data_torch)
  3725. # [4 1 8192 1] -> [4 8192 1 1]
  3726. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3727. data_torch = data_torch.squeeze()
  3728. # assuming token_embd.weight is seen before output.weight
  3729. if self._tok_embd is not None and new_name == output_name:
  3730. if torch.equal(self._tok_embd, data_torch):
  3731. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3732. return []
  3733. elif new_name == tok_embd_name:
  3734. self._tok_embd = data_torch
  3735. return [(new_name, data_torch)]
  3736. @ModelBase.register("CohereForCausalLM")
  3737. class CommandR2Model(TextModel):
  3738. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3739. def __init__(self, *args, **kwargs):
  3740. super().__init__(*args, **kwargs)
  3741. # max_position_embeddings = 8192 in config.json but model was actually
  3742. # trained on 128k context length
  3743. # aya-23 models don't have model_max_length specified
  3744. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3745. def set_gguf_parameters(self):
  3746. super().set_gguf_parameters()
  3747. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3748. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3749. @ModelBase.register("Cohere2ForCausalLM")
  3750. class Cohere2Model(TextModel):
  3751. model_arch = gguf.MODEL_ARCH.COHERE2
  3752. def set_gguf_parameters(self):
  3753. super().set_gguf_parameters()
  3754. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3755. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3756. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3757. rotary_pct = self.hparams["rotary_pct"]
  3758. hidden_size = self.hparams["hidden_size"]
  3759. num_attention_heads = self.hparams["num_attention_heads"]
  3760. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3761. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3762. @ModelBase.register("OlmoForCausalLM")
  3763. @ModelBase.register("OLMoForCausalLM")
  3764. class OlmoModel(TextModel):
  3765. model_arch = gguf.MODEL_ARCH.OLMO
  3766. def set_gguf_parameters(self):
  3767. super().set_gguf_parameters()
  3768. self.gguf_writer.add_layer_norm_eps(1e-5)
  3769. clip_qkv = self.hparams.get("clip_qkv")
  3770. if clip_qkv is not None:
  3771. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3772. # Same as super class, but permuting q_proj, k_proj
  3773. # Copied from: LlamaModel
  3774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3775. del bid # unused
  3776. n_head = self.hparams["num_attention_heads"]
  3777. n_kv_head = self.hparams.get("num_key_value_heads")
  3778. if name.endswith("q_proj.weight"):
  3779. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3780. if name.endswith("k_proj.weight"):
  3781. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3782. return [(self.map_tensor_name(name), data_torch)]
  3783. @ModelBase.register("Olmo2ForCausalLM")
  3784. class Olmo2Model(TextModel):
  3785. model_arch = gguf.MODEL_ARCH.OLMO2
  3786. @ModelBase.register("OlmoeForCausalLM")
  3787. class OlmoeModel(TextModel):
  3788. model_arch = gguf.MODEL_ARCH.OLMOE
  3789. def set_gguf_parameters(self):
  3790. super().set_gguf_parameters()
  3791. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3792. if (n_experts := self.hparams.get("num_experts")) is not None:
  3793. self.gguf_writer.add_expert_count(n_experts)
  3794. _experts: list[dict[str, Tensor]] | None = None
  3795. # Copied from: Qwen2MoeModel
  3796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3797. # process the experts separately
  3798. if name.find("experts") != -1:
  3799. n_experts = self.hparams["num_experts"]
  3800. assert bid is not None
  3801. if self._experts is None:
  3802. self._experts = [{} for _ in range(self.block_count)]
  3803. self._experts[bid][name] = data_torch
  3804. if len(self._experts[bid]) >= n_experts * 3:
  3805. tensors: list[tuple[str, Tensor]] = []
  3806. # merge the experts into a single 3d tensor
  3807. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3808. datas: list[Tensor] = []
  3809. for xid in range(n_experts):
  3810. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3811. datas.append(self._experts[bid][ename])
  3812. del self._experts[bid][ename]
  3813. data_torch = torch.stack(datas, dim=0)
  3814. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3815. new_name = self.map_tensor_name(merged_name)
  3816. tensors.append((new_name, data_torch))
  3817. return tensors
  3818. else:
  3819. return []
  3820. return [(self.map_tensor_name(name), data_torch)]
  3821. # Copied from: Qwen2MoeModel
  3822. def prepare_tensors(self):
  3823. super().prepare_tensors()
  3824. if self._experts is not None:
  3825. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3826. experts = [k for d in self._experts for k in d.keys()]
  3827. if len(experts) > 0:
  3828. raise ValueError(f"Unprocessed experts: {experts}")
  3829. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  3830. class JinaBertV2Model(BertModel):
  3831. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3832. def __init__(self, *args, **kwargs):
  3833. super().__init__(*args, **kwargs)
  3834. self.intermediate_size = self.hparams["intermediate_size"]
  3835. def get_tensors(self):
  3836. for name, data in super().get_tensors():
  3837. if 'gated_layer' in name:
  3838. d1 = data[:self.intermediate_size, :]
  3839. name1 = name.replace('gated_layers', 'gated_layers_w')
  3840. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3841. d2 = data[self.intermediate_size:, :]
  3842. name2 = name.replace('gated_layers', 'gated_layers_v')
  3843. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3844. yield name1, d1
  3845. yield name2, d2
  3846. continue
  3847. yield name, data
  3848. def set_vocab(self):
  3849. tokenizer_class = 'BertTokenizer'
  3850. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3851. tokenizer_class = json.load(f)['tokenizer_class']
  3852. if tokenizer_class == 'BertTokenizer':
  3853. super().set_vocab()
  3854. elif tokenizer_class == 'RobertaTokenizer':
  3855. self._set_vocab_gpt2()
  3856. self.gguf_writer.add_token_type_count(2)
  3857. else:
  3858. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3859. self.gguf_writer.add_add_bos_token(True)
  3860. self.gguf_writer.add_add_eos_token(True)
  3861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3862. # if name starts with "bert.", remove the prefix
  3863. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3864. if name.startswith("bert."):
  3865. name = name[5:]
  3866. return super().modify_tensors(data_torch, name, bid)
  3867. @ModelBase.register("OpenELMForCausalLM")
  3868. class OpenELMModel(TextModel):
  3869. model_arch = gguf.MODEL_ARCH.OPENELM
  3870. @staticmethod
  3871. def _make_divisible(v: float | int, divisor: int) -> int:
  3872. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3873. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3874. # Make sure that round down does not go down by more than 10%.
  3875. if new_v < 0.9 * v:
  3876. new_v += divisor
  3877. return new_v
  3878. def __init__(self, *args, **kwargs):
  3879. super().__init__(*args, **kwargs)
  3880. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3881. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3882. self._n_embd: int = self.hparams["model_dim"]
  3883. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3884. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3885. self._ffn_dims: list[int] = [
  3886. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3887. for multiplier in ffn_multipliers
  3888. ]
  3889. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3890. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3891. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3892. def set_vocab(self):
  3893. try:
  3894. self._set_vocab_sentencepiece()
  3895. except FileNotFoundError:
  3896. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3897. def set_gguf_parameters(self):
  3898. n_embd = self._n_embd
  3899. head_dim = self.hparams["head_dim"]
  3900. rot_pct = 1.0
  3901. assert self.block_count == len(self._num_kv_heads)
  3902. assert self.block_count == len(self._num_query_heads)
  3903. assert self.block_count == len(self._ffn_dims)
  3904. self.gguf_writer.add_block_count(self.block_count)
  3905. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3906. self.gguf_writer.add_embedding_length(n_embd)
  3907. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3908. self.gguf_writer.add_head_count(self._num_query_heads)
  3909. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3910. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3911. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3912. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3913. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3914. self.gguf_writer.add_key_length(head_dim)
  3915. self.gguf_writer.add_value_length(head_dim)
  3916. self.gguf_writer.add_file_type(self.ftype)
  3917. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3918. if "n_layers" in keys:
  3919. return self.hparams["num_transformer_layers"]
  3920. return super().find_hparam(keys, optional)
  3921. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3922. # split ff
  3923. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3924. ff_dim = self._ffn_dims[bid]
  3925. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3926. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3927. return
  3928. yield (self.map_tensor_name(name), data_torch)
  3929. @ModelBase.register("ArcticForCausalLM")
  3930. class ArcticModel(TextModel):
  3931. model_arch = gguf.MODEL_ARCH.ARCTIC
  3932. def set_vocab(self):
  3933. # The reason for using a custom implementation here is that the
  3934. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3935. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3936. from sentencepiece import SentencePieceProcessor
  3937. tokenizer_path = self.dir_model / 'tokenizer.model'
  3938. if not tokenizer_path.is_file():
  3939. logger.error(f'Error: Missing {tokenizer_path}')
  3940. sys.exit(1)
  3941. # Read the whole vocabulary from the tokenizer.model file
  3942. tokenizer = SentencePieceProcessor()
  3943. tokenizer.LoadFromFile(str(tokenizer_path))
  3944. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3945. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3946. scores: list[float] = [-10000.0] * vocab_size
  3947. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3948. for token_id in range(tokenizer.vocab_size()):
  3949. piece = tokenizer.IdToPiece(token_id)
  3950. text = piece.encode("utf-8")
  3951. score = tokenizer.GetScore(token_id)
  3952. toktype = SentencePieceTokenTypes.NORMAL
  3953. if tokenizer.IsUnknown(token_id):
  3954. toktype = SentencePieceTokenTypes.UNKNOWN
  3955. elif tokenizer.IsControl(token_id):
  3956. toktype = SentencePieceTokenTypes.CONTROL
  3957. elif tokenizer.IsUnused(token_id):
  3958. toktype = SentencePieceTokenTypes.UNUSED
  3959. elif tokenizer.IsByte(token_id):
  3960. toktype = SentencePieceTokenTypes.BYTE
  3961. tokens[token_id] = text
  3962. scores[token_id] = score
  3963. toktypes[token_id] = toktype
  3964. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3965. # of information about added/redefined tokens and modify them accordingly.
  3966. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3967. if tokenizer_config_file.is_file():
  3968. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3969. tokenizer_config_json = json.load(f)
  3970. if "added_tokens_decoder" in tokenizer_config_json:
  3971. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3972. for token_id, token_json in added_tokens_decoder.items():
  3973. token_id = int(token_id)
  3974. if token_id >= vocab_size:
  3975. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3976. continue
  3977. token_content = token_json["content"]
  3978. token_type = SentencePieceTokenTypes.USER_DEFINED
  3979. token_score = -10000.0
  3980. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3981. # Set the score to 0.0 as in the original tokenizer.model
  3982. if ("special" in token_json) and token_json["special"]:
  3983. if token_content == tokenizer_config_json["unk_token"]:
  3984. token_type = SentencePieceTokenTypes.UNKNOWN
  3985. else:
  3986. token_type = SentencePieceTokenTypes.CONTROL
  3987. token_score = 0.0
  3988. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3989. tokens[token_id] = token_content.encode("utf-8")
  3990. toktypes[token_id] = token_type
  3991. scores[token_id] = token_score
  3992. self.gguf_writer.add_tokenizer_model("llama")
  3993. self.gguf_writer.add_tokenizer_pre("default")
  3994. self.gguf_writer.add_token_list(tokens)
  3995. self.gguf_writer.add_token_scores(scores)
  3996. self.gguf_writer.add_token_types(toktypes)
  3997. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3998. special_vocab.add_to_gguf(self.gguf_writer)
  3999. def set_gguf_parameters(self):
  4000. super().set_gguf_parameters()
  4001. hparams = self.hparams
  4002. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4003. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4004. _experts: list[dict[str, Tensor]] | None = None
  4005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4006. n_head = self.hparams["num_attention_heads"]
  4007. n_kv_head = self.hparams.get("num_key_value_heads")
  4008. if name.endswith("q_proj.weight"):
  4009. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4010. if name.endswith("k_proj.weight"):
  4011. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4012. # process the experts separately
  4013. if name.find("block_sparse_moe.experts") != -1:
  4014. n_experts = self.hparams["num_local_experts"]
  4015. assert bid is not None
  4016. if self._experts is None:
  4017. self._experts = [{} for _ in range(self.block_count)]
  4018. self._experts[bid][name] = data_torch
  4019. if len(self._experts[bid]) >= n_experts * 3:
  4020. tensors: list[tuple[str, Tensor]] = []
  4021. # merge the experts into a single 3d tensor
  4022. for wid in ["w1", "w2", "w3"]:
  4023. datas: list[Tensor] = []
  4024. for xid in range(n_experts):
  4025. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4026. datas.append(self._experts[bid][ename])
  4027. del self._experts[bid][ename]
  4028. data_torch = torch.stack(datas, dim=0)
  4029. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4030. new_name = self.map_tensor_name(merged_name)
  4031. tensors.append((new_name, data_torch))
  4032. return tensors
  4033. else:
  4034. return []
  4035. return [(self.map_tensor_name(name), data_torch)]
  4036. def prepare_tensors(self):
  4037. super().prepare_tensors()
  4038. if self._experts is not None:
  4039. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4040. experts = [k for d in self._experts for k in d.keys()]
  4041. if len(experts) > 0:
  4042. raise ValueError(f"Unprocessed experts: {experts}")
  4043. @ModelBase.register("DeepseekForCausalLM")
  4044. class DeepseekModel(TextModel):
  4045. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4046. def set_vocab(self):
  4047. try:
  4048. self._set_vocab_sentencepiece()
  4049. except FileNotFoundError:
  4050. self._set_vocab_gpt2()
  4051. def set_gguf_parameters(self):
  4052. super().set_gguf_parameters()
  4053. hparams = self.hparams
  4054. if "head_dim" in hparams:
  4055. rope_dim = hparams["head_dim"]
  4056. else:
  4057. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4058. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4059. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4060. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4061. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4062. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4063. self.gguf_writer.add_expert_weights_scale(1.0)
  4064. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4065. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4066. _experts: list[dict[str, Tensor]] | None = None
  4067. @staticmethod
  4068. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4069. if n_head_kv is not None and n_head != n_head_kv:
  4070. n_head = n_head_kv
  4071. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4072. .swapaxes(1, 2)
  4073. .reshape(weights.shape))
  4074. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4075. n_head = self.hparams["num_attention_heads"]
  4076. n_kv_head = self.hparams.get("num_key_value_heads")
  4077. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4078. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4079. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4080. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4081. # process the experts separately
  4082. if name.find("mlp.experts") != -1:
  4083. n_experts = self.hparams["n_routed_experts"]
  4084. assert bid is not None
  4085. if self._experts is None:
  4086. self._experts = [{} for _ in range(self.block_count)]
  4087. self._experts[bid][name] = data_torch
  4088. if len(self._experts[bid]) >= n_experts * 3:
  4089. tensors: list[tuple[str, Tensor]] = []
  4090. # merge the experts into a single 3d tensor
  4091. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4092. datas: list[Tensor] = []
  4093. for xid in range(n_experts):
  4094. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4095. datas.append(self._experts[bid][ename])
  4096. del self._experts[bid][ename]
  4097. data_torch = torch.stack(datas, dim=0)
  4098. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4099. new_name = self.map_tensor_name(merged_name)
  4100. tensors.append((new_name, data_torch))
  4101. return tensors
  4102. else:
  4103. return []
  4104. return [(self.map_tensor_name(name), data_torch)]
  4105. def prepare_tensors(self):
  4106. super().prepare_tensors()
  4107. if self._experts is not None:
  4108. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4109. experts = [k for d in self._experts for k in d.keys()]
  4110. if len(experts) > 0:
  4111. raise ValueError(f"Unprocessed experts: {experts}")
  4112. @ModelBase.register("DeepseekV2ForCausalLM")
  4113. @ModelBase.register("DeepseekV3ForCausalLM")
  4114. class DeepseekV2Model(TextModel):
  4115. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4116. def set_vocab(self):
  4117. self._set_vocab_gpt2()
  4118. def set_gguf_parameters(self):
  4119. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4120. self.hparams["num_key_value_heads"] = 1
  4121. super().set_gguf_parameters()
  4122. hparams = self.hparams
  4123. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4124. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4125. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4126. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4127. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4128. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4129. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4130. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4131. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4132. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4133. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4134. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4135. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4136. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4137. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4138. if hparams["scoring_func"] == "sigmoid":
  4139. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4140. elif hparams["scoring_func"] == "softmax":
  4141. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4142. else:
  4143. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4144. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4145. rope_scaling = self.hparams.get("rope_scaling") or {}
  4146. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4147. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4148. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4149. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4150. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  4151. _experts: list[dict[str, Tensor]] | None = None
  4152. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4153. # rename e_score_correction_bias tensors
  4154. if name.endswith("e_score_correction_bias"):
  4155. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  4156. # skip Multi-Token Prediction (MTP) layers
  4157. block_count = self.hparams["num_hidden_layers"]
  4158. match = re.match(r"model.layers.(\d+)", name)
  4159. if match and int(match.group(1)) >= block_count:
  4160. return []
  4161. # process the experts separately
  4162. if name.find("mlp.experts") != -1:
  4163. n_experts = self.hparams["n_routed_experts"]
  4164. assert bid is not None
  4165. if self._experts is None:
  4166. self._experts = [{} for _ in range(self.block_count)]
  4167. self._experts[bid][name] = data_torch
  4168. if len(self._experts[bid]) >= n_experts * 3:
  4169. tensors: list[tuple[str, Tensor]] = []
  4170. # merge the experts into a single 3d tensor
  4171. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4172. datas: list[Tensor] = []
  4173. for xid in range(n_experts):
  4174. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4175. datas.append(self._experts[bid][ename])
  4176. del self._experts[bid][ename]
  4177. data_torch = torch.stack(datas, dim=0)
  4178. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4179. new_name = self.map_tensor_name(merged_name)
  4180. tensors.append((new_name, data_torch))
  4181. return tensors
  4182. else:
  4183. return []
  4184. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  4185. if name.endswith("kv_b_proj.weight"):
  4186. name_kb = name.replace("kv_b_proj", "k_b_proj")
  4187. name_vb = name.replace("kv_b_proj", "v_b_proj")
  4188. n_head_kv = self.hparams["num_key_value_heads"]
  4189. v_head_dim = self.hparams["v_head_dim"]
  4190. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  4191. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  4192. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  4193. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  4194. k_b = k_b.transpose(1, 2)
  4195. return [
  4196. (self.map_tensor_name(name_kb), k_b),
  4197. (self.map_tensor_name(name_vb), v_b)
  4198. ]
  4199. return [(self.map_tensor_name(name), data_torch)]
  4200. def prepare_tensors(self):
  4201. super().prepare_tensors()
  4202. if self._experts is not None:
  4203. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4204. experts = [k for d in self._experts for k in d.keys()]
  4205. if len(experts) > 0:
  4206. raise ValueError(f"Unprocessed experts: {experts}")
  4207. @ModelBase.register("PLMForCausalLM")
  4208. class PLMModel(TextModel):
  4209. model_arch = gguf.MODEL_ARCH.PLM
  4210. def set_vocab(self):
  4211. self._set_vocab_gpt2()
  4212. def set_gguf_parameters(self):
  4213. super().set_gguf_parameters()
  4214. hparams = self.hparams
  4215. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4216. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4217. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4218. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  4219. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4221. return [(self.map_tensor_name(name), data_torch)]
  4222. def prepare_tensors(self):
  4223. super().prepare_tensors()
  4224. @ModelBase.register("T5WithLMHeadModel")
  4225. @ModelBase.register("T5ForConditionalGeneration")
  4226. @ModelBase.register("MT5ForConditionalGeneration")
  4227. @ModelBase.register("UMT5ForConditionalGeneration")
  4228. class T5Model(TextModel):
  4229. model_arch = gguf.MODEL_ARCH.T5
  4230. def __init__(self, *args, **kwargs):
  4231. super().__init__(*args, **kwargs)
  4232. self.shared_token_embeddings_found = False
  4233. def set_vocab(self):
  4234. # to avoid TypeError: Descriptors cannot be created directly
  4235. # exception when importing sentencepiece_model_pb2
  4236. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4237. from sentencepiece import SentencePieceProcessor
  4238. from sentencepiece import sentencepiece_model_pb2 as model
  4239. tokenizer_path = self.dir_model / 'tokenizer.model'
  4240. # many older models use spiece.model tokenizer model filename
  4241. if not tokenizer_path.is_file():
  4242. tokenizer_path = self.dir_model / 'spiece.model'
  4243. if not tokenizer_path.is_file():
  4244. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4245. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4246. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4247. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4248. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4249. # assure the tokenizer model file name is correct
  4250. assert tokenizer_path.name == 'tokenizer.model'
  4251. return self._set_vocab_sentencepiece()
  4252. else:
  4253. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4254. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4255. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4256. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4257. tokenizer = SentencePieceProcessor()
  4258. tokenizer.LoadFromFile(str(tokenizer_path))
  4259. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4260. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4261. scores: list[float] = [-10000.0] * vocab_size
  4262. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4263. for token_id in range(tokenizer.vocab_size()):
  4264. piece = tokenizer.IdToPiece(token_id)
  4265. text = piece.encode("utf-8")
  4266. score = tokenizer.GetScore(token_id)
  4267. toktype = SentencePieceTokenTypes.NORMAL
  4268. if tokenizer.IsUnknown(token_id):
  4269. toktype = SentencePieceTokenTypes.UNKNOWN
  4270. elif tokenizer.IsControl(token_id):
  4271. toktype = SentencePieceTokenTypes.CONTROL
  4272. elif tokenizer.IsUnused(token_id):
  4273. toktype = SentencePieceTokenTypes.UNUSED
  4274. elif tokenizer.IsByte(token_id):
  4275. toktype = SentencePieceTokenTypes.BYTE
  4276. tokens[token_id] = text
  4277. scores[token_id] = score
  4278. toktypes[token_id] = toktype
  4279. added_tokens_file = self.dir_model / 'added_tokens.json'
  4280. if added_tokens_file.is_file():
  4281. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4282. added_tokens_json = json.load(f)
  4283. for key in added_tokens_json:
  4284. token_id = added_tokens_json[key]
  4285. if token_id >= vocab_size:
  4286. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4287. continue
  4288. tokens[token_id] = key.encode("utf-8")
  4289. scores[token_id] = -1000.0
  4290. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4291. if vocab_size > len(tokens):
  4292. pad_count = vocab_size - len(tokens)
  4293. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4294. for i in range(1, pad_count + 1):
  4295. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4296. scores.append(-1000.0)
  4297. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4298. self.gguf_writer.add_tokenizer_model("t5")
  4299. self.gguf_writer.add_tokenizer_pre("default")
  4300. self.gguf_writer.add_token_list(tokens)
  4301. self.gguf_writer.add_token_scores(scores)
  4302. self.gguf_writer.add_token_types(toktypes)
  4303. self.gguf_writer.add_add_space_prefix(add_prefix)
  4304. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4305. if precompiled_charsmap:
  4306. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4307. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4308. special_vocab.add_to_gguf(self.gguf_writer)
  4309. self.gguf_writer.add_add_bos_token(False)
  4310. self.gguf_writer.add_add_eos_token(True)
  4311. def set_gguf_parameters(self):
  4312. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4313. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4314. n_ctx = 512
  4315. self.gguf_writer.add_context_length(n_ctx)
  4316. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4317. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4318. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4319. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4320. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4321. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4322. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4323. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4324. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4325. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  4326. self.gguf_writer.add_file_type(self.ftype)
  4327. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4328. del bid # unused
  4329. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4330. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4331. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4332. # and decoder and ignore the remaining ones.
  4333. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4334. if not self.shared_token_embeddings_found:
  4335. name = "shared.weight"
  4336. self.shared_token_embeddings_found = True
  4337. else:
  4338. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4339. return []
  4340. return [(self.map_tensor_name(name), data_torch)]
  4341. @ModelBase.register("T5EncoderModel")
  4342. class T5EncoderModel(TextModel):
  4343. model_arch = gguf.MODEL_ARCH.T5ENCODER
  4344. def __init__(self, *args, **kwargs):
  4345. super().__init__(*args, **kwargs)
  4346. self.shared_token_embeddings_found = False
  4347. def set_vocab(self):
  4348. # to avoid TypeError: Descriptors cannot be created directly
  4349. # exception when importing sentencepiece_model_pb2
  4350. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4351. from sentencepiece import SentencePieceProcessor
  4352. from sentencepiece import sentencepiece_model_pb2 as model
  4353. tokenizer_path = self.dir_model / 'tokenizer.model'
  4354. # many older models use spiece.model tokenizer model filename
  4355. if not tokenizer_path.is_file():
  4356. tokenizer_path = self.dir_model / 'spiece.model'
  4357. if not tokenizer_path.is_file():
  4358. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4359. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4360. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4361. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  4362. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  4363. # assure the tokenizer model file name is correct
  4364. assert tokenizer_path.name == 'tokenizer.model'
  4365. return self._set_vocab_sentencepiece()
  4366. else:
  4367. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4368. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4369. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4370. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4371. tokenizer = SentencePieceProcessor()
  4372. tokenizer.LoadFromFile(str(tokenizer_path))
  4373. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4374. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4375. scores: list[float] = [-10000.0] * vocab_size
  4376. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4377. for token_id in range(tokenizer.vocab_size()):
  4378. piece = tokenizer.IdToPiece(token_id)
  4379. text = piece.encode("utf-8")
  4380. score = tokenizer.GetScore(token_id)
  4381. toktype = SentencePieceTokenTypes.NORMAL
  4382. if tokenizer.IsUnknown(token_id):
  4383. toktype = SentencePieceTokenTypes.UNKNOWN
  4384. elif tokenizer.IsControl(token_id):
  4385. toktype = SentencePieceTokenTypes.CONTROL
  4386. elif tokenizer.IsUnused(token_id):
  4387. toktype = SentencePieceTokenTypes.UNUSED
  4388. elif tokenizer.IsByte(token_id):
  4389. toktype = SentencePieceTokenTypes.BYTE
  4390. tokens[token_id] = text
  4391. scores[token_id] = score
  4392. toktypes[token_id] = toktype
  4393. added_tokens_file = self.dir_model / 'added_tokens.json'
  4394. if added_tokens_file.is_file():
  4395. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4396. added_tokens_json = json.load(f)
  4397. for key in added_tokens_json:
  4398. token_id = added_tokens_json[key]
  4399. if token_id >= vocab_size:
  4400. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4401. continue
  4402. tokens[token_id] = key.encode("utf-8")
  4403. scores[token_id] = -1000.0
  4404. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4405. if vocab_size > len(tokens):
  4406. pad_count = vocab_size - len(tokens)
  4407. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  4408. for i in range(1, pad_count + 1):
  4409. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  4410. scores.append(-1000.0)
  4411. toktypes.append(SentencePieceTokenTypes.UNUSED)
  4412. self.gguf_writer.add_tokenizer_model("t5")
  4413. self.gguf_writer.add_tokenizer_pre("default")
  4414. self.gguf_writer.add_token_list(tokens)
  4415. self.gguf_writer.add_token_scores(scores)
  4416. self.gguf_writer.add_token_types(toktypes)
  4417. self.gguf_writer.add_add_space_prefix(add_prefix)
  4418. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4419. if precompiled_charsmap:
  4420. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4421. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4422. special_vocab.add_to_gguf(self.gguf_writer)
  4423. self.gguf_writer.add_add_bos_token(False)
  4424. self.gguf_writer.add_add_eos_token(True)
  4425. def set_gguf_parameters(self):
  4426. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  4427. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  4428. n_ctx = 512
  4429. self.gguf_writer.add_context_length(n_ctx)
  4430. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  4431. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  4432. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  4433. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  4434. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  4435. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  4436. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4437. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  4438. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  4439. self.gguf_writer.add_file_type(self.ftype)
  4440. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4441. del bid # unused
  4442. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  4443. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  4444. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  4445. # and decoder and ignore the remaining ones.
  4446. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  4447. if not self.shared_token_embeddings_found:
  4448. name = "shared.weight"
  4449. self.shared_token_embeddings_found = True
  4450. else:
  4451. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  4452. return []
  4453. return [(self.map_tensor_name(name), data_torch)]
  4454. @ModelBase.register("JAISLMHeadModel")
  4455. class JaisModel(TextModel):
  4456. model_arch = gguf.MODEL_ARCH.JAIS
  4457. def __init__(self, *args, **kwargs):
  4458. super().__init__(*args, **kwargs)
  4459. # SwigLU activation
  4460. assert self.hparams["activation_function"] == "swiglu"
  4461. # ALiBi position embedding
  4462. assert self.hparams["position_embedding_type"] == "alibi"
  4463. # Embeddings scale
  4464. self.embeddings_scale = 1.0
  4465. if 'mup_embeddings_scale' in self.hparams:
  4466. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  4467. elif 'embeddings_scale' in self.hparams:
  4468. self.embeddings_scale = self.hparams['embeddings_scale']
  4469. else:
  4470. assert False
  4471. self.width_scale = 1.0
  4472. if 'mup_output_alpha' in self.hparams:
  4473. assert 'mup_width_scale' in self.hparams
  4474. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  4475. elif 'width_scale' in self.hparams:
  4476. self.width_scale = self.hparams['width_scale']
  4477. else:
  4478. assert False
  4479. self.max_alibi_bias = 8.0
  4480. def set_vocab(self):
  4481. self._set_vocab_gpt2()
  4482. def set_gguf_parameters(self):
  4483. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  4484. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4485. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4486. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  4487. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4488. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4489. self.gguf_writer.add_file_type(self.ftype)
  4490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4491. del bid # unused
  4492. tensors: list[tuple[str, Tensor]] = []
  4493. # we don't need these
  4494. if name.endswith((".attn.bias")):
  4495. return tensors
  4496. if name.endswith(("relative_pe.slopes")):
  4497. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  4498. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  4499. # but Jais's PyTorch model simply precalculates the slope values and places them
  4500. # in relative_pes.slopes
  4501. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  4502. first_val = float(data_torch[0].item())
  4503. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  4504. return tensors
  4505. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  4506. data_torch = data_torch.transpose(1, 0)
  4507. new_name = self.map_tensor_name(name)
  4508. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  4509. tensors.append((new_name, data_torch * self.embeddings_scale))
  4510. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  4511. tensors.append((new_name, data_torch * self.width_scale))
  4512. else:
  4513. tensors.append((new_name, data_torch))
  4514. return tensors
  4515. def prepare_tensors(self):
  4516. super().prepare_tensors()
  4517. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  4518. @ModelBase.register("Glm4ForCausalLM")
  4519. class Glm4Model(TextModel):
  4520. model_arch = gguf.MODEL_ARCH.GLM4
  4521. def set_vocab(self):
  4522. from transformers import AutoTokenizer
  4523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4524. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4525. tokens, toktypes, tokpre = self.get_vocab_base()
  4526. self.gguf_writer.add_tokenizer_model("gpt2")
  4527. self.gguf_writer.add_tokenizer_pre(tokpre)
  4528. self.gguf_writer.add_token_list(tokens)
  4529. self.gguf_writer.add_token_types(toktypes)
  4530. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4531. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4532. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4533. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4534. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4535. special_vocab.add_to_gguf(self.gguf_writer)
  4536. def set_gguf_parameters(self):
  4537. super().set_gguf_parameters()
  4538. rope_dim = self.hparams["head_dim"]
  4539. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4540. rope_scaling = self.hparams.get("rope_scaling") or {}
  4541. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4542. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4543. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4544. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4545. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  4546. class ChatGLMModel(TextModel):
  4547. model_arch = gguf.MODEL_ARCH.CHATGLM
  4548. def set_vocab_chatglm3(self):
  4549. dir_model = self.dir_model
  4550. hparams = self.hparams
  4551. tokens: list[bytes] = []
  4552. toktypes: list[int] = []
  4553. scores: list[float] = []
  4554. from transformers import AutoTokenizer
  4555. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4556. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  4557. assert max(tokenizer.get_vocab().values()) < vocab_size
  4558. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  4559. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  4560. for token_id in range(vocab_size):
  4561. piece = tokenizer._convert_id_to_token(token_id)
  4562. if token_id == 0:
  4563. piece = "<unk>"
  4564. elif token_id == 1:
  4565. piece = "<bos>"
  4566. elif token_id == 2:
  4567. piece = "<eos>"
  4568. text = piece.encode("utf-8")
  4569. score = 0.0
  4570. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  4571. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  4572. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  4573. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  4574. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  4575. if piece in special_tokens:
  4576. toktype = SentencePieceTokenTypes.CONTROL
  4577. elif len(piece) == 0:
  4578. text = f"[PAD{token_id}]".encode("utf-8")
  4579. toktype = SentencePieceTokenTypes.UNUSED
  4580. else:
  4581. toktype = SentencePieceTokenTypes.USER_DEFINED
  4582. tokens.append(text)
  4583. scores.append(score)
  4584. toktypes.append(toktype)
  4585. continue
  4586. toktype = SentencePieceTokenTypes.NORMAL
  4587. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  4588. toktype = SentencePieceTokenTypes.UNKNOWN
  4589. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  4590. toktype = SentencePieceTokenTypes.CONTROL
  4591. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  4592. toktype = SentencePieceTokenTypes.UNUSED
  4593. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  4594. toktype = SentencePieceTokenTypes.BYTE
  4595. tokens.append(text)
  4596. scores.append(score)
  4597. toktypes.append(toktype)
  4598. self.gguf_writer.add_tokenizer_model("llama")
  4599. # glm3 needs prefix and suffix formatted as:
  4600. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  4601. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  4602. self.gguf_writer.add_token_list(tokens)
  4603. self.gguf_writer.add_token_scores(scores)
  4604. self.gguf_writer.add_token_types(toktypes)
  4605. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4606. special_vocab.add_to_gguf(self.gguf_writer)
  4607. @staticmethod
  4608. def token_bytes_to_string(b):
  4609. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  4610. byte_encoder = bytes_to_unicode()
  4611. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  4612. @staticmethod
  4613. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  4614. parts = [bytes([b]) for b in token]
  4615. while True:
  4616. min_idx = None
  4617. min_rank = None
  4618. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4619. rank = mergeable_ranks.get(pair[0] + pair[1])
  4620. if rank is not None and (min_rank is None or rank < min_rank):
  4621. min_idx = i
  4622. min_rank = rank
  4623. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4624. break
  4625. assert min_idx is not None
  4626. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4627. return parts
  4628. def set_vocab(self):
  4629. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4630. self.set_vocab_chatglm3()
  4631. return
  4632. dir_model = self.dir_model
  4633. hparams = self.hparams
  4634. tokens: list[str] = []
  4635. toktypes: list[int] = []
  4636. from transformers import AutoTokenizer
  4637. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4638. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4639. assert max(tokenizer.get_vocab().values()) < vocab_size
  4640. tokens, toktypes, tokpre = self.get_vocab_base()
  4641. self.gguf_writer.add_tokenizer_model("gpt2")
  4642. self.gguf_writer.add_tokenizer_pre(tokpre)
  4643. self.gguf_writer.add_token_list(tokens)
  4644. self.gguf_writer.add_token_types(toktypes)
  4645. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4646. # only add special tokens when they were not already loaded from config.json
  4647. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4648. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4649. # this one is usually not in config.json anyway
  4650. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4651. special_vocab.add_to_gguf(self.gguf_writer)
  4652. def set_gguf_parameters(self):
  4653. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4654. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4655. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4656. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4657. self.gguf_writer.add_embedding_length(n_embed)
  4658. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4659. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4660. self.gguf_writer.add_head_count(n_head)
  4661. self.gguf_writer.add_head_count_kv(n_head_kv)
  4662. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4663. self.gguf_writer.add_file_type(self.ftype)
  4664. if "attention_dim" in self.hparams:
  4665. rope_dim = self.hparams["attention_dim"]
  4666. else:
  4667. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4668. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4669. self.gguf_writer.add_add_bos_token(False)
  4670. rope_freq = 10000
  4671. if "rope_ratio" in self.hparams:
  4672. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4673. self.gguf_writer.add_rope_freq_base(rope_freq)
  4674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4675. del bid # unused
  4676. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4677. return []
  4678. name = name.removeprefix("transformer.")
  4679. return [(self.map_tensor_name(name), data_torch)]
  4680. @ModelBase.register("NemotronForCausalLM")
  4681. class NemotronModel(TextModel):
  4682. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4683. def set_vocab(self):
  4684. self._set_vocab_sentencepiece()
  4685. self.gguf_writer.add_pad_token_id(0)
  4686. self.gguf_writer.add_unk_token_id(1)
  4687. def set_gguf_parameters(self):
  4688. super().set_gguf_parameters()
  4689. hparams = self.hparams
  4690. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4691. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4692. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4693. # * Partial RoPE
  4694. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4695. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4696. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4697. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4698. # * RopeScaling for Nemotron
  4699. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4700. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4701. else:
  4702. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4703. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4704. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4705. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4706. # model.layers.{l}.input_layernorm.weight
  4707. # model.layers.{l}.post_attention_layernorm.weight
  4708. # model.norm.weight
  4709. if name.endswith("norm.weight"):
  4710. data_torch = data_torch + 1
  4711. return [(self.map_tensor_name(name), data_torch)]
  4712. @ModelBase.register("ExaoneForCausalLM")
  4713. class ExaoneModel(TextModel):
  4714. model_arch = gguf.MODEL_ARCH.EXAONE
  4715. def set_gguf_parameters(self):
  4716. hparams = self.hparams
  4717. assert (hparams["activation_function"] == "silu")
  4718. max_position_embeddings = hparams["max_position_embeddings"]
  4719. embed_dim = hparams["hidden_size"]
  4720. num_heads = hparams["num_attention_heads"]
  4721. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4722. layer_norm_eps = hparams["layer_norm_epsilon"]
  4723. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4724. num_layers = hparams["num_layers"]
  4725. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4726. # attention_dropout_rate = hparams["attention_dropout"]
  4727. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4728. # embed_dropout_rate = hparams["embed_dropout"]
  4729. self.gguf_writer.add_embedding_length(embed_dim)
  4730. self.gguf_writer.add_head_count(num_heads)
  4731. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4732. self.gguf_writer.add_context_length(max_position_embeddings)
  4733. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4734. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4735. self.gguf_writer.add_block_count(num_layers)
  4736. self.gguf_writer.add_file_type(self.ftype)
  4737. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4738. self.gguf_writer.add_rope_freq_base(rope_theta)
  4739. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4740. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4741. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4742. rope_scaling = self.hparams.get("rope_scaling") or {}
  4743. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4744. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4745. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4746. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4747. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4748. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4749. base = self.hparams.get("rope_theta", 10000.0)
  4750. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4751. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4752. factor = rope_scaling.get("factor", 8.0)
  4753. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4754. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4755. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4756. low_freq_wavelen = old_context_len / low_freq_factor
  4757. high_freq_wavelen = old_context_len / high_freq_factor
  4758. assert low_freq_wavelen != high_freq_wavelen
  4759. rope_factors = []
  4760. for freq in freqs:
  4761. wavelen = 2 * math.pi / freq
  4762. if wavelen < high_freq_wavelen:
  4763. rope_factors.append(1)
  4764. elif wavelen > low_freq_wavelen:
  4765. rope_factors.append(factor)
  4766. else:
  4767. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4768. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4769. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4770. @ModelBase.register("GraniteForCausalLM")
  4771. class GraniteModel(LlamaModel):
  4772. """Conversion for IBM's GraniteForCausalLM"""
  4773. model_arch = gguf.MODEL_ARCH.GRANITE
  4774. def set_gguf_parameters(self):
  4775. """Granite uses standard llama parameters with the following differences:
  4776. - No head_dim support
  4777. - New multiplier params:
  4778. - attention_scale
  4779. - embedding_scale
  4780. - residual_scale
  4781. - logits_scaling
  4782. """
  4783. if head_dim := self.hparams.pop("head_dim", None):
  4784. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4785. super().set_gguf_parameters()
  4786. # NOTE: Convert _multiplier params to _scale params for naming
  4787. # consistency
  4788. if attention_scale := self.hparams.get("attention_multiplier"):
  4789. self.gguf_writer.add_attention_scale(attention_scale)
  4790. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4791. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4792. self.gguf_writer.add_embedding_scale(embedding_scale)
  4793. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4794. if residual_scale := self.hparams.get("residual_multiplier"):
  4795. self.gguf_writer.add_residual_scale(residual_scale)
  4796. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4797. if logits_scale := self.hparams.get("logits_scaling"):
  4798. self.gguf_writer.add_logit_scale(logits_scale)
  4799. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4800. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  4801. class GraniteMoeModel(GraniteModel):
  4802. """Conversion for IBM's GraniteMoeForCausalLM"""
  4803. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4804. def set_gguf_parameters(self):
  4805. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  4806. - shared_intermediate_size
  4807. """
  4808. super().set_gguf_parameters()
  4809. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  4810. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  4811. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  4812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4813. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4814. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4815. the hidden size that is then split during forward. To keep compatibility
  4816. with existing mixtral support, we pull them apart here.
  4817. """
  4818. if name.endswith("block_sparse_moe.input_linear.weight"):
  4819. ffn_dim = self.hparams["intermediate_size"]
  4820. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4821. gate, up = data_torch.split(ffn_dim, dim=-2)
  4822. return [
  4823. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4824. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4825. ]
  4826. if name.endswith("shared_mlp.input_linear.weight"):
  4827. ffn_dim = self.hparams["shared_intermediate_size"]
  4828. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  4829. gate, up = data_torch.split(ffn_dim, dim=-2)
  4830. return [
  4831. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  4832. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  4833. ]
  4834. return super().modify_tensors(data_torch, name, bid)
  4835. @ModelBase.register("BailingMoeForCausalLM")
  4836. class BailingMoeModel(TextModel):
  4837. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4838. def set_vocab(self):
  4839. self._set_vocab_gpt2()
  4840. def set_gguf_parameters(self):
  4841. super().set_gguf_parameters()
  4842. hparams = self.hparams
  4843. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4844. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4845. rope_scaling = self.hparams.get("rope_scaling") or {}
  4846. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4848. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4849. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4850. else:
  4851. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4852. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4853. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4854. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4855. self.gguf_writer.add_expert_weights_scale(1.0)
  4856. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4857. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4858. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4859. _experts: list[dict[str, Tensor]] | None = None
  4860. @staticmethod
  4861. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4862. if n_head_kv is not None and n_head != n_head_kv:
  4863. n_head = n_head_kv
  4864. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4865. .swapaxes(1, 2)
  4866. .reshape(weights.shape))
  4867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4868. n_head = self.hparams["num_attention_heads"]
  4869. n_kv_head = self.hparams.get("num_key_value_heads")
  4870. n_embd = self.hparams["hidden_size"]
  4871. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4872. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4873. if name.endswith("attention.dense.weight"):
  4874. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4875. elif name.endswith("query_key_value.weight"):
  4876. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4877. return [
  4878. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4879. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4880. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4881. ]
  4882. elif name.find("mlp.experts") != -1:
  4883. n_experts = self.hparams["num_experts"]
  4884. assert bid is not None
  4885. tensors: list[tuple[str, Tensor]] = []
  4886. if self._experts is None:
  4887. self._experts = [{} for _ in range(self.block_count)]
  4888. self._experts[bid][name] = data_torch
  4889. if len(self._experts[bid]) >= n_experts * 3:
  4890. # merge the experts into a single 3d tensor
  4891. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4892. datas: list[Tensor] = []
  4893. for xid in range(n_experts):
  4894. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4895. datas.append(self._experts[bid][ename])
  4896. del self._experts[bid][ename]
  4897. data_torch = torch.stack(datas, dim=0)
  4898. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4899. new_name = self.map_tensor_name(merged_name)
  4900. tensors.append((new_name, data_torch))
  4901. return tensors
  4902. new_name = self.map_tensor_name(name)
  4903. if new_name == output_name and self.hparams.get("norm_head"):
  4904. data_torch = data_torch.float()
  4905. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4906. return [(new_name, data_torch)]
  4907. def prepare_tensors(self):
  4908. super().prepare_tensors()
  4909. if self._experts is not None:
  4910. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4911. experts = [k for d in self._experts for k in d.keys()]
  4912. if len(experts) > 0:
  4913. raise ValueError(f"Unprocessed experts: {experts}")
  4914. @ModelBase.register("ChameleonForConditionalGeneration")
  4915. @ModelBase.register("ChameleonForCausalLM") # obsolete
  4916. class ChameleonModel(TextModel):
  4917. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4918. def set_gguf_parameters(self):
  4919. super().set_gguf_parameters()
  4920. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4921. def set_vocab(self):
  4922. self._set_vocab_gpt2()
  4923. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4924. # ignore image tokenizer for now
  4925. # TODO: remove this once image support is implemented for Chameleon
  4926. if name.startswith("model.vqmodel"):
  4927. return []
  4928. n_head = self.hparams["num_attention_heads"]
  4929. n_kv_head = self.hparams.get("num_key_value_heads")
  4930. hidden_dim = self.hparams.get("hidden_size")
  4931. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4932. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4933. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4934. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4935. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4936. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4937. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4938. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4939. return [(self.map_tensor_name(name), data_torch)]
  4940. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4941. @staticmethod
  4942. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4943. head_dim = hidden_dim // n_heads
  4944. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4945. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4946. return data_torch
  4947. @ModelBase.register("UltravoxModel")
  4948. class UltravoxModel(TextModel):
  4949. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  4950. def __init__(self, *args, **kwargs):
  4951. super().__init__(*args, **kwargs)
  4952. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  4953. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  4954. class WhisperEncoderModel(MmprojModel):
  4955. has_vision_encoder = False # no vision encoder
  4956. has_audio_encoder = True
  4957. def __init__(self, *args, **kwargs):
  4958. super().__init__(*args, **kwargs)
  4959. self.hparams["hidden_size"] = self.hparams["d_model"]
  4960. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  4961. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  4962. def set_gguf_parameters(self):
  4963. super().set_gguf_parameters()
  4964. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  4965. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  4966. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  4967. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4968. del bid, new_name, n_dims # unused
  4969. if ".conv" in name and ".weight" in name:
  4970. return gguf.GGMLQuantizationType.F16
  4971. return False
  4972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4973. del bid # unused
  4974. if name.startswith("language_model."):
  4975. # skip language model tensors
  4976. return []
  4977. # prevent clash naming with vision tensors
  4978. if name.startswith("multi_modal_projector"):
  4979. name = "audio." + name
  4980. if "conv1.bias" in name or "conv2.bias" in name:
  4981. # transpose conv1 and conv2 bias
  4982. data_torch = data_torch.unsqueeze(-1)
  4983. return [(self.map_tensor_name(name), data_torch)]
  4984. @ModelBase.register("UltravoxModel")
  4985. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  4986. has_vision_encoder = False # no vision encoder
  4987. has_audio_encoder = True
  4988. def set_gguf_parameters(self):
  4989. super().set_gguf_parameters()
  4990. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  4991. ###### CONVERSION LOGIC ######
  4992. # tree of lazy tensors
  4993. class LazyTorchTensor(gguf.LazyBase):
  4994. _tensor_type = torch.Tensor
  4995. # to keep the type-checker happy
  4996. dtype: torch.dtype
  4997. shape: torch.Size
  4998. # only used when converting a torch.Tensor to a np.ndarray
  4999. _dtype_map: dict[torch.dtype, type] = {
  5000. torch.float16: np.float16,
  5001. torch.float32: np.float32,
  5002. }
  5003. # used for safetensors slices
  5004. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  5005. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  5006. _dtype_str_map: dict[str, torch.dtype] = {
  5007. "F64": torch.float64,
  5008. "F32": torch.float32,
  5009. "BF16": torch.bfloat16,
  5010. "F16": torch.float16,
  5011. # "U64": torch.uint64,
  5012. "I64": torch.int64,
  5013. # "U32": torch.uint32,
  5014. "I32": torch.int32,
  5015. # "U16": torch.uint16,
  5016. "I16": torch.int16,
  5017. "U8": torch.uint8,
  5018. "I8": torch.int8,
  5019. "BOOL": torch.bool,
  5020. "F8_E4M3": torch.float8_e4m3fn,
  5021. "F8_E5M2": torch.float8_e5m2,
  5022. }
  5023. def numpy(self) -> gguf.LazyNumpyTensor:
  5024. dtype = self._dtype_map[self.dtype]
  5025. return gguf.LazyNumpyTensor(
  5026. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  5027. args=(self,),
  5028. func=(lambda s: s.numpy())
  5029. )
  5030. @classmethod
  5031. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  5032. return torch.empty(size=shape, dtype=dtype, device="meta")
  5033. @classmethod
  5034. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  5035. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  5036. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  5037. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  5038. return cast(torch.Tensor, lazy)
  5039. @classmethod
  5040. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  5041. dtype = cls._dtype_str_map[remote_tensor.dtype]
  5042. shape = remote_tensor.shape
  5043. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  5044. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  5045. return cast(torch.Tensor, lazy)
  5046. @classmethod
  5047. def __torch_function__(cls, func, types, args=(), kwargs=None):
  5048. del types # unused
  5049. if kwargs is None:
  5050. kwargs = {}
  5051. if func is torch.Tensor.numpy:
  5052. return args[0].numpy()
  5053. return cls._wrap_fn(func)(*args, **kwargs)
  5054. def parse_args() -> argparse.Namespace:
  5055. parser = argparse.ArgumentParser(
  5056. description="Convert a huggingface model to a GGML compatible file")
  5057. parser.add_argument(
  5058. "--vocab-only", action="store_true",
  5059. help="extract only the vocab",
  5060. )
  5061. parser.add_argument(
  5062. "--outfile", type=Path,
  5063. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  5064. )
  5065. parser.add_argument(
  5066. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  5067. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  5068. )
  5069. parser.add_argument(
  5070. "--bigendian", action="store_true",
  5071. help="model is executed on big endian machine",
  5072. )
  5073. parser.add_argument(
  5074. "model", type=Path,
  5075. help="directory containing model file",
  5076. nargs="?",
  5077. )
  5078. parser.add_argument(
  5079. "--use-temp-file", action="store_true",
  5080. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  5081. )
  5082. parser.add_argument(
  5083. "--no-lazy", action="store_true",
  5084. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  5085. )
  5086. parser.add_argument(
  5087. "--model-name", type=str, default=None,
  5088. help="name of the model",
  5089. )
  5090. parser.add_argument(
  5091. "--verbose", action="store_true",
  5092. help="increase output verbosity",
  5093. )
  5094. parser.add_argument(
  5095. "--split-max-tensors", type=int, default=0,
  5096. help="max tensors in each split",
  5097. )
  5098. parser.add_argument(
  5099. "--split-max-size", type=str, default="0",
  5100. help="max size per split N(M|G)",
  5101. )
  5102. parser.add_argument(
  5103. "--dry-run", action="store_true",
  5104. help="only print out a split plan and exit, without writing any new files",
  5105. )
  5106. parser.add_argument(
  5107. "--no-tensor-first-split", action="store_true",
  5108. help="do not add tensors to the first split (disabled by default)"
  5109. )
  5110. parser.add_argument(
  5111. "--metadata", type=Path,
  5112. help="Specify the path for an authorship metadata override file"
  5113. )
  5114. parser.add_argument(
  5115. "--print-supported-models", action="store_true",
  5116. help="Print the supported models"
  5117. )
  5118. parser.add_argument(
  5119. "--remote", action="store_true",
  5120. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  5121. )
  5122. parser.add_argument(
  5123. "--mmproj", action="store_true",
  5124. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  5125. )
  5126. args = parser.parse_args()
  5127. if not args.print_supported_models and args.model is None:
  5128. parser.error("the following arguments are required: model")
  5129. return args
  5130. def split_str_to_n_bytes(split_str: str) -> int:
  5131. if split_str.endswith("K"):
  5132. n = int(split_str[:-1]) * 1000
  5133. elif split_str.endswith("M"):
  5134. n = int(split_str[:-1]) * 1000 * 1000
  5135. elif split_str.endswith("G"):
  5136. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  5137. elif split_str.isnumeric():
  5138. n = int(split_str)
  5139. else:
  5140. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  5141. if n < 0:
  5142. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  5143. return n
  5144. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  5145. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  5146. # maybe we should fallback to text model's arch in that case, since not many models have both
  5147. text_config = hparams.get("text_config", {})
  5148. vision_config = hparams.get("vision_config", {})
  5149. arch = hparams["architectures"][0]
  5150. # if "architectures" is found in the sub-config, use that instead
  5151. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  5152. arch = text_config["architectures"][0]
  5153. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  5154. arch = vision_config["architectures"][0]
  5155. return arch
  5156. def main() -> None:
  5157. args = parse_args()
  5158. if args.print_supported_models:
  5159. logger.error("Supported models:")
  5160. ModelBase.print_registered_models()
  5161. sys.exit(0)
  5162. if args.verbose:
  5163. logging.basicConfig(level=logging.DEBUG)
  5164. else:
  5165. logging.basicConfig(level=logging.INFO)
  5166. dir_model = args.model
  5167. if args.remote:
  5168. from huggingface_hub import snapshot_download
  5169. local_dir = snapshot_download(
  5170. repo_id=str(dir_model),
  5171. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  5172. dir_model = Path(local_dir)
  5173. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  5174. if not dir_model.is_dir():
  5175. logger.error(f'Error: {args.model} is not a directory')
  5176. sys.exit(1)
  5177. ftype_map: dict[str, gguf.LlamaFileType] = {
  5178. "f32": gguf.LlamaFileType.ALL_F32,
  5179. "f16": gguf.LlamaFileType.MOSTLY_F16,
  5180. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  5181. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  5182. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  5183. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  5184. "auto": gguf.LlamaFileType.GUESSED,
  5185. }
  5186. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  5187. if args.use_temp_file and is_split:
  5188. logger.error("Error: Cannot use temp file when splitting")
  5189. sys.exit(1)
  5190. if args.outfile is not None:
  5191. fname_out = args.outfile
  5192. elif args.remote:
  5193. # if remote, use the model ID as the output file name
  5194. fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf")
  5195. else:
  5196. fname_out = dir_model
  5197. logger.info(f"Loading model: {dir_model.name}")
  5198. if args.mmproj:
  5199. if "mmproj" not in fname_out.name:
  5200. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  5201. with torch.inference_mode():
  5202. output_type = ftype_map[args.outtype]
  5203. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  5204. hparams = ModelBase.load_hparams(dir_model)
  5205. model_architecture = get_model_architecture(hparams, model_type)
  5206. logger.info(f"Model architecture: {model_architecture}")
  5207. try:
  5208. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  5209. except NotImplementedError:
  5210. logger.error(f"Model {model_architecture} is not supported")
  5211. sys.exit(1)
  5212. model_instance = model_class(dir_model, output_type, fname_out,
  5213. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  5214. eager=args.no_lazy,
  5215. metadata_override=args.metadata, model_name=args.model_name,
  5216. split_max_tensors=args.split_max_tensors,
  5217. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  5218. small_first_shard=args.no_tensor_first_split,
  5219. remote_hf_model_id=str(args.model) if args.remote else None)
  5220. if args.vocab_only:
  5221. logger.info("Exporting model vocab...")
  5222. model_instance.write_vocab()
  5223. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  5224. else:
  5225. logger.info("Exporting model...")
  5226. model_instance.write()
  5227. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  5228. logger.info(f"Model successfully exported to {out_path}")
  5229. if __name__ == '__main__':
  5230. main()