| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929 |
- #include "llama_util.h"
- #include "llama.h"
- #include "llama_internal.h"
- #include "ggml.h"
- #include <array>
- #include <cinttypes>
- #include <fstream>
- #include <random>
- #include <map>
- #include <unordered_map>
- #include <queue>
- #include <cassert>
- #include <cstring>
- #include <climits>
- #include <memory>
- #include <algorithm>
- #include <initializer_list>
- #define LLAMA_USE_SCRATCH
- #define LLAMA_MAX_SCRATCH_BUFFERS 16
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_7B,
- MODEL_13B,
- MODEL_30B,
- MODEL_65B,
- };
- static const size_t MB = 1024*1024;
- // computed for n_ctx == 2048
- // TODO: dynamically determine these sizes
- // needs modifications in ggml
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
- { MODEL_7B, 512ull*MB },
- { MODEL_13B, 512ull*MB },
- { MODEL_30B, 512ull*MB },
- { MODEL_65B, 512ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
- { MODEL_7B, 512ull*MB },
- { MODEL_13B, 512ull*MB },
- { MODEL_30B, 512ull*MB },
- { MODEL_65B, 512ull*MB },
- };
- // 2*n_embd*n_ctx*n_layer*sizeof(float16)
- static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
- { MODEL_7B, 1026ull*MB },
- { MODEL_13B, 1608ull*MB },
- { MODEL_30B, 3124ull*MB },
- { MODEL_65B, 5120ull*MB },
- };
- // this is mostly needed for temporary mul_mat buffers to dequantize the data
- // not actually needed if BLAS is disabled
- static const std::map<e_model, size_t> MEM_REQ_EVAL = {
- { MODEL_7B, 768ull*MB },
- { MODEL_13B, 1024ull*MB },
- { MODEL_30B, 1280ull*MB },
- { MODEL_65B, 1536ull*MB },
- };
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- uint32_t n_vocab = 32000;
- uint32_t n_ctx = 512; // this is provided as user input?
- uint32_t n_embd = 4096;
- uint32_t n_mult = 256;
- uint32_t n_head = 32;
- uint32_t n_layer = 32;
- uint32_t n_rot = 64;
- uint32_t f16 = 1;
- bool operator!=(const llama_hparams & other) const {
- return memcmp(this, &other, sizeof(llama_hparams));
- }
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct llama_kv_cache {
- struct ggml_tensor * k;
- struct ggml_tensor * v;
- struct ggml_context * ctx = NULL;
- llama_buffer buf;
- int n; // number of tokens currently in the cache
- ~llama_kv_cache() {
- if (ctx) {
- ggml_free(ctx);
- }
- }
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- // context
- struct ggml_context * ctx = NULL;
- // key + value cache for the self attention
- // TODO: move to llama_state
- struct llama_kv_cache kv_self;
- // the model memory buffer
- llama_buffer buf;
- // model memory mapped file
- std::unique_ptr<llama_mmap> mapping;
- // objects representing data potentially being locked in memory
- llama_mlock mlock_buf;
- llama_mlock mlock_mmap;
- // for quantize-stats only
- std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
- ~llama_model() {
- if (ctx) {
- ggml_free(ctx);
- }
- }
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- struct token_score {
- token tok;
- float score;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
- };
- struct llama_context {
- std::mt19937 rng;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- bool has_evaluated_once = false;
- int64_t t_sample_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_p_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_eval = 0; // number of eval calls
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- llama_model model;
- llama_vocab vocab;
- size_t mem_per_token = 0;
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // memory buffers used to evaluate the model
- // TODO: move in llama_state
- llama_buffer buf_compute;
- llama_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
- int buf_last = 0;
- size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
- void use_buf(struct ggml_context * ctx, int i) {
- #if defined(LLAMA_USE_SCRATCH)
- size_t last_size = 0;
- if (i == -1) {
- last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
- } else {
- auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
- }
- if (buf_last >= 0) {
- buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
- }
- buf_last = i;
- #else
- (void) i;
- (void) ctx;
- #endif
- }
- size_t get_buf_max_mem(int i) const {
- #if defined(LLAMA_USE_SCRATCH)
- return buf_max_size[i];
- #else
- (void) i;
- return 0;
- #endif
- }
- };
- template <typename T>
- static T checked_mul(T a, T b) {
- T ret = a * b;
- if (a != 0 && ret / a != b) {
- throw format("overflow multiplying %llu * %llu",
- (unsigned long long) a, (unsigned long long) b);
- }
- return ret;
- }
- static size_t checked_div(size_t a, size_t b) {
- if (b == 0 || a % b != 0) {
- throw format("error dividing %zu / %zu", a, b);
- }
- return a / b;
- }
- static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
- std::string ret = "[" + std::to_string(ne.at(0));
- for (size_t i = 1; i < ne.size(); i++) {
- ret += " x " + std::to_string(ne.at(i));
- }
- ret += "]";
- return ret;
- }
- static const char * llama_format_type(enum ggml_type type) {
- switch (type) {
- case GGML_TYPE_F32: return "f32";
- case GGML_TYPE_F16: return "f16";
- case GGML_TYPE_Q4_0: return "q4_0";
- case GGML_TYPE_Q4_1: return "q4_1";
- default: LLAMA_ASSERT(false);
- }
- }
- static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
- size_t size = ggml_type_size(type);
- for (uint32_t dim : ne) {
- size = checked_mul<size_t>(size, dim);
- }
- return size / ggml_blck_size(type);
- }
- struct llama_load_tensor_shard {
- std::vector<uint32_t> ne;
- size_t size;
- enum ggml_type type;
- size_t file_idx;
- size_t file_off;
- void calc_size() {
- size = llama_calc_tensor_size(ne, type);
- }
- };
- enum llama_split_type {
- SPLIT_NONE,
- SPLIT_BY_COLUMNS,
- SPLIT_BY_ROWS
- };
- struct llama_load_tensor {
- std::vector<llama_load_tensor_shard> shards;
- std::string name;
- enum ggml_type type = GGML_TYPE_F32;
- llama_split_type split_type = SPLIT_NONE;
- std::vector<uint32_t> ne;
- size_t size;
- struct ggml_tensor * ggml_tensor = NULL;
- uint8_t * data;
- llama_load_tensor(const std::string & name) : name(name) {}
- void calc_all() {
- calc_type();
- calc_split_type();
- calc_ne();
- calc_size();
- }
- void calc_type() {
- const auto & first_shard = shards.at(0);
- for (const auto & shard : shards) {
- if (shard.type != first_shard.type) {
- throw format("inconsistent tensor shard type in '%s'", name.c_str());
- }
- }
- type = first_shard.type;
- }
- void calc_split_type() {
- if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
- shards.size() == 1) { // only one file?
- split_type = SPLIT_NONE;
- } else if (name.find("tok_embeddings.") == 0 ||
- name.find(".attention.wo.weight") != std::string::npos ||
- name.find(".feed_forward.w2.weight") != std::string::npos) {
- split_type = SPLIT_BY_COLUMNS;
- } else {
- split_type = SPLIT_BY_ROWS;
- }
- }
- void calc_ne() {
- const auto & first_shard = shards.at(0);
- for (const auto & shard : shards) {
- if (shard.ne != first_shard.ne) {
- throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
- name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
- }
- }
- ne = first_shard.ne;
- LLAMA_ASSERT(shards.size() <= UINT32_MAX);
- uint32_t n_shards = (uint32_t) shards.size();
- switch (split_type) {
- case SPLIT_NONE:
- ne = first_shard.ne;
- break;
- case SPLIT_BY_COLUMNS:
- ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
- first_shard.ne[1]};
- break;
- case SPLIT_BY_ROWS:
- ne = {first_shard.ne[0],
- checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
- break;
- }
- }
- void calc_size() {
- size = llama_calc_tensor_size(ne, type);
- }
- };
- struct llama_load_tensors_map {
- // tensors is kept in a separate vector to preserve file order
- std::vector<llama_load_tensor> tensors;
- std::unordered_map<std::string, size_t> name_to_idx;
- };
- enum llama_file_version {
- LLAMA_FILE_VERSION_GGML,
- LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
- LLAMA_FILE_VERSION_GGJT_V1, // added padding
- };
- struct llama_file_loader {
- llama_file file;
- llama_file_version file_version;
- llama_hparams hparams;
- llama_vocab vocab;
- llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
- : file(fname, "rb") {
- fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
- read_magic();
- read_hparams();
- read_vocab();
- read_tensor_metadata(file_idx, tensors_map);
- }
- void read_magic() {
- uint32_t magic = file.read_u32();
- uint32_t version = 0;
- if (magic != 'ggml') {
- version = file.read_u32();
- }
- if (magic == 'ggml' && version == 0) {
- file_version = LLAMA_FILE_VERSION_GGML;
- } else if (magic == 'ggmf' && version == 1) {
- file_version = LLAMA_FILE_VERSION_GGMF_V1;
- } else if (magic == 'ggjt' && version == 1) {
- file_version = LLAMA_FILE_VERSION_GGJT_V1;
- } else {
- throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
- magic, version);
- }
- }
- void read_hparams() {
- hparams.n_vocab = file.read_u32();
- hparams.n_embd = file.read_u32();
- hparams.n_mult = file.read_u32();
- hparams.n_head = file.read_u32();
- hparams.n_layer = file.read_u32();
- hparams.n_rot = file.read_u32();
- hparams.f16 = file.read_u32();
- }
- void read_vocab() {
- vocab.id_to_token.resize(hparams.n_vocab);
- for (uint32_t i = 0; i < hparams.n_vocab; i++) {
- uint32_t len = file.read_u32();
- std::string word = file.read_string(len);
- float score = 0.0f;
- if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
- file.read_raw(&score, sizeof(score));
- }
- vocab.token_to_id[word] = i;
- auto & tok_score = vocab.id_to_token[i];
- tok_score.tok = std::move(word);
- tok_score.score = score;
- }
- }
- void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
- while (file.tell() < file.size) {
- llama_load_tensor_shard shard;
- uint32_t n_dims = file.read_u32();
- uint32_t name_len = file.read_u32();
- uint32_t ftype = file.read_u32();
- shard.ne.resize(n_dims);
- file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
- std::string name = file.read_string(name_len);
- if (n_dims < 1 || n_dims > 2) {
- throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
- }
- switch (ftype) {
- case 0: shard.type = GGML_TYPE_F32; break;
- case 1: shard.type = GGML_TYPE_F16; break;
- case 2: shard.type = GGML_TYPE_Q4_0; break;
- case 3: shard.type = GGML_TYPE_Q4_1; break;
- default: {
- throw format("unrecognized ftype %u\n", ftype);
- }
- }
- if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
- // skip to the next multiple of 32 bytes
- file.seek(-file.tell() & 31, SEEK_CUR);
- }
- shard.file_idx = file_idx;
- shard.file_off = file.tell();
- shard.calc_size();
- file.seek(shard.size, SEEK_CUR);
- auto it = tensors_map.name_to_idx.find(name);
- size_t idx;
- if (it != tensors_map.name_to_idx.end()) {
- idx = it->second;
- } else {
- tensors_map.tensors.emplace_back(name);
- idx = tensors_map.tensors.size() - 1;
- tensors_map.name_to_idx.emplace(name, idx);
- }
- tensors_map.tensors.at(idx).shards.push_back(shard);
- }
- }
- };
- struct llama_file_saver {
- llama_file file;
- llama_file_loader * any_file_loader;
- llama_file_saver(const char * fname, llama_file_loader * any_file_loader, uint32_t new_f16)
- : file(fname, "wb"), any_file_loader(any_file_loader) {
- fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
- write_magic();
- write_hparams(new_f16);
- write_vocab();
- }
- void write_magic() {
- file.write_u32('ggjt'); // magic
- file.write_u32(1); // version
- }
- void write_hparams(uint32_t new_f16) {
- const llama_hparams & hparams = any_file_loader->hparams;
- file.write_u32(hparams.n_vocab);
- file.write_u32(hparams.n_embd);
- file.write_u32(hparams.n_mult);
- file.write_u32(hparams.n_head);
- file.write_u32(hparams.n_layer);
- file.write_u32(hparams.n_rot);
- file.write_u32(new_f16);
- }
- void write_vocab() {
- if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
- fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
- }
- uint32_t n_vocab = any_file_loader->hparams.n_vocab;
- for (uint32_t i = 0; i < n_vocab; i++) {
- const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
- file.write_u32((uint32_t) token_score.tok.size());
- file.write_raw(token_score.tok.data(), token_score.tok.size());
- file.write_raw(&token_score.score, sizeof(token_score.score));
- }
- }
- void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
- uint32_t ftype;
- switch (new_type) {
- case GGML_TYPE_F32: ftype = 0; break;
- case GGML_TYPE_F16: ftype = 1; break;
- case GGML_TYPE_Q4_0: ftype = 2; break;
- case GGML_TYPE_Q4_1: ftype = 3; break;
- default: LLAMA_ASSERT(false);
- }
- file.write_u32((uint32_t) tensor.ne.size());
- file.write_u32((uint32_t) tensor.name.size());
- file.write_u32(ftype);
- file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
- file.write_raw(tensor.name.data(), tensor.name.size());
- file.seek(-file.tell() & 31, SEEK_CUR);
- LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
- file.write_raw(new_data, new_size);
- }
- };
- struct llama_model_loader {
- std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
- llama_load_tensors_map tensors_map;
- bool use_mmap;
- size_t num_ggml_tensors_created = 0;
- struct ggml_context * ggml_ctx = NULL;
- std::unique_ptr<llama_mmap> mapping;
- llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
- auto first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
- file_loaders.emplace_back(first_file);
- uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
- for (uint32_t i = 1; i < n_parts; i++) {
- std::string fname = fname_base + "." + std::to_string(i);
- auto ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
- file_loaders.emplace_back(ith_file);
- if (ith_file->hparams != first_file->hparams) {
- throw format("llama.cpp: hparams inconsistent between files");
- }
- }
- if (!llama_mmap::SUPPORTED) {
- use_mmap = false;
- }
- if (use_mmap && alignment_prevents_mmap()) {
- fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
- use_mmap = false;
- }
- this->use_mmap = use_mmap;
- for (llama_load_tensor & lt : tensors_map.tensors) {
- lt.calc_all();
- }
- }
- bool alignment_prevents_mmap() {
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- for (const llama_load_tensor_shard & shard : lt.shards) {
- if (shard.file_off & 3) {
- return true;
- }
- }
- }
- return false;
- }
- uint32_t guess_n_parts() const {
- auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
- if (it == tensors_map.name_to_idx.end()) {
- throw std::string("missing tok_embeddings.weight");
- }
- const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
- return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
- }
- void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
- *ctx_size_p = *mmapped_size_p = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
- *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
- }
- }
- struct ggml_tensor * get_tensor(const std::string & name, std::vector<uint32_t> ne) {
- auto it = tensors_map.name_to_idx.find(name);
- if (it == tensors_map.name_to_idx.end()) {
- throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
- }
- llama_load_tensor & lt = tensors_map.tensors.at(it->second);
- if (lt.ne != ne) {
- throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
- name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
- }
- return get_tensor_for(lt);
- }
- struct ggml_tensor * get_tensor_for(llama_load_tensor & lt) {
- struct ggml_tensor * tensor;
- if (lt.ne.size() == 2) {
- tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
- } else {
- LLAMA_ASSERT(lt.ne.size() == 1);
- tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
- }
- LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
- lt.ggml_tensor = tensor;
- num_ggml_tensors_created++;
- return tensor;
- }
- void done_getting_tensors() {
- if (num_ggml_tensors_created != tensors_map.tensors.size()) {
- throw std::string("llama.cpp: file contained more tensors than expected");
- }
- }
- void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
- size_t data_size = 0;
- for (const llama_load_tensor & lt : tensors_map.tensors) {
- data_size += lt.size;
- }
- if (use_mmap) {
- mapping.reset(new llama_mmap(&file_loaders.at(0)->file));
- if (!lmlock) {
- // Don't call the callback since the actual loading will be lazy
- // and we can't measure it.
- progress_callback = NULL;
- }
- if (lmlock) {
- lmlock->init(mapping->addr);
- }
- }
- size_t done_size = 0;
- for (llama_load_tensor & lt : tensors_map.tensors) {
- if (progress_callback) {
- progress_callback((float) done_size / data_size, progress_callback_user_data);
- }
- LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
- lt.data = (uint8_t *) lt.ggml_tensor->data;
- load_data_for(lt);
- lt.ggml_tensor->data = lt.data;
- done_size += lt.size;
- if (use_mmap && lmlock) {
- lmlock->grow_to(done_size);
- }
- }
- if (progress_callback) {
- progress_callback(1.0f, progress_callback_user_data);
- }
- }
- void load_data_for(llama_load_tensor & lt) {
- if (use_mmap) {
- LLAMA_ASSERT(lt.shards.size() == 1);
- lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
- } else if (lt.split_type == SPLIT_NONE) {
- llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
- file.seek(lt.shards.at(0).file_off, SEEK_SET);
- file.read_raw(lt.data, lt.size);
- } else if (lt.split_type == SPLIT_BY_ROWS) {
- size_t offset = 0;
- for (llama_load_tensor_shard & shard : lt.shards) {
- llama_file & file = file_loaders.at(shard.file_idx)->file;
- file.seek(shard.file_off, SEEK_SET);
- file.read_raw(lt.data + offset, shard.size);
- offset += shard.size;
- }
- LLAMA_ASSERT(offset == lt.size);
- } else if (lt.split_type == SPLIT_BY_COLUMNS) {
- // Let's load the data into temporary buffers to ensure the OS performs large loads.
- std::vector<llama_buffer> tmp_bufs;
- tmp_bufs.resize(lt.shards.size());
- for (size_t i = 0; i < lt.shards.size(); i++) {
- llama_load_tensor_shard & shard = lt.shards.at(i);
- llama_file & file = file_loaders.at(shard.file_idx)->file;
- file.seek(shard.file_off, SEEK_SET);
- tmp_bufs.at(i).resize(shard.size);
- file.read_raw(tmp_bufs.at(i).addr, shard.size);
- }
- // Then reshape.
- size_t num_rows = lt.ne.at(1);
- size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
- size_t out_offset = 0;
- for (size_t row = 0; row < num_rows; row++) {
- for (llama_buffer & tmp_buf : tmp_bufs) {
- memcpy(lt.data + out_offset,
- tmp_buf.addr + row * per_shard_row_size,
- per_shard_row_size);
- out_offset += per_shard_row_size;
- }
- }
- LLAMA_ASSERT(out_offset == lt.size);
- }
- if (0) {
- print_checksum(lt);
- }
- }
- static void print_checksum(llama_load_tensor & lt) {
- uint32_t sum = 0;
- for (size_t i = 0; i < lt.size; i++) {
- uint8_t byte = lt.data[i];
- sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
- }
- fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
- llama_format_tensor_shape(lt.ne).c_str(), lt.size);
- }
- };
- //
- // kv cache
- //
- static bool kv_cache_init(
- const struct llama_hparams & hparams,
- struct llama_kv_cache & cache,
- ggml_type wtype,
- int n_ctx) {
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int64_t n_mem = (int64_t)n_layer*n_ctx;
- const int64_t n_elements = n_embd*n_mem;
- cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- struct ggml_init_params params;
- params.mem_size = cache.buf.size;
- params.mem_buffer = cache.buf.addr;
- params.no_alloc = false;
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- return true;
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.n_ctx =*/ 512,
- /*.n_parts =*/ -1,
- /*.seed =*/ 0,
- /*.f16_kv =*/ false,
- /*.logits_all =*/ false,
- /*.vocab_only =*/ false,
- /*.use_mmap =*/ true,
- /*.use_mlock =*/ false,
- /*.embedding =*/ false,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- };
- return result;
- }
- bool llama_mmap_supported() {
- return llama_mmap::SUPPORTED;
- }
- bool llama_mlock_supported() {
- return llama_mlock::SUPPORTED;
- }
- //
- // model loading
- //
- static const char *llama_file_version_name(llama_file_version version) {
- switch (version) {
- case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
- case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
- case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (latest)";
- default: LLAMA_ASSERT(false);
- }
- }
- static const char *llama_model_type_name(e_model type) {
- switch (type) {
- case MODEL_7B: return "7B";
- case MODEL_13B: return "13B";
- case MODEL_30B: return "30B";
- case MODEL_65B: return "65B";
- default: LLAMA_ASSERT(false);
- }
- }
- static void llama_model_load_internal(
- const std::string & fname,
- llama_context & lctx,
- int n_ctx,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void * progress_callback_user_data) {
- lctx.t_start_us = ggml_time_us();
- std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
- lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
- auto & model = lctx.model;
- model.hparams = ml->file_loaders.at(0)->hparams;
- llama_file_version file_version = ml->file_loaders.at(0)->file_version;
- auto & hparams = model.hparams;
- uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- {
- switch (hparams.n_layer) {
- case 32: model.type = e_model::MODEL_7B; break;
- case 40: model.type = e_model::MODEL_13B; break;
- case 60: model.type = e_model::MODEL_30B; break;
- case 80: model.type = e_model::MODEL_65B; break;
- }
- hparams.n_ctx = n_ctx;
- }
- {
- fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
- fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: f16 = %u\n", __func__, hparams.f16);
- fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
- fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
- }
- if (vocab_only) {
- return;
- }
- auto & ctx = model.ctx;
- size_t ctx_size, mmapped_size;
- ml->calc_sizes(&ctx_size, &mmapped_size);
- fprintf(stderr, "%s: ggml ctx size = %6.2f KB\n", __func__, ctx_size/1024.0);
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- // this is the total memory required to run the inference
- const size_t mem_required =
- ctx_size +
- mmapped_size +
- MEM_REQ_SCRATCH0.at(model.type) +
- MEM_REQ_SCRATCH1.at(model.type) +
- MEM_REQ_EVAL.at (model.type);
- // this is the memory required by one llama_state
- const size_t mem_required_state =
- scale*MEM_REQ_KV_SELF.at(model.type);
- fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- }
- // create the ggml context
- {
- lctx.model.buf.resize(ctx_size);
- if (use_mlock) {
- lctx.model.mlock_buf.init(lctx.model.buf.addr);
- lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ lctx.model.buf.size,
- /*.mem_buffer =*/ lctx.model.buf.addr,
- /*.no_alloc =*/ ml->use_mmap,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- throw format("ggml_init() failed");
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const uint32_t n_embd = hparams.n_embd;
- const uint32_t n_layer = hparams.n_layer;
- const uint32_t n_vocab = hparams.n_vocab;
- ml->ggml_ctx = ctx;
- model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab});
- model.norm = ml->get_tensor("norm.weight", {n_embd});
- model.output = ml->get_tensor("output.weight", {n_embd, n_vocab});
- model.layers.resize(n_layer);
- for (uint32_t i = 0; i < n_layer; ++i) {
- auto & layer = model.layers[i];
- std::string layers_i = "layers." + std::to_string(i);
- layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd});
- layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd});
- layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd});
- layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd});
- layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd});
- layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd});
- layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff});
- layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd});
- layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff});
- }
- }
- ml->done_getting_tensors();
- // populate `tensors_by_name`
- for (llama_load_tensor & lt : ml->tensors_map.tensors) {
- model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
- }
- ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
- model.mapping = std::move(ml->mapping);
- // loading time will be recalculate after the first eval, so
- // we take page faults deferred by mmap() into consideration
- lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
- }
- static bool llama_model_load(
- const std::string & fname,
- llama_context & lctx,
- int n_ctx,
- ggml_type memory_type,
- bool use_mmap,
- bool use_mlock,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- try {
- llama_model_load_internal(fname, lctx, n_ctx, memory_type, use_mmap, use_mlock,
- vocab_only, progress_callback, progress_callback_user_data);
- return true;
- } catch (const std::string & err) {
- fprintf(stderr, "error loading model: %s\n", err.c_str());
- return false;
- }
- }
- // evaluate the transformer
- //
- // - lctx: llama context
- // - tokens: new batch of tokens to process
- // - n_past: the context size so far
- // - n_threads: number of threads to use
- //
- static bool llama_eval_internal(
- llama_context & lctx,
- const llama_token * tokens,
- const int n_tokens,
- const int n_past,
- const int n_threads) {
- const int64_t t_start_us = ggml_time_us();
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- auto & kv_self = model.kv_self;
- LLAMA_ASSERT(!!kv_self.ctx);
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
- auto & mem_per_token = lctx.mem_per_token;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size,
- /*.mem_buffer =*/ buf_compute.addr,
- /*.no_alloc =*/ false,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- ggml_cgraph gf = {};
- gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, tokens, N*ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- lctx.use_buf(ctx0, 0);
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
- }
- // self-attention
- {
- // compute Q and K and RoPE them
- struct ggml_tensor * Qcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- struct ggml_tensor * Kcur = ggml_rope(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
- // store key and value to memory
- {
- // compute the transposed [N, n_embd] V matrix
- struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
- ( n_ctx)*ggml_element_size(kv_self.v),
- (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
- // important: storing RoPE-ed version of K in the KV cache!
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- Qcur,
- 0, 2, 1, 3);
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // split cached V into n_head heads
- struct ggml_tensor * V =
- ggml_view_3d(ctx0, kv_self.v,
- n_past + N, n_embd/n_head, n_head,
- n_ctx*ggml_element_size(kv_self.v),
- n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
- il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
- #if 1
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
- #else
- // make V contiguous in memory to speed up the matmul, however we waste time on the copy
- // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
- // is there a better way?
- struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
- #endif
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- }
- lctx.use_buf(ctx0, 1);
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- cur = ggml_mul(ctx0, cur, tmp);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- }
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- inpL = cur;
- }
- lctx.use_buf(ctx0, 0);
- // used at the end to optionally extract the embeddings
- struct ggml_tensor * embeddings = NULL;
- // norm
- {
- inpL = ggml_rms_norm(ctx0, inpL);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
- embeddings = inpL;
- }
- // lm_head
- inpL = ggml_mul_mat(ctx0, model.output, inpL);
- lctx.use_buf(ctx0, -1);
- // logits -> probs
- //inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute (ctx0, &gf);
- // print timing information per ggml operation (for debugging purposes)
- // requires GGML_PERF to be defined
- //ggml_graph_print(&gf);
- // plot the computation graph in dot format (for debugging purposes)
- //if (n_past%100 == 0) {
- // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
- //}
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- // extract logits
- {
- auto & logits_out = lctx.logits;
- if (lctx.logits_all) {
- logits_out.resize(n_vocab * N);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
- }
- // extract embeddings
- if (lctx.embedding.size()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- #if 0
- printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
- ggml_used_mem(ctx0)/1024.0/1024.0,
- lctx.get_buf_max_mem(0)/1024.0/1024.0,
- lctx.get_buf_max_mem(1)/1024.0/1024.0);
- #endif
- ggml_free(ctx0);
- // measure the performance only for the single-token evals
- if (N == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (N > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += N;
- }
- return true;
- }
- //
- // tokenizer
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- struct llama_sp_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- struct llama_sp_bigram {
- struct comparator {
- bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llama_sp_bigram>;
- using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
- llama_sp_symbol::index left;
- llama_sp_symbol::index right;
- float score;
- size_t size;
- };
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llama_tokenizer {
- llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llama_sp_symbol sym;
- size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
- sym.text = text.c_str() + offs;
- sym.n = char_len;
- offs += char_len;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols_.emplace_back(std::move(sym));
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols_.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue_.empty()) {
- auto bigram = work_queue_.top();
- work_queue_.pop();
- auto & left_sym = symbols_[bigram.left];
- auto & right_sym = symbols_[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols_[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols_[i].next) {
- auto & symbol = symbols_[i];
- auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
- if (token == vocab_.token_to_id.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int) symbol.n; ++j) {
- llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
- output.push_back(token_id);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- private:
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
- auto token = vocab_.token_to_id.find(text);
- if (token == vocab_.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
- return;
- }
- const auto &tok_score = vocab_.id_to_token[(*token).second];
- llama_sp_bigram bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_score.score;
- bigram.size = text.size();
- work_queue_.push(bigram);
- }
- const llama_vocab & vocab_;
- std::vector<llama_sp_symbol> symbols_;
- llama_sp_bigram::queue work_queue_;
- };
- static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
- llama_tokenizer tokenizer(vocab);
- std::vector<llama_vocab::id> output;
- if (text.size() == 0) {
- return output;
- }
- if (bos) {
- output.push_back(1);
- }
- tokenizer.tokenize(text, output);
- return output;
- }
- //
- // sampling
- //
- static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
- // find the top k tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
- return a.first > b.first;
- });
- logits_id.resize(top_k);
- }
- static llama_vocab::id llama_sample_top_p_top_k(
- llama_context & lctx,
- const std::vector<llama_vocab::id> & last_n_tokens,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- auto & rng = lctx.rng;
- const int n_logits = lctx.model.hparams.n_vocab;
- const auto & logits = lctx.logits;
- const auto * plogits = logits.data() + logits.size() - n_logits;
- if (temp <= 0) {
- // select the token with the highest logit directly
- float max_logit = plogits[0];
- llama_vocab::id max_id = 0;
- for (int i = 1; i < n_logits; ++i) {
- if (plogits[i] > max_logit) {
- max_logit = plogits[i];
- max_id = i;
- }
- }
- return max_id;
- }
- std::vector<std::pair<float, llama_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
- }
- }
- sample_top_k(logits_id, top_k > 0 ? std::min(top_k, n_logits) : n_logits);
- // compute probs for the top k tokens
- std::vector<float> probs;
- probs.reserve(logits_id.size());
- float maxl = logits_id[0].first;
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- const float p = expf(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
- if (top_p < 1.0) {
- double cumsum = 0.0;
- for (int i = 0; i < (int) probs.size(); i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- probs.resize(i + 1);
- logits_id.resize(i + 1);
- break;
- }
- }
- }
- //printf("\n");
- //for (int i = 0; i < (int) 10; i++) {
- // printf("%d: '%s' %f\n", i, lctx.vocab.id_to_token.at(logits_id[i].second).tok.c_str(), probs[i]);
- //}
- //printf("\n\n");
- //exit(0);
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- return logits_id[idx].second;
- }
- //
- // quantization
- //
- static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
- ggml_type quantized_type;
- switch (itype) {
- case 2: quantized_type = GGML_TYPE_Q4_0; break;
- case 3: quantized_type = GGML_TYPE_Q4_1; break;
- default: throw format("invalid quantization type %d\n", itype);
- };
- std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp.c_str(), /*use_mmap*/ false,
- /*vocab_only*/ false));
- llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), (uint32_t) itype);
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<int64_t> hist_all(1 << 4, 0);
- size_t idx = 0;
- for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
- llama_buffer read_data;
- read_data.resize(tensor.size);
- tensor.data = read_data.addr;
- model_loader->load_data_for(tensor);
- printf("[%zu/%zu] %36s - %s, type = %6s, ",
- ++idx, model_loader->tensors_map.tensors.size(),
- tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
- llama_format_type(tensor.type));
- // This used to be a regex, but <regex> has an extreme cost to compile times.
- bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
- // quantize only 2D tensors
- quantize &= (tensor.ne.size() == 2);
- enum ggml_type new_type;
- void * new_data;
- size_t new_size;
- llama_buffer work;
- if (!quantize) {
- new_type = tensor.type;
- new_data = tensor.data;
- new_size = tensor.size;
- printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
- } else {
- new_type = quantized_type;
- float * f32_data;
- size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
- llama_buffer f32_conv_buf;
- if (tensor.type == GGML_TYPE_F32) {
- f32_data = (float *) tensor.data;
- } else if (tensor.type == GGML_TYPE_F16) {
- f32_conv_buf.resize(nelements * sizeof(float));
- f32_data = (float *) f32_conv_buf.addr;
- auto f16_data = (const ggml_fp16_t *) tensor.data;
- for (size_t i = 0; i < nelements; i++) {
- f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
- }
- } else {
- throw format("type %s unsupported for integer quantization", llama_format_type(tensor.type));
- }
- printf("quantizing .. ");
- fflush(stdout);
- work.resize(nelements * 4); // upper bound on size
- new_data = work.addr;
- std::vector<int64_t> hist_cur(1 << 4, 0);
- switch (new_type) {
- case GGML_TYPE_Q4_0:
- {
- new_size = ggml_quantize_q4_0(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1:
- {
- new_size = ggml_quantize_q4_1(f32_data, new_data, nelements, (int) tensor.ne.at(0), hist_cur.data());
- } break;
- default:
- LLAMA_ASSERT(false);
- }
- printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
- for (size_t i = 0; i < hist_cur.size(); i++) {
- hist_all[i] += hist_cur[i];
- }
- for (size_t i = 0; i < hist_cur.size(); i++) {
- printf("%5.3f ", hist_cur[i] / float(nelements));
- }
- printf("\n");
- }
- total_size_org += tensor.size;
- total_size_new += new_size;
- file_saver.write_tensor(tensor, new_type, new_data, new_size);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- {
- int64_t sum_all = 0;
- for (size_t i = 0; i < hist_all.size(); i++) {
- sum_all += hist_all[i];
- }
- printf("%s: hist: ", __func__);
- for (size_t i = 0; i < hist_all.size(); i++) {
- printf("%5.3f ", hist_all[i] / float(sum_all));
- }
- printf("\n");
- }
- }
- //
- // interface implementation
- //
- struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params) {
- ggml_time_init();
- llama_context * ctx = new llama_context;
- if (params.seed <= 0) {
- params.seed = time(NULL);
- }
- unsigned cur_percentage = 0;
- if (params.progress_callback == NULL) {
- params.progress_callback_user_data = &cur_percentage;
- params.progress_callback = [](float progress, void * ctx) {
- unsigned * cur_percentage_p = (unsigned *) ctx;
- unsigned percentage = (unsigned) (100 * progress);
- while (percentage > *cur_percentage_p) {
- ++*cur_percentage_p;
- fprintf(stderr, ".");
- fflush(stderr);
- if (percentage >= 100) {
- fprintf(stderr, "\n");
- }
- }
- };
- }
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *ctx, params.n_ctx, memory_type,
- params.use_mmap, params.use_mlock, params.vocab_only,
- params.progress_callback, params.progress_callback_user_data)) {
- fprintf(stderr, "%s: failed to load model\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- // reserve memory for context buffers
- if (!params.vocab_only) {
- if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
- fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
- fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- const auto & hparams = ctx->model.hparams;
- // resized during inference
- if (params.logits_all) {
- ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
- } else {
- ctx->logits.reserve(hparams.n_ctx);
- }
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type));
- ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type));
- ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type));
- }
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- delete ctx;
- }
- int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- int itype) {
- try {
- llama_model_quantize_internal(fname_inp, fname_out, itype);
- return 0;
- } catch (const std::string & err) {
- fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
- return 1;
- }
- }
- // Returns the KV cache that will contain the context for the
- // ongoing prediction with the model.
- const uint8_t * llama_get_kv_cache(struct llama_context * ctx) {
- return ctx->model.kv_self.buf.addr;
- }
- // Returns the size of the KV cache
- size_t llama_get_kv_cache_size(struct llama_context * ctx) {
- return ctx->model.kv_self.buf.size;
- }
- int llama_get_kv_cache_token_count(struct llama_context * ctx) {
- return ctx->model.kv_self.n;
- }
- // Sets the KV cache containing the current context for the model
- void llama_set_kv_cache(
- struct llama_context * ctx,
- const uint8_t * kv_cache,
- size_t n_size,
- int n_token_count) {
- // Make sure we have the same kv cache setup
- LLAMA_ASSERT(ctx->model.kv_self.buf.size == n_size);
- memcpy(ctx->model.kv_self.buf.addr, kv_cache, n_size);
- ctx->model.kv_self.n = n_token_count;
- }
- int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- // get a more accurate load time, upon first eval
- if (!ctx->has_evaluated_once) {
- ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
- ctx->has_evaluated_once = true;
- }
- return 0;
- }
- int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- auto res = llama_tokenize(ctx->vocab, text, add_bos);
- if (n_max_tokens < (int) res.size()) {
- fprintf(stderr, "%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int llama_n_vocab(struct llama_context * ctx) {
- return ctx->vocab.id_to_token.size();
- }
- int llama_n_ctx(struct llama_context * ctx) {
- return ctx->model.hparams.n_ctx;
- }
- int llama_n_embd(struct llama_context * ctx) {
- return ctx->model.hparams.n_embd;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
- if (token >= llama_n_vocab(ctx)) {
- return nullptr;
- }
- return ctx->vocab.id_to_token[token].tok.c_str();
- }
- llama_token llama_token_bos() {
- return 1;
- }
- llama_token llama_token_eos() {
- return 2;
- }
- llama_token llama_sample_top_p_top_k(
- llama_context * ctx,
- const llama_token * last_n_tokens_data,
- int last_n_tokens_size,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- const int64_t t_start_sample_us = ggml_time_us();
- llama_token result = 0;
- // TODO: avoid this ...
- const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
- result = llama_sample_top_p_top_k(
- *ctx,
- last_n_tokens,
- top_k,
- top_p,
- temp,
- repeat_penalty);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const int64_t t_end_us = ggml_time_us();
- const int32_t n_sample = std::max(1, ctx->n_sample);
- const int32_t n_eval = std::max(1, ctx->n_eval);
- const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
- fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
- fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
- fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
- // For internal test use
- std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
- return ctx->model.tensors_by_name;
- }
|