| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864 |
- #include "llama.h"
- #include "ggml.h"
- #include <cinttypes>
- #include <fstream>
- #include <random>
- #include <map>
- #include <unordered_map>
- #include <queue>
- #include <regex>
- #include <cassert>
- #include <cstring>
- #define LLAMA_USE_SCRATCH
- #define LLAMA_MAX_SCRATCH_BUFFERS 16
- #define LLAMA_ASSERT(x) \
- do { \
- if (!(x)) { \
- fprintf(stderr, "LLAMA_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
- abort(); \
- } \
- } while (0)
- // determine number of model parts based on the dimension
- static const std::unordered_map<int, int> LLAMA_N_PARTS = {
- { 4096, 1 },
- { 5120, 2 },
- { 6656, 4 },
- { 8192, 8 },
- };
- // available llama models
- enum e_model {
- MODEL_UNKNOWN,
- MODEL_7B,
- MODEL_13B,
- MODEL_30B,
- MODEL_65B,
- };
- static const size_t MB = 1024*1024;
- // computed for n_ctx == 2048
- // TODO: dynamically determine these sizes
- // needs modifications in ggml
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH0 = {
- { MODEL_7B, 512ull*MB },
- { MODEL_13B, 512ull*MB },
- { MODEL_30B, 512ull*MB },
- { MODEL_65B, 512ull*MB },
- };
- static const std::map<e_model, size_t> MEM_REQ_SCRATCH1 = {
- { MODEL_7B, 512ull*MB },
- { MODEL_13B, 512ull*MB },
- { MODEL_30B, 512ull*MB },
- { MODEL_65B, 512ull*MB },
- };
- // 2*n_embd*n_ctx*n_layer*sizeof(float16)
- static const std::map<e_model, size_t> MEM_REQ_KV_SELF = {
- { MODEL_7B, 1026ull*MB },
- { MODEL_13B, 1608ull*MB },
- { MODEL_30B, 3124ull*MB },
- { MODEL_65B, 5120ull*MB },
- };
- // this is mostly needed for temporary mul_mat buffers to dequantize the data
- // not actually needed if BLAS is disabled
- static const std::map<e_model, size_t> MEM_REQ_EVAL = {
- { MODEL_7B, 768ull*MB },
- { MODEL_13B, 1024ull*MB },
- { MODEL_30B, 1280ull*MB },
- { MODEL_65B, 1536ull*MB },
- };
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- int32_t n_vocab = 32000;
- int32_t n_ctx = 512; // this is provided as user input?
- int32_t n_embd = 4096;
- int32_t n_mult = 256;
- int32_t n_head = 32;
- int32_t n_layer = 32;
- int32_t n_rot = 64;
- int32_t f16 = 1;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct llama_kv_cache {
- struct ggml_tensor * k;
- struct ggml_tensor * v;
- struct ggml_context * ctx;
- std::vector<uint8_t> buf;
- int n; // number of tokens currently in the cache
- };
- struct llama_model {
- e_model type = MODEL_UNKNOWN;
- llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- // context
- struct ggml_context * ctx;
- // key + value cache for the self attention
- // TODO: move to llama_state
- struct llama_kv_cache kv_self;
- // the model memory buffer
- std::vector<uint8_t> buf;
- // tensors
- int n_loaded;
- std::unordered_map<std::string, struct ggml_tensor *> tensors;
- };
- struct llama_vocab {
- using id = int32_t;
- using token = std::string;
- struct token_score {
- token tok;
- float score;
- };
- std::unordered_map<token, id> token_to_id;
- std::vector<token_score> id_to_token;
- };
- struct llama_context {
- std::mt19937 rng;
- int64_t t_load_us = 0;
- int64_t t_start_us = 0;
- int64_t t_sample_us = 0;
- int64_t t_eval_us = 0;
- int64_t t_p_eval_us = 0;
- int32_t n_sample = 0; // number of tokens sampled
- int32_t n_eval = 0; // number of eval calls
- int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
- llama_model model;
- llama_vocab vocab;
- size_t mem_per_token = 0;
- // decode output (2-dimensional array: [n_tokens][n_vocab])
- std::vector<float> logits;
- bool logits_all = false;
- // input embedding (1-dimensional array: [n_embd])
- std::vector<float> embedding;
- // memory buffers used to evaluate the model
- // TODO: move in llama_state
- std::vector<uint8_t> buf_compute;
- std::vector<uint8_t> buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
- int buf_last = 0;
- size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
- void use_buf(struct ggml_context * ctx, int i) {
- #if defined(LLAMA_USE_SCRATCH)
- size_t last_size = 0;
- if (i == -1) {
- last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
- } else {
- auto & buf = buf_scratch[i];
- last_size = ggml_set_scratch(ctx, { 0, buf.size(), buf.data(), });
- }
- if (buf_last >= 0) {
- buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
- }
- buf_last = i;
- #else
- (void) i;
- (void) ctx;
- #endif
- }
- size_t get_buf_max_mem(int i) const {
- #if defined(LLAMA_USE_SCRATCH)
- return buf_max_size[i];
- #else
- (void) i;
- return 0;
- #endif
- }
- };
- //
- // kv cache
- //
- static bool kv_cache_init(
- const struct llama_hparams & hparams,
- struct llama_kv_cache & cache,
- ggml_type wtype,
- int n_ctx) {
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_mem = n_layer*n_ctx;
- const int n_elements = n_embd*n_mem;
- cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
- struct ggml_init_params params;
- params.mem_size = cache.buf.size();
- params.mem_buffer = cache.buf.data();
- cache.ctx = ggml_init(params);
- if (!cache.ctx) {
- fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
- return false;
- }
- cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
- return true;
- }
- static void kv_cache_free(struct llama_kv_cache & cache) {
- if (cache.ctx) {
- ggml_free(cache.ctx);
- cache.ctx = nullptr;
- }
- }
- struct llama_context_params llama_context_default_params() {
- struct llama_context_params result = {
- /*.n_ctx =*/ 512,
- /*.n_parts =*/ -1,
- /*.seed =*/ 0,
- /*.f16_kv =*/ false,
- /*.logits_all =*/ false,
- /*.vocab_only =*/ false,
- /*.use_mlock =*/ false,
- /*.embedding =*/ false,
- /*.progress_callback =*/ nullptr,
- /*.progress_callback_user_data =*/ nullptr,
- };
- return result;
- }
- //
- // model loading
- //
- static bool llama_model_load(
- const std::string & fname,
- llama_context & lctx,
- int n_ctx,
- int n_parts,
- ggml_type memory_type,
- bool vocab_only,
- llama_progress_callback progress_callback,
- void *progress_callback_user_data) {
- fprintf(stderr, "%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
- const int64_t t_start_us = ggml_time_us();
- lctx.t_start_us = t_start_us;
- std::vector<char> f_buf(1024*1024);
- auto & model = lctx.model;
- auto & vocab = lctx.vocab;
- auto fin = std::ifstream(fname, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files or convert them with convert-unversioned-ggml-to-ggml.py!)\n",
- __func__, fname.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- uint32_t format_version;
- fin.read((char *) &format_version, sizeof(format_version));
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
- }
- int n_ff = 0;
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
- hparams.n_ctx = n_ctx;
- n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- if (n_parts < 1) {
- n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
- }
- // temp warning to tell the user to use "--n_parts"
- if (hparams.f16 == 4 && n_parts != 1) {
- fprintf(stderr, "%s: GPTQ model detected - are you sure n_parts should be %d? we normally expect it to be 1\n", __func__, n_parts);
- fprintf(stderr, "%s: use '--n_parts 1' if necessary\n", __func__);
- }
- if (hparams.n_layer == 32) {
- model.type = e_model::MODEL_7B;
- }
- if (hparams.n_layer == 40) {
- model.type = e_model::MODEL_13B;
- }
- if (hparams.n_layer == 60) {
- model.type = e_model::MODEL_30B;
- }
- if (hparams.n_layer == 80) {
- model.type = e_model::MODEL_65B;
- }
- fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- fprintf(stderr, "%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- fprintf(stderr, "%s: n_embd = %d\n", __func__, hparams.n_embd);
- fprintf(stderr, "%s: n_mult = %d\n", __func__, hparams.n_mult);
- fprintf(stderr, "%s: n_head = %d\n", __func__, hparams.n_head);
- fprintf(stderr, "%s: n_layer = %d\n", __func__, hparams.n_layer);
- fprintf(stderr, "%s: n_rot = %d\n", __func__, hparams.n_rot);
- fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16);
- fprintf(stderr, "%s: n_ff = %d\n", __func__, n_ff);
- fprintf(stderr, "%s: n_parts = %d\n", __func__, n_parts);
- fprintf(stderr, "%s: type = %d\n", __func__, model.type);
- }
- // load vocab
- {
- std::string word;
- vocab.id_to_token.resize(model.hparams.n_vocab);
- std::vector<char> tmp(64);
- for (int i = 0; i < model.hparams.n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
- word.resize(len);
- if (len > 0) {
- tmp.resize(len);
- fin.read(tmp.data(), len);
- word.assign(tmp.data(), len);
- } else {
- word.clear();
- }
- float score;
- fin.read((char *) &score, sizeof(score));
- vocab.token_to_id[word] = i;
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
- }
- if (vocab_only) {
- return true;
- }
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- // wtype is for per-layer weights, while vtype is for other weights
- ggml_type wtype, vtype;
- switch (model.hparams.f16) {
- case 0: wtype = vtype = GGML_TYPE_F32; break;
- case 1: wtype = vtype = GGML_TYPE_F16; break;
- case 2: wtype = vtype = GGML_TYPE_Q4_0; break;
- case 3: wtype = vtype = GGML_TYPE_Q4_1; break;
- case 4: wtype = GGML_TYPE_Q4_1; vtype = GGML_TYPE_F16; break;
- default:
- {
- fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
- __func__, fname.c_str(), model.hparams.f16);
- return false;
- }
- }
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // tok_embeddings
- ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
- ctx_size += n_embd*n_vocab*ggml_type_sizef(vtype); // output
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
- ctx_size += (5 + 10*n_layer)*256; // object overhead
- fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // print memory requirements
- {
- const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
- // this is the total memory required to run the inference
- const size_t mem_required =
- ctx_size +
- MEM_REQ_SCRATCH0.at(model.type) +
- MEM_REQ_SCRATCH1.at(model.type) +
- MEM_REQ_EVAL.at (model.type);
- // this is the memory required by one llama_state
- const size_t mem_required_state =
- scale*MEM_REQ_KV_SELF.at(model.type);
- fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
- mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
- }
- // create the ggml context
- {
- lctx.model.buf.resize(ctx_size);
- struct ggml_init_params params = {
- /*.mem_size =*/ lctx.model.buf.size(),
- /*.mem_buffer =*/ lctx.model.buf.data(),
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_vocab = hparams.n_vocab;
- model.layers.resize(n_layer);
- model.tok_embeddings = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
- model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model.output = ggml_new_tensor_2d(ctx, vtype, n_embd, n_vocab);
- // map by name
- model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
- model.tensors["norm.weight"] = model.norm;
- model.tensors["output.weight"] = model.output;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = model.layers[i];
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- // map by name
- model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
- model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
- model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
- model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
- model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
- model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
- }
- }
- const size_t file_offset = fin.tellg();
- fin.close();
- std::vector<uint8_t> tmp;
- if (progress_callback) {
- progress_callback(0.0, progress_callback_user_data);
- }
- for (int i = 0; i < n_parts; ++i) {
- const int part_id = i;
- //const int part_id = n_parts - i - 1;
- std::string fname_part = fname;
- if (i > 0) {
- fname_part += "." + std::to_string(i);
- }
- fprintf(stderr, "%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
- fin = std::ifstream(fname_part, std::ios::binary);
- fin.rdbuf()->pubsetbuf(f_buf.data(), f_buf.size());
- fin.seekg(0, fin.end);
- const size_t file_size = fin.tellg();
- fin.seekg(file_offset);
- // load weights
- {
- size_t total_size = 0;
- model.n_loaded = 0;
- fprintf(stderr, "%s: ", __func__);
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
- // split_type = 0: split by columns
- // split_type = 1: split by rows
- int split_type = 0;
- // split_type = 0:
- // regex:
- // - tok_embeddings.*
- // - layers.*.attention.wo.weight
- // - layers.*.feed_forward.w2.weight
- // split_type = 1:
- // regex:
- // - output.*
- // - layers.*.attention.wq.weight
- // - layers.*.attention.wk.weight
- // - layers.*.attention.wv.weight
- // - layers.*.feed_forward.w1.weight
- // - layers.*.feed_forward.w3.weight
- if (name.find("tok_embeddings") != std::string::npos) {
- split_type = 0;
- } else if (name.find("layers") != std::string::npos) {
- if (name.find("attention.wo.weight") != std::string::npos) {
- split_type = 0;
- } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
- split_type = 0;
- } else {
- split_type = 1;
- }
- } else if (name.find("output") != std::string::npos) {
- split_type = 1;
- }
- auto tensor = model.tensors[name.data()];
- if (n_dims == 1) {
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- } else {
- if (ggml_nelements(tensor)/n_parts != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- }
- if (n_dims == 1) {
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (split_type == 0) {
- if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
- return false;
- }
- }
- }
- if (0) {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- fprintf(stderr, "%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
- }
- size_t bpe = 0;
- switch (ftype) {
- case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
- case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
- case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
- case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
- default:
- {
- fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
- return false;
- }
- };
- if (n_dims == 1 || n_parts == 1) {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
- if (part_id == 0) {
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- } else {
- fin.seekg(ggml_nbytes(tensor), std::ios::cur);
- }
- total_size += ggml_nbytes(tensor);
- } else {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
- return false;
- }
- if (split_type == 0) {
- const int np0 = ne[0];
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- assert(row_size == tensor->nb[1]);
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = i1*row_size;
- const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
- }
- } else {
- const int np1 = ne[1];
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = (i1 + part_id*np1)*row_size;
- fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
- }
- }
- total_size += ggml_nbytes(tensor)/n_parts;
- }
- //fprintf(stderr, "%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
- model.n_loaded++;
- // progress
- if (progress_callback) {
- float current_file_progress = float(size_t(fin.tellg()) - file_offset) / float(file_size - file_offset);
- float current_progress = (float(i) + current_file_progress) / float(n_parts);
- progress_callback(current_progress, progress_callback_user_data);
- }
- if (model.n_loaded % 8 == 0) {
- fprintf(stderr, ".");
- fflush(stderr);
- }
- }
- fprintf(stderr, " done\n");
- fprintf(stderr, "%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, model.n_loaded);
- if (model.n_loaded == 0) {
- fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__);
- } else if (model.n_loaded != (int) model.tensors.size()) {
- fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded);
- return false;
- }
- }
- fin.close();
- }
- lctx.t_load_us = ggml_time_us() - t_start_us;
- if (progress_callback) {
- progress_callback(1.0, progress_callback_user_data);
- }
- return true;
- }
- // evaluate the transformer
- //
- // - lctx: llama context
- // - tokens: new batch of tokens to process
- // - n_past: the context size so far
- // - n_threads: number of threads to use
- //
- static bool llama_eval_internal(
- llama_context & lctx,
- const llama_token * tokens,
- const int n_tokens,
- const int n_past,
- const int n_threads) {
- const int64_t t_start_us = ggml_time_us();
- const int N = n_tokens;
- const auto & model = lctx.model;
- const auto & hparams = model.hparams;
- auto & kv_self = model.kv_self;
- LLAMA_ASSERT(!!kv_self.ctx);
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
- auto & mem_per_token = lctx.mem_per_token;
- auto & buf_compute = lctx.buf_compute;
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_compute.size(),
- /*.mem_buffer =*/ buf_compute.data(),
- };
- struct ggml_context * ctx0 = ggml_init(params);
- // for big prompts, if BLAS is enabled, it is better to use only one thread
- // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
- ggml_cgraph gf = {};
- gf.n_threads = N >= 32 && ggml_cpu_has_blas() ? 1 : n_threads;
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, tokens, N*ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- lctx.use_buf(ctx0, 0);
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
- }
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- // store key and value to memory
- if (N >= 1) {
- struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_1d(ctx0, kv_self.v, N*n_embd, (ggml_element_size(kv_self.v)*n_embd)*(il*n_ctx + n_past));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
- n_past, n_rot, 0),
- 0, 2, 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- n_past, n_rot, 1),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head)));
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
- struct ggml_tensor * V_trans =
- ggml_cpy(ctx0,
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, kv_self.v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.v)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 1, 2, 0, 3),
- ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- }
- lctx.use_buf(ctx0, 1);
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- // feed-forward network
- {
- // norm
- {
- cur = ggml_rms_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- cur = ggml_mul(ctx0, cur, tmp);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- }
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- inpL = cur;
- }
- lctx.use_buf(ctx0, 0);
- // used at the end to optionally extract the embeddings
- struct ggml_tensor * embeddings = NULL;
- // norm
- {
- inpL = ggml_rms_norm(ctx0, inpL);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
- embeddings = inpL;
- }
- // lm_head
- inpL = ggml_mul_mat(ctx0, model.output, inpL);
- lctx.use_buf(ctx0, -1);
- // logits -> probs
- //inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute (ctx0, &gf);
- //if (n_past%100 == 0) {
- // ggml_graph_print (&gf);
- // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
- //}
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- // extract logits
- {
- auto & logits_out = lctx.logits;
- if (lctx.logits_all) {
- logits_out.resize(n_vocab * N);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- } else {
- // return result for just the last token
- logits_out.resize(n_vocab);
- memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- }
- }
- // extract embeddings
- if (lctx.embedding.size()) {
- auto & embedding_out = lctx.embedding;
- embedding_out.resize(n_embd);
- memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
- }
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- #if 0
- printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
- ggml_used_mem(ctx0)/1024.0/1024.0,
- lctx.get_buf_max_mem(0)/1024.0/1024.0,
- lctx.get_buf_max_mem(1)/1024.0/1024.0);
- #endif
- ggml_free(ctx0);
- // measure the performance only for the single-token evals
- if (N == 1) {
- lctx.t_eval_us += ggml_time_us() - t_start_us;
- lctx.n_eval++;
- }
- else if (N > 1) {
- lctx.t_p_eval_us += ggml_time_us() - t_start_us;
- lctx.n_p_eval += N;
- }
- return true;
- }
- //
- // tokenizer
- //
- static size_t utf8_len(char src) {
- const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
- uint8_t highbits = static_cast<uint8_t>(src) >> 4;
- return lookup[highbits];
- }
- struct llama_sp_symbol {
- using index = int;
- index prev;
- index next;
- const char * text;
- size_t n;
- };
- struct llama_sp_bigram {
- struct comparator {
- bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
- return (l.score < r.score) || (l.score == r.score && l.left > r.left);
- }
- };
- using queue_storage = std::vector<llama_sp_bigram>;
- using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
- llama_sp_symbol::index left;
- llama_sp_symbol::index right;
- float score;
- size_t size;
- };
- // original implementation:
- // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
- struct llama_tokenizer {
- llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
- void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
- // split string into utf8 chars
- int index = 0;
- size_t offs = 0;
- while (offs < text.size()) {
- llama_sp_symbol sym;
- size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
- sym.text = text.c_str() + offs;
- sym.n = char_len;
- offs += char_len;
- sym.prev = index - 1;
- sym.next = offs == text.size() ? -1 : index + 1;
- index++;
- symbols_.emplace_back(std::move(sym));
- }
- // seed the work queue with all possible 2-character tokens.
- for (size_t i = 1; i < symbols_.size(); ++i) {
- try_add_bigram(i - 1, i);
- }
- // keep substituting the highest frequency pairs for as long as we can.
- while (!work_queue_.empty()) {
- auto bigram = work_queue_.top();
- work_queue_.pop();
- auto & left_sym = symbols_[bigram.left];
- auto & right_sym = symbols_[bigram.right];
- // if one of the symbols already got merged, skip it.
- if (left_sym.n == 0 || right_sym.n == 0 ||
- left_sym.n + right_sym.n != bigram.size) {
- continue;
- }
- // merge the right sym into the left one
- left_sym.n += right_sym.n;
- right_sym.n = 0;
- //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
- // remove the right sym from the chain
- left_sym.next = right_sym.next;
- if (right_sym.next >= 0) {
- symbols_[right_sym.next].prev = bigram.left;
- }
- // find more substitutions
- try_add_bigram(left_sym.prev, bigram.left);
- try_add_bigram(bigram.left, left_sym.next);
- }
- for (int i = 0; i != -1; i = symbols_[i].next) {
- auto & symbol = symbols_[i];
- auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
- if (token == vocab_.token_to_id.end()) {
- // output any symbols that did not form tokens as bytes.
- for (int j = 0; j < (int) symbol.n; ++j) {
- llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
- output.push_back(token_id);
- }
- } else {
- output.push_back((*token).second);
- }
- }
- }
- private:
- void try_add_bigram(int left, int right) {
- if (left == -1 || right == -1) {
- return;
- }
- const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
- auto token = vocab_.token_to_id.find(text);
- if (token == vocab_.token_to_id.end()) {
- return;
- }
- if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
- return;
- }
- const auto &tok_score = vocab_.id_to_token[(*token).second];
- llama_sp_bigram bigram;
- bigram.left = left;
- bigram.right = right;
- bigram.score = tok_score.score;
- bigram.size = text.size();
- work_queue_.push(bigram);
- }
- const llama_vocab & vocab_;
- std::vector<llama_sp_symbol> symbols_;
- llama_sp_bigram::queue work_queue_;
- };
- static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
- llama_tokenizer tokenizer(vocab);
- std::vector<llama_vocab::id> output;
- if (text.size() == 0) {
- return output;
- }
- if (bos) {
- output.push_back(1);
- }
- tokenizer.tokenize(text, output);
- return output;
- }
- //
- // sampling
- //
- static void sample_top_k(std::vector<std::pair<float, llama_vocab::id>> & logits_id, int top_k) {
- // find the top k tokens
- std::partial_sort(
- logits_id.begin(),
- logits_id.begin() + top_k, logits_id.end(),
- [](const std::pair<float, llama_vocab::id> & a, const std::pair<float, llama_vocab::id> & b) {
- return a.first > b.first;
- });
- logits_id.resize(top_k);
- }
- static llama_vocab::id llama_sample_top_p_top_k(
- llama_context & lctx,
- const std::vector<llama_vocab::id> & last_n_tokens,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- auto & rng = lctx.rng;
- const int n_logits = lctx.model.hparams.n_vocab;
- const auto & logits = lctx.logits;
- const auto * plogits = logits.data() + logits.size() - n_logits;
- std::vector<std::pair<float, llama_vocab::id>> logits_id;
- logits_id.reserve(n_logits);
- {
- const float scale = 1.0f/temp;
- for (int i = 0; i < n_logits; ++i) {
- // repetition penalty from ctrl paper (https://arxiv.org/abs/1909.05858)
- // credit https://github.com/facebookresearch/llama/compare/main...shawwn:llama:main
- if (std::find(last_n_tokens.begin(), last_n_tokens.end(), i) != last_n_tokens.end()) {
- // if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
- if (plogits[i] < 0.0f) {
- logits_id.push_back(std::make_pair(plogits[i]*scale*repeat_penalty, i));
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale/repeat_penalty, i));
- }
- } else {
- logits_id.push_back(std::make_pair(plogits[i]*scale, i));
- }
- }
- }
- sample_top_k(logits_id, top_k);
- float maxl = -std::numeric_limits<float>::infinity();
- for (const auto & kv : logits_id) {
- maxl = std::max(maxl, kv.first);
- }
- // compute probs for the top k tokens
- std::vector<float> probs;
- probs.reserve(logits_id.size());
- double sum = 0.0;
- for (const auto & kv : logits_id) {
- const float p = expf(kv.first - maxl);
- probs.push_back(p);
- sum += p;
- }
- // normalize the probs
- for (auto & p : probs) {
- p /= sum;
- }
- if (top_p < 1.0) {
- double cumsum = 0.0;
- for (int i = 0; i < (int) probs.size(); i++) {
- cumsum += probs[i];
- if (cumsum >= top_p) {
- probs.resize(i + 1);
- logits_id.resize(i + 1);
- break;
- }
- }
- cumsum = 1.0/cumsum;
- for (int i = 0; i < (int) probs.size(); i++) {
- probs[i] *= cumsum;
- }
- }
- //printf("\n");
- //for (int i = 0; i < (int) 10; i++) {
- // printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), probs[i]);
- //}
- //printf("\n\n");
- //exit(0);
- std::discrete_distribution<> dist(probs.begin(), probs.end());
- int idx = dist(rng);
- return logits_id[idx].second;
- }
- //
- // quantization
- //
- // TODO: reuse code from the llama_model_load() somehow
- static bool llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, int itype) {
- ggml_type type = GGML_TYPE_Q4_1;
- switch (itype) {
- case 2: type = GGML_TYPE_Q4_0; break;
- case 3: type = GGML_TYPE_Q4_1; break;
- default: fprintf(stderr, "%s: invalid quantization type %d\n", __func__, itype); return 1;
- };
- if (type != GGML_TYPE_Q4_0 && type != GGML_TYPE_Q4_1) {
- fprintf(stderr, "%s: invalid quantization type %d\n", __func__, type);
- return false;
- }
- llama_vocab vocab;
- printf("%s: loading model from '%s'\n", __func__, fname_inp.c_str());
- auto finp = std::ifstream(fname_inp, std::ios::binary);
- if (!finp) {
- fprintf(stderr, "%s: failed to open '%s' for reading\n", __func__, fname_inp.c_str());
- return false;
- }
- auto fout = std::ofstream(fname_out, std::ios::binary);
- if (!fout) {
- fprintf(stderr, "%s: failed to open '%s' for writing\n", __func__, fname_out.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- finp.read((char *) &magic, sizeof(magic));
- if (magic == LLAMA_FILE_MAGIC_UNVERSIONED) {
- fprintf(stderr, "%s: invalid model file '%s' (too old, regenerate your model files!)\n",
- __func__, fname_inp.c_str());
- return false;
- }
- if (magic != LLAMA_FILE_MAGIC) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname_inp.c_str());
- return false;
- }
- fout.write((char *) &magic, sizeof(magic));
- uint32_t format_version;
- finp.read((char *) &format_version, sizeof(format_version));
- if (format_version != LLAMA_FILE_VERSION) {
- fprintf(stderr, "%s: invalid model file '%s' (unsupported format version %" PRIu32 ", expected %d)\n",
- __func__, fname_inp.c_str(), format_version, LLAMA_FILE_VERSION);
- return false;
- }
- fout.write((char *) &format_version, sizeof(format_version));
- }
- llama_hparams hparams;
- // load hparams
- {
- finp.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //finp.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- finp.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- finp.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- finp.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- finp.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- finp.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- finp.read((char *) &hparams.f16, sizeof(hparams.f16));
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
- printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
- printf("%s: n_head = %d\n", __func__, hparams.n_head);
- printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
- printf("%s: f16 = %d\n", __func__, hparams.f16);
- fout.write((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fout.write((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fout.write((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fout.write((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fout.write((char *) &hparams.n_head, sizeof(hparams.n_head));
- fout.write((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fout.write((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fout.write((char *) &itype, sizeof(hparams.f16));
- }
- // load vocab
- {
- const int32_t n_vocab = hparams.n_vocab;
- if (n_vocab != hparams.n_vocab) {
- fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- __func__, fname_inp.c_str(), n_vocab, hparams.n_vocab);
- return false;
- }
- std::string word;
- vocab.id_to_token.resize(n_vocab);
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- finp.read ((char *) &len, sizeof(len));
- fout.write((char *) &len, sizeof(len));
- word.resize(len);
- finp.read ((char *) word.data(), len);
- fout.write((char *) word.data(), len);
- float score;
- finp.read ((char *) &score, sizeof(score));
- fout.write((char *) &score, sizeof(score));
- vocab.token_to_id[word] = i;
- auto &tok_score = vocab.id_to_token[i];
- tok_score.tok = word;
- tok_score.score = score;
- }
- }
- // load weights
- {
- size_t total_size_org = 0;
- size_t total_size_new = 0;
- std::vector<float> work;
- std::vector<uint8_t> data_u8;
- std::vector<ggml_fp16_t> data_f16;
- std::vector<float> data_f32;
- std::vector<int64_t> hist_all(1 << 4, 0);
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- finp.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- finp.read(reinterpret_cast<char *>(&length), sizeof(length));
- finp.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (finp.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- finp.read (reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- finp.read (&name[0], length);
- {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- printf("%48s - [%5d, %5d], type = %6s ", name.data(), ne[0], ne[1], ftype_str[ftype]);
- }
- // regexes of tensor names to be quantized
- const std::vector<std::string> k_names = {
- ".*weight",
- };
- bool quantize = false;
- for (const auto & s : k_names) {
- if (std::regex_match(name, std::regex(s))) {
- quantize = true;
- break;
- }
- }
- // quantize only 2D tensors
- quantize &= (n_dims == 2);
- if (quantize) {
- if (ftype != 0 && ftype != 1) {
- fprintf(stderr, "%s: unsupported ftype %d for integer quantization\n", __func__, ftype);
- return false;
- }
- if (ftype == 1) {
- data_f16.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f16.data()), nelements * sizeof(ggml_fp16_t));
- data_f32.resize(nelements);
- for (int i = 0; i < nelements; ++i) {
- data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
- }
- } else {
- data_f32.resize(nelements);
- finp.read(reinterpret_cast<char *>(data_f32.data()), nelements * sizeof(float));
- }
- ftype = itype;
- } else {
- const int bpe = (ftype == 0) ? sizeof(float) : sizeof(uint16_t);
- data_u8.resize(nelements*bpe);
- finp.read(reinterpret_cast<char *>(data_u8.data()), nelements * bpe);
- }
- fout.write(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fout.write(reinterpret_cast<char *>(&length), sizeof(length));
- fout.write(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- for (int i = 0; i < n_dims; ++i) {
- fout.write(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- }
- fout.write(&name[0], length);
- if (quantize) {
- printf("quantizing .. ");
- work.resize(nelements); // for quantization
- size_t cur_size = 0;
- std::vector<int64_t> hist_cur(1 << 4, 0);
- switch (type) {
- case GGML_TYPE_Q4_0:
- {
- cur_size = ggml_quantize_q4_0(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
- } break;
- case GGML_TYPE_Q4_1:
- {
- cur_size = ggml_quantize_q4_1(data_f32.data(), work.data(), nelements, ne[0], hist_cur.data());
- } break;
- default:
- {
- fprintf(stderr, "%s: unsupported quantization type %d\n", __func__, type);
- return false;
- }
- }
- fout.write(reinterpret_cast<char *>(work.data()), cur_size);
- total_size_new += cur_size;
- printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float)/1024.0/1024.0, cur_size/1024.0/1024.0);
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- hist_all[i] += hist_cur[i];
- }
- for (int i = 0; i < (int) hist_cur.size(); ++i) {
- printf("%5.3f ", hist_cur[i] / float(nelements));
- }
- printf("\n");
- } else {
- printf("size = %8.3f MB\n", data_u8.size()/1024.0/1024.0);
- fout.write(reinterpret_cast<char *>(data_u8.data()), data_u8.size());
- total_size_new += data_u8.size();
- }
- total_size_org += nelements * sizeof(float);
- }
- printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
- printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
- {
- int64_t sum_all = 0;
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- sum_all += hist_all[i];
- }
- printf("%s: hist: ", __func__);
- for (int i = 0; i < (int) hist_all.size(); ++i) {
- printf("%5.3f ", hist_all[i] / float(sum_all));
- }
- printf("\n");
- }
- }
- finp.close();
- fout.close();
- return true;
- }
- //
- // interface implementation
- //
- struct llama_context * llama_init_from_file(
- const char * path_model,
- struct llama_context_params params) {
- ggml_time_init();
- llama_context * ctx = new llama_context;
- if (params.seed <= 0) {
- params.seed = time(NULL);
- }
- ctx->rng = std::mt19937(params.seed);
- ctx->logits_all = params.logits_all;
- ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
- if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_parts, memory_type,
- params.vocab_only, params.progress_callback,
- params.progress_callback_user_data)) {
- fprintf(stderr, "%s: failed to load model\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- if (params.use_mlock) {
- char *err;
- if (!ggml_mlock(ctx->model.ctx, &err)) {
- fprintf(stderr, "%s\n", err);
- free(err);
- llama_free(ctx);
- return nullptr;
- }
- }
- // reserve memory for context buffers
- {
- if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
- fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
- llama_free(ctx);
- return nullptr;
- }
- {
- const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
- fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
- }
- const auto & hparams = ctx->model.hparams;
- // resized during inference
- if (params.logits_all) {
- ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
- } else {
- ctx->logits.reserve(hparams.n_ctx);
- }
- if (params.embedding){
- ctx->embedding.resize(hparams.n_embd);
- }
- ctx->buf_compute.resize(MEM_REQ_EVAL.at(ctx->model.type));
- ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0.at(ctx->model.type));
- ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1.at(ctx->model.type));
- }
- return ctx;
- }
- void llama_free(struct llama_context * ctx) {
- kv_cache_free(ctx->model.kv_self);
- if (ctx->model.ctx) {
- ggml_free(ctx->model.ctx);
- }
- delete ctx;
- }
- int llama_model_quantize(
- const char * fname_inp,
- const char * fname_out,
- int itype) {
- if (!llama_model_quantize_internal(fname_inp, fname_out, itype)) {
- fprintf(stderr, "%s: failed to quantize\n", __func__);
- return 1;
- }
- return 0;
- }
- int llama_eval(
- struct llama_context * ctx,
- const llama_token * tokens,
- int n_tokens,
- int n_past,
- int n_threads) {
- if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
- fprintf(stderr, "%s: failed to eval\n", __func__);
- return 1;
- }
- return 0;
- }
- int llama_tokenize(
- struct llama_context * ctx,
- const char * text,
- llama_token * tokens,
- int n_max_tokens,
- bool add_bos) {
- auto res = llama_tokenize(ctx->vocab, text, add_bos);
- if (n_max_tokens < (int) res.size()) {
- fprintf(stderr, "%s: too many tokens\n", __func__);
- return -((int) res.size());
- }
- for (size_t i = 0; i < res.size(); i++) {
- tokens[i] = res[i];
- }
- return res.size();
- }
- int llama_n_vocab(struct llama_context * ctx) {
- return ctx->vocab.id_to_token.size();
- }
- int llama_n_ctx(struct llama_context * ctx) {
- return ctx->model.hparams.n_ctx;
- }
- int llama_n_embd(struct llama_context * ctx) {
- return ctx->model.hparams.n_embd;
- }
- float * llama_get_logits(struct llama_context * ctx) {
- return ctx->logits.data();
- }
- float * llama_get_embeddings(struct llama_context * ctx) {
- return ctx->embedding.data();
- }
- const char * llama_token_to_str(struct llama_context * ctx, llama_token token) {
- if (token >= llama_n_vocab(ctx)) {
- return nullptr;
- }
- return ctx->vocab.id_to_token[token].tok.c_str();
- }
- llama_token llama_token_bos() {
- return 1;
- }
- llama_token llama_token_eos() {
- return 2;
- }
- llama_token llama_sample_top_p_top_k(
- llama_context * ctx,
- const llama_token * last_n_tokens_data,
- int last_n_tokens_size,
- int top_k,
- float top_p,
- float temp,
- float repeat_penalty) {
- const int64_t t_start_sample_us = ggml_time_us();
- llama_token result = 0;
- // TODO: avoid this ...
- const auto last_n_tokens = std::vector<llama_token>(last_n_tokens_data, last_n_tokens_data + last_n_tokens_size);
- result = llama_sample_top_p_top_k(
- *ctx,
- last_n_tokens,
- top_k,
- top_p,
- temp,
- repeat_penalty);
- ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
- ctx->n_sample++;
- return result;
- }
- void llama_print_timings(struct llama_context * ctx) {
- const int64_t t_end_us = ggml_time_us();
- const int32_t n_sample = std::max(1, ctx->n_sample);
- const int32_t n_eval = std::max(1, ctx->n_eval);
- const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
- fprintf(stderr, "\n");
- fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
- fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
- fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
- fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per run)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
- fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
- }
- void llama_reset_timings(struct llama_context * ctx) {
- ctx->t_start_us = ggml_time_us();
- ctx->t_sample_us = ctx->n_sample = 0;
- ctx->t_eval_us = ctx->n_eval = 0;
- ctx->t_p_eval_us = ctx->n_p_eval = 0;
- }
- const char * llama_print_system_info(void) {
- static std::string s;
- s = "";
- s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
- s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
- s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
- s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
- s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
- s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
- s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
- s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
- s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
- s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
- s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
- s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
- return s.c_str();
- }
|