| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- #include "ggml.h"
- #include "ggml-cpu.h"
- #include <cmath>
- #include <cstdio>
- #include <cstdlib>
- #include <cassert>
- #include <vector>
- #if defined(_MSC_VER)
- #pragma warning(disable: 4244 4267) // possible loss of data
- #endif
- #if defined(__GNUC__)
- #pragma GCC diagnostic ignored "-Wdouble-promotion"
- #endif
- #define MAX_NARGS 3
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define GGML_SILU_FP16
- //
- // logging
- //
- #if (GGML_DEBUG >= 1)
- #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG(...)
- #endif
- #if (GGML_DEBUG >= 5)
- #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_5(...)
- #endif
- #if (GGML_DEBUG >= 10)
- #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
- #else
- #define GGML_PRINT_DEBUG_10(...)
- #endif
- #define GGML_PRINT(...) printf(__VA_ARGS__)
- static float frand(void) {
- return (float)rand()/(float)RAND_MAX;
- }
- static int irand(int n) {
- if (n == 0) return 0;
- return rand()%n;
- }
- static void get_random_dims(int64_t * dims, int ndims) {
- dims[0] = dims[1] = dims[2] = dims[3] = 1;
- for (int i = 0; i < ndims; i++) {
- dims[i] = 1 + irand(4);
- }
- }
- static struct ggml_tensor * get_random_tensor_f32(
- struct ggml_context * ctx0,
- int ndims,
- const int64_t ne[],
- float fmin,
- float fmax) {
- struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne);
- switch (ndims) {
- case 1:
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin;
- }
- break;
- case 2:
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- break;
- case 3:
- for (int i2 = 0; i2 < ne[2]; i2++) {
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- }
- break;
- case 4:
- for (int i3 = 0; i3 < ne[3]; i3++) {
- for (int i2 = 0; i2 < ne[2]; i2++) {
- for (int i1 = 0; i1 < ne[1]; i1++) {
- for (int i0 = 0; i0 < ne[0]; i0++) {
- ((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin;
- }
- }
- }
- }
- break;
- default:
- assert(false);
- };
- return result;
- }
- static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
- struct ggml_cplan plan = ggml_graph_plan(graph, n_threads, nullptr);
- if (plan.work_size > 0) {
- buf.resize(plan.work_size);
- plan.work_data = buf.data();
- }
- ggml_graph_compute(graph, &plan);
- }
- int main(int /*argc*/, const char ** /*argv*/) {
- struct ggml_init_params params = {
- /* .mem_size = */ 128*1024*1024,
- /* .mem_buffer = */ NULL,
- /* .no_alloc = */ false,
- };
- std::vector<uint8_t> work_buffer;
- struct ggml_context * ctx0 = ggml_init(params);
- struct ggml_tensor * x;
- // rope f32
- for (int m = 0; m < 3; ++m) {
- const int ndims = 4;
- const int64_t n_rot = 128;
- const int64_t ne[4] = { 2*n_rot, 32, 73, 1 };
- const int n_past_0 = 100;
- const int n_past_2 = 33;
- struct ggml_tensor * p0 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
- struct ggml_tensor * p1 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
- struct ggml_tensor * p2 = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ne[2]);
- for (int i = 0; i < ne[2]; ++i) {
- ((int32_t *) p0->data)[i] = n_past_0 + i;
- ((int32_t *) p1->data)[i] = n_past_2 - n_past_0;
- ((int32_t *) p2->data)[i] = n_past_2 + i;
- }
- // test mode 0, 2, 4 (standard, GPT-NeoX, GLM)
- const int mode = m == 0 ? 0 : m == 1 ? 2 : 4;
- x = get_random_tensor_f32(ctx0, ndims, ne, -1.0f, 1.0f);
- // 100, 101, 102, ..., 172
- struct ggml_tensor * r0 = ggml_rope(ctx0, x, p0, n_rot, mode);
- // -67, -67, -67, ..., -67
- struct ggml_tensor * r1 = ggml_rope(ctx0, r0, p1, n_rot, mode); // "context swap", i.e. forget n_past_0 - n_past_2 tokens
- // 33, 34, 35, ..., 105
- struct ggml_tensor * r2 = ggml_rope(ctx0, x, p2, n_rot, mode);
- ggml_cgraph * gf = ggml_new_graph(ctx0);
- ggml_build_forward_expand(gf, r0);
- ggml_build_forward_expand(gf, r1);
- ggml_build_forward_expand(gf, r2);
- ggml_graph_compute_helper(work_buffer, gf, 4);
- // check that r1 and r2 are the same
- {
- double sum0 = 0.0f;
- double sum1 = 0.0f;
- double diff = 0.0f;
- const float * r1_data = (float *) r1->data;
- const float * r2_data = (float *) r2->data;
- const int n_elements = ggml_nelements(r1);
- for (int i = 0; i < n_elements; ++i) {
- sum0 += fabs(r1_data[i]);
- sum1 += fabs(r2_data[i]);
- diff += fabs(r1_data[i] - r2_data[i]);
- //if (fabs(r1_data[i] - r2_data[i]) > 0.0001f) {
- // printf("%d: %f %f\n", i, r1_data[i], r2_data[i]);
- // printf("diff: %f\n", fabs(r1_data[i] - r2_data[i]));
- //}
- }
- //for (int i = 4096; i < 4096 + 128; ++i) {
- // printf("%f %f\n", r1_data[i], r2_data[i]);
- //}
- printf("mode: %d\n", mode);
- printf("sum0: %f\n", sum0);
- printf("sum1: %f\n", sum1);
- printf("diff: %f\n", diff);
- printf("rel err: %f\n", diff / sum0);
- printf("rel err: %f\n", diff / sum1);
- GGML_ASSERT(diff / sum0 < 0.0001f);
- GGML_ASSERT(diff / sum1 < 0.0001f);
- }
- }
- ggml_free(ctx0);
- return 0;
- }
|