llama.cpp 260 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "ggml.h"
  4. #include "ggml-alloc.h"
  5. #ifdef GGML_USE_CUBLAS
  6. # include "ggml-cuda.h"
  7. #elif defined(GGML_USE_CLBLAST)
  8. # include "ggml-opencl.h"
  9. #endif
  10. #ifdef GGML_USE_METAL
  11. # include "ggml-metal.h"
  12. #endif
  13. #ifdef GGML_USE_MPI
  14. # include "ggml-mpi.h"
  15. #endif
  16. #ifdef GGML_USE_K_QUANTS
  17. # ifndef QK_K
  18. # ifdef GGML_QKK_64
  19. # define QK_K 64
  20. # else
  21. # define QK_K 256
  22. # endif
  23. # endif
  24. #endif
  25. #ifdef __has_include
  26. #if __has_include(<unistd.h>)
  27. #include <unistd.h>
  28. #if defined(_POSIX_MAPPED_FILES)
  29. #include <sys/mman.h>
  30. #endif
  31. #if defined(_POSIX_MEMLOCK_RANGE)
  32. #include <sys/resource.h>
  33. #endif
  34. #endif
  35. #endif
  36. #if defined(_WIN32)
  37. #define WIN32_LEAN_AND_MEAN
  38. #ifndef NOMINMAX
  39. #define NOMINMAX
  40. #endif
  41. #include <windows.h>
  42. #include <io.h>
  43. #include <stdio.h> // for _fseeki64
  44. #endif
  45. #include <algorithm>
  46. #include <array>
  47. #include <cassert>
  48. #include <cinttypes>
  49. #include <climits>
  50. #include <cstdarg>
  51. #include <cstddef>
  52. #include <cstdint>
  53. #include <cstdio>
  54. #include <cstring>
  55. #include <ctime>
  56. #include <fstream>
  57. #include <initializer_list>
  58. #include <map>
  59. #include <memory>
  60. #include <mutex>
  61. #include <numeric>
  62. #include <queue>
  63. #include <random>
  64. #include <regex>
  65. #include <sstream>
  66. #include <thread>
  67. #include <unordered_map>
  68. #if defined(_MSC_VER)
  69. #pragma warning(disable: 4244 4267) // possible loss of data
  70. #endif
  71. #ifdef __GNUC__
  72. #ifdef __MINGW32__
  73. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  74. #else
  75. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  76. #endif
  77. #else
  78. #define LLAMA_ATTRIBUTE_FORMAT(...)
  79. #endif
  80. //
  81. // logging
  82. //
  83. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  84. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  85. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  86. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  87. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  88. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  89. //
  90. // helpers
  91. //
  92. static size_t utf8_len(char src) {
  93. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  94. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  95. return lookup[highbits];
  96. }
  97. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  98. std::string result;
  99. for (size_t pos = 0; ; pos += search.length()) {
  100. auto new_pos = s.find(search, pos);
  101. if (new_pos == std::string::npos) {
  102. result += s.substr(pos, s.size() - pos);
  103. break;
  104. }
  105. result += s.substr(pos, new_pos - pos) + replace;
  106. pos = new_pos;
  107. }
  108. s = std::move(result);
  109. }
  110. #ifdef GGML_USE_CPU_HBM
  111. #include <hbwmalloc.h>
  112. #endif
  113. static void zeros(std::ofstream & file, size_t n) {
  114. char zero = 0;
  115. for (size_t i = 0; i < n; ++i) {
  116. file.write(&zero, 1);
  117. }
  118. }
  119. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  120. static std::string format(const char * fmt, ...) {
  121. va_list ap;
  122. va_list ap2;
  123. va_start(ap, fmt);
  124. va_copy(ap2, ap);
  125. int size = vsnprintf(NULL, 0, fmt, ap);
  126. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  127. std::vector<char> buf(size + 1);
  128. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  129. GGML_ASSERT(size2 == size);
  130. va_end(ap2);
  131. va_end(ap);
  132. return std::string(buf.data(), size);
  133. }
  134. //
  135. // gguf constants (sync with gguf.py)
  136. //
  137. enum llm_arch {
  138. LLM_ARCH_LLAMA,
  139. LLM_ARCH_FALCON,
  140. LLM_ARCH_BAICHUAN,
  141. LLM_ARCH_GPT2,
  142. LLM_ARCH_GPTJ,
  143. LLM_ARCH_GPTNEOX,
  144. LLM_ARCH_MPT,
  145. LLM_ARCH_STARCODER,
  146. LLM_ARCH_UNKNOWN,
  147. };
  148. static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
  149. { LLM_ARCH_LLAMA, "llama" },
  150. { LLM_ARCH_FALCON, "falcon" },
  151. { LLM_ARCH_GPT2, "gpt2" },
  152. { LLM_ARCH_GPTJ, "gptj" },
  153. { LLM_ARCH_GPTNEOX, "gptneox" },
  154. { LLM_ARCH_MPT, "mpt" },
  155. { LLM_ARCH_BAICHUAN, "baichuan" },
  156. { LLM_ARCH_STARCODER, "starcoder" },
  157. };
  158. enum llm_kv {
  159. LLM_KV_GENERAL_ARCHITECTURE,
  160. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  161. LLM_KV_GENERAL_ALIGNMENT,
  162. LLM_KV_GENERAL_NAME,
  163. LLM_KV_GENERAL_AUTHOR,
  164. LLM_KV_GENERAL_URL,
  165. LLM_KV_GENERAL_DESCRIPTION,
  166. LLM_KV_GENERAL_LICENSE,
  167. LLM_KV_GENERAL_SOURCE_URL,
  168. LLM_KV_GENERAL_SOURCE_HF_REPO,
  169. LLM_KV_CONTEXT_LENGTH,
  170. LLM_KV_EMBEDDING_LENGTH,
  171. LLM_KV_BLOCK_COUNT,
  172. LLM_KV_FEED_FORWARD_LENGTH,
  173. LLM_KV_USE_PARALLEL_RESIDUAL,
  174. LLM_KV_TENSOR_DATA_LAYOUT,
  175. LLM_KV_ATTENTION_HEAD_COUNT,
  176. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  177. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  178. LLM_KV_ATTENTION_CLAMP_KQV,
  179. LLM_KV_ATTENTION_LAYERNORM_EPS,
  180. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  181. LLM_KV_ROPE_DIMENSION_COUNT,
  182. LLM_KV_ROPE_FREQ_BASE,
  183. LLM_KV_ROPE_SCALE_LINEAR,
  184. LLM_KV_TOKENIZER_MODEL,
  185. LLM_KV_TOKENIZER_LIST,
  186. LLM_KV_TOKENIZER_TOKEN_TYPE,
  187. LLM_KV_TOKENIZER_SCORES,
  188. LLM_KV_TOKENIZER_MERGES,
  189. LLM_KV_TOKENIZER_BOS_ID,
  190. LLM_KV_TOKENIZER_EOS_ID,
  191. LLM_KV_TOKENIZER_UNK_ID,
  192. LLM_KV_TOKENIZER_SEP_ID,
  193. LLM_KV_TOKENIZER_PAD_ID,
  194. LLM_KV_TOKENIZER_HF_JSON,
  195. LLM_KV_TOKENIZER_RWKV,
  196. };
  197. static std::map<llm_kv, std::string> LLM_KV_NAMES = {
  198. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  199. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  200. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  201. { LLM_KV_GENERAL_NAME, "general.name" },
  202. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  203. { LLM_KV_GENERAL_URL, "general.url" },
  204. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  205. { LLM_KV_GENERAL_LICENSE, "general.license" },
  206. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  207. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  208. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  209. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  210. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  211. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  212. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  213. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  214. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  215. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  216. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  217. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  218. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  219. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  220. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  221. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  222. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  223. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  224. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  225. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  226. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  227. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  228. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  229. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  230. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  231. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  232. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  233. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  234. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  235. };
  236. struct LLM_KV {
  237. LLM_KV(llm_arch arch) : arch(arch) {}
  238. llm_arch arch;
  239. std::string operator()(llm_kv kv) const {
  240. return ::format(LLM_KV_NAMES[kv].c_str(), LLM_ARCH_NAMES[arch].c_str());
  241. }
  242. };
  243. enum llm_tensor {
  244. LLM_TENSOR_TOKEN_EMBD,
  245. LLM_TENSOR_POS_EMBD,
  246. LLM_TENSOR_OUTPUT,
  247. LLM_TENSOR_OUTPUT_NORM,
  248. LLM_TENSOR_ROPE_FREQS,
  249. LLM_TENSOR_ATTN_Q,
  250. LLM_TENSOR_ATTN_K,
  251. LLM_TENSOR_ATTN_V,
  252. LLM_TENSOR_ATTN_QKV,
  253. LLM_TENSOR_ATTN_OUT,
  254. LLM_TENSOR_ATTN_NORM,
  255. LLM_TENSOR_ATTN_NORM_2,
  256. LLM_TENSOR_ATTN_ROT_EMBD,
  257. LLM_TENSOR_FFN_GATE,
  258. LLM_TENSOR_FFN_DOWN,
  259. LLM_TENSOR_FFN_UP,
  260. LLM_TENSOR_FFN_NORM,
  261. };
  262. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  263. {
  264. LLM_ARCH_LLAMA,
  265. {
  266. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  267. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  268. { LLM_TENSOR_OUTPUT, "output" },
  269. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  270. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  271. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  272. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  273. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  274. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  275. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  276. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  277. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  278. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  279. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  280. },
  281. },
  282. {
  283. LLM_ARCH_BAICHUAN,
  284. {
  285. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  286. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  287. { LLM_TENSOR_OUTPUT, "output" },
  288. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  289. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  290. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  291. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  292. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  293. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  294. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  295. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  296. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  297. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  298. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  299. },
  300. },
  301. {
  302. LLM_ARCH_FALCON,
  303. {
  304. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  305. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  306. { LLM_TENSOR_OUTPUT, "output" },
  307. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  308. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  309. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  310. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  311. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  312. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  313. },
  314. },
  315. {
  316. LLM_ARCH_GPT2,
  317. {
  318. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  319. },
  320. },
  321. {
  322. LLM_ARCH_GPTJ,
  323. {
  324. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  325. },
  326. },
  327. {
  328. LLM_ARCH_GPTNEOX,
  329. {
  330. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  331. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  332. { LLM_TENSOR_OUTPUT, "output" },
  333. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  334. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  335. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  336. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  337. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  338. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  339. },
  340. },
  341. {
  342. LLM_ARCH_MPT,
  343. {
  344. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  345. },
  346. },
  347. {
  348. LLM_ARCH_STARCODER,
  349. {
  350. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  351. { LLM_TENSOR_POS_EMBD, "position_embd" },
  352. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  353. { LLM_TENSOR_OUTPUT, "output" },
  354. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  355. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  356. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  357. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  358. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  359. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  360. },
  361. },
  362. {
  363. LLM_ARCH_UNKNOWN,
  364. {
  365. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  366. },
  367. },
  368. };
  369. static llm_arch llm_arch_from_string(const std::string & name) {
  370. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  371. if (kv.second == name) {
  372. return kv.first;
  373. }
  374. }
  375. return LLM_ARCH_UNKNOWN;
  376. }
  377. // helper to handle gguf constants
  378. // usage:
  379. //
  380. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  381. //
  382. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  383. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  384. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  385. //
  386. struct LLM_TN {
  387. LLM_TN(llm_arch arch) : arch(arch) {}
  388. llm_arch arch;
  389. std::string operator()(llm_tensor tensor) const {
  390. return LLM_TENSOR_NAMES[arch].at(tensor);
  391. }
  392. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  393. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  394. }
  395. std::string operator()(llm_tensor tensor, int bid) const {
  396. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  397. }
  398. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  399. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  400. }
  401. };
  402. //
  403. // gguf helpers
  404. //
  405. #define GGUF_GET_KEY(ctx, dst, func, type, req, key) \
  406. { \
  407. const std::string skey(key); \
  408. const int kid = gguf_find_key(ctx, skey.c_str()); \
  409. if (kid >= 0) { \
  410. enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
  411. if (ktype != (type)) { \
  412. throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
  413. } \
  414. (dst) = func(ctx, kid); \
  415. } else if (req) { \
  416. throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
  417. } \
  418. }
  419. //
  420. // ggml helpers
  421. //
  422. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  423. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  424. if (plan.work_size > 0) {
  425. buf.resize(plan.work_size);
  426. plan.work_data = buf.data();
  427. }
  428. ggml_graph_compute(graph, &plan);
  429. }
  430. //
  431. // llama helpers
  432. //
  433. #ifdef GGML_USE_CUBLAS
  434. # define llama_host_malloc(n) ggml_cuda_host_malloc(n)
  435. # define llama_host_free(data) ggml_cuda_host_free(data)
  436. #elif GGML_USE_METAL
  437. # define llama_host_malloc(n) ggml_metal_host_malloc(n)
  438. # define llama_host_free(data) ggml_metal_host_free(data)
  439. #elif GGML_USE_CPU_HBM
  440. # define llama_host_malloc(n) hbw_malloc(n)
  441. # define llama_host_free(data) if (data != NULL) hbw_free(data)
  442. #else
  443. # define llama_host_malloc(n) malloc(n)
  444. # define llama_host_free(data) free(data)
  445. #endif
  446. #if defined(_WIN32)
  447. static std::string llama_format_win_err(DWORD err) {
  448. LPSTR buf;
  449. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  450. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  451. if (!size) {
  452. return "FormatMessageA failed";
  453. }
  454. std::string ret(buf, size);
  455. LocalFree(buf);
  456. return ret;
  457. }
  458. #endif
  459. struct llama_buffer {
  460. void * data = NULL;
  461. size_t size = 0;
  462. // fallback to malloc / free
  463. // useful in cases where CUDA can try to allocate PINNED memory
  464. bool fallback = false;
  465. void resize(size_t n) {
  466. llama_host_free(data);
  467. data = llama_host_malloc(n);
  468. if (!data) {
  469. fallback = true;
  470. data = malloc(n);
  471. } else {
  472. fallback = false;
  473. }
  474. GGML_ASSERT(data);
  475. size = n;
  476. }
  477. ~llama_buffer() {
  478. if (data) {
  479. if (fallback) { // NOLINT
  480. free(data);
  481. } else {
  482. llama_host_free(data);
  483. }
  484. }
  485. data = NULL;
  486. }
  487. };
  488. struct llama_file {
  489. // use FILE * so we don't have to re-open the file to mmap
  490. FILE * fp;
  491. size_t size;
  492. llama_file(const char * fname, const char * mode) {
  493. fp = std::fopen(fname, mode);
  494. if (fp == NULL) {
  495. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  496. }
  497. seek(0, SEEK_END);
  498. size = tell();
  499. seek(0, SEEK_SET);
  500. }
  501. size_t tell() const {
  502. #ifdef _WIN32
  503. __int64 ret = _ftelli64(fp);
  504. #else
  505. long ret = std::ftell(fp);
  506. #endif
  507. GGML_ASSERT(ret != -1); // this really shouldn't fail
  508. return (size_t) ret;
  509. }
  510. void seek(size_t offset, int whence) const {
  511. #ifdef _WIN32
  512. int ret = _fseeki64(fp, (__int64) offset, whence);
  513. #else
  514. int ret = std::fseek(fp, (long) offset, whence);
  515. #endif
  516. GGML_ASSERT(ret == 0); // same
  517. }
  518. void read_raw(void * ptr, size_t len) const {
  519. if (len == 0) {
  520. return;
  521. }
  522. errno = 0;
  523. std::size_t ret = std::fread(ptr, len, 1, fp);
  524. if (ferror(fp)) {
  525. throw std::runtime_error(format("read error: %s", strerror(errno)));
  526. }
  527. if (ret != 1) {
  528. throw std::runtime_error(std::string("unexpectedly reached end of file"));
  529. }
  530. }
  531. uint32_t read_u32() const {
  532. uint32_t ret;
  533. read_raw(&ret, sizeof(ret));
  534. return ret;
  535. }
  536. void write_raw(const void * ptr, size_t len) const {
  537. if (len == 0) {
  538. return;
  539. }
  540. errno = 0;
  541. size_t ret = std::fwrite(ptr, len, 1, fp);
  542. if (ret != 1) {
  543. throw std::runtime_error(format("write error: %s", strerror(errno)));
  544. }
  545. }
  546. void write_u32(std::uint32_t val) const {
  547. write_raw(&val, sizeof(val));
  548. }
  549. ~llama_file() {
  550. if (fp) {
  551. std::fclose(fp);
  552. }
  553. }
  554. };
  555. struct llama_mmap {
  556. void * addr;
  557. size_t size;
  558. llama_mmap(const llama_mmap &) = delete;
  559. #ifdef _POSIX_MAPPED_FILES
  560. static constexpr bool SUPPORTED = true;
  561. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  562. size = file->size;
  563. int fd = fileno(file->fp);
  564. int flags = MAP_SHARED;
  565. // prefetch/readahead impairs performance on NUMA systems
  566. if (numa) { prefetch = 0; }
  567. #ifdef __linux__
  568. if (prefetch) { flags |= MAP_POPULATE; }
  569. #endif
  570. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  571. if (addr == MAP_FAILED) {
  572. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  573. }
  574. if (prefetch > 0) {
  575. // Advise the kernel to preload the mapped memory
  576. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  577. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  578. strerror(errno));
  579. }
  580. }
  581. if (numa) {
  582. // advise the kernel not to use readahead
  583. // (because the next page might not belong on the same node)
  584. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  585. fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  586. strerror(errno));
  587. }
  588. }
  589. }
  590. ~llama_mmap() {
  591. munmap(addr, size);
  592. }
  593. #elif defined(_WIN32)
  594. static constexpr bool SUPPORTED = true;
  595. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  596. (void) numa;
  597. size = file->size;
  598. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  599. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  600. DWORD error = GetLastError();
  601. if (hMapping == NULL) {
  602. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  603. }
  604. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  605. error = GetLastError();
  606. CloseHandle(hMapping);
  607. if (addr == NULL) {
  608. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  609. }
  610. if (prefetch) {
  611. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  612. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  613. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  614. // may fail on pre-Windows 8 systems
  615. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  616. if (pPrefetchVirtualMemory) {
  617. // advise the kernel to preload the mapped memory
  618. WIN32_MEMORY_RANGE_ENTRY range;
  619. range.VirtualAddress = addr;
  620. range.NumberOfBytes = (SIZE_T)size;
  621. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  622. fprintf(stderr, "warning: PrefetchVirtualMemory failed: %s\n",
  623. llama_format_win_err(GetLastError()).c_str());
  624. }
  625. }
  626. }
  627. }
  628. ~llama_mmap() {
  629. if (!UnmapViewOfFile(addr)) {
  630. fprintf(stderr, "warning: UnmapViewOfFile failed: %s\n",
  631. llama_format_win_err(GetLastError()).c_str());
  632. }
  633. }
  634. #else
  635. static constexpr bool SUPPORTED = false;
  636. llama_mmap(struct llama_file * file, bool prefetch = true, bool numa = false) {
  637. (void) file;
  638. (void) prefetch;
  639. (void) numa;
  640. throw std::runtime_error(std::string("mmap not supported"));
  641. }
  642. #endif
  643. };
  644. // Represents some region of memory being locked using mlock or VirtualLock;
  645. // will automatically unlock on destruction.
  646. struct llama_mlock {
  647. void * addr = NULL;
  648. size_t size = 0;
  649. bool failed_already = false;
  650. llama_mlock() {}
  651. llama_mlock(const llama_mlock &) = delete;
  652. ~llama_mlock() {
  653. if (size) {
  654. raw_unlock(addr, size);
  655. }
  656. }
  657. void init(void * ptr) {
  658. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  659. addr = ptr;
  660. }
  661. void grow_to(size_t target_size) {
  662. GGML_ASSERT(addr);
  663. if (failed_already) {
  664. return;
  665. }
  666. size_t granularity = lock_granularity();
  667. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  668. if (target_size > size) {
  669. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  670. size = target_size;
  671. } else {
  672. failed_already = true;
  673. }
  674. }
  675. }
  676. #ifdef _POSIX_MEMLOCK_RANGE
  677. static constexpr bool SUPPORTED = true;
  678. static size_t lock_granularity() {
  679. return (size_t) sysconf(_SC_PAGESIZE);
  680. }
  681. #ifdef __APPLE__
  682. #define MLOCK_SUGGESTION \
  683. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  684. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  685. #else
  686. #define MLOCK_SUGGESTION \
  687. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  688. #endif
  689. bool raw_lock(const void * addr, size_t size) const {
  690. if (!mlock(addr, size)) {
  691. return true;
  692. }
  693. char* errmsg = std::strerror(errno);
  694. bool suggest = (errno == ENOMEM);
  695. // Check if the resource limit is fine after all
  696. struct rlimit lock_limit;
  697. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  698. suggest = false;
  699. }
  700. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  701. suggest = false;
  702. }
  703. fprintf(stderr, "warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  704. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  705. return false;
  706. }
  707. #undef MLOCK_SUGGESTION
  708. static void raw_unlock(void * addr, size_t size) {
  709. if (munlock(addr, size)) {
  710. fprintf(stderr, "warning: failed to munlock buffer: %s\n", std::strerror(errno));
  711. }
  712. }
  713. #elif defined(_WIN32)
  714. static constexpr bool SUPPORTED = true;
  715. static size_t lock_granularity() {
  716. SYSTEM_INFO si;
  717. GetSystemInfo(&si);
  718. return (size_t) si.dwPageSize;
  719. }
  720. bool raw_lock(void * ptr, size_t len) const {
  721. for (int tries = 1; ; tries++) {
  722. if (VirtualLock(ptr, len)) {
  723. return true;
  724. }
  725. if (tries == 2) {
  726. fprintf(stderr, "warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  727. len, size, llama_format_win_err(GetLastError()).c_str());
  728. return false;
  729. }
  730. // It failed but this was only the first try; increase the working
  731. // set size and try again.
  732. SIZE_T min_ws_size, max_ws_size;
  733. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  734. fprintf(stderr, "warning: GetProcessWorkingSetSize failed: %s\n",
  735. llama_format_win_err(GetLastError()).c_str());
  736. return false;
  737. }
  738. // Per MSDN: "The maximum number of pages that a process can lock
  739. // is equal to the number of pages in its minimum working set minus
  740. // a small overhead."
  741. // Hopefully a megabyte is enough overhead:
  742. size_t increment = len + 1048576;
  743. // The minimum must be <= the maximum, so we need to increase both:
  744. min_ws_size += increment;
  745. max_ws_size += increment;
  746. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  747. fprintf(stderr, "warning: SetProcessWorkingSetSize failed: %s\n",
  748. llama_format_win_err(GetLastError()).c_str());
  749. return false;
  750. }
  751. }
  752. }
  753. static void raw_unlock(void * ptr, size_t len) {
  754. if (!VirtualUnlock(ptr, len)) {
  755. fprintf(stderr, "warning: failed to VirtualUnlock buffer: %s\n",
  756. llama_format_win_err(GetLastError()).c_str());
  757. }
  758. }
  759. #else
  760. static constexpr bool SUPPORTED = false;
  761. static size_t lock_granularity() {
  762. return (size_t) 65536;
  763. }
  764. bool raw_lock(const void * addr, size_t len) const {
  765. fprintf(stderr, "warning: mlock not supported on this system\n");
  766. return false;
  767. }
  768. static void raw_unlock(const void * addr, size_t len) {}
  769. #endif
  770. };
  771. typedef void (*offload_func_t)(struct ggml_tensor * tensor);
  772. static void llama_nop(struct ggml_tensor * tensor) { // don't offload by default
  773. (void) tensor;
  774. }
  775. static std::string llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  776. std::vector<char> result(8, 0);
  777. const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
  778. if (n_tokens < 0) {
  779. result.resize(-n_tokens);
  780. int check = llama_token_to_piece(ctx, token, result.data(), result.size());
  781. GGML_ASSERT(check == -n_tokens);
  782. } else {
  783. result.resize(n_tokens);
  784. }
  785. return std::string(result.data(), result.size());
  786. }
  787. //
  788. // globals
  789. //
  790. struct llama_state {
  791. // We save the log callback globally
  792. ggml_log_callback log_callback = llama_log_callback_default;
  793. void * log_callback_user_data = nullptr;
  794. };
  795. static llama_state g_state;
  796. // available llama models
  797. enum e_model {
  798. MODEL_UNKNOWN,
  799. MODEL_1B,
  800. MODEL_3B,
  801. MODEL_7B,
  802. MODEL_13B,
  803. MODEL_15B,
  804. MODEL_30B,
  805. MODEL_34B,
  806. MODEL_40B,
  807. MODEL_65B,
  808. MODEL_70B,
  809. };
  810. static const size_t kB = 1024;
  811. static const size_t MB = kB*kB;
  812. static const size_t GB = kB*kB*kB;
  813. struct llama_hparams {
  814. uint32_t n_vocab;
  815. uint32_t n_ctx_train; // context size the model was trained on
  816. uint32_t n_ctx; // context size used during inference
  817. uint32_t n_embd;
  818. uint32_t n_head;
  819. uint32_t n_head_kv;
  820. uint32_t n_layer;
  821. uint32_t n_rot;
  822. uint32_t n_ff;
  823. float f_norm_eps;
  824. float f_norm_rms_eps;
  825. float rope_freq_base;
  826. float rope_freq_scale;
  827. bool operator!=(const llama_hparams & other) const {
  828. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams))); // NOLINT
  829. }
  830. uint32_t n_gqa() const {
  831. return n_head/n_head_kv;
  832. }
  833. uint32_t n_embd_head() const {
  834. return n_embd/n_head;
  835. }
  836. uint32_t n_embd_gqa() const {
  837. return n_embd/n_gqa();
  838. }
  839. size_t kv_size() const {
  840. size_t result = 2ull;
  841. result *= (size_t) n_embd_gqa();
  842. result *= (size_t) n_ctx;
  843. result *= (size_t) n_layer;
  844. result *= sizeof(ggml_fp16_t);
  845. return result;
  846. }
  847. };
  848. struct llama_layer {
  849. // normalization
  850. struct ggml_tensor * attn_norm;
  851. struct ggml_tensor * attn_norm_b;
  852. struct ggml_tensor * attn_norm_2;
  853. struct ggml_tensor * attn_norm_2_b;
  854. // attention
  855. struct ggml_tensor * wq;
  856. struct ggml_tensor * wk;
  857. struct ggml_tensor * wv;
  858. struct ggml_tensor * wo;
  859. struct ggml_tensor * wqkv;
  860. // attention bias
  861. struct ggml_tensor * bo;
  862. struct ggml_tensor * bqkv;
  863. // normalization
  864. struct ggml_tensor * ffn_norm;
  865. struct ggml_tensor * ffn_norm_b;
  866. // ff
  867. struct ggml_tensor * w1; // ffn_gate
  868. struct ggml_tensor * w2; // ffn_down
  869. struct ggml_tensor * w3; // ffn_up
  870. // ff bias
  871. struct ggml_tensor * b2; // ffn_down
  872. struct ggml_tensor * b3; // ffn_up
  873. };
  874. struct llama_kv_cache {
  875. struct ggml_tensor * k = NULL;
  876. struct ggml_tensor * v = NULL;
  877. struct ggml_context * ctx = NULL;
  878. llama_buffer buf;
  879. int n; // number of tokens currently in the cache
  880. ~llama_kv_cache() {
  881. if (ctx) {
  882. ggml_free(ctx);
  883. }
  884. #ifdef GGML_USE_CUBLAS
  885. ggml_cuda_free_data(k);
  886. ggml_cuda_free_data(v);
  887. #endif // GGML_USE_CUBLAS
  888. }
  889. };
  890. struct llama_vocab {
  891. using id = int32_t;
  892. using token = std::string;
  893. using ttype = llama_token_type;
  894. struct token_data {
  895. token text;
  896. float score;
  897. ttype type;
  898. };
  899. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  900. std::unordered_map<token, id> token_to_id;
  901. std::vector<token_data> id_to_token;
  902. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  903. // default LLaMA special tokens
  904. id special_bos_id = 1;
  905. id special_eos_id = 2;
  906. id special_unk_id = 0;
  907. id special_sep_id = -1;
  908. id special_pad_id = -1;
  909. id linefeed_id = 13;
  910. int find_bpe_rank(std::string token_left, std::string token_right) const {
  911. replace_all(token_left, " ", "\u0120");
  912. replace_all(token_left, "\n", "\u010A");
  913. replace_all(token_right, " ", "\u0120");
  914. replace_all(token_right, "\n", "\u010A");
  915. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  916. if (it == bpe_ranks.end()) {
  917. return -1;
  918. }
  919. return it->second;
  920. }
  921. };
  922. struct llama_model {
  923. e_model type = MODEL_UNKNOWN;
  924. llm_arch arch = LLM_ARCH_UNKNOWN;
  925. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  926. std::string name = "n/a";
  927. llama_hparams hparams = {};
  928. llama_vocab vocab;
  929. struct ggml_tensor * tok_embeddings;
  930. struct ggml_tensor * pos_embeddings;
  931. struct ggml_tensor * output_norm;
  932. struct ggml_tensor * output_norm_b;
  933. struct ggml_tensor * output;
  934. std::vector<llama_layer> layers;
  935. int n_gpu_layers;
  936. // context
  937. struct ggml_context * ctx = NULL;
  938. // the model memory buffer
  939. llama_buffer buf;
  940. // model memory mapped file
  941. std::unique_ptr<llama_mmap> mapping;
  942. // objects representing data potentially being locked in memory
  943. llama_mlock mlock_buf;
  944. llama_mlock mlock_mmap;
  945. // for quantize-stats only
  946. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  947. int64_t t_load_us = 0;
  948. int64_t t_start_us = 0;
  949. ~llama_model() {
  950. if (ctx) {
  951. ggml_free(ctx);
  952. }
  953. #ifdef GGML_USE_CUBLAS
  954. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  955. ggml_cuda_free_data(tensors_by_name[i].second);
  956. }
  957. ggml_cuda_free_scratch();
  958. #elif defined(GGML_USE_CLBLAST)
  959. for (size_t i = 0; i < tensors_by_name.size(); ++i) {
  960. ggml_cl_free_data(tensors_by_name[i].second);
  961. }
  962. #endif
  963. }
  964. };
  965. struct llama_context {
  966. llama_context(const llama_model & model) : model(model), t_load_us(model.t_load_us), t_start_us(model.t_start_us) {}
  967. ~llama_context() {
  968. if (model_owner) {
  969. delete &model;
  970. }
  971. #ifdef GGML_USE_METAL
  972. if (ctx_metal) {
  973. ggml_metal_free(ctx_metal);
  974. }
  975. #endif
  976. if (alloc) {
  977. ggml_allocr_free(alloc);
  978. }
  979. }
  980. std::mt19937 rng;
  981. bool has_evaluated_once = false;
  982. int64_t t_sample_us = 0;
  983. int64_t t_eval_us = 0;
  984. int64_t t_p_eval_us = 0;
  985. int32_t n_sample = 0; // number of tokens sampled
  986. int32_t n_eval = 0; // number of eval calls
  987. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  988. const llama_model & model;
  989. bool model_owner = false;
  990. int64_t t_load_us;
  991. int64_t t_start_us;
  992. // key + value cache for the self attention
  993. struct llama_kv_cache kv_self;
  994. // decode output (2-dimensional array: [n_tokens][n_vocab])
  995. std::vector<float> logits;
  996. bool logits_all = false;
  997. // input embedding (1-dimensional array: [n_embd])
  998. std::vector<float> embedding;
  999. // reusable buffer for `struct ggml_graph_plan.work_data`
  1000. std::vector<uint8_t> work_buffer;
  1001. // memory buffers used to evaluate the model
  1002. llama_buffer buf_compute;
  1003. llama_buffer buf_alloc;
  1004. ggml_allocr * alloc = NULL;
  1005. #ifdef GGML_USE_METAL
  1006. ggml_metal_context * ctx_metal = NULL;
  1007. #endif
  1008. #ifdef GGML_USE_MPI
  1009. ggml_mpi_context * ctx_mpi = NULL;
  1010. #endif
  1011. };
  1012. //
  1013. // kv cache helpers
  1014. //
  1015. static bool llama_kv_cache_init(
  1016. const struct llama_hparams & hparams,
  1017. struct llama_kv_cache & cache,
  1018. ggml_type wtype,
  1019. int n_ctx,
  1020. int n_gpu_layers) {
  1021. const int n_embd = hparams.n_embd_gqa();
  1022. const int n_layer = hparams.n_layer;
  1023. const int64_t n_mem = n_layer*n_ctx;
  1024. const int64_t n_elements = n_embd*n_mem;
  1025. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  1026. cache.n = 0;
  1027. struct ggml_init_params params;
  1028. params.mem_size = cache.buf.size;
  1029. params.mem_buffer = cache.buf.data;
  1030. params.no_alloc = false;
  1031. cache.ctx = ggml_init(params);
  1032. if (!cache.ctx) {
  1033. LLAMA_LOG_ERROR("%s: failed to allocate memory for kv cache\n", __func__);
  1034. return false;
  1035. }
  1036. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1037. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  1038. ggml_set_name(cache.k, "cache_k");
  1039. ggml_set_name(cache.v, "cache_v");
  1040. (void) n_gpu_layers;
  1041. #ifdef GGML_USE_CUBLAS
  1042. if (n_gpu_layers > n_layer + 1) {
  1043. ggml_cuda_assign_buffers_no_scratch(cache.v);
  1044. }
  1045. if (n_gpu_layers > n_layer + 2) {
  1046. ggml_cuda_assign_buffers_no_scratch(cache.k);
  1047. }
  1048. #endif // GGML_USE_CUBLAS
  1049. return true;
  1050. }
  1051. //
  1052. // model loading and saving
  1053. //
  1054. enum llama_fver {
  1055. GGUF_FILE_VERSION_V1 = 1,
  1056. GGUF_FILE_VERSION_V2 = 2,
  1057. };
  1058. static const char * llama_file_version_name(llama_fver version) {
  1059. switch (version) {
  1060. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  1061. case GGUF_FILE_VERSION_V2: return "GGUF V2 (latest)";
  1062. }
  1063. return "unknown";
  1064. }
  1065. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  1066. char buf[256];
  1067. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  1068. for (size_t i = 1; i < ne.size(); i++) {
  1069. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  1070. }
  1071. return buf;
  1072. }
  1073. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  1074. char buf[256];
  1075. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  1076. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  1077. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  1078. }
  1079. return buf;
  1080. }
  1081. struct llama_model_loader {
  1082. int n_kv = 0;
  1083. int n_tensors = 0;
  1084. int n_created = 0;
  1085. int64_t n_elements = 0;
  1086. size_t n_bytes = 0;
  1087. bool use_mmap = false;
  1088. llama_file file;
  1089. llama_ftype ftype;
  1090. llama_fver fver;
  1091. std::unique_ptr<llama_mmap> mapping;
  1092. struct gguf_context * ctx_gguf = NULL;
  1093. struct ggml_context * ctx_meta = NULL;
  1094. llama_model_loader(const std::string & fname, bool use_mmap) : file(fname.c_str(), "rb") {
  1095. struct gguf_init_params params = {
  1096. /*.no_alloc = */ true,
  1097. /*.ctx = */ &ctx_meta,
  1098. };
  1099. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  1100. if (!ctx_gguf) {
  1101. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  1102. }
  1103. n_kv = gguf_get_n_kv(ctx_gguf);
  1104. n_tensors = gguf_get_n_tensors(ctx_gguf);
  1105. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  1106. for (int i = 0; i < n_tensors; i++) {
  1107. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1108. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  1109. n_elements += ggml_nelements(t);
  1110. n_bytes += ggml_nbytes(t);
  1111. }
  1112. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  1113. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  1114. // determine file type based on the number of tensors for each quantization and print meta data
  1115. // TODO: make optional
  1116. {
  1117. std::map<enum ggml_type, uint32_t> n_type;
  1118. uint32_t n_type_max = 0;
  1119. enum ggml_type type_max = GGML_TYPE_F32;
  1120. for (int i = 0; i < n_tensors; i++) {
  1121. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  1122. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, name);
  1123. n_type[meta->type]++;
  1124. if (n_type_max < n_type[meta->type]) {
  1125. n_type_max = n_type[meta->type];
  1126. type_max = meta->type;
  1127. }
  1128. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, name, ggml_type_name(meta->type), llama_format_tensor_shape(meta).c_str());
  1129. }
  1130. switch (type_max) {
  1131. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  1132. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  1133. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  1134. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  1135. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  1136. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  1137. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  1138. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  1139. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  1140. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  1141. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  1142. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  1143. default:
  1144. {
  1145. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  1146. ftype = LLAMA_FTYPE_ALL_F32;
  1147. } break;
  1148. }
  1149. // this is a way to mark that we have "guessed" the file type
  1150. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  1151. {
  1152. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  1153. if (kid >= 0) {
  1154. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  1155. }
  1156. }
  1157. for (int i = 0; i < n_kv; i++) {
  1158. const char * name = gguf_get_key(ctx_gguf, i);
  1159. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1160. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-8s\n", __func__, i, name, gguf_type_name(type));
  1161. }
  1162. // print type counts
  1163. for (auto & kv : n_type) {
  1164. if (kv.second == 0) {
  1165. continue;
  1166. }
  1167. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1168. }
  1169. }
  1170. if (!llama_mmap::SUPPORTED) {
  1171. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  1172. use_mmap = false;
  1173. }
  1174. this->use_mmap = use_mmap;
  1175. }
  1176. ~llama_model_loader() {
  1177. if (ctx_gguf) {
  1178. gguf_free(ctx_gguf);
  1179. }
  1180. if (ctx_meta) {
  1181. ggml_free(ctx_meta);
  1182. }
  1183. }
  1184. std::string get_arch_name() const {
  1185. const auto kv = LLM_KV(LLM_ARCH_UNKNOWN);
  1186. std::string arch_name;
  1187. GGUF_GET_KEY(ctx_gguf, arch_name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_ARCHITECTURE));
  1188. return arch_name;
  1189. }
  1190. enum llm_arch get_arch() const {
  1191. const std::string arch_name = get_arch_name();
  1192. return llm_arch_from_string(arch_name);
  1193. }
  1194. const char * get_tensor_name(int i) const {
  1195. return gguf_get_tensor_name(ctx_gguf, i);
  1196. }
  1197. struct ggml_tensor * get_tensor_meta(int i) const {
  1198. return ggml_get_tensor(ctx_meta, get_tensor_name(i));
  1199. }
  1200. void calc_sizes(size_t & ctx_size_p, size_t & mmapped_size_p) const {
  1201. ctx_size_p = 0;
  1202. mmapped_size_p = 0;
  1203. for (int i = 0; i < n_tensors; i++) {
  1204. struct ggml_tensor * meta = get_tensor_meta(i);
  1205. ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  1206. (use_mmap ? mmapped_size_p : ctx_size_p) += ggml_nbytes_pad(meta);
  1207. }
  1208. }
  1209. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta, ggml_backend backend) {
  1210. if (backend != GGML_BACKEND_CPU) {
  1211. ggml_set_no_alloc(ctx, true);
  1212. }
  1213. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  1214. tensor->backend = backend; // TODO: ggml_set_backend
  1215. ggml_set_name(tensor, ggml_get_name(meta));
  1216. if (backend != GGML_BACKEND_CPU) {
  1217. ggml_set_no_alloc(ctx, use_mmap);
  1218. }
  1219. n_created++;
  1220. return tensor;
  1221. }
  1222. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, ggml_backend backend) {
  1223. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  1224. if (cur == NULL) {
  1225. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  1226. }
  1227. {
  1228. bool is_ok = true;
  1229. for (size_t i = 0; i < ne.size(); ++i) {
  1230. if (ne[i] != cur->ne[i]) {
  1231. is_ok = false;
  1232. break;
  1233. }
  1234. }
  1235. if (!is_ok) {
  1236. throw std::runtime_error(
  1237. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  1238. __func__, name.c_str(),
  1239. llama_format_tensor_shape(ne).c_str(),
  1240. llama_format_tensor_shape(cur).c_str()));
  1241. }
  1242. }
  1243. return create_tensor_for(ctx, cur, backend);
  1244. }
  1245. void done_getting_tensors() const {
  1246. if (n_created != n_tensors) {
  1247. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  1248. }
  1249. }
  1250. size_t file_offset(const char * name) const {
  1251. const int idx = gguf_find_tensor(ctx_gguf, name);
  1252. if (idx < 0) {
  1253. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  1254. }
  1255. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  1256. }
  1257. void load_data_for(struct ggml_tensor * cur) const {
  1258. const size_t offs = file_offset(ggml_get_name(cur));
  1259. if (use_mmap) {
  1260. cur->data = (uint8_t *) mapping->addr + offs;
  1261. } else {
  1262. file.seek(offs, SEEK_SET);
  1263. file.read_raw(cur->data, ggml_nbytes(cur));
  1264. }
  1265. }
  1266. void load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  1267. size_t size_data = 0;
  1268. size_t size_lock = 0;
  1269. size_t size_pref = 0; // prefetch
  1270. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1271. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1272. size_data += ggml_nbytes(cur);
  1273. if (cur->backend == GGML_BACKEND_CPU) {
  1274. size_pref += ggml_nbytes(cur);
  1275. }
  1276. }
  1277. if (use_mmap) {
  1278. mapping.reset(new llama_mmap(&file, size_pref, ggml_is_numa()));
  1279. if (lmlock) {
  1280. lmlock->init(mapping->addr);
  1281. }
  1282. }
  1283. size_t done_size = 0;
  1284. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  1285. struct ggml_tensor * cur = ggml_get_tensor(ctx, gguf_get_tensor_name(ctx_gguf, i));
  1286. GGML_ASSERT(cur); // unused tensors should have been caught by load_data already
  1287. if (progress_callback) {
  1288. progress_callback((float) done_size / size_data, progress_callback_user_data);
  1289. }
  1290. // allocate temp buffer if not using mmap
  1291. if (!use_mmap && cur->data == NULL) {
  1292. GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
  1293. #ifdef GGML_USE_CPU_HBM
  1294. cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
  1295. #else
  1296. cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
  1297. #endif
  1298. }
  1299. load_data_for(cur);
  1300. switch (cur->backend) {
  1301. case GGML_BACKEND_CPU:
  1302. if (use_mmap && lmlock) {
  1303. size_lock += ggml_nbytes(cur);
  1304. lmlock->grow_to(size_lock);
  1305. }
  1306. break;
  1307. #if defined(GGML_USE_CUBLAS)
  1308. case GGML_BACKEND_GPU:
  1309. case GGML_BACKEND_GPU_SPLIT:
  1310. // old code:
  1311. //ggml_cuda_transform_tensor(lt.data, lt.ggml_tensor);
  1312. // TODO: test if this works !!
  1313. ggml_cuda_transform_tensor(cur->data, cur);
  1314. if (!use_mmap) {
  1315. free(cur->data);
  1316. }
  1317. break;
  1318. #elif defined(GGML_USE_CLBLAST)
  1319. case GGML_BACKEND_GPU:
  1320. ggml_cl_transform_tensor(cur->data, cur);
  1321. if (!use_mmap) {
  1322. free(cur->data);
  1323. }
  1324. break;
  1325. #endif
  1326. default:
  1327. continue;
  1328. }
  1329. done_size += ggml_nbytes(cur);
  1330. }
  1331. }
  1332. };
  1333. //
  1334. // load LLaMA models
  1335. //
  1336. static std::string llama_model_ftype_name(enum llama_ftype ftype) {
  1337. if (ftype & LLAMA_FTYPE_GUESSED) {
  1338. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  1339. }
  1340. switch (ftype) {
  1341. case LLAMA_FTYPE_ALL_F32: return "all F32";
  1342. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  1343. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  1344. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  1345. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  1346. return "mostly Q4_1, some F16";
  1347. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  1348. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  1349. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  1350. // K-quants
  1351. case LLAMA_FTYPE_MOSTLY_Q2_K: return "mostly Q2_K";
  1352. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "mostly Q3_K - Small";
  1353. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "mostly Q3_K - Medium";
  1354. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "mostly Q3_K - Large";
  1355. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "mostly Q4_K - Small";
  1356. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "mostly Q4_K - Medium";
  1357. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "mostly Q5_K - Small";
  1358. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "mostly Q5_K - Medium";
  1359. case LLAMA_FTYPE_MOSTLY_Q6_K: return "mostly Q6_K";
  1360. default: return "unknown, may not work";
  1361. }
  1362. }
  1363. static const char * llama_model_type_name(e_model type) {
  1364. switch (type) {
  1365. case MODEL_1B: return "1B";
  1366. case MODEL_3B: return "3B";
  1367. case MODEL_7B: return "7B";
  1368. case MODEL_13B: return "13B";
  1369. case MODEL_15B: return "15B";
  1370. case MODEL_30B: return "30B";
  1371. case MODEL_34B: return "34B";
  1372. case MODEL_40B: return "40B";
  1373. case MODEL_65B: return "65B";
  1374. case MODEL_70B: return "70B";
  1375. default: return "?B";
  1376. }
  1377. }
  1378. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  1379. model.arch = ml.get_arch();
  1380. if (model.arch == LLM_ARCH_UNKNOWN) {
  1381. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  1382. }
  1383. }
  1384. static void llm_load_hparams(
  1385. llama_model_loader & ml,
  1386. llama_model & model,
  1387. int n_ctx,
  1388. float rope_freq_base,
  1389. float rope_freq_scale) {
  1390. struct gguf_context * ctx = ml.ctx_gguf;
  1391. const auto kv = LLM_KV(model.arch);
  1392. auto & hparams = model.hparams;
  1393. // get general kv
  1394. GGUF_GET_KEY(ctx, model.name, gguf_get_val_str, GGUF_TYPE_STRING, false, kv(LLM_KV_GENERAL_NAME));
  1395. // get hparams kv
  1396. GGUF_GET_KEY(ctx, hparams.n_vocab, gguf_get_arr_n, GGUF_TYPE_ARRAY, true, kv(LLM_KV_TOKENIZER_LIST));
  1397. GGUF_GET_KEY(ctx, hparams.n_ctx_train, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_CONTEXT_LENGTH));
  1398. GGUF_GET_KEY(ctx, hparams.n_embd, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_EMBEDDING_LENGTH));
  1399. GGUF_GET_KEY(ctx, hparams.n_ff, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_FEED_FORWARD_LENGTH));
  1400. GGUF_GET_KEY(ctx, hparams.n_head, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_ATTENTION_HEAD_COUNT));
  1401. GGUF_GET_KEY(ctx, hparams.n_layer, gguf_get_val_u32, GGUF_TYPE_UINT32, true, kv(LLM_KV_BLOCK_COUNT));
  1402. // n_head_kv is optional, default to n_head
  1403. hparams.n_head_kv = hparams.n_head;
  1404. GGUF_GET_KEY(ctx, hparams.n_head_kv, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ATTENTION_HEAD_COUNT_KV));
  1405. // rope_freq_base (optional)
  1406. if (rope_freq_base == 0.0f) {
  1407. rope_freq_base = 10000.0f;
  1408. GGUF_GET_KEY(ctx, rope_freq_base, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_FREQ_BASE));
  1409. }
  1410. // rope_freq_scale (inverse of the kv) is optional
  1411. if (rope_freq_scale == 0.0f) {
  1412. float ropescale = 1.0f;
  1413. GGUF_GET_KEY(ctx, ropescale, gguf_get_val_f32, GGUF_TYPE_FLOAT32, false, kv(LLM_KV_ROPE_SCALE_LINEAR));
  1414. rope_freq_scale = 1.0f/ropescale;
  1415. }
  1416. // sanity check for n_rot (optional)
  1417. {
  1418. hparams.n_rot = hparams.n_embd / hparams.n_head;
  1419. GGUF_GET_KEY(ctx, hparams.n_rot, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_ROPE_DIMENSION_COUNT));
  1420. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  1421. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  1422. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  1423. }
  1424. }
  1425. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  1426. // gpt-j n_rot = rotary_dim
  1427. }
  1428. // arch-specific KVs
  1429. switch (model.arch) {
  1430. case LLM_ARCH_LLAMA:
  1431. {
  1432. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1433. switch (hparams.n_layer) {
  1434. case 26: model.type = e_model::MODEL_3B; break;
  1435. case 32: model.type = e_model::MODEL_7B; break;
  1436. case 40: model.type = e_model::MODEL_13B; break;
  1437. case 48: model.type = e_model::MODEL_34B; break;
  1438. case 60: model.type = e_model::MODEL_30B; break;
  1439. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  1440. default: model.type = e_model::MODEL_UNKNOWN;
  1441. }
  1442. } break;
  1443. case LLM_ARCH_FALCON:
  1444. {
  1445. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1446. switch (hparams.n_layer) {
  1447. case 32: model.type = e_model::MODEL_7B; break;
  1448. case 60: model.type = e_model::MODEL_40B; break;
  1449. default: model.type = e_model::MODEL_UNKNOWN;
  1450. }
  1451. } break;
  1452. case LLM_ARCH_BAICHUAN:
  1453. {
  1454. GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
  1455. switch (hparams.n_layer) {
  1456. case 32: model.type = e_model::MODEL_7B; break;
  1457. case 40: model.type = e_model::MODEL_13B; break;
  1458. default: model.type = e_model::MODEL_UNKNOWN;
  1459. }
  1460. } break;
  1461. case LLM_ARCH_STARCODER:
  1462. {
  1463. GGUF_GET_KEY(ctx, hparams.f_norm_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_EPS));
  1464. switch (hparams.n_layer) {
  1465. case 24: model.type = e_model::MODEL_1B; break;
  1466. case 36: model.type = e_model::MODEL_3B; break;
  1467. case 42: model.type = e_model::MODEL_7B; break;
  1468. case 40: model.type = e_model::MODEL_15B; break;
  1469. default: model.type = e_model::MODEL_UNKNOWN;
  1470. }
  1471. } break;
  1472. default: (void)0;
  1473. };
  1474. model.ftype = ml.ftype;
  1475. hparams.n_ctx = n_ctx;
  1476. hparams.rope_freq_base = rope_freq_base;
  1477. hparams.rope_freq_scale = rope_freq_scale;
  1478. }
  1479. // TODO: This should probably be in llama.h
  1480. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos);
  1481. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  1482. static void llm_load_vocab(
  1483. llama_model_loader & ml,
  1484. llama_model & model) {
  1485. auto & vocab = model.vocab;
  1486. struct gguf_context * ctx = ml.ctx_gguf;
  1487. const auto kv = LLM_KV(model.arch);
  1488. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  1489. if (token_idx == -1) {
  1490. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  1491. }
  1492. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  1493. if (score_idx == -1) {
  1494. throw std::runtime_error("cannot find tokenizer scores in model file\n");
  1495. }
  1496. const float * scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  1497. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  1498. if (toktype_idx == -1) {
  1499. throw std::runtime_error("cannot find token type list in GGUF file\n");
  1500. }
  1501. const int * toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  1502. // determine vocab type
  1503. {
  1504. std::string tokenizer_name;
  1505. GGUF_GET_KEY(ctx, tokenizer_name, gguf_get_val_str, GGUF_TYPE_STRING, true, kv(LLM_KV_TOKENIZER_MODEL));
  1506. if (tokenizer_name == "llama") {
  1507. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1508. // default special tokens
  1509. vocab.special_bos_id = 1;
  1510. vocab.special_eos_id = 2;
  1511. vocab.special_unk_id = 0;
  1512. vocab.special_sep_id = -1;
  1513. vocab.special_pad_id = -1;
  1514. } else if (tokenizer_name == "gpt2") {
  1515. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  1516. // read bpe merges and populate bpe ranks
  1517. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  1518. if (merges_keyidx == -1) {
  1519. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  1520. }
  1521. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  1522. for (int i = 0; i < n_merges; i++) {
  1523. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  1524. std::string first;
  1525. std::string second;
  1526. const size_t pos = word.find(' ', 1);
  1527. if (pos != std::string::npos) {
  1528. first = word.substr(0, pos);
  1529. second = word.substr(pos + 1);
  1530. }
  1531. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  1532. }
  1533. // default special tokens
  1534. vocab.special_bos_id = 11;
  1535. vocab.special_eos_id = 11;
  1536. vocab.special_unk_id = -1;
  1537. vocab.special_sep_id = -1;
  1538. vocab.special_pad_id = -1;
  1539. } else {
  1540. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  1541. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  1542. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  1543. }
  1544. }
  1545. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  1546. vocab.id_to_token.resize(n_vocab);
  1547. for (uint32_t i = 0; i < n_vocab; i++) {
  1548. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  1549. vocab.token_to_id[word] = i;
  1550. auto & token_data = vocab.id_to_token[i];
  1551. token_data.text = std::move(word);
  1552. token_data.score = scores[i];
  1553. token_data.type = (llama_token_type) toktypes[i];
  1554. }
  1555. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  1556. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  1557. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  1558. } else {
  1559. vocab.linefeed_id = llama_tokenize_internal(vocab, "\n", false)[0];
  1560. }
  1561. // special tokens
  1562. GGUF_GET_KEY(ctx, vocab.special_bos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_BOS_ID));
  1563. GGUF_GET_KEY(ctx, vocab.special_eos_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_EOS_ID));
  1564. GGUF_GET_KEY(ctx, vocab.special_unk_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_UNK_ID));
  1565. GGUF_GET_KEY(ctx, vocab.special_sep_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_SEP_ID));
  1566. GGUF_GET_KEY(ctx, vocab.special_pad_id, gguf_get_val_u32, GGUF_TYPE_UINT32, false, kv(LLM_KV_TOKENIZER_PAD_ID));
  1567. }
  1568. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  1569. const auto & hparams = model.hparams;
  1570. const auto & vocab = model.vocab;
  1571. // hparams
  1572. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  1573. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
  1574. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
  1575. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  1576. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  1577. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  1578. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  1579. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  1580. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  1581. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  1582. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  1583. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); // a.k.a. n_embd_head, n_head_dim
  1584. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  1585. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  1586. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  1587. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  1588. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, hparams.rope_freq_base);
  1589. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, hparams.rope_freq_scale);
  1590. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  1591. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  1592. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  1593. if (ml.n_bytes < GB) {
  1594. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  1595. } else {
  1596. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  1597. }
  1598. // general kv
  1599. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  1600. // special tokens
  1601. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  1602. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  1603. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  1604. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  1605. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  1606. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  1607. }
  1608. static void llm_load_tensors(
  1609. llama_model_loader & ml,
  1610. llama_model & model,
  1611. int n_batch,
  1612. int n_gpu_layers,
  1613. int main_gpu,
  1614. const float * tensor_split,
  1615. const bool mul_mat_q,
  1616. bool low_vram,
  1617. ggml_type memory_type,
  1618. bool use_mlock,
  1619. llama_progress_callback progress_callback,
  1620. void * progress_callback_user_data) {
  1621. model.t_start_us = ggml_time_us();
  1622. auto & ctx = model.ctx;
  1623. auto & hparams = model.hparams;
  1624. model.n_gpu_layers = n_gpu_layers;
  1625. size_t ctx_size;
  1626. size_t mmapped_size;
  1627. ml.calc_sizes(ctx_size, mmapped_size);
  1628. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  1629. // create the ggml context
  1630. {
  1631. model.buf.resize(ctx_size);
  1632. if (use_mlock) {
  1633. model.mlock_buf.init (model.buf.data);
  1634. model.mlock_buf.grow_to(model.buf.size);
  1635. }
  1636. struct ggml_init_params params = {
  1637. /*.mem_size =*/ model.buf.size,
  1638. /*.mem_buffer =*/ model.buf.data,
  1639. /*.no_alloc =*/ ml.use_mmap,
  1640. };
  1641. model.ctx = ggml_init(params);
  1642. if (!model.ctx) {
  1643. throw std::runtime_error(format("ggml_init() failed"));
  1644. }
  1645. }
  1646. (void) main_gpu;
  1647. (void) mul_mat_q;
  1648. #if defined(GGML_USE_CUBLAS)
  1649. LLAMA_LOG_INFO("%s: using " GGML_CUDA_NAME " for GPU acceleration\n", __func__);
  1650. ggml_cuda_set_main_device(main_gpu);
  1651. ggml_cuda_set_mul_mat_q(mul_mat_q);
  1652. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1653. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
  1654. #elif defined(GGML_USE_CLBLAST)
  1655. LLAMA_LOG_INFO("%s: using OpenCL for GPU acceleration\n", __func__);
  1656. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
  1657. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
  1658. #else
  1659. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  1660. #define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
  1661. #endif
  1662. // prepare memory for the weights
  1663. size_t vram_weights = 0;
  1664. {
  1665. const int64_t n_embd = hparams.n_embd;
  1666. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  1667. const int64_t n_layer = hparams.n_layer;
  1668. const int64_t n_vocab = hparams.n_vocab;
  1669. const auto tn = LLM_TN(model.arch);
  1670. switch (model.arch) {
  1671. case LLM_ARCH_LLAMA:
  1672. {
  1673. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1674. // output
  1675. {
  1676. ggml_backend backend_norm;
  1677. ggml_backend backend_output;
  1678. if (n_gpu_layers > int(n_layer)) {
  1679. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1680. // on Windows however this is detrimental unless everything is on the GPU
  1681. #ifndef _WIN32
  1682. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1683. #else
  1684. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1685. #endif // _WIN32
  1686. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1687. } else {
  1688. backend_norm = GGML_BACKEND_CPU;
  1689. backend_output = GGML_BACKEND_CPU;
  1690. }
  1691. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1692. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1693. if (backend_norm == GGML_BACKEND_GPU) {
  1694. vram_weights += ggml_nbytes(model.output_norm);
  1695. }
  1696. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1697. vram_weights += ggml_nbytes(model.output);
  1698. }
  1699. }
  1700. const uint32_t n_ff = hparams.n_ff;
  1701. const int i_gpu_start = n_layer - n_gpu_layers;
  1702. model.layers.resize(n_layer);
  1703. for (uint32_t i = 0; i < n_layer; ++i) {
  1704. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1705. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1706. auto & layer = model.layers[i];
  1707. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1708. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  1709. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1710. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1711. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1712. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  1713. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  1714. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1715. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1716. if (backend == GGML_BACKEND_GPU) {
  1717. vram_weights +=
  1718. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1719. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1720. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1721. }
  1722. }
  1723. } break;
  1724. case LLM_ARCH_BAICHUAN:
  1725. {
  1726. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1727. {
  1728. ggml_backend backend_norm;
  1729. ggml_backend backend_output;
  1730. if (n_gpu_layers > int(n_layer)) {
  1731. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1732. // on Windows however this is detrimental unless everything is on the GPU
  1733. #ifndef _WIN32
  1734. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1735. #else
  1736. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1737. #endif // _WIN32
  1738. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1739. } else {
  1740. backend_norm = GGML_BACKEND_CPU;
  1741. backend_output = GGML_BACKEND_CPU;
  1742. }
  1743. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1744. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1745. if (backend_norm == GGML_BACKEND_GPU) {
  1746. vram_weights += ggml_nbytes(model.output_norm);
  1747. }
  1748. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1749. vram_weights += ggml_nbytes(model.output);
  1750. }
  1751. }
  1752. const uint32_t n_ff = hparams.n_ff;
  1753. const int i_gpu_start = n_layer - n_gpu_layers;
  1754. model.layers.resize(n_layer);
  1755. for (uint32_t i = 0; i < n_layer; ++i) {
  1756. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1757. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1758. auto & layer = model.layers[i];
  1759. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1760. layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
  1761. layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1762. layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
  1763. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1764. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  1765. layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
  1766. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1767. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1768. if (backend == GGML_BACKEND_GPU) {
  1769. vram_weights +=
  1770. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  1771. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
  1772. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1773. }
  1774. }
  1775. } break;
  1776. case LLM_ARCH_FALCON:
  1777. {
  1778. // TODO: CPU-only for now
  1779. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1780. // output
  1781. {
  1782. ggml_backend backend_norm;
  1783. ggml_backend backend_output;
  1784. if (n_gpu_layers > int(n_layer)) {
  1785. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1786. // on Windows however this is detrimental unless everything is on the GPU
  1787. #ifndef _WIN32
  1788. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1789. #else
  1790. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1791. #endif // _WIN32
  1792. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1793. } else {
  1794. backend_norm = GGML_BACKEND_CPU;
  1795. backend_output = GGML_BACKEND_CPU;
  1796. }
  1797. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1798. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  1799. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1800. if (backend_norm == GGML_BACKEND_GPU) {
  1801. vram_weights += ggml_nbytes(model.output_norm);
  1802. vram_weights += ggml_nbytes(model.output_norm_b);
  1803. }
  1804. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1805. vram_weights += ggml_nbytes(model.output);
  1806. }
  1807. }
  1808. const uint32_t n_ff = hparams.n_ff;
  1809. const int i_gpu_start = n_layer - n_gpu_layers;
  1810. model.layers.resize(n_layer);
  1811. for (uint32_t i = 0; i < n_layer; ++i) {
  1812. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1813. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1814. auto & layer = model.layers[i];
  1815. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1816. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  1817. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  1818. layer.attn_norm_2 = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, backend);
  1819. layer.attn_norm_2_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, backend);
  1820. if (backend == GGML_BACKEND_GPU) {
  1821. vram_weights += ggml_nbytes(layer.attn_norm_2);
  1822. vram_weights += ggml_nbytes(layer.attn_norm_2_b);
  1823. }
  1824. }
  1825. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  1826. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1827. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
  1828. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1829. if (backend == GGML_BACKEND_GPU) {
  1830. vram_weights +=
  1831. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  1832. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.wo) +
  1833. ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  1834. }
  1835. }
  1836. } break;
  1837. case LLM_ARCH_STARCODER:
  1838. {
  1839. model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
  1840. model.pos_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, GGML_BACKEND_CPU);
  1841. // output
  1842. {
  1843. ggml_backend backend_norm;
  1844. ggml_backend backend_output;
  1845. if (n_gpu_layers > int(n_layer)) {
  1846. // norm is not performance relevant on its own but keeping it in VRAM reduces data copying
  1847. // on Windows however this is detrimental unless everything is on the GPU
  1848. #ifndef _WIN32
  1849. backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1850. #else
  1851. backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  1852. #endif // _WIN32
  1853. backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
  1854. } else {
  1855. backend_norm = GGML_BACKEND_CPU;
  1856. backend_output = GGML_BACKEND_CPU;
  1857. }
  1858. model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
  1859. model.output_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, backend_norm);
  1860. model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
  1861. if (backend_norm == GGML_BACKEND_GPU) {
  1862. vram_weights += ggml_nbytes(model.output_norm);
  1863. vram_weights += ggml_nbytes(model.output_norm_b);
  1864. }
  1865. if (backend_output == GGML_BACKEND_GPU_SPLIT) {
  1866. vram_weights += ggml_nbytes(model.output);
  1867. }
  1868. }
  1869. const uint32_t n_ff = hparams.n_ff;
  1870. const int i_gpu_start = n_layer - n_gpu_layers;
  1871. model.layers.resize(n_layer);
  1872. for (uint32_t i = 0; i < n_layer; ++i) {
  1873. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
  1874. const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
  1875. auto & layer = model.layers[i];
  1876. layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
  1877. layer.attn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, backend);
  1878. layer.wqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, backend_split);
  1879. layer.bqkv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, backend_split);
  1880. layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
  1881. layer.bo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, backend_split);
  1882. layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
  1883. layer.ffn_norm_b = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, backend);
  1884. layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, backend_split);
  1885. layer.b2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, backend_split);
  1886. layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
  1887. layer.b3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, backend_split);
  1888. if (backend == GGML_BACKEND_GPU) {
  1889. vram_weights +=
  1890. ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.attn_norm_b) +
  1891. ggml_nbytes(layer.wqkv) + ggml_nbytes(layer.bqkv) +
  1892. ggml_nbytes(layer.wo) + ggml_nbytes(layer.bo) +
  1893. ggml_nbytes(layer.ffn_norm) + ggml_nbytes(layer.ffn_norm_b) +
  1894. ggml_nbytes(layer.w2) + ggml_nbytes(layer.b2) +
  1895. ggml_nbytes(layer.w3) + ggml_nbytes(layer.b3);
  1896. }
  1897. }
  1898. } break;
  1899. default:
  1900. throw std::runtime_error("unknown architecture");
  1901. };
  1902. }
  1903. ml.done_getting_tensors();
  1904. // print memory requirements
  1905. {
  1906. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  1907. // this is the total memory required to run the inference
  1908. size_t mem_required =
  1909. ctx_size +
  1910. mmapped_size - vram_weights; // weights in VRAM not in memory
  1911. // this is the memory required by one llama_state
  1912. const size_t mem_required_state = scale*hparams.kv_size();
  1913. LLAMA_LOG_INFO("%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  1914. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  1915. (void) n_batch;
  1916. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1917. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  1918. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  1919. if (n_gpu_layers > (int) hparams.n_layer) {
  1920. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  1921. }
  1922. size_t vram_kv_cache = 0;
  1923. #ifdef GGML_USE_CUBLAS
  1924. const int max_backend_supported_layers = hparams.n_layer + 3;
  1925. const int max_offloadable_layers = low_vram ? hparams.n_layer + 1 : hparams.n_layer + 3;
  1926. if (n_gpu_layers > (int) hparams.n_layer + 1) {
  1927. if (low_vram) {
  1928. LLAMA_LOG_INFO("%s: cannot offload v cache to GPU due to low VRAM option\n", __func__);
  1929. } else {
  1930. LLAMA_LOG_INFO("%s: offloading v cache to GPU\n", __func__);
  1931. vram_kv_cache += hparams.kv_size() / 2;
  1932. }
  1933. }
  1934. if (n_gpu_layers > (int) hparams.n_layer + 2) {
  1935. if (low_vram) {
  1936. LLAMA_LOG_WARN("%s: cannot offload k cache to GPU due to low VRAM option\n", __func__);
  1937. } else {
  1938. LLAMA_LOG_INFO("%s: offloading k cache to GPU\n", __func__);
  1939. vram_kv_cache += hparams.kv_size() / 2;
  1940. }
  1941. }
  1942. #elif defined(GGML_USE_CLBLAST)
  1943. const int max_backend_supported_layers = hparams.n_layer + 1;
  1944. const int max_offloadable_layers = hparams.n_layer + 1;
  1945. #endif // GGML_USE_CUBLAS
  1946. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n",
  1947. __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  1948. LLAMA_LOG_INFO("%s: VRAM used: %zu MB\n",
  1949. __func__, (vram_weights + vram_kv_cache + MB - 1) / MB); // round up
  1950. #else
  1951. (void) n_gpu_layers;
  1952. #endif // defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  1953. }
  1954. // populate `tensors_by_name`
  1955. for (int i = 0; i < ml.n_tensors; ++i) {
  1956. struct ggml_tensor * cur = ggml_get_tensor(ctx, ml.get_tensor_name(i));
  1957. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  1958. }
  1959. (void) tensor_split;
  1960. #if defined(GGML_USE_CUBLAS)
  1961. {
  1962. ggml_cuda_set_tensor_split(tensor_split);
  1963. }
  1964. #endif
  1965. ml.load_all_data(ctx, progress_callback, progress_callback_user_data, use_mlock ? &model.mlock_mmap : NULL);
  1966. if (progress_callback) {
  1967. progress_callback(1.0f, progress_callback_user_data);
  1968. }
  1969. model.mapping = std::move(ml.mapping);
  1970. // loading time will be recalculate after the first eval, so
  1971. // we take page faults deferred by mmap() into consideration
  1972. model.t_load_us = ggml_time_us() - model.t_start_us;
  1973. }
  1974. static bool llama_model_load(
  1975. const std::string & fname,
  1976. llama_model & model,
  1977. int n_ctx,
  1978. int n_batch,
  1979. int n_gpu_layers,
  1980. int main_gpu,
  1981. const float * tensor_split,
  1982. const bool mul_mat_q,
  1983. float rope_freq_base,
  1984. float rope_freq_scale,
  1985. bool low_vram,
  1986. ggml_type memory_type,
  1987. bool use_mmap,
  1988. bool use_mlock,
  1989. bool vocab_only,
  1990. llama_progress_callback progress_callback,
  1991. void *progress_callback_user_data) {
  1992. try {
  1993. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap));
  1994. llm_load_arch (*ml, model);
  1995. llm_load_hparams(*ml, model, n_ctx, rope_freq_base, rope_freq_scale);
  1996. llm_load_vocab (*ml, model);
  1997. llm_load_print_meta(*ml, model);
  1998. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  1999. throw std::runtime_error("vocab size mismatch");
  2000. }
  2001. if (vocab_only) {
  2002. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  2003. return true;
  2004. }
  2005. llm_load_tensors(
  2006. *ml, model, n_batch, n_gpu_layers,
  2007. main_gpu, tensor_split, mul_mat_q, low_vram, memory_type,
  2008. use_mlock, progress_callback, progress_callback_user_data);
  2009. } catch (const std::exception & err) {
  2010. LLAMA_LOG_ERROR("error loading model: %s\n", err.what());
  2011. return false;
  2012. }
  2013. return true;
  2014. }
  2015. static struct ggml_cgraph * llm_build_llama(
  2016. llama_context & lctx,
  2017. const llama_token * tokens,
  2018. const float * embd,
  2019. int n_tokens,
  2020. int n_past) {
  2021. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2022. const int N = n_tokens;
  2023. const auto & model = lctx.model;
  2024. const auto & hparams = model.hparams;
  2025. const auto & kv_self = lctx.kv_self;
  2026. GGML_ASSERT(!!kv_self.ctx);
  2027. const int64_t n_embd = hparams.n_embd;
  2028. const int64_t n_layer = hparams.n_layer;
  2029. const int64_t n_ctx = hparams.n_ctx;
  2030. const int64_t n_head = hparams.n_head;
  2031. const int64_t n_head_kv = hparams.n_head_kv;
  2032. const int64_t n_embd_head = hparams.n_embd_head();
  2033. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2034. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2035. const float freq_base = hparams.rope_freq_base;
  2036. const float freq_scale = hparams.rope_freq_scale;
  2037. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2038. const int n_gpu_layers = model.n_gpu_layers;
  2039. auto & buf_compute = lctx.buf_compute;
  2040. struct ggml_init_params params = {
  2041. /*.mem_size =*/ buf_compute.size,
  2042. /*.mem_buffer =*/ buf_compute.data,
  2043. /*.no_alloc =*/ false,
  2044. };
  2045. params.no_alloc = true;
  2046. struct ggml_context * ctx0 = ggml_init(params);
  2047. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2048. struct ggml_tensor * cur;
  2049. struct ggml_tensor * inpL;
  2050. if (tokens) {
  2051. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2052. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2053. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2054. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2055. }
  2056. ggml_set_name(inp_tokens, "inp_tokens");
  2057. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2058. } else {
  2059. #ifdef GGML_USE_MPI
  2060. GGML_ASSERT(false && "not implemented");
  2061. #endif
  2062. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2063. ggml_allocr_alloc(lctx.alloc, inpL);
  2064. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2065. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  2066. }
  2067. }
  2068. const int i_gpu_start = n_layer - n_gpu_layers;
  2069. (void) i_gpu_start;
  2070. // offload functions set the tensor output backend to GPU
  2071. // tensors are GPU-accelerated if any input or the output has been offloaded
  2072. //
  2073. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  2074. // in that case ggml_cuda_assign_buffers has no effect
  2075. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2076. offload_func_t offload_func_kq = llama_nop;
  2077. offload_func_t offload_func_v = llama_nop;
  2078. #ifdef GGML_USE_CUBLAS
  2079. if (n_gpu_layers > n_layer) {
  2080. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2081. }
  2082. if (n_gpu_layers > n_layer + 1) {
  2083. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2084. }
  2085. if (n_gpu_layers > n_layer + 2) {
  2086. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2087. }
  2088. #endif // GGML_USE_CUBLAS
  2089. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2090. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2091. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2092. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2093. }
  2094. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2095. for (int il = 0; il < n_layer; ++il) {
  2096. ggml_format_name(inpL, "layer_inp_%d", il);
  2097. offload_func_t offload_func = llama_nop;
  2098. #ifdef GGML_USE_CUBLAS
  2099. if (il >= i_gpu_start) {
  2100. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2101. }
  2102. #endif // GGML_USE_CUBLAS
  2103. struct ggml_tensor * inpSA = inpL;
  2104. // norm
  2105. {
  2106. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2107. offload_func(cur);
  2108. ggml_set_name(cur, "rms_norm_0");
  2109. // cur = cur*attn_norm(broadcasted)
  2110. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2111. offload_func(cur);
  2112. ggml_set_name(cur, "attention_norm_0");
  2113. }
  2114. // self-attention
  2115. {
  2116. // compute Q and K and RoPE them
  2117. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2118. offload_func_kq(tmpk);
  2119. ggml_set_name(tmpk, "tmpk");
  2120. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2121. offload_func_kq(tmpq);
  2122. ggml_set_name(tmpq, "tmpq");
  2123. struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2124. offload_func_kq(Kcur);
  2125. ggml_set_name(Kcur, "Kcur");
  2126. struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2127. offload_func_kq(Qcur);
  2128. ggml_set_name(Qcur, "Qcur");
  2129. // store key and value to memory
  2130. {
  2131. // compute the transposed [N, n_embd] V matrix
  2132. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2133. offload_func_v(tmpv);
  2134. ggml_set_name(tmpv, "tmpv");
  2135. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
  2136. offload_func_v(Vcur);
  2137. ggml_set_name(Vcur, "Vcur");
  2138. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2139. offload_func_kq(k);
  2140. ggml_set_name(k, "k");
  2141. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2142. ( n_ctx)*ggml_element_size(kv_self.v),
  2143. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2144. offload_func_v(v);
  2145. ggml_set_name(v, "v");
  2146. // important: storing RoPE-ed version of K in the KV cache!
  2147. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2148. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2149. }
  2150. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2151. offload_func_kq(Q);
  2152. ggml_set_name(Q, "Q");
  2153. struct ggml_tensor * K =
  2154. ggml_view_3d(ctx0, kv_self.k,
  2155. n_embd_head, n_past + N, n_head_kv,
  2156. ggml_element_size(kv_self.k)*n_embd_gqa,
  2157. ggml_element_size(kv_self.k)*n_embd_head,
  2158. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2159. offload_func_kq(K);
  2160. ggml_set_name(K, "K");
  2161. // K * Q
  2162. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2163. offload_func_kq(KQ);
  2164. ggml_set_name(KQ, "KQ");
  2165. // KQ_scaled = KQ / sqrt(n_embd_head)
  2166. // KQ_scaled shape [n_past + N, N, n_head, 1]
  2167. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2168. offload_func_kq(KQ_scaled);
  2169. ggml_set_name(KQ_scaled, "KQ_scaled");
  2170. // KQ_masked = mask_past(KQ_scaled)
  2171. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2172. offload_func_kq(KQ_masked);
  2173. ggml_set_name(KQ_masked, "KQ_masked");
  2174. // KQ = soft_max(KQ_masked)
  2175. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2176. offload_func_v(KQ_soft_max);
  2177. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2178. // split cached V into n_head heads
  2179. struct ggml_tensor * V =
  2180. ggml_view_3d(ctx0, kv_self.v,
  2181. n_past + N, n_embd_head, n_head_kv,
  2182. ggml_element_size(kv_self.v)*n_ctx,
  2183. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2184. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2185. offload_func_v(V);
  2186. ggml_set_name(V, "V");
  2187. #if 1
  2188. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2189. offload_func_v(KQV);
  2190. ggml_set_name(KQV, "KQV");
  2191. #else
  2192. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2193. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2194. // is there a better way?
  2195. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
  2196. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2197. #endif
  2198. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2199. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2200. offload_func_v(KQV_merged);
  2201. ggml_set_name(KQV_merged, "KQV_merged");
  2202. // cur = KQV_merged.contiguous().view(n_embd, N)
  2203. cur = ggml_cpy(ctx0,
  2204. KQV_merged,
  2205. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2206. offload_func_v(cur);
  2207. ggml_set_name(cur, "KQV_merged_contiguous");
  2208. // projection (no bias)
  2209. cur = ggml_mul_mat(ctx0,
  2210. model.layers[il].wo,
  2211. cur);
  2212. offload_func(cur);
  2213. ggml_set_name(cur, "result_wo");
  2214. }
  2215. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2216. offload_func(inpFF);
  2217. ggml_set_name(inpFF, "inpFF");
  2218. // feed-forward network
  2219. {
  2220. // norm
  2221. {
  2222. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2223. offload_func(cur);
  2224. ggml_set_name(cur, "rms_norm_1");
  2225. // cur = cur*ffn_norm(broadcasted)
  2226. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2227. offload_func(cur);
  2228. ggml_set_name(cur, "ffn_norm");
  2229. }
  2230. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2231. model.layers[il].w3,
  2232. cur);
  2233. offload_func(tmp);
  2234. ggml_set_name(tmp, "result_w3");
  2235. cur = ggml_mul_mat(ctx0,
  2236. model.layers[il].w1,
  2237. cur);
  2238. offload_func(cur);
  2239. ggml_set_name(cur, "result_w1");
  2240. // SILU activation
  2241. cur = ggml_silu(ctx0, cur);
  2242. offload_func(cur);
  2243. ggml_set_name(cur, "silu");
  2244. cur = ggml_mul(ctx0, cur, tmp);
  2245. offload_func(cur);
  2246. ggml_set_name(cur, "silu_x_result_w3");
  2247. cur = ggml_mul_mat(ctx0,
  2248. model.layers[il].w2,
  2249. cur);
  2250. offload_func(cur);
  2251. ggml_set_name(cur, "result_w2");
  2252. }
  2253. cur = ggml_add(ctx0, cur, inpFF);
  2254. offload_func(cur);
  2255. ggml_set_name(cur, "inpFF_+_result_w2");
  2256. // input for next layer
  2257. inpL = cur;
  2258. }
  2259. cur = inpL;
  2260. // norm
  2261. {
  2262. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2263. offload_func_nr(cur);
  2264. ggml_set_name(cur, "rms_norm_2");
  2265. // cur = cur*norm(broadcasted)
  2266. cur = ggml_mul(ctx0, cur, model.output_norm);
  2267. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2268. ggml_set_name(cur, "result_norm");
  2269. }
  2270. // lm_head
  2271. cur = ggml_mul_mat(ctx0, model.output, cur);
  2272. ggml_set_name(cur, "result_output");
  2273. ggml_build_forward_expand(gf, cur);
  2274. ggml_free(ctx0);
  2275. return gf;
  2276. }
  2277. static struct ggml_cgraph * llm_build_baichaun(
  2278. llama_context & lctx,
  2279. const llama_token * tokens,
  2280. const float * embd,
  2281. int n_tokens,
  2282. int n_past) {
  2283. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2284. const int N = n_tokens;
  2285. const auto & model = lctx.model;
  2286. const auto & hparams = model.hparams;
  2287. const auto & kv_self = lctx.kv_self;
  2288. GGML_ASSERT(!!kv_self.ctx);
  2289. const int64_t n_embd = hparams.n_embd;
  2290. const int64_t n_layer = hparams.n_layer;
  2291. const int64_t n_ctx = hparams.n_ctx;
  2292. const int64_t n_head = hparams.n_head;
  2293. const int64_t n_head_kv = hparams.n_head_kv;
  2294. const int64_t n_embd_head = hparams.n_embd_head();
  2295. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2296. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2297. const float freq_base = hparams.rope_freq_base;
  2298. const float freq_scale = hparams.rope_freq_scale;
  2299. const float norm_rms_eps = hparams.f_norm_rms_eps;
  2300. const int n_gpu_layers = model.n_gpu_layers;
  2301. auto & buf_compute = lctx.buf_compute;
  2302. struct ggml_init_params params = {
  2303. /*.mem_size =*/ buf_compute.size,
  2304. /*.mem_buffer =*/ buf_compute.data,
  2305. /*.no_alloc =*/ false,
  2306. };
  2307. params.no_alloc = true;
  2308. struct ggml_context * ctx0 = ggml_init(params);
  2309. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2310. struct ggml_tensor * cur;
  2311. struct ggml_tensor * inpL;
  2312. if (tokens) {
  2313. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2314. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2315. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2316. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2317. }
  2318. ggml_set_name(inp_tokens, "inp_tokens");
  2319. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2320. } else {
  2321. #ifdef GGML_USE_MPI
  2322. GGML_ASSERT(false && "not implemented");
  2323. #endif
  2324. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2325. ggml_allocr_alloc(lctx.alloc, inpL);
  2326. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2327. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  2328. }
  2329. }
  2330. const int i_gpu_start = n_layer - n_gpu_layers;
  2331. (void) i_gpu_start;
  2332. // offload functions set the tensor output backend to GPU
  2333. // tensors are GPU-accelerated if any input or the output has been offloaded
  2334. //
  2335. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  2336. // in that case ggml_cuda_assign_buffers has no effect
  2337. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2338. offload_func_t offload_func_kq = llama_nop;
  2339. offload_func_t offload_func_v = llama_nop;
  2340. #ifdef GGML_USE_CUBLAS
  2341. if (n_gpu_layers > n_layer) {
  2342. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2343. }
  2344. if (n_gpu_layers > n_layer + 1) {
  2345. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2346. }
  2347. if (n_gpu_layers > n_layer + 2) {
  2348. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2349. }
  2350. #endif // GGML_USE_CUBLAS
  2351. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2352. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2353. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2354. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2355. }
  2356. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2357. for (int il = 0; il < n_layer; ++il) {
  2358. ggml_format_name(inpL, "layer_inp_%d", il);
  2359. offload_func_t offload_func = llama_nop;
  2360. #ifdef GGML_USE_CUBLAS
  2361. if (il >= i_gpu_start) {
  2362. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2363. }
  2364. #endif // GGML_USE_CUBLAS
  2365. struct ggml_tensor * inpSA = inpL;
  2366. // norm
  2367. {
  2368. cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
  2369. offload_func(cur);
  2370. ggml_set_name(cur, "rms_norm_0");
  2371. // cur = cur*attn_norm(broadcasted)
  2372. cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
  2373. offload_func(cur);
  2374. ggml_set_name(cur, "attention_norm_0");
  2375. }
  2376. // self-attention
  2377. {
  2378. // compute Q and K and RoPE them
  2379. struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  2380. offload_func_kq(tmpk);
  2381. ggml_set_name(tmpk, "tmpk");
  2382. struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  2383. offload_func_kq(tmpq);
  2384. ggml_set_name(tmpq, "tmpq");
  2385. struct ggml_tensor * Kcur;
  2386. struct ggml_tensor * Qcur;
  2387. switch (model.type) {
  2388. case MODEL_7B:
  2389. Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2390. Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
  2391. break;
  2392. case MODEL_13B:
  2393. Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N);
  2394. Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N);
  2395. break;
  2396. default:
  2397. GGML_ASSERT(false);
  2398. }
  2399. offload_func_kq(Kcur);
  2400. ggml_set_name(Kcur, "Kcur");
  2401. offload_func_kq(Qcur);
  2402. ggml_set_name(Qcur, "Qcur");
  2403. // store key and value to memory
  2404. {
  2405. // compute the transposed [N, n_embd] V matrix
  2406. struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  2407. offload_func_v(tmpv);
  2408. ggml_set_name(tmpv, "tmpv");
  2409. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
  2410. offload_func_v(Vcur);
  2411. ggml_set_name(Vcur, "Vcur");
  2412. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2413. offload_func_kq(k);
  2414. ggml_set_name(k, "k");
  2415. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2416. ( n_ctx)*ggml_element_size(kv_self.v),
  2417. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2418. offload_func_v(v);
  2419. ggml_set_name(v, "v");
  2420. // important: storing RoPE-ed version of K in the KV cache!
  2421. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2422. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2423. }
  2424. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2425. offload_func_kq(Q);
  2426. ggml_set_name(Q, "Q");
  2427. struct ggml_tensor * K =
  2428. ggml_view_3d(ctx0, kv_self.k,
  2429. n_embd_head, n_past + N, n_head_kv,
  2430. ggml_element_size(kv_self.k)*n_embd_gqa,
  2431. ggml_element_size(kv_self.k)*n_embd_head,
  2432. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2433. offload_func_kq(K);
  2434. ggml_set_name(K, "K");
  2435. // K * Q
  2436. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2437. offload_func_kq(KQ);
  2438. ggml_set_name(KQ, "KQ");
  2439. // KQ_scaled = KQ / sqrt(n_embd_head)
  2440. // KQ_scaled shape [n_past + N, N, n_head, 1]
  2441. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2442. offload_func_kq(KQ_scaled);
  2443. ggml_set_name(KQ_scaled, "KQ_scaled");
  2444. struct ggml_tensor * KQ_masked;
  2445. struct ggml_tensor * KQ_scaled_alibi;
  2446. switch (model.type) {
  2447. case MODEL_7B:
  2448. KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2449. break;
  2450. case MODEL_13B:
  2451. KQ_scaled_alibi =ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8);
  2452. ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
  2453. KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
  2454. break;
  2455. default:
  2456. GGML_ASSERT(false);
  2457. }
  2458. // KQ_masked = mask_past(KQ_scaled)
  2459. // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2460. // struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
  2461. // offload_func_kq(KQ_masked);
  2462. // ggml_set_name(KQ_masked, "KQ_masked");
  2463. // KQ = soft_max(KQ_masked)
  2464. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2465. offload_func_v(KQ_soft_max);
  2466. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2467. // split cached V into n_head heads
  2468. struct ggml_tensor * V =
  2469. ggml_view_3d(ctx0, kv_self.v,
  2470. n_past + N, n_embd_head, n_head_kv,
  2471. ggml_element_size(kv_self.v)*n_ctx,
  2472. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2473. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2474. offload_func_v(V);
  2475. ggml_set_name(V, "V");
  2476. #if 1
  2477. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2478. offload_func_v(KQV);
  2479. ggml_set_name(KQV, "KQV");
  2480. #else
  2481. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  2482. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  2483. // is there a better way?
  2484. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
  2485. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  2486. #endif
  2487. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2488. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2489. offload_func_v(KQV_merged);
  2490. ggml_set_name(KQV_merged, "KQV_merged");
  2491. // cur = KQV_merged.contiguous().view(n_embd, N)
  2492. cur = ggml_cpy(ctx0,
  2493. KQV_merged,
  2494. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2495. offload_func_v(cur);
  2496. ggml_set_name(cur, "KQV_merged_contiguous");
  2497. // projection (no bias)
  2498. cur = ggml_mul_mat(ctx0,
  2499. model.layers[il].wo,
  2500. cur);
  2501. offload_func(cur);
  2502. ggml_set_name(cur, "result_wo");
  2503. }
  2504. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  2505. offload_func(inpFF);
  2506. ggml_set_name(inpFF, "inpFF");
  2507. // feed-forward network
  2508. {
  2509. // norm
  2510. {
  2511. cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
  2512. offload_func(cur);
  2513. ggml_set_name(cur, "rms_norm_1");
  2514. // cur = cur*ffn_norm(broadcasted)
  2515. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  2516. offload_func(cur);
  2517. ggml_set_name(cur, "ffn_norm");
  2518. }
  2519. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  2520. model.layers[il].w3,
  2521. cur);
  2522. offload_func(tmp);
  2523. ggml_set_name(tmp, "result_w3");
  2524. cur = ggml_mul_mat(ctx0,
  2525. model.layers[il].w1,
  2526. cur);
  2527. offload_func(cur);
  2528. ggml_set_name(cur, "result_w1");
  2529. // SILU activation
  2530. cur = ggml_silu(ctx0, cur);
  2531. offload_func(cur);
  2532. ggml_set_name(cur, "silu");
  2533. cur = ggml_mul(ctx0, cur, tmp);
  2534. offload_func(cur);
  2535. ggml_set_name(cur, "silu_x_result_w3");
  2536. cur = ggml_mul_mat(ctx0,
  2537. model.layers[il].w2,
  2538. cur);
  2539. offload_func(cur);
  2540. ggml_set_name(cur, "result_w2");
  2541. }
  2542. cur = ggml_add(ctx0, cur, inpFF);
  2543. offload_func(cur);
  2544. ggml_set_name(cur, "inpFF_+_result_w2");
  2545. // input for next layer
  2546. inpL = cur;
  2547. }
  2548. cur = inpL;
  2549. // norm
  2550. {
  2551. cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
  2552. offload_func_nr(cur);
  2553. ggml_set_name(cur, "rms_norm_2");
  2554. // cur = cur*norm(broadcasted)
  2555. cur = ggml_mul(ctx0, cur, model.output_norm);
  2556. // offload_func_nr(cur); // TODO CPU + GPU mirrored backend
  2557. ggml_set_name(cur, "result_norm");
  2558. }
  2559. // lm_head
  2560. cur = ggml_mul_mat(ctx0, model.output, cur);
  2561. ggml_set_name(cur, "result_output");
  2562. ggml_build_forward_expand(gf, cur);
  2563. ggml_free(ctx0);
  2564. return gf;
  2565. }
  2566. static struct ggml_cgraph * llm_build_falcon(
  2567. llama_context & lctx,
  2568. const llama_token * tokens,
  2569. const float * embd,
  2570. int n_tokens,
  2571. int n_past) {
  2572. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2573. const int N = n_tokens;
  2574. const auto & model = lctx.model;
  2575. const auto & hparams = model.hparams;
  2576. const auto & kv_self = lctx.kv_self;
  2577. GGML_ASSERT(!!kv_self.ctx);
  2578. const int64_t n_embd = hparams.n_embd;
  2579. const int64_t n_layer = hparams.n_layer;
  2580. const int64_t n_ctx = hparams.n_ctx;
  2581. const int64_t n_head = hparams.n_head;
  2582. const int64_t n_head_kv = hparams.n_head_kv;
  2583. const int64_t n_embd_head = hparams.n_embd_head();
  2584. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2585. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2586. const float freq_base = hparams.rope_freq_base;
  2587. const float freq_scale = hparams.rope_freq_scale;
  2588. const float norm_eps = hparams.f_norm_eps;
  2589. const int n_gpu_layers = model.n_gpu_layers;
  2590. auto & buf_compute = lctx.buf_compute;
  2591. struct ggml_init_params params = {
  2592. /*.mem_size =*/ buf_compute.size,
  2593. /*.mem_buffer =*/ buf_compute.data,
  2594. /*.no_alloc =*/ false,
  2595. };
  2596. params.no_alloc = true;
  2597. struct ggml_context * ctx0 = ggml_init(params);
  2598. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2599. struct ggml_tensor * cur;
  2600. struct ggml_tensor * inpL;
  2601. if (tokens) {
  2602. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2603. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2604. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2605. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2606. }
  2607. ggml_set_name(inp_tokens, "inp_tokens");
  2608. inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2609. } else {
  2610. #ifdef GGML_USE_MPI
  2611. GGML_ASSERT(false && "not implemented");
  2612. #endif
  2613. inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2614. ggml_allocr_alloc(lctx.alloc, inpL);
  2615. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2616. memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
  2617. }
  2618. }
  2619. const int i_gpu_start = n_layer - n_gpu_layers;
  2620. (void) i_gpu_start;
  2621. // offload functions set the tensor output backend to GPU
  2622. // tensors are GPU-accelerated if any input or the output has been offloaded
  2623. //
  2624. // with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
  2625. // in that case ggml_cuda_assign_buffers has no effect
  2626. offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
  2627. offload_func_t offload_func_kq = llama_nop;
  2628. offload_func_t offload_func_v = llama_nop;
  2629. #ifdef GGML_USE_CUBLAS
  2630. if (n_gpu_layers > n_layer) {
  2631. offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
  2632. }
  2633. if (n_gpu_layers > n_layer + 1) {
  2634. offload_func_v = ggml_cuda_assign_buffers_no_alloc;
  2635. }
  2636. if (n_gpu_layers > n_layer + 2) {
  2637. offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
  2638. }
  2639. #endif // GGML_USE_CUBLAS
  2640. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2641. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2642. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2643. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2644. }
  2645. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2646. for (int il = 0; il < n_layer; ++il) {
  2647. struct ggml_tensor * attn_norm;
  2648. offload_func_t offload_func = llama_nop;
  2649. #ifdef GGML_USE_CUBLAS
  2650. if (il >= i_gpu_start) {
  2651. offload_func = ggml_cuda_assign_buffers_no_alloc;
  2652. }
  2653. #endif // GGML_USE_CUBLAS
  2654. // self-attention
  2655. // TODO: refactor into common function (shared with LLaMA)
  2656. {
  2657. attn_norm = ggml_norm(ctx0, inpL, norm_eps);
  2658. offload_func(attn_norm);
  2659. attn_norm = ggml_add(ctx0,
  2660. ggml_mul(ctx0, attn_norm, model.layers[il].attn_norm),
  2661. model.layers[il].attn_norm_b);
  2662. offload_func(attn_norm->src[0]);
  2663. offload_func(attn_norm);
  2664. if (model.layers[il].attn_norm_2) { // Falcon-40B
  2665. cur = ggml_norm(ctx0, inpL, norm_eps);
  2666. offload_func(cur);
  2667. cur = ggml_add(ctx0,
  2668. ggml_mul(ctx0, cur, model.layers[il].attn_norm_2),
  2669. model.layers[il].attn_norm_2_b);
  2670. offload_func(cur->src[0]);
  2671. offload_func(cur);
  2672. } else { // Falcon 7B
  2673. cur = attn_norm;
  2674. }
  2675. // compute QKV
  2676. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  2677. offload_func_kq(cur);
  2678. // Note that the strides for Kcur, Vcur are set up so that the
  2679. // resulting views are misaligned with the tensor's storage
  2680. // (by applying the K/V offset we shift the tensor's original
  2681. // view to stick out behind the viewed QKV tensor's allocated
  2682. // memory, so to say). This is ok because no actual accesses
  2683. // happen to that out-of-range memory, but it can require some
  2684. // trickery when trying to accurately dump these views for
  2685. // debugging.
  2686. const size_t wsize = ggml_type_size(cur->type);
  2687. // TODO: these 2 ggml_conts are technically not needed, but we add them until CUDA support for
  2688. // non-contiguous views is added for the rope operator
  2689. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_3d(
  2690. ctx0, cur, n_embd_head, n_head, N,
  2691. wsize * n_embd_head,
  2692. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2693. 0));
  2694. offload_func_kq(tmpq);
  2695. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_3d(
  2696. ctx0, cur, n_embd_head, n_head_kv, N,
  2697. wsize * n_embd_head,
  2698. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2699. wsize * n_embd_head * n_head));
  2700. offload_func_kq(tmpk);
  2701. struct ggml_tensor * tmpv = ggml_view_3d(
  2702. ctx0, cur, n_embd_head, n_head_kv, N,
  2703. wsize * n_embd_head,
  2704. wsize * n_embd_head * (n_head + 2 * n_head_kv),
  2705. wsize * n_embd_head * (n_head + n_head_kv));
  2706. offload_func_v(tmpv);
  2707. // using mode = 2 for neox mode
  2708. struct ggml_tensor * Qcur = ggml_rope_custom_inplace(ctx0, tmpq, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
  2709. offload_func_kq(Qcur);
  2710. struct ggml_tensor * Kcur = ggml_rope_custom_inplace(ctx0, tmpk, n_past, n_embd_head, 2, 0, freq_base, freq_scale);
  2711. offload_func_kq(Kcur);
  2712. {
  2713. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
  2714. offload_func_v(Vcur);
  2715. offload_func_v(Vcur->src[0]->src[0]);
  2716. ggml_set_name(Vcur, "Vcur");
  2717. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2718. offload_func_kq(k);
  2719. ggml_set_name(k, "k");
  2720. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2721. ( n_ctx)*ggml_element_size(kv_self.v),
  2722. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2723. offload_func_v(v);
  2724. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2725. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2726. }
  2727. struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  2728. offload_func_kq(Q);
  2729. ggml_set_name(Q, "Q");
  2730. struct ggml_tensor * K =
  2731. ggml_view_3d(ctx0, kv_self.k,
  2732. n_embd_head, n_past + N, n_head_kv,
  2733. ggml_element_size(kv_self.k)*n_embd_gqa,
  2734. ggml_element_size(kv_self.k)*n_embd_head,
  2735. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2736. offload_func_kq(K);
  2737. ggml_set_name(K, "K");
  2738. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2739. offload_func_kq(KQ);
  2740. ggml_set_name(KQ, "KQ");
  2741. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2742. offload_func_kq(KQ_scaled);
  2743. ggml_set_name(KQ_scaled, "KQ_scaled");
  2744. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2745. offload_func_kq(KQ_masked);
  2746. ggml_set_name(KQ_masked, "KQ_masked");
  2747. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2748. offload_func_v(KQ_soft_max);
  2749. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2750. struct ggml_tensor * V =
  2751. ggml_view_3d(ctx0, kv_self.v,
  2752. n_past + N, n_embd_head, n_head_kv,
  2753. ggml_element_size(kv_self.v)*n_ctx,
  2754. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2755. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2756. offload_func_v(V);
  2757. ggml_set_name(V, "V");
  2758. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2759. offload_func_v(KQV);
  2760. ggml_set_name(KQV, "KQV");
  2761. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2762. offload_func_v(KQV_merged);
  2763. ggml_set_name(KQV_merged, "KQV_merged");
  2764. cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2765. offload_func_v(cur);
  2766. ggml_set_name(cur, "KQV_merged_contiguous");
  2767. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  2768. offload_func(cur);
  2769. ggml_set_name(cur, "result_wo");
  2770. }
  2771. struct ggml_tensor * attn_out = cur;
  2772. // feed forward
  2773. {
  2774. struct ggml_tensor * inpFF = attn_norm;
  2775. cur = ggml_mul_mat(ctx0, model.layers[il].w3, inpFF);
  2776. offload_func(cur);
  2777. cur = ggml_gelu(ctx0, cur);
  2778. offload_func(cur);
  2779. cur = ggml_mul_mat(ctx0, model.layers[il].w2, cur);
  2780. offload_func(cur);
  2781. }
  2782. cur = ggml_add(ctx0, cur, attn_out);
  2783. offload_func(cur);
  2784. cur = ggml_add(ctx0, cur, inpL);
  2785. offload_func(cur);
  2786. // input for next layer
  2787. inpL = cur;
  2788. }
  2789. cur = inpL;
  2790. // norm
  2791. {
  2792. cur = ggml_norm(ctx0, cur, norm_eps);
  2793. offload_func_nr(cur);
  2794. cur = ggml_add(ctx0,
  2795. ggml_mul(ctx0, cur, model.output_norm),
  2796. model.output_norm_b);
  2797. ggml_set_name(cur, "result_norm");
  2798. }
  2799. cur = ggml_mul_mat(ctx0, model.output, cur);
  2800. ggml_set_name(cur, "result_output");
  2801. ggml_build_forward_expand(gf, cur);
  2802. ggml_free(ctx0);
  2803. return gf;
  2804. }
  2805. static struct ggml_cgraph * llm_build_starcoder(
  2806. llama_context & lctx,
  2807. const llama_token * tokens,
  2808. const float * embd,
  2809. int n_tokens,
  2810. int n_past) {
  2811. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  2812. const int N = n_tokens;
  2813. const auto & model = lctx.model;
  2814. const auto & hparams = model.hparams;
  2815. const auto & kv_self = lctx.kv_self;
  2816. GGML_ASSERT(!!kv_self.ctx);
  2817. const int64_t n_embd = hparams.n_embd;
  2818. const int64_t n_layer = hparams.n_layer;
  2819. const int64_t n_ctx = hparams.n_ctx;
  2820. const int64_t n_head = hparams.n_head;
  2821. const int64_t n_head_kv = hparams.n_head_kv;
  2822. const int64_t n_embd_head = hparams.n_embd_head();
  2823. const int64_t n_embd_gqa = hparams.n_embd_gqa();
  2824. GGML_ASSERT(n_embd_head == hparams.n_rot);
  2825. const float norm_eps = hparams.f_norm_eps;
  2826. auto & buf_compute = lctx.buf_compute;
  2827. struct ggml_init_params params = {
  2828. /*.mem_size =*/ buf_compute.size,
  2829. /*.mem_buffer =*/ buf_compute.data,
  2830. /*.no_alloc =*/ false,
  2831. };
  2832. params.no_alloc = true;
  2833. struct ggml_context * ctx0 = ggml_init(params);
  2834. ggml_cgraph * gf = ggml_new_graph(ctx0);
  2835. struct ggml_tensor * cur;
  2836. struct ggml_tensor * token;
  2837. struct ggml_tensor * position;
  2838. struct ggml_tensor * inpL;
  2839. if (tokens) {
  2840. struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2841. ggml_allocr_alloc(lctx.alloc, inp_tokens);
  2842. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2843. memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
  2844. }
  2845. ggml_set_name(inp_tokens, "inp_tokens");
  2846. token = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
  2847. } else {
  2848. #ifdef GGML_USE_MPI
  2849. GGML_ASSERT(false && "not implemented");
  2850. #endif
  2851. token = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
  2852. ggml_allocr_alloc(lctx.alloc, token);
  2853. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2854. memcpy(token->data, embd, N * n_embd * ggml_element_size(token));
  2855. }
  2856. }
  2857. {
  2858. // Compute position embeddings.
  2859. struct ggml_tensor * inp_positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  2860. ggml_allocr_alloc(lctx.alloc, inp_positions);
  2861. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2862. for (int i = 0; i < N; ++i) {
  2863. ((int32_t *) inp_positions->data)[i] = n_past + i;
  2864. }
  2865. }
  2866. ggml_set_name(inp_positions, "inp_positions");
  2867. position = ggml_get_rows(ctx0, model.pos_embeddings, inp_positions);
  2868. }
  2869. struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
  2870. ggml_allocr_alloc(lctx.alloc, KQ_scale);
  2871. if (!ggml_allocr_is_measure(lctx.alloc)) {
  2872. ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
  2873. }
  2874. ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
  2875. inpL = ggml_add(ctx0, token, position);
  2876. ggml_set_name(inpL, "inpL");
  2877. for (int il = 0; il < n_layer; ++il) {
  2878. {
  2879. // Norm
  2880. cur = ggml_norm(ctx0, inpL, norm_eps);
  2881. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].attn_norm), model.layers[il].attn_norm_b);
  2882. }
  2883. {
  2884. // Self Attention
  2885. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wqkv, cur), model.layers[il].bqkv);
  2886. struct ggml_tensor * tmpq = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
  2887. struct ggml_tensor * tmpk = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*n_embd);
  2888. struct ggml_tensor * tmpv = ggml_view_2d(ctx0, cur, n_embd_gqa, N, cur->nb[1], sizeof(float)*(n_embd + n_embd_gqa));
  2889. struct ggml_tensor * Qcur = tmpq;
  2890. struct ggml_tensor * Kcur = tmpk;
  2891. {
  2892. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_cont(ctx0, tmpv), n_embd_gqa, N));
  2893. ggml_set_name(Vcur, "Vcur");
  2894. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
  2895. ggml_set_name(k, "k");
  2896. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
  2897. ( n_ctx)*ggml_element_size(kv_self.v),
  2898. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
  2899. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
  2900. ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
  2901. }
  2902. struct ggml_tensor * Q =
  2903. ggml_permute(ctx0,
  2904. ggml_cpy(ctx0,
  2905. Qcur,
  2906. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd_head, n_head, N)),
  2907. 0, 2, 1, 3);
  2908. ggml_set_name(Q, "Q");
  2909. struct ggml_tensor * K =
  2910. ggml_view_3d(ctx0, kv_self.k,
  2911. n_embd_head, n_past + N, n_head_kv,
  2912. ggml_element_size(kv_self.k)*n_embd_gqa,
  2913. ggml_element_size(kv_self.k)*n_embd_head,
  2914. ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
  2915. ggml_set_name(K, "K");
  2916. // K * Q
  2917. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  2918. ggml_set_name(KQ, "KQ");
  2919. // KQ_scaled = KQ / sqrt(n_embd_head)
  2920. // KQ_scaled shape [n_past + N, N, n_head, 1]
  2921. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  2922. ggml_set_name(KQ_scaled, "KQ_scaled");
  2923. // KQ_masked = mask_past(KQ_scaled)
  2924. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  2925. ggml_set_name(KQ_masked, "KQ_masked");
  2926. // KQ = soft_max(KQ_masked)
  2927. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  2928. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  2929. // split cached V into n_head heads
  2930. struct ggml_tensor * V =
  2931. ggml_view_3d(ctx0, kv_self.v,
  2932. n_past + N, n_embd_head, n_head_kv,
  2933. ggml_element_size(kv_self.v)*n_ctx,
  2934. ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
  2935. ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
  2936. ggml_set_name(V, "V");
  2937. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  2938. ggml_set_name(KQV, "KQV");
  2939. // KQV_merged = KQV.permute(0, 2, 1, 3)
  2940. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  2941. ggml_set_name(KQV_merged, "KQV_merged");
  2942. // cur = KQV_merged.contiguous().view(n_embd, N)
  2943. cur = ggml_cpy(ctx0,
  2944. KQV_merged,
  2945. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  2946. ggml_set_name(cur, "KQV_merged_contiguous");
  2947. }
  2948. // Projection
  2949. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wo, cur), model.layers[il].bo);
  2950. // Add the input
  2951. cur = ggml_add(ctx0, cur, inpL);
  2952. struct ggml_tensor * inpFF = cur;
  2953. // FF
  2954. {
  2955. // Norm
  2956. {
  2957. cur = ggml_norm(ctx0, inpFF, norm_eps);
  2958. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ffn_norm), model.layers[il].ffn_norm_b);
  2959. }
  2960. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w3, cur), model.layers[il].b3);
  2961. // GELU activation
  2962. cur = ggml_gelu(ctx0, cur);
  2963. // Projection
  2964. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].w2, cur), model.layers[il].b2);
  2965. }
  2966. inpL = ggml_add(ctx0, cur, inpFF);
  2967. }
  2968. // Output Norm
  2969. {
  2970. cur = ggml_norm(ctx0, inpL, norm_eps);
  2971. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.output_norm), model.output_norm_b);
  2972. }
  2973. ggml_set_name(cur, "result_norm");
  2974. cur = ggml_mul_mat(ctx0, model.output, cur);
  2975. ggml_set_name(cur, "result_output");
  2976. ggml_build_forward_expand(gf, cur);
  2977. ggml_free(ctx0);
  2978. return gf;
  2979. }
  2980. static struct ggml_cgraph * llama_build_graph(
  2981. llama_context & lctx,
  2982. const llama_token * tokens,
  2983. const float * embd,
  2984. int n_tokens,
  2985. int n_past) {
  2986. const auto & model = lctx.model;
  2987. struct ggml_cgraph * result = NULL;
  2988. switch (model.arch) {
  2989. case LLM_ARCH_LLAMA:
  2990. {
  2991. result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past);
  2992. } break;
  2993. case LLM_ARCH_BAICHUAN:
  2994. {
  2995. result = llm_build_baichaun(lctx, tokens, embd, n_tokens, n_past);
  2996. } break;
  2997. case LLM_ARCH_FALCON:
  2998. {
  2999. result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);
  3000. } break;
  3001. case LLM_ARCH_STARCODER:
  3002. {
  3003. result = llm_build_starcoder(lctx, tokens, embd, n_tokens, n_past);
  3004. } break;
  3005. default:
  3006. GGML_ASSERT(false);
  3007. };
  3008. return result;
  3009. }
  3010. // evaluate the transformer
  3011. //
  3012. // - lctx: llama context
  3013. // - tokens: new batch of tokens to process
  3014. // - embd embeddings input
  3015. // - n_tokens number of tokens
  3016. // - n_past: the context size so far
  3017. // - n_threads: number of threads to use
  3018. //
  3019. static bool llama_eval_internal(
  3020. llama_context & lctx,
  3021. const llama_token * tokens,
  3022. const float * embd,
  3023. int n_tokens,
  3024. int n_past,
  3025. int n_threads,
  3026. const char * cgraph_fname) {
  3027. GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
  3028. GGML_ASSERT(n_tokens > 0);
  3029. GGML_ASSERT(n_past >= 0);
  3030. // TODO: keep the values of n_batch and n_ctx
  3031. // GGML_ASSERT(n_tokens <= n_batch);
  3032. // GGML_ASSERT(n_past + n_tokens <= n_ctx);
  3033. const int64_t t_start_us = ggml_time_us();
  3034. #ifdef GGML_USE_MPI
  3035. ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  3036. #endif
  3037. GGML_ASSERT(n_threads > 0);
  3038. const int N = n_tokens;
  3039. const auto & model = lctx.model;
  3040. const auto & hparams = model.hparams;
  3041. const auto & kv_self = lctx.kv_self;
  3042. GGML_ASSERT(!!kv_self.ctx);
  3043. const int64_t n_embd = hparams.n_embd;
  3044. const int64_t n_vocab = hparams.n_vocab;
  3045. ggml_allocr_reset(lctx.alloc);
  3046. ggml_cgraph * gf = llama_build_graph(lctx, tokens, embd, n_tokens, n_past);
  3047. ggml_allocr_alloc_graph(lctx.alloc, gf);
  3048. #ifdef GGML_USE_CUBLAS
  3049. for (int i = 0; i < gf->n_leafs; i++) {
  3050. ggml_tensor * node = gf->leafs[i];
  3051. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  3052. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  3053. }
  3054. }
  3055. for (int i = 0; i < gf->n_nodes; i++) {
  3056. ggml_tensor * node = gf->nodes[i];
  3057. if (node->backend == GGML_BACKEND_GPU && node->extra == NULL) {
  3058. ggml_cuda_assign_scratch_offset(node, (char*)node->data - (char *) lctx.buf_alloc.data);
  3059. }
  3060. }
  3061. #endif
  3062. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  3063. // for big prompts, if BLAS is enabled, it is better to use only one thread
  3064. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  3065. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  3066. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  3067. // with the BLAS calls. need a better solution
  3068. if (N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  3069. n_threads = std::min(4, n_threads);
  3070. }
  3071. // If all tensors can be run on the GPU then using more than 1 thread is detrimental.
  3072. const bool full_offload_supported = model.arch == LLM_ARCH_LLAMA ||
  3073. model.arch == LLM_ARCH_BAICHUAN ||
  3074. model.arch == LLM_ARCH_FALCON;
  3075. const bool fully_offloaded = model.n_gpu_layers >= (int) hparams.n_layer + 3;
  3076. if (ggml_cpu_has_cublas() && full_offload_supported && fully_offloaded) {
  3077. n_threads = 1;
  3078. }
  3079. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  3080. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  3081. GGML_ASSERT(strcmp(res->name, "result_output") == 0);
  3082. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  3083. #if GGML_USE_MPI
  3084. const int64_t n_layer = hparams.n_layer;
  3085. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  3086. #endif
  3087. #ifdef GGML_USE_METAL
  3088. if (lctx.ctx_metal) {
  3089. ggml_metal_set_n_cb (lctx.ctx_metal, n_threads);
  3090. ggml_metal_graph_compute(lctx.ctx_metal, gf);
  3091. } else {
  3092. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  3093. }
  3094. #else
  3095. ggml_graph_compute_helper(lctx.work_buffer, gf, n_threads);
  3096. #endif
  3097. #if GGML_USE_MPI
  3098. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  3099. #endif
  3100. // update kv token count
  3101. lctx.kv_self.n = n_past + N;
  3102. if (cgraph_fname) {
  3103. ggml_graph_export(gf, cgraph_fname);
  3104. }
  3105. #ifdef GGML_PERF
  3106. // print timing information per ggml operation (for debugging purposes)
  3107. // requires GGML_PERF to be defined
  3108. ggml_graph_print(gf);
  3109. #endif
  3110. // plot the computation graph in dot format (for debugging purposes)
  3111. //if (n_past%100 == 0) {
  3112. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  3113. //}
  3114. // extract logits
  3115. {
  3116. auto & logits_out = lctx.logits;
  3117. if (lctx.logits_all) {
  3118. logits_out.resize(n_vocab * N);
  3119. memcpy(logits_out.data(), (float *) ggml_get_data(res), sizeof(float)*n_vocab*N);
  3120. } else {
  3121. // return result for just the last token
  3122. logits_out.resize(n_vocab);
  3123. memcpy(logits_out.data(), (float *) ggml_get_data(res) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  3124. }
  3125. }
  3126. // extract embeddings
  3127. if (!lctx.embedding.empty()) {
  3128. auto & embedding_out = lctx.embedding;
  3129. embedding_out.resize(n_embd);
  3130. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  3131. }
  3132. // measure the performance only for the single-token evals
  3133. if (N == 1) {
  3134. lctx.t_eval_us += ggml_time_us() - t_start_us;
  3135. lctx.n_eval++;
  3136. }
  3137. else if (N > 1) {
  3138. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  3139. lctx.n_p_eval += N;
  3140. }
  3141. return true;
  3142. }
  3143. //
  3144. // tokenizer
  3145. //
  3146. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  3147. return vocab.type;
  3148. }
  3149. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  3150. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  3151. }
  3152. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  3153. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  3154. }
  3155. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  3156. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  3157. }
  3158. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  3159. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  3160. }
  3161. static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
  3162. GGML_ASSERT(llama_is_byte_token(vocab, id));
  3163. const auto& token_data = vocab.id_to_token.at(id);
  3164. auto buf = token_data.text.substr(3, 2);
  3165. return strtol(buf.c_str(), NULL, 16);
  3166. }
  3167. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  3168. char buf[7];
  3169. int result = snprintf(buf, sizeof(buf), "<0x%02X>", ch);
  3170. GGML_ASSERT(0 <= result && result < 7);
  3171. return vocab.token_to_id.at(buf);
  3172. }
  3173. static void llama_escape_whitespace(std::string & text) {
  3174. replace_all(text, " ", "\xe2\x96\x81");
  3175. }
  3176. static void llama_unescape_whitespace(std::string & word) {
  3177. replace_all(word, "\xe2\x96\x81", " ");
  3178. }
  3179. struct llm_symbol {
  3180. using index = int;
  3181. index prev;
  3182. index next;
  3183. const char * text;
  3184. size_t n;
  3185. };
  3186. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  3187. // SPM tokenizer
  3188. // original implementation:
  3189. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  3190. struct llm_bigram_spm {
  3191. struct comparator {
  3192. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  3193. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  3194. }
  3195. };
  3196. using queue_storage = std::vector<llm_bigram_spm>;
  3197. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  3198. llm_symbol::index left;
  3199. llm_symbol::index right;
  3200. float score;
  3201. size_t size;
  3202. };
  3203. struct llm_tokenizer_spm {
  3204. llm_tokenizer_spm(const llama_vocab & vocab): vocab(vocab) {}
  3205. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  3206. // split string into utf8 chars
  3207. int index = 0;
  3208. size_t offs = 0;
  3209. while (offs < text.size()) {
  3210. llm_symbol sym;
  3211. size_t len = utf8_len(text[offs]);
  3212. sym.text = text.c_str() + offs;
  3213. sym.n = std::min(len, text.size() - offs);
  3214. offs += sym.n;
  3215. sym.prev = index - 1;
  3216. sym.next = offs == text.size() ? -1 : index + 1;
  3217. index++;
  3218. symbols.emplace_back(sym);
  3219. }
  3220. // seed the work queue with all possible 2-character tokens.
  3221. for (size_t i = 1; i < symbols.size(); ++i) {
  3222. try_add_bigram(i - 1, i);
  3223. }
  3224. // keep substituting the highest frequency pairs for as long as we can.
  3225. while (!work_queue.empty()) {
  3226. auto bigram = work_queue.top();
  3227. work_queue.pop();
  3228. auto & left_sym = symbols[bigram.left];
  3229. auto & right_sym = symbols[bigram.right];
  3230. // if one of the symbols already got merged, skip it.
  3231. if (left_sym.n == 0 || right_sym.n == 0 ||
  3232. left_sym.n + right_sym.n != bigram.size) {
  3233. continue;
  3234. }
  3235. // merge the right sym into the left one
  3236. left_sym.n += right_sym.n;
  3237. right_sym.n = 0;
  3238. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  3239. // remove the right sym from the chain
  3240. left_sym.next = right_sym.next;
  3241. if (right_sym.next >= 0) {
  3242. symbols[right_sym.next].prev = bigram.left;
  3243. }
  3244. // find more substitutions
  3245. try_add_bigram(left_sym.prev, bigram.left);
  3246. try_add_bigram(bigram.left, left_sym.next);
  3247. }
  3248. for (int i = 0; i != -1; i = symbols[i].next) {
  3249. auto & symbol = symbols[i];
  3250. resegment(symbol, output);
  3251. }
  3252. }
  3253. private:
  3254. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  3255. auto text = std::string(symbol.text, symbol.n);
  3256. auto token = vocab.token_to_id.find(text);
  3257. // Do we need to support is_unused?
  3258. if (token != vocab.token_to_id.end()) {
  3259. output.push_back((*token).second);
  3260. return;
  3261. }
  3262. const auto p = rev_merge.find(text);
  3263. if (p == rev_merge.end()) {
  3264. // output any symbols that did not form tokens as bytes.
  3265. for (int j = 0; j < (int)symbol.n; ++j) {
  3266. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  3267. output.push_back(token_id);
  3268. }
  3269. return;
  3270. }
  3271. resegment(symbols[p->second.first], output);
  3272. resegment(symbols[p->second.second], output);
  3273. }
  3274. void try_add_bigram(int left, int right) {
  3275. if (left == -1 || right == -1) {
  3276. return;
  3277. }
  3278. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  3279. auto token = vocab.token_to_id.find(text);
  3280. if (token == vocab.token_to_id.end()) {
  3281. return;
  3282. }
  3283. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  3284. return;
  3285. }
  3286. const auto & tok_data = vocab.id_to_token[(*token).second];
  3287. llm_bigram_spm bigram;
  3288. bigram.left = left;
  3289. bigram.right = right;
  3290. bigram.score = tok_data.score;
  3291. bigram.size = text.size();
  3292. work_queue.push(bigram);
  3293. // Do we need to support is_unused?
  3294. rev_merge[text] = std::make_pair(left, right);
  3295. }
  3296. const llama_vocab & vocab;
  3297. std::vector<llm_symbol> symbols;
  3298. llm_bigram_spm::queue work_queue;
  3299. std::map<std::string, std::pair<int, int>> rev_merge;
  3300. };
  3301. // BPE tokenizer
  3302. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  3303. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  3304. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  3305. struct llm_bigram_bpe {
  3306. struct comparator {
  3307. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  3308. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  3309. }
  3310. };
  3311. using queue_storage = std::vector<llm_bigram_bpe>;
  3312. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  3313. llm_symbol::index left;
  3314. llm_symbol::index right;
  3315. std::string text;
  3316. int rank;
  3317. size_t size;
  3318. };
  3319. struct llm_tokenizer_bpe {
  3320. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  3321. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  3322. int final_prev_index = -1;
  3323. auto word_collection = bpe_gpt2_preprocess(text);
  3324. symbols_final.clear();
  3325. for (auto & word : word_collection) {
  3326. work_queue = llm_bigram_bpe::queue();
  3327. symbols.clear();
  3328. int index = 0;
  3329. size_t offset = 0;
  3330. while (offset < word.size()) {
  3331. llm_symbol sym;
  3332. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  3333. sym.text = word.c_str() + offset;
  3334. sym.n = 1;
  3335. sym.n = char_len;
  3336. offset += sym.n;
  3337. sym.prev = index - 1;
  3338. sym.next = offset == word.size() ? -1 : index + 1;
  3339. index++;
  3340. symbols.emplace_back(sym);
  3341. }
  3342. for (size_t i = 1; i < symbols.size(); ++i) {
  3343. add_new_bigram(i - 1, i);
  3344. }
  3345. // build token(s)
  3346. while (!work_queue.empty()) {
  3347. auto bigram = work_queue.top();
  3348. work_queue.pop();
  3349. auto & left_symbol = symbols[bigram.left];
  3350. auto & right_symbol = symbols[bigram.right];
  3351. if (left_symbol.n == 0 || right_symbol.n == 0) {
  3352. continue;
  3353. }
  3354. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  3355. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  3356. if (left_token + right_token != bigram.text) {
  3357. continue; // Skip this bigram if it's outdated
  3358. }
  3359. // merge the right sym into the left one
  3360. left_symbol.n += right_symbol.n;
  3361. right_symbol.n = 0;
  3362. // remove the right sym from the chain
  3363. left_symbol.next = right_symbol.next;
  3364. if (right_symbol.next >= 0) {
  3365. symbols[right_symbol.next].prev = bigram.left;
  3366. }
  3367. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  3368. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  3369. }
  3370. // add the fnished tokens to the final list keeping correct order for next and prev
  3371. for (auto & sym : symbols) {
  3372. if (sym.n > 0) {
  3373. sym.prev = final_prev_index;
  3374. sym.next = -1;
  3375. if (final_prev_index != -1) {
  3376. symbols_final[final_prev_index].next = symbols_final.size();
  3377. }
  3378. symbols_final.emplace_back(sym);
  3379. final_prev_index = symbols_final.size() - 1;
  3380. }
  3381. }
  3382. }
  3383. symbols = symbols_final;
  3384. if (!symbols.empty()) {
  3385. for (int i = 0; i != -1; i = symbols[i].next) {
  3386. auto & symbol = symbols[i];
  3387. if (symbol.n == 0) {
  3388. continue;
  3389. }
  3390. const std::string str = std::string(symbol.text, symbol.n);
  3391. const auto token = vocab.token_to_id.find(str);
  3392. if (token == vocab.token_to_id.end()) {
  3393. for (auto j = str.begin(); j != str.end(); ++j) {
  3394. std::string byte_str(1, *j);
  3395. auto token_multibyte = vocab.token_to_id.find(byte_str);
  3396. if (token_multibyte == vocab.token_to_id.end()) {
  3397. try {
  3398. llama_token token_byte = llama_byte_to_token(vocab, *j);
  3399. output.push_back(token_byte);
  3400. } catch (const std::out_of_range & err) {
  3401. fprintf(stderr,"ERROR: byte not found in vocab: '%s'\n", byte_str.c_str());
  3402. }
  3403. } else {
  3404. output.push_back((*token_multibyte).second);
  3405. }
  3406. }
  3407. } else {
  3408. output.push_back((*token).second);
  3409. }
  3410. }
  3411. }
  3412. }
  3413. private:
  3414. void add_new_bigram(int left, int right) {
  3415. if (left == -1 || right == -1) {
  3416. return;
  3417. }
  3418. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  3419. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  3420. int rank_found = -1;
  3421. rank_found = vocab.find_bpe_rank(left_token, right_token);
  3422. if (rank_found < 0) {
  3423. return;
  3424. }
  3425. llm_bigram_bpe bigram;
  3426. bigram.left = left;
  3427. bigram.right = right;
  3428. bigram.text = left_token + right_token;
  3429. bigram.size = left_token.size() + right_token.size();
  3430. bigram.rank = rank_found;
  3431. work_queue.push(bigram);
  3432. }
  3433. // probably not 100% correct
  3434. static std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  3435. std::vector<std::string> words;
  3436. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  3437. const std::string pattern = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
  3438. const std::regex re(pattern);
  3439. auto words_begin = std::sregex_iterator(text.begin(), text.end(), re);
  3440. auto words_end = std::sregex_iterator();
  3441. auto n_words = std::distance(words_begin, words_end);
  3442. words.reserve(n_words);
  3443. for (auto it = words_begin; it != words_end; ++it) {
  3444. words.push_back(it->str());
  3445. }
  3446. return words;
  3447. }
  3448. const llama_vocab & vocab;
  3449. std::vector<llm_symbol> symbols;
  3450. std::vector<llm_symbol> symbols_final;
  3451. llm_bigram_bpe::queue work_queue;
  3452. };
  3453. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos) {
  3454. std::vector<llama_vocab::id> output;
  3455. // OG tokenizer behavior:
  3456. //
  3457. // tokenizer.encode('', add_bos=True) returns [1]
  3458. // tokenizer.encode('', add_bos=False) returns []
  3459. if (bos && vocab.special_bos_id != -1) {
  3460. output.push_back(vocab.special_bos_id);
  3461. }
  3462. if (raw_text.empty()) {
  3463. return output;
  3464. }
  3465. switch (vocab.type) {
  3466. case LLAMA_VOCAB_TYPE_SPM:
  3467. {
  3468. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  3469. raw_text = " " + raw_text;
  3470. llm_tokenizer_spm tokenizer(vocab);
  3471. llama_escape_whitespace(raw_text);
  3472. tokenizer.tokenize(raw_text, output);
  3473. } break;
  3474. case LLAMA_VOCAB_TYPE_BPE:
  3475. {
  3476. llm_tokenizer_bpe tokenizer(vocab);
  3477. tokenizer.tokenize(raw_text, output);
  3478. } break;
  3479. };
  3480. return output;
  3481. }
  3482. //
  3483. // grammar - internal
  3484. //
  3485. struct llama_partial_utf8 {
  3486. uint32_t value; // bit value so far (unshifted)
  3487. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  3488. };
  3489. struct llama_grammar {
  3490. const std::vector<std::vector<llama_grammar_element>> rules;
  3491. std::vector<std::vector<const llama_grammar_element *>> stacks;
  3492. // buffer for partially generated UTF-8 sequence from accepted tokens
  3493. llama_partial_utf8 partial_utf8;
  3494. };
  3495. struct llama_grammar_candidate {
  3496. size_t index;
  3497. const uint32_t * code_points;
  3498. llama_partial_utf8 partial_utf8;
  3499. };
  3500. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  3501. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  3502. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  3503. const char * src,
  3504. llama_partial_utf8 partial_start) {
  3505. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  3506. const char * pos = src;
  3507. std::vector<uint32_t> code_points;
  3508. uint32_t value = partial_start.value;
  3509. int n_remain = partial_start.n_remain;
  3510. // continue previous decode, if applicable
  3511. while (*pos != 0 && n_remain > 0) {
  3512. uint8_t next_byte = static_cast<uint8_t>(*pos);
  3513. if ((next_byte >> 6) != 2) {
  3514. // invalid sequence, abort
  3515. code_points.push_back(0);
  3516. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  3517. }
  3518. value = (value << 6) + (next_byte & 0x3F);
  3519. ++pos;
  3520. --n_remain;
  3521. }
  3522. if (partial_start.n_remain > 0 && n_remain == 0) {
  3523. code_points.push_back(value);
  3524. }
  3525. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  3526. while (*pos != 0) {
  3527. uint8_t first_byte = static_cast<uint8_t>(*pos);
  3528. uint8_t highbits = first_byte >> 4;
  3529. n_remain = lookup[highbits] - 1;
  3530. if (n_remain < 0) {
  3531. // invalid sequence, abort
  3532. code_points.clear();
  3533. code_points.push_back(0);
  3534. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  3535. }
  3536. uint8_t mask = (1 << (7 - n_remain)) - 1;
  3537. value = first_byte & mask;
  3538. ++pos;
  3539. while (*pos != 0 && n_remain > 0) {
  3540. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  3541. ++pos;
  3542. --n_remain;
  3543. }
  3544. if (n_remain == 0) {
  3545. code_points.push_back(value);
  3546. }
  3547. }
  3548. code_points.push_back(0);
  3549. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  3550. }
  3551. // returns true iff pos points to the end of one of the definitions of a rule
  3552. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  3553. switch (pos->type) {
  3554. case LLAMA_GRETYPE_END: return true; // NOLINT
  3555. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  3556. default: return false;
  3557. }
  3558. }
  3559. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  3560. // asserts that pos is pointing to a char range element
  3561. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  3562. const llama_grammar_element * pos,
  3563. const uint32_t chr) {
  3564. bool found = false;
  3565. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  3566. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  3567. do {
  3568. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  3569. // inclusive range, e.g. [a-z]
  3570. found = found || (pos->value <= chr && chr <= pos[1].value);
  3571. pos += 2;
  3572. } else {
  3573. // exact char match, e.g. [a] or "a"
  3574. found = found || pos->value == chr;
  3575. pos += 1;
  3576. }
  3577. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  3578. return std::make_pair(found == is_positive_char, pos);
  3579. }
  3580. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  3581. // range at pos (regular or inverse range)
  3582. // asserts that pos is pointing to a char range element
  3583. static bool llama_grammar_match_partial_char(
  3584. const llama_grammar_element * pos,
  3585. const llama_partial_utf8 partial_utf8) {
  3586. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  3587. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  3588. uint32_t partial_value = partial_utf8.value;
  3589. int n_remain = partial_utf8.n_remain;
  3590. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  3591. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  3592. return false;
  3593. }
  3594. // range of possible code points this partial UTF-8 sequence could complete to
  3595. uint32_t low = partial_value << (n_remain * 6);
  3596. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  3597. if (low == 0) {
  3598. if (n_remain == 2) {
  3599. low = 1 << 11;
  3600. } else if (n_remain == 3) {
  3601. low = 1 << 16;
  3602. }
  3603. }
  3604. do {
  3605. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  3606. // inclusive range, e.g. [a-z]
  3607. if (pos->value <= high && low <= pos[1].value) {
  3608. return is_positive_char;
  3609. }
  3610. pos += 2;
  3611. } else {
  3612. // exact char match, e.g. [a] or "a"
  3613. if (low <= pos->value && pos->value <= high) {
  3614. return is_positive_char;
  3615. }
  3616. pos += 1;
  3617. }
  3618. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  3619. return !is_positive_char;
  3620. }
  3621. // transforms a grammar pushdown stack into N possible stacks, all ending
  3622. // at a character range (terminal element)
  3623. static void llama_grammar_advance_stack(
  3624. const std::vector<std::vector<llama_grammar_element>> & rules,
  3625. const std::vector<const llama_grammar_element *> & stack,
  3626. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  3627. if (stack.empty()) {
  3628. new_stacks.emplace_back(stack);
  3629. return;
  3630. }
  3631. const llama_grammar_element * pos = stack.back();
  3632. switch (pos->type) {
  3633. case LLAMA_GRETYPE_RULE_REF: {
  3634. const size_t rule_id = static_cast<size_t>(pos->value);
  3635. const llama_grammar_element * subpos = rules[rule_id].data();
  3636. do {
  3637. // init new stack without the top (pos)
  3638. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  3639. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  3640. // if this rule ref is followed by another element, add that to stack
  3641. new_stack.push_back(pos + 1);
  3642. }
  3643. if (!llama_grammar_is_end_of_sequence(subpos)) {
  3644. // if alternate is nonempty, add to stack
  3645. new_stack.push_back(subpos);
  3646. }
  3647. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  3648. while (!llama_grammar_is_end_of_sequence(subpos)) {
  3649. // scan to end of alternate def
  3650. subpos++;
  3651. }
  3652. if (subpos->type == LLAMA_GRETYPE_ALT) {
  3653. // there's another alternate def of this rule to process
  3654. subpos++;
  3655. } else {
  3656. break;
  3657. }
  3658. } while (true);
  3659. break;
  3660. }
  3661. case LLAMA_GRETYPE_CHAR:
  3662. case LLAMA_GRETYPE_CHAR_NOT:
  3663. new_stacks.emplace_back(stack);
  3664. break;
  3665. default:
  3666. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  3667. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  3668. // those
  3669. GGML_ASSERT(false);
  3670. }
  3671. }
  3672. // takes a set of possible pushdown stacks on a grammar, which are required to
  3673. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  3674. // produces the N possible stacks if the given char is accepted at those
  3675. // positions
  3676. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  3677. const std::vector<std::vector<llama_grammar_element>> & rules,
  3678. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3679. const uint32_t chr) {
  3680. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  3681. for (const auto & stack : stacks) {
  3682. if (stack.empty()) {
  3683. continue;
  3684. }
  3685. auto match = llama_grammar_match_char(stack.back(), chr);
  3686. if (match.first) {
  3687. const llama_grammar_element * pos = match.second;
  3688. // update top of stack to next element, if any
  3689. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  3690. if (!llama_grammar_is_end_of_sequence(pos)) {
  3691. new_stack.push_back(pos);
  3692. }
  3693. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  3694. }
  3695. }
  3696. return new_stacks;
  3697. }
  3698. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  3699. const std::vector<std::vector<llama_grammar_element>> & rules,
  3700. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3701. const std::vector<llama_grammar_candidate> & candidates);
  3702. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  3703. const std::vector<std::vector<llama_grammar_element>> & rules,
  3704. const std::vector<const llama_grammar_element *> & stack,
  3705. const std::vector<llama_grammar_candidate> & candidates) {
  3706. std::vector<llama_grammar_candidate> rejects;
  3707. if (stack.empty()) {
  3708. for (auto tok : candidates) {
  3709. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  3710. rejects.push_back(tok);
  3711. }
  3712. }
  3713. return rejects;
  3714. }
  3715. const llama_grammar_element * stack_pos = stack.back();
  3716. std::vector<llama_grammar_candidate> next_candidates;
  3717. for (auto tok : candidates) {
  3718. if (*tok.code_points == 0) {
  3719. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  3720. // that cannot satisfy this position in grammar
  3721. if (tok.partial_utf8.n_remain != 0 &&
  3722. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  3723. rejects.push_back(tok);
  3724. }
  3725. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  3726. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  3727. } else {
  3728. rejects.push_back(tok);
  3729. }
  3730. }
  3731. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  3732. // update top of stack to next element, if any
  3733. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  3734. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  3735. stack_after.push_back(stack_pos_after);
  3736. }
  3737. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  3738. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  3739. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  3740. for (auto tok : next_rejects) {
  3741. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  3742. }
  3743. return rejects;
  3744. }
  3745. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  3746. const std::vector<std::vector<llama_grammar_element>> & rules,
  3747. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  3748. const std::vector<llama_grammar_candidate> & candidates) {
  3749. GGML_ASSERT(!stacks.empty()); // REVIEW
  3750. if (candidates.empty()) {
  3751. return std::vector<llama_grammar_candidate>();
  3752. }
  3753. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  3754. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  3755. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  3756. }
  3757. return rejects;
  3758. }
  3759. //
  3760. // grammar - external
  3761. //
  3762. struct llama_grammar * llama_grammar_init(
  3763. const llama_grammar_element ** rules,
  3764. size_t n_rules,
  3765. size_t start_rule_index) {
  3766. const llama_grammar_element * pos;
  3767. // copy rule definitions into vectors
  3768. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  3769. for (size_t i = 0; i < n_rules; i++) {
  3770. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  3771. vec_rules[i].push_back(*pos);
  3772. }
  3773. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  3774. }
  3775. // loop over alternates of start rule to build initial stacks
  3776. std::vector<std::vector<const llama_grammar_element *>> stacks;
  3777. pos = rules[start_rule_index];
  3778. do {
  3779. std::vector<const llama_grammar_element *> stack;
  3780. if (!llama_grammar_is_end_of_sequence(pos)) {
  3781. // if alternate is nonempty, add to stack
  3782. stack.push_back(pos);
  3783. }
  3784. llama_grammar_advance_stack(vec_rules, stack, stacks);
  3785. while (!llama_grammar_is_end_of_sequence(pos)) {
  3786. // scan to end of alternate def
  3787. pos++;
  3788. }
  3789. if (pos->type == LLAMA_GRETYPE_ALT) {
  3790. // there's another alternate def of this rule to process
  3791. pos++;
  3792. } else {
  3793. break;
  3794. }
  3795. } while (true);
  3796. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  3797. }
  3798. void llama_grammar_free(struct llama_grammar * grammar) {
  3799. delete grammar;
  3800. }
  3801. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  3802. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  3803. // redirect elements in stacks to point to new rules
  3804. for (size_t is = 0; is < result->stacks.size(); is++) {
  3805. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  3806. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  3807. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  3808. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  3809. result->stacks[is][ie] = &result->rules[ir0][ir1];
  3810. }
  3811. }
  3812. }
  3813. }
  3814. }
  3815. return result;
  3816. }
  3817. //
  3818. // sampling
  3819. //
  3820. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  3821. GGML_ASSERT(candidates->size > 0);
  3822. const int64_t t_start_sample_us = ggml_time_us();
  3823. // Sort the logits in descending order
  3824. if (!candidates->sorted) {
  3825. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  3826. return a.logit > b.logit;
  3827. });
  3828. candidates->sorted = true;
  3829. }
  3830. float max_l = candidates->data[0].logit;
  3831. float cum_sum = 0.0f;
  3832. for (size_t i = 0; i < candidates->size; ++i) {
  3833. float p = expf(candidates->data[i].logit - max_l);
  3834. candidates->data[i].p = p;
  3835. cum_sum += p;
  3836. }
  3837. for (size_t i = 0; i < candidates->size; ++i) {
  3838. candidates->data[i].p /= cum_sum;
  3839. }
  3840. if (ctx) {
  3841. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3842. }
  3843. }
  3844. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  3845. const int64_t t_start_sample_us = ggml_time_us();
  3846. k = std::max(k, (int) min_keep);
  3847. k = std::min(k, (int) candidates->size);
  3848. // Sort scores in descending order
  3849. if (!candidates->sorted) {
  3850. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  3851. return a.logit > b.logit;
  3852. };
  3853. if (k == (int) candidates->size) {
  3854. std::sort(candidates->data, candidates->data + candidates->size, comp);
  3855. } else {
  3856. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  3857. }
  3858. candidates->sorted = true;
  3859. }
  3860. candidates->size = k;
  3861. if (ctx) {
  3862. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3863. }
  3864. }
  3865. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  3866. if (p >= 1.0f) {
  3867. return;
  3868. }
  3869. llama_sample_softmax(ctx, candidates);
  3870. const int64_t t_start_sample_us = ggml_time_us();
  3871. // Compute the cumulative probabilities
  3872. float cum_sum = 0.0f;
  3873. size_t last_idx = candidates->size;
  3874. for (size_t i = 0; i < candidates->size; ++i) {
  3875. cum_sum += candidates->data[i].p;
  3876. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  3877. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  3878. if (cum_sum >= p && i + 1 >= min_keep) {
  3879. last_idx = i + 1;
  3880. break;
  3881. }
  3882. }
  3883. // Resize the output vector to keep only the top-p tokens
  3884. candidates->size = last_idx;
  3885. if (ctx) {
  3886. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3887. }
  3888. }
  3889. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  3890. if (z >= 1.0f || candidates->size <= 2) {
  3891. return;
  3892. }
  3893. llama_sample_softmax(nullptr, candidates);
  3894. const int64_t t_start_sample_us = ggml_time_us();
  3895. // Compute the first and second derivatives
  3896. std::vector<float> first_derivatives(candidates->size - 1);
  3897. std::vector<float> second_derivatives(candidates->size - 2);
  3898. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  3899. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  3900. }
  3901. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3902. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  3903. }
  3904. // Calculate absolute value of second derivatives
  3905. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3906. second_derivatives[i] = std::abs(second_derivatives[i]);
  3907. }
  3908. // Normalize the second derivatives
  3909. {
  3910. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  3911. if (second_derivatives_sum > 1e-6f) {
  3912. for (float & value : second_derivatives) {
  3913. value /= second_derivatives_sum;
  3914. }
  3915. } else {
  3916. for (float & value : second_derivatives) {
  3917. value = 1.0f / second_derivatives.size();
  3918. }
  3919. }
  3920. }
  3921. float cum_sum = 0.0f;
  3922. size_t last_idx = candidates->size;
  3923. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  3924. cum_sum += second_derivatives[i];
  3925. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  3926. if (cum_sum > z && i >= min_keep) {
  3927. last_idx = i;
  3928. break;
  3929. }
  3930. }
  3931. // Resize the output vector to keep only the tokens above the tail location
  3932. candidates->size = last_idx;
  3933. if (ctx) {
  3934. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3935. }
  3936. }
  3937. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  3938. // Reference implementation:
  3939. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  3940. if (p >= 1.0f) {
  3941. return;
  3942. }
  3943. // Compute the softmax of logits and calculate entropy
  3944. llama_sample_softmax(nullptr, candidates);
  3945. const int64_t t_start_sample_us = ggml_time_us();
  3946. float entropy = 0.0f;
  3947. for (size_t i = 0; i < candidates->size; ++i) {
  3948. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  3949. }
  3950. // Compute the absolute difference between negative log probability and entropy for each candidate
  3951. std::vector<float> shifted_scores;
  3952. for (size_t i = 0; i < candidates->size; ++i) {
  3953. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  3954. shifted_scores.push_back(shifted_score);
  3955. }
  3956. // Sort tokens based on the shifted_scores and their corresponding indices
  3957. std::vector<size_t> indices(candidates->size);
  3958. std::iota(indices.begin(), indices.end(), 0);
  3959. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  3960. return shifted_scores[a] < shifted_scores[b];
  3961. });
  3962. // Compute the cumulative probabilities
  3963. float cum_sum = 0.0f;
  3964. size_t last_idx = indices.size();
  3965. for (size_t i = 0; i < indices.size(); ++i) {
  3966. size_t idx = indices[i];
  3967. cum_sum += candidates->data[idx].p;
  3968. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  3969. if (cum_sum > p && i >= min_keep - 1) {
  3970. last_idx = i + 1;
  3971. break;
  3972. }
  3973. }
  3974. // Resize the output vector to keep only the locally typical tokens
  3975. std::vector<llama_token_data> new_candidates;
  3976. for (size_t i = 0; i < last_idx; ++i) {
  3977. size_t idx = indices[i];
  3978. new_candidates.push_back(candidates->data[idx]);
  3979. }
  3980. // Replace the data in candidates with the new_candidates data
  3981. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  3982. candidates->size = new_candidates.size();
  3983. if (ctx) {
  3984. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3985. }
  3986. }
  3987. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  3988. const int64_t t_start_sample_us = ggml_time_us();
  3989. for (size_t i = 0; i < candidates_p->size; ++i) {
  3990. candidates_p->data[i].logit /= temp;
  3991. }
  3992. if (ctx) {
  3993. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  3994. }
  3995. }
  3996. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  3997. if (last_tokens_size == 0 || penalty == 1.0f) {
  3998. return;
  3999. }
  4000. const int64_t t_start_sample_us = ggml_time_us();
  4001. for (size_t i = 0; i < candidates->size; ++i) {
  4002. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  4003. if (token_iter == last_tokens + last_tokens_size) {
  4004. continue;
  4005. }
  4006. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  4007. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  4008. if (candidates->data[i].logit <= 0) {
  4009. candidates->data[i].logit *= penalty;
  4010. } else {
  4011. candidates->data[i].logit /= penalty;
  4012. }
  4013. }
  4014. candidates->sorted = false;
  4015. if (ctx) {
  4016. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4017. }
  4018. }
  4019. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  4020. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  4021. return;
  4022. }
  4023. const int64_t t_start_sample_us = ggml_time_us();
  4024. // Create a frequency map to count occurrences of each token in last_tokens
  4025. std::unordered_map<llama_token, int> token_count;
  4026. for (size_t i = 0; i < last_tokens_size; ++i) {
  4027. token_count[last_tokens_p[i]]++;
  4028. }
  4029. // Apply frequency and presence penalties to the candidates
  4030. for (size_t i = 0; i < candidates->size; ++i) {
  4031. auto token_iter = token_count.find(candidates->data[i].id);
  4032. if (token_iter == token_count.end()) {
  4033. continue;
  4034. }
  4035. int count = token_iter->second;
  4036. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  4037. }
  4038. candidates->sorted = false;
  4039. if (ctx) {
  4040. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4041. }
  4042. }
  4043. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  4044. GGML_ASSERT(ctx);
  4045. const int64_t t_start_sample_us = ggml_time_us();
  4046. bool allow_eos = false;
  4047. for (const auto & stack : grammar->stacks) {
  4048. if (stack.empty()) {
  4049. allow_eos = true;
  4050. break;
  4051. }
  4052. }
  4053. const llama_token eos = llama_token_eos(ctx);
  4054. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  4055. std::vector<llama_grammar_candidate> candidates_grammar;
  4056. for (size_t i = 0; i < candidates->size; ++i) {
  4057. const llama_token id = candidates->data[i].id;
  4058. const std::string piece = llama_token_to_str(ctx, id);
  4059. if (id == eos) {
  4060. if (!allow_eos) {
  4061. candidates->data[i].logit = -INFINITY;
  4062. }
  4063. } else if (piece.empty() || piece[0] == 0) {
  4064. candidates->data[i].logit = -INFINITY;
  4065. } else {
  4066. candidates_decoded.push_back(decode_utf8(piece.c_str(), grammar->partial_utf8));
  4067. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  4068. }
  4069. }
  4070. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  4071. for (const auto & reject : rejects) {
  4072. candidates->data[reject.index].logit = -INFINITY;
  4073. }
  4074. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4075. }
  4076. static void llama_log_softmax(float * array, size_t size) {
  4077. float max_l = *std::max_element(array, array + size);
  4078. float sum = 0.f;
  4079. for (size_t i = 0; i < size; ++i) {
  4080. float p = expf(array[i] - max_l);
  4081. sum += p;
  4082. array[i] = p;
  4083. }
  4084. for (size_t i = 0; i < size; ++i) {
  4085. array[i] = logf(array[i] / sum);
  4086. }
  4087. }
  4088. void llama_sample_classifier_free_guidance(
  4089. struct llama_context * ctx,
  4090. llama_token_data_array * candidates,
  4091. struct llama_context * guidance_ctx,
  4092. float scale) {
  4093. int64_t t_start_sample_us = ggml_time_us();
  4094. GGML_ASSERT(ctx);
  4095. auto n_vocab = llama_n_vocab(ctx);
  4096. GGML_ASSERT(n_vocab == (int)candidates->size);
  4097. GGML_ASSERT(!candidates->sorted);
  4098. std::vector<float> logits_base;
  4099. logits_base.reserve(candidates->size);
  4100. for (size_t i = 0; i < candidates->size; ++i) {
  4101. logits_base.push_back(candidates->data[i].logit);
  4102. }
  4103. llama_log_softmax(logits_base.data(), candidates->size);
  4104. float* logits_guidance = llama_get_logits(guidance_ctx);
  4105. llama_log_softmax(logits_guidance, n_vocab);
  4106. for (int i = 0; i < n_vocab; ++i) {
  4107. float logit_guidance = logits_guidance[i];
  4108. float logit_base = logits_base[i];
  4109. candidates->data[i].logit = scale * (logit_base - logit_guidance) + logit_guidance;
  4110. }
  4111. if (ctx) {
  4112. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4113. }
  4114. }
  4115. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  4116. GGML_ASSERT(ctx);
  4117. auto N = float(llama_n_vocab(ctx));
  4118. int64_t t_start_sample_us;
  4119. t_start_sample_us = ggml_time_us();
  4120. llama_sample_softmax(nullptr, candidates);
  4121. // Estimate s_hat using the most probable m tokens
  4122. float s_hat = 0.0;
  4123. float sum_ti_bi = 0.0;
  4124. float sum_ti_sq = 0.0;
  4125. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  4126. float t_i = logf(float(i + 2) / float(i + 1));
  4127. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  4128. sum_ti_bi += t_i * b_i;
  4129. sum_ti_sq += t_i * t_i;
  4130. }
  4131. s_hat = sum_ti_bi / sum_ti_sq;
  4132. // Compute k from the estimated s_hat and target surprise value
  4133. float epsilon_hat = s_hat - 1;
  4134. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  4135. // Sample the next word X using top-k sampling
  4136. llama_sample_top_k(nullptr, candidates, int(k), 1);
  4137. if (ctx) {
  4138. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4139. }
  4140. llama_token X = llama_sample_token(ctx, candidates);
  4141. t_start_sample_us = ggml_time_us();
  4142. // Compute error as the difference between observed surprise and target surprise value
  4143. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  4144. return candidate.id == X;
  4145. }));
  4146. float observed_surprise = -log2f(candidates->data[X_idx].p);
  4147. float e = observed_surprise - tau;
  4148. // Update mu using the learning rate and error
  4149. *mu = *mu - eta * e;
  4150. if (ctx) {
  4151. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4152. }
  4153. return X;
  4154. }
  4155. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  4156. int64_t t_start_sample_us;
  4157. t_start_sample_us = ggml_time_us();
  4158. llama_sample_softmax(ctx, candidates);
  4159. // Truncate the words with surprise values greater than mu
  4160. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  4161. return -log2f(candidate.p) > *mu;
  4162. }));
  4163. if (candidates->size == 0) {
  4164. candidates->size = 1;
  4165. }
  4166. if (ctx) {
  4167. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4168. }
  4169. // Normalize the probabilities of the remaining words
  4170. llama_sample_softmax(ctx, candidates);
  4171. // Sample the next word X from the remaining words
  4172. llama_token X = llama_sample_token(ctx, candidates);
  4173. t_start_sample_us = ggml_time_us();
  4174. // Compute error as the difference between observed surprise and target surprise value
  4175. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  4176. return candidate.id == X;
  4177. }));
  4178. float observed_surprise = -log2f(candidates->data[X_idx].p);
  4179. float e = observed_surprise - tau;
  4180. // Update mu using the learning rate and error
  4181. *mu = *mu - eta * e;
  4182. if (ctx) {
  4183. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4184. }
  4185. return X;
  4186. }
  4187. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  4188. const int64_t t_start_sample_us = ggml_time_us();
  4189. // Find max element
  4190. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  4191. return a.logit < b.logit;
  4192. });
  4193. llama_token result = max_iter->id;
  4194. if (ctx) {
  4195. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4196. ctx->n_sample++;
  4197. }
  4198. return result;
  4199. }
  4200. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  4201. GGML_ASSERT(ctx);
  4202. const int64_t t_start_sample_us = ggml_time_us();
  4203. llama_sample_softmax(nullptr, candidates);
  4204. std::vector<float> probs;
  4205. probs.reserve(candidates->size);
  4206. for (size_t i = 0; i < candidates->size; ++i) {
  4207. probs.push_back(candidates->data[i].p);
  4208. }
  4209. std::discrete_distribution<> dist(probs.begin(), probs.end());
  4210. auto & rng = ctx->rng;
  4211. int idx = dist(rng);
  4212. llama_token result = candidates->data[idx].id;
  4213. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4214. ctx->n_sample++;
  4215. return result;
  4216. }
  4217. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  4218. const int64_t t_start_sample_us = ggml_time_us();
  4219. if (token == llama_token_eos(ctx)) {
  4220. for (const auto & stack : grammar->stacks) {
  4221. if (stack.empty()) {
  4222. return;
  4223. }
  4224. }
  4225. GGML_ASSERT(false);
  4226. }
  4227. const std::string piece = llama_token_to_str(ctx, token);
  4228. // Note terminating 0 in decoded string
  4229. const auto decoded = decode_utf8(piece.c_str(), grammar->partial_utf8);
  4230. const auto & code_points = decoded.first;
  4231. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  4232. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  4233. }
  4234. grammar->partial_utf8 = decoded.second;
  4235. GGML_ASSERT(!grammar->stacks.empty());
  4236. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4237. }
  4238. //
  4239. // Beam search
  4240. //
  4241. struct llama_beam {
  4242. std::vector<llama_token> tokens;
  4243. float p; // Cumulative beam probability (renormalized relative to all beams)
  4244. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  4245. // Sort beams by probability. In case of ties, prefer beams at eob.
  4246. bool operator<(const llama_beam & rhs) const {
  4247. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  4248. }
  4249. // Shift off first n tokens and discard them.
  4250. void shift_tokens(const size_t n) {
  4251. if (n) {
  4252. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  4253. tokens.resize(tokens.size() - n);
  4254. }
  4255. }
  4256. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  4257. };
  4258. // A struct for calculating logit-related info.
  4259. struct llama_logit_info {
  4260. const float * const logits;
  4261. const int n_vocab;
  4262. const float max_l;
  4263. const float normalizer;
  4264. struct sum_exp {
  4265. float max_l;
  4266. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  4267. };
  4268. llama_logit_info(llama_context * ctx)
  4269. : logits(llama_get_logits(ctx))
  4270. , n_vocab(llama_n_vocab(ctx))
  4271. , max_l(*std::max_element(logits, logits + n_vocab))
  4272. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  4273. { }
  4274. llama_token_data get_token_data(const llama_token token_id) const {
  4275. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  4276. return {token_id, logits[token_id], p};
  4277. }
  4278. // Return top k token_data by logit.
  4279. std::vector<llama_token_data> top_k(size_t k) {
  4280. std::vector<llama_token_data> min_heap; // min-heap by logit
  4281. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  4282. min_heap.reserve(k_min);
  4283. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  4284. min_heap.push_back(get_token_data(token_id));
  4285. }
  4286. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  4287. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  4288. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  4289. if (min_heap.front().logit < logits[token_id]) {
  4290. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  4291. min_heap.back().id = token_id;
  4292. min_heap.back().logit = logits[token_id];
  4293. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  4294. }
  4295. }
  4296. return min_heap;
  4297. }
  4298. float probability_from_logit(float logit) const {
  4299. return normalizer * std::exp(logit - max_l);
  4300. }
  4301. };
  4302. struct llama_beam_search_data {
  4303. llama_context * ctx;
  4304. size_t n_beams;
  4305. int n_past;
  4306. int n_predict;
  4307. int n_threads;
  4308. std::vector<llama_beam> beams;
  4309. std::vector<llama_beam> next_beams;
  4310. // Re-calculated on each loop iteration
  4311. size_t common_prefix_length;
  4312. // Used to communicate to/from callback on beams state.
  4313. std::vector<llama_beam_view> beam_views;
  4314. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict, int n_threads)
  4315. : ctx(ctx)
  4316. , n_beams(n_beams)
  4317. , n_past(n_past)
  4318. , n_predict(n_predict)
  4319. , n_threads(n_threads)
  4320. , beam_views(n_beams) {
  4321. beams.reserve(n_beams);
  4322. next_beams.reserve(n_beams);
  4323. }
  4324. // Collapse beams to a single beam given by index.
  4325. void collapse_beams(const size_t beam_idx) {
  4326. if (0u < beam_idx) {
  4327. std::swap(beams[0], beams[beam_idx]);
  4328. }
  4329. beams.resize(1);
  4330. }
  4331. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  4332. // The repetative patterns below reflect the 2 stages of heaps:
  4333. // * Gather elements until the vector is full, then call std::make_heap() on it.
  4334. // * If the heap is full and a new element is found that should be included, pop the
  4335. // least element to the back(), replace it with the new, then push it into the heap.
  4336. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  4337. // Min-heaps use a greater-than comparator.
  4338. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  4339. if (beam.eob) {
  4340. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  4341. if (next_beams.size() < n_beams) {
  4342. next_beams.push_back(std::move(beam));
  4343. if (next_beams.size() == n_beams) {
  4344. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  4345. }
  4346. } else if (next_beams.front().p < beam.p) {
  4347. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4348. next_beams.back() = std::move(beam);
  4349. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4350. }
  4351. } else {
  4352. // beam is not at end-of-sentence, so branch with next top_k tokens.
  4353. if (!beam.tokens.empty()) {
  4354. llama_eval(ctx, beam.tokens.data(), beam.tokens.size(), n_past, n_threads);
  4355. }
  4356. llama_logit_info logit_info(ctx);
  4357. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  4358. size_t i=0;
  4359. if (next_beams.size() < n_beams) {
  4360. for (; next_beams.size() < n_beams ; ++i) {
  4361. llama_beam next_beam = beam;
  4362. next_beam.tokens.push_back(next_tokens[i].id);
  4363. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  4364. next_beams.push_back(std::move(next_beam));
  4365. }
  4366. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  4367. } else {
  4368. for (; next_beams.front().p == 0.0f ; ++i) {
  4369. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4370. next_beams.back() = beam;
  4371. next_beams.back().tokens.push_back(next_tokens[i].id);
  4372. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  4373. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4374. }
  4375. }
  4376. for (; i < n_beams ; ++i) {
  4377. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  4378. if (next_beams.front().p < next_p) {
  4379. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  4380. next_beams.back() = beam;
  4381. next_beams.back().tokens.push_back(next_tokens[i].id);
  4382. next_beams.back().p = next_p;
  4383. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  4384. }
  4385. }
  4386. }
  4387. }
  4388. // Find common_prefix_length based on beams.
  4389. // Requires beams is not empty.
  4390. size_t find_common_prefix_length() {
  4391. size_t common_prefix_length = beams[0].tokens.size();
  4392. for (size_t i = 1 ; i < beams.size() ; ++i) {
  4393. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  4394. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  4395. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  4396. common_prefix_length = j;
  4397. break;
  4398. }
  4399. }
  4400. }
  4401. return common_prefix_length;
  4402. }
  4403. // Construct beams_state to send back to caller via the callback function.
  4404. // Side effect: set common_prefix_length = find_common_prefix_length();
  4405. llama_beams_state get_beams_state(const bool last_call) {
  4406. for (size_t i = 0 ; i < beams.size() ; ++i) {
  4407. beam_views[i] = beams[i].view();
  4408. }
  4409. common_prefix_length = find_common_prefix_length();
  4410. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  4411. }
  4412. // Loop:
  4413. // * while i < n_predict, AND
  4414. // * any of the beams have not yet reached end-of-beam (eob), AND
  4415. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  4416. // (since all other beam probabilities can only decrease)
  4417. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  4418. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  4419. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  4420. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  4421. !beams[top_beam_index()].eob ; ++i) {
  4422. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  4423. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  4424. if (common_prefix_length) {
  4425. llama_eval(ctx, beams[0].tokens.data(), common_prefix_length, n_past, n_threads);
  4426. n_past += common_prefix_length;
  4427. }
  4428. // Zero-out next_beam probabilities to place them last in following min-heap.
  4429. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  4430. for (llama_beam & beam : beams) {
  4431. beam.shift_tokens(common_prefix_length);
  4432. fill_next_beams_by_top_probabilities(beam);
  4433. }
  4434. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  4435. beams.swap(next_beams);
  4436. renormalize_beam_probabilities(beams);
  4437. }
  4438. collapse_beams(top_beam_index());
  4439. callback(callback_data, get_beams_state(true));
  4440. }
  4441. // As beams grow, the cumulative probabilities decrease.
  4442. // Renormalize them to avoid floating point underflow.
  4443. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  4444. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  4445. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  4446. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  4447. }
  4448. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  4449. size_t top_beam_index() {
  4450. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  4451. }
  4452. // Copy (p,eob) for each beam which may have been changed by the callback.
  4453. void update_beams_from_beam_views() {
  4454. for (size_t i = 0 ; i < beams.size() ; ++i) {
  4455. beams[i].p = beam_views[i].p;
  4456. beams[i].eob = beam_views[i].eob;
  4457. }
  4458. }
  4459. };
  4460. void llama_beam_search(llama_context * ctx,
  4461. llama_beam_search_callback_fn_t callback, void * callback_data,
  4462. size_t n_beams, int n_past, int n_predict, int n_threads) {
  4463. assert(ctx);
  4464. const int64_t t_start_sample_us = ggml_time_us();
  4465. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict, n_threads);
  4466. beam_search_data.loop(callback, callback_data);
  4467. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  4468. ctx->n_sample++;
  4469. }
  4470. //
  4471. // quantization
  4472. //
  4473. template <typename T>
  4474. struct no_init {
  4475. T value;
  4476. no_init() { /* do nothing */ }
  4477. };
  4478. static void llama_convert_tensor_internal(
  4479. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  4480. const size_t nelements, const int nthread
  4481. ) {
  4482. if (output.size() < nelements) {
  4483. output.resize(nelements);
  4484. }
  4485. float * f32_output = (float *) output.data();
  4486. ggml_type_traits_t qtype;
  4487. if (ggml_is_quantized(tensor->type)) {
  4488. qtype = ggml_internal_get_type_traits(tensor->type);
  4489. if (qtype.to_float == NULL) {
  4490. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  4491. }
  4492. } else if (tensor->type != GGML_TYPE_F16) {
  4493. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  4494. }
  4495. if (nthread < 2) {
  4496. if (tensor->type == GGML_TYPE_F16) {
  4497. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  4498. } else if (ggml_is_quantized(tensor->type)) {
  4499. qtype.to_float(tensor->data, f32_output, nelements);
  4500. } else {
  4501. GGML_ASSERT(false); // unreachable
  4502. }
  4503. return;
  4504. }
  4505. auto block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  4506. auto block_size_bytes = ggml_type_size(tensor->type);
  4507. GGML_ASSERT(nelements % block_size == 0);
  4508. auto nblocks = nelements / block_size;
  4509. auto blocks_per_thread = nblocks / nthread;
  4510. auto spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  4511. for (auto tnum = 0, in_buff_offs = 0, out_buff_offs = 0; tnum < nthread; tnum++) {
  4512. auto thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  4513. auto thr_elems = thr_blocks * block_size; // number of elements for this thread
  4514. auto thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  4515. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  4516. if (typ == GGML_TYPE_F16) {
  4517. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  4518. } else {
  4519. qtype.to_float(inbuf, outbuf, nels);
  4520. }
  4521. };
  4522. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  4523. in_buff_offs += thr_block_bytes;
  4524. out_buff_offs += thr_elems;
  4525. }
  4526. for (auto & w : workers) { w.join(); }
  4527. workers.clear();
  4528. }
  4529. #ifdef GGML_USE_K_QUANTS
  4530. static ggml_type get_k_quant_type(
  4531. ggml_type new_type, const ggml_tensor * tensor, const llama_model & model, llama_ftype ftype, int * i_attention_wv,
  4532. int n_attention_wv, int * i_feed_forward_w2, int n_feed_forward_w2
  4533. ) {
  4534. const std::string name = ggml_get_name(tensor);
  4535. // TODO: avoid hardcoded tensor names - use the TN_* constants
  4536. const auto tn = LLM_TN(model.arch);
  4537. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  4538. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  4539. };
  4540. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  4541. int nx = tensor->ne[0];
  4542. if (model.arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  4543. new_type = GGML_TYPE_Q8_0;
  4544. }
  4545. else if (new_type != GGML_TYPE_Q8_0) {
  4546. new_type = GGML_TYPE_Q6_K;
  4547. }
  4548. } else if (name.find("attn_v.weight") != std::string::npos) {
  4549. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4550. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  4551. new_type = *i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  4552. }
  4553. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  4554. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  4555. use_more_bits(*i_attention_wv, n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  4556. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && *i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  4557. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  4558. (*i_attention_wv < n_attention_wv/8 || *i_attention_wv >= 7*n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  4559. if (model.type == MODEL_70B) {
  4560. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  4561. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  4562. // nearly negligible increase in model size by quantizing this tensor with more bits:
  4563. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  4564. }
  4565. ++*i_attention_wv;
  4566. } else if (name.find("ffn_down.weight") != std::string::npos) {
  4567. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4568. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  4569. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q5_K
  4570. : model.arch != LLM_ARCH_FALCON || use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q4_K
  4571. : GGML_TYPE_Q3_K;
  4572. }
  4573. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  4574. new_type = model.arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  4575. }
  4576. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  4577. if (model.arch == LLM_ARCH_FALCON) {
  4578. new_type = *i_feed_forward_w2 < 2 ? GGML_TYPE_Q6_K :
  4579. use_more_bits(*i_feed_forward_w2, n_feed_forward_w2) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  4580. } else {
  4581. if (use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  4582. }
  4583. }
  4584. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(*i_feed_forward_w2, n_feed_forward_w2)) new_type = GGML_TYPE_Q6_K;
  4585. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && model.arch != LLM_ARCH_FALCON && *i_feed_forward_w2 < 4) {
  4586. new_type = GGML_TYPE_Q5_K;
  4587. }
  4588. ++*i_feed_forward_w2;
  4589. } else if (name.find("attn_output.weight") != std::string::npos) {
  4590. if (model.arch != LLM_ARCH_FALCON) {
  4591. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  4592. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) new_type = GGML_TYPE_Q4_K;
  4593. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  4594. } else {
  4595. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  4596. }
  4597. }
  4598. else if (name.find("attn_qkv.weight") != std::string::npos) {
  4599. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  4600. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  4601. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  4602. }
  4603. else if (name.find("ffn_gate.weight") != std::string::npos || name.find("ffn_up.weight") != std::string::npos) {
  4604. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  4605. }
  4606. // This can be used to reduce the size of the Q5_K_S model.
  4607. // The associated PPL increase is fully in line with the size reduction
  4608. //else {
  4609. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  4610. //}
  4611. bool convert_incompatible_tensor = false;
  4612. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  4613. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
  4614. int nx = tensor->ne[0];
  4615. int ny = tensor->ne[1];
  4616. if (nx % QK_K != 0) {
  4617. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for k-quants\n", __func__, nx, ny, QK_K);
  4618. convert_incompatible_tensor = true;
  4619. }
  4620. }
  4621. if (convert_incompatible_tensor) {
  4622. if (name == tn(LLM_TENSOR_OUTPUT, "weight")) {
  4623. new_type = GGML_TYPE_F16; //fall back to F16 instead of just failing.
  4624. LLAMA_LOG_WARN("F16 will be used for this tensor instead.\n");
  4625. } else if (name == tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  4626. new_type = GGML_TYPE_Q4_0; //fall back to Q4_0 instead of just failing.
  4627. LLAMA_LOG_WARN("Q4_0 will be used for this tensor instead.\n");
  4628. } else {
  4629. throw std::runtime_error("Unsupported tensor size encountered\n");
  4630. }
  4631. }
  4632. return new_type;
  4633. }
  4634. #endif
  4635. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  4636. ggml_type quantized_type;
  4637. llama_ftype ftype = params->ftype;
  4638. switch (params->ftype) {
  4639. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  4640. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  4641. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  4642. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  4643. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  4644. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  4645. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  4646. #ifdef GGML_USE_K_QUANTS
  4647. // K-quants
  4648. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  4649. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  4650. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  4651. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  4652. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  4653. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  4654. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  4655. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  4656. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  4657. #endif
  4658. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  4659. }
  4660. int nthread = params->nthread;
  4661. if (nthread <= 0) {
  4662. nthread = std::thread::hardware_concurrency();
  4663. }
  4664. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname_inp, /*use_mmap*/ false));
  4665. llama_model model;
  4666. llm_load_arch(*ml, model);
  4667. llm_load_hparams(*ml, model, 0, 0, 0);
  4668. if (params->only_copy) {
  4669. ftype = model.ftype;
  4670. }
  4671. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  4672. struct gguf_context * ctx_out = gguf_init_empty();
  4673. // copy the KV pairs from the input file
  4674. gguf_set_kv (ctx_out, ml->ctx_gguf);
  4675. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  4676. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  4677. #ifdef GGML_USE_K_QUANTS
  4678. int n_attention_wv = 0;
  4679. int n_feed_forward_w2 = 0;
  4680. for (int i = 0; i < ml->n_tensors; ++i) {
  4681. struct ggml_tensor * meta = ml->get_tensor_meta(i);
  4682. const std::string name = ggml_get_name(meta);
  4683. // TODO: avoid hardcoded tensor names - use the TN_* constants
  4684. if (name.find("attn_v.weight") != std::string::npos) {
  4685. ++n_attention_wv;
  4686. }
  4687. else if (name.find("ffn_down.weight") != std::string::npos) {
  4688. ++n_feed_forward_w2;
  4689. }
  4690. }
  4691. if (n_attention_wv != n_feed_forward_w2 || (uint32_t)n_attention_wv != model.hparams.n_layer) {
  4692. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n",
  4693. __func__, n_attention_wv, n_feed_forward_w2, model.hparams.n_layer);
  4694. }
  4695. int i_attention_wv = 0;
  4696. int i_feed_forward_w2 = 0;
  4697. #endif
  4698. size_t total_size_org = 0;
  4699. size_t total_size_new = 0;
  4700. std::vector<int64_t> hist_all(1 << 4, 0);
  4701. std::vector<std::thread> workers;
  4702. workers.reserve(nthread);
  4703. std::mutex mutex;
  4704. int idx = 0;
  4705. std::vector<no_init<uint8_t>> read_data;
  4706. std::vector<no_init<uint8_t>> work;
  4707. std::vector<no_init<float>> f32_conv_buf;
  4708. // populate the original tensors so we get an initial meta data
  4709. for (int i = 0; i < ml->n_tensors; ++i) {
  4710. struct ggml_tensor * meta = ml->get_tensor_meta(i);
  4711. gguf_add_tensor(ctx_out, meta);
  4712. }
  4713. std::ofstream fout(fname_out, std::ios::binary);
  4714. const size_t meta_size = gguf_get_meta_size(ctx_out);
  4715. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  4716. // placeholder for the meta data
  4717. ::zeros(fout, meta_size);
  4718. for (int i = 0; i < ml->n_tensors; ++i) {
  4719. struct ggml_tensor * tensor = ml->get_tensor_meta(i);
  4720. const std::string name = ggml_get_name(tensor);
  4721. if (read_data.size() < ggml_nbytes(tensor)) {
  4722. read_data.resize(ggml_nbytes(tensor));
  4723. }
  4724. tensor->data = read_data.data();
  4725. ml->load_data_for(tensor);
  4726. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  4727. ++idx, ml->n_tensors,
  4728. ggml_get_name(tensor),
  4729. llama_format_tensor_shape(tensor).c_str(),
  4730. ggml_type_name(tensor->type));
  4731. // This used to be a regex, but <regex> has an extreme cost to compile times.
  4732. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  4733. // quantize only 2D tensors
  4734. quantize &= (tensor->n_dims == 2);
  4735. quantize &= params->quantize_output_tensor || name != "output.weight";
  4736. quantize &= !params->only_copy;
  4737. enum ggml_type new_type;
  4738. void * new_data;
  4739. size_t new_size;
  4740. if (quantize) {
  4741. new_type = quantized_type;
  4742. #ifdef GGML_USE_K_QUANTS
  4743. new_type = get_k_quant_type(
  4744. new_type, tensor, model, ftype, &i_attention_wv, n_attention_wv, &i_feed_forward_w2, n_feed_forward_w2
  4745. );
  4746. #endif
  4747. // If we've decided to quantize to the same type the tensor is already
  4748. // in then there's nothing to do.
  4749. quantize = tensor->type != new_type;
  4750. }
  4751. if (!quantize) {
  4752. new_type = tensor->type;
  4753. new_data = tensor->data;
  4754. new_size = ggml_nbytes(tensor);
  4755. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  4756. } else {
  4757. const size_t nelements = ggml_nelements(tensor);
  4758. float * f32_data;
  4759. if (tensor->type == GGML_TYPE_F32) {
  4760. f32_data = (float *) tensor->data;
  4761. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  4762. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  4763. } else {
  4764. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  4765. f32_data = (float *) f32_conv_buf.data();
  4766. }
  4767. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  4768. fflush(stdout);
  4769. if (work.size() < nelements * 4) {
  4770. work.resize(nelements * 4); // upper bound on size
  4771. }
  4772. new_data = work.data();
  4773. std::array<int64_t, 1 << 4> hist_cur = {};
  4774. static const int chunk_size = 32 * 512;
  4775. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  4776. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  4777. if (nthread_use < 2) {
  4778. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  4779. } else {
  4780. size_t counter = 0;
  4781. new_size = 0;
  4782. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements]() {
  4783. std::array<int64_t, 1 << 4> local_hist = {};
  4784. size_t local_size = 0;
  4785. while (true) {
  4786. std::unique_lock<std::mutex> lock(mutex);
  4787. size_t first = counter; counter += chunk_size;
  4788. if (first >= nelements) {
  4789. if (local_size > 0) {
  4790. for (int j=0; j<int(local_hist.size()); ++j) {
  4791. hist_cur[j] += local_hist[j];
  4792. }
  4793. new_size += local_size;
  4794. }
  4795. break;
  4796. }
  4797. lock.unlock();
  4798. size_t last = std::min(nelements, first + chunk_size);
  4799. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  4800. }
  4801. };
  4802. for (int it = 0; it < nthread_use - 1; ++it) {
  4803. workers.emplace_back(compute);
  4804. }
  4805. compute();
  4806. for (auto & w : workers) { w.join(); }
  4807. workers.clear();
  4808. }
  4809. LLAMA_LOG_INFO("size = %8.2f MB -> %8.2f MB | hist: ", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  4810. int64_t tot_count = 0;
  4811. for (size_t i = 0; i < hist_cur.size(); i++) {
  4812. hist_all[i] += hist_cur[i];
  4813. tot_count += hist_cur[i];
  4814. }
  4815. if (tot_count > 0) {
  4816. for (size_t i = 0; i < hist_cur.size(); i++) {
  4817. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  4818. }
  4819. }
  4820. LLAMA_LOG_INFO("\n");
  4821. }
  4822. total_size_org += ggml_nbytes(tensor);
  4823. total_size_new += new_size;
  4824. // update the gguf meta data as we go
  4825. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  4826. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  4827. // write tensor data + padding
  4828. fout.write((const char *) new_data, new_size);
  4829. zeros(fout, GGML_PAD(new_size, align) - new_size);
  4830. }
  4831. // go back to beginning of file and write the updated meta data
  4832. {
  4833. fout.seekp(0);
  4834. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  4835. gguf_get_meta_data(ctx_out, data.data());
  4836. fout.write((const char *) data.data(), data.size());
  4837. }
  4838. fout.close();
  4839. gguf_free(ctx_out);
  4840. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  4841. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  4842. // print histogram for all tensors
  4843. {
  4844. int64_t sum_all = 0;
  4845. for (size_t i = 0; i < hist_all.size(); i++) {
  4846. sum_all += hist_all[i];
  4847. }
  4848. if (sum_all > 0) {
  4849. LLAMA_LOG_INFO("%s: hist: ", __func__);
  4850. for (size_t i = 0; i < hist_all.size(); i++) {
  4851. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  4852. }
  4853. LLAMA_LOG_INFO("\n");
  4854. }
  4855. }
  4856. }
  4857. // TODO: after the GGUF PR, this likely won't work and needs to be updated
  4858. static int llama_apply_lora_from_file_internal(
  4859. const struct llama_model & model, const char * path_lora, const char * path_base_model, int n_threads
  4860. ) {
  4861. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  4862. const int64_t t_start_lora_us = ggml_time_us();
  4863. auto fin = std::ifstream(path_lora, std::ios::binary);
  4864. if (!fin) {
  4865. LLAMA_LOG_ERROR("%s: failed to open '%s'\n", __func__, path_lora);
  4866. return 1;
  4867. }
  4868. // verify magic and version
  4869. {
  4870. uint32_t magic;
  4871. fin.read((char *) &magic, sizeof(magic));
  4872. uint32_t format_version;
  4873. fin.read((char *) &format_version, sizeof(format_version));
  4874. if (format_version != 1) {
  4875. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  4876. return 1;
  4877. }
  4878. }
  4879. int32_t lora_r;
  4880. int32_t lora_alpha;
  4881. fin.read((char *) &lora_r, sizeof(lora_r));
  4882. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  4883. float scaling = (float)lora_alpha / (float)lora_r;
  4884. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  4885. // create a temporary ggml context to store the lora tensors
  4886. // todo: calculate size from biggest possible tensor
  4887. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  4888. struct ggml_init_params params;
  4889. params.mem_size = lora_buf.size();
  4890. params.mem_buffer = lora_buf.data();
  4891. params.no_alloc = false;
  4892. ggml_context * lora_ctx = ggml_init(params);
  4893. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  4894. // create a name -> tensor map of the model to accelerate lookups
  4895. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  4896. for (const auto & kv : model.tensors_by_name) {
  4897. model_tensors.insert(kv);
  4898. }
  4899. // load base model
  4900. std::unique_ptr<llama_model_loader> ml;
  4901. ggml_context * base_ctx = NULL;
  4902. std::vector<uint8_t> base_buf;
  4903. if (path_base_model) {
  4904. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  4905. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true));
  4906. size_t ctx_size;
  4907. size_t mmapped_size;
  4908. ml->calc_sizes(ctx_size, mmapped_size);
  4909. base_buf.resize(ctx_size);
  4910. ggml_init_params base_params;
  4911. base_params.mem_size = base_buf.size();
  4912. base_params.mem_buffer = base_buf.data();
  4913. base_params.no_alloc = ml->use_mmap;
  4914. base_ctx = ggml_init(base_params);
  4915. // maybe this should in llama_model_loader
  4916. if (ml->use_mmap) {
  4917. ml->mapping.reset(new llama_mmap(&ml->file, /* prefetch */ 0, ggml_is_numa()));
  4918. }
  4919. }
  4920. // read tensors and apply
  4921. bool warned = false;
  4922. int n_tensors = 0;
  4923. std::vector<uint8_t> work_buffer;
  4924. while (true) {
  4925. int32_t n_dims;
  4926. int32_t length;
  4927. int32_t ftype;
  4928. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  4929. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  4930. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  4931. if (fin.eof()) {
  4932. break;
  4933. }
  4934. int32_t ne[2] = { 1, 1 };
  4935. for (int i = 0; i < n_dims; ++i) {
  4936. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  4937. }
  4938. std::string name;
  4939. {
  4940. char buf[1024];
  4941. fin.read(buf, length);
  4942. name = std::string(buf, length);
  4943. }
  4944. // check for lora suffix and get the type of tensor
  4945. const std::string lora_suffix = ".lora";
  4946. size_t pos = name.rfind(lora_suffix);
  4947. if (pos == std::string::npos) {
  4948. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  4949. return 1;
  4950. }
  4951. std::string lora_type = name.substr(pos + lora_suffix.length());
  4952. std::string base_name = name;
  4953. base_name.erase(pos);
  4954. // LLAMA_LOG_INFO("%s: %s => %s (lora type %s) \n", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  4955. if (model_tensors.find(base_name) == model_tensors.end()) {
  4956. LLAMA_LOG_ERROR("%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  4957. return 1;
  4958. }
  4959. // create ggml tensor
  4960. ggml_type wtype;
  4961. switch (ftype) {
  4962. case 0: wtype = GGML_TYPE_F32; break;
  4963. case 1: wtype = GGML_TYPE_F16; break;
  4964. default:
  4965. {
  4966. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  4967. __func__, ftype);
  4968. return false;
  4969. }
  4970. }
  4971. ggml_tensor * lora_tensor;
  4972. if (n_dims == 2) {
  4973. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  4974. }
  4975. else {
  4976. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  4977. return 1;
  4978. }
  4979. ggml_set_name(lora_tensor, "lora_tensor");
  4980. // load tensor data
  4981. size_t offset = fin.tellg();
  4982. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  4983. offset = (offset + 31) & -32;
  4984. fin.seekg(offset);
  4985. fin.read((char*)lora_tensor->data, tensor_data_size);
  4986. lora_tensors[name] = lora_tensor;
  4987. // check if we have both A and B tensors and apply
  4988. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  4989. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  4990. ggml_tensor * dest_t = model_tensors[base_name];
  4991. offload_func_t offload_func = llama_nop;
  4992. offload_func_t offload_func_force_inplace = llama_nop;
  4993. #ifdef GGML_USE_CUBLAS
  4994. if (dest_t->backend == GGML_BACKEND_GPU || dest_t->backend == GGML_BACKEND_GPU_SPLIT) {
  4995. if (dest_t->type != GGML_TYPE_F16) {
  4996. throw std::runtime_error(format(
  4997. "%s: error: the simultaneous use of LoRAs and GPU acceleration is only supported for f16 models", __func__));
  4998. }
  4999. offload_func = ggml_cuda_assign_buffers;
  5000. offload_func_force_inplace = ggml_cuda_assign_buffers_force_inplace;
  5001. }
  5002. #endif // GGML_USE_CUBLAS
  5003. ggml_tensor * base_t;
  5004. if (ml) {
  5005. struct gguf_context * ctx_gguf = ml->ctx_gguf;
  5006. // load from base model
  5007. if (gguf_find_tensor(ctx_gguf, base_name.c_str()) < 0) {
  5008. // TODO: throw
  5009. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  5010. return 1;
  5011. }
  5012. // TODO: not tested!! maybe not working!
  5013. base_t = ml->create_tensor(base_ctx, base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  5014. ml->load_data_for(base_t);
  5015. } else {
  5016. base_t = dest_t;
  5017. }
  5018. if (ggml_is_quantized(base_t->type)) {
  5019. if (!warned) {
  5020. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  5021. "use a f16 or f32 base model with --lora-base\n", __func__);
  5022. warned = true;
  5023. }
  5024. }
  5025. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  5026. GGML_ASSERT(loraA->type == GGML_TYPE_F32);
  5027. ggml_set_name(loraA, "loraA");
  5028. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  5029. GGML_ASSERT(loraB->type == GGML_TYPE_F32);
  5030. ggml_set_name(loraB, "loraB");
  5031. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  5032. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  5033. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  5034. return 1;
  5035. }
  5036. // w = w + BA*s
  5037. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  5038. offload_func(BA);
  5039. ggml_set_name(BA, "BA");
  5040. if (scaling != 1.0f) {
  5041. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  5042. ggml_set_name(scale_tensor, "scale_tensor");
  5043. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  5044. offload_func(BA);
  5045. ggml_set_name(BA, "BA_scaled");
  5046. }
  5047. ggml_tensor * r;
  5048. if (base_t == dest_t) {
  5049. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  5050. offload_func_force_inplace(r);
  5051. ggml_set_name(r, "r_add_inplace");
  5052. }
  5053. else {
  5054. r = ggml_add(lora_ctx, base_t, BA);
  5055. offload_func(r);
  5056. ggml_set_name(r, "r_add");
  5057. r = ggml_cpy(lora_ctx, r, dest_t);
  5058. offload_func(r);
  5059. ggml_set_name(r, "r_cpy");
  5060. }
  5061. struct ggml_cgraph gf = ggml_build_forward(r);
  5062. ggml_graph_compute_helper(work_buffer, &gf, n_threads);
  5063. // we won't need these tensors again, reset the context to save memory
  5064. ggml_free(lora_ctx);
  5065. lora_ctx = ggml_init(params);
  5066. lora_tensors.clear();
  5067. n_tensors++;
  5068. if (n_tensors % 4 == 0) {
  5069. LLAMA_LOG_INFO(".");
  5070. }
  5071. }
  5072. }
  5073. // TODO: this should be in a destructor, it will leak on failure
  5074. ggml_free(lora_ctx);
  5075. if (base_ctx) {
  5076. ggml_free(base_ctx);
  5077. }
  5078. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  5079. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  5080. return 0;
  5081. }
  5082. //
  5083. // interface implementation
  5084. //
  5085. struct llama_context_params llama_context_default_params() {
  5086. struct llama_context_params result = {
  5087. /*.seed =*/ LLAMA_DEFAULT_SEED,
  5088. /*.n_ctx =*/ 512,
  5089. /*.n_batch =*/ 512,
  5090. /*.n_gpu_layers =*/ 0,
  5091. /*.main_gpu =*/ 0,
  5092. /*.tensor_split =*/ nullptr,
  5093. /*.rope_freq_base =*/ 0.0f,
  5094. /*.rope_freq_scale =*/ 0.0f,
  5095. /*.progress_callback =*/ nullptr,
  5096. /*.progress_callback_user_data =*/ nullptr,
  5097. /*.low_vram =*/ false,
  5098. /*.mul_mat_q =*/ true,
  5099. /*.f16_kv =*/ true,
  5100. /*.logits_all =*/ false,
  5101. /*.vocab_only =*/ false,
  5102. /*.use_mmap =*/ true,
  5103. /*.use_mlock =*/ false,
  5104. /*.embedding =*/ false,
  5105. };
  5106. #ifdef GGML_USE_METAL
  5107. result.n_gpu_layers = 1;
  5108. #endif
  5109. return result;
  5110. }
  5111. struct llama_model_quantize_params llama_model_quantize_default_params() {
  5112. struct llama_model_quantize_params result = {
  5113. /*.nthread =*/ 0,
  5114. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  5115. /*.allow_requantize =*/ false,
  5116. /*.quantize_output_tensor =*/ true,
  5117. /*.only_copy =*/ false,
  5118. };
  5119. return result;
  5120. }
  5121. int llama_max_devices(void) {
  5122. return LLAMA_MAX_DEVICES;
  5123. }
  5124. bool llama_mmap_supported(void) {
  5125. return llama_mmap::SUPPORTED;
  5126. }
  5127. bool llama_mlock_supported(void) {
  5128. return llama_mlock::SUPPORTED;
  5129. }
  5130. void llama_backend_init(bool numa) {
  5131. ggml_time_init();
  5132. // needed to initialize f16 tables
  5133. {
  5134. struct ggml_init_params params = { 0, NULL, false };
  5135. struct ggml_context * ctx = ggml_init(params);
  5136. ggml_free(ctx);
  5137. }
  5138. if (numa) {
  5139. ggml_numa_init();
  5140. }
  5141. #ifdef GGML_USE_MPI
  5142. ggml_mpi_backend_init();
  5143. #endif
  5144. }
  5145. void llama_backend_free(void) {
  5146. #ifdef GGML_USE_MPI
  5147. ggml_mpi_backend_free();
  5148. #endif
  5149. }
  5150. int64_t llama_time_us(void) {
  5151. return ggml_time_us();
  5152. }
  5153. struct llama_model * llama_load_model_from_file(
  5154. const char * path_model,
  5155. struct llama_context_params params) {
  5156. ggml_time_init();
  5157. llama_model * model = new llama_model;
  5158. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  5159. unsigned cur_percentage = 0;
  5160. if (params.progress_callback == NULL) {
  5161. params.progress_callback_user_data = &cur_percentage;
  5162. params.progress_callback = [](float progress, void * ctx) {
  5163. unsigned * cur_percentage_p = (unsigned *) ctx;
  5164. unsigned percentage = (unsigned) (100 * progress);
  5165. while (percentage > *cur_percentage_p) {
  5166. *cur_percentage_p = percentage;
  5167. LLAMA_LOG_INFO(".");
  5168. if (percentage >= 100) {
  5169. LLAMA_LOG_INFO("\n");
  5170. }
  5171. }
  5172. };
  5173. }
  5174. if (!llama_model_load(path_model, *model, params.n_ctx, params.n_batch, params.n_gpu_layers,
  5175. params.main_gpu, params.tensor_split, params.mul_mat_q, params.rope_freq_base, params.rope_freq_scale,
  5176. params.low_vram, memory_type, params.use_mmap, params.use_mlock, params.vocab_only,
  5177. params.progress_callback, params.progress_callback_user_data)) {
  5178. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  5179. delete model;
  5180. return nullptr;
  5181. }
  5182. return model;
  5183. }
  5184. void llama_free_model(struct llama_model * model) {
  5185. delete model;
  5186. }
  5187. struct llama_context * llama_new_context_with_model(
  5188. struct llama_model * model,
  5189. struct llama_context_params params) {
  5190. if (!model) {
  5191. return nullptr;
  5192. }
  5193. llama_context * ctx = new llama_context(*model);
  5194. if (params.seed == LLAMA_DEFAULT_SEED) {
  5195. params.seed = time(NULL);
  5196. }
  5197. ctx->rng = std::mt19937(params.seed);
  5198. ctx->logits_all = params.logits_all;
  5199. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  5200. // reserve memory for context buffers
  5201. if (!params.vocab_only) {
  5202. if (!llama_kv_cache_init(ctx->model.hparams, ctx->kv_self, memory_type, ctx->model.hparams.n_ctx, params.n_gpu_layers)) {
  5203. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  5204. llama_free(ctx);
  5205. return nullptr;
  5206. }
  5207. {
  5208. const size_t memory_size = ggml_nbytes(ctx->kv_self.k) + ggml_nbytes(ctx->kv_self.v);
  5209. LLAMA_LOG_INFO("%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  5210. }
  5211. const auto & hparams = ctx->model.hparams;
  5212. // resized during inference
  5213. if (params.logits_all) {
  5214. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  5215. } else {
  5216. ctx->logits.reserve(hparams.n_vocab);
  5217. }
  5218. if (params.embedding){
  5219. ctx->embedding.resize(hparams.n_embd);
  5220. }
  5221. {
  5222. static const size_t tensor_alignment = 32;
  5223. // the compute buffer is used to store the tensor and graph structs, while the allocator buffer is used for the tensor data
  5224. ctx->buf_compute.resize(ggml_tensor_overhead()*GGML_MAX_NODES + ggml_graph_overhead());
  5225. // create measure allocator
  5226. ctx->alloc = ggml_allocr_new_measure(tensor_alignment);
  5227. // build worst-case graph
  5228. int n_tokens = std::min((int)hparams.n_ctx, params.n_batch);
  5229. int n_past = hparams.n_ctx - n_tokens;
  5230. llama_token token = llama_token_bos(ctx); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  5231. ggml_cgraph * gf = llama_build_graph(*ctx, &token, NULL, n_tokens, n_past);
  5232. #ifdef GGML_USE_METAL
  5233. if (params.n_gpu_layers > 0) {
  5234. ctx->ctx_metal = ggml_metal_init(1);
  5235. if (!ctx->ctx_metal) {
  5236. LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
  5237. llama_free(ctx);
  5238. return NULL;
  5239. }
  5240. ggml_metal_log_set_callback(llama_log_callback_default, NULL);
  5241. ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
  5242. ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  5243. }
  5244. #endif
  5245. // measure memory requirements for the graph
  5246. size_t alloc_size = ggml_allocr_alloc_graph(ctx->alloc, gf) + tensor_alignment;
  5247. LLAMA_LOG_INFO("%s: compute buffer total size = %7.2f MB\n", __func__, (ctx->buf_compute.size + alloc_size) / 1024.0 / 1024.0);
  5248. // recreate allocator with exact memory requirements
  5249. ggml_allocr_free(ctx->alloc);
  5250. ctx->buf_alloc.resize(alloc_size);
  5251. ctx->alloc = ggml_allocr_new(ctx->buf_alloc.data, ctx->buf_alloc.size, tensor_alignment);
  5252. #ifdef GGML_USE_METAL
  5253. if (ctx->ctx_metal) {
  5254. ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
  5255. }
  5256. #endif
  5257. #ifdef GGML_USE_CUBLAS
  5258. if (params.low_vram) {
  5259. LLAMA_LOG_INFO("%s: not allocating a VRAM scratch buffer due to low VRAM option\n", __func__);
  5260. ggml_cuda_set_scratch_size(0); // disable scratch
  5261. } else {
  5262. ggml_cuda_set_scratch_size(alloc_size);
  5263. LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MB\n", __func__, alloc_size / 1024.0 / 1024.0);
  5264. }
  5265. #endif
  5266. }
  5267. #ifdef GGML_USE_METAL
  5268. if (params.n_gpu_layers > 0) {
  5269. // this allocates all Metal resources and memory buffers
  5270. void * data_ptr = NULL;
  5271. size_t data_size = 0;
  5272. if (params.use_mmap) {
  5273. data_ptr = ctx->model.mapping->addr;
  5274. data_size = ctx->model.mapping->size;
  5275. } else {
  5276. data_ptr = ggml_get_mem_buffer(ctx->model.ctx);
  5277. data_size = ggml_get_mem_size (ctx->model.ctx);
  5278. }
  5279. const size_t max_size = ggml_get_max_tensor_size(ctx->model.ctx);
  5280. LLAMA_LOG_INFO("%s: max tensor size = %8.2f MB\n", __func__, max_size/1024.0/1024.0);
  5281. #define LLAMA_METAL_CHECK_BUF(result) \
  5282. if (!(result)) { \
  5283. LLAMA_LOG_ERROR("%s: failed to add buffer\n", __func__); \
  5284. llama_free(ctx); \
  5285. return NULL; \
  5286. }
  5287. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "data", data_ptr, data_size, max_size));
  5288. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "eval", ctx->buf_compute.data, ctx->buf_compute.size, 0));
  5289. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "kv", ctx->kv_self.buf.data, ctx->kv_self.buf.size, 0));
  5290. LLAMA_METAL_CHECK_BUF(ggml_metal_add_buffer(ctx->ctx_metal, "alloc", ctx->buf_alloc.data, ctx->buf_alloc.size, 0));
  5291. #undef LLAMA_METAL_CHECK_BUF
  5292. }
  5293. #endif
  5294. }
  5295. #ifdef GGML_USE_MPI
  5296. ctx->ctx_mpi = ggml_mpi_init();
  5297. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  5298. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  5299. const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  5300. while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  5301. llama_backend_free();
  5302. exit(1);
  5303. }
  5304. #endif
  5305. return ctx;
  5306. }
  5307. static struct llama_context * llama_init_from_file(
  5308. const char * path_model,
  5309. struct llama_context_params params) {
  5310. struct llama_model * model = llama_load_model_from_file(path_model, params);
  5311. if (!model) {
  5312. return nullptr;
  5313. }
  5314. struct llama_context * ctx = llama_new_context_with_model(model, params);
  5315. ctx->model_owner = true;
  5316. return ctx;
  5317. }
  5318. void llama_free(struct llama_context * ctx) {
  5319. delete ctx;
  5320. }
  5321. int llama_n_vocab(const struct llama_context * ctx) {
  5322. return llama_model_n_vocab(&ctx->model);
  5323. }
  5324. int llama_n_ctx(const struct llama_context * ctx) {
  5325. return llama_model_n_ctx(&ctx->model);
  5326. }
  5327. int llama_n_ctx_train(const struct llama_context * ctx) {
  5328. return llama_model_n_ctx_train(&ctx->model);
  5329. }
  5330. int llama_n_embd(const struct llama_context * ctx) {
  5331. return llama_model_n_embd(&ctx->model);
  5332. }
  5333. enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx) {
  5334. return ctx->model.vocab.type;
  5335. }
  5336. int llama_model_n_vocab(const struct llama_model * model) {
  5337. return model->vocab.id_to_token.size();
  5338. }
  5339. int llama_model_n_ctx(const struct llama_model * model) {
  5340. return model->hparams.n_ctx;
  5341. }
  5342. int llama_model_n_ctx_train(const struct llama_model * model) {
  5343. return model->hparams.n_ctx_train;
  5344. }
  5345. int llama_model_n_embd(const struct llama_model * model) {
  5346. return model->hparams.n_embd;
  5347. }
  5348. int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  5349. return snprintf(buf, buf_size, "%s %s %s",
  5350. model->name.c_str(),
  5351. llama_model_type_name(model->type),
  5352. llama_model_ftype_name(model->ftype).c_str());
  5353. }
  5354. uint64_t llama_model_size(const struct llama_model * model) {
  5355. uint64_t size = 0;
  5356. for (const auto & it : model->tensors_by_name) {
  5357. size += ggml_nbytes(it.second);
  5358. }
  5359. return size;
  5360. }
  5361. uint64_t llama_model_n_params(const struct llama_model * model) {
  5362. uint64_t nparams = 0;
  5363. for (const auto & it : model->tensors_by_name) {
  5364. nparams += ggml_nelements(it.second);
  5365. }
  5366. return nparams;
  5367. }
  5368. int llama_model_quantize(
  5369. const char * fname_inp,
  5370. const char * fname_out,
  5371. const llama_model_quantize_params * params) {
  5372. try {
  5373. llama_model_quantize_internal(fname_inp, fname_out, params);
  5374. return 0;
  5375. } catch (const std::exception & err) {
  5376. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  5377. return 1;
  5378. }
  5379. }
  5380. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  5381. try {
  5382. return llama_apply_lora_from_file_internal(ctx->model, path_lora, path_base_model, n_threads);
  5383. } catch (const std::exception & err) {
  5384. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  5385. return 1;
  5386. }
  5387. }
  5388. int llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, const char * path_base_model, int n_threads) {
  5389. try {
  5390. return llama_apply_lora_from_file_internal(*model, path_lora, path_base_model, n_threads);
  5391. } catch (const std::exception & err) {
  5392. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  5393. return 1;
  5394. }
  5395. }
  5396. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  5397. return ctx->kv_self.n;
  5398. }
  5399. #define LLAMA_MAX_RNG_STATE (64*1024)
  5400. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  5401. if (seed == LLAMA_DEFAULT_SEED) {
  5402. seed = time(NULL);
  5403. }
  5404. ctx->rng.seed(seed);
  5405. }
  5406. // Returns the *maximum* size of the state
  5407. size_t llama_get_state_size(const struct llama_context * ctx) {
  5408. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  5409. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  5410. const size_t s_rng_size = sizeof(size_t);
  5411. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  5412. const size_t s_logits_capacity = sizeof(size_t);
  5413. const size_t s_logits_size = sizeof(size_t);
  5414. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  5415. const size_t s_embedding_size = sizeof(size_t);
  5416. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  5417. const size_t s_kv_size = sizeof(size_t);
  5418. const size_t s_kv_ntok = sizeof(int);
  5419. const size_t s_kv = ctx->kv_self.buf.size;
  5420. const size_t s_total = (
  5421. + s_rng_size
  5422. + s_rng
  5423. + s_logits_capacity
  5424. + s_logits_size
  5425. + s_logits
  5426. + s_embedding_size
  5427. + s_embedding
  5428. + s_kv_size
  5429. + s_kv_ntok
  5430. + s_kv
  5431. );
  5432. return s_total;
  5433. }
  5434. // llama_context_data
  5435. struct llama_data_context {
  5436. virtual void write(const void * src, size_t size) = 0;
  5437. virtual size_t get_size_written() = 0;
  5438. virtual ~llama_data_context() = default;
  5439. };
  5440. struct llama_data_buffer_context : llama_data_context {
  5441. uint8_t * ptr;
  5442. size_t size_written = 0;
  5443. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  5444. void write(const void * src, size_t size) override {
  5445. memcpy(ptr, src, size);
  5446. ptr += size;
  5447. size_written += size;
  5448. }
  5449. size_t get_size_written() override {
  5450. return size_written;
  5451. }
  5452. };
  5453. struct llama_data_file_context : llama_data_context {
  5454. llama_file * file;
  5455. size_t size_written = 0;
  5456. llama_data_file_context(llama_file * f) : file(f) {}
  5457. void write(const void * src, size_t size) override {
  5458. file->write_raw(src, size);
  5459. size_written += size;
  5460. }
  5461. size_t get_size_written() override {
  5462. return size_written;
  5463. }
  5464. };
  5465. /** copy state data into either a buffer or file depending on the passed in context
  5466. *
  5467. * file context:
  5468. * llama_file file("/path", "wb");
  5469. * llama_data_file_context data_ctx(&file);
  5470. * llama_copy_state_data(ctx, &data_ctx);
  5471. *
  5472. * buffer context:
  5473. * std::vector<uint8_t> buf(max_size, 0);
  5474. * llama_data_buffer_context data_ctx(&buf.data());
  5475. * llama_copy_state_data(ctx, &data_ctx);
  5476. *
  5477. */
  5478. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  5479. // copy rng
  5480. {
  5481. std::stringstream rng_ss;
  5482. rng_ss << ctx->rng;
  5483. const size_t rng_size = rng_ss.str().size();
  5484. char rng_buf[LLAMA_MAX_RNG_STATE];
  5485. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  5486. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  5487. data_ctx->write(&rng_size, sizeof(rng_size));
  5488. data_ctx->write(&rng_buf[0], LLAMA_MAX_RNG_STATE);
  5489. }
  5490. // copy logits
  5491. {
  5492. const size_t logits_cap = ctx->logits.capacity();
  5493. const size_t logits_size = ctx->logits.size();
  5494. data_ctx->write(&logits_cap, sizeof(logits_cap));
  5495. data_ctx->write(&logits_size, sizeof(logits_size));
  5496. if (logits_size) {
  5497. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  5498. }
  5499. // If there is a gap between the size and the capacity, write padding
  5500. size_t padding_size = (logits_cap - logits_size) * sizeof(float);
  5501. if (padding_size > 0) {
  5502. std::vector<uint8_t> padding(padding_size, 0); // Create a buffer filled with zeros
  5503. data_ctx->write(padding.data(), padding_size);
  5504. }
  5505. }
  5506. // copy embeddings
  5507. {
  5508. const size_t embedding_size = ctx->embedding.size();
  5509. data_ctx->write(&embedding_size, sizeof(embedding_size));
  5510. if (embedding_size) {
  5511. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  5512. }
  5513. }
  5514. // copy kv cache
  5515. {
  5516. const auto & kv_self = ctx->kv_self;
  5517. const auto & hparams = ctx->model.hparams;
  5518. const int n_layer = hparams.n_layer;
  5519. const int n_embd = hparams.n_embd_gqa();
  5520. const int n_ctx = hparams.n_ctx;
  5521. const size_t kv_size = kv_self.buf.size;
  5522. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  5523. data_ctx->write(&kv_size, sizeof(kv_size));
  5524. data_ctx->write(&kv_ntok, sizeof(kv_ntok));
  5525. if (kv_size) {
  5526. const size_t elt_size = ggml_element_size(kv_self.k);
  5527. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  5528. ggml_cgraph gf{};
  5529. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  5530. std::vector<uint8_t> kout3d_data(ggml_nbytes(kout3d), 0);
  5531. kout3d->data = kout3d_data.data();
  5532. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  5533. std::vector<uint8_t> vout3d_data(ggml_nbytes(vout3d), 0);
  5534. vout3d->data = vout3d_data.data();
  5535. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  5536. n_embd, kv_ntok, n_layer,
  5537. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  5538. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  5539. kv_ntok, n_embd, n_layer,
  5540. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  5541. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  5542. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  5543. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  5544. ggml_free(cpy_ctx);
  5545. // our data is now in the kout3d_data and vout3d_data buffers
  5546. // write them to file
  5547. data_ctx->write(kout3d_data.data(), kout3d_data.size());
  5548. data_ctx->write(vout3d_data.data(), vout3d_data.size());
  5549. }
  5550. }
  5551. }
  5552. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  5553. llama_data_buffer_context data_ctx(dst);
  5554. llama_copy_state_data_internal(ctx, &data_ctx);
  5555. return data_ctx.get_size_written();
  5556. }
  5557. // Sets the state reading from the specified source address
  5558. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  5559. uint8_t * inp = src;
  5560. // set rng
  5561. {
  5562. size_t rng_size;
  5563. char rng_buf[LLAMA_MAX_RNG_STATE];
  5564. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  5565. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  5566. std::stringstream rng_ss;
  5567. rng_ss.str(std::string(&rng_buf[0], rng_size));
  5568. rng_ss >> ctx->rng;
  5569. GGML_ASSERT(!rng_ss.fail());
  5570. }
  5571. // set logits
  5572. {
  5573. size_t logits_cap;
  5574. size_t logits_size;
  5575. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  5576. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  5577. GGML_ASSERT(ctx->logits.capacity() == logits_cap);
  5578. if (logits_size) {
  5579. ctx->logits.resize(logits_size);
  5580. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  5581. }
  5582. inp += logits_cap * sizeof(float);
  5583. }
  5584. // set embeddings
  5585. {
  5586. size_t embedding_size;
  5587. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  5588. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  5589. if (embedding_size) {
  5590. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  5591. inp += embedding_size * sizeof(float);
  5592. }
  5593. }
  5594. // set kv cache
  5595. {
  5596. const auto & kv_self = ctx->kv_self;
  5597. const auto & hparams = ctx->model.hparams;
  5598. const int n_layer = hparams.n_layer;
  5599. const int n_embd = hparams.n_embd_gqa();
  5600. const int n_ctx = hparams.n_ctx;
  5601. size_t kv_size;
  5602. int kv_ntok;
  5603. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  5604. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  5605. if (kv_size) {
  5606. GGML_ASSERT(kv_self.buf.size == kv_size);
  5607. const size_t elt_size = ggml_element_size(kv_self.k);
  5608. ggml_context * cpy_ctx = ggml_init({ 4096, NULL, /* no_alloc */ true });
  5609. ggml_cgraph gf{};
  5610. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  5611. kin3d->data = (void *) inp;
  5612. inp += ggml_nbytes(kin3d);
  5613. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  5614. vin3d->data = (void *) inp;
  5615. inp += ggml_nbytes(vin3d);
  5616. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  5617. n_embd, kv_ntok, n_layer,
  5618. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  5619. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  5620. kv_ntok, n_embd, n_layer,
  5621. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  5622. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  5623. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  5624. ggml_graph_compute_helper(ctx->work_buffer, &gf, /*n_threads*/ 1);
  5625. ggml_free(cpy_ctx);
  5626. }
  5627. ctx->kv_self.n = kv_ntok;
  5628. }
  5629. const size_t nread = inp - src;
  5630. const size_t max_size = llama_get_state_size(ctx);
  5631. GGML_ASSERT(nread <= max_size);
  5632. return nread;
  5633. }
  5634. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  5635. llama_file file(path_session, "rb");
  5636. // sanity checks
  5637. {
  5638. const uint32_t magic = file.read_u32();
  5639. const uint32_t version = file.read_u32();
  5640. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  5641. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  5642. return false;
  5643. }
  5644. llama_hparams session_hparams;
  5645. file.read_raw(&session_hparams, sizeof(llama_hparams));
  5646. if (session_hparams != ctx->model.hparams) {
  5647. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  5648. return false;
  5649. }
  5650. }
  5651. // load the prompt
  5652. {
  5653. const uint32_t n_token_count = file.read_u32();
  5654. if (n_token_count > n_token_capacity) {
  5655. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  5656. return false;
  5657. }
  5658. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  5659. *n_token_count_out = n_token_count;
  5660. }
  5661. // restore the context state
  5662. {
  5663. const size_t n_state_size_cur = file.size - file.tell();
  5664. const size_t n_state_size_max = llama_get_state_size(ctx);
  5665. if (n_state_size_cur > n_state_size_max) {
  5666. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  5667. return false;
  5668. }
  5669. std::vector<uint8_t> state_data(n_state_size_max);
  5670. file.read_raw(state_data.data(), n_state_size_cur);
  5671. llama_set_state_data(ctx, state_data.data());
  5672. }
  5673. return true;
  5674. }
  5675. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  5676. try {
  5677. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  5678. } catch (const std::exception & err) {
  5679. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  5680. return false;
  5681. }
  5682. }
  5683. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  5684. llama_file file(path_session, "wb");
  5685. file.write_u32(LLAMA_SESSION_MAGIC);
  5686. file.write_u32(LLAMA_SESSION_VERSION);
  5687. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  5688. // save the prompt
  5689. file.write_u32((uint32_t) n_token_count);
  5690. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  5691. // save the context state using stream saving
  5692. llama_data_file_context data_ctx(&file);
  5693. llama_copy_state_data_internal(ctx, &data_ctx);
  5694. return true;
  5695. }
  5696. int llama_eval(
  5697. struct llama_context * ctx,
  5698. const llama_token * tokens,
  5699. int n_tokens,
  5700. int n_past,
  5701. int n_threads) {
  5702. if (!llama_eval_internal(*ctx, tokens, nullptr, n_tokens, n_past, n_threads, nullptr)) {
  5703. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5704. return 1;
  5705. }
  5706. // get a more accurate load time, upon first eval
  5707. // TODO: fix this
  5708. if (!ctx->has_evaluated_once) {
  5709. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  5710. ctx->has_evaluated_once = true;
  5711. }
  5712. return 0;
  5713. }
  5714. int llama_eval_embd(
  5715. struct llama_context * ctx,
  5716. const float * embd,
  5717. int n_tokens,
  5718. int n_past,
  5719. int n_threads) {
  5720. if (!llama_eval_internal(*ctx, nullptr, embd, n_tokens, n_past, n_threads, nullptr)) {
  5721. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5722. return 1;
  5723. }
  5724. // get a more accurate load time, upon first eval
  5725. // TODO: fix this
  5726. if (!ctx->has_evaluated_once) {
  5727. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  5728. ctx->has_evaluated_once = true;
  5729. }
  5730. return 0;
  5731. }
  5732. int llama_eval_export(struct llama_context * ctx, const char * fname) {
  5733. const int n_batch = 1;
  5734. const int n_ctx = 512 - n_batch;
  5735. const std::vector<llama_token> tmp(n_batch, llama_token_bos(ctx));
  5736. if (!llama_eval_internal(*ctx, tmp.data(), nullptr, tmp.size(), n_ctx, 1, fname)) {
  5737. LLAMA_LOG_ERROR("%s: failed to eval\n", __func__);
  5738. return 1;
  5739. }
  5740. return 0;
  5741. }
  5742. float * llama_get_logits(struct llama_context * ctx) {
  5743. return ctx->logits.data();
  5744. }
  5745. float * llama_get_embeddings(struct llama_context * ctx) {
  5746. return ctx->embedding.data();
  5747. }
  5748. const char * llama_token_get_text(const struct llama_context * ctx, llama_token token) {
  5749. return ctx->model.vocab.id_to_token[token].text.c_str();
  5750. }
  5751. float llama_token_get_score(const struct llama_context * ctx, llama_token token) {
  5752. return ctx->model.vocab.id_to_token[token].score;
  5753. }
  5754. llama_token_type llama_token_get_type(const struct llama_context * ctx, llama_token token) {
  5755. return ctx->model.vocab.id_to_token[token].type;
  5756. }
  5757. llama_token llama_token_bos(const struct llama_context * ctx) {
  5758. return ctx->model.vocab.special_bos_id;
  5759. }
  5760. llama_token llama_token_eos(const struct llama_context * ctx) {
  5761. return ctx->model.vocab.special_eos_id;
  5762. }
  5763. llama_token llama_token_nl(const struct llama_context * ctx) {
  5764. return ctx->model.vocab.linefeed_id;
  5765. }
  5766. int llama_tokenize(
  5767. struct llama_context * ctx,
  5768. const char * text,
  5769. int text_len,
  5770. llama_token * tokens,
  5771. int n_max_tokens,
  5772. bool add_bos) {
  5773. return llama_tokenize_with_model(&ctx->model, text, text_len, tokens, n_max_tokens, add_bos);
  5774. }
  5775. int llama_tokenize_with_model(
  5776. const struct llama_model * model,
  5777. const char * text,
  5778. int text_len,
  5779. llama_token * tokens,
  5780. int n_max_tokens,
  5781. bool add_bos) {
  5782. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos);
  5783. if (n_max_tokens < (int) res.size()) {
  5784. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  5785. return -((int) res.size());
  5786. }
  5787. for (size_t i = 0; i < res.size(); i++) {
  5788. tokens[i] = res[i];
  5789. }
  5790. return res.size();
  5791. }
  5792. int llama_token_to_piece(const struct llama_context * ctx, llama_token token, char * buf, int length) {
  5793. return llama_token_to_piece_with_model(&ctx->model, token, buf, length);
  5794. }
  5795. // does not write null-terminator to buf
  5796. int llama_token_to_piece_with_model(const struct llama_model * model, llama_token token, char * buf, int length) {
  5797. if (0 <= token && token < llama_model_n_vocab(model)) {
  5798. if (llama_is_normal_token(model->vocab, token)) {
  5799. std::string result = model->vocab.id_to_token[token].text;
  5800. if (llama_vocab_get_type(model->vocab) == LLAMA_VOCAB_TYPE_SPM) {
  5801. llama_unescape_whitespace(result);
  5802. }
  5803. if (length < (int) result.length()) {
  5804. return -result.length();
  5805. }
  5806. memcpy(buf, result.c_str(), result.length());
  5807. return result.length();
  5808. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  5809. if (length < 3) {
  5810. return -3;
  5811. }
  5812. buf[0] = '\xe2';
  5813. buf[1] = '\x96';
  5814. buf[2] = '\x85';
  5815. return 3;
  5816. } else if (llama_is_control_token(model->vocab, token)) {
  5817. ;
  5818. } else if (llama_is_byte_token(model->vocab, token)) {
  5819. if (length < 1) {
  5820. return -1;
  5821. }
  5822. buf[0] = llama_token_to_byte(model->vocab, token);
  5823. return 1;
  5824. }
  5825. }
  5826. return 0;
  5827. }
  5828. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  5829. struct llama_timings result = {
  5830. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  5831. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  5832. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  5833. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  5834. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  5835. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  5836. /*.n_sample =*/ std::max(1, ctx->n_sample),
  5837. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  5838. /*.n_eval =*/ std::max(1, ctx->n_eval),
  5839. };
  5840. return result;
  5841. }
  5842. void llama_print_timings(struct llama_context * ctx) {
  5843. const llama_timings timings = llama_get_timings(ctx);
  5844. LLAMA_LOG_INFO("\n");
  5845. LLAMA_LOG_INFO("%s: load time = %8.2f ms\n", __func__, timings.t_load_ms);
  5846. LLAMA_LOG_INFO("%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  5847. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  5848. LLAMA_LOG_INFO("%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  5849. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  5850. LLAMA_LOG_INFO("%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  5851. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  5852. LLAMA_LOG_INFO("%s: total time = %8.2f ms\n", __func__, (timings.t_end_ms - timings.t_start_ms));
  5853. }
  5854. void llama_reset_timings(struct llama_context * ctx) {
  5855. ctx->t_start_us = ggml_time_us();
  5856. ctx->t_sample_us = ctx->n_sample = 0;
  5857. ctx->t_eval_us = ctx->n_eval = 0;
  5858. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  5859. }
  5860. const char * llama_print_system_info(void) {
  5861. static std::string s;
  5862. s = "";
  5863. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  5864. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  5865. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  5866. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  5867. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  5868. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  5869. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  5870. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  5871. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  5872. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  5873. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  5874. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  5875. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  5876. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  5877. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  5878. return s.c_str();
  5879. }
  5880. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  5881. fprintf(stream, "\n");
  5882. fprintf(stream, "###########\n");
  5883. fprintf(stream, "# Timings #\n");
  5884. fprintf(stream, "###########\n");
  5885. fprintf(stream, "\n");
  5886. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  5887. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  5888. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  5889. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  5890. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  5891. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  5892. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  5893. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  5894. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  5895. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  5896. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  5897. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  5898. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  5899. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  5900. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  5901. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  5902. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  5903. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  5904. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  5905. }
  5906. // For internal test use
  5907. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  5908. struct llama_context * ctx
  5909. ) {
  5910. return ctx->model.tensors_by_name;
  5911. }
  5912. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  5913. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  5914. g_state.log_callback_user_data = user_data;
  5915. }
  5916. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  5917. va_list args_copy;
  5918. va_copy(args_copy, args);
  5919. char buffer[128];
  5920. int len = vsnprintf(buffer, 128, format, args);
  5921. if (len < 128) {
  5922. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  5923. } else {
  5924. char* buffer2 = new char[len+1];
  5925. vsnprintf(buffer2, len+1, format, args_copy);
  5926. buffer2[len] = 0;
  5927. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  5928. delete[] buffer2;
  5929. }
  5930. va_end(args_copy);
  5931. }
  5932. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  5933. va_list args;
  5934. va_start(args, format);
  5935. llama_log_internal_v(level, format, args);
  5936. va_end(args);
  5937. }
  5938. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  5939. (void) level;
  5940. (void) user_data;
  5941. fputs(text, stderr);
  5942. fflush(stderr);
  5943. }