convert_hf_to_gguf.py 161 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. is_big_endian: bool
  38. endianess: gguf.GGUFEndian
  39. use_temp_file: bool
  40. lazy: bool
  41. model_name: str | None
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. fname_out: Path
  49. gguf_writer: gguf.GGUFWriter
  50. # subclasses should define this!
  51. model_arch: gguf.MODEL_ARCH
  52. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool, use_temp_file: bool, eager: bool,
  53. model_name: str | None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  54. if type(self) is Model:
  55. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  56. self.dir_model = dir_model
  57. self.ftype = ftype
  58. self.is_big_endian = is_big_endian
  59. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  60. self.use_temp_file = use_temp_file
  61. self.lazy = not eager
  62. self.model_name = model_name
  63. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  64. self.is_safetensors = len(self.part_names) > 0
  65. if not self.is_safetensors:
  66. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  67. self.hparams = Model.load_hparams(self.dir_model)
  68. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  69. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  70. self.tensor_names = None
  71. if self.ftype == gguf.LlamaFileType.GUESSED:
  72. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  73. _, first_tensor = next(self.get_tensors())
  74. if first_tensor.dtype == torch.float16:
  75. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  76. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  77. else:
  78. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  79. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  80. ftype_up: str = self.ftype.name.partition("_")[2].upper()
  81. ftype_lw: str = ftype_up.lower()
  82. # allow templating the file name with the output ftype, useful with the "auto" ftype
  83. self.fname_out = fname_out.parent / fname_out.name.format(ftype_lw, outtype=ftype_lw, ftype=ftype_lw, OUTTYPE=ftype_up, FTYPE=ftype_up)
  84. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  85. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  86. @classmethod
  87. def __init_subclass__(cls):
  88. # can't use an abstract property, because overriding it without type errors
  89. # would require using decorated functions instead of simply defining the property
  90. if "model_arch" not in cls.__dict__:
  91. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  92. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  93. key = next((k for k in keys if k in self.hparams), None)
  94. if key is not None:
  95. return self.hparams[key]
  96. if optional:
  97. return None
  98. raise KeyError(f"could not find any of: {keys}")
  99. def set_vocab(self):
  100. self._set_vocab_gpt2()
  101. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  102. tensor_names_from_parts: set[str] = set()
  103. if len(self.part_names) > 1:
  104. self.tensor_names = set()
  105. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  106. index_name += ".index.json"
  107. logger.info(f"gguf: loading model weight map from '{index_name}'")
  108. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  109. index: dict[str, Any] = json.load(f)
  110. weight_map = index.get("weight_map")
  111. if weight_map is None or not isinstance(weight_map, dict):
  112. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  113. self.tensor_names.update(weight_map.keys())
  114. else:
  115. self.tensor_names = tensor_names_from_parts
  116. for part_name in self.part_names:
  117. logger.info(f"gguf: loading model part '{part_name}'")
  118. ctx: ContextManager[Any]
  119. if self.is_safetensors:
  120. from safetensors import safe_open
  121. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  122. else:
  123. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  124. with ctx as model_part:
  125. tensor_names_from_parts.update(model_part.keys())
  126. for name in model_part.keys():
  127. if self.is_safetensors:
  128. if self.lazy:
  129. data = model_part.get_slice(name)
  130. data = LazyTorchTensor.from_safetensors_slice(data)
  131. else:
  132. data = model_part.get_tensor(name)
  133. else:
  134. data = model_part[name]
  135. if self.lazy:
  136. data = LazyTorchTensor.from_eager(data)
  137. yield name, data
  138. # only verify tensor name presence; it doesn't matter if they are not in the right files
  139. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  140. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  141. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  142. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  143. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  144. name: str = gguf.TENSOR_NAMES[key]
  145. if "{bid}" in name:
  146. assert bid is not None
  147. name = name.format(bid=bid)
  148. return name + suffix
  149. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  150. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  151. return False
  152. key_name: str = gguf.TENSOR_NAMES[key]
  153. if "{bid}" in key_name:
  154. if bid is None:
  155. return False
  156. key_name = key_name.format(bid=bid)
  157. else:
  158. if bid is not None:
  159. return False
  160. return name == (key_name + suffix)
  161. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  162. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  163. if new_name is None:
  164. raise ValueError(f"Can not map tensor {name!r}")
  165. return new_name
  166. def set_gguf_parameters(self):
  167. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  168. self.gguf_writer.add_block_count(self.block_count)
  169. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  170. self.gguf_writer.add_context_length(n_ctx)
  171. logger.info(f"gguf: context length = {n_ctx}")
  172. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  173. self.gguf_writer.add_embedding_length(n_embd)
  174. logger.info(f"gguf: embedding length = {n_embd}")
  175. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  176. self.gguf_writer.add_feed_forward_length(n_ff)
  177. logger.info(f"gguf: feed forward length = {n_ff}")
  178. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  179. self.gguf_writer.add_head_count(n_head)
  180. logger.info(f"gguf: head count = {n_head}")
  181. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  182. self.gguf_writer.add_head_count_kv(n_head_kv)
  183. logger.info(f"gguf: key-value head count = {n_head_kv}")
  184. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  185. self.gguf_writer.add_rope_freq_base(rope_theta)
  186. logger.info(f"gguf: rope theta = {rope_theta}")
  187. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  188. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  189. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  190. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  191. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  192. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  193. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  194. self.gguf_writer.add_expert_count(n_experts)
  195. logger.info(f"gguf: expert count = {n_experts}")
  196. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  197. self.gguf_writer.add_expert_used_count(n_experts_used)
  198. logger.info(f"gguf: experts used count = {n_experts_used}")
  199. self.gguf_writer.add_file_type(self.ftype)
  200. logger.info(f"gguf: file type = {self.ftype}")
  201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  202. del bid # unused
  203. return [(self.map_tensor_name(name), data_torch)]
  204. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  205. del name, new_name, bid, n_dims # unused
  206. return False
  207. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. def write_tensors(self):
  211. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  212. for name, data_torch in self.get_tensors():
  213. # we don't need these
  214. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  215. continue
  216. old_dtype = data_torch.dtype
  217. # convert any unsupported data types to float32
  218. if data_torch.dtype not in (torch.float16, torch.float32):
  219. data_torch = data_torch.to(torch.float32)
  220. # use the first number-like part of the tensor name as the block id
  221. bid = None
  222. for part in name.split("."):
  223. if part.isdecimal():
  224. bid = int(part)
  225. break
  226. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  227. data: np.ndarray # type hint
  228. n_dims = len(data.shape)
  229. data_dtype = data.dtype
  230. data_qtype: gguf.GGMLQuantizationType | None = None
  231. # when both are True, f32 should win
  232. extra_f32 = self.extra_f32_tensors(name, new_name, bid, n_dims)
  233. extra_f16 = self.extra_f16_tensors(name, new_name, bid, n_dims)
  234. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  235. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  236. extra_f32 = any(cond for cond in (
  237. extra_f32,
  238. n_dims == 1,
  239. new_name.endswith("_norm.weight"),
  240. ))
  241. # Some tensor types are always in float32
  242. extra_f32 = extra_f32 or any(self.match_model_tensor_name(new_name, key, bid) for key in (
  243. gguf.MODEL_TENSOR.FFN_GATE_INP,
  244. gguf.MODEL_TENSOR.POS_EMBD,
  245. gguf.MODEL_TENSOR.TOKEN_TYPES,
  246. ))
  247. # if f16 desired, convert any float32 2-dim weight tensors to float16
  248. extra_f16 = any(cond for cond in (
  249. extra_f16,
  250. (name.endswith(".weight") and n_dims >= 2),
  251. ))
  252. if self.ftype != gguf.LlamaFileType.ALL_F32 and extra_f16 and not extra_f32:
  253. if self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  254. data = gguf.quantize_bf16(data)
  255. assert data.dtype == np.int16
  256. data_qtype = gguf.GGMLQuantizationType.BF16
  257. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0 and gguf.can_quantize_to_q8_0(data):
  258. data = gguf.quantize_q8_0(data)
  259. assert data.dtype == np.uint8
  260. data_qtype = gguf.GGMLQuantizationType.Q8_0
  261. else: # default to float16 for quantized tensors
  262. if data_dtype != np.float16:
  263. data = data.astype(np.float16)
  264. data_qtype = gguf.GGMLQuantizationType.F16
  265. if data_qtype is None: # by default, convert to float32
  266. if data_dtype != np.float32:
  267. data = data.astype(np.float32)
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  270. # reverse shape to make it similar to the internal ggml dimension order
  271. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  272. # n_dims is implicit in the shape
  273. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  274. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  275. def write(self):
  276. self.write_tensors()
  277. self.gguf_writer.write_header_to_file(self.fname_out)
  278. self.gguf_writer.write_kv_data_to_file()
  279. self.gguf_writer.write_tensors_to_file(progress=True)
  280. self.gguf_writer.close()
  281. def write_vocab(self):
  282. if len(self.gguf_writer.tensors) != 1:
  283. raise ValueError('Splitting the vocabulary is not supported')
  284. self.gguf_writer.write_header_to_file(self.fname_out)
  285. self.gguf_writer.write_kv_data_to_file()
  286. self.gguf_writer.close()
  287. @staticmethod
  288. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  289. part_names: list[str] = []
  290. for filename in os.listdir(dir_model):
  291. if filename.startswith(prefix) and filename.endswith(suffix):
  292. part_names.append(filename)
  293. part_names.sort()
  294. return part_names
  295. @staticmethod
  296. def load_hparams(dir_model: Path):
  297. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  298. return json.load(f)
  299. @classmethod
  300. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  301. assert names
  302. def func(modelcls: AnyModel) -> AnyModel:
  303. for name in names:
  304. cls._model_classes[name] = modelcls
  305. return modelcls
  306. return func
  307. @classmethod
  308. def from_model_architecture(cls, arch: str) -> type[Model]:
  309. try:
  310. return cls._model_classes[arch]
  311. except KeyError:
  312. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  313. def does_token_look_special(self, token: str | bytes) -> bool:
  314. if isinstance(token, (bytes, bytearray)):
  315. token_text = token.decode(encoding="utf-8")
  316. elif isinstance(token, memoryview):
  317. token_text = token.tobytes().decode(encoding="utf-8")
  318. else:
  319. token_text = token
  320. # Some models mark some added tokens which ought to be control tokens as not special.
  321. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  322. seems_special = token_text in (
  323. "<pad>", # deepseek-coder
  324. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  325. )
  326. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  327. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  328. # TODO: should these be marked as UNUSED instead? (maybe not)
  329. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  330. return seems_special
  331. # used for GPT-2 BPE and WordPiece vocabs
  332. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  333. tokens: list[str] = []
  334. toktypes: list[int] = []
  335. from transformers import AutoTokenizer
  336. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  337. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  338. assert max(tokenizer.vocab.values()) < vocab_size
  339. tokpre = self.get_vocab_base_pre(tokenizer)
  340. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  341. added_vocab = tokenizer.get_added_vocab()
  342. for i in range(vocab_size):
  343. if i not in reverse_vocab:
  344. tokens.append(f"[PAD{i}]")
  345. toktypes.append(gguf.TokenType.UNUSED)
  346. else:
  347. token: str = reverse_vocab[i]
  348. if token in added_vocab:
  349. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  350. toktypes.append(gguf.TokenType.CONTROL)
  351. else:
  352. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  353. toktypes.append(gguf.TokenType.USER_DEFINED)
  354. else:
  355. toktypes.append(gguf.TokenType.NORMAL)
  356. tokens.append(token)
  357. return tokens, toktypes, tokpre
  358. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  359. # do not modify it manually!
  360. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  361. # Marker: Start get_vocab_base_pre
  362. def get_vocab_base_pre(self, tokenizer) -> str:
  363. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  364. # is specific for the BPE pre-tokenizer used by the model
  365. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  366. # use in llama.cpp to implement the same pre-tokenizer
  367. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  368. chktok = tokenizer.encode(chktxt)
  369. chkhsh = sha256(str(chktok).encode()).hexdigest()
  370. logger.debug(f"chktok: {chktok}")
  371. logger.debug(f"chkhsh: {chkhsh}")
  372. res = None
  373. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  374. # or pull the latest version of the model from Huggingface
  375. # don't edit the hashes manually!
  376. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  377. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  378. res = "llama-bpe"
  379. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  380. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  381. res = "deepseek-llm"
  382. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  383. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  384. res = "deepseek-coder"
  385. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  386. # ref: https://huggingface.co/tiiuae/falcon-7b
  387. res = "falcon"
  388. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  389. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  390. res = "bert-bge"
  391. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  392. # ref: https://huggingface.co/mosaicml/mpt-7b
  393. res = "mpt"
  394. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  395. # ref: https://huggingface.co/bigcode/starcoder2-3b
  396. res = "starcoder"
  397. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  398. # ref: https://huggingface.co/openai-community/gpt2
  399. res = "gpt-2"
  400. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  401. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  402. res = "stablelm2"
  403. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  404. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  405. res = "refact"
  406. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  407. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  408. res = "command-r"
  409. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  410. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  411. res = "qwen2"
  412. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  413. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  414. res = "olmo"
  415. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  416. # ref: https://huggingface.co/databricks/dbrx-base
  417. res = "dbrx"
  418. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  419. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  420. res = "jina-v2-en"
  421. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  422. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  423. res = "jina-v2-es"
  424. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  425. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  426. res = "jina-v2-de"
  427. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  428. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  429. res = "smaug-bpe"
  430. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  431. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  432. res = "poro-chat"
  433. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  434. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  435. res = "jina-v2-code"
  436. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  437. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  438. res = "chatglm-bpe"
  439. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  440. # ref: https://huggingface.co/LumiOpen/Viking-7B
  441. res = "viking"
  442. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  443. # ref: https://huggingface.co/core42/jais-13b
  444. res = "jais"
  445. if res is None:
  446. logger.warning("\n")
  447. logger.warning("**************************************************************************************")
  448. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  449. logger.warning("** There are 2 possible reasons for this:")
  450. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  451. logger.warning("** - the pre-tokenization config has changed upstream")
  452. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  453. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  454. logger.warning("**")
  455. logger.warning(f"** chkhsh: {chkhsh}")
  456. logger.warning("**************************************************************************************")
  457. logger.warning("\n")
  458. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  459. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  460. logger.debug(f"chkhsh: {chkhsh}")
  461. return res
  462. # Marker: End get_vocab_base_pre
  463. def _set_vocab_gpt2(self) -> None:
  464. tokens, toktypes, tokpre = self.get_vocab_base()
  465. self.gguf_writer.add_tokenizer_model("gpt2")
  466. self.gguf_writer.add_tokenizer_pre(tokpre)
  467. self.gguf_writer.add_token_list(tokens)
  468. self.gguf_writer.add_token_types(toktypes)
  469. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  470. special_vocab.add_to_gguf(self.gguf_writer)
  471. def _set_vocab_qwen(self):
  472. dir_model = self.dir_model
  473. hparams = self.hparams
  474. tokens: list[str] = []
  475. toktypes: list[int] = []
  476. from transformers import AutoTokenizer
  477. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  478. vocab_size = hparams["vocab_size"]
  479. assert max(tokenizer.get_vocab().values()) < vocab_size
  480. tokpre = self.get_vocab_base_pre(tokenizer)
  481. merges = []
  482. vocab = {}
  483. mergeable_ranks = tokenizer.mergeable_ranks
  484. for token, rank in mergeable_ranks.items():
  485. vocab[QwenModel.token_bytes_to_string(token)] = rank
  486. if len(token) == 1:
  487. continue
  488. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  489. assert len(merged) == 2
  490. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  491. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  492. added_vocab = tokenizer.special_tokens
  493. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  494. for i in range(vocab_size):
  495. if i not in reverse_vocab:
  496. tokens.append(f"[PAD{i}]")
  497. toktypes.append(gguf.TokenType.UNUSED)
  498. elif reverse_vocab[i] in added_vocab:
  499. tokens.append(reverse_vocab[i])
  500. toktypes.append(gguf.TokenType.CONTROL)
  501. else:
  502. tokens.append(reverse_vocab[i])
  503. toktypes.append(gguf.TokenType.NORMAL)
  504. self.gguf_writer.add_tokenizer_model("gpt2")
  505. self.gguf_writer.add_tokenizer_pre(tokpre)
  506. self.gguf_writer.add_token_list(tokens)
  507. self.gguf_writer.add_token_types(toktypes)
  508. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  509. special_vocab.merges = merges
  510. # only add special tokens when they were not already loaded from config.json
  511. if len(special_vocab.special_token_ids) == 0:
  512. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  513. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  514. # this one is usually not in config.json anyway
  515. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  516. special_vocab.add_to_gguf(self.gguf_writer)
  517. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  518. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  519. self.gguf_writer.add_tokenizer_model("llama")
  520. self.gguf_writer.add_tokenizer_pre("default")
  521. self.gguf_writer.add_token_list(tokens)
  522. self.gguf_writer.add_token_scores(scores)
  523. self.gguf_writer.add_token_types(toktypes)
  524. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  525. special_vocab.add_to_gguf(self.gguf_writer)
  526. def _create_vocab_sentencepiece(self):
  527. from sentencepiece import SentencePieceProcessor
  528. tokenizer_path = self.dir_model / 'tokenizer.model'
  529. if not tokenizer_path.is_file():
  530. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  531. tokenizer = SentencePieceProcessor()
  532. tokenizer.LoadFromFile(str(tokenizer_path))
  533. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  534. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  535. scores: list[float] = [-10000.0] * vocab_size
  536. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  537. for token_id in range(tokenizer.vocab_size()):
  538. piece = tokenizer.IdToPiece(token_id)
  539. text = piece.encode("utf-8")
  540. score = tokenizer.GetScore(token_id)
  541. toktype = SentencePieceTokenTypes.NORMAL
  542. if tokenizer.IsUnknown(token_id):
  543. toktype = SentencePieceTokenTypes.UNKNOWN
  544. elif tokenizer.IsControl(token_id):
  545. toktype = SentencePieceTokenTypes.CONTROL
  546. elif tokenizer.IsUnused(token_id):
  547. toktype = SentencePieceTokenTypes.UNUSED
  548. elif tokenizer.IsByte(token_id):
  549. toktype = SentencePieceTokenTypes.BYTE
  550. tokens[token_id] = text
  551. scores[token_id] = score
  552. toktypes[token_id] = toktype
  553. added_tokens_file = self.dir_model / 'added_tokens.json'
  554. if added_tokens_file.is_file():
  555. with open(added_tokens_file, "r", encoding="utf-8") as f:
  556. added_tokens_json = json.load(f)
  557. for key in added_tokens_json:
  558. token_id = added_tokens_json[key]
  559. if (token_id >= vocab_size):
  560. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  561. continue
  562. tokens[token_id] = key.encode("utf-8")
  563. scores[token_id] = -1000.0
  564. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  565. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  566. if tokenizer_config_file.is_file():
  567. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  568. tokenizer_config_json = json.load(f)
  569. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  570. for token_id, token_data in added_tokens_decoder.items():
  571. token_id = int(token_id)
  572. token: str = token_data["content"]
  573. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  574. assert tokens[token_id] == token.encode("utf-8")
  575. if token_data.get("special") or self.does_token_look_special(token):
  576. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  577. else:
  578. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  579. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  580. scores[token_id] = -1000.0
  581. tokens[token_id] = token.encode("utf-8")
  582. if vocab_size > len(tokens):
  583. pad_count = vocab_size - len(tokens)
  584. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  585. for i in range(1, pad_count + 1):
  586. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  587. scores.append(-1000.0)
  588. toktypes.append(SentencePieceTokenTypes.UNUSED)
  589. return tokens, scores, toktypes
  590. def _set_vocab_llama_hf(self):
  591. vocab = gguf.LlamaHfVocab(self.dir_model)
  592. tokens = []
  593. scores = []
  594. toktypes = []
  595. for text, score, toktype in vocab.all_tokens():
  596. tokens.append(text)
  597. scores.append(score)
  598. toktypes.append(toktype)
  599. assert len(tokens) == vocab.vocab_size
  600. self.gguf_writer.add_tokenizer_model("llama")
  601. self.gguf_writer.add_tokenizer_pre("default")
  602. self.gguf_writer.add_token_list(tokens)
  603. self.gguf_writer.add_token_scores(scores)
  604. self.gguf_writer.add_token_types(toktypes)
  605. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  606. special_vocab.add_to_gguf(self.gguf_writer)
  607. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  608. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  609. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  610. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  611. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  612. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  613. assert field # tokenizer model
  614. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  615. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  616. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  617. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  618. assert field # token list
  619. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  620. if model_name == "llama-spm":
  621. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  622. assert field # token scores
  623. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  624. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  625. assert field # token types
  626. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  627. if model_name != "llama-spm":
  628. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  629. assert field # token merges
  630. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  631. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  632. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  633. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  634. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  635. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  636. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  637. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  638. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  639. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  640. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  641. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  642. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  643. @Model.register("GPTNeoXForCausalLM")
  644. class GPTNeoXModel(Model):
  645. model_arch = gguf.MODEL_ARCH.GPTNEOX
  646. def set_gguf_parameters(self):
  647. block_count = self.hparams["num_hidden_layers"]
  648. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  649. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  650. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  651. self.gguf_writer.add_block_count(block_count)
  652. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  653. self.gguf_writer.add_rope_dimension_count(
  654. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  655. )
  656. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  657. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  658. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  660. del bid # unused
  661. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  662. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  663. tensors: list[tuple[str, Tensor]] = []
  664. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  665. # Map bloom-style qkv_linear to gpt-style qkv_linear
  666. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  667. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  668. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  669. data_torch = torch.cat(
  670. (
  671. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  672. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  673. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  674. ),
  675. dim=0,
  676. )
  677. logger.info("re-format attention.linear_qkv.weight")
  678. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  679. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  680. data_torch = torch.cat(
  681. (
  682. qkv_bias[:, 0, :].reshape((n_embed,)),
  683. qkv_bias[:, 1, :].reshape((n_embed,)),
  684. qkv_bias[:, 2, :].reshape((n_embed,)),
  685. ),
  686. dim=0,
  687. )
  688. logger.info("re-format attention.linear_qkv.bias")
  689. tensors.append((self.map_tensor_name(name), data_torch))
  690. return tensors
  691. @Model.register("BloomForCausalLM")
  692. class BloomModel(Model):
  693. model_arch = gguf.MODEL_ARCH.BLOOM
  694. def set_gguf_parameters(self):
  695. self.gguf_writer.add_name("Bloom")
  696. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  697. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  698. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  699. self.gguf_writer.add_embedding_length(n_embed)
  700. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  701. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  702. self.gguf_writer.add_head_count(n_head)
  703. self.gguf_writer.add_head_count_kv(n_head)
  704. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  705. self.gguf_writer.add_file_type(self.ftype)
  706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  707. del bid # unused
  708. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  709. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  710. name = re.sub(r'transformer\.', '', name)
  711. tensors: list[tuple[str, Tensor]] = []
  712. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  713. # Map bloom-style qkv_linear to gpt-style qkv_linear
  714. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  715. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  716. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  717. data_torch = torch.cat(
  718. (
  719. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  720. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  721. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  722. ),
  723. dim=0,
  724. )
  725. logger.info("re-format attention.linear_qkv.weight")
  726. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  727. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  728. data_torch = torch.cat(
  729. (
  730. qkv_bias[:, 0, :].reshape((n_embed,)),
  731. qkv_bias[:, 1, :].reshape((n_embed,)),
  732. qkv_bias[:, 2, :].reshape((n_embed,)),
  733. ),
  734. dim=0,
  735. )
  736. logger.info("re-format attention.linear_qkv.bias")
  737. tensors.append((self.map_tensor_name(name), data_torch))
  738. if name == "word_embeddings.weight":
  739. assert self.tensor_names is not None
  740. # TODO: tie them at runtime, don't duplicate in the model file
  741. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  742. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  743. return tensors
  744. @Model.register("MPTForCausalLM")
  745. class MPTModel(Model):
  746. model_arch = gguf.MODEL_ARCH.MPT
  747. def set_vocab(self):
  748. try:
  749. self._set_vocab_gpt2()
  750. except Exception:
  751. # Fallback for SEA-LION model
  752. self._set_vocab_sentencepiece()
  753. self.gguf_writer.add_add_bos_token(False)
  754. self.gguf_writer.add_pad_token_id(3)
  755. self.gguf_writer.add_eos_token_id(1)
  756. self.gguf_writer.add_unk_token_id(0)
  757. def set_gguf_parameters(self):
  758. block_count = self.hparams["n_layers"]
  759. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  760. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  761. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  762. self.gguf_writer.add_block_count(block_count)
  763. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  764. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  765. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  766. self.gguf_writer.add_head_count_kv(kv_n_heads)
  767. self.gguf_writer.add_layer_norm_eps(1e-5)
  768. if self.hparams["attn_config"]["clip_qkv"] is not None:
  769. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  770. if self.hparams["attn_config"]["alibi"]:
  771. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  772. else:
  773. self.gguf_writer.add_max_alibi_bias(0.0)
  774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  775. del bid # unused
  776. if "scales" in name:
  777. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  778. new_name = new_name.replace("scales", "act.scales")
  779. else:
  780. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  781. return [(new_name, data_torch)]
  782. @Model.register("OrionForCausalLM")
  783. class OrionModel(Model):
  784. model_arch = gguf.MODEL_ARCH.ORION
  785. def set_vocab(self):
  786. self._set_vocab_sentencepiece()
  787. def set_gguf_parameters(self):
  788. block_count = self.hparams["num_hidden_layers"]
  789. head_count = self.hparams["num_attention_heads"]
  790. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  791. hf_repo = self.hparams.get("_name_or_path", "")
  792. ctx_length = 0
  793. if "max_sequence_length" in self.hparams:
  794. ctx_length = self.hparams["max_sequence_length"]
  795. elif "max_position_embeddings" in self.hparams:
  796. ctx_length = self.hparams["max_position_embeddings"]
  797. elif "model_max_length" in self.hparams:
  798. ctx_length = self.hparams["model_max_length"]
  799. else:
  800. raise ValueError("gguf: can not find ctx length parameter.")
  801. self.gguf_writer.add_file_type(self.ftype)
  802. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  803. self.gguf_writer.add_source_hf_repo(hf_repo)
  804. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  805. self.gguf_writer.add_context_length(ctx_length)
  806. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  807. self.gguf_writer.add_block_count(block_count)
  808. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  809. self.gguf_writer.add_head_count(head_count)
  810. self.gguf_writer.add_head_count_kv(head_count_kv)
  811. # note: config provides rms norm but it is actually layer norm
  812. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  813. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  814. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  815. class BaichuanModel(Model):
  816. model_arch = gguf.MODEL_ARCH.BAICHUAN
  817. def set_vocab(self):
  818. self._set_vocab_sentencepiece()
  819. def set_gguf_parameters(self):
  820. block_count = self.hparams["num_hidden_layers"]
  821. head_count = self.hparams["num_attention_heads"]
  822. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  823. hf_repo = self.hparams.get("_name_or_path", "")
  824. ctx_length = 0
  825. if "max_sequence_length" in self.hparams:
  826. ctx_length = self.hparams["max_sequence_length"]
  827. elif "max_position_embeddings" in self.hparams:
  828. ctx_length = self.hparams["max_position_embeddings"]
  829. elif "model_max_length" in self.hparams:
  830. ctx_length = self.hparams["model_max_length"]
  831. else:
  832. raise ValueError("gguf: can not find ctx length parameter.")
  833. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  834. self.gguf_writer.add_source_hf_repo(hf_repo)
  835. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  836. self.gguf_writer.add_context_length(ctx_length)
  837. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  838. self.gguf_writer.add_block_count(block_count)
  839. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  840. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  841. self.gguf_writer.add_head_count(head_count)
  842. self.gguf_writer.add_head_count_kv(head_count_kv)
  843. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  844. self.gguf_writer.add_file_type(self.ftype)
  845. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  846. if self.hparams["rope_scaling"].get("type") == "linear":
  847. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  848. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  849. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  850. head_count = self.hparams["num_attention_heads"]
  851. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  852. tensors: list[tuple[str, Tensor]] = []
  853. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  854. logger.info(f"Unpacking and permuting layer {bid}")
  855. tensors = [
  856. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  857. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  858. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  859. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  860. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  861. self._reverse_hf_part(data_torch, 2)),
  862. ]
  863. else:
  864. tensors = [(self.map_tensor_name(name), data_torch)]
  865. return tensors
  866. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  867. if n_kv_head is not None and n_head != n_kv_head:
  868. n_head //= n_kv_head
  869. return (
  870. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  871. .swapaxes(1, 2)
  872. .reshape(weights.shape)
  873. )
  874. def _reverse_hf_permute_part(
  875. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  876. ) -> Tensor:
  877. r = weights.shape[0] // 3
  878. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  879. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  880. r = weights.shape[0] // 3
  881. return weights[r * n_part:r * n_part + r, ...]
  882. @Model.register("XverseForCausalLM")
  883. class XverseModel(Model):
  884. model_arch = gguf.MODEL_ARCH.XVERSE
  885. def set_vocab(self):
  886. assert (self.dir_model / "tokenizer.json").is_file()
  887. dir_model = self.dir_model
  888. hparams = self.hparams
  889. tokens: list[bytes] = []
  890. toktypes: list[int] = []
  891. from transformers import AutoTokenizer
  892. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  893. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  894. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  895. # because vocab_size is the count of items, and indexes start at 0.
  896. max_vocab_index = max(tokenizer.get_vocab().values())
  897. if max_vocab_index >= vocab_size:
  898. raise ValueError("Vocabulary size exceeds expected maximum size.")
  899. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  900. added_vocab = tokenizer.get_added_vocab()
  901. for token_id in range(vocab_size):
  902. token_text = reverse_vocab[token_id].encode('utf-8')
  903. # replace "\x00" to string with length > 0
  904. if token_text == b"\x00":
  905. toktype = gguf.TokenType.BYTE # special
  906. token_text = f"<{token_text}>".encode('utf-8')
  907. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  908. toktype = gguf.TokenType.BYTE # special
  909. elif reverse_vocab[token_id] in added_vocab:
  910. if tokenizer.added_tokens_decoder[token_id].special:
  911. toktype = gguf.TokenType.CONTROL
  912. else:
  913. toktype = gguf.TokenType.USER_DEFINED
  914. else:
  915. toktype = gguf.TokenType.NORMAL
  916. tokens.append(token_text)
  917. toktypes.append(toktype)
  918. self.gguf_writer.add_tokenizer_model("llama")
  919. self.gguf_writer.add_tokenizer_pre("default")
  920. self.gguf_writer.add_token_list(tokens)
  921. self.gguf_writer.add_token_types(toktypes)
  922. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  923. special_vocab.add_to_gguf(self.gguf_writer)
  924. def set_gguf_parameters(self):
  925. block_count = self.hparams["num_hidden_layers"]
  926. head_count = self.hparams["num_attention_heads"]
  927. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  928. hf_repo = self.hparams.get("_name_or_path", "")
  929. ctx_length = 0
  930. if "max_sequence_length" in self.hparams:
  931. ctx_length = self.hparams["max_sequence_length"]
  932. elif "max_position_embeddings" in self.hparams:
  933. ctx_length = self.hparams["max_position_embeddings"]
  934. elif "model_max_length" in self.hparams:
  935. ctx_length = self.hparams["model_max_length"]
  936. else:
  937. raise ValueError("gguf: can not find ctx length parameter.")
  938. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  939. self.gguf_writer.add_source_hf_repo(hf_repo)
  940. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  941. self.gguf_writer.add_context_length(ctx_length)
  942. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  943. self.gguf_writer.add_block_count(block_count)
  944. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  945. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  946. self.gguf_writer.add_head_count(head_count)
  947. self.gguf_writer.add_head_count_kv(head_count_kv)
  948. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  949. self.gguf_writer.add_file_type(self.ftype)
  950. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  951. if self.hparams["rope_scaling"].get("type") == "linear":
  952. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  953. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  954. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  955. del bid # unused
  956. head_count = self.hparams["num_attention_heads"]
  957. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  958. # HF models permute some of the tensors, so we need to undo that
  959. if name.endswith("q_proj.weight"):
  960. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  961. if name.endswith("k_proj.weight"):
  962. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  963. return [(self.map_tensor_name(name), data_torch)]
  964. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  965. if n_kv_head is not None and n_head != n_kv_head:
  966. n_head //= n_kv_head
  967. return (
  968. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  969. .swapaxes(1, 2)
  970. .reshape(weights.shape)
  971. )
  972. @Model.register("FalconForCausalLM", "RWForCausalLM")
  973. class FalconModel(Model):
  974. model_arch = gguf.MODEL_ARCH.FALCON
  975. def set_gguf_parameters(self):
  976. block_count = self.hparams.get("num_hidden_layers")
  977. if block_count is None:
  978. block_count = self.hparams["n_layer"] # old name
  979. n_head = self.hparams.get("num_attention_heads")
  980. if n_head is None:
  981. n_head = self.hparams["n_head"] # old name
  982. n_head_kv = self.hparams.get("num_kv_heads")
  983. if n_head_kv is None:
  984. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  985. self.gguf_writer.add_name("Falcon")
  986. self.gguf_writer.add_context_length(2048) # not in config.json
  987. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  988. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  989. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  990. self.gguf_writer.add_block_count(block_count)
  991. self.gguf_writer.add_head_count(n_head)
  992. self.gguf_writer.add_head_count_kv(n_head_kv)
  993. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  994. self.gguf_writer.add_file_type(self.ftype)
  995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  996. del bid # unused
  997. # QKV tensor transform
  998. # The original query_key_value tensor contains n_head_kv "kv groups",
  999. # each consisting of n_head/n_head_kv query weights followed by one key
  1000. # and one value weight (shared by all query heads in the kv group).
  1001. # This layout makes it a big pain to work with in GGML.
  1002. # So we rearrange them here,, so that we have n_head query weights
  1003. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1004. # in contiguous fashion.
  1005. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1006. if "query_key_value" in name:
  1007. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1008. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1009. head_dim = self.hparams["hidden_size"] // n_head
  1010. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1011. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1012. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1013. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1014. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1015. return [(self.map_tensor_name(name), data_torch)]
  1016. @Model.register("GPTBigCodeForCausalLM")
  1017. class StarCoderModel(Model):
  1018. model_arch = gguf.MODEL_ARCH.STARCODER
  1019. def set_gguf_parameters(self):
  1020. block_count = self.hparams["n_layer"]
  1021. self.gguf_writer.add_name("StarCoder")
  1022. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1023. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1024. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1025. self.gguf_writer.add_block_count(block_count)
  1026. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1027. self.gguf_writer.add_head_count_kv(1)
  1028. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1029. self.gguf_writer.add_file_type(self.ftype)
  1030. @Model.register("GPTRefactForCausalLM")
  1031. class RefactModel(Model):
  1032. model_arch = gguf.MODEL_ARCH.REFACT
  1033. def set_vocab(self):
  1034. super().set_vocab()
  1035. # TODO: how to determine special FIM tokens automatically?
  1036. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1037. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1038. special_vocab._set_special_token("prefix", 1)
  1039. special_vocab._set_special_token("suffix", 3)
  1040. special_vocab._set_special_token("middle", 2)
  1041. special_vocab.add_to_gguf(self.gguf_writer)
  1042. def set_gguf_parameters(self):
  1043. hidden_dim = self.hparams["n_embd"]
  1044. inner_dim = 4 * hidden_dim
  1045. hidden_dim = int(2 * inner_dim / 3)
  1046. multiple_of = 256
  1047. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1048. block_count = self.hparams["n_layer"]
  1049. self.gguf_writer.add_name("Refact")
  1050. # refact uses Alibi. So this is from config.json which might be used by training.
  1051. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1052. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1053. self.gguf_writer.add_feed_forward_length(ff_dim)
  1054. self.gguf_writer.add_block_count(block_count)
  1055. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1056. self.gguf_writer.add_head_count_kv(1)
  1057. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1058. self.gguf_writer.add_file_type(self.ftype)
  1059. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1060. hidden_dim = self.hparams["n_embd"]
  1061. inner_dim = 4 * hidden_dim
  1062. hidden_dim = int(2 * inner_dim / 3)
  1063. multiple_of = 256
  1064. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1065. n_head = self.hparams["n_head"]
  1066. n_head_kv = 1
  1067. head_dim = self.hparams["n_embd"] // n_head
  1068. tensors: list[tuple[str, Tensor]] = []
  1069. if bid is not None:
  1070. if name == f"transformer.h.{bid}.attn.kv.weight":
  1071. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1072. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1073. elif name == f"transformer.h.{bid}.attn.q.weight":
  1074. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1075. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1076. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1077. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1078. if len(tensors) == 0:
  1079. tensors.append((self.map_tensor_name(name), data_torch))
  1080. return tensors
  1081. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1082. class StableLMModel(Model):
  1083. model_arch = gguf.MODEL_ARCH.STABLELM
  1084. def set_vocab(self):
  1085. if (self.dir_model / "tokenizer.json").is_file():
  1086. self._set_vocab_gpt2()
  1087. else:
  1088. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1089. self._set_vocab_qwen()
  1090. def set_gguf_parameters(self):
  1091. hparams = self.hparams
  1092. block_count = hparams["num_hidden_layers"]
  1093. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1094. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1095. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1096. self.gguf_writer.add_block_count(block_count)
  1097. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1098. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1099. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1100. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1101. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1102. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1103. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1104. self.gguf_writer.add_file_type(self.ftype)
  1105. _q_norms: list[dict[str, Tensor]] | None = None
  1106. _k_norms: list[dict[str, Tensor]] | None = None
  1107. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1108. n_head = self.hparams["num_attention_heads"]
  1109. n_kv_head = self.hparams["num_key_value_heads"]
  1110. if name.find("q_layernorm.norms") != -1:
  1111. assert bid is not None
  1112. if self._q_norms is None:
  1113. self._q_norms = [{} for _ in range(self.block_count)]
  1114. self._q_norms[bid][name] = data_torch
  1115. if len(self._q_norms[bid]) >= n_head:
  1116. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1117. else:
  1118. return []
  1119. if name.find("k_layernorm.norms") != -1:
  1120. assert bid is not None
  1121. if self._k_norms is None:
  1122. self._k_norms = [{} for _ in range(self.block_count)]
  1123. self._k_norms[bid][name] = data_torch
  1124. if len(self._k_norms[bid]) >= n_kv_head:
  1125. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1126. else:
  1127. return []
  1128. return [(self.map_tensor_name(name), data_torch)]
  1129. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1130. datas: list[Tensor] = []
  1131. # extract the norms in order
  1132. for xid in range(n_head):
  1133. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1134. datas.append(norms[ename])
  1135. del norms[ename]
  1136. data_torch = torch.stack(datas, dim=0)
  1137. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1138. new_name = self.map_tensor_name(merged_name)
  1139. return [(new_name, data_torch)]
  1140. def write_tensors(self):
  1141. super().write_tensors()
  1142. if self._q_norms is not None or self._k_norms is not None:
  1143. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1144. norms = (
  1145. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1146. ) + (
  1147. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1148. )
  1149. if len(norms) > 0:
  1150. raise ValueError(f"Unprocessed norms: {norms}")
  1151. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1152. class LlamaModel(Model):
  1153. model_arch = gguf.MODEL_ARCH.LLAMA
  1154. def set_vocab(self):
  1155. try:
  1156. self._set_vocab_sentencepiece()
  1157. except FileNotFoundError:
  1158. try:
  1159. self._set_vocab_llama_hf()
  1160. except (FileNotFoundError, TypeError):
  1161. # Llama 3
  1162. self._set_vocab_gpt2()
  1163. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1164. if self.hparams.get("vocab_size", 32000) == 32016:
  1165. special_vocab = gguf.SpecialVocab(
  1166. self.dir_model, load_merges=False,
  1167. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1168. )
  1169. special_vocab._set_special_token("prefix", 32007)
  1170. special_vocab._set_special_token("suffix", 32008)
  1171. special_vocab._set_special_token("middle", 32009)
  1172. special_vocab._set_special_token("eot", 32010)
  1173. special_vocab.add_to_gguf(self.gguf_writer)
  1174. def set_gguf_parameters(self):
  1175. super().set_gguf_parameters()
  1176. hparams = self.hparams
  1177. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1178. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  1179. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1180. if self.hparams["rope_scaling"].get("type") == "linear":
  1181. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1182. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1183. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1184. if tokenizer_config_file.is_file():
  1185. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1186. tokenizer_config_json = json.load(f)
  1187. if "add_prefix_space" in tokenizer_config_json:
  1188. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1189. # Apply to granite small models only
  1190. if self.hparams.get("vocab_size", 32000) == 49152:
  1191. self.gguf_writer.add_add_bos_token(False)
  1192. @staticmethod
  1193. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1194. if n_head_kv is not None and n_head != n_head_kv:
  1195. n_head = n_head_kv
  1196. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1197. .swapaxes(1, 2)
  1198. .reshape(weights.shape))
  1199. _experts: list[dict[str, Tensor]] | None = None
  1200. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1201. n_head = self.hparams["num_attention_heads"]
  1202. n_kv_head = self.hparams.get("num_key_value_heads")
  1203. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1204. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1205. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1206. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1207. # process the experts separately
  1208. if name.find("block_sparse_moe.experts") != -1:
  1209. n_experts = self.hparams["num_local_experts"]
  1210. assert bid is not None
  1211. if self._experts is None:
  1212. self._experts = [{} for _ in range(self.block_count)]
  1213. self._experts[bid][name] = data_torch
  1214. if len(self._experts[bid]) >= n_experts * 3:
  1215. tensors: list[tuple[str, Tensor]] = []
  1216. # merge the experts into a single 3d tensor
  1217. for wid in ["w1", "w2", "w3"]:
  1218. datas: list[Tensor] = []
  1219. for xid in range(n_experts):
  1220. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1221. datas.append(self._experts[bid][ename])
  1222. del self._experts[bid][ename]
  1223. data_torch = torch.stack(datas, dim=0)
  1224. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1225. new_name = self.map_tensor_name(merged_name)
  1226. tensors.append((new_name, data_torch))
  1227. return tensors
  1228. else:
  1229. return []
  1230. return [(self.map_tensor_name(name), data_torch)]
  1231. def write_tensors(self):
  1232. super().write_tensors()
  1233. if self._experts is not None:
  1234. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1235. experts = [k for d in self._experts for k in d.keys()]
  1236. if len(experts) > 0:
  1237. raise ValueError(f"Unprocessed experts: {experts}")
  1238. @Model.register("BitnetForCausalLM")
  1239. class BitnetModel(Model):
  1240. model_arch = gguf.MODEL_ARCH.BITNET
  1241. def set_vocab(self):
  1242. self._set_vocab_sentencepiece()
  1243. def set_gguf_parameters(self):
  1244. super().set_gguf_parameters()
  1245. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1246. self.gguf_writer.add_rope_scaling_factor(1.0)
  1247. def weight_quant(self, weight):
  1248. dtype = weight.dtype
  1249. weight = weight.float()
  1250. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1251. weight = (weight * s).round().clamp(-1, 1) / s
  1252. scale = weight.abs().max().unsqueeze(0)
  1253. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1254. weight = torch.sign(weight).type(dtype)
  1255. return weight.type(dtype), scale.type(torch.float32)
  1256. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1257. new_name = self.map_tensor_name(name)
  1258. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1259. gguf.MODEL_TENSOR.ATTN_Q,
  1260. gguf.MODEL_TENSOR.ATTN_K,
  1261. gguf.MODEL_TENSOR.ATTN_V,
  1262. gguf.MODEL_TENSOR.ATTN_OUT,
  1263. gguf.MODEL_TENSOR.FFN_UP,
  1264. gguf.MODEL_TENSOR.FFN_DOWN,
  1265. gguf.MODEL_TENSOR.FFN_GATE,
  1266. ]):
  1267. # transform weight into 1/0/-1 (in fp32)
  1268. weight_torch, scale_torch = self.weight_quant(data_torch)
  1269. yield (new_name, weight_torch)
  1270. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1271. else:
  1272. yield (new_name, data_torch)
  1273. @Model.register("GrokForCausalLM")
  1274. class GrokModel(Model):
  1275. model_arch = gguf.MODEL_ARCH.GROK
  1276. def set_vocab(self):
  1277. self._set_vocab_sentencepiece()
  1278. def __init__(self, *args, **kwargs):
  1279. super().__init__(*args, **kwargs)
  1280. def set_gguf_parameters(self):
  1281. super().set_gguf_parameters()
  1282. self.gguf_writer.add_name("Grok")
  1283. _experts: list[dict[str, Tensor]] | None = None
  1284. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1285. # process the experts separately
  1286. if name.find(".moe.") != -1:
  1287. n_experts = self.hparams["num_local_experts"]
  1288. assert bid is not None
  1289. if self._experts is None:
  1290. self._experts = [{} for _ in range(self.block_count)]
  1291. self._experts[bid][name] = data_torch
  1292. if len(self._experts[bid]) >= n_experts * 3:
  1293. tensors: list[tuple[str, Tensor]] = []
  1294. # merge the experts into a single 3d tensor
  1295. for wid in ["linear", "linear_1", "linear_v"]:
  1296. datas: list[Tensor] = []
  1297. for xid in range(n_experts):
  1298. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1299. datas.append(self._experts[bid][ename])
  1300. del self._experts[bid][ename]
  1301. data_torch = torch.stack(datas, dim=0)
  1302. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1303. new_name = self.map_tensor_name(merged_name)
  1304. tensors.append((new_name, data_torch))
  1305. return tensors
  1306. else:
  1307. return []
  1308. return [(self.map_tensor_name(name), data_torch)]
  1309. @Model.register("DbrxForCausalLM")
  1310. class DbrxModel(Model):
  1311. model_arch = gguf.MODEL_ARCH.DBRX
  1312. def set_gguf_parameters(self):
  1313. ffn_config = self.hparams["ffn_config"]
  1314. attn_config = self.hparams["attn_config"]
  1315. self.gguf_writer.add_name(self.hparams["model_type"])
  1316. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1317. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1318. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1319. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1320. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1321. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1322. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1323. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1324. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1325. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1326. self.gguf_writer.add_layer_norm_eps(1e-5)
  1327. self.gguf_writer.add_file_type(self.ftype)
  1328. logger.info(f"gguf: file type = {self.ftype}")
  1329. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1330. del bid # unused
  1331. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1332. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1333. n_embd = self.hparams["d_model"]
  1334. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1335. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1336. # But llama.cpp moe graph works differently
  1337. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1338. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1339. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1340. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1341. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1342. experts = False
  1343. for exp_tensor_name in exp_tensor_names.keys():
  1344. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1345. experts = True
  1346. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1347. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1348. data_torch = data_torch.permute(*permute_tensor)
  1349. break
  1350. # map tensor names
  1351. # In MoE models the ffn tensors are typically most of the model weights,
  1352. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1353. # Every other model has the weight names ending in .weight,
  1354. # let's assume that is the convention which is not the case for dbrx:
  1355. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1356. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1357. return [(new_name, data_torch)]
  1358. def extra_f16_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  1359. del name, new_name, bid # unused
  1360. return n_dims > 1
  1361. @Model.register("MiniCPMForCausalLM")
  1362. class MiniCPMModel(Model):
  1363. model_arch = gguf.MODEL_ARCH.MINICPM
  1364. def set_gguf_parameters(self):
  1365. block_count = self.hparams["num_hidden_layers"]
  1366. self.gguf_writer.add_name("MiniCPM")
  1367. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1368. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1369. self.gguf_writer.add_block_count(block_count)
  1370. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1371. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1372. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1373. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1374. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1375. self.gguf_writer.add_file_type(self.ftype)
  1376. def set_vocab(self):
  1377. self._set_vocab_llama_hf()
  1378. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1379. if n_kv_head is not None and n_head != n_kv_head:
  1380. n_head //= n_kv_head
  1381. return (
  1382. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1383. .swapaxes(1, 2)
  1384. .reshape(weights.shape)
  1385. )
  1386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1387. del bid # unused
  1388. n_head = self.hparams["num_attention_heads"]
  1389. n_kv_head = self.hparams.get("num_key_value_heads")
  1390. # HF models permute some of the tensors, so we need to undo that
  1391. if name.endswith(("q_proj.weight")):
  1392. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1393. if name.endswith(("k_proj.weight")):
  1394. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1395. return [(self.map_tensor_name(name), data_torch)]
  1396. @Model.register("QWenLMHeadModel")
  1397. class QwenModel(Model):
  1398. model_arch = gguf.MODEL_ARCH.QWEN
  1399. @staticmethod
  1400. def token_bytes_to_string(b):
  1401. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1402. byte_encoder = bytes_to_unicode()
  1403. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1404. @staticmethod
  1405. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1406. parts = [bytes([b]) for b in token]
  1407. while True:
  1408. min_idx = None
  1409. min_rank = None
  1410. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1411. rank = mergeable_ranks.get(pair[0] + pair[1])
  1412. if rank is not None and (min_rank is None or rank < min_rank):
  1413. min_idx = i
  1414. min_rank = rank
  1415. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1416. break
  1417. assert min_idx is not None
  1418. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1419. return parts
  1420. def set_vocab(self):
  1421. self._set_vocab_qwen()
  1422. def set_gguf_parameters(self):
  1423. self.gguf_writer.add_name("Qwen")
  1424. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1425. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1426. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1427. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1428. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1429. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1430. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1431. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1432. self.gguf_writer.add_file_type(self.ftype)
  1433. @Model.register("Qwen2ForCausalLM")
  1434. class Qwen2Model(Model):
  1435. model_arch = gguf.MODEL_ARCH.QWEN2
  1436. def set_vocab(self):
  1437. try:
  1438. self._set_vocab_sentencepiece()
  1439. except FileNotFoundError:
  1440. self._set_vocab_gpt2()
  1441. @Model.register("Qwen2MoeForCausalLM")
  1442. class Qwen2MoeModel(Model):
  1443. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1444. def set_gguf_parameters(self):
  1445. super().set_gguf_parameters()
  1446. if (n_experts := self.hparams.get("num_experts")) is not None:
  1447. self.gguf_writer.add_expert_count(n_experts)
  1448. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1449. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1450. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1451. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1452. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1453. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1454. _experts: list[dict[str, Tensor]] | None = None
  1455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1456. # process the experts separately
  1457. if name.find("experts") != -1:
  1458. n_experts = self.hparams["num_experts"]
  1459. assert bid is not None
  1460. if self._experts is None:
  1461. self._experts = [{} for _ in range(self.block_count)]
  1462. self._experts[bid][name] = data_torch
  1463. if len(self._experts[bid]) >= n_experts * 3:
  1464. tensors: list[tuple[str, Tensor]] = []
  1465. # merge the experts into a single 3d tensor
  1466. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1467. datas: list[Tensor] = []
  1468. for xid in range(n_experts):
  1469. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1470. datas.append(self._experts[bid][ename])
  1471. del self._experts[bid][ename]
  1472. data_torch = torch.stack(datas, dim=0)
  1473. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1474. new_name = self.map_tensor_name(merged_name)
  1475. tensors.append((new_name, data_torch))
  1476. return tensors
  1477. else:
  1478. return []
  1479. return [(self.map_tensor_name(name), data_torch)]
  1480. def write_tensors(self):
  1481. super().write_tensors()
  1482. if self._experts is not None:
  1483. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1484. experts = [k for d in self._experts for k in d.keys()]
  1485. if len(experts) > 0:
  1486. raise ValueError(f"Unprocessed experts: {experts}")
  1487. @Model.register("GPT2LMHeadModel")
  1488. class GPT2Model(Model):
  1489. model_arch = gguf.MODEL_ARCH.GPT2
  1490. def set_gguf_parameters(self):
  1491. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1492. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1493. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1494. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1495. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1496. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1497. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1498. self.gguf_writer.add_file_type(self.ftype)
  1499. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1500. del bid # unused
  1501. tensors: list[tuple[str, Tensor]] = []
  1502. # we don't need these
  1503. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1504. return tensors
  1505. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1506. data_torch = data_torch.transpose(1, 0)
  1507. new_name = self.map_tensor_name(name)
  1508. tensors.append((new_name, data_torch))
  1509. # note: GPT2 output is tied to (same as) wte in original model
  1510. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1511. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1512. return tensors
  1513. @Model.register("PhiForCausalLM")
  1514. class Phi2Model(Model):
  1515. model_arch = gguf.MODEL_ARCH.PHI2
  1516. def set_gguf_parameters(self):
  1517. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1518. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1519. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1520. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1521. self.gguf_writer.add_name("Phi2")
  1522. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1523. self.gguf_writer.add_embedding_length(n_embd)
  1524. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1525. self.gguf_writer.add_block_count(block_count)
  1526. self.gguf_writer.add_head_count(n_head)
  1527. self.gguf_writer.add_head_count_kv(n_head)
  1528. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1529. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1530. self.gguf_writer.add_file_type(self.ftype)
  1531. self.gguf_writer.add_add_bos_token(False)
  1532. @Model.register("Phi3ForCausalLM")
  1533. class Phi3MiniModel(Model):
  1534. model_arch = gguf.MODEL_ARCH.PHI3
  1535. def set_vocab(self):
  1536. from sentencepiece import SentencePieceProcessor
  1537. tokenizer_path = self.dir_model / 'tokenizer.model'
  1538. if not tokenizer_path.is_file():
  1539. raise ValueError(f'Error: Missing {tokenizer_path}')
  1540. tokenizer = SentencePieceProcessor()
  1541. tokenizer.LoadFromFile(str(tokenizer_path))
  1542. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1543. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1544. scores: list[float] = [-10000.0] * vocab_size
  1545. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1546. for token_id in range(tokenizer.vocab_size()):
  1547. piece = tokenizer.IdToPiece(token_id)
  1548. text = piece.encode("utf-8")
  1549. score = tokenizer.GetScore(token_id)
  1550. toktype = SentencePieceTokenTypes.NORMAL
  1551. if tokenizer.IsUnknown(token_id):
  1552. toktype = SentencePieceTokenTypes.UNKNOWN
  1553. elif tokenizer.IsControl(token_id):
  1554. toktype = SentencePieceTokenTypes.CONTROL
  1555. elif tokenizer.IsUnused(token_id):
  1556. toktype = SentencePieceTokenTypes.UNUSED
  1557. elif tokenizer.IsByte(token_id):
  1558. toktype = SentencePieceTokenTypes.BYTE
  1559. tokens[token_id] = text
  1560. scores[token_id] = score
  1561. toktypes[token_id] = toktype
  1562. added_tokens_file = self.dir_model / 'added_tokens.json'
  1563. if added_tokens_file.is_file():
  1564. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1565. added_tokens_json = json.load(f)
  1566. for key in added_tokens_json:
  1567. token_id = added_tokens_json[key]
  1568. if (token_id >= vocab_size):
  1569. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1570. continue
  1571. tokens[token_id] = key.encode("utf-8")
  1572. scores[token_id] = -1000.0
  1573. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1574. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1575. if tokenizer_config_file.is_file():
  1576. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1577. tokenizer_config_json = json.load(f)
  1578. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1579. for token_id, foken_data in added_tokens_decoder.items():
  1580. token_id = int(token_id)
  1581. token = foken_data["content"].encode("utf-8")
  1582. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1583. assert tokens[token_id] == token
  1584. tokens[token_id] = token
  1585. scores[token_id] = -1000.0
  1586. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1587. if foken_data.get("special"):
  1588. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1589. tokenizer_file = self.dir_model / 'tokenizer.json'
  1590. if tokenizer_file.is_file():
  1591. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1592. tokenizer_json = json.load(f)
  1593. added_tokens = tokenizer_json.get("added_tokens", [])
  1594. for foken_data in added_tokens:
  1595. token_id = int(foken_data["id"])
  1596. token = foken_data["content"].encode("utf-8")
  1597. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1598. assert tokens[token_id] == token
  1599. tokens[token_id] = token
  1600. scores[token_id] = -1000.0
  1601. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1602. if foken_data.get("special"):
  1603. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1604. self.gguf_writer.add_tokenizer_model("llama")
  1605. self.gguf_writer.add_tokenizer_pre("default")
  1606. self.gguf_writer.add_token_list(tokens)
  1607. self.gguf_writer.add_token_scores(scores)
  1608. self.gguf_writer.add_token_types(toktypes)
  1609. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1610. special_vocab.add_to_gguf(self.gguf_writer)
  1611. def set_gguf_parameters(self):
  1612. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1613. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1614. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1615. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1616. rms_eps = self.find_hparam(["rms_norm_eps"])
  1617. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1618. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1619. rope_dims = n_embd // n_head
  1620. self.gguf_writer.add_name("Phi3")
  1621. self.gguf_writer.add_context_length(max_pos_embds)
  1622. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1623. self.gguf_writer.add_embedding_length(n_embd)
  1624. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1625. self.gguf_writer.add_block_count(block_count)
  1626. self.gguf_writer.add_head_count(n_head)
  1627. self.gguf_writer.add_head_count_kv(n_head_kv)
  1628. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1629. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1630. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1631. self.gguf_writer.add_file_type(self.ftype)
  1632. # write rope scaling for long context (128k) model
  1633. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1634. if (rope_scaling is None):
  1635. return
  1636. scale = max_pos_embds / orig_max_pos_embds
  1637. rope_scaling_type = rope_scaling.get('type', '').lower()
  1638. if len(rope_scaling_type) == 0:
  1639. raise KeyError('Missing the required key rope_scaling.type')
  1640. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1641. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1642. elif rope_scaling_type == 'yarn':
  1643. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1644. else:
  1645. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1646. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1647. long_factors = rope_scaling.get('long_factor', None)
  1648. short_factors = rope_scaling.get('short_factor', None)
  1649. if long_factors is None or short_factors is None:
  1650. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1651. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1652. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1653. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1654. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1655. @Model.register("PlamoForCausalLM")
  1656. class PlamoModel(Model):
  1657. model_arch = gguf.MODEL_ARCH.PLAMO
  1658. def set_vocab(self):
  1659. self._set_vocab_sentencepiece()
  1660. def set_gguf_parameters(self):
  1661. hparams = self.hparams
  1662. block_count = hparams["num_hidden_layers"]
  1663. self.gguf_writer.add_name("PLaMo")
  1664. self.gguf_writer.add_context_length(4096) # not in config.json
  1665. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1666. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1667. self.gguf_writer.add_block_count(block_count)
  1668. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1669. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1670. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1671. self.gguf_writer.add_file_type(self.ftype)
  1672. def shuffle_attn_q_weight(self, data_torch):
  1673. assert data_torch.size() == (5120, 5120)
  1674. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1675. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1676. data_torch = torch.reshape(data_torch, (5120, 5120))
  1677. return data_torch
  1678. def shuffle_attn_output_weight(self, data_torch):
  1679. assert data_torch.size() == (5120, 5120)
  1680. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1681. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1682. data_torch = torch.reshape(data_torch, (5120, 5120))
  1683. return data_torch
  1684. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1685. del bid # unused
  1686. new_name = self.map_tensor_name(name)
  1687. # shuffle for broadcasting of gqa in ggml_mul_mat
  1688. if new_name.endswith("attn_q.weight"):
  1689. data_torch = self.shuffle_attn_q_weight(data_torch)
  1690. elif new_name.endswith("attn_output.weight"):
  1691. data_torch = self.shuffle_attn_output_weight(data_torch)
  1692. return [(new_name, data_torch)]
  1693. @Model.register("CodeShellForCausalLM")
  1694. class CodeShellModel(Model):
  1695. model_arch = gguf.MODEL_ARCH.CODESHELL
  1696. def set_gguf_parameters(self):
  1697. block_count = self.hparams["n_layer"]
  1698. self.gguf_writer.add_name("CodeShell")
  1699. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1700. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1701. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1702. self.gguf_writer.add_block_count(block_count)
  1703. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1704. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1705. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1706. self.gguf_writer.add_file_type(self.ftype)
  1707. self.gguf_writer.add_rope_freq_base(10000.0)
  1708. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1709. self.gguf_writer.add_rope_scaling_factor(1.0)
  1710. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1711. del bid # unused
  1712. new_name = self.map_tensor_name(name)
  1713. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1714. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1715. assert self.tensor_names is not None
  1716. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1717. # copy tok_embd.weight to output.weight
  1718. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1719. return tensors
  1720. @Model.register("InternLM2ForCausalLM")
  1721. class InternLM2Model(Model):
  1722. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1723. def set_vocab(self):
  1724. # (TODO): Is there a better way?
  1725. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1726. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1727. # recognized as an empty string in C++.
  1728. from sentencepiece import SentencePieceProcessor
  1729. from sentencepiece import sentencepiece_model_pb2 as model
  1730. tokenizer_path = self.dir_model / 'tokenizer.model'
  1731. tokens: list[bytes] = []
  1732. scores: list[float] = []
  1733. toktypes: list[int] = []
  1734. if not tokenizer_path.is_file():
  1735. logger.error(f'Error: Missing {tokenizer_path}')
  1736. sys.exit(1)
  1737. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1738. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1739. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1740. tokenizer = SentencePieceProcessor()
  1741. tokenizer.LoadFromFile(str(tokenizer_path))
  1742. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1743. for token_id in range(vocab_size):
  1744. piece = tokenizer.IdToPiece(token_id)
  1745. text = piece.encode("utf-8")
  1746. score = tokenizer.GetScore(token_id)
  1747. if text == b"\x00":
  1748. # (TODO): fixme
  1749. # Hack here and replace the \x00 characters.
  1750. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1751. text = "🐉".encode("utf-8")
  1752. toktype = SentencePieceTokenTypes.NORMAL
  1753. if tokenizer.IsUnknown(token_id):
  1754. toktype = SentencePieceTokenTypes.UNKNOWN
  1755. elif tokenizer.IsControl(token_id):
  1756. toktype = SentencePieceTokenTypes.CONTROL
  1757. elif tokenizer.IsUnused(token_id):
  1758. toktype = SentencePieceTokenTypes.UNUSED
  1759. elif tokenizer.IsByte(token_id):
  1760. toktype = SentencePieceTokenTypes.BYTE
  1761. # take care of ununsed raw token
  1762. if piece.startswith('[UNUSED'):
  1763. toktype = SentencePieceTokenTypes.UNUSED
  1764. tokens.append(text)
  1765. scores.append(score)
  1766. toktypes.append(toktype)
  1767. added_tokens_file = self.dir_model / 'added_tokens.json'
  1768. if added_tokens_file.is_file():
  1769. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1770. added_tokens_json = json.load(f)
  1771. for key in added_tokens_json:
  1772. tokens.append(key.encode("utf-8"))
  1773. scores.append(-1000.0)
  1774. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1775. chat_eos_token = '<|im_end|>'
  1776. chat_eos_token_id = None
  1777. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1778. if tokenizer_config_file.is_file():
  1779. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1780. tokenizer_config_json = json.load(f)
  1781. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1782. for token_id, foken_data in added_tokens_decoder.items():
  1783. token_id = int(token_id)
  1784. token = foken_data["content"]
  1785. if token == chat_eos_token:
  1786. chat_eos_token_id = token_id
  1787. token = token.encode("utf-8")
  1788. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1789. assert(tokens[token_id] == token)
  1790. tokens[token_id] = token
  1791. scores[token_id] = -1000.0
  1792. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1793. if foken_data.get("special"):
  1794. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1795. tokenizer_file = self.dir_model / 'tokenizer.json'
  1796. if tokenizer_file.is_file():
  1797. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1798. tokenizer_json = json.load(f)
  1799. added_tokens = tokenizer_json.get("added_tokens", [])
  1800. for foken_data in added_tokens:
  1801. token_id = int(foken_data["id"])
  1802. token = foken_data["content"]
  1803. if token == chat_eos_token:
  1804. chat_eos_token_id = token_id
  1805. token = token.encode("utf-8")
  1806. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1807. assert(tokens[token_id] == token)
  1808. tokens[token_id] = token
  1809. scores[token_id] = -1000.0
  1810. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1811. if foken_data.get("special"):
  1812. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1813. self.gguf_writer.add_tokenizer_model("llama")
  1814. self.gguf_writer.add_tokenizer_pre("default")
  1815. self.gguf_writer.add_token_list(tokens)
  1816. self.gguf_writer.add_token_scores(scores)
  1817. self.gguf_writer.add_token_types(toktypes)
  1818. self.gguf_writer.add_add_space_prefix(add_prefix)
  1819. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1820. old_eos = special_vocab.special_token_ids["eos"]
  1821. if chat_eos_token_id is not None:
  1822. # For the chat model, we replace the eos with '<|im_end|>'.
  1823. # TODO: this is a hack, should be fixed
  1824. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1825. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1826. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1827. " in chat mode so that the conversation can end normally.")
  1828. special_vocab.add_to_gguf(self.gguf_writer)
  1829. def set_gguf_parameters(self):
  1830. self.gguf_writer.add_name("InternLM2")
  1831. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1832. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1833. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1834. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1835. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1836. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1837. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1838. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1839. self.gguf_writer.add_file_type(self.ftype)
  1840. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1841. if self.hparams["rope_scaling"].get("type") == "linear":
  1842. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1843. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1844. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1845. num_heads = self.hparams["num_attention_heads"]
  1846. num_kv_heads = self.hparams["num_key_value_heads"]
  1847. n_embd = self.hparams["hidden_size"]
  1848. q_per_kv = num_heads // num_kv_heads
  1849. head_dim = n_embd // num_heads
  1850. num_groups = num_heads // q_per_kv
  1851. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1852. qkv = data_torch
  1853. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1854. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1855. # The model weights of q and k equire additional reshape.
  1856. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1857. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1858. v = v.reshape((-1, v.shape[-1]))
  1859. return [
  1860. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1861. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1862. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1863. ]
  1864. else:
  1865. return [(self.map_tensor_name(name), data_torch)]
  1866. @Model.register("BertModel", "CamembertModel")
  1867. class BertModel(Model):
  1868. model_arch = gguf.MODEL_ARCH.BERT
  1869. def __init__(self, *args, **kwargs):
  1870. super().__init__(*args, **kwargs)
  1871. self.vocab_size = None
  1872. def set_gguf_parameters(self):
  1873. super().set_gguf_parameters()
  1874. self.gguf_writer.add_causal_attention(False)
  1875. # get pooling path
  1876. pooling_path = None
  1877. module_path = self.dir_model / "modules.json"
  1878. if module_path.is_file():
  1879. with open(module_path, encoding="utf-8") as f:
  1880. modules = json.load(f)
  1881. for mod in modules:
  1882. if mod["type"] == "sentence_transformers.models.Pooling":
  1883. pooling_path = mod["path"]
  1884. break
  1885. # get pooling type
  1886. if pooling_path is not None:
  1887. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1888. pooling = json.load(f)
  1889. if pooling["pooling_mode_mean_tokens"]:
  1890. pooling_type = gguf.PoolingType.MEAN
  1891. elif pooling["pooling_mode_cls_token"]:
  1892. pooling_type = gguf.PoolingType.CLS
  1893. else:
  1894. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1895. self.gguf_writer.add_pooling_type(pooling_type)
  1896. def set_vocab(self):
  1897. tokens, toktypes, tokpre = self.get_vocab_base()
  1898. self.vocab_size = len(tokens)
  1899. # we need this to validate the size of the token_type embeddings
  1900. # though currently we are passing all zeros to the token_type embeddings
  1901. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1902. # convert to phantom space vocab
  1903. def phantom(tok):
  1904. if tok.startswith("[") and tok.endswith("]"):
  1905. return tok
  1906. if tok.startswith("##"):
  1907. return tok[2:]
  1908. return "\u2581" + tok
  1909. tokens = list(map(phantom, tokens))
  1910. # add vocab to gguf
  1911. self.gguf_writer.add_tokenizer_model("bert")
  1912. self.gguf_writer.add_tokenizer_pre(tokpre)
  1913. self.gguf_writer.add_token_list(tokens)
  1914. self.gguf_writer.add_token_types(toktypes)
  1915. # handle special tokens
  1916. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1917. special_vocab.add_to_gguf(self.gguf_writer)
  1918. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1919. del bid # unused
  1920. # we are only using BERT for embeddings so we don't need the pooling layer
  1921. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1922. return [] # we don't need these
  1923. return [(self.map_tensor_name(name), data_torch)]
  1924. @Model.register("NomicBertModel")
  1925. class NomicBertModel(BertModel):
  1926. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1927. def __init__(self, *args, **kwargs):
  1928. super().__init__(*args, **kwargs)
  1929. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1930. self.hparams["n_ctx"] = 2048
  1931. # SwigLU activation
  1932. assert self.hparams["activation_function"] == "swiglu"
  1933. # this doesn't do anything in the HF version
  1934. assert self.hparams["causal"] is False
  1935. # no bias tensors
  1936. assert self.hparams["qkv_proj_bias"] is False
  1937. assert self.hparams["mlp_fc1_bias"] is False
  1938. assert self.hparams["mlp_fc2_bias"] is False
  1939. # norm at end of layer
  1940. assert self.hparams["prenorm"] is False
  1941. # standard RoPE
  1942. assert self.hparams["rotary_emb_fraction"] == 1.0
  1943. assert self.hparams["rotary_emb_interleaved"] is False
  1944. assert self.hparams["rotary_emb_scale_base"] is None
  1945. def set_gguf_parameters(self):
  1946. super().set_gguf_parameters()
  1947. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1948. @Model.register("GemmaForCausalLM")
  1949. class GemmaModel(Model):
  1950. model_arch = gguf.MODEL_ARCH.GEMMA
  1951. def set_vocab(self):
  1952. self._set_vocab_sentencepiece()
  1953. # TODO: these special tokens should be exported only for the CodeGemma family
  1954. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1955. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  1956. special_vocab._set_special_token("prefix", 67)
  1957. special_vocab._set_special_token("suffix", 69)
  1958. special_vocab._set_special_token("middle", 68)
  1959. special_vocab._set_special_token("fsep", 70)
  1960. special_vocab._set_special_token("eot", 107)
  1961. special_vocab.add_to_gguf(self.gguf_writer)
  1962. self.gguf_writer.add_add_space_prefix(False)
  1963. def set_gguf_parameters(self):
  1964. hparams = self.hparams
  1965. block_count = hparams["num_hidden_layers"]
  1966. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1967. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1968. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1969. self.gguf_writer.add_block_count(block_count)
  1970. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1971. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1972. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1973. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1974. self.gguf_writer.add_key_length(hparams["head_dim"])
  1975. self.gguf_writer.add_value_length(hparams["head_dim"])
  1976. self.gguf_writer.add_file_type(self.ftype)
  1977. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1978. del bid # unused
  1979. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  1980. # To prevent errors, skip loading lm_head.weight.
  1981. if name == "lm_head.weight":
  1982. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  1983. return []
  1984. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1985. if name.endswith("norm.weight"):
  1986. data_torch = data_torch + 1
  1987. return [(self.map_tensor_name(name), data_torch)]
  1988. @Model.register("Gemma2ForCausalLM")
  1989. class Gemma2Model(Model):
  1990. model_arch = gguf.MODEL_ARCH.GEMMA2
  1991. def set_vocab(self):
  1992. self._set_vocab_sentencepiece()
  1993. self.gguf_writer.add_add_space_prefix(False)
  1994. def set_gguf_parameters(self):
  1995. hparams = self.hparams
  1996. block_count = hparams["num_hidden_layers"]
  1997. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  1998. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1999. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2000. self.gguf_writer.add_block_count(block_count)
  2001. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2002. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2003. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2004. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2005. self.gguf_writer.add_key_length(hparams["head_dim"])
  2006. self.gguf_writer.add_value_length(hparams["head_dim"])
  2007. self.gguf_writer.add_file_type(self.ftype)
  2008. self.gguf_writer.add_attn_logit_softcapping(
  2009. self.hparams["attn_logit_softcapping"]
  2010. )
  2011. self.gguf_writer.add_final_logit_softcapping(
  2012. self.hparams["final_logit_softcapping"]
  2013. )
  2014. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2015. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2016. del bid # unused
  2017. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2018. # To prevent errors, skip loading lm_head.weight.
  2019. if name == "lm_head.weight":
  2020. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2021. return []
  2022. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2023. if name.endswith("norm.weight"):
  2024. data_torch = data_torch + 1
  2025. return [(self.map_tensor_name(name), data_torch)]
  2026. @Model.register("Starcoder2ForCausalLM")
  2027. class StarCoder2Model(Model):
  2028. model_arch = gguf.MODEL_ARCH.STARCODER2
  2029. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2030. class MambaModel(Model):
  2031. model_arch = gguf.MODEL_ARCH.MAMBA
  2032. def set_vocab(self):
  2033. vocab_size = self.hparams["vocab_size"]
  2034. # Round vocab size to next multiple of 8
  2035. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2036. # pad using ceiling division
  2037. # ref: https://stackoverflow.com/a/17511341/22827863
  2038. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2039. self.hparams["vocab_size"] = vocab_size
  2040. if (self.dir_model / "tokenizer.json").is_file():
  2041. self._set_vocab_gpt2()
  2042. elif (self.dir_model / "tokenizer.model").is_file():
  2043. self._set_vocab_sentencepiece()
  2044. else:
  2045. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2046. self._set_vocab_builtin("gpt-neox", vocab_size)
  2047. def set_gguf_parameters(self):
  2048. d_model = self.find_hparam(["hidden_size", "d_model"])
  2049. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2050. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2051. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2052. # ceiling division
  2053. # ref: https://stackoverflow.com/a/17511341/22827863
  2054. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2055. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2056. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2057. # Fail early for models which don't have a block expansion factor of 2
  2058. assert d_inner == 2 * d_model
  2059. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2060. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2061. self.gguf_writer.add_embedding_length(d_model)
  2062. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2063. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2064. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2065. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2066. self.gguf_writer.add_ssm_inner_size(d_inner)
  2067. self.gguf_writer.add_ssm_state_size(d_state)
  2068. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2069. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2070. self.gguf_writer.add_file_type(self.ftype)
  2071. _tok_embd = None
  2072. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2073. del bid # unused
  2074. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2075. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2076. new_name = self.map_tensor_name(name)
  2077. if name.endswith(".A_log"):
  2078. logger.debug("A_log --> A ==> " + new_name)
  2079. data_torch = -torch.exp(data_torch)
  2080. # assuming token_embd.weight is seen before output.weight
  2081. if self._tok_embd is not None and new_name == output_name:
  2082. if torch.equal(self._tok_embd, data_torch):
  2083. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2084. return []
  2085. elif new_name == tok_embd_name:
  2086. self._tok_embd = data_torch
  2087. return [(new_name, data_torch)]
  2088. def extra_f32_tensors(self, name: str, new_name: str, bid: int | None, n_dims: int) -> bool:
  2089. del n_dims # unused
  2090. return bid is not None and new_name in (
  2091. self.format_tensor_name(n, bid, ".weight" if name.endswith(".weight") else "") for n in [
  2092. gguf.MODEL_TENSOR.SSM_CONV1D,
  2093. gguf.MODEL_TENSOR.SSM_X,
  2094. gguf.MODEL_TENSOR.SSM_DT,
  2095. gguf.MODEL_TENSOR.SSM_A,
  2096. gguf.MODEL_TENSOR.SSM_D,
  2097. ]
  2098. )
  2099. @Model.register("CohereForCausalLM")
  2100. class CommandR2Model(Model):
  2101. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2102. def __init__(self, *args, **kwargs):
  2103. super().__init__(*args, **kwargs)
  2104. # max_position_embeddings = 8192 in config.json but model was actually
  2105. # trained on 128k context length
  2106. # aya-23 models don't have model_max_length specified
  2107. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2108. def set_gguf_parameters(self):
  2109. super().set_gguf_parameters()
  2110. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2111. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2112. @Model.register("OlmoForCausalLM")
  2113. @Model.register("OLMoForCausalLM")
  2114. class OlmoModel(Model):
  2115. model_arch = gguf.MODEL_ARCH.OLMO
  2116. def set_gguf_parameters(self):
  2117. super().set_gguf_parameters()
  2118. self.gguf_writer.add_layer_norm_eps(1e-5)
  2119. clip_qkv = self.hparams.get("clip_qkv")
  2120. if clip_qkv is not None:
  2121. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2122. # Same as super class, but permuting q_proj, k_proj
  2123. # Copied from: LlamaModel
  2124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2125. del bid # unused
  2126. n_head = self.hparams["num_attention_heads"]
  2127. n_kv_head = self.hparams.get("num_key_value_heads")
  2128. if name.endswith("q_proj.weight"):
  2129. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2130. if name.endswith("k_proj.weight"):
  2131. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2132. return [(self.map_tensor_name(name), data_torch)]
  2133. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2134. class JinaBertV2Model(BertModel):
  2135. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2136. def __init__(self, *args, **kwargs):
  2137. super().__init__(*args, **kwargs)
  2138. self.intermediate_size = self.hparams["intermediate_size"]
  2139. def get_tensors(self):
  2140. for name, data in super().get_tensors():
  2141. if 'gated_layer' in name:
  2142. d1 = data[:self.intermediate_size, :]
  2143. name1 = name.replace('gated_layers', 'gated_layers_w')
  2144. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2145. d2 = data[self.intermediate_size:, :]
  2146. name2 = name.replace('gated_layers', 'gated_layers_v')
  2147. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2148. yield name1, d1
  2149. yield name2, d2
  2150. continue
  2151. yield name, data
  2152. def set_vocab(self, *args, **kwargs):
  2153. tokenizer_class = 'BertTokenizer'
  2154. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2155. tokenizer_class = json.load(f)['tokenizer_class']
  2156. if tokenizer_class == 'BertTokenizer':
  2157. super().set_vocab()
  2158. elif tokenizer_class == 'RobertaTokenizer':
  2159. self._set_vocab_gpt2()
  2160. self.gguf_writer.add_token_type_count(2)
  2161. else:
  2162. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2163. self.gguf_writer.add_add_bos_token(True)
  2164. self.gguf_writer.add_add_eos_token(True)
  2165. @Model.register("OpenELMForCausalLM")
  2166. class OpenELMModel(Model):
  2167. model_arch = gguf.MODEL_ARCH.OPENELM
  2168. @staticmethod
  2169. def _make_divisible(v: float | int, divisor: int) -> int:
  2170. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2171. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2172. # Make sure that round down does not go down by more than 10%.
  2173. if new_v < 0.9 * v:
  2174. new_v += divisor
  2175. return new_v
  2176. def __init__(self, *args, **kwargs):
  2177. super().__init__(*args, **kwargs)
  2178. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2179. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2180. self._n_embd: int = self.hparams["model_dim"]
  2181. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2182. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2183. self._ffn_dims: list[int] = [
  2184. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2185. for multiplier in ffn_multipliers
  2186. ]
  2187. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2188. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2189. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2190. def set_vocab(self):
  2191. try:
  2192. self._set_vocab_sentencepiece()
  2193. except FileNotFoundError:
  2194. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2195. def set_gguf_parameters(self):
  2196. n_embd = self._n_embd
  2197. head_dim = self.hparams["head_dim"]
  2198. rot_pct = 1.0
  2199. assert self.block_count == len(self._num_kv_heads)
  2200. assert self.block_count == len(self._num_query_heads)
  2201. assert self.block_count == len(self._ffn_dims)
  2202. self.gguf_writer.add_name(self.dir_model.name if self.model_name is None else self.model_name)
  2203. self.gguf_writer.add_block_count(self.block_count)
  2204. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2205. self.gguf_writer.add_embedding_length(n_embd)
  2206. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2207. self.gguf_writer.add_head_count(self._num_query_heads)
  2208. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2209. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2210. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2211. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2212. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2213. self.gguf_writer.add_key_length(head_dim)
  2214. self.gguf_writer.add_value_length(head_dim)
  2215. self.gguf_writer.add_file_type(self.ftype)
  2216. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2217. if "n_layers" in keys:
  2218. return self.hparams["num_transformer_layers"]
  2219. return super().find_hparam(keys, optional)
  2220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2221. # split ff
  2222. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2223. ff_dim = self._ffn_dims[bid]
  2224. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2225. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2226. return
  2227. yield (self.map_tensor_name(name), data_torch)
  2228. @Model.register("ArcticForCausalLM")
  2229. class ArcticModel(Model):
  2230. model_arch = gguf.MODEL_ARCH.ARCTIC
  2231. def set_vocab(self):
  2232. # The reason for using a custom implementation here is that the
  2233. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2234. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2235. from sentencepiece import SentencePieceProcessor
  2236. tokenizer_path = self.dir_model / 'tokenizer.model'
  2237. if not tokenizer_path.is_file():
  2238. logger.error(f'Error: Missing {tokenizer_path}')
  2239. sys.exit(1)
  2240. # Read the whole vocabulary from the tokenizer.model file
  2241. tokenizer = SentencePieceProcessor()
  2242. tokenizer.LoadFromFile(str(tokenizer_path))
  2243. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2244. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2245. scores: list[float] = [-10000.0] * vocab_size
  2246. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2247. for token_id in range(tokenizer.vocab_size()):
  2248. piece = tokenizer.IdToPiece(token_id)
  2249. text = piece.encode("utf-8")
  2250. score = tokenizer.GetScore(token_id)
  2251. toktype = SentencePieceTokenTypes.NORMAL
  2252. if tokenizer.IsUnknown(token_id):
  2253. toktype = SentencePieceTokenTypes.UNKNOWN
  2254. elif tokenizer.IsControl(token_id):
  2255. toktype = SentencePieceTokenTypes.CONTROL
  2256. elif tokenizer.IsUnused(token_id):
  2257. toktype = SentencePieceTokenTypes.UNUSED
  2258. elif tokenizer.IsByte(token_id):
  2259. toktype = SentencePieceTokenTypes.BYTE
  2260. tokens[token_id] = text
  2261. scores[token_id] = score
  2262. toktypes[token_id] = toktype
  2263. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2264. # of information about added/redefined tokens and modify them accordingly.
  2265. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2266. if tokenizer_config_file.is_file():
  2267. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2268. tokenizer_config_json = json.load(f)
  2269. if "added_tokens_decoder" in tokenizer_config_json:
  2270. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2271. for token_id, token_json in added_tokens_decoder.items():
  2272. token_id = int(token_id)
  2273. if (token_id >= vocab_size):
  2274. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2275. continue
  2276. token_content = token_json["content"]
  2277. token_type = SentencePieceTokenTypes.USER_DEFINED
  2278. token_score = -10000.0
  2279. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2280. # Set the score to 0.0 as in the original tokenizer.model
  2281. if ("special" in token_json) and token_json["special"]:
  2282. if token_content == tokenizer_config_json["unk_token"]:
  2283. token_type = SentencePieceTokenTypes.UNKNOWN
  2284. else:
  2285. token_type = SentencePieceTokenTypes.CONTROL
  2286. token_score = 0.0
  2287. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2288. tokens[token_id] = token_content.encode("utf-8")
  2289. toktypes[token_id] = token_type
  2290. scores[token_id] = token_score
  2291. self.gguf_writer.add_tokenizer_model("llama")
  2292. self.gguf_writer.add_tokenizer_pre("default")
  2293. self.gguf_writer.add_token_list(tokens)
  2294. self.gguf_writer.add_token_scores(scores)
  2295. self.gguf_writer.add_token_types(toktypes)
  2296. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2297. special_vocab.add_to_gguf(self.gguf_writer)
  2298. def set_gguf_parameters(self):
  2299. super().set_gguf_parameters()
  2300. hparams = self.hparams
  2301. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2302. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2303. _experts: list[dict[str, Tensor]] | None = None
  2304. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2305. n_head = self.hparams["num_attention_heads"]
  2306. n_kv_head = self.hparams.get("num_key_value_heads")
  2307. if name.endswith("q_proj.weight"):
  2308. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2309. if name.endswith("k_proj.weight"):
  2310. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2311. # process the experts separately
  2312. if name.find("block_sparse_moe.experts") != -1:
  2313. n_experts = self.hparams["num_local_experts"]
  2314. assert bid is not None
  2315. if self._experts is None:
  2316. self._experts = [{} for _ in range(self.block_count)]
  2317. self._experts[bid][name] = data_torch
  2318. if len(self._experts[bid]) >= n_experts * 3:
  2319. tensors: list[tuple[str, Tensor]] = []
  2320. # merge the experts into a single 3d tensor
  2321. for wid in ["w1", "w2", "w3"]:
  2322. datas: list[Tensor] = []
  2323. for xid in range(n_experts):
  2324. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2325. datas.append(self._experts[bid][ename])
  2326. del self._experts[bid][ename]
  2327. data_torch = torch.stack(datas, dim=0)
  2328. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2329. new_name = self.map_tensor_name(merged_name)
  2330. tensors.append((new_name, data_torch))
  2331. return tensors
  2332. else:
  2333. return []
  2334. return [(self.map_tensor_name(name), data_torch)]
  2335. def write_tensors(self):
  2336. super().write_tensors()
  2337. if self._experts is not None:
  2338. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2339. experts = [k for d in self._experts for k in d.keys()]
  2340. if len(experts) > 0:
  2341. raise ValueError(f"Unprocessed experts: {experts}")
  2342. @Model.register("DeepseekV2ForCausalLM")
  2343. class DeepseekV2Model(Model):
  2344. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2345. def set_vocab(self):
  2346. self._set_vocab_gpt2()
  2347. def set_gguf_parameters(self):
  2348. super().set_gguf_parameters()
  2349. hparams = self.hparams
  2350. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2351. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2352. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2353. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2354. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2355. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2356. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2357. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2358. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2359. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2360. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2361. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2362. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2363. if self.hparams["rope_scaling"].get("type") == "yarn":
  2364. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2365. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2366. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2367. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2368. _experts: list[dict[str, Tensor]] | None = None
  2369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2370. # process the experts separately
  2371. if name.find("mlp.experts") != -1:
  2372. n_experts = self.hparams["n_routed_experts"]
  2373. assert bid is not None
  2374. if self._experts is None:
  2375. self._experts = [{} for _ in range(self.block_count)]
  2376. self._experts[bid][name] = data_torch
  2377. if len(self._experts[bid]) >= n_experts * 3:
  2378. tensors: list[tuple[str, Tensor]] = []
  2379. # merge the experts into a single 3d tensor
  2380. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2381. datas: list[Tensor] = []
  2382. for xid in range(n_experts):
  2383. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2384. datas.append(self._experts[bid][ename])
  2385. del self._experts[bid][ename]
  2386. data_torch = torch.stack(datas, dim=0)
  2387. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2388. new_name = self.map_tensor_name(merged_name)
  2389. tensors.append((new_name, data_torch))
  2390. return tensors
  2391. else:
  2392. return []
  2393. return [(self.map_tensor_name(name), data_torch)]
  2394. def write_tensors(self):
  2395. super().write_tensors()
  2396. if self._experts is not None:
  2397. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2398. experts = [k for d in self._experts for k in d.keys()]
  2399. if len(experts) > 0:
  2400. raise ValueError(f"Unprocessed experts: {experts}")
  2401. @Model.register("T5WithLMHeadModel")
  2402. @Model.register("T5ForConditionalGeneration")
  2403. @Model.register("MT5ForConditionalGeneration")
  2404. @Model.register("UMT5ForConditionalGeneration")
  2405. class T5Model(Model):
  2406. model_arch = gguf.MODEL_ARCH.T5
  2407. def __init__(self, *args, **kwargs):
  2408. super().__init__(*args, **kwargs)
  2409. self.shared_token_embeddings_found = False
  2410. def set_vocab(self):
  2411. # to avoid TypeError: Descriptors cannot be created directly
  2412. # exception when importing sentencepiece_model_pb2
  2413. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2414. from sentencepiece import SentencePieceProcessor
  2415. from sentencepiece import sentencepiece_model_pb2 as model
  2416. tokenizer_path = self.dir_model / 'tokenizer.model'
  2417. # many older models use spiece.model tokenizer model filename
  2418. if not tokenizer_path.is_file():
  2419. tokenizer_path = self.dir_model / 'spiece.model'
  2420. if not tokenizer_path.is_file():
  2421. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2422. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2423. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2424. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2425. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2426. # assure the tokenizer model file name is correct
  2427. assert tokenizer_path.name == 'tokenizer.model'
  2428. return self._set_vocab_sentencepiece()
  2429. else:
  2430. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2431. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2432. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2433. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2434. tokenizer = SentencePieceProcessor()
  2435. tokenizer.LoadFromFile(str(tokenizer_path))
  2436. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2437. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2438. scores: list[float] = [-10000.0] * vocab_size
  2439. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2440. for token_id in range(tokenizer.vocab_size()):
  2441. piece = tokenizer.IdToPiece(token_id)
  2442. text = piece.encode("utf-8")
  2443. score = tokenizer.GetScore(token_id)
  2444. toktype = SentencePieceTokenTypes.NORMAL
  2445. if tokenizer.IsUnknown(token_id):
  2446. toktype = SentencePieceTokenTypes.UNKNOWN
  2447. elif tokenizer.IsControl(token_id):
  2448. toktype = SentencePieceTokenTypes.CONTROL
  2449. elif tokenizer.IsUnused(token_id):
  2450. toktype = SentencePieceTokenTypes.UNUSED
  2451. elif tokenizer.IsByte(token_id):
  2452. toktype = SentencePieceTokenTypes.BYTE
  2453. tokens[token_id] = text
  2454. scores[token_id] = score
  2455. toktypes[token_id] = toktype
  2456. added_tokens_file = self.dir_model / 'added_tokens.json'
  2457. if added_tokens_file.is_file():
  2458. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2459. added_tokens_json = json.load(f)
  2460. for key in added_tokens_json:
  2461. token_id = added_tokens_json[key]
  2462. if (token_id >= vocab_size):
  2463. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2464. continue
  2465. tokens[token_id] = key.encode("utf-8")
  2466. scores[token_id] = -1000.0
  2467. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2468. if vocab_size > len(tokens):
  2469. pad_count = vocab_size - len(tokens)
  2470. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2471. for i in range(1, pad_count + 1):
  2472. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2473. scores.append(-1000.0)
  2474. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2475. self.gguf_writer.add_tokenizer_model("t5")
  2476. self.gguf_writer.add_tokenizer_pre("default")
  2477. self.gguf_writer.add_token_list(tokens)
  2478. self.gguf_writer.add_token_scores(scores)
  2479. self.gguf_writer.add_token_types(toktypes)
  2480. self.gguf_writer.add_add_space_prefix(add_prefix)
  2481. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2482. if precompiled_charsmap:
  2483. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2484. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2485. special_vocab.add_to_gguf(self.gguf_writer)
  2486. self.gguf_writer.add_add_bos_token(False)
  2487. self.gguf_writer.add_add_eos_token(True)
  2488. def set_gguf_parameters(self):
  2489. self.gguf_writer.add_name("T5")
  2490. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2491. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2492. n_ctx = 512
  2493. self.gguf_writer.add_context_length(n_ctx)
  2494. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2495. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2496. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2497. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2498. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2499. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2500. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2501. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2502. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2503. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2504. self.gguf_writer.add_file_type(self.ftype)
  2505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2506. del bid # unused
  2507. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2508. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2509. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2510. # and decoder and ignore the remaining ones.
  2511. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2512. if not self.shared_token_embeddings_found:
  2513. name = "shared.weight"
  2514. self.shared_token_embeddings_found = True
  2515. else:
  2516. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2517. return []
  2518. return [(self.map_tensor_name(name), data_torch)]
  2519. @Model.register("JAISLMHeadModel")
  2520. class JaisModel(Model):
  2521. model_arch = gguf.MODEL_ARCH.JAIS
  2522. def __init__(self, *args, **kwargs):
  2523. super().__init__(*args, **kwargs)
  2524. # SwigLU activation
  2525. assert self.hparams["activation_function"] == "swiglu"
  2526. # ALiBi position embedding
  2527. assert self.hparams["position_embedding_type"] == "alibi"
  2528. # Embeddings scale
  2529. self.embeddings_scale = 1.0
  2530. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2531. self.output_is_wte = False
  2532. if 'mup_embeddings_scale' in self.hparams:
  2533. self.output_is_wte = True # Hack (?)
  2534. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2535. elif 'embeddings_scale' in self.hparams:
  2536. self.embeddings_scale = self.hparams['embeddings_scale']
  2537. else:
  2538. assert False
  2539. self.width_scale = 1.0
  2540. if 'mup_output_alpha' in self.hparams:
  2541. assert 'mup_width_scale' in self.hparams
  2542. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2543. elif 'width_scale' in self.hparams:
  2544. self.width_scale = self.hparams['width_scale']
  2545. else:
  2546. assert False
  2547. self.max_alibi_bias = 8.0
  2548. def set_vocab(self):
  2549. self._set_vocab_gpt2()
  2550. def set_gguf_parameters(self):
  2551. self.gguf_writer.add_name(self.dir_model.name)
  2552. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2553. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2554. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2555. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2556. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2557. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2558. self.gguf_writer.add_file_type(self.ftype)
  2559. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2560. del bid # unused
  2561. tensors: list[tuple[str, Tensor]] = []
  2562. # we don't need these
  2563. if name.endswith((".attn.bias")):
  2564. return tensors
  2565. if name.endswith(("relative_pe.slopes")):
  2566. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2567. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2568. # but Jais's PyTorch model simply precalculates the slope values and places them
  2569. # in relative_pes.slopes
  2570. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2571. first_val = float(data_torch[0].item())
  2572. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2573. return tensors
  2574. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2575. data_torch = data_torch.transpose(1, 0)
  2576. new_name = self.map_tensor_name(name)
  2577. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2578. tensors.append((new_name, data_torch * self.embeddings_scale))
  2579. if self.output_is_wte:
  2580. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2581. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2582. assert not self.output_is_wte
  2583. tensors.append((new_name, data_torch * self.width_scale))
  2584. else:
  2585. tensors.append((new_name, data_torch))
  2586. return tensors
  2587. def write_tensors(self):
  2588. super().write_tensors()
  2589. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2590. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2591. class ChatGLMModel(Model):
  2592. model_arch = gguf.MODEL_ARCH.CHATGLM
  2593. def set_vocab_chatglm3(self):
  2594. dir_model = self.dir_model
  2595. hparams = self.hparams
  2596. tokens: list[bytes] = []
  2597. toktypes: list[int] = []
  2598. scores: list[float] = []
  2599. from transformers import AutoTokenizer
  2600. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2601. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2602. assert max(tokenizer.get_vocab().values()) < vocab_size
  2603. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2604. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2605. for token_id in range(vocab_size):
  2606. piece = tokenizer._convert_id_to_token(token_id)
  2607. if token_id == 0:
  2608. piece = "<unk>"
  2609. elif token_id == 1:
  2610. piece = "<bos>"
  2611. elif token_id == 2:
  2612. piece = "<eos>"
  2613. text = piece.encode("utf-8")
  2614. score = 0.0
  2615. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2616. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2617. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2618. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2619. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2620. if piece in special_tokens:
  2621. toktype = SentencePieceTokenTypes.CONTROL
  2622. elif len(piece) == 0:
  2623. text = f"[PAD{token_id}]".encode("utf-8")
  2624. toktype = SentencePieceTokenTypes.UNUSED
  2625. else:
  2626. toktype = SentencePieceTokenTypes.USER_DEFINED
  2627. tokens.append(text)
  2628. scores.append(score)
  2629. toktypes.append(toktype)
  2630. continue
  2631. toktype = SentencePieceTokenTypes.NORMAL
  2632. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2633. toktype = SentencePieceTokenTypes.UNKNOWN
  2634. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2635. toktype = SentencePieceTokenTypes.CONTROL
  2636. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2637. toktype = SentencePieceTokenTypes.UNUSED
  2638. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2639. toktype = SentencePieceTokenTypes.BYTE
  2640. tokens.append(text)
  2641. scores.append(score)
  2642. toktypes.append(toktype)
  2643. self.gguf_writer.add_tokenizer_model("llama")
  2644. # glm3 needs prefix and suffix formatted as:
  2645. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2646. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2647. self.gguf_writer.add_token_list(tokens)
  2648. self.gguf_writer.add_token_scores(scores)
  2649. self.gguf_writer.add_token_types(toktypes)
  2650. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2651. special_vocab.add_to_gguf(self.gguf_writer)
  2652. @staticmethod
  2653. def token_bytes_to_string(b):
  2654. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2655. byte_encoder = bytes_to_unicode()
  2656. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2657. @staticmethod
  2658. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2659. parts = [bytes([b]) for b in token]
  2660. while True:
  2661. min_idx = None
  2662. min_rank = None
  2663. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2664. rank = mergeable_ranks.get(pair[0] + pair[1])
  2665. if rank is not None and (min_rank is None or rank < min_rank):
  2666. min_idx = i
  2667. min_rank = rank
  2668. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2669. break
  2670. assert min_idx is not None
  2671. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2672. return parts
  2673. def set_vocab(self):
  2674. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2675. self.set_vocab_chatglm3()
  2676. return
  2677. dir_model = self.dir_model
  2678. hparams = self.hparams
  2679. tokens: list[str] = []
  2680. toktypes: list[int] = []
  2681. from transformers import AutoTokenizer
  2682. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2683. vocab_size = hparams["padded_vocab_size"]
  2684. assert max(tokenizer.get_vocab().values()) < vocab_size
  2685. tokpre = self.get_vocab_base_pre(tokenizer)
  2686. merges = []
  2687. vocab = {}
  2688. mergeable_ranks = tokenizer.mergeable_ranks
  2689. for token, rank in mergeable_ranks.items():
  2690. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2691. if len(token) == 1:
  2692. continue
  2693. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2694. assert len(merged) >= 2 and len(merged) <= 7
  2695. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2696. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2697. added_vocab = tokenizer.get_added_vocab()
  2698. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2699. for i in range(vocab_size):
  2700. if i not in reverse_vocab:
  2701. tokens.append(f"[PAD{i}]")
  2702. toktypes.append(gguf.TokenType.UNUSED)
  2703. elif reverse_vocab[i] in added_vocab:
  2704. tokens.append(reverse_vocab[i])
  2705. if tokenizer.added_tokens_decoder[i].special:
  2706. toktypes.append(gguf.TokenType.CONTROL)
  2707. else:
  2708. toktypes.append(gguf.TokenType.USER_DEFINED)
  2709. else:
  2710. tokens.append(reverse_vocab[i])
  2711. toktypes.append(gguf.TokenType.NORMAL)
  2712. self.gguf_writer.add_tokenizer_model("gpt2")
  2713. self.gguf_writer.add_tokenizer_pre(tokpre)
  2714. self.gguf_writer.add_token_list(tokens)
  2715. self.gguf_writer.add_token_types(toktypes)
  2716. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2717. special_vocab.merges = merges
  2718. # only add special tokens when they were not already loaded from config.json
  2719. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2720. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2721. # this one is usually not in config.json anyway
  2722. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2723. special_vocab.add_to_gguf(self.gguf_writer)
  2724. def set_gguf_parameters(self):
  2725. self.gguf_writer.add_name(self.hparams["_name_or_path"].split("/")[1]) # THUDM/glm4-9b-chat or THUDM/chatglm3-6b
  2726. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2727. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2728. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2729. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2730. self.gguf_writer.add_embedding_length(n_embed)
  2731. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2732. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2733. self.gguf_writer.add_head_count(n_head)
  2734. self.gguf_writer.add_head_count_kv(n_head_kv)
  2735. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2736. self.gguf_writer.add_file_type(self.ftype)
  2737. self.gguf_writer.add_rope_dimension_count(64)
  2738. self.gguf_writer.add_add_bos_token(False)
  2739. rope_freq = 10000
  2740. if "rope_ratio" in self.hparams:
  2741. rope_freq = rope_freq * self.hparams["rope_ratio"]
  2742. self.gguf_writer.add_rope_freq_base(rope_freq)
  2743. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2744. del bid # unused
  2745. if name.endswith(".rotary_pos_emb.inv_freq"):
  2746. return []
  2747. name = name.removeprefix("transformer.")
  2748. return [(self.map_tensor_name(name), data_torch)]
  2749. ###### CONVERSION LOGIC ######
  2750. # tree of lazy tensors
  2751. class LazyTorchTensor(gguf.LazyBase):
  2752. _tensor_type = torch.Tensor
  2753. # to keep the type-checker happy
  2754. dtype: torch.dtype
  2755. shape: torch.Size
  2756. # only used when converting a torch.Tensor to a np.ndarray
  2757. _dtype_map: dict[torch.dtype, type] = {
  2758. torch.float16: np.float16,
  2759. torch.float32: np.float32,
  2760. }
  2761. # used for safetensors slices
  2762. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  2763. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  2764. _dtype_str_map: dict[str, torch.dtype] = {
  2765. "F64": torch.float64,
  2766. "F32": torch.float32,
  2767. "BF16": torch.bfloat16,
  2768. "F16": torch.float16,
  2769. # "U64": torch.uint64,
  2770. "I64": torch.int64,
  2771. # "U32": torch.uint32,
  2772. "I32": torch.int32,
  2773. # "U16": torch.uint16,
  2774. "I16": torch.int16,
  2775. "U8": torch.uint8,
  2776. "I8": torch.int8,
  2777. "BOOL": torch.bool,
  2778. "F8_E4M3": torch.float8_e4m3fn,
  2779. "F8_E5M2": torch.float8_e5m2,
  2780. }
  2781. def numpy(self) -> gguf.LazyNumpyTensor:
  2782. dtype = self._dtype_map[self.dtype]
  2783. return gguf.LazyNumpyTensor(
  2784. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  2785. args=(self,),
  2786. func=(lambda s: s.numpy())
  2787. )
  2788. @classmethod
  2789. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  2790. return torch.empty(size=shape, dtype=dtype, device="meta")
  2791. @classmethod
  2792. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  2793. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  2794. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  2795. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  2796. return cast(torch.Tensor, lazy)
  2797. @classmethod
  2798. def __torch_function__(cls, func, types, args=(), kwargs=None):
  2799. del types # unused
  2800. if kwargs is None:
  2801. kwargs = {}
  2802. if func is torch.Tensor.numpy:
  2803. return args[0].numpy()
  2804. return cls._wrap_fn(func)(*args, **kwargs)
  2805. def parse_args() -> argparse.Namespace:
  2806. parser = argparse.ArgumentParser(
  2807. description="Convert a huggingface model to a GGML compatible file")
  2808. parser.add_argument(
  2809. "--vocab-only", action="store_true",
  2810. help="extract only the vocab",
  2811. )
  2812. parser.add_argument(
  2813. "--outfile", type=Path,
  2814. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  2815. )
  2816. parser.add_argument(
  2817. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  2818. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  2819. )
  2820. parser.add_argument(
  2821. "--bigendian", action="store_true",
  2822. help="model is executed on big endian machine",
  2823. )
  2824. parser.add_argument(
  2825. "model", type=Path,
  2826. help="directory containing model file",
  2827. )
  2828. parser.add_argument(
  2829. "--use-temp-file", action="store_true",
  2830. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  2831. )
  2832. parser.add_argument(
  2833. "--no-lazy", action="store_true",
  2834. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  2835. )
  2836. parser.add_argument(
  2837. "--model-name", type=str, default=None,
  2838. help="name of the model",
  2839. )
  2840. parser.add_argument(
  2841. "--verbose", action="store_true",
  2842. help="increase output verbosity",
  2843. )
  2844. parser.add_argument(
  2845. "--split-max-tensors", type=int, default=0,
  2846. help="max tensors in each split",
  2847. )
  2848. parser.add_argument(
  2849. "--split-max-size", type=str, default="0",
  2850. help="max size per split N(M|G)",
  2851. )
  2852. parser.add_argument(
  2853. "--dry-run", action="store_true",
  2854. help="only print out a split plan and exit, without writing any new files",
  2855. )
  2856. parser.add_argument(
  2857. "--no-tensor-first-split", action="store_true",
  2858. help="do not add tensors to the first split (disabled by default)"
  2859. )
  2860. return parser.parse_args()
  2861. def split_str_to_n_bytes(split_str: str) -> int:
  2862. if split_str.endswith("K"):
  2863. n = int(split_str[:-1]) * 1000
  2864. elif split_str.endswith("M"):
  2865. n = int(split_str[:-1]) * 1000 * 1000
  2866. elif split_str.endswith("G"):
  2867. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  2868. elif split_str.isnumeric():
  2869. n = int(split_str)
  2870. else:
  2871. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  2872. if n < 0:
  2873. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  2874. return n
  2875. def main() -> None:
  2876. args = parse_args()
  2877. logging.basicConfig(level=logging.DEBUG if args.verbose else logging.INFO)
  2878. dir_model = args.model
  2879. if not dir_model.is_dir():
  2880. logger.error(f'Error: {args.model} is not a directory')
  2881. sys.exit(1)
  2882. ftype_map: dict[str, gguf.LlamaFileType] = {
  2883. "f32": gguf.LlamaFileType.ALL_F32,
  2884. "f16": gguf.LlamaFileType.MOSTLY_F16,
  2885. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  2886. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  2887. "auto": gguf.LlamaFileType.GUESSED,
  2888. }
  2889. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  2890. if args.use_temp_file and is_split:
  2891. logger.error("Error: Cannot use temp file when splitting")
  2892. sys.exit(1)
  2893. if args.outfile is not None:
  2894. fname_out = args.outfile
  2895. else:
  2896. # output in the same directory as the model by default
  2897. fname_out = dir_model / 'ggml-model-{ftype}.gguf'
  2898. logger.info(f"Loading model: {dir_model.name}")
  2899. hparams = Model.load_hparams(dir_model)
  2900. with torch.inference_mode():
  2901. try:
  2902. model_class = Model.from_model_architecture(hparams["architectures"][0])
  2903. except NotImplementedError:
  2904. logger.error(f"Model {hparams['architectures'][0]} is not supported")
  2905. sys.exit(1)
  2906. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file,
  2907. args.no_lazy, args.model_name, split_max_tensors=args.split_max_tensors,
  2908. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  2909. small_first_shard=args.no_tensor_first_split)
  2910. logger.info("Set model parameters")
  2911. model_instance.gguf_writer.add_type(gguf.GGUFType.MODEL)
  2912. model_instance.set_gguf_parameters()
  2913. logger.info("Set model tokenizer")
  2914. model_instance.set_vocab()
  2915. model_instance.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  2916. if args.vocab_only:
  2917. logger.info("Exporting model vocab...")
  2918. model_instance.write_vocab()
  2919. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  2920. else:
  2921. logger.info("Exporting model...")
  2922. model_instance.write()
  2923. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  2924. logger.info(f"Model successfully exported to {out_path}")
  2925. if __name__ == '__main__':
  2926. main()