ggml.c 664 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. void * aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  181. return NULL;
  182. }
  183. return aligned_memory;
  184. }
  185. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  186. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  187. #endif
  188. #define UNUSED GGML_UNUSED
  189. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  190. //
  191. // tensor access macros
  192. //
  193. #define GGML_TENSOR_UNARY_OP_LOCALS \
  194. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  196. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  198. #define GGML_TENSOR_BINARY_OP_LOCALS \
  199. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  200. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  201. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  202. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  205. #if defined(GGML_USE_ACCELERATE)
  206. #include <Accelerate/Accelerate.h>
  207. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  208. #include "ggml-opencl.h"
  209. #endif
  210. #elif defined(GGML_USE_OPENBLAS)
  211. #if defined(GGML_BLAS_USE_MKL)
  212. #include <mkl.h>
  213. #else
  214. #include <cblas.h>
  215. #endif
  216. #elif defined(GGML_USE_CUBLAS)
  217. #include "ggml-cuda.h"
  218. #elif defined(GGML_USE_CLBLAST)
  219. #include "ggml-opencl.h"
  220. #endif
  221. #undef MIN
  222. #undef MAX
  223. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  224. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  225. // floating point type used to accumulate sums
  226. typedef double ggml_float;
  227. // 16-bit float
  228. // on Arm, we use __fp16
  229. // on x86, we use uint16_t
  230. #ifdef __ARM_NEON
  231. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  232. //
  233. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  234. //
  235. #include <arm_neon.h>
  236. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  237. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  238. #define GGML_FP16_TO_FP32(x) ((float) (x))
  239. #define GGML_FP32_TO_FP16(x) (x)
  240. #else
  241. #ifdef __wasm_simd128__
  242. #include <wasm_simd128.h>
  243. #else
  244. #ifdef __POWER9_VECTOR__
  245. #include <altivec.h>
  246. #undef bool
  247. #define bool _Bool
  248. #else
  249. #if defined(_MSC_VER) || defined(__MINGW32__)
  250. #include <intrin.h>
  251. #else
  252. #if !defined(__riscv)
  253. #include <immintrin.h>
  254. #endif
  255. #endif
  256. #endif
  257. #endif
  258. #ifdef __F16C__
  259. #ifdef _MSC_VER
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  262. #else
  263. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  264. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  265. #endif
  266. #elif defined(__POWER9_VECTOR__)
  267. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  268. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  269. /* the inline asm below is about 12% faster than the lookup method */
  270. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  271. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  272. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  273. register float f;
  274. register double d;
  275. __asm__(
  276. "mtfprd %0,%2\n"
  277. "xscvhpdp %0,%0\n"
  278. "frsp %1,%0\n" :
  279. /* temp */ "=d"(d),
  280. /* out */ "=f"(f):
  281. /* in */ "r"(h));
  282. return f;
  283. }
  284. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  285. register double d;
  286. register ggml_fp16_t r;
  287. __asm__( /* xscvdphp can work on double or single precision */
  288. "xscvdphp %0,%2\n"
  289. "mffprd %1,%0\n" :
  290. /* temp */ "=d"(d),
  291. /* out */ "=r"(r):
  292. /* in */ "f"(f));
  293. return r;
  294. }
  295. #else
  296. // FP16 <-> FP32
  297. // ref: https://github.com/Maratyszcza/FP16
  298. static inline float fp32_from_bits(uint32_t w) {
  299. union {
  300. uint32_t as_bits;
  301. float as_value;
  302. } fp32;
  303. fp32.as_bits = w;
  304. return fp32.as_value;
  305. }
  306. static inline uint32_t fp32_to_bits(float f) {
  307. union {
  308. float as_value;
  309. uint32_t as_bits;
  310. } fp32;
  311. fp32.as_value = f;
  312. return fp32.as_bits;
  313. }
  314. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  315. const uint32_t w = (uint32_t) h << 16;
  316. const uint32_t sign = w & UINT32_C(0x80000000);
  317. const uint32_t two_w = w + w;
  318. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  319. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  320. const float exp_scale = 0x1.0p-112f;
  321. #else
  322. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  323. #endif
  324. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  325. const uint32_t magic_mask = UINT32_C(126) << 23;
  326. const float magic_bias = 0.5f;
  327. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  328. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  329. const uint32_t result = sign |
  330. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  331. return fp32_from_bits(result);
  332. }
  333. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  334. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  335. const float scale_to_inf = 0x1.0p+112f;
  336. const float scale_to_zero = 0x1.0p-110f;
  337. #else
  338. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  339. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  340. #endif
  341. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  342. const uint32_t w = fp32_to_bits(f);
  343. const uint32_t shl1_w = w + w;
  344. const uint32_t sign = w & UINT32_C(0x80000000);
  345. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  346. if (bias < UINT32_C(0x71000000)) {
  347. bias = UINT32_C(0x71000000);
  348. }
  349. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  350. const uint32_t bits = fp32_to_bits(base);
  351. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  352. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  353. const uint32_t nonsign = exp_bits + mantissa_bits;
  354. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  355. }
  356. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  357. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  358. #endif // __F16C__
  359. #endif // __ARM_NEON
  360. //
  361. // global data
  362. //
  363. // precomputed gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_f16[1 << 16];
  365. // precomputed quick gelu table for f16 (128 KB)
  366. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  367. // precomputed silu table for f16 (128 KB)
  368. static ggml_fp16_t table_silu_f16[1 << 16];
  369. // precomputed exp table for f16 (128 KB)
  370. static ggml_fp16_t table_exp_f16[1 << 16];
  371. // precomputed f32 table for f16 (256 KB)
  372. static float table_f32_f16[1 << 16];
  373. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  374. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  375. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  376. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  377. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  378. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  379. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  380. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  381. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  382. // precomputed tables for expanding 8bits to 8 bytes:
  383. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  384. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  385. #endif
  386. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  387. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  388. // This is also true for POWER9.
  389. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  390. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  391. uint16_t s;
  392. memcpy(&s, &f, sizeof(uint16_t));
  393. return table_f32_f16[s];
  394. }
  395. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  396. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  397. #endif
  398. // note: do not use these inside ggml.c
  399. // these are meant to be used via the ggml.h API
  400. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  401. return (float) GGML_FP16_TO_FP32(x);
  402. }
  403. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  404. return GGML_FP32_TO_FP16(x);
  405. }
  406. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  407. for (int i = 0; i < n; i++) {
  408. y[i] = GGML_FP16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  412. int i = 0;
  413. #if defined(__F16C__)
  414. for (; i + 7 < n; i += 8) {
  415. __m256 x_vec = _mm256_loadu_ps(x + i);
  416. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  417. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  418. }
  419. for(; i + 3 < n; i += 4) {
  420. __m128 x_vec = _mm_loadu_ps(x + i);
  421. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  422. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  423. }
  424. #endif
  425. for (; i < n; i++) {
  426. y[i] = GGML_FP32_TO_FP16(x[i]);
  427. }
  428. }
  429. //
  430. // timing
  431. //
  432. #if defined(_MSC_VER) || defined(__MINGW32__)
  433. static int64_t timer_freq, timer_start;
  434. void ggml_time_init(void) {
  435. LARGE_INTEGER t;
  436. QueryPerformanceFrequency(&t);
  437. timer_freq = t.QuadPart;
  438. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  439. // and the uptime is high enough.
  440. // We subtract the program start time to reduce the likelihood of that happening.
  441. QueryPerformanceCounter(&t);
  442. timer_start = t.QuadPart;
  443. }
  444. int64_t ggml_time_ms(void) {
  445. LARGE_INTEGER t;
  446. QueryPerformanceCounter(&t);
  447. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  448. }
  449. int64_t ggml_time_us(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  453. }
  454. #else
  455. void ggml_time_init(void) {}
  456. int64_t ggml_time_ms(void) {
  457. struct timespec ts;
  458. clock_gettime(CLOCK_MONOTONIC, &ts);
  459. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  460. }
  461. int64_t ggml_time_us(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  465. }
  466. #endif
  467. int64_t ggml_cycles(void) {
  468. return clock();
  469. }
  470. int64_t ggml_cycles_per_ms(void) {
  471. return CLOCKS_PER_SEC/1000;
  472. }
  473. #ifdef GGML_PERF
  474. #define ggml_perf_time_ms() ggml_time_ms()
  475. #define ggml_perf_time_us() ggml_time_us()
  476. #define ggml_perf_cycles() ggml_cycles()
  477. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  478. #else
  479. #define ggml_perf_time_ms() 0
  480. #define ggml_perf_time_us() 0
  481. #define ggml_perf_cycles() 0
  482. #define ggml_perf_cycles_per_ms() 0
  483. #endif
  484. //
  485. // cache line
  486. //
  487. #if defined(__cpp_lib_hardware_interference_size)
  488. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  489. #else
  490. #if defined(__POWER9_VECTOR__)
  491. #define CACHE_LINE_SIZE 128
  492. #else
  493. #define CACHE_LINE_SIZE 64
  494. #endif
  495. #endif
  496. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  497. //
  498. // quantization
  499. //
  500. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  501. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  502. // multiply int8_t, add results pairwise twice
  503. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  504. // Get absolute values of x vectors
  505. const __m128i ax = _mm_sign_epi8(x, x);
  506. // Sign the values of the y vectors
  507. const __m128i sy = _mm_sign_epi8(y, x);
  508. // Perform multiplication and create 16-bit values
  509. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  510. const __m128i ones = _mm_set1_epi16(1);
  511. return _mm_madd_epi16(ones, dot);
  512. }
  513. #if __AVX__ || __AVX2__ || __AVX512F__
  514. // horizontally add 8 floats
  515. static inline float hsum_float_8(const __m256 x) {
  516. __m128 res = _mm256_extractf128_ps(x, 1);
  517. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  518. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  519. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  520. return _mm_cvtss_f32(res);
  521. }
  522. // horizontally add 8 int32_t
  523. static inline int hsum_i32_8(const __m256i a) {
  524. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  525. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  526. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  527. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  528. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  529. }
  530. // horizontally add 4 int32_t
  531. static inline int hsum_i32_4(const __m128i a) {
  532. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  533. const __m128i sum64 = _mm_add_epi32(hi64, a);
  534. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  535. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  536. }
  537. #if defined(__AVX2__) || defined(__AVX512F__)
  538. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  539. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  540. uint32_t x32;
  541. memcpy(&x32, x, sizeof(uint32_t));
  542. const __m256i shuf_mask = _mm256_set_epi64x(
  543. 0x0303030303030303, 0x0202020202020202,
  544. 0x0101010101010101, 0x0000000000000000);
  545. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  546. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  547. bytes = _mm256_or_si256(bytes, bit_mask);
  548. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  549. }
  550. // Unpack 32 4-bit fields into 32 bytes
  551. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  552. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  553. {
  554. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  555. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  556. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  557. return _mm256_and_si256(lowMask, bytes);
  558. }
  559. // add int16_t pairwise and return as float vector
  560. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  561. const __m256i ones = _mm256_set1_epi16(1);
  562. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  563. return _mm256_cvtepi32_ps(summed_pairs);
  564. }
  565. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  566. #if __AVXVNNI__
  567. const __m256i zero = _mm256_setzero_si256();
  568. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  569. return _mm256_cvtepi32_ps(summed_pairs);
  570. #else
  571. // Perform multiplication and create 16-bit values
  572. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  573. return sum_i16_pairs_float(dot);
  574. #endif
  575. }
  576. // multiply int8_t, add results pairwise twice and return as float vector
  577. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  578. #if __AVXVNNIINT8__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Get absolute values of x vectors
  584. const __m256i ax = _mm256_sign_epi8(x, x);
  585. // Sign the values of the y vectors
  586. const __m256i sy = _mm256_sign_epi8(y, x);
  587. return mul_sum_us8_pairs_float(ax, sy);
  588. #endif
  589. }
  590. static inline __m128i packNibbles( __m256i bytes )
  591. {
  592. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  593. #if __AVX512F__
  594. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  595. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  596. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  597. #else
  598. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  599. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  600. __m256i low = _mm256_and_si256( lowByte, bytes );
  601. high = _mm256_srli_epi16( high, 4 );
  602. bytes = _mm256_or_si256( low, high );
  603. // Compress uint16_t lanes into bytes
  604. __m128i r0 = _mm256_castsi256_si128( bytes );
  605. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  606. return _mm_packus_epi16( r0, r1 );
  607. #endif
  608. }
  609. #elif defined(__AVX__)
  610. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  611. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  612. uint32_t x32;
  613. memcpy(&x32, x, sizeof(uint32_t));
  614. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  615. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  616. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  617. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  618. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  619. bytesl = _mm_or_si128(bytesl, bit_mask);
  620. bytesh = _mm_or_si128(bytesh, bit_mask);
  621. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  622. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  623. return MM256_SET_M128I(bytesh, bytesl);
  624. }
  625. // Unpack 32 4-bit fields into 32 bytes
  626. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  627. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  628. {
  629. // Load 16 bytes from memory
  630. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  631. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  632. const __m128i lowMask = _mm_set1_epi8(0xF);
  633. tmpl = _mm_and_si128(lowMask, tmpl);
  634. tmph = _mm_and_si128(lowMask, tmph);
  635. return MM256_SET_M128I(tmph, tmpl);
  636. }
  637. // add int16_t pairwise and return as float vector
  638. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  639. const __m128i ones = _mm_set1_epi16(1);
  640. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  641. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  642. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  643. return _mm256_cvtepi32_ps(summed_pairs);
  644. }
  645. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  646. const __m128i axl = _mm256_castsi256_si128(ax);
  647. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  648. const __m128i syl = _mm256_castsi256_si128(sy);
  649. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  650. // Perform multiplication and create 16-bit values
  651. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  652. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  653. return sum_i16_pairs_float(doth, dotl);
  654. }
  655. // multiply int8_t, add results pairwise twice and return as float vector
  656. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  657. const __m128i xl = _mm256_castsi256_si128(x);
  658. const __m128i xh = _mm256_extractf128_si256(x, 1);
  659. const __m128i yl = _mm256_castsi256_si128(y);
  660. const __m128i yh = _mm256_extractf128_si256(y, 1);
  661. // Get absolute values of x vectors
  662. const __m128i axl = _mm_sign_epi8(xl, xl);
  663. const __m128i axh = _mm_sign_epi8(xh, xh);
  664. // Sign the values of the y vectors
  665. const __m128i syl = _mm_sign_epi8(yl, xl);
  666. const __m128i syh = _mm_sign_epi8(yh, xh);
  667. // Perform multiplication and create 16-bit values
  668. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  669. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  670. return sum_i16_pairs_float(doth, dotl);
  671. }
  672. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  673. {
  674. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  675. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  676. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  677. __m128i low = _mm_and_si128( lowByte, bytes1 );
  678. high = _mm_srli_epi16( high, 4 );
  679. bytes1 = _mm_or_si128( low, high );
  680. high = _mm_andnot_si128( lowByte, bytes2 );
  681. low = _mm_and_si128( lowByte, bytes2 );
  682. high = _mm_srli_epi16( high, 4 );
  683. bytes2 = _mm_or_si128( low, high );
  684. return _mm_packus_epi16( bytes1, bytes2);
  685. }
  686. #endif
  687. #elif defined(__SSSE3__)
  688. // horizontally add 4x4 floats
  689. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  690. __m128 res_0 =_mm_hadd_ps(a, b);
  691. __m128 res_1 =_mm_hadd_ps(c, d);
  692. __m128 res =_mm_hadd_ps(res_0, res_1);
  693. res =_mm_hadd_ps(res, res);
  694. res =_mm_hadd_ps(res, res);
  695. return _mm_cvtss_f32(res);
  696. }
  697. #endif // __AVX__ || __AVX2__ || __AVX512F__
  698. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  699. #if defined(__ARM_NEON)
  700. #if !defined(__aarch64__)
  701. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  702. return
  703. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  704. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  705. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  706. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  707. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  708. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  709. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  710. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  711. }
  712. inline static int16_t vaddvq_s8(int8x16_t v) {
  713. return
  714. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  715. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  716. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  717. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  718. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  719. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  720. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  721. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  722. }
  723. inline static int32_t vaddvq_s16(int16x8_t v) {
  724. return
  725. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  726. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  727. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  728. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  729. }
  730. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  731. return
  732. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  733. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  734. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  735. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  736. }
  737. inline static int32_t vaddvq_s32(int32x4_t v) {
  738. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  739. }
  740. inline static float vaddvq_f32(float32x4_t v) {
  741. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  742. }
  743. inline static float vminvq_f32(float32x4_t v) {
  744. return
  745. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  746. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  747. }
  748. inline static float vmaxvq_f32(float32x4_t v) {
  749. return
  750. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  751. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  752. }
  753. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  754. int32x4_t res;
  755. res[0] = roundf(vgetq_lane_f32(v, 0));
  756. res[1] = roundf(vgetq_lane_f32(v, 1));
  757. res[2] = roundf(vgetq_lane_f32(v, 2));
  758. res[3] = roundf(vgetq_lane_f32(v, 3));
  759. return res;
  760. }
  761. #endif
  762. #endif
  763. #define QK4_0 32
  764. typedef struct {
  765. ggml_fp16_t d; // delta
  766. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  767. } block_q4_0;
  768. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  769. #define QK4_1 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. ggml_fp16_t m; // min
  773. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  774. } block_q4_1;
  775. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  776. #define QK5_0 32
  777. typedef struct {
  778. ggml_fp16_t d; // delta
  779. uint8_t qh[4]; // 5-th bit of quants
  780. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  781. } block_q5_0;
  782. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  783. #define QK5_1 32
  784. typedef struct {
  785. ggml_fp16_t d; // delta
  786. ggml_fp16_t m; // min
  787. uint8_t qh[4]; // 5-th bit of quants
  788. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  789. } block_q5_1;
  790. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  791. #define QK8_0 32
  792. typedef struct {
  793. ggml_fp16_t d; // delta
  794. int8_t qs[QK8_0]; // quants
  795. } block_q8_0;
  796. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  797. #define QK8_1 32
  798. typedef struct {
  799. float d; // delta
  800. float s; // d * sum(qs[i])
  801. int8_t qs[QK8_1]; // quants
  802. } block_q8_1;
  803. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  804. // reference implementation for deterministic creation of model files
  805. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  806. static const int qk = QK4_0;
  807. assert(k % qk == 0);
  808. const int nb = k / qk;
  809. for (int i = 0; i < nb; i++) {
  810. float amax = 0.0f; // absolute max
  811. float max = 0.0f;
  812. for (int j = 0; j < qk; j++) {
  813. const float v = x[i*qk + j];
  814. if (amax < fabsf(v)) {
  815. amax = fabsf(v);
  816. max = v;
  817. }
  818. }
  819. const float d = max / -8;
  820. const float id = d ? 1.0f/d : 0.0f;
  821. y[i].d = GGML_FP32_TO_FP16(d);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const float x0 = x[i*qk + 0 + j]*id;
  824. const float x1 = x[i*qk + qk/2 + j]*id;
  825. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  826. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  827. y[i].qs[j] = xi0;
  828. y[i].qs[j] |= xi1 << 4;
  829. }
  830. }
  831. }
  832. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q4_0_reference(x, y, k);
  834. }
  835. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  836. const int qk = QK4_1;
  837. assert(k % qk == 0);
  838. const int nb = k / qk;
  839. for (int i = 0; i < nb; i++) {
  840. float min = FLT_MAX;
  841. float max = -FLT_MAX;
  842. for (int j = 0; j < qk; j++) {
  843. const float v = x[i*qk + j];
  844. if (v < min) min = v;
  845. if (v > max) max = v;
  846. }
  847. const float d = (max - min) / ((1 << 4) - 1);
  848. const float id = d ? 1.0f/d : 0.0f;
  849. y[i].d = GGML_FP32_TO_FP16(d);
  850. y[i].m = GGML_FP32_TO_FP16(min);
  851. for (int j = 0; j < qk/2; ++j) {
  852. const float x0 = (x[i*qk + 0 + j] - min)*id;
  853. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  854. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  855. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  856. y[i].qs[j] = xi0;
  857. y[i].qs[j] |= xi1 << 4;
  858. }
  859. }
  860. }
  861. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  862. quantize_row_q4_1_reference(x, y, k);
  863. }
  864. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  865. static const int qk = QK5_0;
  866. assert(k % qk == 0);
  867. const int nb = k / qk;
  868. for (int i = 0; i < nb; i++) {
  869. float amax = 0.0f; // absolute max
  870. float max = 0.0f;
  871. for (int j = 0; j < qk; j++) {
  872. const float v = x[i*qk + j];
  873. if (amax < fabsf(v)) {
  874. amax = fabsf(v);
  875. max = v;
  876. }
  877. }
  878. const float d = max / -16;
  879. const float id = d ? 1.0f/d : 0.0f;
  880. y[i].d = GGML_FP32_TO_FP16(d);
  881. uint32_t qh = 0;
  882. for (int j = 0; j < qk/2; ++j) {
  883. const float x0 = x[i*qk + 0 + j]*id;
  884. const float x1 = x[i*qk + qk/2 + j]*id;
  885. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  886. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  887. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  888. // get the 5-th bit and store it in qh at the right position
  889. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  890. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  891. }
  892. memcpy(&y[i].qh, &qh, sizeof(qh));
  893. }
  894. }
  895. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  896. quantize_row_q5_0_reference(x, y, k);
  897. }
  898. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  899. const int qk = QK5_1;
  900. assert(k % qk == 0);
  901. const int nb = k / qk;
  902. for (int i = 0; i < nb; i++) {
  903. float min = FLT_MAX;
  904. float max = -FLT_MAX;
  905. for (int j = 0; j < qk; j++) {
  906. const float v = x[i*qk + j];
  907. if (v < min) min = v;
  908. if (v > max) max = v;
  909. }
  910. const float d = (max - min) / ((1 << 5) - 1);
  911. const float id = d ? 1.0f/d : 0.0f;
  912. y[i].d = GGML_FP32_TO_FP16(d);
  913. y[i].m = GGML_FP32_TO_FP16(min);
  914. uint32_t qh = 0;
  915. for (int j = 0; j < qk/2; ++j) {
  916. const float x0 = (x[i*qk + 0 + j] - min)*id;
  917. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  918. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  919. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  920. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  921. // get the 5-th bit and store it in qh at the right position
  922. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  923. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  924. }
  925. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  926. }
  927. }
  928. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  929. quantize_row_q5_1_reference(x, y, k);
  930. }
  931. // reference implementation for deterministic creation of model files
  932. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  933. assert(k % QK8_0 == 0);
  934. const int nb = k / QK8_0;
  935. for (int i = 0; i < nb; i++) {
  936. float amax = 0.0f; // absolute max
  937. for (int j = 0; j < QK8_0; j++) {
  938. const float v = x[i*QK8_0 + j];
  939. amax = MAX(amax, fabsf(v));
  940. }
  941. const float d = amax / ((1 << 7) - 1);
  942. const float id = d ? 1.0f/d : 0.0f;
  943. y[i].d = GGML_FP32_TO_FP16(d);
  944. for (int j = 0; j < QK8_0; ++j) {
  945. const float x0 = x[i*QK8_0 + j]*id;
  946. y[i].qs[j] = roundf(x0);
  947. }
  948. }
  949. }
  950. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  951. assert(QK8_0 == 32);
  952. assert(k % QK8_0 == 0);
  953. const int nb = k / QK8_0;
  954. block_q8_0 * restrict y = vy;
  955. #if defined(__ARM_NEON)
  956. for (int i = 0; i < nb; i++) {
  957. float32x4_t srcv [8];
  958. float32x4_t asrcv[8];
  959. float32x4_t amaxv[8];
  960. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  961. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  962. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  963. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  964. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  965. const float amax = vmaxvq_f32(amaxv[0]);
  966. const float d = amax / ((1 << 7) - 1);
  967. const float id = d ? 1.0f/d : 0.0f;
  968. y[i].d = GGML_FP32_TO_FP16(d);
  969. for (int j = 0; j < 8; j++) {
  970. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  971. const int32x4_t vi = vcvtnq_s32_f32(v);
  972. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  973. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  974. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  975. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  976. }
  977. }
  978. #elif defined(__wasm_simd128__)
  979. for (int i = 0; i < nb; i++) {
  980. v128_t srcv [8];
  981. v128_t asrcv[8];
  982. v128_t amaxv[8];
  983. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  984. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  985. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  986. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  987. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  988. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  989. wasm_f32x4_extract_lane(amaxv[0], 1)),
  990. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  991. wasm_f32x4_extract_lane(amaxv[0], 3)));
  992. const float d = amax / ((1 << 7) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].d = GGML_FP32_TO_FP16(d);
  995. for (int j = 0; j < 8; j++) {
  996. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  997. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  998. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  999. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1000. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1001. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1002. }
  1003. }
  1004. #elif defined(__AVX2__) || defined(__AVX__)
  1005. for (int i = 0; i < nb; i++) {
  1006. // Load elements into 4 AVX vectors
  1007. __m256 v0 = _mm256_loadu_ps( x );
  1008. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1009. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1010. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1011. x += 32;
  1012. // Compute max(abs(e)) for the block
  1013. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1014. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1018. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1019. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1020. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1021. const float maxScalar = _mm_cvtss_f32( max4 );
  1022. // Quantize these floats
  1023. const float d = maxScalar / 127.f;
  1024. y[i].d = GGML_FP32_TO_FP16(d);
  1025. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1026. const __m256 mul = _mm256_set1_ps( id );
  1027. // Apply the multiplier
  1028. v0 = _mm256_mul_ps( v0, mul );
  1029. v1 = _mm256_mul_ps( v1, mul );
  1030. v2 = _mm256_mul_ps( v2, mul );
  1031. v3 = _mm256_mul_ps( v3, mul );
  1032. // Round to nearest integer
  1033. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1034. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1035. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1036. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1037. // Convert floats to integers
  1038. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1039. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1040. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1041. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1042. #if defined(__AVX2__)
  1043. // Convert int32 to int16
  1044. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1045. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // Convert int16 to int8
  1047. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1048. // We got our precious signed bytes, but the order is now wrong
  1049. // These AVX2 pack instructions process 16-byte pieces independently
  1050. // The following instruction is fixing the order
  1051. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1052. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1053. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1054. #else
  1055. // Since we don't have in AVX some necessary functions,
  1056. // we split the registers in half and call AVX2 analogs from SSE
  1057. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1058. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1059. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1060. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1061. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1062. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1063. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1064. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1065. // Convert int32 to int16
  1066. ni0 = _mm_packs_epi32( ni0, ni1 );
  1067. ni2 = _mm_packs_epi32( ni2, ni3 );
  1068. ni4 = _mm_packs_epi32( ni4, ni5 );
  1069. ni6 = _mm_packs_epi32( ni6, ni7 );
  1070. // Convert int16 to int8
  1071. ni0 = _mm_packs_epi16( ni0, ni2 );
  1072. ni4 = _mm_packs_epi16( ni4, ni6 );
  1073. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1075. #endif
  1076. }
  1077. #else
  1078. // scalar
  1079. quantize_row_q8_0_reference(x, y, k);
  1080. #endif
  1081. }
  1082. // reference implementation for deterministic creation of model files
  1083. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1084. assert(QK8_1 == 32);
  1085. assert(k % QK8_1 == 0);
  1086. const int nb = k / QK8_1;
  1087. for (int i = 0; i < nb; i++) {
  1088. float amax = 0.0f; // absolute max
  1089. for (int j = 0; j < QK8_1; j++) {
  1090. const float v = x[i*QK8_1 + j];
  1091. amax = MAX(amax, fabsf(v));
  1092. }
  1093. const float d = amax / ((1 << 7) - 1);
  1094. const float id = d ? 1.0f/d : 0.0f;
  1095. y[i].d = d;
  1096. int sum = 0;
  1097. for (int j = 0; j < QK8_1/2; ++j) {
  1098. const float v0 = x[i*QK8_1 + j]*id;
  1099. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1100. y[i].qs[ j] = roundf(v0);
  1101. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1102. sum += y[i].qs[ j];
  1103. sum += y[i].qs[QK8_1/2 + j];
  1104. }
  1105. y[i].s = sum*d;
  1106. }
  1107. }
  1108. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1109. assert(k % QK8_1 == 0);
  1110. const int nb = k / QK8_1;
  1111. block_q8_1 * restrict y = vy;
  1112. #if defined(__ARM_NEON)
  1113. for (int i = 0; i < nb; i++) {
  1114. float32x4_t srcv [8];
  1115. float32x4_t asrcv[8];
  1116. float32x4_t amaxv[8];
  1117. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1118. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1119. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1120. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1121. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1122. const float amax = vmaxvq_f32(amaxv[0]);
  1123. const float d = amax / ((1 << 7) - 1);
  1124. const float id = d ? 1.0f/d : 0.0f;
  1125. y[i].d = d;
  1126. int32x4_t accv = vdupq_n_s32(0);
  1127. for (int j = 0; j < 8; j++) {
  1128. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1129. const int32x4_t vi = vcvtnq_s32_f32(v);
  1130. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1131. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1132. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1133. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1134. accv = vaddq_s32(accv, vi);
  1135. }
  1136. y[i].s = d * vaddvq_s32(accv);
  1137. }
  1138. #elif defined(__wasm_simd128__)
  1139. for (int i = 0; i < nb; i++) {
  1140. v128_t srcv [8];
  1141. v128_t asrcv[8];
  1142. v128_t amaxv[8];
  1143. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1144. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1145. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1146. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1147. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1148. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1149. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1150. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1151. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1152. const float d = amax / ((1 << 7) - 1);
  1153. const float id = d ? 1.0f/d : 0.0f;
  1154. y[i].d = d;
  1155. v128_t accv = wasm_i32x4_splat(0);
  1156. for (int j = 0; j < 8; j++) {
  1157. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1158. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1159. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1160. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1161. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1162. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1163. accv = wasm_i32x4_add(accv, vi);
  1164. }
  1165. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1166. wasm_i32x4_extract_lane(accv, 1) +
  1167. wasm_i32x4_extract_lane(accv, 2) +
  1168. wasm_i32x4_extract_lane(accv, 3));
  1169. }
  1170. #elif defined(__AVX2__) || defined(__AVX__)
  1171. for (int i = 0; i < nb; i++) {
  1172. // Load elements into 4 AVX vectors
  1173. __m256 v0 = _mm256_loadu_ps( x );
  1174. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1175. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1176. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1177. x += 32;
  1178. // Compute max(abs(e)) for the block
  1179. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1180. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1184. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1185. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1186. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1187. const float maxScalar = _mm_cvtss_f32( max4 );
  1188. // Quantize these floats
  1189. const float d = maxScalar / 127.f;
  1190. y[i].d = d;
  1191. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1192. const __m256 mul = _mm256_set1_ps( id );
  1193. // Apply the multiplier
  1194. v0 = _mm256_mul_ps( v0, mul );
  1195. v1 = _mm256_mul_ps( v1, mul );
  1196. v2 = _mm256_mul_ps( v2, mul );
  1197. v3 = _mm256_mul_ps( v3, mul );
  1198. // Round to nearest integer
  1199. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1200. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1201. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1202. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1203. // Convert floats to integers
  1204. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1205. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1206. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1207. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1208. #if defined(__AVX2__)
  1209. // Compute the sum of the quants and set y[i].s
  1210. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1211. // Convert int32 to int16
  1212. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1213. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // Convert int16 to int8
  1215. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1216. // We got our precious signed bytes, but the order is now wrong
  1217. // These AVX2 pack instructions process 16-byte pieces independently
  1218. // The following instruction is fixing the order
  1219. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1220. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1221. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1222. #else
  1223. // Since we don't have in AVX some necessary functions,
  1224. // we split the registers in half and call AVX2 analogs from SSE
  1225. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1226. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1227. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1228. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1229. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1230. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1231. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1232. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1233. // Compute the sum of the quants and set y[i].s
  1234. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1235. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1236. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1237. // Convert int32 to int16
  1238. ni0 = _mm_packs_epi32( ni0, ni1 );
  1239. ni2 = _mm_packs_epi32( ni2, ni3 );
  1240. ni4 = _mm_packs_epi32( ni4, ni5 );
  1241. ni6 = _mm_packs_epi32( ni6, ni7 );
  1242. // Convert int16 to int8
  1243. ni0 = _mm_packs_epi16( ni0, ni2 );
  1244. ni4 = _mm_packs_epi16( ni4, ni6 );
  1245. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1247. #endif
  1248. }
  1249. #else
  1250. // scalar
  1251. quantize_row_q8_1_reference(x, y, k);
  1252. #endif
  1253. }
  1254. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1255. static const int qk = QK4_0;
  1256. assert(k % qk == 0);
  1257. const int nb = k / qk;
  1258. for (int i = 0; i < nb; i++) {
  1259. const float d = GGML_FP16_TO_FP32(x[i].d);
  1260. for (int j = 0; j < qk/2; ++j) {
  1261. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1262. const int x1 = (x[i].qs[j] >> 4) - 8;
  1263. y[i*qk + j + 0 ] = x0*d;
  1264. y[i*qk + j + qk/2] = x1*d;
  1265. }
  1266. }
  1267. }
  1268. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1269. static const int qk = QK4_1;
  1270. assert(k % qk == 0);
  1271. const int nb = k / qk;
  1272. for (int i = 0; i < nb; i++) {
  1273. const float d = GGML_FP16_TO_FP32(x[i].d);
  1274. const float m = GGML_FP16_TO_FP32(x[i].m);
  1275. for (int j = 0; j < qk/2; ++j) {
  1276. const int x0 = (x[i].qs[j] & 0x0F);
  1277. const int x1 = (x[i].qs[j] >> 4);
  1278. y[i*qk + j + 0 ] = x0*d + m;
  1279. y[i*qk + j + qk/2] = x1*d + m;
  1280. }
  1281. }
  1282. }
  1283. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1284. static const int qk = QK5_0;
  1285. assert(k % qk == 0);
  1286. const int nb = k / qk;
  1287. for (int i = 0; i < nb; i++) {
  1288. const float d = GGML_FP16_TO_FP32(x[i].d);
  1289. uint32_t qh;
  1290. memcpy(&qh, x[i].qh, sizeof(qh));
  1291. for (int j = 0; j < qk/2; ++j) {
  1292. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1293. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1294. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1295. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1296. y[i*qk + j + 0 ] = x0*d;
  1297. y[i*qk + j + qk/2] = x1*d;
  1298. }
  1299. }
  1300. }
  1301. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1302. static const int qk = QK5_1;
  1303. assert(k % qk == 0);
  1304. const int nb = k / qk;
  1305. for (int i = 0; i < nb; i++) {
  1306. const float d = GGML_FP16_TO_FP32(x[i].d);
  1307. const float m = GGML_FP16_TO_FP32(x[i].m);
  1308. uint32_t qh;
  1309. memcpy(&qh, x[i].qh, sizeof(qh));
  1310. for (int j = 0; j < qk/2; ++j) {
  1311. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1312. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1313. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1314. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1315. y[i*qk + j + 0 ] = x0*d + m;
  1316. y[i*qk + j + qk/2] = x1*d + m;
  1317. }
  1318. }
  1319. }
  1320. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1321. static const int qk = QK8_0;
  1322. assert(k % qk == 0);
  1323. const int nb = k / qk;
  1324. const block_q8_0 * restrict x = vx;
  1325. for (int i = 0; i < nb; i++) {
  1326. const float d = GGML_FP16_TO_FP32(x[i].d);
  1327. for (int j = 0; j < qk; ++j) {
  1328. y[i*qk + j] = x[i].qs[j]*d;
  1329. }
  1330. }
  1331. }
  1332. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1333. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1334. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1340. [GGML_TYPE_I8] = {
  1341. .type_name = "i8",
  1342. .blck_size = 1,
  1343. .type_size = sizeof(int8_t),
  1344. .is_quantized = false,
  1345. },
  1346. [GGML_TYPE_I16] = {
  1347. .type_name = "i16",
  1348. .blck_size = 1,
  1349. .type_size = sizeof(int16_t),
  1350. .is_quantized = false,
  1351. },
  1352. [GGML_TYPE_I32] = {
  1353. .type_name = "i32",
  1354. .blck_size = 1,
  1355. .type_size = sizeof(int32_t),
  1356. .is_quantized = false,
  1357. },
  1358. [GGML_TYPE_F32] = {
  1359. .type_name = "f32",
  1360. .blck_size = 1,
  1361. .type_size = sizeof(float),
  1362. .is_quantized = false,
  1363. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1364. .vec_dot_type = GGML_TYPE_F32,
  1365. },
  1366. [GGML_TYPE_F16] = {
  1367. .type_name = "f16",
  1368. .blck_size = 1,
  1369. .type_size = sizeof(ggml_fp16_t),
  1370. .is_quantized = false,
  1371. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1372. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1373. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1375. .vec_dot_type = GGML_TYPE_F16,
  1376. },
  1377. [GGML_TYPE_Q4_0] = {
  1378. .type_name = "q4_0",
  1379. .blck_size = QK4_0,
  1380. .type_size = sizeof(block_q4_0),
  1381. .is_quantized = true,
  1382. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1383. .from_float = quantize_row_q4_0,
  1384. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1385. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1386. .vec_dot_type = GGML_TYPE_Q8_0,
  1387. },
  1388. [GGML_TYPE_Q4_1] = {
  1389. .type_name = "q4_1",
  1390. .blck_size = QK4_1,
  1391. .type_size = sizeof(block_q4_1),
  1392. .is_quantized = true,
  1393. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1394. .from_float = quantize_row_q4_1,
  1395. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1396. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1397. .vec_dot_type = GGML_TYPE_Q8_1,
  1398. },
  1399. [GGML_TYPE_Q5_0] = {
  1400. .type_name = "q5_0",
  1401. .blck_size = QK5_0,
  1402. .type_size = sizeof(block_q5_0),
  1403. .is_quantized = true,
  1404. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1405. .from_float = quantize_row_q5_0,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1407. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1408. .vec_dot_type = GGML_TYPE_Q8_0,
  1409. },
  1410. [GGML_TYPE_Q5_1] = {
  1411. .type_name = "q5_1",
  1412. .blck_size = QK5_1,
  1413. .type_size = sizeof(block_q5_1),
  1414. .is_quantized = true,
  1415. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1416. .from_float = quantize_row_q5_1,
  1417. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1418. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1419. .vec_dot_type = GGML_TYPE_Q8_1,
  1420. },
  1421. [GGML_TYPE_Q8_0] = {
  1422. .type_name = "q8_0",
  1423. .blck_size = QK8_0,
  1424. .type_size = sizeof(block_q8_0),
  1425. .is_quantized = true,
  1426. .to_float = dequantize_row_q8_0,
  1427. .from_float = quantize_row_q8_0,
  1428. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1429. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1430. .vec_dot_type = GGML_TYPE_Q8_0,
  1431. },
  1432. [GGML_TYPE_Q8_1] = {
  1433. .type_name = "q8_1",
  1434. .blck_size = QK8_1,
  1435. .type_size = sizeof(block_q8_1),
  1436. .is_quantized = true,
  1437. .from_float = quantize_row_q8_1,
  1438. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1439. .vec_dot_type = GGML_TYPE_Q8_1,
  1440. },
  1441. #ifdef GGML_USE_K_QUANTS
  1442. [GGML_TYPE_Q2_K] = {
  1443. .type_name = "q2_K",
  1444. .blck_size = QK_K,
  1445. .type_size = sizeof(block_q2_K),
  1446. .is_quantized = true,
  1447. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1448. .from_float = quantize_row_q2_K,
  1449. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1450. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1451. .vec_dot_type = GGML_TYPE_Q8_K,
  1452. },
  1453. [GGML_TYPE_Q3_K] = {
  1454. .type_name = "q3_K",
  1455. .blck_size = QK_K,
  1456. .type_size = sizeof(block_q3_K),
  1457. .is_quantized = true,
  1458. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1459. .from_float = quantize_row_q3_K,
  1460. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1461. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1462. .vec_dot_type = GGML_TYPE_Q8_K,
  1463. },
  1464. [GGML_TYPE_Q4_K] = {
  1465. .type_name = "q4_K",
  1466. .blck_size = QK_K,
  1467. .type_size = sizeof(block_q4_K),
  1468. .is_quantized = true,
  1469. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1470. .from_float = quantize_row_q4_K,
  1471. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1472. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1473. .vec_dot_type = GGML_TYPE_Q8_K,
  1474. },
  1475. [GGML_TYPE_Q5_K] = {
  1476. .type_name = "q5_K",
  1477. .blck_size = QK_K,
  1478. .type_size = sizeof(block_q5_K),
  1479. .is_quantized = true,
  1480. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1481. .from_float = quantize_row_q5_K,
  1482. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1483. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1484. .vec_dot_type = GGML_TYPE_Q8_K,
  1485. },
  1486. [GGML_TYPE_Q6_K] = {
  1487. .type_name = "q6_K",
  1488. .blck_size = QK_K,
  1489. .type_size = sizeof(block_q6_K),
  1490. .is_quantized = true,
  1491. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1492. .from_float = quantize_row_q6_K,
  1493. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1494. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1495. .vec_dot_type = GGML_TYPE_Q8_K,
  1496. },
  1497. [GGML_TYPE_Q8_K] = {
  1498. .type_name = "q8_K",
  1499. .blck_size = QK_K,
  1500. .type_size = sizeof(block_q8_K),
  1501. .is_quantized = true,
  1502. .from_float = quantize_row_q8_K,
  1503. }
  1504. #endif
  1505. };
  1506. // For internal test use
  1507. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1508. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1509. return type_traits[type];
  1510. }
  1511. //
  1512. // simd mappings
  1513. //
  1514. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1515. // we then implement the fundamental computation operations below using only these macros
  1516. // adding support for new architectures requires to define the corresponding SIMD macros
  1517. //
  1518. // GGML_F32_STEP / GGML_F16_STEP
  1519. // number of elements to process in a single step
  1520. //
  1521. // GGML_F32_EPR / GGML_F16_EPR
  1522. // number of elements to fit in a single register
  1523. //
  1524. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1525. #define GGML_SIMD
  1526. // F32 NEON
  1527. #define GGML_F32_STEP 16
  1528. #define GGML_F32_EPR 4
  1529. #define GGML_F32x4 float32x4_t
  1530. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1531. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1532. #define GGML_F32x4_LOAD vld1q_f32
  1533. #define GGML_F32x4_STORE vst1q_f32
  1534. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1535. #define GGML_F32x4_ADD vaddq_f32
  1536. #define GGML_F32x4_MUL vmulq_f32
  1537. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1538. #define GGML_F32x4_REDUCE(res, x) \
  1539. { \
  1540. int offset = GGML_F32_ARR >> 1; \
  1541. for (int i = 0; i < offset; ++i) { \
  1542. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1543. } \
  1544. offset >>= 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1551. } \
  1552. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1553. }
  1554. #define GGML_F32_VEC GGML_F32x4
  1555. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1556. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1557. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1558. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1559. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1560. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1561. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1562. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1563. // F16 NEON
  1564. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1565. #define GGML_F16_STEP 32
  1566. #define GGML_F16_EPR 8
  1567. #define GGML_F16x8 float16x8_t
  1568. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1569. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1570. #define GGML_F16x8_LOAD vld1q_f16
  1571. #define GGML_F16x8_STORE vst1q_f16
  1572. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1573. #define GGML_F16x8_ADD vaddq_f16
  1574. #define GGML_F16x8_MUL vmulq_f16
  1575. #define GGML_F16x8_REDUCE(res, x) \
  1576. { \
  1577. int offset = GGML_F16_ARR >> 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1580. } \
  1581. offset >>= 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1584. } \
  1585. offset >>= 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1588. } \
  1589. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1590. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1591. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1592. }
  1593. #define GGML_F16_VEC GGML_F16x8
  1594. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1595. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1596. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1597. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1598. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1599. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1600. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1601. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1602. #else
  1603. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1604. // and take advantage of the vcvt_ functions to convert to/from FP16
  1605. #define GGML_F16_STEP 16
  1606. #define GGML_F16_EPR 4
  1607. #define GGML_F32Cx4 float32x4_t
  1608. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1609. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1610. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1611. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1612. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1613. #define GGML_F32Cx4_ADD vaddq_f32
  1614. #define GGML_F32Cx4_MUL vmulq_f32
  1615. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1616. #define GGML_F16_VEC GGML_F32Cx4
  1617. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1618. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1619. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1620. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1621. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1622. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1623. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1624. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1625. #endif
  1626. #elif defined(__AVX__)
  1627. #define GGML_SIMD
  1628. // F32 AVX
  1629. #define GGML_F32_STEP 32
  1630. #define GGML_F32_EPR 8
  1631. #define GGML_F32x8 __m256
  1632. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1633. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1634. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1635. #define GGML_F32x8_STORE _mm256_storeu_ps
  1636. #if defined(__FMA__)
  1637. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1638. #else
  1639. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1640. #endif
  1641. #define GGML_F32x8_ADD _mm256_add_ps
  1642. #define GGML_F32x8_MUL _mm256_mul_ps
  1643. #define GGML_F32x8_REDUCE(res, x) \
  1644. { \
  1645. int offset = GGML_F32_ARR >> 1; \
  1646. for (int i = 0; i < offset; ++i) { \
  1647. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1648. } \
  1649. offset >>= 1; \
  1650. for (int i = 0; i < offset; ++i) { \
  1651. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1652. } \
  1653. offset >>= 1; \
  1654. for (int i = 0; i < offset; ++i) { \
  1655. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1656. } \
  1657. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1658. _mm256_extractf128_ps(x[0], 1)); \
  1659. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1660. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1661. }
  1662. // TODO: is this optimal ?
  1663. #define GGML_F32_VEC GGML_F32x8
  1664. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1665. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1666. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1667. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1668. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1669. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1670. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1671. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1672. // F16 AVX
  1673. #define GGML_F16_STEP 32
  1674. #define GGML_F16_EPR 8
  1675. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1676. #define GGML_F32Cx8 __m256
  1677. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1678. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1679. #if defined(__F16C__)
  1680. // the _mm256_cvt intrinsics require F16C
  1681. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1682. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1683. #else
  1684. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1685. float tmp[8];
  1686. for (int i = 0; i < 8; i++) {
  1687. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1688. }
  1689. return _mm256_loadu_ps(tmp);
  1690. }
  1691. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1692. float arr[8];
  1693. _mm256_storeu_ps(arr, y);
  1694. for (int i = 0; i < 8; i++)
  1695. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1696. }
  1697. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1698. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1699. #endif
  1700. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1701. #define GGML_F32Cx8_ADD _mm256_add_ps
  1702. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1703. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1704. #define GGML_F16_VEC GGML_F32Cx8
  1705. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1706. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1707. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1708. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1709. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1710. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1711. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1712. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1713. #elif defined(__POWER9_VECTOR__)
  1714. #define GGML_SIMD
  1715. // F32 POWER9
  1716. #define GGML_F32_STEP 32
  1717. #define GGML_F32_EPR 4
  1718. #define GGML_F32x4 vector float
  1719. #define GGML_F32x4_ZERO 0.0f
  1720. #define GGML_F32x4_SET1 vec_splats
  1721. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1722. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1723. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1724. #define GGML_F32x4_ADD vec_add
  1725. #define GGML_F32x4_MUL vec_mul
  1726. #define GGML_F32x4_REDUCE(res, x) \
  1727. { \
  1728. int offset = GGML_F32_ARR >> 1; \
  1729. for (int i = 0; i < offset; ++i) { \
  1730. x[i] = vec_add(x[i], x[offset+i]); \
  1731. } \
  1732. offset >>= 1; \
  1733. for (int i = 0; i < offset; ++i) { \
  1734. x[i] = vec_add(x[i], x[offset+i]); \
  1735. } \
  1736. offset >>= 1; \
  1737. for (int i = 0; i < offset; ++i) { \
  1738. x[i] = vec_add(x[i], x[offset+i]); \
  1739. } \
  1740. res = vec_extract(x[0], 0) + \
  1741. vec_extract(x[0], 1) + \
  1742. vec_extract(x[0], 2) + \
  1743. vec_extract(x[0], 3); \
  1744. }
  1745. #define GGML_F32_VEC GGML_F32x4
  1746. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1747. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1748. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1749. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1750. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1751. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1752. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1753. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1754. // F16 POWER9
  1755. #define GGML_F16_STEP GGML_F32_STEP
  1756. #define GGML_F16_EPR GGML_F32_EPR
  1757. #define GGML_F16_VEC GGML_F32x4
  1758. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1759. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1760. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1761. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1762. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1763. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1764. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1765. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1766. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1767. #define GGML_F16_VEC_STORE(p, r, i) \
  1768. if (i & 0x1) \
  1769. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1770. r[i - GGML_ENDIAN_BYTE(0)]), \
  1771. 0, p - GGML_F16_EPR)
  1772. #elif defined(__wasm_simd128__)
  1773. #define GGML_SIMD
  1774. // F32 WASM
  1775. #define GGML_F32_STEP 16
  1776. #define GGML_F32_EPR 4
  1777. #define GGML_F32x4 v128_t
  1778. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1779. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1780. #define GGML_F32x4_LOAD wasm_v128_load
  1781. #define GGML_F32x4_STORE wasm_v128_store
  1782. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1783. #define GGML_F32x4_ADD wasm_f32x4_add
  1784. #define GGML_F32x4_MUL wasm_f32x4_mul
  1785. #define GGML_F32x4_REDUCE(res, x) \
  1786. { \
  1787. int offset = GGML_F32_ARR >> 1; \
  1788. for (int i = 0; i < offset; ++i) { \
  1789. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1790. } \
  1791. offset >>= 1; \
  1792. for (int i = 0; i < offset; ++i) { \
  1793. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1794. } \
  1795. offset >>= 1; \
  1796. for (int i = 0; i < offset; ++i) { \
  1797. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1798. } \
  1799. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1800. wasm_f32x4_extract_lane(x[0], 1) + \
  1801. wasm_f32x4_extract_lane(x[0], 2) + \
  1802. wasm_f32x4_extract_lane(x[0], 3); \
  1803. }
  1804. #define GGML_F32_VEC GGML_F32x4
  1805. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1806. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1807. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1808. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1809. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1810. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1811. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1812. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1813. // F16 WASM
  1814. #define GGML_F16_STEP 16
  1815. #define GGML_F16_EPR 4
  1816. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1817. float tmp[4];
  1818. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1819. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1820. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1821. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1822. return wasm_v128_load(tmp);
  1823. }
  1824. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1825. float tmp[4];
  1826. wasm_v128_store(tmp, x);
  1827. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1828. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1829. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1830. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1831. }
  1832. #define GGML_F16x4 v128_t
  1833. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1834. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1835. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1836. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1837. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1838. #define GGML_F16x4_ADD wasm_f32x4_add
  1839. #define GGML_F16x4_MUL wasm_f32x4_mul
  1840. #define GGML_F16x4_REDUCE(res, x) \
  1841. { \
  1842. int offset = GGML_F16_ARR >> 1; \
  1843. for (int i = 0; i < offset; ++i) { \
  1844. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1845. } \
  1846. offset >>= 1; \
  1847. for (int i = 0; i < offset; ++i) { \
  1848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1849. } \
  1850. offset >>= 1; \
  1851. for (int i = 0; i < offset; ++i) { \
  1852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1853. } \
  1854. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1855. wasm_f32x4_extract_lane(x[0], 1) + \
  1856. wasm_f32x4_extract_lane(x[0], 2) + \
  1857. wasm_f32x4_extract_lane(x[0], 3); \
  1858. }
  1859. #define GGML_F16_VEC GGML_F16x4
  1860. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1861. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1862. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1863. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1864. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1865. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1866. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1867. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1868. #elif defined(__SSE3__)
  1869. #define GGML_SIMD
  1870. // F32 SSE
  1871. #define GGML_F32_STEP 32
  1872. #define GGML_F32_EPR 4
  1873. #define GGML_F32x4 __m128
  1874. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1875. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1876. #define GGML_F32x4_LOAD _mm_loadu_ps
  1877. #define GGML_F32x4_STORE _mm_storeu_ps
  1878. #if defined(__FMA__)
  1879. // TODO: Does this work?
  1880. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1881. #else
  1882. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1883. #endif
  1884. #define GGML_F32x4_ADD _mm_add_ps
  1885. #define GGML_F32x4_MUL _mm_mul_ps
  1886. #define GGML_F32x4_REDUCE(res, x) \
  1887. { \
  1888. int offset = GGML_F32_ARR >> 1; \
  1889. for (int i = 0; i < offset; ++i) { \
  1890. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1891. } \
  1892. offset >>= 1; \
  1893. for (int i = 0; i < offset; ++i) { \
  1894. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1895. } \
  1896. offset >>= 1; \
  1897. for (int i = 0; i < offset; ++i) { \
  1898. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1899. } \
  1900. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1901. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1902. }
  1903. // TODO: is this optimal ?
  1904. #define GGML_F32_VEC GGML_F32x4
  1905. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1906. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1907. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1908. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1909. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1910. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1911. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1912. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1913. // F16 SSE
  1914. #define GGML_F16_STEP 32
  1915. #define GGML_F16_EPR 4
  1916. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1917. float tmp[4];
  1918. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1919. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1920. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1921. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1922. return _mm_loadu_ps(tmp);
  1923. }
  1924. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1925. float arr[4];
  1926. _mm_storeu_ps(arr, y);
  1927. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1928. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1929. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1930. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1931. }
  1932. #define GGML_F32Cx4 __m128
  1933. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1934. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1935. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1936. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1937. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1938. #define GGML_F32Cx4_ADD _mm_add_ps
  1939. #define GGML_F32Cx4_MUL _mm_mul_ps
  1940. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1941. #define GGML_F16_VEC GGML_F32Cx4
  1942. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1943. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1944. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1945. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1946. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1947. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1948. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1949. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1950. #endif
  1951. // GGML_F32_ARR / GGML_F16_ARR
  1952. // number of registers to use per step
  1953. #ifdef GGML_SIMD
  1954. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1955. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1956. #endif
  1957. //
  1958. // fundamental operations
  1959. //
  1960. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1961. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1962. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1963. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1965. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1966. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1967. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1968. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1969. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1970. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1971. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1972. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1973. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1974. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1975. #ifdef GGML_SIMD
  1976. float sumf = 0.0f;
  1977. const int np = (n & ~(GGML_F32_STEP - 1));
  1978. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1979. GGML_F32_VEC ax[GGML_F32_ARR];
  1980. GGML_F32_VEC ay[GGML_F32_ARR];
  1981. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1982. for (int j = 0; j < GGML_F32_ARR; j++) {
  1983. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1984. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1985. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1986. }
  1987. }
  1988. // reduce sum0..sum3 to sum0
  1989. GGML_F32_VEC_REDUCE(sumf, sum);
  1990. // leftovers
  1991. for (int i = np; i < n; ++i) {
  1992. sumf += x[i]*y[i];
  1993. }
  1994. #else
  1995. // scalar
  1996. ggml_float sumf = 0.0;
  1997. for (int i = 0; i < n; ++i) {
  1998. sumf += (ggml_float)(x[i]*y[i]);
  1999. }
  2000. #endif
  2001. *s = sumf;
  2002. }
  2003. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2004. ggml_float sumf = 0.0;
  2005. #if defined(GGML_SIMD)
  2006. const int np = (n & ~(GGML_F16_STEP - 1));
  2007. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2008. GGML_F16_VEC ax[GGML_F16_ARR];
  2009. GGML_F16_VEC ay[GGML_F16_ARR];
  2010. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2011. for (int j = 0; j < GGML_F16_ARR; j++) {
  2012. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2013. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2014. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2015. }
  2016. }
  2017. // reduce sum0..sum3 to sum0
  2018. GGML_F16_VEC_REDUCE(sumf, sum);
  2019. // leftovers
  2020. for (int i = np; i < n; ++i) {
  2021. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2022. }
  2023. #else
  2024. for (int i = 0; i < n; ++i) {
  2025. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2026. }
  2027. #endif
  2028. *s = sumf;
  2029. }
  2030. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2031. const int qk = QK8_0;
  2032. const int nb = n / qk;
  2033. assert(n % qk == 0);
  2034. assert(nb % 2 == 0);
  2035. const block_q4_0 * restrict x = vx;
  2036. const block_q8_0 * restrict y = vy;
  2037. #if defined(__ARM_NEON)
  2038. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2039. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2040. for (int i = 0; i < nb; i += 2) {
  2041. const block_q4_0 * restrict x0 = &x[i + 0];
  2042. const block_q4_0 * restrict x1 = &x[i + 1];
  2043. const block_q8_0 * restrict y0 = &y[i + 0];
  2044. const block_q8_0 * restrict y1 = &y[i + 1];
  2045. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2046. const int8x16_t s8b = vdupq_n_s8(0x8);
  2047. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2048. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2049. // 4-bit -> 8-bit
  2050. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2051. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2052. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2053. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2054. // sub 8
  2055. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2056. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2057. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2058. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2059. // load y
  2060. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2061. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2062. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2063. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2064. #if defined(__ARM_FEATURE_DOTPROD)
  2065. // dot product into int32x4_t
  2066. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2067. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2068. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2069. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2070. #else
  2071. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2072. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2073. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2074. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2075. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2076. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2077. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2078. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2079. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2080. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2081. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2082. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2085. #endif
  2086. }
  2087. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2088. #elif defined(__AVX2__)
  2089. // Initialize accumulator with zeros
  2090. __m256 acc = _mm256_setzero_ps();
  2091. // Main loop
  2092. for (int i = 0; i < nb; ++i) {
  2093. /* Compute combined scale for the block */
  2094. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2095. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2096. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2097. const __m256i off = _mm256_set1_epi8( 8 );
  2098. bx = _mm256_sub_epi8( bx, off );
  2099. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2100. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2101. /* Multiply q with scale and accumulate */
  2102. acc = _mm256_fmadd_ps( d, q, acc );
  2103. }
  2104. *s = hsum_float_8(acc);
  2105. #elif defined(__AVX__)
  2106. // Initialize accumulator with zeros
  2107. __m256 acc = _mm256_setzero_ps();
  2108. // Main loop
  2109. for (int i = 0; i < nb; ++i) {
  2110. // Compute combined scale for the block
  2111. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2112. const __m128i lowMask = _mm_set1_epi8(0xF);
  2113. const __m128i off = _mm_set1_epi8(8);
  2114. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2115. __m128i bx = _mm_and_si128(lowMask, tmp);
  2116. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2117. bx = _mm_sub_epi8(bx, off);
  2118. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2119. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2120. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2121. bx = _mm_sub_epi8(bx, off);
  2122. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2123. // Convert int32_t to float
  2124. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2125. // Apply the scale, and accumulate
  2126. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2127. }
  2128. *s = hsum_float_8(acc);
  2129. #elif defined(__SSSE3__)
  2130. // set constants
  2131. const __m128i lowMask = _mm_set1_epi8(0xF);
  2132. const __m128i off = _mm_set1_epi8(8);
  2133. // Initialize accumulator with zeros
  2134. __m128 acc_0 = _mm_setzero_ps();
  2135. __m128 acc_1 = _mm_setzero_ps();
  2136. __m128 acc_2 = _mm_setzero_ps();
  2137. __m128 acc_3 = _mm_setzero_ps();
  2138. // First round without accumulation
  2139. {
  2140. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2141. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2142. // Compute combined scale for the block 0 and 1
  2143. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2144. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2145. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2146. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2147. bx_0 = _mm_sub_epi8(bx_0, off);
  2148. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2149. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2150. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2151. bx_1 = _mm_sub_epi8(bx_1, off);
  2152. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2153. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2154. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2155. // Compute combined scale for the block 2 and 3
  2156. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2157. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2158. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2159. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2160. bx_2 = _mm_sub_epi8(bx_2, off);
  2161. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2162. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2163. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2164. bx_3 = _mm_sub_epi8(bx_3, off);
  2165. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2166. // Convert int32_t to float
  2167. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2168. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2169. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2170. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2171. // Apply the scale
  2172. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2173. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2174. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2175. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2176. }
  2177. // Main loop
  2178. for (int i = 2; i < nb; i+=2) {
  2179. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2180. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2181. // Compute combined scale for the block 0 and 1
  2182. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2183. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2184. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2185. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2186. bx_0 = _mm_sub_epi8(bx_0, off);
  2187. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2188. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2189. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2190. bx_1 = _mm_sub_epi8(bx_1, off);
  2191. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2192. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2193. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2194. // Compute combined scale for the block 2 and 3
  2195. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2196. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2197. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2198. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2199. bx_2 = _mm_sub_epi8(bx_2, off);
  2200. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2201. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2202. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2203. bx_3 = _mm_sub_epi8(bx_3, off);
  2204. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2205. // Convert int32_t to float
  2206. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2207. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2208. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2209. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2210. // Apply the scale
  2211. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2212. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2213. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2214. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2215. // Acummulate
  2216. acc_0 = _mm_add_ps(p0_d, acc_0);
  2217. acc_1 = _mm_add_ps(p1_d, acc_1);
  2218. acc_2 = _mm_add_ps(p2_d, acc_2);
  2219. acc_3 = _mm_add_ps(p3_d, acc_3);
  2220. }
  2221. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2222. #else
  2223. // scalar
  2224. float sumf = 0.0;
  2225. for (int i = 0; i < nb; i++) {
  2226. int sumi = 0;
  2227. for (int j = 0; j < qk/2; ++j) {
  2228. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2229. const int v1 = (x[i].qs[j] >> 4) - 8;
  2230. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2231. }
  2232. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2233. }
  2234. *s = sumf;
  2235. #endif
  2236. }
  2237. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2238. const int qk = QK8_1;
  2239. const int nb = n / qk;
  2240. assert(n % qk == 0);
  2241. assert(nb % 2 == 0);
  2242. const block_q4_1 * restrict x = vx;
  2243. const block_q8_1 * restrict y = vy;
  2244. // TODO: add WASM SIMD
  2245. #if defined(__ARM_NEON)
  2246. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2247. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2248. float summs = 0;
  2249. for (int i = 0; i < nb; i += 2) {
  2250. const block_q4_1 * restrict x0 = &x[i + 0];
  2251. const block_q4_1 * restrict x1 = &x[i + 1];
  2252. const block_q8_1 * restrict y0 = &y[i + 0];
  2253. const block_q8_1 * restrict y1 = &y[i + 1];
  2254. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2255. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2256. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2257. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2258. // 4-bit -> 8-bit
  2259. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2260. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2261. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2262. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2263. // load y
  2264. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2265. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2266. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2267. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2268. #if defined(__ARM_FEATURE_DOTPROD)
  2269. // dot product into int32x4_t
  2270. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2271. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2272. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2273. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2274. #else
  2275. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2276. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2277. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2278. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2279. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2280. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2281. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2282. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2283. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2284. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2285. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2286. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2288. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2289. #endif
  2290. }
  2291. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2292. #elif defined(__AVX2__) || defined(__AVX__)
  2293. // Initialize accumulator with zeros
  2294. __m256 acc = _mm256_setzero_ps();
  2295. float summs = 0;
  2296. // Main loop
  2297. for (int i = 0; i < nb; ++i) {
  2298. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2299. const float d1 = y[i].d;
  2300. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2301. const __m256 d0v = _mm256_set1_ps( d0 );
  2302. const __m256 d1v = _mm256_set1_ps( d1 );
  2303. // Compute combined scales
  2304. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2305. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2306. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2307. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2308. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2309. // Accumulate d0*d1*x*y
  2310. #if defined(__AVX2__)
  2311. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2312. #else
  2313. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2314. #endif
  2315. }
  2316. *s = hsum_float_8(acc) + summs;
  2317. #else
  2318. // scalar
  2319. float sumf = 0.0;
  2320. for (int i = 0; i < nb; i++) {
  2321. int sumi = 0;
  2322. for (int j = 0; j < qk/2; ++j) {
  2323. const int v0 = (x[i].qs[j] & 0x0F);
  2324. const int v1 = (x[i].qs[j] >> 4);
  2325. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2326. }
  2327. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2328. }
  2329. *s = sumf;
  2330. #endif
  2331. }
  2332. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2333. const int qk = QK8_0;
  2334. const int nb = n / qk;
  2335. assert(n % qk == 0);
  2336. assert(nb % 2 == 0);
  2337. assert(qk == QK5_0);
  2338. const block_q5_0 * restrict x = vx;
  2339. const block_q8_0 * restrict y = vy;
  2340. #if defined(__ARM_NEON)
  2341. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2342. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2343. uint32_t qh0;
  2344. uint32_t qh1;
  2345. uint64_t tmp0[4];
  2346. uint64_t tmp1[4];
  2347. for (int i = 0; i < nb; i += 2) {
  2348. const block_q5_0 * restrict x0 = &x[i];
  2349. const block_q5_0 * restrict x1 = &x[i + 1];
  2350. const block_q8_0 * restrict y0 = &y[i];
  2351. const block_q8_0 * restrict y1 = &y[i + 1];
  2352. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2353. // extract the 5th bit via lookup table ((!b) << 4)
  2354. memcpy(&qh0, x0->qh, sizeof(qh0));
  2355. memcpy(&qh1, x1->qh, sizeof(qh1));
  2356. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2357. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2358. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2359. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2360. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2361. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2362. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2363. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2364. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2365. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2366. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2367. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2368. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2369. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2370. // 4-bit -> 8-bit
  2371. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2372. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2373. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2374. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2375. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2376. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2377. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2378. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2379. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2380. // load y
  2381. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2382. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2383. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2384. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2385. #if defined(__ARM_FEATURE_DOTPROD)
  2386. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2387. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2388. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2389. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2390. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2391. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2392. #else
  2393. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2394. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2395. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2396. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2397. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2398. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2399. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2400. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2401. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2402. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2403. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2404. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2405. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2406. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2407. #endif
  2408. }
  2409. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2410. #elif defined(__wasm_simd128__)
  2411. v128_t sumv = wasm_f32x4_splat(0.0f);
  2412. uint32_t qh;
  2413. uint64_t tmp[4];
  2414. // TODO: check if unrolling this is better
  2415. for (int i = 0; i < nb; ++i) {
  2416. const block_q5_0 * restrict x0 = &x[i];
  2417. const block_q8_0 * restrict y0 = &y[i];
  2418. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2419. // extract the 5th bit
  2420. memcpy(&qh, x0->qh, sizeof(qh));
  2421. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2422. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2423. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2424. tmp[3] = table_b2b_1[(qh >> 24) ];
  2425. const v128_t qhl = wasm_v128_load(tmp + 0);
  2426. const v128_t qhh = wasm_v128_load(tmp + 2);
  2427. const v128_t v0 = wasm_v128_load(x0->qs);
  2428. // 4-bit -> 8-bit
  2429. const v128_t v0l = wasm_v128_and (v0, m4b);
  2430. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2431. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2432. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2433. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2434. // load y
  2435. const v128_t v1l = wasm_v128_load(y0->qs);
  2436. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2437. // int8x16 -> int16x8
  2438. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2439. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2440. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2441. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2442. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2443. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2444. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2445. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2446. // dot product
  2447. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2448. wasm_i32x4_add(
  2449. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2450. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2451. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2452. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2453. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2454. }
  2455. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2456. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2457. #elif defined(__AVX2__)
  2458. // Initialize accumulator with zeros
  2459. __m256 acc = _mm256_setzero_ps();
  2460. // Main loop
  2461. for (int i = 0; i < nb; i++) {
  2462. /* Compute combined scale for the block */
  2463. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2464. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2465. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2466. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2467. bx = _mm256_or_si256(bx, bxhi);
  2468. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2469. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2470. /* Multiply q with scale and accumulate */
  2471. acc = _mm256_fmadd_ps(d, q, acc);
  2472. }
  2473. *s = hsum_float_8(acc);
  2474. #elif defined(__AVX__)
  2475. // Initialize accumulator with zeros
  2476. __m256 acc = _mm256_setzero_ps();
  2477. __m128i mask = _mm_set1_epi8((char)0xF0);
  2478. // Main loop
  2479. for (int i = 0; i < nb; i++) {
  2480. /* Compute combined scale for the block */
  2481. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2482. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2483. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2484. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2485. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2486. bxhil = _mm_andnot_si128(bxhil, mask);
  2487. bxhih = _mm_andnot_si128(bxhih, mask);
  2488. __m128i bxl = _mm256_castsi256_si128(bx);
  2489. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2490. bxl = _mm_or_si128(bxl, bxhil);
  2491. bxh = _mm_or_si128(bxh, bxhih);
  2492. bx = MM256_SET_M128I(bxh, bxl);
  2493. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2494. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2495. /* Multiply q with scale and accumulate */
  2496. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2497. }
  2498. *s = hsum_float_8(acc);
  2499. #else
  2500. // scalar
  2501. float sumf = 0.0;
  2502. for (int i = 0; i < nb; i++) {
  2503. uint32_t qh;
  2504. memcpy(&qh, x[i].qh, sizeof(qh));
  2505. int sumi = 0;
  2506. for (int j = 0; j < qk/2; ++j) {
  2507. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2508. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2509. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2510. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2511. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2512. }
  2513. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2514. }
  2515. *s = sumf;
  2516. #endif
  2517. }
  2518. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2519. const int qk = QK8_1;
  2520. const int nb = n / qk;
  2521. assert(n % qk == 0);
  2522. assert(nb % 2 == 0);
  2523. assert(qk == QK5_1);
  2524. const block_q5_1 * restrict x = vx;
  2525. const block_q8_1 * restrict y = vy;
  2526. #if defined(__ARM_NEON)
  2527. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2528. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2529. float summs0 = 0.0f;
  2530. float summs1 = 0.0f;
  2531. uint32_t qh0;
  2532. uint32_t qh1;
  2533. uint64_t tmp0[4];
  2534. uint64_t tmp1[4];
  2535. for (int i = 0; i < nb; i += 2) {
  2536. const block_q5_1 * restrict x0 = &x[i];
  2537. const block_q5_1 * restrict x1 = &x[i + 1];
  2538. const block_q8_1 * restrict y0 = &y[i];
  2539. const block_q8_1 * restrict y1 = &y[i + 1];
  2540. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2541. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2542. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2543. // extract the 5th bit via lookup table ((b) << 4)
  2544. memcpy(&qh0, x0->qh, sizeof(qh0));
  2545. memcpy(&qh1, x1->qh, sizeof(qh1));
  2546. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2547. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2548. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2549. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2550. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2551. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2552. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2553. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2554. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2555. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2556. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2557. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2558. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2559. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2560. // 4-bit -> 8-bit
  2561. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2562. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2563. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2564. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2565. // add high bit
  2566. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2567. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2568. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2569. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2570. // load y
  2571. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2572. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2573. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2574. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2575. #if defined(__ARM_FEATURE_DOTPROD)
  2576. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2577. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2578. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2579. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2580. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2581. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2582. #else
  2583. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2584. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2585. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2586. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2587. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2588. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2589. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2590. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2591. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2592. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2593. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2594. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2595. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2596. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2597. #endif
  2598. }
  2599. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2600. #elif defined(__wasm_simd128__)
  2601. v128_t sumv = wasm_f32x4_splat(0.0f);
  2602. float summs = 0.0f;
  2603. uint32_t qh;
  2604. uint64_t tmp[4];
  2605. // TODO: check if unrolling this is better
  2606. for (int i = 0; i < nb; ++i) {
  2607. const block_q5_1 * restrict x0 = &x[i];
  2608. const block_q8_1 * restrict y0 = &y[i];
  2609. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2610. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2611. // extract the 5th bit
  2612. memcpy(&qh, x0->qh, sizeof(qh));
  2613. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2614. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2615. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2616. tmp[3] = table_b2b_0[(qh >> 24) ];
  2617. const v128_t qhl = wasm_v128_load(tmp + 0);
  2618. const v128_t qhh = wasm_v128_load(tmp + 2);
  2619. const v128_t v0 = wasm_v128_load(x0->qs);
  2620. // 4-bit -> 8-bit
  2621. const v128_t v0l = wasm_v128_and (v0, m4b);
  2622. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2623. // add high bit
  2624. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2625. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2626. // load y
  2627. const v128_t v1l = wasm_v128_load(y0->qs);
  2628. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2629. // int8x16 -> int16x8
  2630. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2631. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2632. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2633. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2634. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2635. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2636. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2637. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2638. // dot product
  2639. sumv = wasm_f32x4_add(sumv,
  2640. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2641. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2642. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2643. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2644. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2645. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2646. }
  2647. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2648. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2649. #elif defined(__AVX2__)
  2650. // Initialize accumulator with zeros
  2651. __m256 acc = _mm256_setzero_ps();
  2652. float summs = 0.0f;
  2653. // Main loop
  2654. for (int i = 0; i < nb; i++) {
  2655. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2656. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2657. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2658. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2659. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2660. bx = _mm256_or_si256(bx, bxhi);
  2661. const __m256 dy = _mm256_set1_ps(y[i].d);
  2662. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2663. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2664. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2665. }
  2666. *s = hsum_float_8(acc) + summs;
  2667. #elif defined(__AVX__)
  2668. // Initialize accumulator with zeros
  2669. __m256 acc = _mm256_setzero_ps();
  2670. __m128i mask = _mm_set1_epi8(0x10);
  2671. float summs = 0.0f;
  2672. // Main loop
  2673. for (int i = 0; i < nb; i++) {
  2674. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2675. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2676. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2677. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2678. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2679. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2680. bxhil = _mm_and_si128(bxhil, mask);
  2681. bxhih = _mm_and_si128(bxhih, mask);
  2682. __m128i bxl = _mm256_castsi256_si128(bx);
  2683. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2684. bxl = _mm_or_si128(bxl, bxhil);
  2685. bxh = _mm_or_si128(bxh, bxhih);
  2686. bx = MM256_SET_M128I(bxh, bxl);
  2687. const __m256 dy = _mm256_set1_ps(y[i].d);
  2688. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2689. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2690. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2691. }
  2692. *s = hsum_float_8(acc) + summs;
  2693. #else
  2694. // scalar
  2695. float sumf = 0.0;
  2696. for (int i = 0; i < nb; i++) {
  2697. uint32_t qh;
  2698. memcpy(&qh, x[i].qh, sizeof(qh));
  2699. int sumi = 0;
  2700. for (int j = 0; j < qk/2; ++j) {
  2701. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2702. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2703. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2704. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2705. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2706. }
  2707. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2708. }
  2709. *s = sumf;
  2710. #endif
  2711. }
  2712. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2713. const int qk = QK8_0;
  2714. const int nb = n / qk;
  2715. assert(n % qk == 0);
  2716. assert(nb % 2 == 0);
  2717. const block_q8_0 * restrict x = vx;
  2718. const block_q8_0 * restrict y = vy;
  2719. #if defined(__ARM_NEON)
  2720. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2721. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2722. for (int i = 0; i < nb; i += 2) {
  2723. const block_q8_0 * restrict x0 = &x[i + 0];
  2724. const block_q8_0 * restrict x1 = &x[i + 1];
  2725. const block_q8_0 * restrict y0 = &y[i + 0];
  2726. const block_q8_0 * restrict y1 = &y[i + 1];
  2727. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2728. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2729. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2730. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2731. // load y
  2732. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2733. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2734. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2735. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2736. #if defined(__ARM_FEATURE_DOTPROD)
  2737. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2738. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2739. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2740. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2741. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2742. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2743. #else
  2744. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2745. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2746. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2747. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2748. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2749. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2750. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2751. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2752. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2753. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2754. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2755. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2756. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2757. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2758. #endif
  2759. }
  2760. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2761. #elif defined(__AVX2__) || defined(__AVX__)
  2762. // Initialize accumulator with zeros
  2763. __m256 acc = _mm256_setzero_ps();
  2764. // Main loop
  2765. for (int i = 0; i < nb; ++i) {
  2766. // Compute combined scale for the block
  2767. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2768. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2769. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2770. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2771. // Multiply q with scale and accumulate
  2772. #if defined(__AVX2__)
  2773. acc = _mm256_fmadd_ps( d, q, acc );
  2774. #else
  2775. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2776. #endif
  2777. }
  2778. *s = hsum_float_8(acc);
  2779. #else
  2780. // scalar
  2781. float sumf = 0.0;
  2782. for (int i = 0; i < nb; i++) {
  2783. int sumi = 0;
  2784. for (int j = 0; j < qk; j++) {
  2785. sumi += x[i].qs[j]*y[i].qs[j];
  2786. }
  2787. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2788. }
  2789. *s = sumf;
  2790. #endif
  2791. }
  2792. // compute GGML_VEC_DOT_UNROLL dot products at once
  2793. // xs - x row stride in bytes
  2794. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2795. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2796. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2797. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2798. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2799. }
  2800. #if defined(GGML_SIMD)
  2801. const int np = (n & ~(GGML_F16_STEP - 1));
  2802. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2803. GGML_F16_VEC ax[GGML_F16_ARR];
  2804. GGML_F16_VEC ay[GGML_F16_ARR];
  2805. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2806. for (int j = 0; j < GGML_F16_ARR; j++) {
  2807. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2808. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2809. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2810. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2811. }
  2812. }
  2813. }
  2814. // reduce sum0..sum3 to sum0
  2815. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2816. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2817. }
  2818. // leftovers
  2819. for (int i = np; i < n; ++i) {
  2820. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2821. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2822. }
  2823. }
  2824. #else
  2825. for (int i = 0; i < n; ++i) {
  2826. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2827. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2828. }
  2829. }
  2830. #endif
  2831. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2832. s[i] = sumf[i];
  2833. }
  2834. }
  2835. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2836. #if defined(GGML_SIMD)
  2837. const int np = (n & ~(GGML_F32_STEP - 1));
  2838. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2839. GGML_F32_VEC ax[GGML_F32_ARR];
  2840. GGML_F32_VEC ay[GGML_F32_ARR];
  2841. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2842. for (int j = 0; j < GGML_F32_ARR; j++) {
  2843. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2844. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2845. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2846. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2847. }
  2848. }
  2849. // leftovers
  2850. for (int i = np; i < n; ++i) {
  2851. y[i] += x[i]*v;
  2852. }
  2853. #else
  2854. // scalar
  2855. for (int i = 0; i < n; ++i) {
  2856. y[i] += x[i]*v;
  2857. }
  2858. #endif
  2859. }
  2860. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2861. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2862. #if defined(GGML_USE_ACCELERATE)
  2863. vDSP_vsmul(y, 1, &v, y, 1, n);
  2864. #elif defined(GGML_SIMD)
  2865. const int np = (n & ~(GGML_F32_STEP - 1));
  2866. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2867. GGML_F32_VEC ay[GGML_F32_ARR];
  2868. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2869. for (int j = 0; j < GGML_F32_ARR; j++) {
  2870. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2871. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2872. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2873. }
  2874. }
  2875. // leftovers
  2876. for (int i = np; i < n; ++i) {
  2877. y[i] *= v;
  2878. }
  2879. #else
  2880. // scalar
  2881. for (int i = 0; i < n; ++i) {
  2882. y[i] *= v;
  2883. }
  2884. #endif
  2885. }
  2886. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2887. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2888. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2889. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2890. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2891. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2892. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2893. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2894. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2895. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2896. static const float GELU_COEF_A = 0.044715f;
  2897. static const float GELU_QUICK_COEF = -1.702f;
  2898. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2899. inline static float ggml_gelu_f32(float x) {
  2900. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2901. }
  2902. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2903. const uint16_t * i16 = (const uint16_t *) x;
  2904. for (int i = 0; i < n; ++i) {
  2905. y[i] = table_gelu_f16[i16[i]];
  2906. }
  2907. }
  2908. #ifdef GGML_GELU_FP16
  2909. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2910. uint16_t t;
  2911. for (int i = 0; i < n; ++i) {
  2912. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2913. memcpy(&t, &fp16, sizeof(uint16_t));
  2914. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2915. }
  2916. }
  2917. #else
  2918. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2919. for (int i = 0; i < n; ++i) {
  2920. y[i] = ggml_gelu_f32(x[i]);
  2921. }
  2922. }
  2923. #endif
  2924. inline static float ggml_gelu_quick_f32(float x) {
  2925. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2926. }
  2927. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2928. // const uint16_t * i16 = (const uint16_t *) x;
  2929. // for (int i = 0; i < n; ++i) {
  2930. // y[i] = table_gelu_quick_f16[i16[i]];
  2931. // }
  2932. //}
  2933. #ifdef GGML_GELU_QUICK_FP16
  2934. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2935. uint16_t t;
  2936. for (int i = 0; i < n; ++i) {
  2937. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2938. memcpy(&t, &fp16, sizeof(uint16_t));
  2939. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2940. }
  2941. }
  2942. #else
  2943. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2944. for (int i = 0; i < n; ++i) {
  2945. y[i] = ggml_gelu_quick_f32(x[i]);
  2946. }
  2947. }
  2948. #endif
  2949. // Sigmoid Linear Unit (SiLU) function
  2950. inline static float ggml_silu_f32(float x) {
  2951. return x/(1.0f + expf(-x));
  2952. }
  2953. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2954. // const uint16_t * i16 = (const uint16_t *) x;
  2955. // for (int i = 0; i < n; ++i) {
  2956. // y[i] = table_silu_f16[i16[i]];
  2957. // }
  2958. //}
  2959. #ifdef GGML_SILU_FP16
  2960. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2961. uint16_t t;
  2962. for (int i = 0; i < n; ++i) {
  2963. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2964. memcpy(&t, &fp16, sizeof(uint16_t));
  2965. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2966. }
  2967. }
  2968. #else
  2969. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2970. for (int i = 0; i < n; ++i) {
  2971. y[i] = ggml_silu_f32(x[i]);
  2972. }
  2973. }
  2974. #endif
  2975. inline static float ggml_silu_backward_f32(float x, float dy) {
  2976. const float s = 1.0f/(1.0f + expf(-x));
  2977. return dy*s*(1.0f + x*(1.0f - s));
  2978. }
  2979. #ifdef GGML_SILU_FP16
  2980. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2981. for (int i = 0; i < n; ++i) {
  2982. // we did not use x[i] to compute forward silu but its f16 equivalent
  2983. // take derivative at f16 of x[i]:
  2984. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2985. float usedx = GGML_FP16_TO_FP32(fp16);
  2986. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2987. }
  2988. }
  2989. #else
  2990. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2991. for (int i = 0; i < n; ++i) {
  2992. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2993. }
  2994. }
  2995. #endif
  2996. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2997. #ifndef GGML_USE_ACCELERATE
  2998. ggml_float sum = 0.0;
  2999. for (int i = 0; i < n; ++i) {
  3000. sum += (ggml_float)x[i];
  3001. }
  3002. *s = sum;
  3003. #else
  3004. vDSP_sve(x, 1, s, n);
  3005. #endif
  3006. }
  3007. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3008. ggml_float sum = 0.0;
  3009. for (int i = 0; i < n; ++i) {
  3010. sum += (ggml_float)x[i];
  3011. }
  3012. *s = sum;
  3013. }
  3014. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3015. float sum = 0.0f;
  3016. for (int i = 0; i < n; ++i) {
  3017. sum += GGML_FP16_TO_FP32(x[i]);
  3018. }
  3019. *s = sum;
  3020. }
  3021. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3022. #ifndef GGML_USE_ACCELERATE
  3023. float max = -INFINITY;
  3024. for (int i = 0; i < n; ++i) {
  3025. max = MAX(max, x[i]);
  3026. }
  3027. *s = max;
  3028. #else
  3029. vDSP_maxv(x, 1, s, n);
  3030. #endif
  3031. }
  3032. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3033. ggml_vec_norm_f32(n, s, x);
  3034. *s = 1.f/(*s);
  3035. }
  3036. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3037. float max = -INFINITY;
  3038. int idx = 0;
  3039. for (int i = 0; i < n; ++i) {
  3040. max = MAX(max, x[i]);
  3041. if (max == x[i]) { idx = i; }
  3042. }
  3043. *s = idx;
  3044. }
  3045. //
  3046. // data types
  3047. //
  3048. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3049. "NONE",
  3050. "DUP",
  3051. "ADD",
  3052. "ADD1",
  3053. "ACC",
  3054. "SUB",
  3055. "MUL",
  3056. "DIV",
  3057. "SQR",
  3058. "SQRT",
  3059. "LOG",
  3060. "SUM",
  3061. "SUM_ROWS",
  3062. "MEAN",
  3063. "ARGMAX",
  3064. "REPEAT",
  3065. "REPEAT_BACK",
  3066. "CONCAT",
  3067. "SILU_BACK",
  3068. "NORM",
  3069. "RMS_NORM",
  3070. "RMS_NORM_BACK",
  3071. "GROUP_NORM",
  3072. "MUL_MAT",
  3073. "OUT_PROD",
  3074. "SCALE",
  3075. "SET",
  3076. "CPY",
  3077. "CONT",
  3078. "RESHAPE",
  3079. "VIEW",
  3080. "PERMUTE",
  3081. "TRANSPOSE",
  3082. "GET_ROWS",
  3083. "GET_ROWS_BACK",
  3084. "DIAG",
  3085. "DIAG_MASK_INF",
  3086. "DIAG_MASK_ZERO",
  3087. "SOFT_MAX",
  3088. "SOFT_MAX_BACK",
  3089. "ROPE",
  3090. "ROPE_BACK",
  3091. "ALIBI",
  3092. "CLAMP",
  3093. "CONV_1D",
  3094. "CONV_2D",
  3095. "CONV_TRANSPOSE_2D",
  3096. "POOL_1D",
  3097. "POOL_2D",
  3098. "UPSCALE",
  3099. "FLASH_ATTN",
  3100. "FLASH_FF",
  3101. "FLASH_ATTN_BACK",
  3102. "WIN_PART",
  3103. "WIN_UNPART",
  3104. "GET_REL_POS",
  3105. "ADD_REL_POS",
  3106. "UNARY",
  3107. "MAP_UNARY",
  3108. "MAP_BINARY",
  3109. "MAP_CUSTOM1_F32",
  3110. "MAP_CUSTOM2_F32",
  3111. "MAP_CUSTOM3_F32",
  3112. "MAP_CUSTOM1",
  3113. "MAP_CUSTOM2",
  3114. "MAP_CUSTOM3",
  3115. "CROSS_ENTROPY_LOSS",
  3116. "CROSS_ENTROPY_LOSS_BACK",
  3117. };
  3118. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3119. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3120. "none",
  3121. "x",
  3122. "x+y",
  3123. "x+y",
  3124. "view(x,nb,offset)+=y->x",
  3125. "x-y",
  3126. "x*y",
  3127. "x/y",
  3128. "x^2",
  3129. "√x",
  3130. "log(x)",
  3131. "Σx",
  3132. "Σx_k",
  3133. "Σx/n",
  3134. "argmax(x)",
  3135. "repeat(x)",
  3136. "repeat_back(x)",
  3137. "concat(x, y)",
  3138. "silu_back(x)",
  3139. "norm(x)",
  3140. "rms_norm(x)",
  3141. "rms_norm_back(x)",
  3142. "group_norm(x)",
  3143. "X*Y",
  3144. "X*Y",
  3145. "x*v",
  3146. "y-\\>view(x)",
  3147. "x-\\>y",
  3148. "cont(x)",
  3149. "reshape(x)",
  3150. "view(x)",
  3151. "permute(x)",
  3152. "transpose(x)",
  3153. "get_rows(x)",
  3154. "get_rows_back(x)",
  3155. "diag(x)",
  3156. "diag_mask_inf(x)",
  3157. "diag_mask_zero(x)",
  3158. "soft_max(x)",
  3159. "soft_max_back(x)",
  3160. "rope(x)",
  3161. "rope_back(x)",
  3162. "alibi(x)",
  3163. "clamp(x)",
  3164. "conv_1d(x)",
  3165. "conv_2d(x)",
  3166. "conv_transpose_2d(x)",
  3167. "pool_1d(x)",
  3168. "pool_2d(x)",
  3169. "upscale(x)",
  3170. "flash_attn(x)",
  3171. "flash_ff(x)",
  3172. "flash_attn_back(x)",
  3173. "win_part(x)",
  3174. "win_unpart(x)",
  3175. "get_rel_pos(x)",
  3176. "add_rel_pos(x)",
  3177. "unary(x)",
  3178. "f(x)",
  3179. "f(x,y)",
  3180. "custom_f32(x)",
  3181. "custom_f32(x,y)",
  3182. "custom_f32(x,y,z)",
  3183. "custom(x)",
  3184. "custom(x,y)",
  3185. "custom(x,y,z)",
  3186. "cross_entropy_loss(x,y)",
  3187. "cross_entropy_loss_back(x,y)",
  3188. };
  3189. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3190. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3191. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3192. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3193. // WARN:
  3194. // Mis-confguration can lead to problem that's hard to reason about:
  3195. // * At best it crash or talks nosense.
  3196. // * At worst it talks slightly difference but hard to perceive.
  3197. //
  3198. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3199. // Take care about compile options (e.g., GGML_USE_xxx).
  3200. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3201. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3202. static void ggml_setup_op_has_task_pass(void) {
  3203. { // INIT
  3204. bool * p = GGML_OP_HAS_INIT;
  3205. p[GGML_OP_ACC ] = true;
  3206. p[GGML_OP_MUL_MAT ] = true;
  3207. p[GGML_OP_OUT_PROD ] = true;
  3208. p[GGML_OP_SET ] = true;
  3209. p[GGML_OP_GET_ROWS_BACK ] = true;
  3210. p[GGML_OP_DIAG_MASK_INF ] = true;
  3211. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3212. p[GGML_OP_CONV_1D ] = true;
  3213. p[GGML_OP_CONV_2D ] = true;
  3214. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3215. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3216. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3217. p[GGML_OP_ADD_REL_POS ] = true;
  3218. }
  3219. { // FINALIZE
  3220. bool * p = GGML_OP_HAS_FINALIZE;
  3221. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3222. }
  3223. }
  3224. //
  3225. // ggml context
  3226. //
  3227. struct ggml_context {
  3228. size_t mem_size;
  3229. void * mem_buffer;
  3230. bool mem_buffer_owned;
  3231. bool no_alloc;
  3232. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3233. int n_objects;
  3234. struct ggml_object * objects_begin;
  3235. struct ggml_object * objects_end;
  3236. struct ggml_scratch scratch;
  3237. struct ggml_scratch scratch_save;
  3238. };
  3239. struct ggml_context_container {
  3240. bool used;
  3241. struct ggml_context context;
  3242. };
  3243. //
  3244. // NUMA support
  3245. //
  3246. #define GGML_NUMA_MAX_NODES 8
  3247. #define GGML_NUMA_MAX_CPUS 512
  3248. struct ggml_numa_node {
  3249. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3250. uint32_t n_cpus;
  3251. };
  3252. struct ggml_numa_nodes {
  3253. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3254. uint32_t n_nodes;
  3255. uint32_t total_cpus; // hardware threads on system
  3256. };
  3257. //
  3258. // ggml state
  3259. //
  3260. struct ggml_state {
  3261. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3262. struct ggml_numa_nodes numa;
  3263. };
  3264. // global state
  3265. static struct ggml_state g_state;
  3266. static atomic_int g_state_barrier = 0;
  3267. // barrier via spin lock
  3268. inline static void ggml_critical_section_start(void) {
  3269. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3270. while (processing > 0) {
  3271. // wait for other threads to finish
  3272. atomic_fetch_sub(&g_state_barrier, 1);
  3273. sched_yield(); // TODO: reconsider this
  3274. processing = atomic_fetch_add(&g_state_barrier, 1);
  3275. }
  3276. }
  3277. // TODO: make this somehow automatically executed
  3278. // some sort of "sentry" mechanism
  3279. inline static void ggml_critical_section_end(void) {
  3280. atomic_fetch_sub(&g_state_barrier, 1);
  3281. }
  3282. void ggml_numa_init(void) {
  3283. if (g_state.numa.n_nodes > 0) {
  3284. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3285. return;
  3286. }
  3287. #ifdef __linux__
  3288. struct stat st;
  3289. char path[256];
  3290. int rv;
  3291. // enumerate nodes
  3292. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3293. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3294. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3295. if (stat(path, &st) != 0) { break; }
  3296. ++g_state.numa.n_nodes;
  3297. }
  3298. // enumerate CPUs
  3299. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3300. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3301. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3302. if (stat(path, &st) != 0) { break; }
  3303. ++g_state.numa.total_cpus;
  3304. }
  3305. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3306. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3307. g_state.numa.n_nodes = 0;
  3308. return;
  3309. }
  3310. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3311. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3312. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3313. node->n_cpus = 0;
  3314. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3315. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3316. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3317. if (stat(path, &st) == 0) {
  3318. node->cpus[node->n_cpus++] = c;
  3319. GGML_PRINT_DEBUG(" %u", c);
  3320. }
  3321. }
  3322. GGML_PRINT_DEBUG("\n");
  3323. }
  3324. if (ggml_is_numa()) {
  3325. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3326. if (fptr != NULL) {
  3327. char buf[42];
  3328. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3329. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3330. }
  3331. fclose(fptr);
  3332. }
  3333. }
  3334. #else
  3335. // TODO
  3336. #endif
  3337. }
  3338. bool ggml_is_numa(void) {
  3339. return g_state.numa.n_nodes > 1;
  3340. }
  3341. ////////////////////////////////////////////////////////////////////////////////
  3342. void ggml_print_object(const struct ggml_object * obj) {
  3343. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3344. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3345. }
  3346. void ggml_print_objects(const struct ggml_context * ctx) {
  3347. struct ggml_object * obj = ctx->objects_begin;
  3348. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3349. while (obj != NULL) {
  3350. ggml_print_object(obj);
  3351. obj = obj->next;
  3352. }
  3353. GGML_PRINT("%s: --- end ---\n", __func__);
  3354. }
  3355. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3358. }
  3359. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3360. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3361. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3362. }
  3363. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3364. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3365. // this should handle cases where the tensor is not contiguous in memory
  3366. // probaby just:
  3367. //
  3368. // return tensor->ne[3]*tensor->nb[3]
  3369. //
  3370. // is enough, but just in case, adding the second part
  3371. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type));
  3372. }
  3373. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3374. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3375. }
  3376. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3377. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3378. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3379. }
  3380. int ggml_blck_size(enum ggml_type type) {
  3381. return type_traits[type].blck_size;
  3382. }
  3383. size_t ggml_type_size(enum ggml_type type) {
  3384. return type_traits[type].type_size;
  3385. }
  3386. float ggml_type_sizef(enum ggml_type type) {
  3387. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3388. }
  3389. const char * ggml_type_name(enum ggml_type type) {
  3390. return type_traits[type].type_name;
  3391. }
  3392. bool ggml_is_quantized(enum ggml_type type) {
  3393. return type_traits[type].is_quantized;
  3394. }
  3395. const char * ggml_op_name(enum ggml_op op) {
  3396. return GGML_OP_NAME[op];
  3397. }
  3398. const char * ggml_op_symbol(enum ggml_op op) {
  3399. return GGML_OP_SYMBOL[op];
  3400. }
  3401. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3402. return ggml_type_size(tensor->type);
  3403. }
  3404. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3406. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3407. }
  3408. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3409. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3410. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3411. }
  3412. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3413. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3414. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3415. }
  3416. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3417. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3418. return (t0->ne[0] == t1->ne[0]) &&
  3419. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3420. (t1->ne[3]%t0->ne[3] == 0);
  3421. }
  3422. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3423. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3424. return
  3425. (t0->ne[1] == t1->ne[1]) &&
  3426. (t0->ne[2] == t1->ne[2]) &&
  3427. (t0->ne[3] == t1->ne[3]);
  3428. }
  3429. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3430. enum ggml_type wtype = GGML_TYPE_COUNT;
  3431. switch (ftype) {
  3432. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3433. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3434. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3435. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3436. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3437. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3438. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3439. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3440. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3441. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3442. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3443. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3444. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3445. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3446. }
  3447. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3448. return wtype;
  3449. }
  3450. size_t ggml_tensor_overhead(void) {
  3451. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3452. }
  3453. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3454. return tensor->nb[0] > tensor->nb[1];
  3455. }
  3456. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3457. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3458. return
  3459. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3460. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3461. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3462. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3463. }
  3464. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3465. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3466. return
  3467. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3468. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3469. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3470. }
  3471. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3472. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3473. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3474. }
  3475. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3476. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3477. return
  3478. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3479. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3480. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3481. }
  3482. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3483. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3484. return
  3485. (t0->ne[0] == t1->ne[0] ) &&
  3486. (t0->ne[1] == t1->ne[1] ) &&
  3487. (t0->ne[2] == t1->ne[2] ) &&
  3488. (t0->ne[3] == t1->ne[3] );
  3489. }
  3490. // check if t1 can be represented as a repeatition of t0
  3491. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3492. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3493. return
  3494. (t1->ne[0]%t0->ne[0] == 0) &&
  3495. (t1->ne[1]%t0->ne[1] == 0) &&
  3496. (t1->ne[2]%t0->ne[2] == 0) &&
  3497. (t1->ne[3]%t0->ne[3] == 0);
  3498. }
  3499. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3500. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3501. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3502. }
  3503. static inline int ggml_up32(int n) {
  3504. return (n + 31) & ~31;
  3505. }
  3506. //static inline int ggml_up64(int n) {
  3507. // return (n + 63) & ~63;
  3508. //}
  3509. static inline int ggml_up(int n, int m) {
  3510. // assert m is a power of 2
  3511. GGML_ASSERT((m & (m - 1)) == 0);
  3512. return (n + m - 1) & ~(m - 1);
  3513. }
  3514. // assert that pointer is aligned to GGML_MEM_ALIGN
  3515. #define ggml_assert_aligned(ptr) \
  3516. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3517. ////////////////////////////////////////////////////////////////////////////////
  3518. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3519. // make this function thread safe
  3520. ggml_critical_section_start();
  3521. static bool is_first_call = true;
  3522. if (is_first_call) {
  3523. // initialize time system (required on Windows)
  3524. ggml_time_init();
  3525. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3526. {
  3527. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3528. ggml_fp16_t ii;
  3529. for (int i = 0; i < (1 << 16); ++i) {
  3530. uint16_t ui = i;
  3531. memcpy(&ii, &ui, sizeof(ii));
  3532. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3533. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3534. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3535. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3536. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3537. }
  3538. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3539. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3540. }
  3541. // initialize g_state
  3542. {
  3543. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3544. g_state = (struct ggml_state) {
  3545. /*.contexts =*/ { { 0 } },
  3546. /*.numa =*/ {
  3547. .n_nodes = 0,
  3548. .total_cpus = 0,
  3549. },
  3550. };
  3551. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3552. g_state.contexts[i].used = false;
  3553. }
  3554. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3555. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3556. }
  3557. #if defined(GGML_USE_CUBLAS)
  3558. ggml_init_cublas();
  3559. #elif defined(GGML_USE_CLBLAST)
  3560. ggml_cl_init();
  3561. #endif
  3562. ggml_setup_op_has_task_pass();
  3563. is_first_call = false;
  3564. }
  3565. // find non-used context in g_state
  3566. struct ggml_context * ctx = NULL;
  3567. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3568. if (!g_state.contexts[i].used) {
  3569. g_state.contexts[i].used = true;
  3570. ctx = &g_state.contexts[i].context;
  3571. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3572. break;
  3573. }
  3574. }
  3575. if (ctx == NULL) {
  3576. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3577. ggml_critical_section_end();
  3578. return NULL;
  3579. }
  3580. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3581. *ctx = (struct ggml_context) {
  3582. /*.mem_size =*/ mem_size,
  3583. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3584. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3585. /*.no_alloc =*/ params.no_alloc,
  3586. /*.no_alloc_save =*/ params.no_alloc,
  3587. /*.n_objects =*/ 0,
  3588. /*.objects_begin =*/ NULL,
  3589. /*.objects_end =*/ NULL,
  3590. /*.scratch =*/ { 0, 0, NULL, },
  3591. /*.scratch_save =*/ { 0, 0, NULL, },
  3592. };
  3593. GGML_ASSERT(ctx->mem_buffer != NULL);
  3594. ggml_assert_aligned(ctx->mem_buffer);
  3595. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3596. ggml_critical_section_end();
  3597. return ctx;
  3598. }
  3599. void ggml_free(struct ggml_context * ctx) {
  3600. // make this function thread safe
  3601. ggml_critical_section_start();
  3602. bool found = false;
  3603. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3604. if (&g_state.contexts[i].context == ctx) {
  3605. g_state.contexts[i].used = false;
  3606. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3607. __func__, i, ggml_used_mem(ctx));
  3608. if (ctx->mem_buffer_owned) {
  3609. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3610. }
  3611. found = true;
  3612. break;
  3613. }
  3614. }
  3615. if (!found) {
  3616. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3617. }
  3618. ggml_critical_section_end();
  3619. }
  3620. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3621. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3622. }
  3623. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3624. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3625. ctx->scratch = scratch;
  3626. return result;
  3627. }
  3628. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3629. return ctx->no_alloc;
  3630. }
  3631. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3632. ctx->no_alloc = no_alloc;
  3633. }
  3634. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3635. return ctx->mem_buffer;
  3636. }
  3637. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3638. return ctx->mem_size;
  3639. }
  3640. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3641. size_t max_size = 0;
  3642. struct ggml_object * obj = ctx->objects_begin;
  3643. while (obj != NULL) {
  3644. if (obj->type == GGML_OBJECT_TENSOR) {
  3645. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3646. const size_t size = ggml_nbytes(tensor);
  3647. if (max_size < size) {
  3648. max_size = size;
  3649. }
  3650. }
  3651. obj = obj->next;
  3652. }
  3653. return max_size;
  3654. }
  3655. // IMPORTANT:
  3656. // when creating "opt" tensors, always save and load the scratch buffer
  3657. // this is an error prone process, but it is necessary to support inplace
  3658. // operators when using scratch buffers
  3659. // TODO: implement a better way
  3660. static void ggml_scratch_save(struct ggml_context * ctx) {
  3661. // this is needed to allow opt tensors to store their data
  3662. // TODO: again, need to find a better way
  3663. ctx->no_alloc_save = ctx->no_alloc;
  3664. ctx->no_alloc = false;
  3665. ctx->scratch_save = ctx->scratch;
  3666. ctx->scratch.data = NULL;
  3667. }
  3668. static void ggml_scratch_load(struct ggml_context * ctx) {
  3669. ctx->no_alloc = ctx->no_alloc_save;
  3670. ctx->scratch = ctx->scratch_save;
  3671. }
  3672. ////////////////////////////////////////////////////////////////////////////////
  3673. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3674. // always insert objects at the end of the context's memory pool
  3675. struct ggml_object * obj_cur = ctx->objects_end;
  3676. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3677. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3678. const size_t cur_end = cur_offs + cur_size;
  3679. // align to GGML_MEM_ALIGN
  3680. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3681. char * const mem_buffer = ctx->mem_buffer;
  3682. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3683. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3684. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3685. __func__, cur_end + size_needed, ctx->mem_size);
  3686. assert(false);
  3687. return NULL;
  3688. }
  3689. *obj_new = (struct ggml_object) {
  3690. .offs = cur_end + GGML_OBJECT_SIZE,
  3691. .size = size_needed,
  3692. .next = NULL,
  3693. .type = type,
  3694. };
  3695. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3696. if (obj_cur != NULL) {
  3697. obj_cur->next = obj_new;
  3698. } else {
  3699. // this is the first object in this context
  3700. ctx->objects_begin = obj_new;
  3701. }
  3702. ctx->objects_end = obj_new;
  3703. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3704. return obj_new;
  3705. }
  3706. static struct ggml_tensor * ggml_new_tensor_impl(
  3707. struct ggml_context * ctx,
  3708. enum ggml_type type,
  3709. int n_dims,
  3710. const int64_t * ne,
  3711. void * data) {
  3712. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3713. size_t data_size = 0;
  3714. if (data == NULL && !ctx->no_alloc) {
  3715. data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3716. for (int i = 1; i < n_dims; i++) {
  3717. data_size *= ne[i];
  3718. }
  3719. }
  3720. if (ctx->scratch.data != NULL && data == NULL) {
  3721. // allocate tensor data in the scratch buffer
  3722. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3723. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3724. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3725. assert(false);
  3726. return NULL;
  3727. }
  3728. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3729. ctx->scratch.offs += data_size;
  3730. data_size = 0;
  3731. }
  3732. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3733. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3734. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3735. *result = (struct ggml_tensor) {
  3736. /*.type =*/ type,
  3737. /*.backend =*/ GGML_BACKEND_CPU,
  3738. /*.n_dims =*/ n_dims,
  3739. /*.ne =*/ { 1, 1, 1, 1 },
  3740. /*.nb =*/ { 0, 0, 0, 0 },
  3741. /*.op =*/ GGML_OP_NONE,
  3742. /*.op_params =*/ { 0 },
  3743. /*.is_param =*/ false,
  3744. /*.grad =*/ NULL,
  3745. /*.src =*/ { NULL },
  3746. /*.perf_runs =*/ 0,
  3747. /*.perf_cycles =*/ 0,
  3748. /*.perf_time_us =*/ 0,
  3749. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3750. /*.name =*/ { 0 },
  3751. /*.extra =*/ NULL,
  3752. /*.padding =*/ { 0 },
  3753. };
  3754. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3755. //ggml_assert_aligned(result->data);
  3756. for (int i = 0; i < n_dims; i++) {
  3757. result->ne[i] = ne[i];
  3758. }
  3759. result->nb[0] = ggml_type_size(type);
  3760. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3761. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3762. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3763. }
  3764. ctx->n_objects++;
  3765. return result;
  3766. }
  3767. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3768. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3769. assert(params_size <= GGML_MAX_OP_PARAMS);
  3770. memcpy(tensor->op_params, params, params_size);
  3771. }
  3772. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3773. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3774. return ((const int32_t *)(tensor->op_params))[i];
  3775. }
  3776. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3777. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3778. ((int32_t *)(tensor->op_params))[i] = value;
  3779. }
  3780. struct ggml_tensor * ggml_new_tensor(
  3781. struct ggml_context * ctx,
  3782. enum ggml_type type,
  3783. int n_dims,
  3784. const int64_t * ne) {
  3785. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3786. }
  3787. struct ggml_tensor * ggml_new_tensor_1d(
  3788. struct ggml_context * ctx,
  3789. enum ggml_type type,
  3790. int64_t ne0) {
  3791. return ggml_new_tensor(ctx, type, 1, &ne0);
  3792. }
  3793. struct ggml_tensor * ggml_new_tensor_2d(
  3794. struct ggml_context * ctx,
  3795. enum ggml_type type,
  3796. int64_t ne0,
  3797. int64_t ne1) {
  3798. const int64_t ne[2] = { ne0, ne1 };
  3799. return ggml_new_tensor(ctx, type, 2, ne);
  3800. }
  3801. struct ggml_tensor * ggml_new_tensor_3d(
  3802. struct ggml_context * ctx,
  3803. enum ggml_type type,
  3804. int64_t ne0,
  3805. int64_t ne1,
  3806. int64_t ne2) {
  3807. const int64_t ne[3] = { ne0, ne1, ne2 };
  3808. return ggml_new_tensor(ctx, type, 3, ne);
  3809. }
  3810. struct ggml_tensor * ggml_new_tensor_4d(
  3811. struct ggml_context * ctx,
  3812. enum ggml_type type,
  3813. int64_t ne0,
  3814. int64_t ne1,
  3815. int64_t ne2,
  3816. int64_t ne3) {
  3817. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3818. return ggml_new_tensor(ctx, type, 4, ne);
  3819. }
  3820. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3821. ggml_scratch_save(ctx);
  3822. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3823. ggml_scratch_load(ctx);
  3824. ggml_set_i32(result, value);
  3825. return result;
  3826. }
  3827. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3828. ggml_scratch_save(ctx);
  3829. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3830. ggml_scratch_load(ctx);
  3831. ggml_set_f32(result, value);
  3832. return result;
  3833. }
  3834. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3835. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3836. }
  3837. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3838. memset(tensor->data, 0, ggml_nbytes(tensor));
  3839. return tensor;
  3840. }
  3841. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3842. const int n = ggml_nrows(tensor);
  3843. const int nc = tensor->ne[0];
  3844. const size_t n1 = tensor->nb[1];
  3845. char * const data = tensor->data;
  3846. switch (tensor->type) {
  3847. case GGML_TYPE_I8:
  3848. {
  3849. assert(tensor->nb[0] == sizeof(int8_t));
  3850. for (int i = 0; i < n; i++) {
  3851. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3852. }
  3853. } break;
  3854. case GGML_TYPE_I16:
  3855. {
  3856. assert(tensor->nb[0] == sizeof(int16_t));
  3857. for (int i = 0; i < n; i++) {
  3858. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3859. }
  3860. } break;
  3861. case GGML_TYPE_I32:
  3862. {
  3863. assert(tensor->nb[0] == sizeof(int32_t));
  3864. for (int i = 0; i < n; i++) {
  3865. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3866. }
  3867. } break;
  3868. case GGML_TYPE_F16:
  3869. {
  3870. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3871. for (int i = 0; i < n; i++) {
  3872. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3873. }
  3874. } break;
  3875. case GGML_TYPE_F32:
  3876. {
  3877. assert(tensor->nb[0] == sizeof(float));
  3878. for (int i = 0; i < n; i++) {
  3879. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3880. }
  3881. } break;
  3882. default:
  3883. {
  3884. GGML_ASSERT(false);
  3885. } break;
  3886. }
  3887. return tensor;
  3888. }
  3889. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3890. const int n = ggml_nrows(tensor);
  3891. const int nc = tensor->ne[0];
  3892. const size_t n1 = tensor->nb[1];
  3893. char * const data = tensor->data;
  3894. switch (tensor->type) {
  3895. case GGML_TYPE_I8:
  3896. {
  3897. assert(tensor->nb[0] == sizeof(int8_t));
  3898. for (int i = 0; i < n; i++) {
  3899. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3900. }
  3901. } break;
  3902. case GGML_TYPE_I16:
  3903. {
  3904. assert(tensor->nb[0] == sizeof(int16_t));
  3905. for (int i = 0; i < n; i++) {
  3906. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3907. }
  3908. } break;
  3909. case GGML_TYPE_I32:
  3910. {
  3911. assert(tensor->nb[0] == sizeof(int32_t));
  3912. for (int i = 0; i < n; i++) {
  3913. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3914. }
  3915. } break;
  3916. case GGML_TYPE_F16:
  3917. {
  3918. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3919. for (int i = 0; i < n; i++) {
  3920. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3921. }
  3922. } break;
  3923. case GGML_TYPE_F32:
  3924. {
  3925. assert(tensor->nb[0] == sizeof(float));
  3926. for (int i = 0; i < n; i++) {
  3927. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3928. }
  3929. } break;
  3930. default:
  3931. {
  3932. GGML_ASSERT(false);
  3933. } break;
  3934. }
  3935. return tensor;
  3936. }
  3937. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3938. switch (tensor->type) {
  3939. case GGML_TYPE_I8:
  3940. {
  3941. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3942. return ((int8_t *)(tensor->data))[i];
  3943. } break;
  3944. case GGML_TYPE_I16:
  3945. {
  3946. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3947. return ((int16_t *)(tensor->data))[i];
  3948. } break;
  3949. case GGML_TYPE_I32:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3952. return ((int32_t *)(tensor->data))[i];
  3953. } break;
  3954. case GGML_TYPE_F16:
  3955. {
  3956. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3957. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3958. } break;
  3959. case GGML_TYPE_F32:
  3960. {
  3961. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3962. return ((float *)(tensor->data))[i];
  3963. } break;
  3964. default:
  3965. {
  3966. GGML_ASSERT(false);
  3967. } break;
  3968. }
  3969. return 0.0f;
  3970. }
  3971. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3972. switch (tensor->type) {
  3973. case GGML_TYPE_I8:
  3974. {
  3975. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3976. ((int8_t *)(tensor->data))[i] = value;
  3977. } break;
  3978. case GGML_TYPE_I16:
  3979. {
  3980. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3981. ((int16_t *)(tensor->data))[i] = value;
  3982. } break;
  3983. case GGML_TYPE_I32:
  3984. {
  3985. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3986. ((int32_t *)(tensor->data))[i] = value;
  3987. } break;
  3988. case GGML_TYPE_F16:
  3989. {
  3990. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3991. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3992. } break;
  3993. case GGML_TYPE_F32:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3996. ((float *)(tensor->data))[i] = value;
  3997. } break;
  3998. default:
  3999. {
  4000. GGML_ASSERT(false);
  4001. } break;
  4002. }
  4003. }
  4004. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4005. switch (tensor->type) {
  4006. case GGML_TYPE_I8:
  4007. {
  4008. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4009. return ((int8_t *)(tensor->data))[i];
  4010. } break;
  4011. case GGML_TYPE_I16:
  4012. {
  4013. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4014. return ((int16_t *)(tensor->data))[i];
  4015. } break;
  4016. case GGML_TYPE_I32:
  4017. {
  4018. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4019. return ((int32_t *)(tensor->data))[i];
  4020. } break;
  4021. case GGML_TYPE_F16:
  4022. {
  4023. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4024. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4025. } break;
  4026. case GGML_TYPE_F32:
  4027. {
  4028. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4029. return ((float *)(tensor->data))[i];
  4030. } break;
  4031. default:
  4032. {
  4033. GGML_ASSERT(false);
  4034. } break;
  4035. }
  4036. return 0.0f;
  4037. }
  4038. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4039. switch (tensor->type) {
  4040. case GGML_TYPE_I8:
  4041. {
  4042. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4043. ((int8_t *)(tensor->data))[i] = value;
  4044. } break;
  4045. case GGML_TYPE_I16:
  4046. {
  4047. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4048. ((int16_t *)(tensor->data))[i] = value;
  4049. } break;
  4050. case GGML_TYPE_I32:
  4051. {
  4052. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4053. ((int32_t *)(tensor->data))[i] = value;
  4054. } break;
  4055. case GGML_TYPE_F16:
  4056. {
  4057. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4058. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4059. } break;
  4060. case GGML_TYPE_F32:
  4061. {
  4062. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4063. ((float *)(tensor->data))[i] = value;
  4064. } break;
  4065. default:
  4066. {
  4067. GGML_ASSERT(false);
  4068. } break;
  4069. }
  4070. }
  4071. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4072. return tensor->data;
  4073. }
  4074. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4075. assert(tensor->type == GGML_TYPE_F32);
  4076. return (float *)(tensor->data);
  4077. }
  4078. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4079. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4080. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4081. }
  4082. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4083. return tensor->name;
  4084. }
  4085. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4086. strncpy(tensor->name, name, sizeof(tensor->name));
  4087. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4088. return tensor;
  4089. }
  4090. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4091. va_list args;
  4092. va_start(args, fmt);
  4093. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4094. va_end(args);
  4095. return tensor;
  4096. }
  4097. struct ggml_tensor * ggml_view_tensor(
  4098. struct ggml_context * ctx,
  4099. const struct ggml_tensor * src) {
  4100. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4101. ggml_format_name(result, "%s (view)", src->name);
  4102. result->nb[0] = src->nb[0];
  4103. result->nb[1] = src->nb[1];
  4104. result->nb[2] = src->nb[2];
  4105. result->nb[3] = src->nb[3];
  4106. return result;
  4107. }
  4108. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4109. struct ggml_object * obj = ctx->objects_begin;
  4110. char * const mem_buffer = ctx->mem_buffer;
  4111. while (obj != NULL) {
  4112. if (obj->type == GGML_OBJECT_TENSOR) {
  4113. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4114. if (strcmp(cur->name, name) == 0) {
  4115. return cur;
  4116. }
  4117. }
  4118. obj = obj->next;
  4119. }
  4120. return NULL;
  4121. }
  4122. ////////////////////////////////////////////////////////////////////////////////
  4123. // ggml_dup
  4124. static struct ggml_tensor * ggml_dup_impl(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. bool inplace) {
  4128. bool is_node = false;
  4129. if (!inplace && (a->grad)) {
  4130. is_node = true;
  4131. }
  4132. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4133. result->op = GGML_OP_DUP;
  4134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4135. result->src[0] = a;
  4136. return result;
  4137. }
  4138. struct ggml_tensor * ggml_dup(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a) {
  4141. return ggml_dup_impl(ctx, a, false);
  4142. }
  4143. struct ggml_tensor * ggml_dup_inplace(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a) {
  4146. return ggml_dup_impl(ctx, a, true);
  4147. }
  4148. // ggml_add
  4149. static struct ggml_tensor * ggml_add_impl(
  4150. struct ggml_context * ctx,
  4151. struct ggml_tensor * a,
  4152. struct ggml_tensor * b,
  4153. bool inplace) {
  4154. // TODO: support less-strict constraint
  4155. // GGML_ASSERT(ggml_can_repeat(b, a));
  4156. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4157. bool is_node = false;
  4158. if (!inplace && (a->grad || b->grad)) {
  4159. // TODO: support backward pass for broadcasting
  4160. GGML_ASSERT(ggml_are_same_shape(a, b));
  4161. is_node = true;
  4162. }
  4163. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4164. result->op = GGML_OP_ADD;
  4165. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4166. result->src[0] = a;
  4167. result->src[1] = b;
  4168. return result;
  4169. }
  4170. struct ggml_tensor * ggml_add(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b) {
  4174. return ggml_add_impl(ctx, a, b, false);
  4175. }
  4176. struct ggml_tensor * ggml_add_inplace(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b) {
  4180. return ggml_add_impl(ctx, a, b, true);
  4181. }
  4182. // ggml_add1
  4183. static struct ggml_tensor * ggml_add1_impl(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a,
  4186. struct ggml_tensor * b,
  4187. bool inplace) {
  4188. GGML_ASSERT(ggml_is_scalar(b));
  4189. GGML_ASSERT(ggml_is_padded_1d(a));
  4190. bool is_node = false;
  4191. if (a->grad || b->grad) {
  4192. is_node = true;
  4193. }
  4194. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4195. result->op = GGML_OP_ADD1;
  4196. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4197. result->src[0] = a;
  4198. result->src[1] = b;
  4199. return result;
  4200. }
  4201. struct ggml_tensor * ggml_add1(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. struct ggml_tensor * b) {
  4205. return ggml_add1_impl(ctx, a, b, false);
  4206. }
  4207. struct ggml_tensor * ggml_add1_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a,
  4210. struct ggml_tensor * b) {
  4211. return ggml_add1_impl(ctx, a, b, true);
  4212. }
  4213. // ggml_acc
  4214. static struct ggml_tensor * ggml_acc_impl(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b,
  4218. size_t nb1,
  4219. size_t nb2,
  4220. size_t nb3,
  4221. size_t offset,
  4222. bool inplace) {
  4223. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4224. GGML_ASSERT(ggml_is_contiguous(a));
  4225. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4226. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4227. bool is_node = false;
  4228. if (!inplace && (a->grad || b->grad)) {
  4229. is_node = true;
  4230. }
  4231. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4232. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4233. ggml_set_op_params(result, params, sizeof(params));
  4234. result->op = GGML_OP_ACC;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. result->src[1] = b;
  4238. return result;
  4239. }
  4240. struct ggml_tensor * ggml_acc(
  4241. struct ggml_context * ctx,
  4242. struct ggml_tensor * a,
  4243. struct ggml_tensor * b,
  4244. size_t nb1,
  4245. size_t nb2,
  4246. size_t nb3,
  4247. size_t offset) {
  4248. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4249. }
  4250. struct ggml_tensor * ggml_acc_inplace(
  4251. struct ggml_context * ctx,
  4252. struct ggml_tensor * a,
  4253. struct ggml_tensor * b,
  4254. size_t nb1,
  4255. size_t nb2,
  4256. size_t nb3,
  4257. size_t offset) {
  4258. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4259. }
  4260. // ggml_sub
  4261. static struct ggml_tensor * ggml_sub_impl(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * b,
  4265. bool inplace) {
  4266. GGML_ASSERT(ggml_are_same_shape(a, b));
  4267. bool is_node = false;
  4268. if (!inplace && (a->grad || b->grad)) {
  4269. is_node = true;
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_SUB;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src[0] = a;
  4275. result->src[1] = b;
  4276. return result;
  4277. }
  4278. struct ggml_tensor * ggml_sub(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b) {
  4282. return ggml_sub_impl(ctx, a, b, false);
  4283. }
  4284. struct ggml_tensor * ggml_sub_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. struct ggml_tensor * b) {
  4288. return ggml_sub_impl(ctx, a, b, true);
  4289. }
  4290. // ggml_mul
  4291. static struct ggml_tensor * ggml_mul_impl(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. struct ggml_tensor * b,
  4295. bool inplace) {
  4296. // TODO: support less-strict constraint
  4297. // GGML_ASSERT(ggml_can_repeat(b, a));
  4298. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4299. bool is_node = false;
  4300. if (!inplace && (a->grad || b->grad)) {
  4301. // TODO: support backward pass for broadcasting
  4302. GGML_ASSERT(ggml_are_same_shape(a, b));
  4303. is_node = true;
  4304. }
  4305. if (inplace) {
  4306. GGML_ASSERT(is_node == false);
  4307. }
  4308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4309. result->op = GGML_OP_MUL;
  4310. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4311. result->src[0] = a;
  4312. result->src[1] = b;
  4313. return result;
  4314. }
  4315. struct ggml_tensor * ggml_mul(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b) {
  4319. return ggml_mul_impl(ctx, a, b, false);
  4320. }
  4321. struct ggml_tensor * ggml_mul_inplace(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a,
  4324. struct ggml_tensor * b) {
  4325. return ggml_mul_impl(ctx, a, b, true);
  4326. }
  4327. // ggml_div
  4328. static struct ggml_tensor * ggml_div_impl(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a,
  4331. struct ggml_tensor * b,
  4332. bool inplace) {
  4333. GGML_ASSERT(ggml_are_same_shape(a, b));
  4334. bool is_node = false;
  4335. if (!inplace && (a->grad || b->grad)) {
  4336. is_node = true;
  4337. }
  4338. if (inplace) {
  4339. GGML_ASSERT(is_node == false);
  4340. }
  4341. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4342. result->op = GGML_OP_DIV;
  4343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4344. result->src[0] = a;
  4345. result->src[1] = b;
  4346. return result;
  4347. }
  4348. struct ggml_tensor * ggml_div(
  4349. struct ggml_context * ctx,
  4350. struct ggml_tensor * a,
  4351. struct ggml_tensor * b) {
  4352. return ggml_div_impl(ctx, a, b, false);
  4353. }
  4354. struct ggml_tensor * ggml_div_inplace(
  4355. struct ggml_context * ctx,
  4356. struct ggml_tensor * a,
  4357. struct ggml_tensor * b) {
  4358. return ggml_div_impl(ctx, a, b, true);
  4359. }
  4360. // ggml_sqr
  4361. static struct ggml_tensor * ggml_sqr_impl(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. bool inplace) {
  4365. bool is_node = false;
  4366. if (!inplace && (a->grad)) {
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. result->op = GGML_OP_SQR;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. struct ggml_tensor * ggml_sqr(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a) {
  4378. return ggml_sqr_impl(ctx, a, false);
  4379. }
  4380. struct ggml_tensor * ggml_sqr_inplace(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a) {
  4383. return ggml_sqr_impl(ctx, a, true);
  4384. }
  4385. // ggml_sqrt
  4386. static struct ggml_tensor * ggml_sqrt_impl(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. bool inplace) {
  4390. bool is_node = false;
  4391. if (!inplace && (a->grad)) {
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_SQRT;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. return result;
  4399. }
  4400. struct ggml_tensor * ggml_sqrt(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. return ggml_sqrt_impl(ctx, a, false);
  4404. }
  4405. struct ggml_tensor * ggml_sqrt_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_sqrt_impl(ctx, a, true);
  4409. }
  4410. // ggml_log
  4411. static struct ggml_tensor * ggml_log_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. bool inplace) {
  4415. bool is_node = false;
  4416. if (!inplace && (a->grad)) {
  4417. is_node = true;
  4418. }
  4419. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4420. result->op = GGML_OP_LOG;
  4421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4422. result->src[0] = a;
  4423. return result;
  4424. }
  4425. struct ggml_tensor * ggml_log(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a) {
  4428. return ggml_log_impl(ctx, a, false);
  4429. }
  4430. struct ggml_tensor * ggml_log_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a) {
  4433. return ggml_log_impl(ctx, a, true);
  4434. }
  4435. // ggml_sum
  4436. struct ggml_tensor * ggml_sum(
  4437. struct ggml_context * ctx,
  4438. struct ggml_tensor * a) {
  4439. bool is_node = false;
  4440. if (a->grad) {
  4441. is_node = true;
  4442. }
  4443. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4444. result->op = GGML_OP_SUM;
  4445. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4446. result->src[0] = a;
  4447. return result;
  4448. }
  4449. // ggml_sum_rows
  4450. struct ggml_tensor * ggml_sum_rows(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a) {
  4453. bool is_node = false;
  4454. if (a->grad) {
  4455. is_node = true;
  4456. }
  4457. int64_t ne[4] = {1,1,1,1};
  4458. for (int i=1; i<a->n_dims; ++i) {
  4459. ne[i] = a->ne[i];
  4460. }
  4461. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4462. result->op = GGML_OP_SUM_ROWS;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src[0] = a;
  4465. return result;
  4466. }
  4467. // ggml_mean
  4468. struct ggml_tensor * ggml_mean(
  4469. struct ggml_context * ctx,
  4470. struct ggml_tensor * a) {
  4471. bool is_node = false;
  4472. if (a->grad) {
  4473. GGML_ASSERT(false); // TODO: implement
  4474. is_node = true;
  4475. }
  4476. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4477. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4478. result->op = GGML_OP_MEAN;
  4479. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4480. result->src[0] = a;
  4481. return result;
  4482. }
  4483. // ggml_argmax
  4484. struct ggml_tensor * ggml_argmax(
  4485. struct ggml_context * ctx,
  4486. struct ggml_tensor * a) {
  4487. GGML_ASSERT(ggml_is_matrix(a));
  4488. bool is_node = false;
  4489. if (a->grad) {
  4490. GGML_ASSERT(false);
  4491. is_node = true;
  4492. }
  4493. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4494. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4495. result->op = GGML_OP_ARGMAX;
  4496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4497. result->src[0] = a;
  4498. return result;
  4499. }
  4500. // ggml_repeat
  4501. struct ggml_tensor * ggml_repeat(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. struct ggml_tensor * b) {
  4505. GGML_ASSERT(ggml_can_repeat(a, b));
  4506. bool is_node = false;
  4507. if (a->grad) {
  4508. is_node = true;
  4509. }
  4510. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4511. result->op = GGML_OP_REPEAT;
  4512. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4513. result->src[0] = a;
  4514. result->src[1] = b;
  4515. return result;
  4516. }
  4517. // ggml_repeat_back
  4518. struct ggml_tensor * ggml_repeat_back(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. struct ggml_tensor * b) {
  4522. GGML_ASSERT(ggml_can_repeat(b, a));
  4523. bool is_node = false;
  4524. if (a->grad) {
  4525. is_node = true;
  4526. }
  4527. if (ggml_are_same_shape(a, b) && !is_node) {
  4528. return a;
  4529. }
  4530. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4531. result->op = GGML_OP_REPEAT_BACK;
  4532. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4533. result->src[0] = a;
  4534. result->src[1] = b;
  4535. return result;
  4536. }
  4537. // ggml_concat
  4538. struct ggml_tensor* ggml_concat(
  4539. struct ggml_context* ctx,
  4540. struct ggml_tensor* a,
  4541. struct ggml_tensor* b) {
  4542. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4543. bool is_node = false;
  4544. if (a->grad || b->grad) {
  4545. is_node = true;
  4546. }
  4547. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4548. result->op = GGML_OP_CONCAT;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src[0] = a;
  4551. result->src[1] = b;
  4552. return result;
  4553. }
  4554. // ggml_abs
  4555. struct ggml_tensor * ggml_abs(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4559. }
  4560. struct ggml_tensor * ggml_abs_inplace(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a) {
  4563. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4564. }
  4565. // ggml_sgn
  4566. struct ggml_tensor * ggml_sgn(
  4567. struct ggml_context * ctx,
  4568. struct ggml_tensor * a) {
  4569. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4570. }
  4571. struct ggml_tensor * ggml_sgn_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a) {
  4574. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4575. }
  4576. // ggml_neg
  4577. struct ggml_tensor * ggml_neg(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a) {
  4580. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4581. }
  4582. struct ggml_tensor * ggml_neg_inplace(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4586. }
  4587. // ggml_step
  4588. struct ggml_tensor * ggml_step(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4592. }
  4593. struct ggml_tensor * ggml_step_inplace(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a) {
  4596. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4597. }
  4598. // ggml_tanh
  4599. struct ggml_tensor * ggml_tanh(
  4600. struct ggml_context * ctx,
  4601. struct ggml_tensor * a) {
  4602. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4603. }
  4604. struct ggml_tensor * ggml_tanh_inplace(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a) {
  4607. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4608. }
  4609. // ggml_elu
  4610. struct ggml_tensor * ggml_elu(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a) {
  4613. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4614. }
  4615. struct ggml_tensor * ggml_elu_inplace(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a) {
  4618. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4619. }
  4620. // ggml_relu
  4621. struct ggml_tensor * ggml_relu(
  4622. struct ggml_context * ctx,
  4623. struct ggml_tensor * a) {
  4624. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4625. }
  4626. struct ggml_tensor * ggml_relu_inplace(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a) {
  4629. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4630. }
  4631. // ggml_gelu
  4632. struct ggml_tensor * ggml_gelu(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4636. }
  4637. struct ggml_tensor * ggml_gelu_inplace(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a) {
  4640. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4641. }
  4642. // ggml_gelu_quick
  4643. struct ggml_tensor * ggml_gelu_quick(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a) {
  4646. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4647. }
  4648. struct ggml_tensor * ggml_gelu_quick_inplace(
  4649. struct ggml_context * ctx,
  4650. struct ggml_tensor * a) {
  4651. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4652. }
  4653. // ggml_silu
  4654. struct ggml_tensor * ggml_silu(
  4655. struct ggml_context * ctx,
  4656. struct ggml_tensor * a) {
  4657. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4658. }
  4659. struct ggml_tensor * ggml_silu_inplace(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a) {
  4662. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4663. }
  4664. // ggml_silu_back
  4665. struct ggml_tensor * ggml_silu_back(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. struct ggml_tensor * b) {
  4669. bool is_node = false;
  4670. if (a->grad || b->grad) {
  4671. // TODO: implement backward
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4675. result->op = GGML_OP_SILU_BACK;
  4676. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4677. result->src[0] = a;
  4678. result->src[1] = b;
  4679. return result;
  4680. }
  4681. // ggml_norm
  4682. static struct ggml_tensor * ggml_norm_impl(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. float eps,
  4686. bool inplace) {
  4687. bool is_node = false;
  4688. if (!inplace && (a->grad)) {
  4689. GGML_ASSERT(false); // TODO: implement backward
  4690. is_node = true;
  4691. }
  4692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4693. ggml_set_op_params(result, &eps, sizeof(eps));
  4694. result->op = GGML_OP_NORM;
  4695. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4696. result->src[0] = a;
  4697. return result;
  4698. }
  4699. struct ggml_tensor * ggml_norm(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a,
  4702. float eps) {
  4703. return ggml_norm_impl(ctx, a, eps, false);
  4704. }
  4705. struct ggml_tensor * ggml_norm_inplace(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a,
  4708. float eps) {
  4709. return ggml_norm_impl(ctx, a, eps, true);
  4710. }
  4711. // ggml_rms_norm
  4712. static struct ggml_tensor * ggml_rms_norm_impl(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. float eps,
  4716. bool inplace) {
  4717. bool is_node = false;
  4718. if (!inplace && (a->grad)) {
  4719. is_node = true;
  4720. }
  4721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4722. ggml_set_op_params(result, &eps, sizeof(eps));
  4723. result->op = GGML_OP_RMS_NORM;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src[0] = a;
  4726. return result;
  4727. }
  4728. struct ggml_tensor * ggml_rms_norm(
  4729. struct ggml_context * ctx,
  4730. struct ggml_tensor * a,
  4731. float eps) {
  4732. return ggml_rms_norm_impl(ctx, a, eps, false);
  4733. }
  4734. struct ggml_tensor * ggml_rms_norm_inplace(
  4735. struct ggml_context * ctx,
  4736. struct ggml_tensor * a,
  4737. float eps) {
  4738. return ggml_rms_norm_impl(ctx, a, eps, true);
  4739. }
  4740. // ggml_rms_norm_back
  4741. struct ggml_tensor * ggml_rms_norm_back(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a,
  4744. struct ggml_tensor * b) {
  4745. bool is_node = false;
  4746. if (a->grad) {
  4747. // TODO: implement backward
  4748. is_node = true;
  4749. }
  4750. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4751. result->op = GGML_OP_RMS_NORM_BACK;
  4752. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4753. result->src[0] = a;
  4754. result->src[1] = b;
  4755. return result;
  4756. }
  4757. // ggml_group_norm
  4758. static struct ggml_tensor * ggml_group_norm_impl(
  4759. struct ggml_context * ctx,
  4760. struct ggml_tensor * a,
  4761. int n_groups,
  4762. bool inplace) {
  4763. bool is_node = false;
  4764. if (!inplace && (a->grad)) {
  4765. GGML_ASSERT(false); // TODO: implement backward
  4766. is_node = true;
  4767. }
  4768. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4769. result->op = GGML_OP_GROUP_NORM;
  4770. result->op_params[0] = n_groups;
  4771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4772. result->src[0] = a;
  4773. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4774. return result;
  4775. }
  4776. struct ggml_tensor * ggml_group_norm(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. int n_groups) {
  4780. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4781. }
  4782. struct ggml_tensor * ggml_group_norm_inplace(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. int n_groups) {
  4786. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4787. }
  4788. // ggml_mul_mat
  4789. struct ggml_tensor * ggml_mul_mat(
  4790. struct ggml_context * ctx,
  4791. struct ggml_tensor * a,
  4792. struct ggml_tensor * b) {
  4793. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4794. GGML_ASSERT(!ggml_is_transposed(a));
  4795. bool is_node = false;
  4796. if (a->grad || b->grad) {
  4797. is_node = true;
  4798. }
  4799. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4801. result->op = GGML_OP_MUL_MAT;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. result->src[1] = b;
  4805. return result;
  4806. }
  4807. // ggml_out_prod
  4808. struct ggml_tensor * ggml_out_prod(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. struct ggml_tensor * b) {
  4812. GGML_ASSERT(ggml_can_out_prod(a, b));
  4813. GGML_ASSERT(!ggml_is_transposed(a));
  4814. bool is_node = false;
  4815. if (a->grad || b->grad) {
  4816. is_node = true;
  4817. }
  4818. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4819. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4820. result->op = GGML_OP_OUT_PROD;
  4821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4822. result->src[0] = a;
  4823. result->src[1] = b;
  4824. return result;
  4825. }
  4826. // ggml_scale
  4827. static struct ggml_tensor * ggml_scale_impl(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. struct ggml_tensor * b,
  4831. bool inplace) {
  4832. GGML_ASSERT(ggml_is_scalar(b));
  4833. GGML_ASSERT(ggml_is_padded_1d(a));
  4834. bool is_node = false;
  4835. if (a->grad || b->grad) {
  4836. is_node = true;
  4837. }
  4838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4839. result->op = GGML_OP_SCALE;
  4840. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4841. result->src[0] = a;
  4842. result->src[1] = b;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_scale(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. struct ggml_tensor * b) {
  4849. return ggml_scale_impl(ctx, a, b, false);
  4850. }
  4851. struct ggml_tensor * ggml_scale_inplace(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. struct ggml_tensor * b) {
  4855. return ggml_scale_impl(ctx, a, b, true);
  4856. }
  4857. // ggml_set
  4858. static struct ggml_tensor * ggml_set_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b,
  4862. size_t nb1,
  4863. size_t nb2,
  4864. size_t nb3,
  4865. size_t offset,
  4866. bool inplace) {
  4867. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4868. bool is_node = false;
  4869. if (a->grad || b->grad) {
  4870. is_node = true;
  4871. }
  4872. // make a view of the destination
  4873. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4874. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4875. ggml_set_op_params(result, params, sizeof(params));
  4876. result->op = GGML_OP_SET;
  4877. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4878. result->src[0] = a;
  4879. result->src[1] = b;
  4880. return result;
  4881. }
  4882. struct ggml_tensor * ggml_set(
  4883. struct ggml_context * ctx,
  4884. struct ggml_tensor * a,
  4885. struct ggml_tensor * b,
  4886. size_t nb1,
  4887. size_t nb2,
  4888. size_t nb3,
  4889. size_t offset) {
  4890. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4891. }
  4892. struct ggml_tensor * ggml_set_inplace(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. struct ggml_tensor * b,
  4896. size_t nb1,
  4897. size_t nb2,
  4898. size_t nb3,
  4899. size_t offset) {
  4900. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4901. }
  4902. struct ggml_tensor * ggml_set_1d(
  4903. struct ggml_context * ctx,
  4904. struct ggml_tensor * a,
  4905. struct ggml_tensor * b,
  4906. size_t offset) {
  4907. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4908. }
  4909. struct ggml_tensor * ggml_set_1d_inplace(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a,
  4912. struct ggml_tensor * b,
  4913. size_t offset) {
  4914. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4915. }
  4916. struct ggml_tensor * ggml_set_2d(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. struct ggml_tensor * b,
  4920. size_t nb1,
  4921. size_t offset) {
  4922. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4923. }
  4924. struct ggml_tensor * ggml_set_2d_inplace(
  4925. struct ggml_context * ctx,
  4926. struct ggml_tensor * a,
  4927. struct ggml_tensor * b,
  4928. size_t nb1,
  4929. size_t offset) {
  4930. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4931. }
  4932. // ggml_cpy
  4933. static struct ggml_tensor * ggml_cpy_impl(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b,
  4937. bool inplace) {
  4938. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4939. bool is_node = false;
  4940. if (!inplace && (a->grad || b->grad)) {
  4941. is_node = true;
  4942. }
  4943. // make a view of the destination
  4944. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4945. if (strlen(b->name) > 0) {
  4946. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4947. } else {
  4948. ggml_format_name(result, "%s (copy)", a->name);
  4949. }
  4950. result->op = GGML_OP_CPY;
  4951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4952. result->src[0] = a;
  4953. result->src[1] = b;
  4954. return result;
  4955. }
  4956. struct ggml_tensor * ggml_cpy(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a,
  4959. struct ggml_tensor * b) {
  4960. return ggml_cpy_impl(ctx, a, b, false);
  4961. }
  4962. struct ggml_tensor * ggml_cpy_inplace(
  4963. struct ggml_context * ctx,
  4964. struct ggml_tensor * a,
  4965. struct ggml_tensor * b) {
  4966. return ggml_cpy_impl(ctx, a, b, true);
  4967. }
  4968. // ggml_cont
  4969. static struct ggml_tensor * ggml_cont_impl(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. bool inplace) {
  4973. bool is_node = false;
  4974. if (!inplace && a->grad) {
  4975. is_node = true;
  4976. }
  4977. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4978. ggml_format_name(result, "%s (cont)", a->name);
  4979. result->op = GGML_OP_CONT;
  4980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4981. result->src[0] = a;
  4982. return result;
  4983. }
  4984. struct ggml_tensor * ggml_cont(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a) {
  4987. return ggml_cont_impl(ctx, a, false);
  4988. }
  4989. struct ggml_tensor * ggml_cont_inplace(
  4990. struct ggml_context * ctx,
  4991. struct ggml_tensor * a) {
  4992. return ggml_cont_impl(ctx, a, true);
  4993. }
  4994. // ggml_reshape
  4995. struct ggml_tensor * ggml_reshape(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b) {
  4999. GGML_ASSERT(ggml_is_contiguous(a));
  5000. GGML_ASSERT(ggml_is_contiguous(b));
  5001. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5002. bool is_node = false;
  5003. if (a->grad) {
  5004. is_node = true;
  5005. }
  5006. if (b->grad) {
  5007. // gradient propagation is not supported
  5008. //GGML_ASSERT(false);
  5009. }
  5010. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5011. ggml_format_name(result, "%s (reshaped)", a->name);
  5012. result->op = GGML_OP_RESHAPE;
  5013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5014. result->src[0] = a;
  5015. return result;
  5016. }
  5017. struct ggml_tensor * ggml_reshape_1d(
  5018. struct ggml_context * ctx,
  5019. struct ggml_tensor * a,
  5020. int64_t ne0) {
  5021. GGML_ASSERT(ggml_is_contiguous(a));
  5022. GGML_ASSERT(ggml_nelements(a) == ne0);
  5023. bool is_node = false;
  5024. if (a->grad) {
  5025. is_node = true;
  5026. }
  5027. const int64_t ne[1] = { ne0 };
  5028. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5029. ggml_format_name(result, "%s (reshaped)", a->name);
  5030. result->op = GGML_OP_RESHAPE;
  5031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5032. result->src[0] = a;
  5033. return result;
  5034. }
  5035. struct ggml_tensor * ggml_reshape_2d(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. int64_t ne0,
  5039. int64_t ne1) {
  5040. GGML_ASSERT(ggml_is_contiguous(a));
  5041. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5042. bool is_node = false;
  5043. if (a->grad) {
  5044. is_node = true;
  5045. }
  5046. const int64_t ne[2] = { ne0, ne1 };
  5047. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5048. ggml_format_name(result, "%s (reshaped)", a->name);
  5049. result->op = GGML_OP_RESHAPE;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_reshape_3d(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. int64_t ne0,
  5058. int64_t ne1,
  5059. int64_t ne2) {
  5060. GGML_ASSERT(ggml_is_contiguous(a));
  5061. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5062. bool is_node = false;
  5063. if (a->grad) {
  5064. is_node = true;
  5065. }
  5066. const int64_t ne[3] = { ne0, ne1, ne2 };
  5067. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5068. ggml_format_name(result, "%s (reshaped)", a->name);
  5069. result->op = GGML_OP_RESHAPE;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. return result;
  5073. }
  5074. struct ggml_tensor * ggml_reshape_4d(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int64_t ne0,
  5078. int64_t ne1,
  5079. int64_t ne2,
  5080. int64_t ne3) {
  5081. GGML_ASSERT(ggml_is_contiguous(a));
  5082. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5083. bool is_node = false;
  5084. if (a->grad) {
  5085. is_node = true;
  5086. }
  5087. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5088. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5089. ggml_format_name(result, "%s (reshaped)", a->name);
  5090. result->op = GGML_OP_RESHAPE;
  5091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5092. result->src[0] = a;
  5093. return result;
  5094. }
  5095. // ggml_view_1d
  5096. static struct ggml_tensor * ggml_view_tensor_offset(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. int n_dims,
  5100. const int64_t * ne,
  5101. size_t offset) {
  5102. // don't calculate an offset from an unallocated tensor
  5103. void * data = NULL;
  5104. if (a->data != NULL) {
  5105. data = (char *) a->data + offset;
  5106. }
  5107. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5108. ggml_format_name(result, "%s (view)", a->name);
  5109. ggml_set_op_params(result, &offset, sizeof(offset));
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_view_1d(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a,
  5115. int64_t ne0,
  5116. size_t offset) {
  5117. bool is_node = false;
  5118. if (a->grad) {
  5119. is_node = true;
  5120. }
  5121. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5122. result->op = GGML_OP_VIEW;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. return result;
  5126. }
  5127. // ggml_view_2d
  5128. struct ggml_tensor * ggml_view_2d(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. int64_t ne0,
  5132. int64_t ne1,
  5133. size_t nb1,
  5134. size_t offset) {
  5135. bool is_node = false;
  5136. if (a->grad) {
  5137. is_node = true;
  5138. }
  5139. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5140. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5141. result->nb[1] = nb1;
  5142. result->nb[2] = result->nb[1]*ne1;
  5143. result->nb[3] = result->nb[2];
  5144. result->op = GGML_OP_VIEW;
  5145. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5146. result->src[0] = a;
  5147. return result;
  5148. }
  5149. // ggml_view_3d
  5150. struct ggml_tensor * ggml_view_3d(
  5151. struct ggml_context * ctx,
  5152. struct ggml_tensor * a,
  5153. int64_t ne0,
  5154. int64_t ne1,
  5155. int64_t ne2,
  5156. size_t nb1,
  5157. size_t nb2,
  5158. size_t offset) {
  5159. bool is_node = false;
  5160. if (a->grad) {
  5161. is_node = true;
  5162. }
  5163. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5164. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5165. result->nb[1] = nb1;
  5166. result->nb[2] = nb2;
  5167. result->nb[3] = result->nb[2]*ne2;
  5168. result->op = GGML_OP_VIEW;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. return result;
  5172. }
  5173. // ggml_view_4d
  5174. struct ggml_tensor * ggml_view_4d(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. int64_t ne0,
  5178. int64_t ne1,
  5179. int64_t ne2,
  5180. int64_t ne3,
  5181. size_t nb1,
  5182. size_t nb2,
  5183. size_t nb3,
  5184. size_t offset) {
  5185. bool is_node = false;
  5186. if (a->grad) {
  5187. is_node = true;
  5188. }
  5189. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5190. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5191. result->nb[1] = nb1;
  5192. result->nb[2] = nb2;
  5193. result->nb[3] = nb3;
  5194. result->op = GGML_OP_VIEW;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src[0] = a;
  5197. return result;
  5198. }
  5199. // ggml_permute
  5200. struct ggml_tensor * ggml_permute(
  5201. struct ggml_context * ctx,
  5202. struct ggml_tensor * a,
  5203. int axis0,
  5204. int axis1,
  5205. int axis2,
  5206. int axis3) {
  5207. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5208. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5209. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5210. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5211. GGML_ASSERT(axis0 != axis1);
  5212. GGML_ASSERT(axis0 != axis2);
  5213. GGML_ASSERT(axis0 != axis3);
  5214. GGML_ASSERT(axis1 != axis2);
  5215. GGML_ASSERT(axis1 != axis3);
  5216. GGML_ASSERT(axis2 != axis3);
  5217. bool is_node = false;
  5218. if (a->grad) {
  5219. is_node = true;
  5220. }
  5221. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5222. ggml_format_name(result, "%s (permuted)", a->name);
  5223. int ne[GGML_MAX_DIMS];
  5224. int nb[GGML_MAX_DIMS];
  5225. ne[axis0] = a->ne[0];
  5226. ne[axis1] = a->ne[1];
  5227. ne[axis2] = a->ne[2];
  5228. ne[axis3] = a->ne[3];
  5229. nb[axis0] = a->nb[0];
  5230. nb[axis1] = a->nb[1];
  5231. nb[axis2] = a->nb[2];
  5232. nb[axis3] = a->nb[3];
  5233. result->ne[0] = ne[0];
  5234. result->ne[1] = ne[1];
  5235. result->ne[2] = ne[2];
  5236. result->ne[3] = ne[3];
  5237. result->nb[0] = nb[0];
  5238. result->nb[1] = nb[1];
  5239. result->nb[2] = nb[2];
  5240. result->nb[3] = nb[3];
  5241. result->op = GGML_OP_PERMUTE;
  5242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5243. result->src[0] = a;
  5244. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5245. ggml_set_op_params(result, params, sizeof(params));
  5246. return result;
  5247. }
  5248. // ggml_transpose
  5249. struct ggml_tensor * ggml_transpose(
  5250. struct ggml_context * ctx,
  5251. struct ggml_tensor * a) {
  5252. bool is_node = false;
  5253. if (a->grad) {
  5254. is_node = true;
  5255. }
  5256. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5257. ggml_format_name(result, "%s (transposed)", a->name);
  5258. result->ne[0] = a->ne[1];
  5259. result->ne[1] = a->ne[0];
  5260. result->nb[0] = a->nb[1];
  5261. result->nb[1] = a->nb[0];
  5262. result->op = GGML_OP_TRANSPOSE;
  5263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5264. result->src[0] = a;
  5265. return result;
  5266. }
  5267. // ggml_get_rows
  5268. struct ggml_tensor * ggml_get_rows(
  5269. struct ggml_context * ctx,
  5270. struct ggml_tensor * a,
  5271. struct ggml_tensor * b) {
  5272. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5273. bool is_node = false;
  5274. if (a->grad || b->grad) {
  5275. is_node = true;
  5276. }
  5277. // TODO: implement non F32 return
  5278. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5279. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5280. result->op = GGML_OP_GET_ROWS;
  5281. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5282. result->src[0] = a;
  5283. result->src[1] = b;
  5284. return result;
  5285. }
  5286. // ggml_get_rows_back
  5287. struct ggml_tensor * ggml_get_rows_back(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a,
  5290. struct ggml_tensor * b,
  5291. struct ggml_tensor * c) {
  5292. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5293. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5294. bool is_node = false;
  5295. if (a->grad || b->grad) {
  5296. is_node = true;
  5297. }
  5298. // TODO: implement non F32 return
  5299. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5300. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5301. result->op = GGML_OP_GET_ROWS_BACK;
  5302. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5303. result->src[0] = a;
  5304. result->src[1] = b;
  5305. result->src[2] = c;
  5306. return result;
  5307. }
  5308. // ggml_diag
  5309. struct ggml_tensor * ggml_diag(
  5310. struct ggml_context * ctx,
  5311. struct ggml_tensor * a) {
  5312. GGML_ASSERT(a->ne[1] == 1);
  5313. bool is_node = false;
  5314. if (a->grad) {
  5315. is_node = true;
  5316. }
  5317. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5318. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5319. result->op = GGML_OP_DIAG;
  5320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5321. result->src[0] = a;
  5322. return result;
  5323. }
  5324. // ggml_diag_mask_inf
  5325. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. int n_past,
  5329. bool inplace) {
  5330. bool is_node = false;
  5331. if (a->grad) {
  5332. is_node = true;
  5333. }
  5334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5335. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5336. ggml_set_op_params(result, params, sizeof(params));
  5337. result->op = GGML_OP_DIAG_MASK_INF;
  5338. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5339. result->src[0] = a;
  5340. return result;
  5341. }
  5342. struct ggml_tensor * ggml_diag_mask_inf(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. int n_past) {
  5346. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5347. }
  5348. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5349. struct ggml_context * ctx,
  5350. struct ggml_tensor * a,
  5351. int n_past) {
  5352. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5353. }
  5354. // ggml_diag_mask_zero
  5355. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5356. struct ggml_context * ctx,
  5357. struct ggml_tensor * a,
  5358. int n_past,
  5359. bool inplace) {
  5360. bool is_node = false;
  5361. if (a->grad) {
  5362. is_node = true;
  5363. }
  5364. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5365. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5366. ggml_set_op_params(result, params, sizeof(params));
  5367. result->op = GGML_OP_DIAG_MASK_ZERO;
  5368. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5369. result->src[0] = a;
  5370. return result;
  5371. }
  5372. struct ggml_tensor * ggml_diag_mask_zero(
  5373. struct ggml_context * ctx,
  5374. struct ggml_tensor * a,
  5375. int n_past) {
  5376. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5377. }
  5378. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5379. struct ggml_context * ctx,
  5380. struct ggml_tensor * a,
  5381. int n_past) {
  5382. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5383. }
  5384. // ggml_soft_max
  5385. static struct ggml_tensor * ggml_soft_max_impl(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. bool inplace) {
  5389. bool is_node = false;
  5390. if (a->grad) {
  5391. is_node = true;
  5392. }
  5393. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5394. result->op = GGML_OP_SOFT_MAX;
  5395. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5396. result->src[0] = a;
  5397. return result;
  5398. }
  5399. struct ggml_tensor * ggml_soft_max(
  5400. struct ggml_context * ctx,
  5401. struct ggml_tensor * a) {
  5402. return ggml_soft_max_impl(ctx, a, false);
  5403. }
  5404. struct ggml_tensor * ggml_soft_max_inplace(
  5405. struct ggml_context * ctx,
  5406. struct ggml_tensor * a) {
  5407. return ggml_soft_max_impl(ctx, a, true);
  5408. }
  5409. // ggml_soft_max_back
  5410. static struct ggml_tensor * ggml_soft_max_back_impl(
  5411. struct ggml_context * ctx,
  5412. struct ggml_tensor * a,
  5413. struct ggml_tensor * b,
  5414. bool inplace) {
  5415. bool is_node = false;
  5416. if (a->grad || b->grad) {
  5417. is_node = true; // TODO : implement backward pass
  5418. }
  5419. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5420. result->op = GGML_OP_SOFT_MAX_BACK;
  5421. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5422. result->src[0] = a;
  5423. result->src[1] = b;
  5424. return result;
  5425. }
  5426. struct ggml_tensor * ggml_soft_max_back(
  5427. struct ggml_context * ctx,
  5428. struct ggml_tensor * a,
  5429. struct ggml_tensor * b) {
  5430. return ggml_soft_max_back_impl(ctx, a, b, false);
  5431. }
  5432. struct ggml_tensor * ggml_soft_max_back_inplace(
  5433. struct ggml_context * ctx,
  5434. struct ggml_tensor * a,
  5435. struct ggml_tensor * b) {
  5436. return ggml_soft_max_back_impl(ctx, a, b, true);
  5437. }
  5438. // ggml_rope
  5439. static struct ggml_tensor * ggml_rope_impl(
  5440. struct ggml_context * ctx,
  5441. struct ggml_tensor * a,
  5442. int n_past,
  5443. int n_dims,
  5444. int mode,
  5445. int n_ctx,
  5446. float freq_base,
  5447. float freq_scale,
  5448. float xpos_base,
  5449. bool xpos_down,
  5450. bool inplace) {
  5451. GGML_ASSERT(n_past >= 0);
  5452. bool is_node = false;
  5453. if (a->grad) {
  5454. is_node = true;
  5455. }
  5456. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5457. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5458. memcpy(params + 4, &freq_base, sizeof(float));
  5459. memcpy(params + 5, &freq_scale, sizeof(float));
  5460. memcpy(params + 6, &xpos_base, sizeof(float));
  5461. memcpy(params + 7, &xpos_down, sizeof(bool));
  5462. ggml_set_op_params(result, params, sizeof(params));
  5463. result->op = GGML_OP_ROPE;
  5464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5465. result->src[0] = a;
  5466. return result;
  5467. }
  5468. struct ggml_tensor * ggml_rope(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. int n_past,
  5472. int n_dims,
  5473. int mode,
  5474. int n_ctx) {
  5475. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5476. }
  5477. struct ggml_tensor * ggml_rope_inplace(
  5478. struct ggml_context * ctx,
  5479. struct ggml_tensor * a,
  5480. int n_past,
  5481. int n_dims,
  5482. int mode,
  5483. int n_ctx) {
  5484. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5485. }
  5486. struct ggml_tensor * ggml_rope_custom(
  5487. struct ggml_context * ctx,
  5488. struct ggml_tensor * a,
  5489. int n_past,
  5490. int n_dims,
  5491. int mode,
  5492. int n_ctx,
  5493. float freq_base,
  5494. float freq_scale) {
  5495. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5496. }
  5497. struct ggml_tensor * ggml_rope_custom_inplace(
  5498. struct ggml_context * ctx,
  5499. struct ggml_tensor * a,
  5500. int n_past,
  5501. int n_dims,
  5502. int mode,
  5503. int n_ctx,
  5504. float freq_base,
  5505. float freq_scale) {
  5506. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5507. }
  5508. struct ggml_tensor * ggml_rope_xpos_inplace(
  5509. struct ggml_context * ctx,
  5510. struct ggml_tensor * a,
  5511. int n_past,
  5512. int n_dims,
  5513. float base,
  5514. bool down) {
  5515. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5516. }
  5517. // ggml_rope_back
  5518. struct ggml_tensor * ggml_rope_back(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a,
  5521. int n_past,
  5522. int n_dims,
  5523. int mode,
  5524. int n_ctx,
  5525. float freq_base,
  5526. float freq_scale,
  5527. float xpos_base,
  5528. bool xpos_down) {
  5529. GGML_ASSERT(n_past >= 0);
  5530. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5531. bool is_node = false;
  5532. if (a->grad) {
  5533. is_node = false; // TODO: implement backward
  5534. }
  5535. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5536. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5537. memcpy(params + 4, &freq_base, sizeof(float));
  5538. memcpy(params + 5, &freq_scale, sizeof(float));
  5539. memcpy(params + 6, &xpos_base, sizeof(float));
  5540. memcpy(params + 7, &xpos_down, sizeof(bool));
  5541. ggml_set_op_params(result, params, sizeof(params));
  5542. result->op = GGML_OP_ROPE_BACK;
  5543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5544. result->src[0] = a;
  5545. return result;
  5546. }
  5547. // ggml_alibi
  5548. struct ggml_tensor * ggml_alibi(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. int n_past,
  5552. int n_head,
  5553. float bias_max) {
  5554. GGML_ASSERT(n_past >= 0);
  5555. bool is_node = false;
  5556. if (a->grad) {
  5557. GGML_ASSERT(false); // TODO: implement backward
  5558. is_node = true;
  5559. }
  5560. // TODO: when implement backward, fix this:
  5561. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5562. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5563. int32_t op_params[3] = { n_past, n_head };
  5564. memcpy(op_params + 2, &bias_max, sizeof(float));
  5565. ggml_set_op_params(result, op_params, sizeof(op_params));
  5566. result->op = GGML_OP_ALIBI;
  5567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5568. result->src[0] = a;
  5569. return result;
  5570. }
  5571. // ggml_clamp
  5572. struct ggml_tensor * ggml_clamp(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. float min,
  5576. float max) {
  5577. bool is_node = false;
  5578. if (a->grad) {
  5579. GGML_ASSERT(false); // TODO: implement backward
  5580. is_node = true;
  5581. }
  5582. // TODO: when implement backward, fix this:
  5583. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5584. float params[] = { min, max };
  5585. ggml_set_op_params(result, params, sizeof(params));
  5586. result->op = GGML_OP_CLAMP;
  5587. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5588. result->src[0] = a;
  5589. return result;
  5590. }
  5591. // ggml_conv_1d
  5592. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5593. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5594. }
  5595. GGML_API struct ggml_tensor * ggml_conv_1d(
  5596. struct ggml_context * ctx,
  5597. struct ggml_tensor * a,
  5598. struct ggml_tensor * b,
  5599. int s0,
  5600. int p0,
  5601. int d0) {
  5602. GGML_ASSERT(ggml_is_matrix(b));
  5603. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5604. bool is_node = false;
  5605. if (a->grad || b->grad) {
  5606. GGML_ASSERT(false); // TODO: implement backward
  5607. is_node = true;
  5608. }
  5609. const int64_t ne[4] = {
  5610. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5611. a->ne[2], 1, 1,
  5612. };
  5613. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5614. int32_t params[] = { s0, p0, d0 };
  5615. ggml_set_op_params(result, params, sizeof(params));
  5616. result->op = GGML_OP_CONV_1D;
  5617. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5618. result->src[0] = a;
  5619. result->src[1] = b;
  5620. return result;
  5621. }
  5622. // ggml_conv_1d_ph
  5623. struct ggml_tensor* ggml_conv_1d_ph(
  5624. struct ggml_context * ctx,
  5625. struct ggml_tensor * a,
  5626. struct ggml_tensor * b,
  5627. int s,
  5628. int d) {
  5629. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5630. }
  5631. // ggml_conv_2d
  5632. struct ggml_tensor * ggml_conv_2d(
  5633. struct ggml_context * ctx,
  5634. struct ggml_tensor * a,
  5635. struct ggml_tensor * b,
  5636. int s0,
  5637. int s1,
  5638. int p0,
  5639. int p1,
  5640. int d0,
  5641. int d1) {
  5642. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5643. bool is_node = false;
  5644. if (a->grad || b->grad) {
  5645. GGML_ASSERT(false); // TODO: implement backward
  5646. is_node = true;
  5647. }
  5648. const int64_t ne[4] = {
  5649. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5650. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5651. a->ne[3], b->ne[3],
  5652. };
  5653. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5654. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5655. ggml_set_op_params(result, params, sizeof(params));
  5656. result->op = GGML_OP_CONV_2D;
  5657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5658. result->src[0] = a;
  5659. result->src[1] = b;
  5660. return result;
  5661. }
  5662. // ggml_conv_2d_sk_p0
  5663. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5664. struct ggml_context * ctx,
  5665. struct ggml_tensor * a,
  5666. struct ggml_tensor * b) {
  5667. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5668. }
  5669. // ggml_conv_2d_s1_ph
  5670. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5671. struct ggml_context * ctx,
  5672. struct ggml_tensor * a,
  5673. struct ggml_tensor * b) {
  5674. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5675. }
  5676. // ggml_conv_transpose_2d_p0
  5677. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5678. return (ins - 1) * s - 2 * p + ks;
  5679. }
  5680. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5681. struct ggml_context * ctx,
  5682. struct ggml_tensor * a,
  5683. struct ggml_tensor * b,
  5684. int stride) {
  5685. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5686. bool is_node = false;
  5687. if (a->grad || b->grad) {
  5688. GGML_ASSERT(false); // TODO: implement backward
  5689. is_node = true;
  5690. }
  5691. const int64_t ne[4] = {
  5692. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5693. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5694. a->ne[2], b->ne[3],
  5695. };
  5696. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5697. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5699. result->src[0] = a;
  5700. result->src[1] = b;
  5701. result->src[2] = ggml_new_i32(ctx, stride);
  5702. return result;
  5703. }
  5704. // ggml_pool_*
  5705. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5706. return (ins + 2 * p - ks) / s + 1;
  5707. }
  5708. // ggml_pool_1d
  5709. struct ggml_tensor * ggml_pool_1d(
  5710. struct ggml_context * ctx,
  5711. struct ggml_tensor * a,
  5712. enum ggml_op_pool op,
  5713. int k0,
  5714. int s0,
  5715. int p0) {
  5716. bool is_node = false;
  5717. if (a->grad) {
  5718. GGML_ASSERT(false); // TODO: implement backward
  5719. is_node = true;
  5720. }
  5721. const int64_t ne[3] = {
  5722. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5723. a->ne[1],
  5724. };
  5725. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5726. int32_t params[] = { op, k0, s0, p0 };
  5727. ggml_set_op_params(result, params, sizeof(params));
  5728. result->op = GGML_OP_POOL_1D;
  5729. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5730. result->src[0] = a;
  5731. return result;
  5732. }
  5733. // ggml_pool_2d
  5734. struct ggml_tensor * ggml_pool_2d(
  5735. struct ggml_context * ctx,
  5736. struct ggml_tensor * a,
  5737. enum ggml_op_pool op,
  5738. int k0,
  5739. int k1,
  5740. int s0,
  5741. int s1,
  5742. int p0,
  5743. int p1) {
  5744. bool is_node = false;
  5745. if (a->grad) {
  5746. GGML_ASSERT(false); // TODO: implement backward
  5747. is_node = true;
  5748. }
  5749. const int64_t ne[3] = {
  5750. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5751. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5752. a->ne[2],
  5753. };
  5754. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5755. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5756. ggml_set_op_params(result, params, sizeof(params));
  5757. result->op = GGML_OP_POOL_2D;
  5758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5759. result->src[0] = a;
  5760. return result;
  5761. }
  5762. // ggml_upscale
  5763. static struct ggml_tensor * ggml_upscale_impl(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. int scale_factor) {
  5767. bool is_node = false;
  5768. if (a->grad) {
  5769. GGML_ASSERT(false); // TODO: implement backward
  5770. is_node = true;
  5771. }
  5772. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5773. a->ne[0] * scale_factor,
  5774. a->ne[1] * scale_factor,
  5775. a->ne[2], a->ne[3]);
  5776. result->op = GGML_OP_UPSCALE;
  5777. result->op_params[0] = scale_factor;
  5778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5779. result->src[0] = a;
  5780. result->src[1] = NULL;
  5781. return result;
  5782. }
  5783. struct ggml_tensor * ggml_upscale(
  5784. struct ggml_context * ctx,
  5785. struct ggml_tensor * a,
  5786. int scale_factor) {
  5787. return ggml_upscale_impl(ctx, a, scale_factor);
  5788. }
  5789. // ggml_flash_attn
  5790. struct ggml_tensor * ggml_flash_attn(
  5791. struct ggml_context * ctx,
  5792. struct ggml_tensor * q,
  5793. struct ggml_tensor * k,
  5794. struct ggml_tensor * v,
  5795. bool masked) {
  5796. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5797. // TODO: check if vT can be multiplied by (k*qT)
  5798. bool is_node = false;
  5799. if (q->grad || k->grad || v->grad) {
  5800. is_node = true;
  5801. }
  5802. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5803. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5804. int32_t t = masked ? 1 : 0;
  5805. ggml_set_op_params(result, &t, sizeof(t));
  5806. result->op = GGML_OP_FLASH_ATTN;
  5807. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5808. result->src[0] = q;
  5809. result->src[1] = k;
  5810. result->src[2] = v;
  5811. return result;
  5812. }
  5813. // ggml_flash_ff
  5814. struct ggml_tensor * ggml_flash_ff(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * a,
  5817. struct ggml_tensor * b0,
  5818. struct ggml_tensor * b1,
  5819. struct ggml_tensor * c0,
  5820. struct ggml_tensor * c1) {
  5821. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5822. // TODO: more checks
  5823. bool is_node = false;
  5824. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5825. is_node = true;
  5826. }
  5827. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5828. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5829. result->op = GGML_OP_FLASH_FF;
  5830. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5831. result->src[0] = a;
  5832. result->src[1] = b0;
  5833. result->src[2] = b1;
  5834. result->src[3] = c0;
  5835. result->src[4] = c1;
  5836. return result;
  5837. }
  5838. // ggml_flash_attn_back
  5839. struct ggml_tensor * ggml_flash_attn_back(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * q,
  5842. struct ggml_tensor * k,
  5843. struct ggml_tensor * v,
  5844. struct ggml_tensor * d,
  5845. bool masked) {
  5846. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5847. // TODO: check if vT can be multiplied by (k*qT)
  5848. // d shape [D,N,ne2,ne3]
  5849. // q shape [D,N,ne2,ne3]
  5850. // k shape [D,M,ne2,ne3]
  5851. // v shape [M,D,ne2,ne3]
  5852. const int64_t D = q->ne[0];
  5853. const int64_t N = q->ne[1];
  5854. const int64_t M = k->ne[1];
  5855. const int64_t ne2 = q->ne[2];
  5856. const int64_t ne3 = q->ne[3];
  5857. GGML_ASSERT(k->ne[0] == D);
  5858. GGML_ASSERT(v->ne[0] == M);
  5859. GGML_ASSERT(v->ne[1] == D);
  5860. GGML_ASSERT(d->ne[0] == D);
  5861. GGML_ASSERT(d->ne[1] == N);
  5862. GGML_ASSERT(k->ne[2] == ne2);
  5863. GGML_ASSERT(k->ne[3] == ne3);
  5864. GGML_ASSERT(v->ne[2] == ne2);
  5865. GGML_ASSERT(v->ne[3] == ne3);
  5866. GGML_ASSERT(d->ne[2] == ne2);
  5867. GGML_ASSERT(d->ne[3] == ne3);
  5868. bool is_node = false;
  5869. if (q->grad || k->grad || v->grad) {
  5870. // when using this operation (in backwards pass) these grads are set.
  5871. // we don't want to create (big) grad of our result, so is_node is false.
  5872. is_node = false;
  5873. }
  5874. // store gradients of q, k and v as continuous tensors concatenated in result.
  5875. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5876. // gradq->data = result->data
  5877. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5878. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5879. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5880. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5881. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5882. int32_t masked_i = masked ? 1 : 0;
  5883. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5884. result->op = GGML_OP_FLASH_ATTN_BACK;
  5885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5886. result->src[0] = q;
  5887. result->src[1] = k;
  5888. result->src[2] = v;
  5889. result->src[3] = d;
  5890. return result;
  5891. }
  5892. // ggml_win_part
  5893. struct ggml_tensor * ggml_win_part(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. int w) {
  5897. GGML_ASSERT(a->ne[3] == 1);
  5898. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5899. bool is_node = false;
  5900. if (a->grad) {
  5901. GGML_ASSERT(false); // TODO: implement backward
  5902. is_node = true;
  5903. }
  5904. // padding
  5905. const int px = (w - a->ne[1]%w)%w;
  5906. const int py = (w - a->ne[2]%w)%w;
  5907. const int npx = (px + a->ne[1])/w;
  5908. const int npy = (py + a->ne[2])/w;
  5909. const int np = npx*npy;
  5910. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5911. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5912. int32_t params[] = { npx, npy, w };
  5913. ggml_set_op_params(result, params, sizeof(params));
  5914. result->op = GGML_OP_WIN_PART;
  5915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5916. result->src[0] = a;
  5917. return result;
  5918. }
  5919. // ggml_win_unpart
  5920. struct ggml_tensor * ggml_win_unpart(
  5921. struct ggml_context * ctx,
  5922. struct ggml_tensor * a,
  5923. int w0,
  5924. int h0,
  5925. int w) {
  5926. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5927. bool is_node = false;
  5928. if (a->grad) {
  5929. GGML_ASSERT(false); // TODO: implement backward
  5930. is_node = true;
  5931. }
  5932. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5933. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5934. int32_t params[] = { w };
  5935. ggml_set_op_params(result, params, sizeof(params));
  5936. result->op = GGML_OP_WIN_UNPART;
  5937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5938. result->src[0] = a;
  5939. return result;
  5940. }
  5941. // ggml_get_rel_pos
  5942. struct ggml_tensor * ggml_get_rel_pos(
  5943. struct ggml_context * ctx,
  5944. struct ggml_tensor * a,
  5945. int qh,
  5946. int kh) {
  5947. GGML_ASSERT(qh == kh);
  5948. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5949. bool is_node = false;
  5950. if (a->grad) {
  5951. GGML_ASSERT(false); // TODO: implement backward
  5952. is_node = true;
  5953. }
  5954. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5955. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5956. result->op = GGML_OP_GET_REL_POS;
  5957. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5958. result->src[0] = a;
  5959. result->src[1] = NULL;
  5960. return result;
  5961. }
  5962. // ggml_add_rel_pos
  5963. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5964. struct ggml_context * ctx,
  5965. struct ggml_tensor * a,
  5966. struct ggml_tensor * pw,
  5967. struct ggml_tensor * ph,
  5968. bool inplace) {
  5969. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5970. GGML_ASSERT(ggml_is_contiguous(a));
  5971. GGML_ASSERT(ggml_is_contiguous(pw));
  5972. GGML_ASSERT(ggml_is_contiguous(ph));
  5973. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5974. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5975. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5976. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5977. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5978. bool is_node = false;
  5979. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5980. is_node = true;
  5981. }
  5982. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5983. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5984. result->op = GGML_OP_ADD_REL_POS;
  5985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5986. result->src[0] = a;
  5987. result->src[1] = pw;
  5988. result->src[2] = ph;
  5989. return result;
  5990. }
  5991. struct ggml_tensor * ggml_add_rel_pos(
  5992. struct ggml_context * ctx,
  5993. struct ggml_tensor * a,
  5994. struct ggml_tensor * pw,
  5995. struct ggml_tensor * ph) {
  5996. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5997. }
  5998. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5999. struct ggml_context * ctx,
  6000. struct ggml_tensor * a,
  6001. struct ggml_tensor * pw,
  6002. struct ggml_tensor * ph) {
  6003. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6004. }
  6005. // gmml_unary
  6006. static struct ggml_tensor * ggml_unary_impl(
  6007. struct ggml_context * ctx,
  6008. struct ggml_tensor * a,
  6009. enum ggml_unary_op op,
  6010. bool inplace) {
  6011. bool is_node = false;
  6012. if (!inplace && (a->grad)) {
  6013. is_node = true;
  6014. }
  6015. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6016. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6017. result->op = GGML_OP_UNARY;
  6018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6019. result->src[0] = a;
  6020. return result;
  6021. }
  6022. struct ggml_tensor * ggml_unary(
  6023. struct ggml_context * ctx,
  6024. struct ggml_tensor * a,
  6025. enum ggml_unary_op op) {
  6026. return ggml_unary_impl(ctx, a, op, false);
  6027. }
  6028. struct ggml_tensor * ggml_unary_inplace(
  6029. struct ggml_context * ctx,
  6030. struct ggml_tensor * a,
  6031. enum ggml_unary_op op) {
  6032. return ggml_unary_impl(ctx, a, op, true);
  6033. }
  6034. // ggml_map_unary
  6035. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. const ggml_unary_op_f32_t fun,
  6039. bool inplace) {
  6040. bool is_node = false;
  6041. if (!inplace && a->grad) {
  6042. is_node = true;
  6043. }
  6044. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6045. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6046. result->op = GGML_OP_MAP_UNARY;
  6047. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6048. result->src[0] = a;
  6049. return result;
  6050. }
  6051. struct ggml_tensor * ggml_map_unary_f32(
  6052. struct ggml_context * ctx,
  6053. struct ggml_tensor * a,
  6054. const ggml_unary_op_f32_t fun) {
  6055. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6056. }
  6057. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6058. struct ggml_context * ctx,
  6059. struct ggml_tensor * a,
  6060. const ggml_unary_op_f32_t fun) {
  6061. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6062. }
  6063. // ggml_map_binary
  6064. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. struct ggml_tensor * b,
  6068. const ggml_binary_op_f32_t fun,
  6069. bool inplace) {
  6070. GGML_ASSERT(ggml_are_same_shape(a, b));
  6071. bool is_node = false;
  6072. if (!inplace && (a->grad || b->grad)) {
  6073. is_node = true;
  6074. }
  6075. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6076. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6077. result->op = GGML_OP_MAP_BINARY;
  6078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6079. result->src[0] = a;
  6080. result->src[1] = b;
  6081. return result;
  6082. }
  6083. struct ggml_tensor * ggml_map_binary_f32(
  6084. struct ggml_context * ctx,
  6085. struct ggml_tensor * a,
  6086. struct ggml_tensor * b,
  6087. const ggml_binary_op_f32_t fun) {
  6088. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6089. }
  6090. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6091. struct ggml_context * ctx,
  6092. struct ggml_tensor * a,
  6093. struct ggml_tensor * b,
  6094. const ggml_binary_op_f32_t fun) {
  6095. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6096. }
  6097. // ggml_map_custom1_f32
  6098. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6099. struct ggml_context * ctx,
  6100. struct ggml_tensor * a,
  6101. const ggml_custom1_op_f32_t fun,
  6102. bool inplace) {
  6103. bool is_node = false;
  6104. if (!inplace && a->grad) {
  6105. is_node = true;
  6106. }
  6107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6108. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6109. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6111. result->src[0] = a;
  6112. return result;
  6113. }
  6114. struct ggml_tensor * ggml_map_custom1_f32(
  6115. struct ggml_context * ctx,
  6116. struct ggml_tensor * a,
  6117. const ggml_custom1_op_f32_t fun) {
  6118. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6119. }
  6120. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6121. struct ggml_context * ctx,
  6122. struct ggml_tensor * a,
  6123. const ggml_custom1_op_f32_t fun) {
  6124. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6125. }
  6126. // ggml_map_custom2_f32
  6127. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6128. struct ggml_context * ctx,
  6129. struct ggml_tensor * a,
  6130. struct ggml_tensor * b,
  6131. const ggml_custom2_op_f32_t fun,
  6132. bool inplace) {
  6133. bool is_node = false;
  6134. if (!inplace && (a->grad || b->grad)) {
  6135. is_node = true;
  6136. }
  6137. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6138. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6139. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6141. result->src[0] = a;
  6142. result->src[1] = b;
  6143. return result;
  6144. }
  6145. struct ggml_tensor * ggml_map_custom2_f32(
  6146. struct ggml_context * ctx,
  6147. struct ggml_tensor * a,
  6148. struct ggml_tensor * b,
  6149. const ggml_custom2_op_f32_t fun) {
  6150. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6151. }
  6152. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6153. struct ggml_context * ctx,
  6154. struct ggml_tensor * a,
  6155. struct ggml_tensor * b,
  6156. const ggml_custom2_op_f32_t fun) {
  6157. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6158. }
  6159. // ggml_map_custom3_f32
  6160. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6161. struct ggml_context * ctx,
  6162. struct ggml_tensor * a,
  6163. struct ggml_tensor * b,
  6164. struct ggml_tensor * c,
  6165. const ggml_custom3_op_f32_t fun,
  6166. bool inplace) {
  6167. bool is_node = false;
  6168. if (!inplace && (a->grad || b->grad || c->grad)) {
  6169. is_node = true;
  6170. }
  6171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6172. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6173. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6175. result->src[0] = a;
  6176. result->src[1] = b;
  6177. result->src[2] = c;
  6178. return result;
  6179. }
  6180. struct ggml_tensor * ggml_map_custom3_f32(
  6181. struct ggml_context * ctx,
  6182. struct ggml_tensor * a,
  6183. struct ggml_tensor * b,
  6184. struct ggml_tensor * c,
  6185. const ggml_custom3_op_f32_t fun) {
  6186. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6187. }
  6188. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6189. struct ggml_context * ctx,
  6190. struct ggml_tensor * a,
  6191. struct ggml_tensor * b,
  6192. struct ggml_tensor * c,
  6193. const ggml_custom3_op_f32_t fun) {
  6194. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6195. }
  6196. // ggml_map_custom1
  6197. struct ggml_map_custom1_op_params {
  6198. ggml_custom1_op_t fun;
  6199. int n_tasks;
  6200. void * userdata;
  6201. };
  6202. static struct ggml_tensor * ggml_map_custom1_impl(
  6203. struct ggml_context * ctx,
  6204. struct ggml_tensor * a,
  6205. const ggml_custom1_op_t fun,
  6206. int n_tasks,
  6207. void * userdata,
  6208. bool inplace) {
  6209. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6210. bool is_node = false;
  6211. if (!inplace && a->grad) {
  6212. is_node = true;
  6213. }
  6214. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6215. struct ggml_map_custom1_op_params params = {
  6216. /*.fun =*/ fun,
  6217. /*.n_tasks =*/ n_tasks,
  6218. /*.userdata =*/ userdata
  6219. };
  6220. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6221. result->op = GGML_OP_MAP_CUSTOM1;
  6222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6223. result->src[0] = a;
  6224. return result;
  6225. }
  6226. struct ggml_tensor * ggml_map_custom1(
  6227. struct ggml_context * ctx,
  6228. struct ggml_tensor * a,
  6229. const ggml_custom1_op_t fun,
  6230. int n_tasks,
  6231. void * userdata) {
  6232. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6233. }
  6234. struct ggml_tensor * ggml_map_custom1_inplace(
  6235. struct ggml_context * ctx,
  6236. struct ggml_tensor * a,
  6237. const ggml_custom1_op_t fun,
  6238. int n_tasks,
  6239. void * userdata) {
  6240. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6241. }
  6242. // ggml_map_custom2
  6243. struct ggml_map_custom2_op_params {
  6244. ggml_custom2_op_t fun;
  6245. int n_tasks;
  6246. void * userdata;
  6247. };
  6248. static struct ggml_tensor * ggml_map_custom2_impl(
  6249. struct ggml_context * ctx,
  6250. struct ggml_tensor * a,
  6251. struct ggml_tensor * b,
  6252. const ggml_custom2_op_t fun,
  6253. int n_tasks,
  6254. void * userdata,
  6255. bool inplace) {
  6256. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6257. bool is_node = false;
  6258. if (!inplace && (a->grad || b->grad)) {
  6259. is_node = true;
  6260. }
  6261. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6262. struct ggml_map_custom2_op_params params = {
  6263. /*.fun =*/ fun,
  6264. /*.n_tasks =*/ n_tasks,
  6265. /*.userdata =*/ userdata
  6266. };
  6267. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6268. result->op = GGML_OP_MAP_CUSTOM2;
  6269. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6270. result->src[0] = a;
  6271. result->src[1] = b;
  6272. return result;
  6273. }
  6274. struct ggml_tensor * ggml_map_custom2(
  6275. struct ggml_context * ctx,
  6276. struct ggml_tensor * a,
  6277. struct ggml_tensor * b,
  6278. const ggml_custom2_op_t fun,
  6279. int n_tasks,
  6280. void * userdata) {
  6281. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6282. }
  6283. struct ggml_tensor * ggml_map_custom2_inplace(
  6284. struct ggml_context * ctx,
  6285. struct ggml_tensor * a,
  6286. struct ggml_tensor * b,
  6287. const ggml_custom2_op_t fun,
  6288. int n_tasks,
  6289. void * userdata) {
  6290. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6291. }
  6292. // ggml_map_custom3
  6293. struct ggml_map_custom3_op_params {
  6294. ggml_custom3_op_t fun;
  6295. int n_tasks;
  6296. void * userdata;
  6297. };
  6298. static struct ggml_tensor * ggml_map_custom3_impl(
  6299. struct ggml_context * ctx,
  6300. struct ggml_tensor * a,
  6301. struct ggml_tensor * b,
  6302. struct ggml_tensor * c,
  6303. const ggml_custom3_op_t fun,
  6304. int n_tasks,
  6305. void * userdata,
  6306. bool inplace) {
  6307. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6308. bool is_node = false;
  6309. if (!inplace && (a->grad || b->grad || c->grad)) {
  6310. is_node = true;
  6311. }
  6312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6313. struct ggml_map_custom3_op_params params = {
  6314. /*.fun =*/ fun,
  6315. /*.n_tasks =*/ n_tasks,
  6316. /*.userdata =*/ userdata
  6317. };
  6318. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6319. result->op = GGML_OP_MAP_CUSTOM3;
  6320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6321. result->src[0] = a;
  6322. result->src[1] = b;
  6323. result->src[2] = c;
  6324. return result;
  6325. }
  6326. struct ggml_tensor * ggml_map_custom3(
  6327. struct ggml_context * ctx,
  6328. struct ggml_tensor * a,
  6329. struct ggml_tensor * b,
  6330. struct ggml_tensor * c,
  6331. const ggml_custom3_op_t fun,
  6332. int n_tasks,
  6333. void * userdata) {
  6334. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6335. }
  6336. struct ggml_tensor * ggml_map_custom3_inplace(
  6337. struct ggml_context * ctx,
  6338. struct ggml_tensor * a,
  6339. struct ggml_tensor * b,
  6340. struct ggml_tensor * c,
  6341. const ggml_custom3_op_t fun,
  6342. int n_tasks,
  6343. void * userdata) {
  6344. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6345. }
  6346. // ggml_cross_entropy_loss
  6347. struct ggml_tensor * ggml_cross_entropy_loss(
  6348. struct ggml_context * ctx,
  6349. struct ggml_tensor * a,
  6350. struct ggml_tensor * b) {
  6351. GGML_ASSERT(ggml_are_same_shape(a, b));
  6352. bool is_node = false;
  6353. if (a->grad || b->grad) {
  6354. is_node = true;
  6355. }
  6356. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6357. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6358. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6359. result->src[0] = a;
  6360. result->src[1] = b;
  6361. return result;
  6362. }
  6363. // ggml_cross_entropy_loss_back
  6364. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6365. struct ggml_context * ctx,
  6366. struct ggml_tensor * a,
  6367. struct ggml_tensor * b,
  6368. struct ggml_tensor * c) {
  6369. GGML_ASSERT(ggml_are_same_shape(a, b));
  6370. GGML_ASSERT(ggml_is_scalar(c));
  6371. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6372. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6373. result->grad = NULL;
  6374. result->src[0] = a;
  6375. result->src[1] = b;
  6376. result->src[2] = c;
  6377. return result;
  6378. }
  6379. ////////////////////////////////////////////////////////////////////////////////
  6380. void ggml_set_param(
  6381. struct ggml_context * ctx,
  6382. struct ggml_tensor * tensor) {
  6383. tensor->is_param = true;
  6384. GGML_ASSERT(tensor->grad == NULL);
  6385. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6386. }
  6387. // ggml_compute_forward_dup
  6388. static void ggml_compute_forward_dup_same_cont(
  6389. const struct ggml_compute_params * params,
  6390. const struct ggml_tensor * src0,
  6391. struct ggml_tensor * dst) {
  6392. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6393. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6394. GGML_ASSERT(src0->type == dst->type);
  6395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6396. return;
  6397. }
  6398. const size_t nb00 = src0->nb[0];
  6399. const size_t nb0 = dst->nb[0];
  6400. const int ith = params->ith; // thread index
  6401. const int nth = params->nth; // number of threads
  6402. // parallelize by elements
  6403. const int ne = ggml_nelements(dst);
  6404. const int dr = (ne + nth - 1) / nth;
  6405. const int ie0 = dr * ith;
  6406. const int ie1 = MIN(ie0 + dr, ne);
  6407. if (ie0 < ie1) {
  6408. memcpy(
  6409. ((char *) dst->data + ie0*nb0),
  6410. ((char *) src0->data + ie0*nb00),
  6411. (ie1 - ie0) * ggml_type_size(src0->type));
  6412. }
  6413. }
  6414. static void ggml_compute_forward_dup_f16(
  6415. const struct ggml_compute_params * params,
  6416. const struct ggml_tensor * src0,
  6417. struct ggml_tensor * dst) {
  6418. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6419. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6420. return;
  6421. }
  6422. GGML_TENSOR_UNARY_OP_LOCALS;
  6423. const int ith = params->ith; // thread index
  6424. const int nth = params->nth; // number of threads
  6425. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6426. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6427. return;
  6428. }
  6429. // parallelize by rows
  6430. const int nr = ne01;
  6431. // number of rows per thread
  6432. const int dr = (nr + nth - 1) / nth;
  6433. // row range for this thread
  6434. const int ir0 = dr * ith;
  6435. const int ir1 = MIN(ir0 + dr, nr);
  6436. if (src0->type == dst->type &&
  6437. ne00 == ne0 &&
  6438. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6439. // copy by rows
  6440. const size_t rs = ne00*nb00;
  6441. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6442. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6443. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6444. memcpy(
  6445. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6446. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6447. rs);
  6448. }
  6449. }
  6450. }
  6451. return;
  6452. }
  6453. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6454. if (ggml_is_contiguous(dst)) {
  6455. if (nb00 == sizeof(ggml_fp16_t)) {
  6456. if (dst->type == GGML_TYPE_F16) {
  6457. size_t id = 0;
  6458. const size_t rs = ne00 * nb00;
  6459. char * dst_ptr = (char *) dst->data;
  6460. for (int i03 = 0; i03 < ne03; i03++) {
  6461. for (int i02 = 0; i02 < ne02; i02++) {
  6462. id += rs * ir0;
  6463. for (int i01 = ir0; i01 < ir1; i01++) {
  6464. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6465. memcpy(dst_ptr + id, src0_ptr, rs);
  6466. id += rs;
  6467. }
  6468. id += rs * (ne01 - ir1);
  6469. }
  6470. }
  6471. } else if (dst->type == GGML_TYPE_F32) {
  6472. size_t id = 0;
  6473. float * dst_ptr = (float *) dst->data;
  6474. for (int i03 = 0; i03 < ne03; i03++) {
  6475. for (int i02 = 0; i02 < ne02; i02++) {
  6476. id += ne00 * ir0;
  6477. for (int i01 = ir0; i01 < ir1; i01++) {
  6478. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6479. for (int i00 = 0; i00 < ne00; i00++) {
  6480. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6481. id++;
  6482. }
  6483. }
  6484. id += ne00 * (ne01 - ir1);
  6485. }
  6486. }
  6487. } else if (type_traits[dst->type].from_float) {
  6488. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6489. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6490. size_t id = 0;
  6491. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6492. char * dst_ptr = (char *) dst->data;
  6493. for (int i03 = 0; i03 < ne03; i03++) {
  6494. for (int i02 = 0; i02 < ne02; i02++) {
  6495. id += rs * ir0;
  6496. for (int i01 = ir0; i01 < ir1; i01++) {
  6497. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6498. for (int i00 = 0; i00 < ne00; i00++) {
  6499. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6500. }
  6501. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6502. id += rs;
  6503. }
  6504. id += rs * (ne01 - ir1);
  6505. }
  6506. }
  6507. } else {
  6508. GGML_ASSERT(false); // TODO: implement
  6509. }
  6510. } else {
  6511. //printf("%s: this is not optimal - fix me\n", __func__);
  6512. if (dst->type == GGML_TYPE_F32) {
  6513. size_t id = 0;
  6514. float * dst_ptr = (float *) dst->data;
  6515. for (int i03 = 0; i03 < ne03; i03++) {
  6516. for (int i02 = 0; i02 < ne02; i02++) {
  6517. id += ne00 * ir0;
  6518. for (int i01 = ir0; i01 < ir1; i01++) {
  6519. for (int i00 = 0; i00 < ne00; i00++) {
  6520. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6521. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6522. id++;
  6523. }
  6524. }
  6525. id += ne00 * (ne01 - ir1);
  6526. }
  6527. }
  6528. } else if (dst->type == GGML_TYPE_F16) {
  6529. size_t id = 0;
  6530. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6531. for (int i03 = 0; i03 < ne03; i03++) {
  6532. for (int i02 = 0; i02 < ne02; i02++) {
  6533. id += ne00 * ir0;
  6534. for (int i01 = ir0; i01 < ir1; i01++) {
  6535. for (int i00 = 0; i00 < ne00; i00++) {
  6536. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6537. dst_ptr[id] = *src0_ptr;
  6538. id++;
  6539. }
  6540. }
  6541. id += ne00 * (ne01 - ir1);
  6542. }
  6543. }
  6544. } else {
  6545. GGML_ASSERT(false); // TODO: implement
  6546. }
  6547. }
  6548. return;
  6549. }
  6550. // dst counters
  6551. int64_t i10 = 0;
  6552. int64_t i11 = 0;
  6553. int64_t i12 = 0;
  6554. int64_t i13 = 0;
  6555. if (dst->type == GGML_TYPE_F16) {
  6556. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6557. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6558. i10 += ne00 * ir0;
  6559. while (i10 >= ne0) {
  6560. i10 -= ne0;
  6561. if (++i11 == ne1) {
  6562. i11 = 0;
  6563. if (++i12 == ne2) {
  6564. i12 = 0;
  6565. if (++i13 == ne3) {
  6566. i13 = 0;
  6567. }
  6568. }
  6569. }
  6570. }
  6571. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6572. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6573. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6574. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6575. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6576. if (++i10 == ne00) {
  6577. i10 = 0;
  6578. if (++i11 == ne01) {
  6579. i11 = 0;
  6580. if (++i12 == ne02) {
  6581. i12 = 0;
  6582. if (++i13 == ne03) {
  6583. i13 = 0;
  6584. }
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. i10 += ne00 * (ne01 - ir1);
  6591. while (i10 >= ne0) {
  6592. i10 -= ne0;
  6593. if (++i11 == ne1) {
  6594. i11 = 0;
  6595. if (++i12 == ne2) {
  6596. i12 = 0;
  6597. if (++i13 == ne3) {
  6598. i13 = 0;
  6599. }
  6600. }
  6601. }
  6602. }
  6603. }
  6604. }
  6605. } else if (dst->type == GGML_TYPE_F32) {
  6606. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6607. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6608. i10 += ne00 * ir0;
  6609. while (i10 >= ne0) {
  6610. i10 -= ne0;
  6611. if (++i11 == ne1) {
  6612. i11 = 0;
  6613. if (++i12 == ne2) {
  6614. i12 = 0;
  6615. if (++i13 == ne3) {
  6616. i13 = 0;
  6617. }
  6618. }
  6619. }
  6620. }
  6621. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6622. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6623. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6624. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6625. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6626. if (++i10 == ne0) {
  6627. i10 = 0;
  6628. if (++i11 == ne1) {
  6629. i11 = 0;
  6630. if (++i12 == ne2) {
  6631. i12 = 0;
  6632. if (++i13 == ne3) {
  6633. i13 = 0;
  6634. }
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. i10 += ne00 * (ne01 - ir1);
  6641. while (i10 >= ne0) {
  6642. i10 -= ne0;
  6643. if (++i11 == ne1) {
  6644. i11 = 0;
  6645. if (++i12 == ne2) {
  6646. i12 = 0;
  6647. if (++i13 == ne3) {
  6648. i13 = 0;
  6649. }
  6650. }
  6651. }
  6652. }
  6653. }
  6654. }
  6655. } else {
  6656. GGML_ASSERT(false); // TODO: implement
  6657. }
  6658. }
  6659. static void ggml_compute_forward_dup_f32(
  6660. const struct ggml_compute_params * params,
  6661. const struct ggml_tensor * src0,
  6662. struct ggml_tensor * dst) {
  6663. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6665. return;
  6666. }
  6667. GGML_TENSOR_UNARY_OP_LOCALS;
  6668. const int ith = params->ith; // thread index
  6669. const int nth = params->nth; // number of threads
  6670. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6671. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6672. return;
  6673. }
  6674. // parallelize by rows
  6675. const int nr = ne01;
  6676. // number of rows per thread
  6677. const int dr = (nr + nth - 1) / nth;
  6678. // row range for this thread
  6679. const int ir0 = dr * ith;
  6680. const int ir1 = MIN(ir0 + dr, nr);
  6681. if (src0->type == dst->type &&
  6682. ne00 == ne0 &&
  6683. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6684. // copy by rows
  6685. const size_t rs = ne00*nb00;
  6686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6688. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6689. memcpy(
  6690. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6691. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6692. rs);
  6693. }
  6694. }
  6695. }
  6696. return;
  6697. }
  6698. if (ggml_is_contiguous(dst)) {
  6699. // TODO: simplify
  6700. if (nb00 == sizeof(float)) {
  6701. if (dst->type == GGML_TYPE_F32) {
  6702. size_t id = 0;
  6703. const size_t rs = ne00 * nb00;
  6704. char * dst_ptr = (char *) dst->data;
  6705. for (int i03 = 0; i03 < ne03; i03++) {
  6706. for (int i02 = 0; i02 < ne02; i02++) {
  6707. id += rs * ir0;
  6708. for (int i01 = ir0; i01 < ir1; i01++) {
  6709. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6710. memcpy(dst_ptr + id, src0_ptr, rs);
  6711. id += rs;
  6712. }
  6713. id += rs * (ne01 - ir1);
  6714. }
  6715. }
  6716. } else if (type_traits[dst->type].from_float) {
  6717. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6718. size_t id = 0;
  6719. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6720. char * dst_ptr = (char *) dst->data;
  6721. for (int i03 = 0; i03 < ne03; i03++) {
  6722. for (int i02 = 0; i02 < ne02; i02++) {
  6723. id += rs * ir0;
  6724. for (int i01 = ir0; i01 < ir1; i01++) {
  6725. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6726. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6727. id += rs;
  6728. }
  6729. id += rs * (ne01 - ir1);
  6730. }
  6731. }
  6732. } else {
  6733. GGML_ASSERT(false); // TODO: implement
  6734. }
  6735. } else {
  6736. //printf("%s: this is not optimal - fix me\n", __func__);
  6737. if (dst->type == GGML_TYPE_F32) {
  6738. size_t id = 0;
  6739. float * dst_ptr = (float *) dst->data;
  6740. for (int i03 = 0; i03 < ne03; i03++) {
  6741. for (int i02 = 0; i02 < ne02; i02++) {
  6742. id += ne00 * ir0;
  6743. for (int i01 = ir0; i01 < ir1; i01++) {
  6744. for (int i00 = 0; i00 < ne00; i00++) {
  6745. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6746. dst_ptr[id] = *src0_ptr;
  6747. id++;
  6748. }
  6749. }
  6750. id += ne00 * (ne01 - ir1);
  6751. }
  6752. }
  6753. } else if (dst->type == GGML_TYPE_F16) {
  6754. size_t id = 0;
  6755. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6756. for (int i03 = 0; i03 < ne03; i03++) {
  6757. for (int i02 = 0; i02 < ne02; i02++) {
  6758. id += ne00 * ir0;
  6759. for (int i01 = ir0; i01 < ir1; i01++) {
  6760. for (int i00 = 0; i00 < ne00; i00++) {
  6761. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6762. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6763. id++;
  6764. }
  6765. }
  6766. id += ne00 * (ne01 - ir1);
  6767. }
  6768. }
  6769. } else {
  6770. GGML_ASSERT(false); // TODO: implement
  6771. }
  6772. }
  6773. return;
  6774. }
  6775. // dst counters
  6776. int64_t i10 = 0;
  6777. int64_t i11 = 0;
  6778. int64_t i12 = 0;
  6779. int64_t i13 = 0;
  6780. if (dst->type == GGML_TYPE_F32) {
  6781. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6782. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6783. i10 += ne00 * ir0;
  6784. while (i10 >= ne0) {
  6785. i10 -= ne0;
  6786. if (++i11 == ne1) {
  6787. i11 = 0;
  6788. if (++i12 == ne2) {
  6789. i12 = 0;
  6790. if (++i13 == ne3) {
  6791. i13 = 0;
  6792. }
  6793. }
  6794. }
  6795. }
  6796. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6797. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6798. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6799. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6800. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6801. if (++i10 == ne0) {
  6802. i10 = 0;
  6803. if (++i11 == ne1) {
  6804. i11 = 0;
  6805. if (++i12 == ne2) {
  6806. i12 = 0;
  6807. if (++i13 == ne3) {
  6808. i13 = 0;
  6809. }
  6810. }
  6811. }
  6812. }
  6813. }
  6814. }
  6815. i10 += ne00 * (ne01 - ir1);
  6816. while (i10 >= ne0) {
  6817. i10 -= ne0;
  6818. if (++i11 == ne1) {
  6819. i11 = 0;
  6820. if (++i12 == ne2) {
  6821. i12 = 0;
  6822. if (++i13 == ne3) {
  6823. i13 = 0;
  6824. }
  6825. }
  6826. }
  6827. }
  6828. }
  6829. }
  6830. } else if (dst->type == GGML_TYPE_F16) {
  6831. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6833. i10 += ne00 * ir0;
  6834. while (i10 >= ne0) {
  6835. i10 -= ne0;
  6836. if (++i11 == ne1) {
  6837. i11 = 0;
  6838. if (++i12 == ne2) {
  6839. i12 = 0;
  6840. if (++i13 == ne3) {
  6841. i13 = 0;
  6842. }
  6843. }
  6844. }
  6845. }
  6846. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6847. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6848. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6849. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6850. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6851. if (++i10 == ne0) {
  6852. i10 = 0;
  6853. if (++i11 == ne1) {
  6854. i11 = 0;
  6855. if (++i12 == ne2) {
  6856. i12 = 0;
  6857. if (++i13 == ne3) {
  6858. i13 = 0;
  6859. }
  6860. }
  6861. }
  6862. }
  6863. }
  6864. }
  6865. i10 += ne00 * (ne01 - ir1);
  6866. while (i10 >= ne0) {
  6867. i10 -= ne0;
  6868. if (++i11 == ne1) {
  6869. i11 = 0;
  6870. if (++i12 == ne2) {
  6871. i12 = 0;
  6872. if (++i13 == ne3) {
  6873. i13 = 0;
  6874. }
  6875. }
  6876. }
  6877. }
  6878. }
  6879. }
  6880. } else {
  6881. GGML_ASSERT(false); // TODO: implement
  6882. }
  6883. }
  6884. static void ggml_compute_forward_dup(
  6885. const struct ggml_compute_params * params,
  6886. const struct ggml_tensor * src0,
  6887. struct ggml_tensor * dst) {
  6888. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6889. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6890. return;
  6891. }
  6892. switch (src0->type) {
  6893. case GGML_TYPE_F16:
  6894. {
  6895. ggml_compute_forward_dup_f16(params, src0, dst);
  6896. } break;
  6897. case GGML_TYPE_F32:
  6898. {
  6899. ggml_compute_forward_dup_f32(params, src0, dst);
  6900. } break;
  6901. default:
  6902. {
  6903. GGML_ASSERT(false);
  6904. } break;
  6905. }
  6906. }
  6907. // ggml_compute_forward_add
  6908. static void ggml_compute_forward_add_f32(
  6909. const struct ggml_compute_params * params,
  6910. const struct ggml_tensor * src0,
  6911. const struct ggml_tensor * src1,
  6912. struct ggml_tensor * dst) {
  6913. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6914. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6915. return;
  6916. }
  6917. const int ith = params->ith;
  6918. const int nth = params->nth;
  6919. const int nr = ggml_nrows(src0);
  6920. GGML_TENSOR_BINARY_OP_LOCALS;
  6921. GGML_ASSERT( nb0 == sizeof(float));
  6922. GGML_ASSERT(nb00 == sizeof(float));
  6923. // rows per thread
  6924. const int dr = (nr + nth - 1)/nth;
  6925. // row range for this thread
  6926. const int ir0 = dr*ith;
  6927. const int ir1 = MIN(ir0 + dr, nr);
  6928. if (nb10 == sizeof(float)) {
  6929. for (int ir = ir0; ir < ir1; ++ir) {
  6930. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6931. const int64_t i03 = ir/(ne02*ne01);
  6932. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6933. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6934. const int64_t i13 = i03 % ne13;
  6935. const int64_t i12 = i02 % ne12;
  6936. const int64_t i11 = i01 % ne11;
  6937. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6938. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6939. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6940. #ifdef GGML_USE_ACCELERATE
  6941. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6942. #else
  6943. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6944. #endif
  6945. // }
  6946. // }
  6947. }
  6948. } else {
  6949. // src1 is not contiguous
  6950. for (int ir = ir0; ir < ir1; ++ir) {
  6951. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6952. const int64_t i03 = ir/(ne02*ne01);
  6953. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6954. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6955. const int64_t i13 = i03 % ne13;
  6956. const int64_t i12 = i02 % ne12;
  6957. const int64_t i11 = i01 % ne11;
  6958. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6959. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6960. for (int i0 = 0; i0 < ne0; i0++) {
  6961. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6962. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6963. }
  6964. }
  6965. }
  6966. }
  6967. static void ggml_compute_forward_add_f16_f32(
  6968. const struct ggml_compute_params * params,
  6969. const struct ggml_tensor * src0,
  6970. const struct ggml_tensor * src1,
  6971. struct ggml_tensor * dst) {
  6972. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6974. return;
  6975. }
  6976. const int ith = params->ith;
  6977. const int nth = params->nth;
  6978. const int nr = ggml_nrows(src0);
  6979. GGML_TENSOR_BINARY_OP_LOCALS;
  6980. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6981. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6982. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6983. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6984. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6985. // rows per thread
  6986. const int dr = (nr + nth - 1)/nth;
  6987. // row range for this thread
  6988. const int ir0 = dr*ith;
  6989. const int ir1 = MIN(ir0 + dr, nr);
  6990. if (nb10 == sizeof(float)) {
  6991. for (int ir = ir0; ir < ir1; ++ir) {
  6992. // src0, src1 and dst are same shape => same indices
  6993. const int i3 = ir/(ne2*ne1);
  6994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6996. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6997. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6998. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6999. for (int i = 0; i < ne0; i++) {
  7000. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7001. }
  7002. }
  7003. }
  7004. else {
  7005. // src1 is not contiguous
  7006. GGML_ASSERT(false);
  7007. }
  7008. }
  7009. static void ggml_compute_forward_add_f16_f16(
  7010. const struct ggml_compute_params * params,
  7011. const struct ggml_tensor * src0,
  7012. const struct ggml_tensor * src1,
  7013. struct ggml_tensor * dst) {
  7014. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7016. return;
  7017. }
  7018. const int ith = params->ith;
  7019. const int nth = params->nth;
  7020. const int nr = ggml_nrows(src0);
  7021. GGML_TENSOR_BINARY_OP_LOCALS;
  7022. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7023. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7024. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7025. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7026. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7027. // rows per thread
  7028. const int dr = (nr + nth - 1)/nth;
  7029. // row range for this thread
  7030. const int ir0 = dr*ith;
  7031. const int ir1 = MIN(ir0 + dr, nr);
  7032. if (nb10 == sizeof(ggml_fp16_t)) {
  7033. for (int ir = ir0; ir < ir1; ++ir) {
  7034. // src0, src1 and dst are same shape => same indices
  7035. const int i3 = ir/(ne2*ne1);
  7036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7038. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7039. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7040. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7041. for (int i = 0; i < ne0; i++) {
  7042. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7043. }
  7044. }
  7045. }
  7046. else {
  7047. // src1 is not contiguous
  7048. GGML_ASSERT(false);
  7049. }
  7050. }
  7051. static void ggml_compute_forward_add_q_f32(
  7052. const struct ggml_compute_params * params,
  7053. const struct ggml_tensor * src0,
  7054. const struct ggml_tensor * src1,
  7055. struct ggml_tensor * dst) {
  7056. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7058. return;
  7059. }
  7060. const int nr = ggml_nrows(src0);
  7061. GGML_TENSOR_BINARY_OP_LOCALS;
  7062. const int ith = params->ith;
  7063. const int nth = params->nth;
  7064. const enum ggml_type type = src0->type;
  7065. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7066. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7067. // we don't support permuted src0 or src1
  7068. GGML_ASSERT(nb00 == ggml_type_size(type));
  7069. GGML_ASSERT(nb10 == sizeof(float));
  7070. // dst cannot be transposed or permuted
  7071. GGML_ASSERT(nb0 <= nb1);
  7072. GGML_ASSERT(nb1 <= nb2);
  7073. GGML_ASSERT(nb2 <= nb3);
  7074. GGML_ASSERT(ggml_is_quantized(src0->type));
  7075. GGML_ASSERT(dst->type == src0->type);
  7076. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7077. // rows per thread
  7078. const int dr = (nr + nth - 1)/nth;
  7079. // row range for this thread
  7080. const int ir0 = dr*ith;
  7081. const int ir1 = MIN(ir0 + dr, nr);
  7082. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7083. for (int ir = ir0; ir < ir1; ++ir) {
  7084. // src0 indices
  7085. const int i03 = ir/(ne02*ne01);
  7086. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7087. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7088. // src1 and dst are same shape as src0 => same indices
  7089. const int i13 = i03;
  7090. const int i12 = i02;
  7091. const int i11 = i01;
  7092. const int i3 = i03;
  7093. const int i2 = i02;
  7094. const int i1 = i01;
  7095. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7096. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7097. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7098. assert(ne00 % 32 == 0);
  7099. // unquantize row from src0 to temp buffer
  7100. dequantize_row_q(src0_row, wdata, ne00);
  7101. // add src1
  7102. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7103. // quantize row to dst
  7104. quantize_row_q(wdata, dst_row, ne00);
  7105. }
  7106. }
  7107. static void ggml_compute_forward_add(
  7108. const struct ggml_compute_params * params,
  7109. const struct ggml_tensor * src0,
  7110. const struct ggml_tensor * src1,
  7111. struct ggml_tensor * dst) {
  7112. switch (src0->type) {
  7113. case GGML_TYPE_F32:
  7114. {
  7115. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7116. } break;
  7117. case GGML_TYPE_F16:
  7118. {
  7119. if (src1->type == GGML_TYPE_F16) {
  7120. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7121. }
  7122. else if (src1->type == GGML_TYPE_F32) {
  7123. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7124. }
  7125. else {
  7126. GGML_ASSERT(false);
  7127. }
  7128. } break;
  7129. case GGML_TYPE_Q4_0:
  7130. case GGML_TYPE_Q4_1:
  7131. case GGML_TYPE_Q5_0:
  7132. case GGML_TYPE_Q5_1:
  7133. case GGML_TYPE_Q8_0:
  7134. case GGML_TYPE_Q2_K:
  7135. case GGML_TYPE_Q3_K:
  7136. case GGML_TYPE_Q4_K:
  7137. case GGML_TYPE_Q5_K:
  7138. case GGML_TYPE_Q6_K:
  7139. {
  7140. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7141. } break;
  7142. default:
  7143. {
  7144. GGML_ASSERT(false);
  7145. } break;
  7146. }
  7147. }
  7148. // ggml_compute_forward_add1
  7149. static void ggml_compute_forward_add1_f32(
  7150. const struct ggml_compute_params * params,
  7151. const struct ggml_tensor * src0,
  7152. const struct ggml_tensor * src1,
  7153. struct ggml_tensor * dst) {
  7154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7155. GGML_ASSERT(ggml_is_scalar(src1));
  7156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7157. return;
  7158. }
  7159. const int ith = params->ith;
  7160. const int nth = params->nth;
  7161. const int nr = ggml_nrows(src0);
  7162. GGML_TENSOR_UNARY_OP_LOCALS;
  7163. GGML_ASSERT( nb0 == sizeof(float));
  7164. GGML_ASSERT(nb00 == sizeof(float));
  7165. // rows per thread
  7166. const int dr = (nr + nth - 1)/nth;
  7167. // row range for this thread
  7168. const int ir0 = dr*ith;
  7169. const int ir1 = MIN(ir0 + dr, nr);
  7170. for (int ir = ir0; ir < ir1; ++ir) {
  7171. // src0 and dst are same shape => same indices
  7172. const int i3 = ir/(ne2*ne1);
  7173. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7174. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7175. #ifdef GGML_USE_ACCELERATE
  7176. UNUSED(ggml_vec_add1_f32);
  7177. vDSP_vadd(
  7178. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7179. (float *) ((char *) src1->data), 0,
  7180. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7181. ne0);
  7182. #else
  7183. ggml_vec_add1_f32(ne0,
  7184. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7185. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7186. *(float *) src1->data);
  7187. #endif
  7188. }
  7189. }
  7190. static void ggml_compute_forward_add1_f16_f32(
  7191. const struct ggml_compute_params * params,
  7192. const struct ggml_tensor * src0,
  7193. const struct ggml_tensor * src1,
  7194. struct ggml_tensor * dst) {
  7195. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7196. GGML_ASSERT(ggml_is_scalar(src1));
  7197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7198. return;
  7199. }
  7200. // scalar to add
  7201. const float v = *(float *) src1->data;
  7202. const int ith = params->ith;
  7203. const int nth = params->nth;
  7204. const int nr = ggml_nrows(src0);
  7205. GGML_TENSOR_UNARY_OP_LOCALS;
  7206. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7207. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7208. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7209. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7210. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7211. // rows per thread
  7212. const int dr = (nr + nth - 1)/nth;
  7213. // row range for this thread
  7214. const int ir0 = dr*ith;
  7215. const int ir1 = MIN(ir0 + dr, nr);
  7216. for (int ir = ir0; ir < ir1; ++ir) {
  7217. // src0 and dst are same shape => same indices
  7218. const int i3 = ir/(ne2*ne1);
  7219. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7220. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7221. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7222. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7223. for (int i = 0; i < ne0; i++) {
  7224. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7225. }
  7226. }
  7227. }
  7228. static void ggml_compute_forward_add1_f16_f16(
  7229. const struct ggml_compute_params * params,
  7230. const struct ggml_tensor * src0,
  7231. const struct ggml_tensor * src1,
  7232. struct ggml_tensor * dst) {
  7233. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7234. GGML_ASSERT(ggml_is_scalar(src1));
  7235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7236. return;
  7237. }
  7238. // scalar to add
  7239. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7240. const int ith = params->ith;
  7241. const int nth = params->nth;
  7242. const int nr = ggml_nrows(src0);
  7243. GGML_TENSOR_UNARY_OP_LOCALS;
  7244. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7245. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7246. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7247. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7248. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7249. // rows per thread
  7250. const int dr = (nr + nth - 1)/nth;
  7251. // row range for this thread
  7252. const int ir0 = dr*ith;
  7253. const int ir1 = MIN(ir0 + dr, nr);
  7254. for (int ir = ir0; ir < ir1; ++ir) {
  7255. // src0 and dst are same shape => same indices
  7256. const int i3 = ir/(ne2*ne1);
  7257. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7258. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7259. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7260. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7261. for (int i = 0; i < ne0; i++) {
  7262. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7263. }
  7264. }
  7265. }
  7266. static void ggml_compute_forward_add1_q_f32(
  7267. const struct ggml_compute_params * params,
  7268. const struct ggml_tensor * src0,
  7269. const struct ggml_tensor * src1,
  7270. struct ggml_tensor * dst) {
  7271. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7272. GGML_ASSERT(ggml_is_scalar(src1));
  7273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7274. return;
  7275. }
  7276. // scalar to add
  7277. const float v = *(float *) src1->data;
  7278. const int ith = params->ith;
  7279. const int nth = params->nth;
  7280. const int nr = ggml_nrows(src0);
  7281. GGML_TENSOR_UNARY_OP_LOCALS;
  7282. const enum ggml_type type = src0->type;
  7283. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7284. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7285. // we don't support permuted src0
  7286. GGML_ASSERT(nb00 == ggml_type_size(type));
  7287. // dst cannot be transposed or permuted
  7288. GGML_ASSERT(nb0 <= nb1);
  7289. GGML_ASSERT(nb1 <= nb2);
  7290. GGML_ASSERT(nb2 <= nb3);
  7291. GGML_ASSERT(ggml_is_quantized(src0->type));
  7292. GGML_ASSERT(dst->type == src0->type);
  7293. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7294. // rows per thread
  7295. const int dr = (nr + nth - 1)/nth;
  7296. // row range for this thread
  7297. const int ir0 = dr*ith;
  7298. const int ir1 = MIN(ir0 + dr, nr);
  7299. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7300. for (int ir = ir0; ir < ir1; ++ir) {
  7301. // src0 and dst are same shape => same indices
  7302. const int i3 = ir/(ne2*ne1);
  7303. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7304. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7305. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7306. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7307. assert(ne0 % 32 == 0);
  7308. // unquantize row from src0 to temp buffer
  7309. dequantize_row_q(src0_row, wdata, ne0);
  7310. // add src1
  7311. ggml_vec_acc1_f32(ne0, wdata, v);
  7312. // quantize row to dst
  7313. quantize_row_q(wdata, dst_row, ne0);
  7314. }
  7315. }
  7316. static void ggml_compute_forward_add1(
  7317. const struct ggml_compute_params * params,
  7318. const struct ggml_tensor * src0,
  7319. const struct ggml_tensor * src1,
  7320. struct ggml_tensor * dst) {
  7321. switch (src0->type) {
  7322. case GGML_TYPE_F32:
  7323. {
  7324. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7325. } break;
  7326. case GGML_TYPE_F16:
  7327. {
  7328. if (src1->type == GGML_TYPE_F16) {
  7329. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7330. }
  7331. else if (src1->type == GGML_TYPE_F32) {
  7332. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7333. }
  7334. else {
  7335. GGML_ASSERT(false);
  7336. }
  7337. } break;
  7338. case GGML_TYPE_Q4_0:
  7339. case GGML_TYPE_Q4_1:
  7340. case GGML_TYPE_Q5_0:
  7341. case GGML_TYPE_Q5_1:
  7342. case GGML_TYPE_Q8_0:
  7343. case GGML_TYPE_Q8_1:
  7344. case GGML_TYPE_Q2_K:
  7345. case GGML_TYPE_Q3_K:
  7346. case GGML_TYPE_Q4_K:
  7347. case GGML_TYPE_Q5_K:
  7348. case GGML_TYPE_Q6_K:
  7349. {
  7350. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7351. } break;
  7352. default:
  7353. {
  7354. GGML_ASSERT(false);
  7355. } break;
  7356. }
  7357. }
  7358. // ggml_compute_forward_acc
  7359. static void ggml_compute_forward_acc_f32(
  7360. const struct ggml_compute_params * params,
  7361. const struct ggml_tensor * src0,
  7362. const struct ggml_tensor * src1,
  7363. struct ggml_tensor * dst) {
  7364. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7365. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7366. // view src0 and dst with these strides and data offset inbytes during acc
  7367. // nb0 is implicitely element_size because src0 and dst are contiguous
  7368. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7369. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7370. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7371. size_t offset = ((int32_t *) dst->op_params)[3];
  7372. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7373. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7374. // memcpy needs to be synchronized across threads to avoid race conditions.
  7375. // => do it in INIT phase
  7376. memcpy(
  7377. ((char *) dst->data),
  7378. ((char *) src0->data),
  7379. ggml_nbytes(dst));
  7380. }
  7381. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7382. return;
  7383. }
  7384. const int ith = params->ith;
  7385. const int nth = params->nth;
  7386. const int nr = ggml_nrows(src1);
  7387. const int nc = src1->ne[0];
  7388. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7389. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7390. // src0 and dst as viewed during acc
  7391. const size_t nb0 = ggml_element_size(src0);
  7392. const size_t nb00 = nb0;
  7393. const size_t nb01 = nb1;
  7394. const size_t nb02 = nb2;
  7395. const size_t nb03 = nb3;
  7396. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7397. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7398. GGML_ASSERT(nb10 == sizeof(float));
  7399. // rows per thread
  7400. const int dr = (nr + nth - 1)/nth;
  7401. // row range for this thread
  7402. const int ir0 = dr*ith;
  7403. const int ir1 = MIN(ir0 + dr, nr);
  7404. for (int ir = ir0; ir < ir1; ++ir) {
  7405. // src0 and dst are viewed with shape of src1 and offset
  7406. // => same indices
  7407. const int i3 = ir/(ne12*ne11);
  7408. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7409. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7410. #ifdef GGML_USE_ACCELERATE
  7411. vDSP_vadd(
  7412. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7413. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7414. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7415. #else
  7416. ggml_vec_add_f32(nc,
  7417. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7418. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7419. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7420. #endif
  7421. }
  7422. }
  7423. static void ggml_compute_forward_acc(
  7424. const struct ggml_compute_params * params,
  7425. const struct ggml_tensor * src0,
  7426. const struct ggml_tensor * src1,
  7427. struct ggml_tensor * dst) {
  7428. switch (src0->type) {
  7429. case GGML_TYPE_F32:
  7430. {
  7431. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7432. } break;
  7433. case GGML_TYPE_F16:
  7434. case GGML_TYPE_Q4_0:
  7435. case GGML_TYPE_Q4_1:
  7436. case GGML_TYPE_Q5_0:
  7437. case GGML_TYPE_Q5_1:
  7438. case GGML_TYPE_Q8_0:
  7439. case GGML_TYPE_Q8_1:
  7440. case GGML_TYPE_Q2_K:
  7441. case GGML_TYPE_Q3_K:
  7442. case GGML_TYPE_Q4_K:
  7443. case GGML_TYPE_Q5_K:
  7444. case GGML_TYPE_Q6_K:
  7445. default:
  7446. {
  7447. GGML_ASSERT(false);
  7448. } break;
  7449. }
  7450. }
  7451. // ggml_compute_forward_sub
  7452. static void ggml_compute_forward_sub_f32(
  7453. const struct ggml_compute_params * params,
  7454. const struct ggml_tensor * src0,
  7455. const struct ggml_tensor * src1,
  7456. struct ggml_tensor * dst) {
  7457. assert(params->ith == 0);
  7458. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7460. return;
  7461. }
  7462. const int nr = ggml_nrows(src0);
  7463. GGML_TENSOR_BINARY_OP_LOCALS;
  7464. GGML_ASSERT( nb0 == sizeof(float));
  7465. GGML_ASSERT(nb00 == sizeof(float));
  7466. if (nb10 == sizeof(float)) {
  7467. for (int ir = 0; ir < nr; ++ir) {
  7468. // src0, src1 and dst are same shape => same indices
  7469. const int i3 = ir/(ne2*ne1);
  7470. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7471. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7472. #ifdef GGML_USE_ACCELERATE
  7473. vDSP_vsub(
  7474. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7475. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7476. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7477. ne0);
  7478. #else
  7479. ggml_vec_sub_f32(ne0,
  7480. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7481. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7482. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7483. #endif
  7484. // }
  7485. // }
  7486. }
  7487. } else {
  7488. // src1 is not contiguous
  7489. for (int ir = 0; ir < nr; ++ir) {
  7490. // src0, src1 and dst are same shape => same indices
  7491. const int i3 = ir/(ne2*ne1);
  7492. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7493. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7494. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7495. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7496. for (int i0 = 0; i0 < ne0; i0++) {
  7497. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7498. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7499. }
  7500. }
  7501. }
  7502. }
  7503. static void ggml_compute_forward_sub(
  7504. const struct ggml_compute_params * params,
  7505. const struct ggml_tensor * src0,
  7506. const struct ggml_tensor * src1,
  7507. struct ggml_tensor * dst) {
  7508. switch (src0->type) {
  7509. case GGML_TYPE_F32:
  7510. {
  7511. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7512. } break;
  7513. default:
  7514. {
  7515. GGML_ASSERT(false);
  7516. } break;
  7517. }
  7518. }
  7519. // ggml_compute_forward_mul
  7520. static void ggml_compute_forward_mul_f32(
  7521. const struct ggml_compute_params * params,
  7522. const struct ggml_tensor * src0,
  7523. const struct ggml_tensor * src1,
  7524. struct ggml_tensor * dst) {
  7525. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7526. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7527. return;
  7528. }
  7529. const int ith = params->ith;
  7530. const int nth = params->nth;
  7531. #ifdef GGML_USE_CLBLAST
  7532. if (src1->backend == GGML_BACKEND_GPU) {
  7533. if (ith == 0) {
  7534. ggml_cl_mul(src0, src1, dst);
  7535. }
  7536. return;
  7537. }
  7538. #endif
  7539. const int64_t nr = ggml_nrows(src0);
  7540. GGML_TENSOR_BINARY_OP_LOCALS;
  7541. GGML_ASSERT( nb0 == sizeof(float));
  7542. GGML_ASSERT(nb00 == sizeof(float));
  7543. GGML_ASSERT(ne00 == ne10);
  7544. if (nb10 == sizeof(float)) {
  7545. for (int64_t ir = ith; ir < nr; ir += nth) {
  7546. // src0 and dst are same shape => same indices
  7547. const int64_t i03 = ir/(ne02*ne01);
  7548. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7549. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7550. const int64_t i13 = i03 % ne13;
  7551. const int64_t i12 = i02 % ne12;
  7552. const int64_t i11 = i01 % ne11;
  7553. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7554. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7555. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7556. #ifdef GGML_USE_ACCELERATE
  7557. UNUSED(ggml_vec_mul_f32);
  7558. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7559. #else
  7560. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7561. #endif
  7562. // }
  7563. // }
  7564. }
  7565. } else {
  7566. // src1 is not contiguous
  7567. for (int64_t ir = ith; ir < nr; ir += nth) {
  7568. // src0 and dst are same shape => same indices
  7569. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7570. const int64_t i03 = ir/(ne02*ne01);
  7571. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7572. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7573. const int64_t i13 = i03 % ne13;
  7574. const int64_t i12 = i02 % ne12;
  7575. const int64_t i11 = i01 % ne11;
  7576. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7577. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7578. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7579. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7580. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7581. }
  7582. }
  7583. }
  7584. }
  7585. static void ggml_compute_forward_mul(
  7586. const struct ggml_compute_params * params,
  7587. const struct ggml_tensor * src0,
  7588. const struct ggml_tensor * src1,
  7589. struct ggml_tensor * dst) {
  7590. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7591. switch (src0->type) {
  7592. case GGML_TYPE_F32:
  7593. {
  7594. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7595. } break;
  7596. default:
  7597. {
  7598. GGML_ASSERT(false);
  7599. } break;
  7600. }
  7601. }
  7602. // ggml_compute_forward_div
  7603. static void ggml_compute_forward_div_f32(
  7604. const struct ggml_compute_params * params,
  7605. const struct ggml_tensor * src0,
  7606. const struct ggml_tensor * src1,
  7607. struct ggml_tensor * dst) {
  7608. assert(params->ith == 0);
  7609. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7611. return;
  7612. }
  7613. const int nr = ggml_nrows(src0);
  7614. GGML_TENSOR_BINARY_OP_LOCALS;
  7615. GGML_ASSERT( nb0 == sizeof(float));
  7616. GGML_ASSERT(nb00 == sizeof(float));
  7617. if (nb10 == sizeof(float)) {
  7618. for (int ir = 0; ir < nr; ++ir) {
  7619. // src0, src1 and dst are same shape => same indices
  7620. const int i3 = ir/(ne2*ne1);
  7621. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7622. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7623. #ifdef GGML_USE_ACCELERATE
  7624. vDSP_vdiv(
  7625. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7626. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7627. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7628. ne0);
  7629. #else
  7630. ggml_vec_div_f32(ne0,
  7631. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7632. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7633. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7634. #endif
  7635. // }
  7636. // }
  7637. }
  7638. } else {
  7639. // src1 is not contiguous
  7640. for (int ir = 0; ir < nr; ++ir) {
  7641. // src0, src1 and dst are same shape => same indices
  7642. const int i3 = ir/(ne2*ne1);
  7643. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7644. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7645. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7646. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7647. for (int i0 = 0; i0 < ne0; i0++) {
  7648. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7649. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7650. }
  7651. }
  7652. }
  7653. }
  7654. static void ggml_compute_forward_div(
  7655. const struct ggml_compute_params * params,
  7656. const struct ggml_tensor * src0,
  7657. const struct ggml_tensor * src1,
  7658. struct ggml_tensor * dst) {
  7659. switch (src0->type) {
  7660. case GGML_TYPE_F32:
  7661. {
  7662. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7663. } break;
  7664. default:
  7665. {
  7666. GGML_ASSERT(false);
  7667. } break;
  7668. }
  7669. }
  7670. // ggml_compute_forward_sqr
  7671. static void ggml_compute_forward_sqr_f32(
  7672. const struct ggml_compute_params * params,
  7673. const struct ggml_tensor * src0,
  7674. struct ggml_tensor * dst) {
  7675. assert(params->ith == 0);
  7676. assert(ggml_are_same_shape(src0, dst));
  7677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7678. return;
  7679. }
  7680. const int n = ggml_nrows(src0);
  7681. const int nc = src0->ne[0];
  7682. assert( dst->nb[0] == sizeof(float));
  7683. assert(src0->nb[0] == sizeof(float));
  7684. for (int i = 0; i < n; i++) {
  7685. ggml_vec_sqr_f32(nc,
  7686. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7687. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7688. }
  7689. }
  7690. static void ggml_compute_forward_sqr(
  7691. const struct ggml_compute_params * params,
  7692. const struct ggml_tensor * src0,
  7693. struct ggml_tensor * dst) {
  7694. switch (src0->type) {
  7695. case GGML_TYPE_F32:
  7696. {
  7697. ggml_compute_forward_sqr_f32(params, src0, dst);
  7698. } break;
  7699. default:
  7700. {
  7701. GGML_ASSERT(false);
  7702. } break;
  7703. }
  7704. }
  7705. // ggml_compute_forward_sqrt
  7706. static void ggml_compute_forward_sqrt_f32(
  7707. const struct ggml_compute_params * params,
  7708. const struct ggml_tensor * src0,
  7709. struct ggml_tensor * dst) {
  7710. assert(params->ith == 0);
  7711. assert(ggml_are_same_shape(src0, dst));
  7712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7713. return;
  7714. }
  7715. const int n = ggml_nrows(src0);
  7716. const int nc = src0->ne[0];
  7717. assert( dst->nb[0] == sizeof(float));
  7718. assert(src0->nb[0] == sizeof(float));
  7719. for (int i = 0; i < n; i++) {
  7720. ggml_vec_sqrt_f32(nc,
  7721. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7722. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7723. }
  7724. }
  7725. static void ggml_compute_forward_sqrt(
  7726. const struct ggml_compute_params * params,
  7727. const struct ggml_tensor * src0,
  7728. struct ggml_tensor * dst) {
  7729. switch (src0->type) {
  7730. case GGML_TYPE_F32:
  7731. {
  7732. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7733. } break;
  7734. default:
  7735. {
  7736. GGML_ASSERT(false);
  7737. } break;
  7738. }
  7739. }
  7740. // ggml_compute_forward_log
  7741. static void ggml_compute_forward_log_f32(
  7742. const struct ggml_compute_params * params,
  7743. const struct ggml_tensor * src0,
  7744. struct ggml_tensor * dst) {
  7745. GGML_ASSERT(params->ith == 0);
  7746. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7747. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7748. return;
  7749. }
  7750. const int n = ggml_nrows(src0);
  7751. const int nc = src0->ne[0];
  7752. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7753. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7754. for (int i = 0; i < n; i++) {
  7755. ggml_vec_log_f32(nc,
  7756. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7757. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7758. }
  7759. }
  7760. static void ggml_compute_forward_log(
  7761. const struct ggml_compute_params * params,
  7762. const struct ggml_tensor * src0,
  7763. struct ggml_tensor * dst) {
  7764. switch (src0->type) {
  7765. case GGML_TYPE_F32:
  7766. {
  7767. ggml_compute_forward_log_f32(params, src0, dst);
  7768. } break;
  7769. default:
  7770. {
  7771. GGML_ASSERT(false);
  7772. } break;
  7773. }
  7774. }
  7775. // ggml_compute_forward_sum
  7776. static void ggml_compute_forward_sum_f32(
  7777. const struct ggml_compute_params * params,
  7778. const struct ggml_tensor * src0,
  7779. struct ggml_tensor * dst) {
  7780. assert(params->ith == 0);
  7781. assert(ggml_is_scalar(dst));
  7782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7783. return;
  7784. }
  7785. assert(ggml_is_scalar(dst));
  7786. assert(src0->nb[0] == sizeof(float));
  7787. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7788. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7789. ggml_float sum = 0;
  7790. ggml_float row_sum = 0;
  7791. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7792. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7793. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7794. ggml_vec_sum_f32_ggf(ne00,
  7795. &row_sum,
  7796. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7797. sum += row_sum;
  7798. }
  7799. }
  7800. }
  7801. ((float *) dst->data)[0] = sum;
  7802. }
  7803. static void ggml_compute_forward_sum_f16(
  7804. const struct ggml_compute_params * params,
  7805. const struct ggml_tensor * src0,
  7806. struct ggml_tensor * dst) {
  7807. assert(params->ith == 0);
  7808. assert(ggml_is_scalar(dst));
  7809. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7810. return;
  7811. }
  7812. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7813. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7814. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7815. float sum = 0;
  7816. float row_sum = 0;
  7817. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7818. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7819. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7820. ggml_vec_sum_f16_ggf(ne00,
  7821. &row_sum,
  7822. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7823. sum += row_sum;
  7824. }
  7825. }
  7826. }
  7827. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7828. }
  7829. static void ggml_compute_forward_sum(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. struct ggml_tensor * dst) {
  7833. switch (src0->type) {
  7834. case GGML_TYPE_F32:
  7835. {
  7836. ggml_compute_forward_sum_f32(params, src0, dst);
  7837. } break;
  7838. case GGML_TYPE_F16:
  7839. {
  7840. ggml_compute_forward_sum_f16(params, src0, dst);
  7841. } break;
  7842. default:
  7843. {
  7844. GGML_ASSERT(false);
  7845. } break;
  7846. }
  7847. }
  7848. // ggml_compute_forward_sum_rows
  7849. static void ggml_compute_forward_sum_rows_f32(
  7850. const struct ggml_compute_params * params,
  7851. const struct ggml_tensor * src0,
  7852. struct ggml_tensor * dst) {
  7853. GGML_ASSERT(params->ith == 0);
  7854. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7855. return;
  7856. }
  7857. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7858. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7859. GGML_TENSOR_UNARY_OP_LOCALS;
  7860. GGML_ASSERT(ne0 == 1);
  7861. GGML_ASSERT(ne1 == ne01);
  7862. GGML_ASSERT(ne2 == ne02);
  7863. GGML_ASSERT(ne3 == ne03);
  7864. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7865. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7866. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7867. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7868. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7869. float row_sum = 0;
  7870. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7871. dst_row[0] = row_sum;
  7872. }
  7873. }
  7874. }
  7875. }
  7876. static void ggml_compute_forward_sum_rows(
  7877. const struct ggml_compute_params * params,
  7878. const struct ggml_tensor * src0,
  7879. struct ggml_tensor * dst) {
  7880. switch (src0->type) {
  7881. case GGML_TYPE_F32:
  7882. {
  7883. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7884. } break;
  7885. default:
  7886. {
  7887. GGML_ASSERT(false);
  7888. } break;
  7889. }
  7890. }
  7891. // ggml_compute_forward_mean
  7892. static void ggml_compute_forward_mean_f32(
  7893. const struct ggml_compute_params * params,
  7894. const struct ggml_tensor * src0,
  7895. struct ggml_tensor * dst) {
  7896. assert(params->ith == 0);
  7897. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7898. return;
  7899. }
  7900. assert(src0->nb[0] == sizeof(float));
  7901. GGML_TENSOR_UNARY_OP_LOCALS;
  7902. assert(ne0 == 1);
  7903. assert(ne1 == ne01);
  7904. assert(ne2 == ne02);
  7905. assert(ne3 == ne03);
  7906. UNUSED(ne0);
  7907. UNUSED(ne1);
  7908. UNUSED(ne2);
  7909. UNUSED(ne3);
  7910. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7911. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7912. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7913. ggml_vec_sum_f32(ne00,
  7914. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7915. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7916. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7917. }
  7918. }
  7919. }
  7920. }
  7921. static void ggml_compute_forward_mean(
  7922. const struct ggml_compute_params * params,
  7923. const struct ggml_tensor * src0,
  7924. struct ggml_tensor * dst) {
  7925. switch (src0->type) {
  7926. case GGML_TYPE_F32:
  7927. {
  7928. ggml_compute_forward_mean_f32(params, src0, dst);
  7929. } break;
  7930. default:
  7931. {
  7932. GGML_ASSERT(false);
  7933. } break;
  7934. }
  7935. }
  7936. // ggml_compute_forward_argmax
  7937. static void ggml_compute_forward_argmax_f32(
  7938. const struct ggml_compute_params * params,
  7939. const struct ggml_tensor * src0,
  7940. struct ggml_tensor * dst) {
  7941. assert(params->ith == 0);
  7942. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7943. return;
  7944. }
  7945. assert(src0->nb[0] == sizeof(float));
  7946. assert(dst->nb[0] == sizeof(float));
  7947. const int64_t ne00 = src0->ne[0];
  7948. const int64_t ne01 = src0->ne[1];
  7949. const size_t nb01 = src0->nb[1];
  7950. const size_t nb0 = dst->nb[0];
  7951. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7952. float * src = (float *) ((char *) src0->data + i1*nb01);
  7953. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7954. int v = 0;
  7955. ggml_vec_argmax_f32(ne00, &v, src);
  7956. dst_[0] = v;
  7957. }
  7958. }
  7959. static void ggml_compute_forward_argmax(
  7960. const struct ggml_compute_params * params,
  7961. const struct ggml_tensor * src0,
  7962. struct ggml_tensor * dst) {
  7963. switch (src0->type) {
  7964. case GGML_TYPE_F32:
  7965. {
  7966. ggml_compute_forward_argmax_f32(params, src0, dst);
  7967. } break;
  7968. default:
  7969. {
  7970. GGML_ASSERT(false);
  7971. } break;
  7972. }
  7973. }
  7974. // ggml_compute_forward_repeat
  7975. static void ggml_compute_forward_repeat_f32(
  7976. const struct ggml_compute_params * params,
  7977. const struct ggml_tensor * src0,
  7978. struct ggml_tensor * dst) {
  7979. GGML_ASSERT(params->ith == 0);
  7980. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7981. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7982. return;
  7983. }
  7984. GGML_TENSOR_UNARY_OP_LOCALS;
  7985. // guaranteed to be an integer due to the check in ggml_can_repeat
  7986. const int nr0 = (int)(ne0/ne00);
  7987. const int nr1 = (int)(ne1/ne01);
  7988. const int nr2 = (int)(ne2/ne02);
  7989. const int nr3 = (int)(ne3/ne03);
  7990. // TODO: support for transposed / permuted tensors
  7991. GGML_ASSERT(nb0 == sizeof(float));
  7992. GGML_ASSERT(nb00 == sizeof(float));
  7993. // TODO: maybe this is not optimal?
  7994. for (int i3 = 0; i3 < nr3; i3++) {
  7995. for (int k3 = 0; k3 < ne03; k3++) {
  7996. for (int i2 = 0; i2 < nr2; i2++) {
  7997. for (int k2 = 0; k2 < ne02; k2++) {
  7998. for (int i1 = 0; i1 < nr1; i1++) {
  7999. for (int k1 = 0; k1 < ne01; k1++) {
  8000. for (int i0 = 0; i0 < nr0; i0++) {
  8001. ggml_vec_cpy_f32(ne00,
  8002. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8003. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8004. }
  8005. }
  8006. }
  8007. }
  8008. }
  8009. }
  8010. }
  8011. }
  8012. static void ggml_compute_forward_repeat(
  8013. const struct ggml_compute_params * params,
  8014. const struct ggml_tensor * src0,
  8015. struct ggml_tensor * dst) {
  8016. switch (src0->type) {
  8017. case GGML_TYPE_F32:
  8018. {
  8019. ggml_compute_forward_repeat_f32(params, src0, dst);
  8020. } break;
  8021. default:
  8022. {
  8023. GGML_ASSERT(false);
  8024. } break;
  8025. }
  8026. }
  8027. // ggml_compute_forward_repeat_back
  8028. static void ggml_compute_forward_repeat_back_f32(
  8029. const struct ggml_compute_params * params,
  8030. const struct ggml_tensor * src0,
  8031. struct ggml_tensor * dst) {
  8032. GGML_ASSERT(params->ith == 0);
  8033. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8035. return;
  8036. }
  8037. GGML_TENSOR_UNARY_OP_LOCALS;
  8038. // guaranteed to be an integer due to the check in ggml_can_repeat
  8039. const int nr0 = (int)(ne00/ne0);
  8040. const int nr1 = (int)(ne01/ne1);
  8041. const int nr2 = (int)(ne02/ne2);
  8042. const int nr3 = (int)(ne03/ne3);
  8043. // TODO: support for transposed / permuted tensors
  8044. GGML_ASSERT(nb0 == sizeof(float));
  8045. GGML_ASSERT(nb00 == sizeof(float));
  8046. if (ggml_is_contiguous(dst)) {
  8047. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8048. } else {
  8049. for (int k3 = 0; k3 < ne3; k3++) {
  8050. for (int k2 = 0; k2 < ne2; k2++) {
  8051. for (int k1 = 0; k1 < ne1; k1++) {
  8052. ggml_vec_set_f32(ne0,
  8053. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8054. 0);
  8055. }
  8056. }
  8057. }
  8058. }
  8059. // TODO: maybe this is not optimal?
  8060. for (int i3 = 0; i3 < nr3; i3++) {
  8061. for (int k3 = 0; k3 < ne3; k3++) {
  8062. for (int i2 = 0; i2 < nr2; i2++) {
  8063. for (int k2 = 0; k2 < ne2; k2++) {
  8064. for (int i1 = 0; i1 < nr1; i1++) {
  8065. for (int k1 = 0; k1 < ne1; k1++) {
  8066. for (int i0 = 0; i0 < nr0; i0++) {
  8067. ggml_vec_acc_f32(ne0,
  8068. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8069. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8070. }
  8071. }
  8072. }
  8073. }
  8074. }
  8075. }
  8076. }
  8077. }
  8078. static void ggml_compute_forward_repeat_back(
  8079. const struct ggml_compute_params * params,
  8080. const struct ggml_tensor * src0,
  8081. struct ggml_tensor * dst) {
  8082. switch (src0->type) {
  8083. case GGML_TYPE_F32:
  8084. {
  8085. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8086. } break;
  8087. default:
  8088. {
  8089. GGML_ASSERT(false);
  8090. } break;
  8091. }
  8092. }
  8093. // ggml_compute_forward_concat
  8094. static void ggml_compute_forward_concat_f32(
  8095. const struct ggml_compute_params * params,
  8096. const struct ggml_tensor * src0,
  8097. const struct ggml_tensor * src1,
  8098. struct ggml_tensor * dst) {
  8099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8100. return;
  8101. }
  8102. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8103. const int ith = params->ith;
  8104. GGML_TENSOR_BINARY_OP_LOCALS;
  8105. // TODO: support for transposed / permuted tensors
  8106. GGML_ASSERT(nb0 == sizeof(float));
  8107. GGML_ASSERT(nb00 == sizeof(float));
  8108. GGML_ASSERT(nb10 == sizeof(float));
  8109. for (int i3 = 0; i3 < ne3; i3++) {
  8110. for (int i2 = ith; i2 < ne2; i2++) {
  8111. if (i2 < ne02) { // src0
  8112. for (int i1 = 0; i1 < ne1; i1++) {
  8113. for (int i0 = 0; i0 < ne0; i0++) {
  8114. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8115. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8116. *y = *x;
  8117. }
  8118. }
  8119. } // src1
  8120. else {
  8121. for (int i1 = 0; i1 < ne1; i1++) {
  8122. for (int i0 = 0; i0 < ne0; i0++) {
  8123. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8124. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8125. *y = *x;
  8126. }
  8127. }
  8128. }
  8129. }
  8130. }
  8131. }
  8132. static void ggml_compute_forward_concat(
  8133. const struct ggml_compute_params* params,
  8134. const struct ggml_tensor* src0,
  8135. const struct ggml_tensor* src1,
  8136. struct ggml_tensor* dst) {
  8137. switch (src0->type) {
  8138. case GGML_TYPE_F32:
  8139. {
  8140. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8141. } break;
  8142. default:
  8143. {
  8144. GGML_ASSERT(false);
  8145. } break;
  8146. }
  8147. }
  8148. // ggml_compute_forward_abs
  8149. static void ggml_compute_forward_abs_f32(
  8150. const struct ggml_compute_params * params,
  8151. const struct ggml_tensor * src0,
  8152. struct ggml_tensor * dst) {
  8153. assert(params->ith == 0);
  8154. assert(ggml_are_same_shape(src0, dst));
  8155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8156. return;
  8157. }
  8158. const int n = ggml_nrows(src0);
  8159. const int nc = src0->ne[0];
  8160. assert(dst->nb[0] == sizeof(float));
  8161. assert(src0->nb[0] == sizeof(float));
  8162. for (int i = 0; i < n; i++) {
  8163. ggml_vec_abs_f32(nc,
  8164. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8165. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8166. }
  8167. }
  8168. static void ggml_compute_forward_abs(
  8169. const struct ggml_compute_params * params,
  8170. const struct ggml_tensor * src0,
  8171. struct ggml_tensor * dst) {
  8172. switch (src0->type) {
  8173. case GGML_TYPE_F32:
  8174. {
  8175. ggml_compute_forward_abs_f32(params, src0, dst);
  8176. } break;
  8177. default:
  8178. {
  8179. GGML_ASSERT(false);
  8180. } break;
  8181. }
  8182. }
  8183. // ggml_compute_forward_sgn
  8184. static void ggml_compute_forward_sgn_f32(
  8185. const struct ggml_compute_params * params,
  8186. const struct ggml_tensor * src0,
  8187. struct ggml_tensor * dst) {
  8188. assert(params->ith == 0);
  8189. assert(ggml_are_same_shape(src0, dst));
  8190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8191. return;
  8192. }
  8193. const int n = ggml_nrows(src0);
  8194. const int nc = src0->ne[0];
  8195. assert(dst->nb[0] == sizeof(float));
  8196. assert(src0->nb[0] == sizeof(float));
  8197. for (int i = 0; i < n; i++) {
  8198. ggml_vec_sgn_f32(nc,
  8199. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8200. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8201. }
  8202. }
  8203. static void ggml_compute_forward_sgn(
  8204. const struct ggml_compute_params * params,
  8205. const struct ggml_tensor * src0,
  8206. struct ggml_tensor * dst) {
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. ggml_compute_forward_sgn_f32(params, src0, dst);
  8211. } break;
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_neg
  8219. static void ggml_compute_forward_neg_f32(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. struct ggml_tensor * dst) {
  8223. assert(params->ith == 0);
  8224. assert(ggml_are_same_shape(src0, dst));
  8225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8226. return;
  8227. }
  8228. const int n = ggml_nrows(src0);
  8229. const int nc = src0->ne[0];
  8230. assert(dst->nb[0] == sizeof(float));
  8231. assert(src0->nb[0] == sizeof(float));
  8232. for (int i = 0; i < n; i++) {
  8233. ggml_vec_neg_f32(nc,
  8234. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8235. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8236. }
  8237. }
  8238. static void ggml_compute_forward_neg(
  8239. const struct ggml_compute_params * params,
  8240. const struct ggml_tensor * src0,
  8241. struct ggml_tensor * dst) {
  8242. switch (src0->type) {
  8243. case GGML_TYPE_F32:
  8244. {
  8245. ggml_compute_forward_neg_f32(params, src0, dst);
  8246. } break;
  8247. default:
  8248. {
  8249. GGML_ASSERT(false);
  8250. } break;
  8251. }
  8252. }
  8253. // ggml_compute_forward_step
  8254. static void ggml_compute_forward_step_f32(
  8255. const struct ggml_compute_params * params,
  8256. const struct ggml_tensor * src0,
  8257. struct ggml_tensor * dst) {
  8258. assert(params->ith == 0);
  8259. assert(ggml_are_same_shape(src0, dst));
  8260. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8261. return;
  8262. }
  8263. const int n = ggml_nrows(src0);
  8264. const int nc = src0->ne[0];
  8265. assert(dst->nb[0] == sizeof(float));
  8266. assert(src0->nb[0] == sizeof(float));
  8267. for (int i = 0; i < n; i++) {
  8268. ggml_vec_step_f32(nc,
  8269. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8270. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8271. }
  8272. }
  8273. static void ggml_compute_forward_step(
  8274. const struct ggml_compute_params * params,
  8275. const struct ggml_tensor * src0,
  8276. struct ggml_tensor * dst) {
  8277. switch (src0->type) {
  8278. case GGML_TYPE_F32:
  8279. {
  8280. ggml_compute_forward_step_f32(params, src0, dst);
  8281. } break;
  8282. default:
  8283. {
  8284. GGML_ASSERT(false);
  8285. } break;
  8286. }
  8287. }
  8288. // ggml_compute_forward_tanh
  8289. static void ggml_compute_forward_tanh_f32(
  8290. const struct ggml_compute_params * params,
  8291. const struct ggml_tensor * src0,
  8292. struct ggml_tensor * dst) {
  8293. assert(params->ith == 0);
  8294. assert(ggml_are_same_shape(src0, dst));
  8295. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8296. return;
  8297. }
  8298. const int n = ggml_nrows(src0);
  8299. const int nc = src0->ne[0];
  8300. assert(dst->nb[0] == sizeof(float));
  8301. assert(src0->nb[0] == sizeof(float));
  8302. for (int i = 0; i < n; i++) {
  8303. ggml_vec_tanh_f32(nc,
  8304. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8305. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8306. }
  8307. }
  8308. static void ggml_compute_forward_tanh(
  8309. const struct ggml_compute_params * params,
  8310. const struct ggml_tensor * src0,
  8311. struct ggml_tensor * dst) {
  8312. switch (src0->type) {
  8313. case GGML_TYPE_F32:
  8314. {
  8315. ggml_compute_forward_tanh_f32(params, src0, dst);
  8316. } break;
  8317. default:
  8318. {
  8319. GGML_ASSERT(false);
  8320. } break;
  8321. }
  8322. }
  8323. // ggml_compute_forward_elu
  8324. static void ggml_compute_forward_elu_f32(
  8325. const struct ggml_compute_params * params,
  8326. const struct ggml_tensor * src0,
  8327. struct ggml_tensor * dst) {
  8328. assert(params->ith == 0);
  8329. assert(ggml_are_same_shape(src0, dst));
  8330. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8331. return;
  8332. }
  8333. const int n = ggml_nrows(src0);
  8334. const int nc = src0->ne[0];
  8335. assert(dst->nb[0] == sizeof(float));
  8336. assert(src0->nb[0] == sizeof(float));
  8337. for (int i = 0; i < n; i++) {
  8338. ggml_vec_elu_f32(nc,
  8339. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8340. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8341. }
  8342. }
  8343. static void ggml_compute_forward_elu(
  8344. const struct ggml_compute_params * params,
  8345. const struct ggml_tensor * src0,
  8346. struct ggml_tensor * dst) {
  8347. switch (src0->type) {
  8348. case GGML_TYPE_F32:
  8349. {
  8350. ggml_compute_forward_elu_f32(params, src0, dst);
  8351. } break;
  8352. default:
  8353. {
  8354. GGML_ASSERT(false);
  8355. } break;
  8356. }
  8357. }
  8358. // ggml_compute_forward_relu
  8359. static void ggml_compute_forward_relu_f32(
  8360. const struct ggml_compute_params * params,
  8361. const struct ggml_tensor * src0,
  8362. struct ggml_tensor * dst) {
  8363. assert(params->ith == 0);
  8364. assert(ggml_are_same_shape(src0, dst));
  8365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8366. return;
  8367. }
  8368. const int n = ggml_nrows(src0);
  8369. const int nc = src0->ne[0];
  8370. assert(dst->nb[0] == sizeof(float));
  8371. assert(src0->nb[0] == sizeof(float));
  8372. for (int i = 0; i < n; i++) {
  8373. ggml_vec_relu_f32(nc,
  8374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8376. }
  8377. }
  8378. static void ggml_compute_forward_relu(
  8379. const struct ggml_compute_params * params,
  8380. const struct ggml_tensor * src0,
  8381. struct ggml_tensor * dst) {
  8382. switch (src0->type) {
  8383. case GGML_TYPE_F32:
  8384. {
  8385. ggml_compute_forward_relu_f32(params, src0, dst);
  8386. } break;
  8387. default:
  8388. {
  8389. GGML_ASSERT(false);
  8390. } break;
  8391. }
  8392. }
  8393. // ggml_compute_forward_gelu
  8394. static void ggml_compute_forward_gelu_f32(
  8395. const struct ggml_compute_params * params,
  8396. const struct ggml_tensor * src0,
  8397. struct ggml_tensor * dst) {
  8398. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8399. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8400. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8401. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8402. return;
  8403. }
  8404. const int ith = params->ith;
  8405. const int nth = params->nth;
  8406. const int nc = src0->ne[0];
  8407. const int nr = ggml_nrows(src0);
  8408. // rows per thread
  8409. const int dr = (nr + nth - 1)/nth;
  8410. // row range for this thread
  8411. const int ir0 = dr*ith;
  8412. const int ir1 = MIN(ir0 + dr, nr);
  8413. for (int i1 = ir0; i1 < ir1; i1++) {
  8414. ggml_vec_gelu_f32(nc,
  8415. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8416. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8417. #ifndef NDEBUG
  8418. for (int k = 0; k < nc; k++) {
  8419. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8420. UNUSED(x);
  8421. assert(!isnan(x));
  8422. assert(!isinf(x));
  8423. }
  8424. #endif
  8425. }
  8426. }
  8427. static void ggml_compute_forward_gelu(
  8428. const struct ggml_compute_params * params,
  8429. const struct ggml_tensor * src0,
  8430. struct ggml_tensor * dst) {
  8431. switch (src0->type) {
  8432. case GGML_TYPE_F32:
  8433. {
  8434. ggml_compute_forward_gelu_f32(params, src0, dst);
  8435. } break;
  8436. default:
  8437. {
  8438. GGML_ASSERT(false);
  8439. } break;
  8440. }
  8441. }
  8442. // ggml_compute_forward_gelu_quick
  8443. static void ggml_compute_forward_gelu_quick_f32(
  8444. const struct ggml_compute_params * params,
  8445. const struct ggml_tensor * src0,
  8446. struct ggml_tensor * dst) {
  8447. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8448. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8449. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8451. return;
  8452. }
  8453. const int ith = params->ith;
  8454. const int nth = params->nth;
  8455. const int nc = src0->ne[0];
  8456. const int nr = ggml_nrows(src0);
  8457. // rows per thread
  8458. const int dr = (nr + nth - 1)/nth;
  8459. // row range for this thread
  8460. const int ir0 = dr*ith;
  8461. const int ir1 = MIN(ir0 + dr, nr);
  8462. for (int i1 = ir0; i1 < ir1; i1++) {
  8463. ggml_vec_gelu_quick_f32(nc,
  8464. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8465. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8466. #ifndef NDEBUG
  8467. for (int k = 0; k < nc; k++) {
  8468. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8469. UNUSED(x);
  8470. assert(!isnan(x));
  8471. assert(!isinf(x));
  8472. }
  8473. #endif
  8474. }
  8475. }
  8476. static void ggml_compute_forward_gelu_quick(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * src0,
  8479. struct ggml_tensor * dst) {
  8480. switch (src0->type) {
  8481. case GGML_TYPE_F32:
  8482. {
  8483. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8484. } break;
  8485. default:
  8486. {
  8487. GGML_ASSERT(false);
  8488. } break;
  8489. }
  8490. }
  8491. // ggml_compute_forward_silu
  8492. static void ggml_compute_forward_silu_f32(
  8493. const struct ggml_compute_params * params,
  8494. const struct ggml_tensor * src0,
  8495. struct ggml_tensor * dst) {
  8496. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8497. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8498. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8499. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8500. return;
  8501. }
  8502. const int ith = params->ith;
  8503. const int nth = params->nth;
  8504. const int nc = src0->ne[0];
  8505. const int nr = ggml_nrows(src0);
  8506. // rows per thread
  8507. const int dr = (nr + nth - 1)/nth;
  8508. // row range for this thread
  8509. const int ir0 = dr*ith;
  8510. const int ir1 = MIN(ir0 + dr, nr);
  8511. for (int i1 = ir0; i1 < ir1; i1++) {
  8512. ggml_vec_silu_f32(nc,
  8513. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8514. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8515. #ifndef NDEBUG
  8516. for (int k = 0; k < nc; k++) {
  8517. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8518. UNUSED(x);
  8519. assert(!isnan(x));
  8520. assert(!isinf(x));
  8521. }
  8522. #endif
  8523. }
  8524. }
  8525. static void ggml_compute_forward_silu(
  8526. const struct ggml_compute_params * params,
  8527. const struct ggml_tensor * src0,
  8528. struct ggml_tensor * dst) {
  8529. switch (src0->type) {
  8530. case GGML_TYPE_F32:
  8531. {
  8532. ggml_compute_forward_silu_f32(params, src0, dst);
  8533. } break;
  8534. default:
  8535. {
  8536. GGML_ASSERT(false);
  8537. } break;
  8538. }
  8539. }
  8540. // ggml_compute_forward_silu_back
  8541. static void ggml_compute_forward_silu_back_f32(
  8542. const struct ggml_compute_params * params,
  8543. const struct ggml_tensor * src0,
  8544. const struct ggml_tensor * grad,
  8545. struct ggml_tensor * dst) {
  8546. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8547. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8548. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8549. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8550. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8552. return;
  8553. }
  8554. const int ith = params->ith;
  8555. const int nth = params->nth;
  8556. const int nc = src0->ne[0];
  8557. const int nr = ggml_nrows(src0);
  8558. // rows per thread
  8559. const int dr = (nr + nth - 1)/nth;
  8560. // row range for this thread
  8561. const int ir0 = dr*ith;
  8562. const int ir1 = MIN(ir0 + dr, nr);
  8563. for (int i1 = ir0; i1 < ir1; i1++) {
  8564. ggml_vec_silu_backward_f32(nc,
  8565. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8566. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8567. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8568. #ifndef NDEBUG
  8569. for (int k = 0; k < nc; k++) {
  8570. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8571. UNUSED(x);
  8572. assert(!isnan(x));
  8573. assert(!isinf(x));
  8574. }
  8575. #endif
  8576. }
  8577. }
  8578. static void ggml_compute_forward_silu_back(
  8579. const struct ggml_compute_params * params,
  8580. const struct ggml_tensor * src0,
  8581. const struct ggml_tensor * grad,
  8582. struct ggml_tensor * dst) {
  8583. switch (src0->type) {
  8584. case GGML_TYPE_F32:
  8585. {
  8586. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8587. } break;
  8588. default:
  8589. {
  8590. GGML_ASSERT(false);
  8591. } break;
  8592. }
  8593. }
  8594. // ggml_compute_forward_norm
  8595. static void ggml_compute_forward_norm_f32(
  8596. const struct ggml_compute_params * params,
  8597. const struct ggml_tensor * src0,
  8598. struct ggml_tensor * dst) {
  8599. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8600. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8601. return;
  8602. }
  8603. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8604. const int ith = params->ith;
  8605. const int nth = params->nth;
  8606. GGML_TENSOR_UNARY_OP_LOCALS;
  8607. float eps;
  8608. memcpy(&eps, dst->op_params, sizeof(float));
  8609. // TODO: optimize
  8610. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8611. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8612. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8613. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8614. ggml_float sum = 0.0;
  8615. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8616. sum += (ggml_float)x[i00];
  8617. }
  8618. float mean = sum/ne00;
  8619. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8620. ggml_float sum2 = 0.0;
  8621. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8622. float v = x[i00] - mean;
  8623. y[i00] = v;
  8624. sum2 += (ggml_float)(v*v);
  8625. }
  8626. float variance = sum2/ne00;
  8627. const float scale = 1.0f/sqrtf(variance + eps);
  8628. ggml_vec_scale_f32(ne00, y, scale);
  8629. }
  8630. }
  8631. }
  8632. }
  8633. static void ggml_compute_forward_norm(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. struct ggml_tensor * dst) {
  8637. switch (src0->type) {
  8638. case GGML_TYPE_F32:
  8639. {
  8640. ggml_compute_forward_norm_f32(params, src0, dst);
  8641. } break;
  8642. default:
  8643. {
  8644. GGML_ASSERT(false);
  8645. } break;
  8646. }
  8647. }
  8648. // ggml_compute_forward_group_rms_norm
  8649. static void ggml_compute_forward_rms_norm_f32(
  8650. const struct ggml_compute_params * params,
  8651. const struct ggml_tensor * src0,
  8652. struct ggml_tensor * dst) {
  8653. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8654. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8655. return;
  8656. }
  8657. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8658. const int ith = params->ith;
  8659. const int nth = params->nth;
  8660. GGML_TENSOR_UNARY_OP_LOCALS;
  8661. float eps;
  8662. memcpy(&eps, dst->op_params, sizeof(float));
  8663. // TODO: optimize
  8664. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8665. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8666. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8667. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8668. ggml_float sum = 0.0;
  8669. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8670. sum += (ggml_float)(x[i00] * x[i00]);
  8671. }
  8672. const float mean = sum/ne00;
  8673. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8674. memcpy(y, x, ne00 * sizeof(float));
  8675. // for (int i00 = 0; i00 < ne00; i00++) {
  8676. // y[i00] = x[i00];
  8677. // }
  8678. const float scale = 1.0f/sqrtf(mean + eps);
  8679. ggml_vec_scale_f32(ne00, y, scale);
  8680. }
  8681. }
  8682. }
  8683. }
  8684. static void ggml_compute_forward_rms_norm(
  8685. const struct ggml_compute_params * params,
  8686. const struct ggml_tensor * src0,
  8687. struct ggml_tensor * dst) {
  8688. switch (src0->type) {
  8689. case GGML_TYPE_F32:
  8690. {
  8691. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8692. } break;
  8693. default:
  8694. {
  8695. GGML_ASSERT(false);
  8696. } break;
  8697. }
  8698. }
  8699. static void ggml_compute_forward_rms_norm_back_f32(
  8700. const struct ggml_compute_params * params,
  8701. const struct ggml_tensor * src0,
  8702. const struct ggml_tensor * src1,
  8703. struct ggml_tensor * dst) {
  8704. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8705. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8706. return;
  8707. }
  8708. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8709. const int ith = params->ith;
  8710. const int nth = params->nth;
  8711. GGML_TENSOR_BINARY_OP_LOCALS;
  8712. const float eps = 1e-6f; // TODO: make this a parameter
  8713. // TODO: optimize
  8714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8716. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8717. // src1 is same shape as src0 => same indices
  8718. const int64_t i11 = i01;
  8719. const int64_t i12 = i02;
  8720. const int64_t i13 = i03;
  8721. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8722. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8723. ggml_float sum_xx = 0.0;
  8724. ggml_float sum_xdz = 0.0;
  8725. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8726. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8727. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8728. }
  8729. //const float mean = (float)(sum_xx)/ne00;
  8730. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8731. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8732. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8733. // we could cache rms from forward pass to improve performance.
  8734. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8735. //const float rms = sqrtf(mean_eps);
  8736. const float rrms = 1.0f / sqrtf(mean_eps);
  8737. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8738. {
  8739. // z = rms_norm(x)
  8740. //
  8741. // rms_norm(src0) =
  8742. // scale(
  8743. // src0,
  8744. // div(
  8745. // 1,
  8746. // sqrt(
  8747. // add(
  8748. // scale(
  8749. // sum(
  8750. // sqr(
  8751. // src0)),
  8752. // (1.0/N)),
  8753. // eps))));
  8754. // postorder:
  8755. // ## op args grad
  8756. // 00 param src0 grad[#00]
  8757. // 01 const 1
  8758. // 02 sqr (#00) grad[#02]
  8759. // 03 sum (#02) grad[#03]
  8760. // 04 const 1/N
  8761. // 05 scale (#03, #04) grad[#05]
  8762. // 06 const eps
  8763. // 07 add (#05, #06) grad[#07]
  8764. // 08 sqrt (#07) grad[#08]
  8765. // 09 div (#01,#08) grad[#09]
  8766. // 10 scale (#00,#09) grad[#10]
  8767. //
  8768. // backward pass, given grad[#10]
  8769. // #10: scale
  8770. // grad[#00] += scale(grad[#10],#09)
  8771. // grad[#09] += sum(mul(grad[#10],#00))
  8772. // #09: div
  8773. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8774. // #08: sqrt
  8775. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8776. // #07: add
  8777. // grad[#05] += grad[#07]
  8778. // #05: scale
  8779. // grad[#03] += scale(grad[#05],#04)
  8780. // #03: sum
  8781. // grad[#02] += repeat(grad[#03], #02)
  8782. // #02:
  8783. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8784. //
  8785. // substitute and simplify:
  8786. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8787. // grad[#02] = repeat(grad[#03], #02)
  8788. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8789. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8790. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8791. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8792. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8793. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8794. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8795. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8796. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8797. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8798. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8799. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8800. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8801. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8802. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8803. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8804. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8805. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8806. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8807. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8808. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8809. // a = b*c + d*e
  8810. // a = b*c*f/f + d*e*f/f
  8811. // a = (b*c*f + d*e*f)*(1/f)
  8812. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8813. // a = (b + d*e/c)*c
  8814. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8815. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8816. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8817. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8818. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8819. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8820. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8821. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8822. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8823. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8824. }
  8825. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8826. // post-order:
  8827. // dx := x
  8828. // dx := scale(dx,-mean_xdz/mean_eps)
  8829. // dx := add(dx, dz)
  8830. // dx := scale(dx, rrms)
  8831. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8832. ggml_vec_cpy_f32 (ne00, dx, x);
  8833. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8834. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8835. ggml_vec_acc_f32 (ne00, dx, dz);
  8836. ggml_vec_scale_f32(ne00, dx, rrms);
  8837. }
  8838. }
  8839. }
  8840. }
  8841. static void ggml_compute_forward_rms_norm_back(
  8842. const struct ggml_compute_params * params,
  8843. const struct ggml_tensor * src0,
  8844. const struct ggml_tensor * src1,
  8845. struct ggml_tensor * dst) {
  8846. switch (src0->type) {
  8847. case GGML_TYPE_F32:
  8848. {
  8849. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8850. } break;
  8851. default:
  8852. {
  8853. GGML_ASSERT(false);
  8854. } break;
  8855. }
  8856. }
  8857. // ggml_compute_forward_group_norm
  8858. static void ggml_compute_forward_group_norm_f32(
  8859. const struct ggml_compute_params * params,
  8860. const struct ggml_tensor * src0,
  8861. struct ggml_tensor * dst) {
  8862. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8864. return;
  8865. }
  8866. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8867. const int ith = params->ith;
  8868. const int nth = params->nth;
  8869. GGML_TENSOR_UNARY_OP_LOCALS;
  8870. const float eps = 1e-6f; // TODO: make this a parameter
  8871. // TODO: optimize
  8872. int n_channels = src0->ne[2];
  8873. int n_groups = dst->op_params[0];
  8874. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8875. for (int i = ith; i < n_groups; i+=nth) {
  8876. int start = i * n_channels_per_group;
  8877. int end = start + n_channels_per_group;
  8878. if (end > n_channels) {
  8879. end = n_channels;
  8880. }
  8881. int step = end - start;
  8882. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8883. ggml_float sum = 0.0;
  8884. for (int64_t i02 = start; i02 < end; i02++) {
  8885. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8886. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8887. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8888. sum += (ggml_float)x[i00];
  8889. }
  8890. }
  8891. }
  8892. float mean = sum / (ne00 * ne01 * step);
  8893. ggml_float sum2 = 0.0;
  8894. for (int64_t i02 = start; i02 < end; i02++) {
  8895. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8896. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8897. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8898. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8899. float v = x[i00] - mean;
  8900. y[i00] = v;
  8901. sum2 += (ggml_float)(v * v);
  8902. }
  8903. }
  8904. }
  8905. float variance = sum2 / (ne00 * ne01 * step);
  8906. const float scale = 1.0f / sqrtf(variance + eps);
  8907. for (int64_t i02 = start; i02 < end; i02++) {
  8908. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8909. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8910. ggml_vec_scale_f32(ne00, y, scale);
  8911. }
  8912. }
  8913. }
  8914. }
  8915. }
  8916. static void ggml_compute_forward_group_norm(
  8917. const struct ggml_compute_params * params,
  8918. const struct ggml_tensor * src0,
  8919. struct ggml_tensor * dst) {
  8920. switch (src0->type) {
  8921. case GGML_TYPE_F32:
  8922. {
  8923. ggml_compute_forward_group_norm_f32(params, src0, dst);
  8924. } break;
  8925. default:
  8926. {
  8927. GGML_ASSERT(false);
  8928. } break;
  8929. }
  8930. }
  8931. // ggml_compute_forward_mul_mat
  8932. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8933. // helper function to determine if it is better to use BLAS or not
  8934. // for large matrices, BLAS is faster
  8935. static bool ggml_compute_forward_mul_mat_use_blas(
  8936. const struct ggml_tensor * src0,
  8937. const struct ggml_tensor * src1,
  8938. struct ggml_tensor * dst) {
  8939. //const int64_t ne00 = src0->ne[0];
  8940. //const int64_t ne01 = src0->ne[1];
  8941. const int64_t ne10 = src1->ne[0];
  8942. const int64_t ne0 = dst->ne[0];
  8943. const int64_t ne1 = dst->ne[1];
  8944. // TODO: find the optimal values for these
  8945. if (ggml_is_contiguous(src0) &&
  8946. ggml_is_contiguous(src1) &&
  8947. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8948. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8949. return true;
  8950. }
  8951. return false;
  8952. }
  8953. #endif
  8954. static void ggml_compute_forward_mul_mat(
  8955. const struct ggml_compute_params * params,
  8956. const struct ggml_tensor * src0,
  8957. const struct ggml_tensor * src1,
  8958. struct ggml_tensor * dst) {
  8959. int64_t t0 = ggml_perf_time_us();
  8960. UNUSED(t0);
  8961. GGML_TENSOR_BINARY_OP_LOCALS;
  8962. const int ith = params->ith;
  8963. const int nth = params->nth;
  8964. const enum ggml_type type = src0->type;
  8965. const bool src1_cont = ggml_is_contiguous(src1);
  8966. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8967. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8968. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8969. GGML_ASSERT(ne0 == ne01);
  8970. GGML_ASSERT(ne1 == ne11);
  8971. GGML_ASSERT(ne2 == ne12);
  8972. GGML_ASSERT(ne3 == ne13);
  8973. // we don't support permuted src0 or src1
  8974. GGML_ASSERT(nb00 == ggml_type_size(type));
  8975. GGML_ASSERT(nb10 == sizeof(float));
  8976. // dst cannot be transposed or permuted
  8977. GGML_ASSERT(nb0 == sizeof(float));
  8978. GGML_ASSERT(nb0 <= nb1);
  8979. GGML_ASSERT(nb1 <= nb2);
  8980. GGML_ASSERT(nb2 <= nb3);
  8981. // broadcast factors
  8982. const int64_t r2 = ne12/ne02;
  8983. const int64_t r3 = ne13/ne03;
  8984. // nb01 >= nb00 - src0 is not transposed
  8985. // compute by src0 rows
  8986. #if defined(GGML_USE_CLBLAST)
  8987. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8988. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8989. // ref: https://github.com/ggerganov/ggml/pull/224
  8990. GGML_ASSERT(ne02 == ne12);
  8991. GGML_ASSERT(ne03 == ne13);
  8992. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8993. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8994. }
  8995. return;
  8996. }
  8997. #endif
  8998. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8999. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9000. if (params->ith != 0) {
  9001. return;
  9002. }
  9003. if (params->type == GGML_TASK_INIT) {
  9004. return;
  9005. }
  9006. if (params->type == GGML_TASK_FINALIZE) {
  9007. return;
  9008. }
  9009. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9010. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9011. // broadcast src0 into src1 across 2nd,3rd dimension
  9012. const int64_t i03 = i13/r3;
  9013. const int64_t i02 = i12/r2;
  9014. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9015. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9016. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9017. if (type != GGML_TYPE_F32) {
  9018. float * const wdata = params->wdata;
  9019. ggml_to_float_t const to_float = type_traits[type].to_float;
  9020. size_t id = 0;
  9021. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9022. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9023. id += ne00;
  9024. }
  9025. assert(id*sizeof(float) <= params->wsize);
  9026. x = wdata;
  9027. }
  9028. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9029. ne11, ne01, ne10,
  9030. 1.0f, y, ne10,
  9031. x, ne00,
  9032. 0.0f, d, ne01);
  9033. }
  9034. }
  9035. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9036. return;
  9037. }
  9038. #endif
  9039. if (params->type == GGML_TASK_INIT) {
  9040. if (src1->type != vec_dot_type) {
  9041. char * wdata = params->wdata;
  9042. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9043. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9044. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9045. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9046. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9047. wdata += row_size;
  9048. }
  9049. }
  9050. }
  9051. }
  9052. return;
  9053. }
  9054. if (params->type == GGML_TASK_FINALIZE) {
  9055. return;
  9056. }
  9057. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9058. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9059. const int64_t nr0 = ne01; // src0 rows
  9060. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9061. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9062. // distribute the thread work across the inner or outer loop based on which one is larger
  9063. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9064. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9065. const int64_t ith0 = ith % nth0;
  9066. const int64_t ith1 = ith / nth0;
  9067. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9068. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9069. const int64_t ir010 = dr0*ith0;
  9070. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9071. const int64_t ir110 = dr1*ith1;
  9072. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9073. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9074. // threads with no work simply yield (not sure if it helps)
  9075. if (ir010 >= ir011 || ir110 >= ir111) {
  9076. sched_yield();
  9077. return;
  9078. }
  9079. assert(ne12 % ne02 == 0);
  9080. assert(ne13 % ne03 == 0);
  9081. // block-tiling attempt
  9082. const int64_t blck_0 = 16;
  9083. const int64_t blck_1 = 16;
  9084. // attempt to reduce false-sharing (does not seem to make a difference)
  9085. float tmp[16];
  9086. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9087. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9088. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9089. const int64_t i13 = (ir1/(ne12*ne11));
  9090. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9091. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9092. // broadcast src0 into src1
  9093. const int64_t i03 = i13/r3;
  9094. const int64_t i02 = i12/r2;
  9095. const int64_t i1 = i11;
  9096. const int64_t i2 = i12;
  9097. const int64_t i3 = i13;
  9098. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9099. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9100. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9101. // the original src1 data pointer, so we should index using the indices directly
  9102. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9103. const char * src1_col = (const char *) wdata +
  9104. (src1_cont || src1->type != vec_dot_type
  9105. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9106. : (i11*nb11 + i12*nb12 + i13*nb13));
  9107. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9108. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9109. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9110. //}
  9111. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9112. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9113. }
  9114. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9115. }
  9116. }
  9117. }
  9118. }
  9119. // ggml_compute_forward_out_prod
  9120. static void ggml_compute_forward_out_prod_f32(
  9121. const struct ggml_compute_params * params,
  9122. const struct ggml_tensor * src0,
  9123. const struct ggml_tensor * src1,
  9124. struct ggml_tensor * dst) {
  9125. int64_t t0 = ggml_perf_time_us();
  9126. UNUSED(t0);
  9127. GGML_TENSOR_BINARY_OP_LOCALS;
  9128. const int ith = params->ith;
  9129. const int nth = params->nth;
  9130. GGML_ASSERT(ne02 == ne12);
  9131. GGML_ASSERT(ne03 == ne13);
  9132. GGML_ASSERT(ne2 == ne12);
  9133. GGML_ASSERT(ne3 == ne13);
  9134. // we don't support permuted src0 or src1
  9135. GGML_ASSERT(nb00 == sizeof(float));
  9136. // dst cannot be transposed or permuted
  9137. GGML_ASSERT(nb0 == sizeof(float));
  9138. // GGML_ASSERT(nb0 <= nb1);
  9139. // GGML_ASSERT(nb1 <= nb2);
  9140. // GGML_ASSERT(nb2 <= nb3);
  9141. GGML_ASSERT(ne0 == ne00);
  9142. GGML_ASSERT(ne1 == ne10);
  9143. GGML_ASSERT(ne2 == ne02);
  9144. GGML_ASSERT(ne3 == ne03);
  9145. // nb01 >= nb00 - src0 is not transposed
  9146. // compute by src0 rows
  9147. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9148. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9149. if (params->type == GGML_TASK_INIT) {
  9150. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9151. return;
  9152. }
  9153. if (params->type == GGML_TASK_FINALIZE) {
  9154. return;
  9155. }
  9156. // parallelize by last three dimensions
  9157. // total rows in dst
  9158. const int64_t nr = ne1*ne2*ne3;
  9159. // rows per thread
  9160. const int64_t dr = (nr + nth - 1)/nth;
  9161. // row range for this thread
  9162. const int64_t ir0 = dr*ith;
  9163. const int64_t ir1 = MIN(ir0 + dr, nr);
  9164. // dst[:,:,:,:] = 0
  9165. // for i2,i3:
  9166. // for i1:
  9167. // for i01:
  9168. // for i0:
  9169. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9170. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9171. // dst indices
  9172. const int64_t i3 = ir/(ne2*ne1);
  9173. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9174. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9175. const int64_t i02 = i2;
  9176. const int64_t i03 = i3;
  9177. //const int64_t i10 = i1;
  9178. const int64_t i12 = i2;
  9179. const int64_t i13 = i3;
  9180. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9181. const int64_t i11 = i01;
  9182. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9183. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9184. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9185. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9186. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9187. // d[i0] += s0[i0] * s1[i1];
  9188. // }
  9189. }
  9190. }
  9191. //int64_t t1 = ggml_perf_time_us();
  9192. //static int64_t acc = 0;
  9193. //acc += t1 - t0;
  9194. //if (t1 - t0 > 10) {
  9195. // printf("\n");
  9196. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9197. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9198. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9199. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9200. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9201. //}
  9202. }
  9203. static void ggml_compute_forward_out_prod(
  9204. const struct ggml_compute_params * params,
  9205. const struct ggml_tensor * src0,
  9206. const struct ggml_tensor * src1,
  9207. struct ggml_tensor * dst) {
  9208. switch (src0->type) {
  9209. case GGML_TYPE_Q4_0:
  9210. case GGML_TYPE_Q4_1:
  9211. case GGML_TYPE_Q5_0:
  9212. case GGML_TYPE_Q5_1:
  9213. case GGML_TYPE_Q8_0:
  9214. case GGML_TYPE_Q8_1:
  9215. {
  9216. GGML_ASSERT(false); // todo
  9217. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9218. } break;
  9219. case GGML_TYPE_F16:
  9220. {
  9221. GGML_ASSERT(false); // todo
  9222. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9223. } break;
  9224. case GGML_TYPE_F32:
  9225. {
  9226. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9227. } break;
  9228. default:
  9229. {
  9230. GGML_ASSERT(false);
  9231. } break;
  9232. }
  9233. }
  9234. // ggml_compute_forward_scale
  9235. static void ggml_compute_forward_scale_f32(
  9236. const struct ggml_compute_params * params,
  9237. const struct ggml_tensor * src0,
  9238. const struct ggml_tensor * src1,
  9239. struct ggml_tensor * dst) {
  9240. GGML_ASSERT(ggml_is_contiguous(src0));
  9241. GGML_ASSERT(ggml_is_contiguous(dst));
  9242. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9243. GGML_ASSERT(ggml_is_scalar(src1));
  9244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9245. return;
  9246. }
  9247. // scale factor
  9248. const float v = *(float *) src1->data;
  9249. const int ith = params->ith;
  9250. const int nth = params->nth;
  9251. const int nc = src0->ne[0];
  9252. const int nr = ggml_nrows(src0);
  9253. // rows per thread
  9254. const int dr = (nr + nth - 1)/nth;
  9255. // row range for this thread
  9256. const int ir0 = dr*ith;
  9257. const int ir1 = MIN(ir0 + dr, nr);
  9258. const size_t nb01 = src0->nb[1];
  9259. const size_t nb1 = dst->nb[1];
  9260. for (int i1 = ir0; i1 < ir1; i1++) {
  9261. if (dst->data != src0->data) {
  9262. // src0 is same shape as dst => same indices
  9263. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9264. }
  9265. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9266. }
  9267. }
  9268. static void ggml_compute_forward_scale(
  9269. const struct ggml_compute_params * params,
  9270. const struct ggml_tensor * src0,
  9271. const struct ggml_tensor * src1,
  9272. struct ggml_tensor * dst) {
  9273. switch (src0->type) {
  9274. case GGML_TYPE_F32:
  9275. {
  9276. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9277. } break;
  9278. default:
  9279. {
  9280. GGML_ASSERT(false);
  9281. } break;
  9282. }
  9283. }
  9284. // ggml_compute_forward_set
  9285. static void ggml_compute_forward_set_f32(
  9286. const struct ggml_compute_params * params,
  9287. const struct ggml_tensor * src0,
  9288. const struct ggml_tensor * src1,
  9289. struct ggml_tensor * dst) {
  9290. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9291. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9292. // view src0 and dst with these strides and data offset inbytes during set
  9293. // nb0 is implicitely element_size because src0 and dst are contiguous
  9294. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9295. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9296. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9297. size_t offset = ((int32_t *) dst->op_params)[3];
  9298. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9299. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9300. // memcpy needs to be synchronized across threads to avoid race conditions.
  9301. // => do it in INIT phase
  9302. memcpy(
  9303. ((char *) dst->data),
  9304. ((char *) src0->data),
  9305. ggml_nbytes(dst));
  9306. }
  9307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9308. return;
  9309. }
  9310. const int ith = params->ith;
  9311. const int nth = params->nth;
  9312. const int nr = ggml_nrows(src1);
  9313. const int nc = src1->ne[0];
  9314. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9315. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9316. // src0 and dst as viewed during set
  9317. const size_t nb0 = ggml_element_size(src0);
  9318. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9319. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9320. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9321. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9322. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9323. GGML_ASSERT(nb10 == sizeof(float));
  9324. // rows per thread
  9325. const int dr = (nr + nth - 1)/nth;
  9326. // row range for this thread
  9327. const int ir0 = dr*ith;
  9328. const int ir1 = MIN(ir0 + dr, nr);
  9329. for (int ir = ir0; ir < ir1; ++ir) {
  9330. // src0 and dst are viewed with shape of src1 and offset
  9331. // => same indices
  9332. const int i3 = ir/(ne12*ne11);
  9333. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9334. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9335. ggml_vec_cpy_f32(nc,
  9336. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9337. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9338. }
  9339. }
  9340. static void ggml_compute_forward_set(
  9341. const struct ggml_compute_params * params,
  9342. const struct ggml_tensor * src0,
  9343. const struct ggml_tensor * src1,
  9344. struct ggml_tensor * dst) {
  9345. switch (src0->type) {
  9346. case GGML_TYPE_F32:
  9347. {
  9348. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9349. } break;
  9350. case GGML_TYPE_F16:
  9351. case GGML_TYPE_Q4_0:
  9352. case GGML_TYPE_Q4_1:
  9353. case GGML_TYPE_Q5_0:
  9354. case GGML_TYPE_Q5_1:
  9355. case GGML_TYPE_Q8_0:
  9356. case GGML_TYPE_Q8_1:
  9357. case GGML_TYPE_Q2_K:
  9358. case GGML_TYPE_Q3_K:
  9359. case GGML_TYPE_Q4_K:
  9360. case GGML_TYPE_Q5_K:
  9361. case GGML_TYPE_Q6_K:
  9362. default:
  9363. {
  9364. GGML_ASSERT(false);
  9365. } break;
  9366. }
  9367. }
  9368. // ggml_compute_forward_cpy
  9369. static void ggml_compute_forward_cpy(
  9370. const struct ggml_compute_params * params,
  9371. const struct ggml_tensor * src0,
  9372. struct ggml_tensor * dst) {
  9373. ggml_compute_forward_dup(params, src0, dst);
  9374. }
  9375. // ggml_compute_forward_cont
  9376. static void ggml_compute_forward_cont(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. struct ggml_tensor * dst) {
  9380. ggml_compute_forward_dup(params, src0, dst);
  9381. }
  9382. // ggml_compute_forward_reshape
  9383. static void ggml_compute_forward_reshape(
  9384. const struct ggml_compute_params * params,
  9385. const struct ggml_tensor * src0,
  9386. struct ggml_tensor * dst) {
  9387. // NOP
  9388. UNUSED(params);
  9389. UNUSED(src0);
  9390. UNUSED(dst);
  9391. }
  9392. // ggml_compute_forward_view
  9393. static void ggml_compute_forward_view(
  9394. const struct ggml_compute_params * params,
  9395. const struct ggml_tensor * src0) {
  9396. // NOP
  9397. UNUSED(params);
  9398. UNUSED(src0);
  9399. }
  9400. // ggml_compute_forward_permute
  9401. static void ggml_compute_forward_permute(
  9402. const struct ggml_compute_params * params,
  9403. const struct ggml_tensor * src0) {
  9404. // NOP
  9405. UNUSED(params);
  9406. UNUSED(src0);
  9407. }
  9408. // ggml_compute_forward_transpose
  9409. static void ggml_compute_forward_transpose(
  9410. const struct ggml_compute_params * params,
  9411. const struct ggml_tensor * src0) {
  9412. // NOP
  9413. UNUSED(params);
  9414. UNUSED(src0);
  9415. }
  9416. // ggml_compute_forward_get_rows
  9417. static void ggml_compute_forward_get_rows_q(
  9418. const struct ggml_compute_params * params,
  9419. const struct ggml_tensor * src0,
  9420. const struct ggml_tensor * src1,
  9421. struct ggml_tensor * dst) {
  9422. assert(params->ith == 0);
  9423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9424. return;
  9425. }
  9426. const int nc = src0->ne[0];
  9427. const int nr = ggml_nelements(src1);
  9428. const enum ggml_type type = src0->type;
  9429. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9430. assert( dst->ne[0] == nc);
  9431. assert( dst->ne[1] == nr);
  9432. assert(src0->nb[0] == ggml_type_size(type));
  9433. for (int i = 0; i < nr; ++i) {
  9434. const int r = ((int32_t *) src1->data)[i];
  9435. dequantize_row_q(
  9436. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9437. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9438. }
  9439. }
  9440. static void ggml_compute_forward_get_rows_f16(
  9441. const struct ggml_compute_params * params,
  9442. const struct ggml_tensor * src0,
  9443. const struct ggml_tensor * src1,
  9444. struct ggml_tensor * dst) {
  9445. assert(params->ith == 0);
  9446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9447. return;
  9448. }
  9449. const int nc = src0->ne[0];
  9450. const int nr = ggml_nelements(src1);
  9451. assert( dst->ne[0] == nc);
  9452. assert( dst->ne[1] == nr);
  9453. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9454. for (int i = 0; i < nr; ++i) {
  9455. const int r = ((int32_t *) src1->data)[i];
  9456. for (int j = 0; j < nc; ++j) {
  9457. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9458. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9459. }
  9460. }
  9461. }
  9462. static void ggml_compute_forward_get_rows_f32(
  9463. const struct ggml_compute_params * params,
  9464. const struct ggml_tensor * src0,
  9465. const struct ggml_tensor * src1,
  9466. struct ggml_tensor * dst) {
  9467. assert(params->ith == 0);
  9468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9469. return;
  9470. }
  9471. const int nc = src0->ne[0];
  9472. const int nr = ggml_nelements(src1);
  9473. assert( dst->ne[0] == nc);
  9474. assert( dst->ne[1] == nr);
  9475. assert(src0->nb[0] == sizeof(float));
  9476. for (int i = 0; i < nr; ++i) {
  9477. const int r = ((int32_t *) src1->data)[i];
  9478. ggml_vec_cpy_f32(nc,
  9479. (float *) ((char *) dst->data + i*dst->nb[1]),
  9480. (float *) ((char *) src0->data + r*src0->nb[1]));
  9481. }
  9482. }
  9483. static void ggml_compute_forward_get_rows(
  9484. const struct ggml_compute_params * params,
  9485. const struct ggml_tensor * src0,
  9486. const struct ggml_tensor * src1,
  9487. struct ggml_tensor * dst) {
  9488. switch (src0->type) {
  9489. case GGML_TYPE_Q4_0:
  9490. case GGML_TYPE_Q4_1:
  9491. case GGML_TYPE_Q5_0:
  9492. case GGML_TYPE_Q5_1:
  9493. case GGML_TYPE_Q8_0:
  9494. case GGML_TYPE_Q8_1:
  9495. case GGML_TYPE_Q2_K:
  9496. case GGML_TYPE_Q3_K:
  9497. case GGML_TYPE_Q4_K:
  9498. case GGML_TYPE_Q5_K:
  9499. case GGML_TYPE_Q6_K:
  9500. {
  9501. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9502. } break;
  9503. case GGML_TYPE_F16:
  9504. {
  9505. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9506. } break;
  9507. case GGML_TYPE_F32:
  9508. {
  9509. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9510. } break;
  9511. default:
  9512. {
  9513. GGML_ASSERT(false);
  9514. } break;
  9515. }
  9516. //static bool first = true;
  9517. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9518. //if (first) {
  9519. // first = false;
  9520. //} else {
  9521. // for (int k = 0; k < dst->ne[1]; ++k) {
  9522. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9523. // for (int i = 0; i < 16; ++i) {
  9524. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9525. // }
  9526. // printf("\n");
  9527. // }
  9528. // printf("\n");
  9529. // }
  9530. // printf("\n");
  9531. // exit(0);
  9532. //}
  9533. }
  9534. // ggml_compute_forward_get_rows_back
  9535. static void ggml_compute_forward_get_rows_back_f32_f16(
  9536. const struct ggml_compute_params * params,
  9537. const struct ggml_tensor * src0,
  9538. const struct ggml_tensor * src1,
  9539. const struct ggml_tensor * opt0,
  9540. struct ggml_tensor * dst) {
  9541. GGML_ASSERT(params->ith == 0);
  9542. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9543. GGML_ASSERT(ggml_is_contiguous(opt0));
  9544. GGML_ASSERT(ggml_is_contiguous(dst));
  9545. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9546. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9547. return;
  9548. }
  9549. const int nc = src0->ne[0];
  9550. const int nr = ggml_nelements(src1);
  9551. GGML_ASSERT( dst->ne[0] == nc);
  9552. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9553. for (int i = 0; i < nr; ++i) {
  9554. const int r = ((int32_t *) src1->data)[i];
  9555. for (int j = 0; j < nc; ++j) {
  9556. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9557. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9558. }
  9559. }
  9560. }
  9561. static void ggml_compute_forward_get_rows_back_f32(
  9562. const struct ggml_compute_params * params,
  9563. const struct ggml_tensor * src0,
  9564. const struct ggml_tensor * src1,
  9565. const struct ggml_tensor * opt0,
  9566. struct ggml_tensor * dst) {
  9567. GGML_ASSERT(params->ith == 0);
  9568. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9569. GGML_ASSERT(ggml_is_contiguous(opt0));
  9570. GGML_ASSERT(ggml_is_contiguous(dst));
  9571. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9572. if (params->type == GGML_TASK_INIT) {
  9573. memset(dst->data, 0, ggml_nbytes(dst));
  9574. }
  9575. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9576. return;
  9577. }
  9578. const int nc = src0->ne[0];
  9579. const int nr = ggml_nelements(src1);
  9580. GGML_ASSERT( dst->ne[0] == nc);
  9581. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9582. for (int i = 0; i < nr; ++i) {
  9583. const int r = ((int32_t *) src1->data)[i];
  9584. ggml_vec_add_f32(nc,
  9585. (float *) ((char *) dst->data + r*dst->nb[1]),
  9586. (float *) ((char *) dst->data + r*dst->nb[1]),
  9587. (float *) ((char *) src0->data + i*src0->nb[1]));
  9588. }
  9589. }
  9590. static void ggml_compute_forward_get_rows_back(
  9591. const struct ggml_compute_params * params,
  9592. const struct ggml_tensor * src0,
  9593. const struct ggml_tensor * src1,
  9594. const struct ggml_tensor * opt0,
  9595. struct ggml_tensor * dst) {
  9596. switch (src0->type) {
  9597. case GGML_TYPE_F16:
  9598. {
  9599. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9600. } break;
  9601. case GGML_TYPE_F32:
  9602. {
  9603. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9604. } break;
  9605. default:
  9606. {
  9607. GGML_ASSERT(false);
  9608. } break;
  9609. }
  9610. //static bool first = true;
  9611. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9612. //if (first) {
  9613. // first = false;
  9614. //} else {
  9615. // for (int k = 0; k < dst->ne[1]; ++k) {
  9616. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9617. // for (int i = 0; i < 16; ++i) {
  9618. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9619. // }
  9620. // printf("\n");
  9621. // }
  9622. // printf("\n");
  9623. // }
  9624. // printf("\n");
  9625. // exit(0);
  9626. //}
  9627. }
  9628. // ggml_compute_forward_diag
  9629. static void ggml_compute_forward_diag_f32(
  9630. const struct ggml_compute_params * params,
  9631. const struct ggml_tensor * src0,
  9632. struct ggml_tensor * dst) {
  9633. GGML_ASSERT(params->ith == 0);
  9634. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9635. return;
  9636. }
  9637. // TODO: handle transposed/permuted matrices
  9638. GGML_TENSOR_UNARY_OP_LOCALS;
  9639. GGML_ASSERT(ne00 == ne0);
  9640. GGML_ASSERT(ne00 == ne1);
  9641. GGML_ASSERT(ne01 == 1);
  9642. GGML_ASSERT(ne02 == ne2);
  9643. GGML_ASSERT(ne03 == ne3);
  9644. GGML_ASSERT(nb00 == sizeof(float));
  9645. GGML_ASSERT(nb0 == sizeof(float));
  9646. for (int i3 = 0; i3 < ne3; i3++) {
  9647. for (int i2 = 0; i2 < ne2; i2++) {
  9648. for (int i1 = 0; i1 < ne1; i1++) {
  9649. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9650. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9651. for (int i0 = 0; i0 < i1; i0++) {
  9652. d[i0] = 0;
  9653. }
  9654. d[i1] = s[i1];
  9655. for (int i0 = i1+1; i0 < ne0; i0++) {
  9656. d[i0] = 0;
  9657. }
  9658. }
  9659. }
  9660. }
  9661. }
  9662. static void ggml_compute_forward_diag(
  9663. const struct ggml_compute_params * params,
  9664. const struct ggml_tensor * src0,
  9665. struct ggml_tensor * dst) {
  9666. switch (src0->type) {
  9667. case GGML_TYPE_F32:
  9668. {
  9669. ggml_compute_forward_diag_f32(params, src0, dst);
  9670. } break;
  9671. default:
  9672. {
  9673. GGML_ASSERT(false);
  9674. } break;
  9675. }
  9676. }
  9677. // ggml_compute_forward_diag_mask_inf
  9678. static void ggml_compute_forward_diag_mask_f32(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src0,
  9681. struct ggml_tensor * dst,
  9682. const float value) {
  9683. const int ith = params->ith;
  9684. const int nth = params->nth;
  9685. const int n_past = ((int32_t *) dst->op_params)[0];
  9686. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9687. GGML_ASSERT(n_past >= 0);
  9688. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9689. // memcpy needs to be synchronized across threads to avoid race conditions.
  9690. // => do it in INIT phase
  9691. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9692. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9693. memcpy(
  9694. ((char *) dst->data),
  9695. ((char *) src0->data),
  9696. ggml_nbytes(dst));
  9697. }
  9698. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9699. return;
  9700. }
  9701. // TODO: handle transposed/permuted matrices
  9702. const int n = ggml_nrows(src0);
  9703. const int nc = src0->ne[0];
  9704. const int nr = src0->ne[1];
  9705. const int nz = n/nr;
  9706. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9707. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9708. for (int k = 0; k < nz; k++) {
  9709. for (int j = ith; j < nr; j += nth) {
  9710. for (int i = n_past; i < nc; i++) {
  9711. if (i > n_past + j) {
  9712. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9713. }
  9714. }
  9715. }
  9716. }
  9717. }
  9718. static void ggml_compute_forward_diag_mask_inf(
  9719. const struct ggml_compute_params * params,
  9720. const struct ggml_tensor * src0,
  9721. struct ggml_tensor * dst) {
  9722. switch (src0->type) {
  9723. case GGML_TYPE_F32:
  9724. {
  9725. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9726. } break;
  9727. default:
  9728. {
  9729. GGML_ASSERT(false);
  9730. } break;
  9731. }
  9732. }
  9733. static void ggml_compute_forward_diag_mask_zero(
  9734. const struct ggml_compute_params * params,
  9735. const struct ggml_tensor * src0,
  9736. struct ggml_tensor * dst) {
  9737. switch (src0->type) {
  9738. case GGML_TYPE_F32:
  9739. {
  9740. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9741. } break;
  9742. default:
  9743. {
  9744. GGML_ASSERT(false);
  9745. } break;
  9746. }
  9747. }
  9748. // ggml_compute_forward_soft_max
  9749. static void ggml_compute_forward_soft_max_f32(
  9750. const struct ggml_compute_params * params,
  9751. const struct ggml_tensor * src0,
  9752. struct ggml_tensor * dst) {
  9753. GGML_ASSERT(ggml_is_contiguous(src0));
  9754. GGML_ASSERT(ggml_is_contiguous(dst));
  9755. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9756. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9757. return;
  9758. }
  9759. // TODO: handle transposed/permuted matrices
  9760. const int ith = params->ith;
  9761. const int nth = params->nth;
  9762. const int nc = src0->ne[0];
  9763. const int nr = ggml_nrows(src0);
  9764. // rows per thread
  9765. const int dr = (nr + nth - 1)/nth;
  9766. // row range for this thread
  9767. const int ir0 = dr*ith;
  9768. const int ir1 = MIN(ir0 + dr, nr);
  9769. for (int i1 = ir0; i1 < ir1; i1++) {
  9770. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9771. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9772. #ifndef NDEBUG
  9773. for (int i = 0; i < nc; ++i) {
  9774. //printf("p[%d] = %f\n", i, p[i]);
  9775. assert(!isnan(sp[i]));
  9776. }
  9777. #endif
  9778. float max = -INFINITY;
  9779. ggml_vec_max_f32(nc, &max, sp);
  9780. ggml_float sum = 0.0;
  9781. uint16_t scvt;
  9782. for (int i = 0; i < nc; i++) {
  9783. if (sp[i] == -INFINITY) {
  9784. dp[i] = 0.0f;
  9785. } else {
  9786. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9787. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9788. memcpy(&scvt, &s, sizeof(scvt));
  9789. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9790. sum += (ggml_float)val;
  9791. dp[i] = val;
  9792. }
  9793. }
  9794. assert(sum > 0.0);
  9795. sum = 1.0/sum;
  9796. ggml_vec_scale_f32(nc, dp, sum);
  9797. #ifndef NDEBUG
  9798. for (int i = 0; i < nc; ++i) {
  9799. assert(!isnan(dp[i]));
  9800. assert(!isinf(dp[i]));
  9801. }
  9802. #endif
  9803. }
  9804. }
  9805. static void ggml_compute_forward_soft_max(
  9806. const struct ggml_compute_params * params,
  9807. const struct ggml_tensor * src0,
  9808. struct ggml_tensor * dst) {
  9809. switch (src0->type) {
  9810. case GGML_TYPE_F32:
  9811. {
  9812. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9813. } break;
  9814. default:
  9815. {
  9816. GGML_ASSERT(false);
  9817. } break;
  9818. }
  9819. }
  9820. // ggml_compute_forward_soft_max_back
  9821. static void ggml_compute_forward_soft_max_back_f32(
  9822. const struct ggml_compute_params * params,
  9823. const struct ggml_tensor * src0,
  9824. const struct ggml_tensor * src1,
  9825. struct ggml_tensor * dst) {
  9826. GGML_ASSERT(ggml_is_contiguous(src0));
  9827. GGML_ASSERT(ggml_is_contiguous(src1));
  9828. GGML_ASSERT(ggml_is_contiguous(dst));
  9829. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9830. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9831. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9832. return;
  9833. }
  9834. // TODO: handle transposed/permuted matrices
  9835. const int ith = params->ith;
  9836. const int nth = params->nth;
  9837. const int nc = src0->ne[0];
  9838. const int nr = ggml_nrows(src0);
  9839. // rows per thread
  9840. const int dr = (nr + nth - 1)/nth;
  9841. // row range for this thread
  9842. const int ir0 = dr*ith;
  9843. const int ir1 = MIN(ir0 + dr, nr);
  9844. for (int i1 = ir0; i1 < ir1; i1++) {
  9845. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9846. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9847. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9848. #ifndef NDEBUG
  9849. for (int i = 0; i < nc; ++i) {
  9850. //printf("p[%d] = %f\n", i, p[i]);
  9851. assert(!isnan(dy[i]));
  9852. assert(!isnan(y[i]));
  9853. }
  9854. #endif
  9855. // Jii = yi - yi*yi
  9856. // Jij = -yi*yj
  9857. // J = diag(y)-y.T*y
  9858. // dx = J * dy
  9859. // dxk = sum_i(Jki * dyi)
  9860. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9861. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9862. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9863. // dxk = -yk * dot(y, dy) + yk*dyk
  9864. // dxk = yk * (- dot(y, dy) + dyk)
  9865. // dxk = yk * (dyk - dot(y, dy))
  9866. //
  9867. // post-order:
  9868. // dot_y_dy := dot(y, dy)
  9869. // dx := dy
  9870. // dx := dx - dot_y_dy
  9871. // dx := dx * y
  9872. // linear runtime, no additional memory
  9873. float dot_y_dy = 0;
  9874. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9875. ggml_vec_cpy_f32 (nc, dx, dy);
  9876. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9877. ggml_vec_mul_f32 (nc, dx, dx, y);
  9878. #ifndef NDEBUG
  9879. for (int i = 0; i < nc; ++i) {
  9880. assert(!isnan(dx[i]));
  9881. assert(!isinf(dx[i]));
  9882. }
  9883. #endif
  9884. }
  9885. }
  9886. static void ggml_compute_forward_soft_max_back(
  9887. const struct ggml_compute_params * params,
  9888. const struct ggml_tensor * src0,
  9889. const struct ggml_tensor * src1,
  9890. struct ggml_tensor * dst) {
  9891. switch (src0->type) {
  9892. case GGML_TYPE_F32:
  9893. {
  9894. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9895. } break;
  9896. default:
  9897. {
  9898. GGML_ASSERT(false);
  9899. } break;
  9900. }
  9901. }
  9902. // ggml_compute_forward_alibi
  9903. static void ggml_compute_forward_alibi_f32(
  9904. const struct ggml_compute_params * params,
  9905. const struct ggml_tensor * src0,
  9906. struct ggml_tensor * dst) {
  9907. assert(params->ith == 0);
  9908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9909. return;
  9910. }
  9911. const int n_past = ((int32_t *) dst->op_params)[0];
  9912. const int n_head = ((int32_t *) dst->op_params)[1];
  9913. float max_bias;
  9914. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9915. assert(n_past >= 0);
  9916. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9917. const int ne1 = src0->ne[1]; // seq_len_without_past
  9918. const int ne2 = src0->ne[2]; // n_head -> this is k
  9919. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9920. const int n = ggml_nrows(src0);
  9921. const int ne2_ne3 = n/ne1; // ne2*ne3
  9922. const int nb0 = src0->nb[0];
  9923. const int nb1 = src0->nb[1];
  9924. const int nb2 = src0->nb[2];
  9925. //const int nb3 = src0->nb[3];
  9926. GGML_ASSERT(nb0 == sizeof(float));
  9927. GGML_ASSERT(ne1 + n_past == ne0);
  9928. GGML_ASSERT(n_head == ne2);
  9929. // add alibi to src0 (KQ_scaled)
  9930. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9931. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9932. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9933. for (int i = 0; i < ne0; i++) {
  9934. for (int j = 0; j < ne1; j++) {
  9935. for (int k = 0; k < ne2_ne3; k++) {
  9936. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9937. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9938. // TODO: k*nb2 or k*nb3
  9939. float m_k;
  9940. if (k < n_heads_log2_floor) {
  9941. m_k = powf(m0, k + 1);
  9942. } else {
  9943. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9944. }
  9945. pdst[0] = i * m_k + src[0];
  9946. }
  9947. }
  9948. }
  9949. }
  9950. static void ggml_compute_forward_alibi_f16(
  9951. const struct ggml_compute_params * params,
  9952. const struct ggml_tensor * src0,
  9953. struct ggml_tensor * dst) {
  9954. assert(params->ith == 0);
  9955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9956. return;
  9957. }
  9958. const int n_past = ((int32_t *) dst->op_params)[0];
  9959. const int n_head = ((int32_t *) dst->op_params)[1];
  9960. float max_bias;
  9961. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9962. assert(n_past >= 0);
  9963. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9964. const int ne1 = src0->ne[1]; // seq_len_without_past
  9965. const int ne2 = src0->ne[2]; // n_head -> this is k
  9966. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9967. const int n = ggml_nrows(src0);
  9968. const int ne2_ne3 = n/ne1; // ne2*ne3
  9969. const int nb0 = src0->nb[0];
  9970. const int nb1 = src0->nb[1];
  9971. const int nb2 = src0->nb[2];
  9972. //const int nb3 = src0->nb[3];
  9973. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9974. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9975. GGML_ASSERT(n_head == ne2);
  9976. // add alibi to src0 (KQ_scaled)
  9977. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9978. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9979. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9980. for (int i = 0; i < ne0; i++) {
  9981. for (int j = 0; j < ne1; j++) {
  9982. for (int k = 0; k < ne2_ne3; k++) {
  9983. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9984. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9985. // TODO: k*nb2 or k*nb3
  9986. float m_k;
  9987. if (k < n_heads_log2_floor) {
  9988. m_k = powf(m0, k + 1);
  9989. } else {
  9990. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9991. }
  9992. // we return F32
  9993. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9994. }
  9995. }
  9996. }
  9997. }
  9998. static void ggml_compute_forward_alibi(
  9999. const struct ggml_compute_params * params,
  10000. const struct ggml_tensor * src0,
  10001. struct ggml_tensor * dst) {
  10002. switch (src0->type) {
  10003. case GGML_TYPE_F16:
  10004. {
  10005. ggml_compute_forward_alibi_f16(params, src0, dst);
  10006. } break;
  10007. case GGML_TYPE_F32:
  10008. {
  10009. ggml_compute_forward_alibi_f32(params, src0, dst);
  10010. } break;
  10011. case GGML_TYPE_Q4_0:
  10012. case GGML_TYPE_Q4_1:
  10013. case GGML_TYPE_Q5_0:
  10014. case GGML_TYPE_Q5_1:
  10015. case GGML_TYPE_Q8_0:
  10016. case GGML_TYPE_Q8_1:
  10017. case GGML_TYPE_Q2_K:
  10018. case GGML_TYPE_Q3_K:
  10019. case GGML_TYPE_Q4_K:
  10020. case GGML_TYPE_Q5_K:
  10021. case GGML_TYPE_Q6_K:
  10022. case GGML_TYPE_Q8_K:
  10023. case GGML_TYPE_I8:
  10024. case GGML_TYPE_I16:
  10025. case GGML_TYPE_I32:
  10026. case GGML_TYPE_COUNT:
  10027. {
  10028. GGML_ASSERT(false);
  10029. } break;
  10030. }
  10031. }
  10032. // ggml_compute_forward_clamp
  10033. static void ggml_compute_forward_clamp_f32(
  10034. const struct ggml_compute_params * params,
  10035. const struct ggml_tensor * src0,
  10036. struct ggml_tensor * dst) {
  10037. assert(params->ith == 0);
  10038. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10039. return;
  10040. }
  10041. float min;
  10042. float max;
  10043. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10044. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10045. const int ith = params->ith;
  10046. const int nth = params->nth;
  10047. const int n = ggml_nrows(src0);
  10048. const int nc = src0->ne[0];
  10049. const size_t nb00 = src0->nb[0];
  10050. const size_t nb01 = src0->nb[1];
  10051. const size_t nb0 = dst->nb[0];
  10052. const size_t nb1 = dst->nb[1];
  10053. GGML_ASSERT( nb0 == sizeof(float));
  10054. GGML_ASSERT(nb00 == sizeof(float));
  10055. for (int j = ith; j < n; j += nth) {
  10056. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10057. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10058. for (int i = 0; i < nc; i++) {
  10059. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10060. }
  10061. }
  10062. }
  10063. static void ggml_compute_forward_clamp(
  10064. const struct ggml_compute_params * params,
  10065. const struct ggml_tensor * src0,
  10066. struct ggml_tensor * dst) {
  10067. switch (src0->type) {
  10068. case GGML_TYPE_F32:
  10069. {
  10070. ggml_compute_forward_clamp_f32(params, src0, dst);
  10071. } break;
  10072. case GGML_TYPE_F16:
  10073. case GGML_TYPE_Q4_0:
  10074. case GGML_TYPE_Q4_1:
  10075. case GGML_TYPE_Q5_0:
  10076. case GGML_TYPE_Q5_1:
  10077. case GGML_TYPE_Q8_0:
  10078. case GGML_TYPE_Q8_1:
  10079. case GGML_TYPE_Q2_K:
  10080. case GGML_TYPE_Q3_K:
  10081. case GGML_TYPE_Q4_K:
  10082. case GGML_TYPE_Q5_K:
  10083. case GGML_TYPE_Q6_K:
  10084. case GGML_TYPE_Q8_K:
  10085. case GGML_TYPE_I8:
  10086. case GGML_TYPE_I16:
  10087. case GGML_TYPE_I32:
  10088. case GGML_TYPE_COUNT:
  10089. {
  10090. GGML_ASSERT(false);
  10091. } break;
  10092. }
  10093. }
  10094. // ggml_compute_forward_rope
  10095. static void ggml_compute_forward_rope_f32(
  10096. const struct ggml_compute_params * params,
  10097. const struct ggml_tensor * src0,
  10098. struct ggml_tensor * dst) {
  10099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10100. return;
  10101. }
  10102. float freq_base;
  10103. float freq_scale;
  10104. // these two only relevant for xPos RoPE:
  10105. float xpos_base;
  10106. bool xpos_down;
  10107. const int n_past = ((int32_t *) dst->op_params)[0];
  10108. const int n_dims = ((int32_t *) dst->op_params)[1];
  10109. const int mode = ((int32_t *) dst->op_params)[2];
  10110. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10111. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10112. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10113. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10114. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10115. assert(n_past >= 0);
  10116. GGML_TENSOR_UNARY_OP_LOCALS;
  10117. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10118. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10119. GGML_ASSERT(nb00 == sizeof(float));
  10120. const int ith = params->ith;
  10121. const int nth = params->nth;
  10122. const int nr = ggml_nrows(dst);
  10123. GGML_ASSERT(n_dims <= ne0);
  10124. GGML_ASSERT(n_dims % 2 == 0);
  10125. // rows per thread
  10126. const int dr = (nr + nth - 1)/nth;
  10127. // row range for this thread
  10128. const int ir0 = dr*ith;
  10129. const int ir1 = MIN(ir0 + dr, nr);
  10130. // row index used to determine which thread to use
  10131. int ir = 0;
  10132. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10133. const bool is_neox = mode & 2;
  10134. const bool is_glm = mode & 4;
  10135. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10136. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10137. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10138. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10139. if (ir++ < ir0) continue;
  10140. if (ir > ir1) break;
  10141. float theta = freq_scale * (float)p;
  10142. if (is_glm) {
  10143. theta = MIN(p, n_ctx - 2);
  10144. float block_theta = MAX(p - (n_ctx - 2), 0);
  10145. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10146. const float cos_theta = cosf(theta);
  10147. const float sin_theta = sinf(theta);
  10148. const float cos_block_theta = cosf(block_theta);
  10149. const float sin_block_theta = sinf(block_theta);
  10150. theta *= theta_scale;
  10151. block_theta *= theta_scale;
  10152. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10153. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10154. const float x0 = src[0];
  10155. const float x1 = src[n_dims/2];
  10156. const float x2 = src[n_dims];
  10157. const float x3 = src[n_dims/2*3];
  10158. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10159. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10160. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10161. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10162. }
  10163. } else if (!is_neox) {
  10164. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10165. const float cos_theta = cosf(theta);
  10166. const float sin_theta = sinf(theta);
  10167. // zeta scaling for xPos only:
  10168. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10169. if (xpos_down) zeta = 1.0f / zeta;
  10170. theta *= theta_scale;
  10171. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10172. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10173. const float x0 = src[0];
  10174. const float x1 = src[1];
  10175. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10176. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10177. }
  10178. } else {
  10179. // TODO: this might be wrong for ne0 != n_dims - need double check
  10180. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10181. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10182. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10183. const float cos_theta = cosf(theta);
  10184. const float sin_theta = sinf(theta);
  10185. theta *= theta_scale;
  10186. const int64_t i0 = ib*n_dims + ic/2;
  10187. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10188. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10189. const float x0 = src[0];
  10190. const float x1 = src[n_dims/2];
  10191. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10192. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10193. }
  10194. }
  10195. }
  10196. }
  10197. }
  10198. }
  10199. }
  10200. static void ggml_compute_forward_rope_f16(
  10201. const struct ggml_compute_params * params,
  10202. const struct ggml_tensor * src0,
  10203. struct ggml_tensor * dst) {
  10204. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10205. return;
  10206. }
  10207. float freq_base;
  10208. float freq_scale;
  10209. const int n_past = ((int32_t *) dst->op_params)[0];
  10210. const int n_dims = ((int32_t *) dst->op_params)[1];
  10211. const int mode = ((int32_t *) dst->op_params)[2];
  10212. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10213. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10214. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10215. assert(n_past >= 0);
  10216. GGML_TENSOR_UNARY_OP_LOCALS;
  10217. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10218. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10219. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10220. const int ith = params->ith;
  10221. const int nth = params->nth;
  10222. const int nr = ggml_nrows(dst);
  10223. GGML_ASSERT(n_dims <= ne0);
  10224. GGML_ASSERT(n_dims % 2 == 0);
  10225. // rows per thread
  10226. const int dr = (nr + nth - 1)/nth;
  10227. // row range for this thread
  10228. const int ir0 = dr*ith;
  10229. const int ir1 = MIN(ir0 + dr, nr);
  10230. // row index used to determine which thread to use
  10231. int ir = 0;
  10232. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10233. const bool is_neox = mode & 2;
  10234. const bool is_glm = mode & 4;
  10235. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10236. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10237. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10238. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10239. if (ir++ < ir0) continue;
  10240. if (ir > ir1) break;
  10241. float theta = freq_scale * (float)p;
  10242. if (is_glm) {
  10243. theta = MIN(p, n_ctx - 2);
  10244. float block_theta = MAX(p - (n_ctx - 2), 0);
  10245. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10246. const float cos_theta = cosf(theta);
  10247. const float sin_theta = sinf(theta);
  10248. const float cos_block_theta = cosf(block_theta);
  10249. const float sin_block_theta = sinf(block_theta);
  10250. theta *= theta_scale;
  10251. block_theta *= theta_scale;
  10252. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10253. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10254. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10255. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10256. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10257. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10258. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10259. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10260. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10261. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10262. }
  10263. } if (!is_neox) {
  10264. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10265. const float cos_theta = cosf(theta);
  10266. const float sin_theta = sinf(theta);
  10267. theta *= theta_scale;
  10268. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10269. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10270. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10271. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10272. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10273. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10274. }
  10275. } else {
  10276. // TODO: this might be wrong for ne0 != n_dims - need double check
  10277. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10278. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10279. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10280. const float cos_theta = cosf(theta);
  10281. const float sin_theta = sinf(theta);
  10282. theta *= theta_scale;
  10283. const int64_t i0 = ib*n_dims + ic/2;
  10284. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10285. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10286. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10287. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10288. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10289. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10290. }
  10291. }
  10292. }
  10293. }
  10294. }
  10295. }
  10296. }
  10297. static void ggml_compute_forward_rope(
  10298. const struct ggml_compute_params * params,
  10299. const struct ggml_tensor * src0,
  10300. struct ggml_tensor * dst) {
  10301. switch (src0->type) {
  10302. case GGML_TYPE_F16:
  10303. {
  10304. ggml_compute_forward_rope_f16(params, src0, dst);
  10305. } break;
  10306. case GGML_TYPE_F32:
  10307. {
  10308. ggml_compute_forward_rope_f32(params, src0, dst);
  10309. } break;
  10310. default:
  10311. {
  10312. GGML_ASSERT(false);
  10313. } break;
  10314. }
  10315. }
  10316. // ggml_compute_forward_rope_back
  10317. static void ggml_compute_forward_rope_back_f32(
  10318. const struct ggml_compute_params * params,
  10319. const struct ggml_tensor * src0,
  10320. struct ggml_tensor * dst) {
  10321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10322. return;
  10323. }
  10324. // y = rope(x, src1)
  10325. // dx = rope_back(dy, src1)
  10326. // src0 is dy, src1 contains options
  10327. float freq_base;
  10328. float freq_scale;
  10329. // these two only relevant for xPos RoPE:
  10330. float xpos_base;
  10331. bool xpos_down;
  10332. const int n_past = ((int32_t *) dst->op_params)[0];
  10333. const int n_dims = ((int32_t *) dst->op_params)[1];
  10334. const int mode = ((int32_t *) dst->op_params)[2];
  10335. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10336. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10337. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10338. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10339. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10340. assert(n_past >= 0);
  10341. GGML_TENSOR_UNARY_OP_LOCALS;
  10342. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10343. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10344. assert(nb0 == sizeof(float));
  10345. const int ith = params->ith;
  10346. const int nth = params->nth;
  10347. const int nr = ggml_nrows(dst);
  10348. // rows per thread
  10349. const int dr = (nr + nth - 1)/nth;
  10350. // row range for this thread
  10351. const int ir0 = dr*ith;
  10352. const int ir1 = MIN(ir0 + dr, nr);
  10353. // row index used to determine which thread to use
  10354. int ir = 0;
  10355. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10356. const bool is_neox = mode & 2;
  10357. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10358. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10359. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10360. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10361. if (ir++ < ir0) continue;
  10362. if (ir > ir1) break;
  10363. float theta = freq_scale * (float)p;
  10364. if (!is_neox) {
  10365. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10366. const float cos_theta = cosf(theta);
  10367. const float sin_theta = sinf(theta);
  10368. // zeta scaling for xPos only:
  10369. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10370. if (xpos_down) zeta = 1.0f / zeta;
  10371. theta *= theta_scale;
  10372. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10373. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10374. const float dy0 = dy[0];
  10375. const float dy1 = dy[1];
  10376. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10377. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10378. }
  10379. } else {
  10380. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10381. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10382. const float cos_theta = cosf(theta);
  10383. const float sin_theta = sinf(theta);
  10384. theta *= theta_scale;
  10385. const int64_t i0 = ib*n_dims + ic/2;
  10386. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10387. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10388. const float dy0 = dy[0];
  10389. const float dy1 = dy[n_dims/2];
  10390. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10391. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10392. }
  10393. }
  10394. }
  10395. }
  10396. }
  10397. }
  10398. }
  10399. static void ggml_compute_forward_rope_back_f16(
  10400. const struct ggml_compute_params * params,
  10401. const struct ggml_tensor * src0,
  10402. struct ggml_tensor * dst) {
  10403. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10404. return;
  10405. }
  10406. // y = rope(x, src1)
  10407. // dx = rope_back(dy, src1)
  10408. // src0 is dy, src1 contains options
  10409. const int n_past = ((int32_t *) dst->op_params)[0];
  10410. const int n_dims = ((int32_t *) dst->op_params)[1];
  10411. const int mode = ((int32_t *) dst->op_params)[2];
  10412. assert(n_past >= 0);
  10413. GGML_TENSOR_UNARY_OP_LOCALS;
  10414. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10415. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10416. assert(nb0 == sizeof(ggml_fp16_t));
  10417. const int ith = params->ith;
  10418. const int nth = params->nth;
  10419. const int nr = ggml_nrows(dst);
  10420. // rows per thread
  10421. const int dr = (nr + nth - 1)/nth;
  10422. // row range for this thread
  10423. const int ir0 = dr*ith;
  10424. const int ir1 = MIN(ir0 + dr, nr);
  10425. // row index used to determine which thread to use
  10426. int ir = 0;
  10427. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10428. const bool is_neox = mode & 2;
  10429. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10430. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10431. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10432. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10433. if (ir++ < ir0) continue;
  10434. if (ir > ir1) break;
  10435. float theta = (float)p;
  10436. if (!is_neox) {
  10437. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10438. const float cos_theta = cosf(theta);
  10439. const float sin_theta = sinf(theta);
  10440. theta *= theta_scale;
  10441. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10442. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10443. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10444. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10445. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10446. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10447. }
  10448. } else {
  10449. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10450. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10451. const float cos_theta = cosf(theta);
  10452. const float sin_theta = sinf(theta);
  10453. theta *= theta_scale;
  10454. const int64_t i0 = ib*n_dims + ic/2;
  10455. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10456. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10457. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10458. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10459. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10460. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10461. }
  10462. }
  10463. }
  10464. }
  10465. }
  10466. }
  10467. }
  10468. static void ggml_compute_forward_rope_back(
  10469. const struct ggml_compute_params * params,
  10470. const struct ggml_tensor * src0,
  10471. struct ggml_tensor * dst) {
  10472. switch (src0->type) {
  10473. case GGML_TYPE_F16:
  10474. {
  10475. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10476. } break;
  10477. case GGML_TYPE_F32:
  10478. {
  10479. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10480. } break;
  10481. default:
  10482. {
  10483. GGML_ASSERT(false);
  10484. } break;
  10485. }
  10486. }
  10487. // ggml_compute_forward_conv_1d
  10488. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10489. const struct ggml_compute_params * params,
  10490. const struct ggml_tensor * src0,
  10491. const struct ggml_tensor * src1,
  10492. struct ggml_tensor * dst) {
  10493. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10494. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10495. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10496. int64_t t0 = ggml_perf_time_us();
  10497. UNUSED(t0);
  10498. GGML_TENSOR_BINARY_OP_LOCALS;
  10499. const int ith = params->ith;
  10500. const int nth = params->nth;
  10501. const int nk = ne00;
  10502. const int nh = nk/2;
  10503. const int ew0 = ggml_up32(ne01);
  10504. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10505. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10506. GGML_ASSERT(nb10 == sizeof(float));
  10507. if (params->type == GGML_TASK_INIT) {
  10508. // TODO: fix this memset (wsize is overestimated)
  10509. memset(params->wdata, 0, params->wsize);
  10510. // prepare kernel data (src0)
  10511. {
  10512. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10513. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10514. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10515. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10516. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10517. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10518. dst_data[i00*ew0 + i01] = src[i00];
  10519. }
  10520. }
  10521. }
  10522. }
  10523. // prepare source data (src1)
  10524. {
  10525. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10526. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10527. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10528. ggml_fp16_t * dst_data = wdata;
  10529. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10530. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10531. }
  10532. }
  10533. }
  10534. return;
  10535. }
  10536. if (params->type == GGML_TASK_FINALIZE) {
  10537. return;
  10538. }
  10539. // total rows in dst
  10540. const int nr = ne02;
  10541. // rows per thread
  10542. const int dr = (nr + nth - 1)/nth;
  10543. // row range for this thread
  10544. const int ir0 = dr*ith;
  10545. const int ir1 = MIN(ir0 + dr, nr);
  10546. for (int i1 = ir0; i1 < ir1; i1++) {
  10547. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10548. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10549. dst_data[i0] = 0;
  10550. for (int k = -nh; k <= nh; k++) {
  10551. float v = 0.0f;
  10552. ggml_vec_dot_f16(ew0, &v,
  10553. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10554. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10555. dst_data[i0] += v;
  10556. }
  10557. }
  10558. }
  10559. }
  10560. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10561. const struct ggml_compute_params * params,
  10562. const struct ggml_tensor * src0,
  10563. const struct ggml_tensor * src1,
  10564. struct ggml_tensor * dst) {
  10565. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10566. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10567. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10568. int64_t t0 = ggml_perf_time_us();
  10569. UNUSED(t0);
  10570. GGML_TENSOR_BINARY_OP_LOCALS;
  10571. const int ith = params->ith;
  10572. const int nth = params->nth;
  10573. const int nk = ne00;
  10574. const int nh = nk/2;
  10575. const int ew0 = ggml_up32(ne01);
  10576. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10577. GGML_ASSERT(nb00 == sizeof(float));
  10578. GGML_ASSERT(nb10 == sizeof(float));
  10579. if (params->type == GGML_TASK_INIT) {
  10580. // TODO: fix this memset (wsize is overestimated)
  10581. memset(params->wdata, 0, params->wsize);
  10582. // prepare kernel data (src0)
  10583. {
  10584. float * const wdata = (float *) params->wdata + 0;
  10585. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10586. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10587. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10588. float * dst_data = wdata + i02*ew0*ne00;
  10589. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10590. dst_data[i00*ew0 + i01] = src[i00];
  10591. }
  10592. }
  10593. }
  10594. }
  10595. // prepare source data (src1)
  10596. {
  10597. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10598. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10599. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10600. float * dst_data = wdata;
  10601. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10602. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10603. }
  10604. }
  10605. }
  10606. return;
  10607. }
  10608. if (params->type == GGML_TASK_FINALIZE) {
  10609. return;
  10610. }
  10611. // total rows in dst
  10612. const int nr = ne02;
  10613. // rows per thread
  10614. const int dr = (nr + nth - 1)/nth;
  10615. // row range for this thread
  10616. const int ir0 = dr*ith;
  10617. const int ir1 = MIN(ir0 + dr, nr);
  10618. for (int i1 = ir0; i1 < ir1; i1++) {
  10619. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10620. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10621. dst_data[i0] = 0;
  10622. for (int k = -nh; k <= nh; k++) {
  10623. float v = 0.0f;
  10624. ggml_vec_dot_f32(ew0, &v,
  10625. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10626. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10627. dst_data[i0] += v;
  10628. }
  10629. }
  10630. }
  10631. }
  10632. static void ggml_compute_forward_conv_1d_s1_ph(
  10633. const struct ggml_compute_params * params,
  10634. const struct ggml_tensor * src0,
  10635. const struct ggml_tensor * src1,
  10636. struct ggml_tensor * dst) {
  10637. switch (src0->type) {
  10638. case GGML_TYPE_F16:
  10639. {
  10640. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10641. } break;
  10642. case GGML_TYPE_F32:
  10643. {
  10644. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10645. } break;
  10646. default:
  10647. {
  10648. GGML_ASSERT(false);
  10649. } break;
  10650. }
  10651. }
  10652. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10653. const struct ggml_compute_params * params,
  10654. const struct ggml_tensor * src0,
  10655. const struct ggml_tensor * src1,
  10656. struct ggml_tensor * dst) {
  10657. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10658. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10659. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10660. int64_t t0 = ggml_perf_time_us();
  10661. UNUSED(t0);
  10662. GGML_TENSOR_BINARY_OP_LOCALS;
  10663. const int ith = params->ith;
  10664. const int nth = params->nth;
  10665. const int nk = ne00;
  10666. const int nh = nk/2;
  10667. const int ew0 = ggml_up32(ne01);
  10668. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10669. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10670. GGML_ASSERT(nb10 == sizeof(float));
  10671. if (params->type == GGML_TASK_INIT) {
  10672. // TODO: fix this memset (wsize is overestimated)
  10673. memset(params->wdata, 0, params->wsize);
  10674. // prepare kernel data (src0)
  10675. {
  10676. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10677. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10678. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10679. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10680. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10681. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10682. dst_data[i00*ew0 + i01] = src[i00];
  10683. }
  10684. }
  10685. }
  10686. }
  10687. // prepare source data (src1)
  10688. {
  10689. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10690. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10691. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10692. ggml_fp16_t * dst_data = wdata;
  10693. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10694. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10695. }
  10696. }
  10697. }
  10698. return;
  10699. }
  10700. if (params->type == GGML_TASK_FINALIZE) {
  10701. return;
  10702. }
  10703. // total rows in dst
  10704. const int nr = ne02;
  10705. // rows per thread
  10706. const int dr = (nr + nth - 1)/nth;
  10707. // row range for this thread
  10708. const int ir0 = dr*ith;
  10709. const int ir1 = MIN(ir0 + dr, nr);
  10710. for (int i1 = ir0; i1 < ir1; i1++) {
  10711. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10712. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10713. dst_data[i0/2] = 0;
  10714. for (int k = -nh; k <= nh; k++) {
  10715. float v = 0.0f;
  10716. ggml_vec_dot_f16(ew0, &v,
  10717. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10718. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10719. dst_data[i0/2] += v;
  10720. }
  10721. }
  10722. }
  10723. }
  10724. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10725. const struct ggml_compute_params * params,
  10726. const struct ggml_tensor * src0,
  10727. const struct ggml_tensor * src1,
  10728. struct ggml_tensor * dst) {
  10729. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10730. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10731. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10732. int64_t t0 = ggml_perf_time_us();
  10733. UNUSED(t0);
  10734. GGML_TENSOR_BINARY_OP_LOCALS;
  10735. const int ith = params->ith;
  10736. const int nth = params->nth;
  10737. const int nk = ne00;
  10738. const int nh = nk/2;
  10739. const int ew0 = ggml_up32(ne01);
  10740. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10741. GGML_ASSERT(nb00 == sizeof(float));
  10742. GGML_ASSERT(nb10 == sizeof(float));
  10743. if (params->type == GGML_TASK_INIT) {
  10744. // TODO: fix this memset (wsize is overestimated)
  10745. memset(params->wdata, 0, params->wsize);
  10746. // prepare kernel data (src0)
  10747. {
  10748. float * const wdata = (float *) params->wdata + 0;
  10749. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10750. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10751. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10752. float * dst_data = wdata + i02*ew0*ne00;
  10753. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10754. dst_data[i00*ew0 + i01] = src[i00];
  10755. }
  10756. }
  10757. }
  10758. }
  10759. // prepare source data (src1)
  10760. {
  10761. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10762. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10763. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10764. float * dst_data = wdata;
  10765. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10766. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10767. }
  10768. }
  10769. }
  10770. return;
  10771. }
  10772. if (params->type == GGML_TASK_FINALIZE) {
  10773. return;
  10774. }
  10775. // total rows in dst
  10776. const int nr = ne02;
  10777. // rows per thread
  10778. const int dr = (nr + nth - 1)/nth;
  10779. // row range for this thread
  10780. const int ir0 = dr*ith;
  10781. const int ir1 = MIN(ir0 + dr, nr);
  10782. for (int i1 = ir0; i1 < ir1; i1++) {
  10783. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10784. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10785. dst_data[i0/2] = 0;
  10786. for (int k = -nh; k <= nh; k++) {
  10787. float v = 0.0f;
  10788. ggml_vec_dot_f32(ew0, &v,
  10789. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10790. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10791. dst_data[i0/2] += v;
  10792. }
  10793. }
  10794. }
  10795. }
  10796. static void ggml_compute_forward_conv_1d_s2_ph(
  10797. const struct ggml_compute_params * params,
  10798. const struct ggml_tensor * src0,
  10799. const struct ggml_tensor * src1,
  10800. struct ggml_tensor * dst) {
  10801. switch (src0->type) {
  10802. case GGML_TYPE_F16:
  10803. {
  10804. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10805. } break;
  10806. case GGML_TYPE_F32:
  10807. {
  10808. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10809. } break;
  10810. default:
  10811. {
  10812. GGML_ASSERT(false);
  10813. } break;
  10814. }
  10815. }
  10816. // ggml_compute_forward_conv_1d
  10817. static void ggml_compute_forward_conv_1d(
  10818. const struct ggml_compute_params * params,
  10819. const struct ggml_tensor * src0,
  10820. const struct ggml_tensor * src1,
  10821. struct ggml_tensor * dst) {
  10822. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10823. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10824. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10825. GGML_ASSERT(d0 == 1); // dilation not supported
  10826. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10827. if (s0 == 1) {
  10828. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10829. } else if (s0 == 2) {
  10830. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10831. } else {
  10832. GGML_ASSERT(false); // only stride 1 and 2 supported
  10833. };
  10834. }
  10835. // ggml_compute_forward_conv_2d
  10836. static void ggml_compute_forward_conv_2d_f16_f32(
  10837. const struct ggml_compute_params * params,
  10838. const struct ggml_tensor * src0,
  10839. const struct ggml_tensor * src1,
  10840. struct ggml_tensor * dst) {
  10841. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10842. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10843. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10844. int64_t t0 = ggml_perf_time_us();
  10845. UNUSED(t0);
  10846. GGML_TENSOR_BINARY_OP_LOCALS;
  10847. const int ith = params->ith;
  10848. const int nth = params->nth;
  10849. const int nk0 = ne00;
  10850. const int nk1 = ne01;
  10851. // size of the convolution row - the kernel size unrolled across all channels
  10852. const int ew0 = nk0*nk1*ne02;
  10853. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10854. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10855. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10856. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10857. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10858. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10859. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10860. GGML_ASSERT(nb10 == sizeof(float));
  10861. if (params->type == GGML_TASK_INIT) {
  10862. memset(params->wdata, 0, params->wsize);
  10863. // prepare source data (src1)
  10864. {
  10865. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10866. for (int i12 = 0; i12 < ne12; i12++) {
  10867. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10868. ggml_fp16_t * dst_data = wdata;
  10869. for (int i1 = 0; i1 < ne1; i1++) {
  10870. for (int i0 = 0; i0 < ne0; i0++) {
  10871. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10872. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10873. const int idx0 = i0*s0 + ik0*d0 - p0;
  10874. const int idx1 = i1*s1 + ik1*d1 - p1;
  10875. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10876. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10877. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10878. }
  10879. }
  10880. }
  10881. }
  10882. }
  10883. }
  10884. }
  10885. return;
  10886. }
  10887. if (params->type == GGML_TASK_FINALIZE) {
  10888. return;
  10889. }
  10890. // total patches in dst
  10891. const int np = ne2;
  10892. // patches per thread
  10893. const int dp = (np + nth - 1)/nth;
  10894. // patch range for this thread
  10895. const int ip0 = dp*ith;
  10896. const int ip1 = MIN(ip0 + dp, np);
  10897. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10898. for (int i3 = 0; i3 < ne3; i3++) {
  10899. for (int i2 = ip0; i2 < ip1; i2++) {
  10900. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10901. for (int i1 = 0; i1 < ne1; ++i1) {
  10902. for (int i0 = 0; i0 < ne0; ++i0) {
  10903. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10904. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10905. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10906. }
  10907. }
  10908. }
  10909. }
  10910. }
  10911. static void ggml_compute_forward_conv_2d(
  10912. const struct ggml_compute_params * params,
  10913. const struct ggml_tensor * src0,
  10914. const struct ggml_tensor * src1,
  10915. struct ggml_tensor * dst) {
  10916. switch (src0->type) {
  10917. case GGML_TYPE_F16:
  10918. {
  10919. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10920. } break;
  10921. case GGML_TYPE_F32:
  10922. {
  10923. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10924. GGML_ASSERT(false);
  10925. } break;
  10926. default:
  10927. {
  10928. GGML_ASSERT(false);
  10929. } break;
  10930. }
  10931. }
  10932. // ggml_compute_forward_conv_transpose_2d
  10933. static void ggml_compute_forward_conv_transpose_2d(
  10934. const struct ggml_compute_params * params,
  10935. const struct ggml_tensor * src0,
  10936. const struct ggml_tensor * src1,
  10937. const struct ggml_tensor * opt0,
  10938. struct ggml_tensor * dst) {
  10939. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10940. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10941. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10942. int64_t t0 = ggml_perf_time_us();
  10943. UNUSED(t0);
  10944. GGML_TENSOR_BINARY_OP_LOCALS;
  10945. const int ith = params->ith;
  10946. const int nth = params->nth;
  10947. const int nk = ne00*ne01*ne02*ne03;
  10948. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10949. GGML_ASSERT(nb10 == sizeof(float));
  10950. if (params->type == GGML_TASK_INIT) {
  10951. memset(params->wdata, 0, params->wsize);
  10952. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10953. {
  10954. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10955. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10956. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10957. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10958. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10959. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10960. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10961. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10962. }
  10963. }
  10964. }
  10965. }
  10966. }
  10967. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10968. {
  10969. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10970. for (int i12 = 0; i12 < ne12; i12++) {
  10971. for (int i11 = 0; i11 < ne11; i11++) {
  10972. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10973. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10974. for (int i10 = 0; i10 < ne10; i10++) {
  10975. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10976. }
  10977. }
  10978. }
  10979. }
  10980. return;
  10981. }
  10982. if (params->type == GGML_TASK_FINALIZE) {
  10983. return;
  10984. }
  10985. const int32_t stride = ((const int32_t*)(opt0->data))[0];
  10986. // total patches in dst
  10987. const int np = ne2;
  10988. // patches per thread
  10989. const int dp = (np + nth - 1)/nth;
  10990. // patch range for this thread
  10991. const int ip0 = dp*ith;
  10992. const int ip1 = MIN(ip0 + dp, np);
  10993. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10994. ggml_fp16_t * const wdata_src = (ggml_fp16_t *) params->wdata + nk;
  10995. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10996. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10997. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10998. for (int i11 = 0; i11 < ne11; i11++) {
  10999. for (int i10 = 0; i10 < ne10; i10++) {
  11000. const int i1n = i11*ne10*ne12 + i10*ne12;
  11001. for (int i01 = 0; i01 < ne01; i01++) {
  11002. for (int i00 = 0; i00 < ne00; i00++) {
  11003. float v = 0;
  11004. ggml_vec_dot_f16(ne03, &v,
  11005. (ggml_fp16_t *) wdata_src + i1n,
  11006. (ggml_fp16_t *) wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11007. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11008. }
  11009. }
  11010. }
  11011. }
  11012. }
  11013. }
  11014. // ggml_compute_forward_pool_1d_sk_p0
  11015. static void ggml_compute_forward_pool_1d_sk_p0(
  11016. const struct ggml_compute_params * params,
  11017. const enum ggml_op_pool op,
  11018. const struct ggml_tensor * src,
  11019. const int k,
  11020. struct ggml_tensor * dst) {
  11021. assert(src->type == GGML_TYPE_F32);
  11022. assert(params->ith == 0);
  11023. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11024. return;
  11025. }
  11026. const char * cdata = (const char *)src->data;
  11027. const char * const data_end = cdata + ggml_nbytes(src);
  11028. float * drow = (float *)dst->data;
  11029. const int64_t rs = dst->ne[0];
  11030. while (cdata < data_end) {
  11031. const float * const srow = (const float *)cdata;
  11032. int j = 0;
  11033. for (int64_t i = 0; i < rs; ++i) {
  11034. switch (op) {
  11035. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11036. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11037. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11038. }
  11039. for (int ki = 0; ki < k; ++ki) {
  11040. switch (op) {
  11041. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11042. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11043. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11044. }
  11045. ++j;
  11046. }
  11047. switch (op) {
  11048. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11049. case GGML_OP_POOL_MAX: break;
  11050. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11051. }
  11052. }
  11053. cdata += src->nb[1];
  11054. drow += rs;
  11055. }
  11056. }
  11057. // ggml_compute_forward_pool_1d
  11058. static void ggml_compute_forward_pool_1d(
  11059. const struct ggml_compute_params * params,
  11060. const struct ggml_tensor * src0,
  11061. struct ggml_tensor * dst) {
  11062. const int32_t * opts = (const int32_t *)dst->op_params;
  11063. enum ggml_op_pool op = opts[0];
  11064. const int k0 = opts[1];
  11065. const int s0 = opts[2];
  11066. const int p0 = opts[3];
  11067. GGML_ASSERT(p0 == 0); // padding not supported
  11068. GGML_ASSERT(k0 == s0); // only s = k supported
  11069. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11070. }
  11071. // ggml_compute_forward_pool_2d_sk_p0
  11072. static void ggml_compute_forward_pool_2d_sk_p0(
  11073. const struct ggml_compute_params * params,
  11074. const enum ggml_op_pool op,
  11075. const struct ggml_tensor * src,
  11076. const int k0,
  11077. const int k1,
  11078. struct ggml_tensor * dst) {
  11079. assert(src->type == GGML_TYPE_F32);
  11080. assert(params->ith == 0);
  11081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11082. return;
  11083. }
  11084. const char * cdata = (const char*)src->data;
  11085. const char * const data_end = cdata + ggml_nbytes(src);
  11086. const int64_t px = dst->ne[0];
  11087. const int64_t py = dst->ne[1];
  11088. const int64_t pa = px * py;
  11089. float * dplane = (float *)dst->data;
  11090. const int ka = k0 * k1;
  11091. while (cdata < data_end) {
  11092. for (int oy = 0; oy < py; ++oy) {
  11093. float * const drow = dplane + oy * px;
  11094. for (int ox = 0; ox < px; ++ox) {
  11095. float * const out = drow + ox;
  11096. switch (op) {
  11097. case GGML_OP_POOL_AVG: *out = 0; break;
  11098. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11099. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11100. }
  11101. const int ix = ox * k0;
  11102. const int iy = oy * k1;
  11103. for (int ky = 0; ky < k1; ++ky) {
  11104. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11105. for (int kx = 0; kx < k0; ++kx) {
  11106. int j = ix + kx;
  11107. switch (op) {
  11108. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11109. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11110. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11111. }
  11112. }
  11113. }
  11114. switch (op) {
  11115. case GGML_OP_POOL_AVG: *out /= ka; break;
  11116. case GGML_OP_POOL_MAX: break;
  11117. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11118. }
  11119. }
  11120. }
  11121. cdata += src->nb[2];
  11122. dplane += pa;
  11123. }
  11124. }
  11125. // ggml_compute_forward_pool_2d
  11126. static void ggml_compute_forward_pool_2d(
  11127. const struct ggml_compute_params * params,
  11128. const struct ggml_tensor * src0,
  11129. struct ggml_tensor * dst) {
  11130. const int32_t * opts = (const int32_t *)dst->op_params;
  11131. enum ggml_op_pool op = opts[0];
  11132. const int k0 = opts[1];
  11133. const int k1 = opts[2];
  11134. const int s0 = opts[3];
  11135. const int s1 = opts[4];
  11136. const int p0 = opts[5];
  11137. const int p1 = opts[6];
  11138. GGML_ASSERT(p0 == 0);
  11139. GGML_ASSERT(p1 == 0); // padding not supported
  11140. GGML_ASSERT(k0 == s0);
  11141. GGML_ASSERT(k1 == s1); // only s = k supported
  11142. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11143. }
  11144. // ggml_compute_forward_upscale
  11145. static void ggml_compute_forward_upscale_f32(
  11146. const struct ggml_compute_params * params,
  11147. const struct ggml_tensor * src0,
  11148. struct ggml_tensor * dst) {
  11149. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11150. return;
  11151. }
  11152. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11153. const int ith = params->ith;
  11154. GGML_TENSOR_UNARY_OP_LOCALS;
  11155. const int scale_factor = dst->op_params[0];
  11156. // TODO: optimize
  11157. for (int i03 = 0; i03 < ne03; i03++) {
  11158. for (int i02 = ith; i02 < ne02; i02++) {
  11159. for (int m = 0; m < dst->ne[1]; m++) {
  11160. int i01 = m / scale_factor;
  11161. for (int n = 0; n < dst->ne[0]; n++) {
  11162. int i00 = n / scale_factor;
  11163. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11164. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11165. *y = *x;
  11166. }
  11167. }
  11168. }
  11169. }
  11170. }
  11171. static void ggml_compute_forward_upscale(
  11172. const struct ggml_compute_params * params,
  11173. const struct ggml_tensor * src0,
  11174. struct ggml_tensor * dst) {
  11175. switch (src0->type) {
  11176. case GGML_TYPE_F32:
  11177. {
  11178. ggml_compute_forward_upscale_f32(params, src0, dst);
  11179. } break;
  11180. default:
  11181. {
  11182. GGML_ASSERT(false);
  11183. } break;
  11184. }
  11185. }
  11186. // ggml_compute_forward_flash_attn
  11187. static void ggml_compute_forward_flash_attn_f32(
  11188. const struct ggml_compute_params * params,
  11189. const struct ggml_tensor * q,
  11190. const struct ggml_tensor * k,
  11191. const struct ggml_tensor * v,
  11192. const bool masked,
  11193. struct ggml_tensor * dst) {
  11194. int64_t t0 = ggml_perf_time_us();
  11195. UNUSED(t0);
  11196. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11197. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11198. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11199. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11200. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11201. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11202. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11203. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11204. const int ith = params->ith;
  11205. const int nth = params->nth;
  11206. const int64_t D = neq0;
  11207. const int64_t N = neq1;
  11208. const int64_t P = nek1 - N;
  11209. const int64_t M = P + N;
  11210. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11211. GGML_ASSERT(ne0 == D);
  11212. GGML_ASSERT(ne1 == N);
  11213. GGML_ASSERT(P >= 0);
  11214. GGML_ASSERT(nbq0 == sizeof(float));
  11215. GGML_ASSERT(nbk0 == sizeof(float));
  11216. GGML_ASSERT(nbv0 == sizeof(float));
  11217. GGML_ASSERT(neq0 == D);
  11218. GGML_ASSERT(nek0 == D);
  11219. GGML_ASSERT(nev1 == D);
  11220. GGML_ASSERT(neq1 == N);
  11221. GGML_ASSERT(nek1 == N + P);
  11222. GGML_ASSERT(nev1 == D);
  11223. // dst cannot be transposed or permuted
  11224. GGML_ASSERT(nb0 == sizeof(float));
  11225. GGML_ASSERT(nb0 <= nb1);
  11226. GGML_ASSERT(nb1 <= nb2);
  11227. GGML_ASSERT(nb2 <= nb3);
  11228. if (params->type == GGML_TASK_INIT) {
  11229. return;
  11230. }
  11231. if (params->type == GGML_TASK_FINALIZE) {
  11232. return;
  11233. }
  11234. // parallelize by q rows using ggml_vec_dot_f32
  11235. // total rows in q
  11236. const int nr = neq1*neq2*neq3;
  11237. // rows per thread
  11238. const int dr = (nr + nth - 1)/nth;
  11239. // row range for this thread
  11240. const int ir0 = dr*ith;
  11241. const int ir1 = MIN(ir0 + dr, nr);
  11242. const float scale = 1.0f/sqrtf(D);
  11243. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11244. for (int ir = ir0; ir < ir1; ++ir) {
  11245. // q indices
  11246. const int iq3 = ir/(neq2*neq1);
  11247. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11248. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11249. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11250. for (int i = M; i < Mup; ++i) {
  11251. S[i] = -INFINITY;
  11252. }
  11253. for (int64_t ic = 0; ic < nek1; ++ic) {
  11254. // k indices
  11255. const int ik3 = iq3;
  11256. const int ik2 = iq2;
  11257. const int ik1 = ic;
  11258. // S indices
  11259. const int i1 = ik1;
  11260. ggml_vec_dot_f32(neq0,
  11261. S + i1,
  11262. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11263. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11264. }
  11265. // scale
  11266. ggml_vec_scale_f32(nek1, S, scale);
  11267. if (masked) {
  11268. for (int64_t i = P; i < M; i++) {
  11269. if (i > P + iq1) {
  11270. S[i] = -INFINITY;
  11271. }
  11272. }
  11273. }
  11274. // softmax
  11275. {
  11276. float max = -INFINITY;
  11277. ggml_vec_max_f32(M, &max, S);
  11278. ggml_float sum = 0.0;
  11279. {
  11280. #ifdef GGML_SOFT_MAX_ACCELERATE
  11281. max = -max;
  11282. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11283. vvexpf(S, S, &Mup);
  11284. ggml_vec_sum_f32(Mup, &sum, S);
  11285. #else
  11286. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11287. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11288. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11289. float * SS = S + i;
  11290. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11291. if (SS[j] == -INFINITY) {
  11292. SS[j] = 0.0f;
  11293. } else {
  11294. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11295. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11296. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11297. sump[j] += (ggml_float)val;
  11298. SS[j] = val;
  11299. }
  11300. }
  11301. }
  11302. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11303. sum += sump[i];
  11304. }
  11305. #endif
  11306. }
  11307. assert(sum > 0.0);
  11308. sum = 1.0/sum;
  11309. ggml_vec_scale_f32(M, S, sum);
  11310. #ifndef NDEBUG
  11311. for (int i = 0; i < M; ++i) {
  11312. assert(!isnan(S[i]));
  11313. assert(!isinf(S[i]));
  11314. }
  11315. #endif
  11316. }
  11317. for (int64_t ic = 0; ic < nev1; ++ic) {
  11318. // dst indices
  11319. const int i1 = iq1;
  11320. const int i2 = iq2;
  11321. const int i3 = iq3;
  11322. ggml_vec_dot_f32(nek1,
  11323. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11324. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11325. S);
  11326. }
  11327. }
  11328. }
  11329. static void ggml_compute_forward_flash_attn_f16(
  11330. const struct ggml_compute_params * params,
  11331. const struct ggml_tensor * q,
  11332. const struct ggml_tensor * k,
  11333. const struct ggml_tensor * v,
  11334. const bool masked,
  11335. struct ggml_tensor * dst) {
  11336. int64_t t0 = ggml_perf_time_us();
  11337. UNUSED(t0);
  11338. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11339. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11340. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11341. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11342. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11343. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11344. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11345. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11346. const int ith = params->ith;
  11347. const int nth = params->nth;
  11348. const int64_t D = neq0;
  11349. const int64_t N = neq1;
  11350. const int64_t P = nek1 - N;
  11351. const int64_t M = P + N;
  11352. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11353. GGML_ASSERT(ne0 == D);
  11354. GGML_ASSERT(ne1 == N);
  11355. GGML_ASSERT(P >= 0);
  11356. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11357. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11358. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11359. GGML_ASSERT(neq0 == D);
  11360. GGML_ASSERT(nek0 == D);
  11361. GGML_ASSERT(nev1 == D);
  11362. GGML_ASSERT(neq1 == N);
  11363. GGML_ASSERT(nek1 == N + P);
  11364. GGML_ASSERT(nev1 == D);
  11365. // dst cannot be transposed or permuted
  11366. GGML_ASSERT(nb0 == sizeof(float));
  11367. GGML_ASSERT(nb0 <= nb1);
  11368. GGML_ASSERT(nb1 <= nb2);
  11369. GGML_ASSERT(nb2 <= nb3);
  11370. if (params->type == GGML_TASK_INIT) {
  11371. return;
  11372. }
  11373. if (params->type == GGML_TASK_FINALIZE) {
  11374. return;
  11375. }
  11376. // parallelize by q rows using ggml_vec_dot_f32
  11377. // total rows in q
  11378. const int nr = neq1*neq2*neq3;
  11379. // rows per thread
  11380. const int dr = (nr + nth - 1)/nth;
  11381. // row range for this thread
  11382. const int ir0 = dr*ith;
  11383. const int ir1 = MIN(ir0 + dr, nr);
  11384. const float scale = 1.0f/sqrtf(D);
  11385. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11386. for (int ir = ir0; ir < ir1; ++ir) {
  11387. // q indices
  11388. const int iq3 = ir/(neq2*neq1);
  11389. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11390. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11391. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11392. for (int i = M; i < Mup; ++i) {
  11393. S[i] = -INFINITY;
  11394. }
  11395. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11396. for (int64_t ic = 0; ic < nek1; ++ic) {
  11397. // k indices
  11398. const int ik3 = iq3;
  11399. const int ik2 = iq2;
  11400. const int ik1 = ic;
  11401. // S indices
  11402. const int i1 = ik1;
  11403. ggml_vec_dot_f16(neq0,
  11404. S + i1,
  11405. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11406. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11407. }
  11408. } else {
  11409. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11410. // k indices
  11411. const int ik3 = iq3;
  11412. const int ik2 = iq2;
  11413. const int ik1 = ic;
  11414. // S indices
  11415. const int i1 = ik1;
  11416. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11417. S + i1,
  11418. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11419. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11420. }
  11421. }
  11422. // scale
  11423. ggml_vec_scale_f32(nek1, S, scale);
  11424. if (masked) {
  11425. for (int64_t i = P; i < M; i++) {
  11426. if (i > P + iq1) {
  11427. S[i] = -INFINITY;
  11428. }
  11429. }
  11430. }
  11431. // softmax
  11432. {
  11433. float max = -INFINITY;
  11434. ggml_vec_max_f32(M, &max, S);
  11435. ggml_float sum = 0.0;
  11436. {
  11437. #ifdef GGML_SOFT_MAX_ACCELERATE
  11438. max = -max;
  11439. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11440. vvexpf(S, S, &Mup);
  11441. ggml_vec_sum_f32(Mup, &sum, S);
  11442. #else
  11443. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11444. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11445. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11446. float * SS = S + i;
  11447. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11448. if (SS[j] == -INFINITY) {
  11449. SS[j] = 0.0f;
  11450. } else {
  11451. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11452. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11453. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11454. sump[j] += (ggml_float)val;
  11455. SS[j] = val;
  11456. }
  11457. }
  11458. }
  11459. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11460. sum += sump[i];
  11461. }
  11462. #endif
  11463. }
  11464. assert(sum > 0.0);
  11465. sum = 1.0/sum;
  11466. ggml_vec_scale_f32(M, S, sum);
  11467. #ifndef NDEBUG
  11468. for (int i = 0; i < M; ++i) {
  11469. assert(!isnan(S[i]));
  11470. assert(!isinf(S[i]));
  11471. }
  11472. #endif
  11473. }
  11474. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11475. for (int64_t i = 0; i < M; i++) {
  11476. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11477. }
  11478. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11479. for (int64_t ic = 0; ic < nev1; ++ic) {
  11480. // dst indices
  11481. const int i1 = iq1;
  11482. const int i2 = iq2;
  11483. const int i3 = iq3;
  11484. ggml_vec_dot_f16(nek1,
  11485. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11486. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11487. S16);
  11488. }
  11489. } else {
  11490. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11491. // dst indices
  11492. const int i1 = iq1;
  11493. const int i2 = iq2;
  11494. const int i3 = iq3;
  11495. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11496. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11497. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11498. S16);
  11499. }
  11500. }
  11501. }
  11502. }
  11503. static void ggml_compute_forward_flash_attn(
  11504. const struct ggml_compute_params * params,
  11505. const struct ggml_tensor * q,
  11506. const struct ggml_tensor * k,
  11507. const struct ggml_tensor * v,
  11508. const bool masked,
  11509. struct ggml_tensor * dst) {
  11510. switch (q->type) {
  11511. case GGML_TYPE_F16:
  11512. {
  11513. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11514. } break;
  11515. case GGML_TYPE_F32:
  11516. {
  11517. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11518. } break;
  11519. default:
  11520. {
  11521. GGML_ASSERT(false);
  11522. } break;
  11523. }
  11524. }
  11525. // ggml_compute_forward_flash_ff
  11526. static void ggml_compute_forward_flash_ff_f16(
  11527. const struct ggml_compute_params * params,
  11528. const struct ggml_tensor * a, // F16
  11529. const struct ggml_tensor * b0, // F16 fc_w
  11530. const struct ggml_tensor * b1, // F32 fc_b
  11531. const struct ggml_tensor * c0, // F16 proj_w
  11532. const struct ggml_tensor * c1, // F32 proj_b
  11533. struct ggml_tensor * dst) {
  11534. int64_t t0 = ggml_perf_time_us();
  11535. UNUSED(t0);
  11536. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11537. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11538. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11539. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11540. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11541. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11542. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11543. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11544. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11545. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11546. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11547. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11548. const int ith = params->ith;
  11549. const int nth = params->nth;
  11550. const int64_t D = nea0;
  11551. //const int64_t N = nea1;
  11552. const int64_t M = neb01;
  11553. GGML_ASSERT(ne0 == nea0);
  11554. GGML_ASSERT(ne1 == nea1);
  11555. GGML_ASSERT(ne2 == nea2);
  11556. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11557. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11558. GGML_ASSERT(nbb10 == sizeof(float));
  11559. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11560. GGML_ASSERT(nbc10 == sizeof(float));
  11561. GGML_ASSERT(neb00 == D);
  11562. GGML_ASSERT(neb01 == M);
  11563. GGML_ASSERT(neb10 == M);
  11564. GGML_ASSERT(neb11 == 1);
  11565. GGML_ASSERT(nec00 == M);
  11566. GGML_ASSERT(nec01 == D);
  11567. GGML_ASSERT(nec10 == D);
  11568. GGML_ASSERT(nec11 == 1);
  11569. // dst cannot be transposed or permuted
  11570. GGML_ASSERT(nb0 == sizeof(float));
  11571. GGML_ASSERT(nb0 <= nb1);
  11572. GGML_ASSERT(nb1 <= nb2);
  11573. GGML_ASSERT(nb2 <= nb3);
  11574. if (params->type == GGML_TASK_INIT) {
  11575. return;
  11576. }
  11577. if (params->type == GGML_TASK_FINALIZE) {
  11578. return;
  11579. }
  11580. // parallelize by a rows using ggml_vec_dot_f32
  11581. // total rows in a
  11582. const int nr = nea1*nea2*nea3;
  11583. // rows per thread
  11584. const int dr = (nr + nth - 1)/nth;
  11585. // row range for this thread
  11586. const int ir0 = dr*ith;
  11587. const int ir1 = MIN(ir0 + dr, nr);
  11588. for (int ir = ir0; ir < ir1; ++ir) {
  11589. // a indices
  11590. const int ia3 = ir/(nea2*nea1);
  11591. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11592. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11593. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11594. for (int64_t ic = 0; ic < neb01; ++ic) {
  11595. // b0 indices
  11596. const int ib03 = ia3;
  11597. const int ib02 = ia2;
  11598. const int ib01 = ic;
  11599. // S indices
  11600. const int i1 = ib01;
  11601. ggml_vec_dot_f16(nea0,
  11602. S + i1,
  11603. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11604. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11605. }
  11606. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11607. //ggml_vec_gelu_f32(neb01, S, S);
  11608. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11609. for (int64_t i = 0; i < M; i++) {
  11610. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11611. }
  11612. ggml_vec_gelu_f16(neb01, S16, S16);
  11613. {
  11614. // dst indices
  11615. const int i1 = ia1;
  11616. const int i2 = ia2;
  11617. const int i3 = ia3;
  11618. for (int64_t ic = 0; ic < nec01; ++ic) {
  11619. ggml_vec_dot_f16(neb01,
  11620. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11621. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11622. S16);
  11623. }
  11624. ggml_vec_add_f32(nec01,
  11625. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11626. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11627. (float *) c1->data);
  11628. }
  11629. }
  11630. }
  11631. static void ggml_compute_forward_flash_ff(
  11632. const struct ggml_compute_params * params,
  11633. const struct ggml_tensor * a,
  11634. const struct ggml_tensor * b0,
  11635. const struct ggml_tensor * b1,
  11636. const struct ggml_tensor * c0,
  11637. const struct ggml_tensor * c1,
  11638. struct ggml_tensor * dst) {
  11639. switch (b0->type) {
  11640. case GGML_TYPE_F16:
  11641. {
  11642. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11643. } break;
  11644. case GGML_TYPE_F32:
  11645. {
  11646. GGML_ASSERT(false); // TODO
  11647. } break;
  11648. default:
  11649. {
  11650. GGML_ASSERT(false);
  11651. } break;
  11652. }
  11653. }
  11654. // ggml_compute_forward_flash_attn_back
  11655. static void ggml_compute_forward_flash_attn_back_f32(
  11656. const struct ggml_compute_params * params,
  11657. const struct ggml_tensor * q,
  11658. const struct ggml_tensor * k,
  11659. const struct ggml_tensor * v,
  11660. const struct ggml_tensor * d,
  11661. const bool masked,
  11662. struct ggml_tensor * dst) {
  11663. int64_t t0 = ggml_perf_time_us();
  11664. UNUSED(t0);
  11665. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11666. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11667. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11668. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11669. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11670. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11671. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11672. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11673. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11674. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11675. const int ith = params->ith;
  11676. const int nth = params->nth;
  11677. const int64_t D = neq0;
  11678. const int64_t N = neq1;
  11679. const int64_t P = nek1 - N;
  11680. const int64_t M = P + N;
  11681. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11682. const int mxDM = MAX(D, Mup);
  11683. // GGML_ASSERT(ne0 == D);
  11684. // GGML_ASSERT(ne1 == N);
  11685. GGML_ASSERT(P >= 0);
  11686. GGML_ASSERT(nbq0 == sizeof(float));
  11687. GGML_ASSERT(nbk0 == sizeof(float));
  11688. GGML_ASSERT(nbv0 == sizeof(float));
  11689. GGML_ASSERT(neq0 == D);
  11690. GGML_ASSERT(nek0 == D);
  11691. GGML_ASSERT(nev1 == D);
  11692. GGML_ASSERT(ned0 == D);
  11693. GGML_ASSERT(neq1 == N);
  11694. GGML_ASSERT(nek1 == N + P);
  11695. GGML_ASSERT(nev1 == D);
  11696. GGML_ASSERT(ned1 == N);
  11697. // dst cannot be transposed or permuted
  11698. GGML_ASSERT(nb0 == sizeof(float));
  11699. GGML_ASSERT(nb0 <= nb1);
  11700. GGML_ASSERT(nb1 <= nb2);
  11701. GGML_ASSERT(nb2 <= nb3);
  11702. if (params->type == GGML_TASK_INIT) {
  11703. if (ith == 0) {
  11704. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11705. }
  11706. return;
  11707. }
  11708. if (params->type == GGML_TASK_FINALIZE) {
  11709. return;
  11710. }
  11711. // parallelize by q rows using ggml_vec_dot_f32
  11712. // total rows in q
  11713. const int nr = neq2*neq3;
  11714. // rows per thread
  11715. const int dr = (nr + nth - 1)/nth;
  11716. // row range for this thread
  11717. const int ir0 = dr*ith;
  11718. const int ir1 = MIN(ir0 + dr, nr);
  11719. const float scale = 1.0f/sqrtf(D);
  11720. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11721. for (int ir = ir0; ir < ir1; ++ir) {
  11722. // q indices
  11723. const int iq3 = ir/(neq2);
  11724. const int iq2 = ir - iq3*neq2;
  11725. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11726. // not sure about CACHE_LINE_SIZE_F32..
  11727. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11728. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11729. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11730. for (int i = M; i < Mup; ++i) {
  11731. S[i] = -INFINITY;
  11732. }
  11733. for (int64_t ic = 0; ic < nek1; ++ic) {
  11734. // k indices
  11735. const int ik3 = iq3;
  11736. const int ik2 = iq2;
  11737. const int ik1 = ic;
  11738. // S indices
  11739. const int i1 = ik1;
  11740. ggml_vec_dot_f32(neq0,
  11741. S + i1,
  11742. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11743. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11744. }
  11745. // scale
  11746. ggml_vec_scale_f32(nek1, S, scale);
  11747. if (masked) {
  11748. for (int64_t i = P; i < M; i++) {
  11749. if (i > P + iq1) {
  11750. S[i] = -INFINITY;
  11751. }
  11752. }
  11753. }
  11754. // softmax
  11755. {
  11756. float max = -INFINITY;
  11757. ggml_vec_max_f32(M, &max, S);
  11758. ggml_float sum = 0.0;
  11759. {
  11760. #ifdef GGML_SOFT_MAX_ACCELERATE
  11761. max = -max;
  11762. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11763. vvexpf(SM, SM, &Mup);
  11764. ggml_vec_sum_f32(Mup, &sum, SM);
  11765. #else
  11766. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11767. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11768. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11769. float * SR = S + i;
  11770. float * SW = SM + i;
  11771. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11772. if (SR[j] == -INFINITY) {
  11773. SW[j] = 0.0f;
  11774. } else {
  11775. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11776. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11777. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11778. sump[j] += (ggml_float)val;
  11779. SW[j] = val;
  11780. }
  11781. }
  11782. }
  11783. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11784. sum += sump[i];
  11785. }
  11786. #endif
  11787. }
  11788. assert(sum > 0.0);
  11789. sum = 1.0/sum;
  11790. ggml_vec_scale_f32(M, SM, sum);
  11791. }
  11792. // step-by-step explanation
  11793. {
  11794. // forward-process shape grads from backward process
  11795. // parallel_for iq2,iq3:
  11796. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11797. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11798. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11799. // for iq1:
  11800. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11801. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11802. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11803. // S0 = -Inf [D,1,1,1]
  11804. // ~S1[i] = dot(kcur[:D,i], qcur)
  11805. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11806. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11807. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11808. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11809. // ~S5[i] = dot(vcur[:,i], S4)
  11810. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11811. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11812. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11813. // dst backward-/ grad[dst] = d
  11814. //
  11815. // output gradients with their dependencies:
  11816. //
  11817. // grad[kcur] = grad[S1].T @ qcur
  11818. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11819. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11820. // grad[S4] = grad[S5] @ vcur
  11821. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11822. // grad[qcur] = grad[S1] @ kcur
  11823. // grad[vcur] = grad[S5].T @ S4
  11824. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11825. //
  11826. // in post-order:
  11827. //
  11828. // S1 = qcur @ kcur.T
  11829. // S2 = S1 * scale
  11830. // S3 = diag_mask_inf(S2, P)
  11831. // S4 = softmax(S3)
  11832. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11833. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11834. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11835. // grad[qcur] = grad[S1] @ kcur
  11836. // grad[kcur] = grad[S1].T @ qcur
  11837. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11838. //
  11839. // using less variables (SM=S4):
  11840. //
  11841. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11842. // SM = softmax(S)
  11843. // S = d[:D,iq1,iq2,iq3] @ vcur
  11844. // dot_SM_gradSM = dot(SM, S)
  11845. // S = SM * (S - dot(SM, S))
  11846. // S = diag_mask_zero(S, P) * scale
  11847. //
  11848. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11849. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11850. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11851. }
  11852. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11853. // S = d[:D,iq1,iq2,iq3] @ vcur
  11854. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11855. ggml_vec_set_f32(M, S, 0);
  11856. for (int64_t ic = 0; ic < D; ++ic) {
  11857. // dst indices
  11858. const int i1 = iq1;
  11859. const int i2 = iq2;
  11860. const int i3 = iq3;
  11861. ggml_vec_mad_f32(M,
  11862. S,
  11863. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11864. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11865. }
  11866. // S = SM * (S - dot(SM, S))
  11867. float dot_SM_gradSM = 0;
  11868. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11869. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11870. ggml_vec_mul_f32 (M, S, S, SM);
  11871. // S = diag_mask_zero(S, P) * scale
  11872. if (masked) {
  11873. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11874. // S[i] = 0;
  11875. // }
  11876. for (int64_t i = P; i < M; i++) {
  11877. if (i > P + iq1) {
  11878. S[i] = 0;
  11879. }
  11880. }
  11881. }
  11882. ggml_vec_scale_f32(M, S, scale);
  11883. void * grad_q = (char *) dst->data;
  11884. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11885. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11886. const size_t nbgq1 = nb0*neq0;
  11887. const size_t nbgq2 = nb0*neq0*neq1;
  11888. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11889. const size_t nbgk1 = nb0*nek0;
  11890. const size_t nbgk2 = nb0*nek0*nek1;
  11891. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11892. const size_t nbgv1 = nb0*nev0;
  11893. const size_t nbgv2 = nb0*nev0*nev1;
  11894. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11895. // S shape [M,1]
  11896. // SM shape [M,1]
  11897. // kcur shape [D,M]
  11898. // qcur shape [D,1]
  11899. // vcur shape [M,D]
  11900. //
  11901. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11902. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11903. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11904. //
  11905. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11906. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11907. for (int64_t ic = 0; ic < M; ++ic) {
  11908. // dst indices
  11909. const int i1 = iq1;
  11910. const int i2 = iq2;
  11911. const int i3 = iq3;
  11912. ggml_vec_mad_f32(D,
  11913. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11914. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11915. S[ic]);
  11916. }
  11917. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11918. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11919. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11920. for (int64_t ic = 0; ic < M; ++ic) {
  11921. // dst indices
  11922. const int i1 = iq1;
  11923. const int i2 = iq2;
  11924. const int i3 = iq3;
  11925. // ggml_vec_set_f32(D,
  11926. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11927. // 0);
  11928. ggml_vec_mad_f32(D,
  11929. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11930. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11931. S[ic]);
  11932. }
  11933. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11934. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11935. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11936. for (int64_t ic = 0; ic < D; ++ic) {
  11937. // dst indices
  11938. const int i1 = iq1;
  11939. const int i2 = iq2;
  11940. const int i3 = iq3;
  11941. // ggml_vec_set_f32(M,
  11942. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11943. // 0);
  11944. ggml_vec_mad_f32(M,
  11945. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11946. SM,
  11947. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11948. }
  11949. }
  11950. }
  11951. }
  11952. static void ggml_compute_forward_flash_attn_back(
  11953. const struct ggml_compute_params * params,
  11954. const struct ggml_tensor * q,
  11955. const struct ggml_tensor * k,
  11956. const struct ggml_tensor * v,
  11957. const struct ggml_tensor * d,
  11958. const bool masked,
  11959. struct ggml_tensor * dst) {
  11960. switch (q->type) {
  11961. case GGML_TYPE_F32:
  11962. {
  11963. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11964. } break;
  11965. default:
  11966. {
  11967. GGML_ASSERT(false);
  11968. } break;
  11969. }
  11970. }
  11971. // ggml_compute_forward_win_part
  11972. static void ggml_compute_forward_win_part_f32(
  11973. const struct ggml_compute_params * params,
  11974. const struct ggml_tensor * src0,
  11975. struct ggml_tensor * dst) {
  11976. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11977. return;
  11978. }
  11979. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11980. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11981. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11982. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11983. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11984. assert(ne00 == ne0);
  11985. assert(ne3 == nep0*nep1);
  11986. // TODO: optimize / multi-thread
  11987. for (int py = 0; py < nep1; ++py) {
  11988. for (int px = 0; px < nep0; ++px) {
  11989. const int64_t i3 = py*nep0 + px;
  11990. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11991. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11992. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11993. const int64_t i02 = py*w + i2;
  11994. const int64_t i01 = px*w + i1;
  11995. const int64_t i00 = i0;
  11996. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11997. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11998. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11999. ((float *) dst->data)[i] = 0.0f;
  12000. } else {
  12001. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12002. }
  12003. }
  12004. }
  12005. }
  12006. }
  12007. }
  12008. }
  12009. static void ggml_compute_forward_win_part(
  12010. const struct ggml_compute_params * params,
  12011. const struct ggml_tensor * src0,
  12012. struct ggml_tensor * dst) {
  12013. switch (src0->type) {
  12014. case GGML_TYPE_F32:
  12015. {
  12016. ggml_compute_forward_win_part_f32(params, src0, dst);
  12017. } break;
  12018. default:
  12019. {
  12020. GGML_ASSERT(false);
  12021. } break;
  12022. }
  12023. }
  12024. // ggml_compute_forward_win_unpart
  12025. static void ggml_compute_forward_win_unpart_f32(
  12026. const struct ggml_compute_params * params,
  12027. const struct ggml_tensor * src0,
  12028. struct ggml_tensor * dst) {
  12029. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12030. return;
  12031. }
  12032. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12033. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12034. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12035. // padding
  12036. const int px = (w - ne1%w)%w;
  12037. //const int py = (w - ne2%w)%w;
  12038. const int npx = (px + ne1)/w;
  12039. //const int npy = (py + ne2)/w;
  12040. assert(ne0 == ne00);
  12041. // TODO: optimize / multi-thread
  12042. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12043. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12044. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12045. const int ip2 = i2/w;
  12046. const int ip1 = i1/w;
  12047. const int64_t i02 = i2%w;
  12048. const int64_t i01 = i1%w;
  12049. const int64_t i00 = i0;
  12050. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12051. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12052. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12053. }
  12054. }
  12055. }
  12056. }
  12057. static void ggml_compute_forward_win_unpart(
  12058. const struct ggml_compute_params * params,
  12059. const struct ggml_tensor * src0,
  12060. struct ggml_tensor * dst) {
  12061. switch (src0->type) {
  12062. case GGML_TYPE_F32:
  12063. {
  12064. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12065. } break;
  12066. default:
  12067. {
  12068. GGML_ASSERT(false);
  12069. } break;
  12070. }
  12071. }
  12072. //gmml_compute_forward_unary
  12073. static void ggml_compute_forward_unary(
  12074. const struct ggml_compute_params * params,
  12075. const struct ggml_tensor * src0,
  12076. struct ggml_tensor * dst) {
  12077. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12078. switch (op) {
  12079. case GGML_UNARY_OP_ABS:
  12080. {
  12081. ggml_compute_forward_abs(params, src0, dst);
  12082. } break;
  12083. case GGML_UNARY_OP_SGN:
  12084. {
  12085. ggml_compute_forward_sgn(params, src0, dst);
  12086. } break;
  12087. case GGML_UNARY_OP_NEG:
  12088. {
  12089. ggml_compute_forward_neg(params, src0, dst);
  12090. } break;
  12091. case GGML_UNARY_OP_STEP:
  12092. {
  12093. ggml_compute_forward_step(params, src0, dst);
  12094. } break;
  12095. case GGML_UNARY_OP_TANH:
  12096. {
  12097. ggml_compute_forward_tanh(params, src0, dst);
  12098. } break;
  12099. case GGML_UNARY_OP_ELU:
  12100. {
  12101. ggml_compute_forward_elu(params, src0, dst);
  12102. } break;
  12103. case GGML_UNARY_OP_RELU:
  12104. {
  12105. ggml_compute_forward_relu(params, src0, dst);
  12106. } break;
  12107. case GGML_UNARY_OP_GELU:
  12108. {
  12109. ggml_compute_forward_gelu(params, src0, dst);
  12110. } break;
  12111. case GGML_UNARY_OP_GELU_QUICK:
  12112. {
  12113. ggml_compute_forward_gelu_quick(params, src0, dst);
  12114. } break;
  12115. case GGML_UNARY_OP_SILU:
  12116. {
  12117. ggml_compute_forward_silu(params, src0, dst);
  12118. } break;
  12119. default:
  12120. {
  12121. GGML_ASSERT(false);
  12122. } break;
  12123. }
  12124. }
  12125. // ggml_compute_forward_get_rel_pos
  12126. static void ggml_compute_forward_get_rel_pos_f16(
  12127. const struct ggml_compute_params * params,
  12128. const struct ggml_tensor * src0,
  12129. struct ggml_tensor * dst) {
  12130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12131. return;
  12132. }
  12133. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12134. GGML_TENSOR_UNARY_OP_LOCALS;
  12135. const int64_t w = ne1;
  12136. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12137. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12138. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12139. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12140. const int64_t pos = (w - i1 - 1) + i2;
  12141. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12142. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12143. }
  12144. }
  12145. }
  12146. }
  12147. static void ggml_compute_forward_get_rel_pos(
  12148. const struct ggml_compute_params * params,
  12149. const struct ggml_tensor * src0,
  12150. struct ggml_tensor * dst) {
  12151. switch (src0->type) {
  12152. case GGML_TYPE_F16:
  12153. {
  12154. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12155. } break;
  12156. default:
  12157. {
  12158. GGML_ASSERT(false);
  12159. } break;
  12160. }
  12161. }
  12162. // ggml_compute_forward_add_rel_pos
  12163. static void ggml_compute_forward_add_rel_pos_f32(
  12164. const struct ggml_compute_params * params,
  12165. const struct ggml_tensor * src0,
  12166. const struct ggml_tensor * src1,
  12167. const struct ggml_tensor * src2,
  12168. struct ggml_tensor * dst) {
  12169. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12170. if (!inplace && params->type == GGML_TASK_INIT) {
  12171. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12172. return;
  12173. }
  12174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12175. return;
  12176. }
  12177. int64_t t0 = ggml_perf_time_us();
  12178. UNUSED(t0);
  12179. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12180. float * src1_data = (float *) src1->data;
  12181. float * src2_data = (float *) src2->data;
  12182. float * dst_data = (float *) dst->data;
  12183. const int64_t ne10 = src1->ne[0];
  12184. const int64_t ne11 = src1->ne[1];
  12185. const int64_t ne12 = src1->ne[2];
  12186. const int64_t ne13 = src1->ne[3];
  12187. const int ith = params->ith;
  12188. const int nth = params->nth;
  12189. // total patches in dst
  12190. const int np = ne13;
  12191. // patches per thread
  12192. const int dp = (np + nth - 1)/nth;
  12193. // patch range for this thread
  12194. const int ip0 = dp*ith;
  12195. const int ip1 = MIN(ip0 + dp, np);
  12196. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12197. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12198. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12199. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12200. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12201. const int64_t jp0 = jp1 + i10;
  12202. const float src1_e = src1_data[jp0];
  12203. const float src2_e = src2_data[jp0];
  12204. const int64_t jdh = jp0 * ne10;
  12205. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12206. for (int64_t j = 0; j < ne10; ++j) {
  12207. dst_data[jdh + j ] += src2_e;
  12208. dst_data[jdw + j*ne10] += src1_e;
  12209. }
  12210. }
  12211. }
  12212. }
  12213. }
  12214. }
  12215. static void ggml_compute_forward_add_rel_pos(
  12216. const struct ggml_compute_params * params,
  12217. const struct ggml_tensor * src0,
  12218. const struct ggml_tensor * src1,
  12219. const struct ggml_tensor * src2,
  12220. struct ggml_tensor * dst) {
  12221. switch (src0->type) {
  12222. case GGML_TYPE_F32:
  12223. {
  12224. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12225. } break;
  12226. default:
  12227. {
  12228. GGML_ASSERT(false);
  12229. } break;
  12230. }
  12231. }
  12232. // ggml_compute_forward_map_unary
  12233. static void ggml_compute_forward_map_unary_f32(
  12234. const struct ggml_compute_params * params,
  12235. const struct ggml_tensor * src0,
  12236. struct ggml_tensor * dst,
  12237. const ggml_unary_op_f32_t fun) {
  12238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12239. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12240. return;
  12241. }
  12242. const int n = ggml_nrows(src0);
  12243. const int nc = src0->ne[0];
  12244. assert( dst->nb[0] == sizeof(float));
  12245. assert(src0->nb[0] == sizeof(float));
  12246. for (int i = 0; i < n; i++) {
  12247. fun(nc,
  12248. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12249. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12250. }
  12251. }
  12252. static void ggml_compute_forward_map_unary(
  12253. const struct ggml_compute_params * params,
  12254. const struct ggml_tensor * src0,
  12255. struct ggml_tensor * dst,
  12256. const ggml_unary_op_f32_t fun) {
  12257. switch (src0->type) {
  12258. case GGML_TYPE_F32:
  12259. {
  12260. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12261. } break;
  12262. default:
  12263. {
  12264. GGML_ASSERT(false);
  12265. } break;
  12266. }
  12267. }
  12268. // ggml_compute_forward_map_binary
  12269. static void ggml_compute_forward_map_binary_f32(
  12270. const struct ggml_compute_params * params,
  12271. const struct ggml_tensor * src0,
  12272. const struct ggml_tensor * src1,
  12273. struct ggml_tensor * dst,
  12274. const ggml_binary_op_f32_t fun) {
  12275. assert(params->ith == 0);
  12276. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12278. return;
  12279. }
  12280. const int n = ggml_nrows(src0);
  12281. const int nc = src0->ne[0];
  12282. assert( dst->nb[0] == sizeof(float));
  12283. assert(src0->nb[0] == sizeof(float));
  12284. assert(src1->nb[0] == sizeof(float));
  12285. for (int i = 0; i < n; i++) {
  12286. fun(nc,
  12287. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12288. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12289. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12290. }
  12291. }
  12292. static void ggml_compute_forward_map_binary(
  12293. const struct ggml_compute_params * params,
  12294. const struct ggml_tensor * src0,
  12295. const struct ggml_tensor * src1,
  12296. struct ggml_tensor * dst,
  12297. const ggml_binary_op_f32_t fun) {
  12298. switch (src0->type) {
  12299. case GGML_TYPE_F32:
  12300. {
  12301. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12302. } break;
  12303. default:
  12304. {
  12305. GGML_ASSERT(false);
  12306. } break;
  12307. }
  12308. }
  12309. // ggml_compute_forward_map_custom1
  12310. static void ggml_compute_forward_map_custom1_f32(
  12311. const struct ggml_compute_params * params,
  12312. const struct ggml_tensor * a,
  12313. struct ggml_tensor * dst,
  12314. const ggml_custom1_op_f32_t fun) {
  12315. assert(params->ith == 0);
  12316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12317. return;
  12318. }
  12319. fun(dst, a);
  12320. }
  12321. // ggml_compute_forward_map_custom2
  12322. static void ggml_compute_forward_map_custom2_f32(
  12323. const struct ggml_compute_params * params,
  12324. const struct ggml_tensor * a,
  12325. const struct ggml_tensor * b,
  12326. struct ggml_tensor * dst,
  12327. const ggml_custom2_op_f32_t fun) {
  12328. assert(params->ith == 0);
  12329. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12330. return;
  12331. }
  12332. fun(dst, a, b);
  12333. }
  12334. // ggml_compute_forward_map_custom3
  12335. static void ggml_compute_forward_map_custom3_f32(
  12336. const struct ggml_compute_params * params,
  12337. const struct ggml_tensor * a,
  12338. const struct ggml_tensor * b,
  12339. const struct ggml_tensor * c,
  12340. struct ggml_tensor * dst,
  12341. const ggml_custom3_op_f32_t fun) {
  12342. assert(params->ith == 0);
  12343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12344. return;
  12345. }
  12346. fun(dst, a, b, c);
  12347. }
  12348. // ggml_compute_forward_map_custom1
  12349. static void ggml_compute_forward_map_custom1(
  12350. const struct ggml_compute_params * params,
  12351. const struct ggml_tensor * a,
  12352. struct ggml_tensor * dst) {
  12353. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12354. return;
  12355. }
  12356. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12357. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12358. }
  12359. // ggml_compute_forward_map_custom2
  12360. static void ggml_compute_forward_map_custom2(
  12361. const struct ggml_compute_params * params,
  12362. const struct ggml_tensor * a,
  12363. const struct ggml_tensor * b,
  12364. struct ggml_tensor * dst) {
  12365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12366. return;
  12367. }
  12368. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12369. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12370. }
  12371. // ggml_compute_forward_map_custom3
  12372. static void ggml_compute_forward_map_custom3(
  12373. const struct ggml_compute_params * params,
  12374. const struct ggml_tensor * a,
  12375. const struct ggml_tensor * b,
  12376. const struct ggml_tensor * c,
  12377. struct ggml_tensor * dst) {
  12378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12379. return;
  12380. }
  12381. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12382. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12383. }
  12384. // ggml_compute_forward_cross_entropy_loss
  12385. static void ggml_compute_forward_cross_entropy_loss_f32(
  12386. const struct ggml_compute_params * params,
  12387. const struct ggml_tensor * src0,
  12388. const struct ggml_tensor * src1,
  12389. struct ggml_tensor * dst) {
  12390. GGML_ASSERT(ggml_is_contiguous(src0));
  12391. GGML_ASSERT(ggml_is_contiguous(src1));
  12392. GGML_ASSERT(ggml_is_scalar(dst));
  12393. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12394. const int ith = params->ith;
  12395. const int nth = params->nth;
  12396. float * sums = (float *) params->wdata;
  12397. // TODO: handle transposed/permuted matrices
  12398. const int nc = src0->ne[0];
  12399. const int nr = ggml_nrows(src0);
  12400. if (params->type == GGML_TASK_INIT) {
  12401. if (ith == 0) {
  12402. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12403. }
  12404. return;
  12405. }
  12406. if (params->type == GGML_TASK_FINALIZE) {
  12407. if (ith == 0) {
  12408. float * dp = (float *) dst->data;
  12409. ggml_vec_sum_f32(nth, dp, sums);
  12410. dp[0] *= -1.0f;
  12411. }
  12412. return;
  12413. }
  12414. const double eps = 1e-9;
  12415. // rows per thread
  12416. const int dr = (nr + nth - 1)/nth;
  12417. // row range for this thread
  12418. const int ir0 = dr*ith;
  12419. const int ir1 = MIN(ir0 + dr, nr);
  12420. for (int i1 = ir0; i1 < ir1; i1++) {
  12421. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12422. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12423. float * st = (float *) params->wdata + nth + ith*nc;
  12424. #ifndef NDEBUG
  12425. for (int i = 0; i < nc; ++i) {
  12426. //printf("p[%d] = %f\n", i, p[i]);
  12427. assert(!isnan(s0[i]));
  12428. assert(!isnan(s1[i]));
  12429. }
  12430. #endif
  12431. // soft_max
  12432. ggml_float sum = 0.0;
  12433. {
  12434. float max = -INFINITY;
  12435. ggml_vec_max_f32(nc, &max, s0);
  12436. uint16_t scvt;
  12437. for (int i = 0; i < nc; i++) {
  12438. if (s0[i] == -INFINITY) {
  12439. st[i] = 0.0f;
  12440. } else {
  12441. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12442. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12443. memcpy(&scvt, &s, sizeof(scvt));
  12444. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12445. sum += (ggml_float)val;
  12446. st[i] = val;
  12447. }
  12448. }
  12449. assert(sum > 0.0);
  12450. // sum = 1.0/sum;
  12451. }
  12452. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12453. sum = (1.0 - eps) / sum;
  12454. ggml_vec_scale_f32(nc, st, sum);
  12455. ggml_vec_add1_f32(nc, st, st, eps);
  12456. ggml_vec_log_f32(nc, st, st);
  12457. ggml_vec_mul_f32(nc, st, st, s1);
  12458. ggml_vec_sum_f32(nc, sums + ith, st);
  12459. #ifndef NDEBUG
  12460. for (int i = 0; i < nc; ++i) {
  12461. assert(!isnan(st[i]));
  12462. assert(!isinf(st[i]));
  12463. }
  12464. #endif
  12465. }
  12466. }
  12467. static void ggml_compute_forward_cross_entropy_loss(
  12468. const struct ggml_compute_params * params,
  12469. const struct ggml_tensor * src0,
  12470. const struct ggml_tensor * src1,
  12471. struct ggml_tensor * dst) {
  12472. switch (src0->type) {
  12473. case GGML_TYPE_F32:
  12474. {
  12475. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12476. } break;
  12477. default:
  12478. {
  12479. GGML_ASSERT(false);
  12480. } break;
  12481. }
  12482. }
  12483. // ggml_compute_forward_cross_entropy_loss_back
  12484. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12485. const struct ggml_compute_params * params,
  12486. const struct ggml_tensor * src0,
  12487. const struct ggml_tensor * src1,
  12488. const struct ggml_tensor * opt0,
  12489. struct ggml_tensor * dst) {
  12490. GGML_ASSERT(ggml_is_contiguous(dst));
  12491. GGML_ASSERT(ggml_is_contiguous(src0));
  12492. GGML_ASSERT(ggml_is_contiguous(src1));
  12493. GGML_ASSERT(ggml_is_contiguous(opt0));
  12494. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12495. const int64_t ith = params->ith;
  12496. const int64_t nth = params->nth;
  12497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12498. return;
  12499. }
  12500. const float eps = 1e-9f;
  12501. // TODO: handle transposed/permuted matrices
  12502. const int64_t nc = src0->ne[0];
  12503. const int64_t nr = ggml_nrows(src0);
  12504. // rows per thread
  12505. const int64_t dr = (nr + nth - 1)/nth;
  12506. // row range for this thread
  12507. const int64_t ir0 = dr*ith;
  12508. const int64_t ir1 = MIN(ir0 + dr, nr);
  12509. float * d = (float *) opt0->data;
  12510. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12511. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12512. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12513. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12514. float * sm = (float *) params->wdata + ith*nc;
  12515. #ifndef NDEBUG
  12516. for (int i = 0; i < nc; ++i) {
  12517. //printf("p[%d] = %f\n", i, p[i]);
  12518. assert(!isnan(s0[i]));
  12519. assert(!isnan(s1[i]));
  12520. }
  12521. #endif
  12522. // step by step explanation:
  12523. {
  12524. //float * sums = (float *) params->wdata;
  12525. // forward pass with annotated gradients from backward pass
  12526. // (built by going in reverse operation order, adding to gradients of current operation args)
  12527. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12528. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12529. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12530. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12531. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12532. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12533. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12534. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12535. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12536. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12537. // postorder:
  12538. // grad[st1] := softmax(s0)
  12539. // grad[st1] := grad[st1]*(1.0 - eps)
  12540. // grad[st1] := grad[st1] + eps
  12541. // grad[st1] := s1 / grad[st1]
  12542. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12543. // src0 gradients by going through softmax_back
  12544. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12545. // from softmax_back:
  12546. // dxk = yk * (dyk - dot(y, dy))
  12547. // dot_y_dy := dot(y, dy)
  12548. // dx := dy
  12549. // dx := dx - dot_y_dy
  12550. // dx := dx * y
  12551. // postorder:
  12552. // dot_st1_dst1 := dot(st1, grad[st1])
  12553. // grad[s0] := grad[st1]
  12554. // grad[s0] := grad[s0] - dot_st1_dst1
  12555. // grad[s0] := grad[s0] * st1
  12556. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12557. // sm := softmax(s0)
  12558. // grad[s0] := sm*(1.0 - eps)
  12559. // grad[s0] := grad[s0] + eps
  12560. // grad[s0] := s1 / grad[s0]
  12561. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12562. // dot_st1_dst1 := dot(sm, grad[s0])
  12563. // grad[s0] := grad[s0] - dot_st1_dst1
  12564. // grad[s0] := grad[s0] * sm
  12565. }
  12566. // soft_max
  12567. ggml_float sum = 0.0;
  12568. {
  12569. float max = -INFINITY;
  12570. ggml_vec_max_f32(nc, &max, s0);
  12571. uint16_t scvt;
  12572. for (int i = 0; i < nc; i++) {
  12573. if (s0[i] == -INFINITY) {
  12574. sm[i] = 0.0f;
  12575. } else {
  12576. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12577. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12578. memcpy(&scvt, &s, sizeof(scvt));
  12579. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12580. sum += (ggml_float)val;
  12581. sm[i] = val;
  12582. }
  12583. }
  12584. assert(sum > 0.0);
  12585. sum = 1.0/sum;
  12586. }
  12587. float dot_st1_dst1 = 0;
  12588. ggml_vec_scale_f32(nc, sm, sum);
  12589. ggml_vec_cpy_f32 (nc, ds0, sm);
  12590. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12591. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12592. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12593. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12594. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12595. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12596. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12597. #ifndef NDEBUG
  12598. for (int i = 0; i < nc; ++i) {
  12599. assert(!isnan(sm[i]));
  12600. assert(!isinf(sm[i]));
  12601. assert(!isnan(ds0[i]));
  12602. assert(!isinf(ds0[i]));
  12603. }
  12604. #endif
  12605. }
  12606. }
  12607. static void ggml_compute_forward_cross_entropy_loss_back(
  12608. const struct ggml_compute_params * params,
  12609. const struct ggml_tensor * src0,
  12610. const struct ggml_tensor * src1,
  12611. const struct ggml_tensor * opt0,
  12612. struct ggml_tensor * dst) {
  12613. switch (src0->type) {
  12614. case GGML_TYPE_F32:
  12615. {
  12616. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12617. } break;
  12618. default:
  12619. {
  12620. GGML_ASSERT(false);
  12621. } break;
  12622. }
  12623. }
  12624. /////////////////////////////////
  12625. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12626. GGML_ASSERT(params);
  12627. #ifdef GGML_USE_CUBLAS
  12628. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12629. if (skip_cpu) {
  12630. return;
  12631. }
  12632. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12633. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12634. #endif // GGML_USE_CUBLAS
  12635. switch (tensor->op) {
  12636. case GGML_OP_DUP:
  12637. {
  12638. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12639. } break;
  12640. case GGML_OP_ADD:
  12641. {
  12642. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12643. } break;
  12644. case GGML_OP_ADD1:
  12645. {
  12646. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12647. } break;
  12648. case GGML_OP_ACC:
  12649. {
  12650. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12651. } break;
  12652. case GGML_OP_SUB:
  12653. {
  12654. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12655. } break;
  12656. case GGML_OP_MUL:
  12657. {
  12658. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12659. } break;
  12660. case GGML_OP_DIV:
  12661. {
  12662. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12663. } break;
  12664. case GGML_OP_SQR:
  12665. {
  12666. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12667. } break;
  12668. case GGML_OP_SQRT:
  12669. {
  12670. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12671. } break;
  12672. case GGML_OP_LOG:
  12673. {
  12674. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12675. } break;
  12676. case GGML_OP_SUM:
  12677. {
  12678. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12679. } break;
  12680. case GGML_OP_SUM_ROWS:
  12681. {
  12682. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12683. } break;
  12684. case GGML_OP_MEAN:
  12685. {
  12686. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12687. } break;
  12688. case GGML_OP_ARGMAX:
  12689. {
  12690. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12691. } break;
  12692. case GGML_OP_REPEAT:
  12693. {
  12694. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12695. } break;
  12696. case GGML_OP_REPEAT_BACK:
  12697. {
  12698. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12699. } break;
  12700. case GGML_OP_CONCAT:
  12701. {
  12702. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12703. } break;
  12704. case GGML_OP_SILU_BACK:
  12705. {
  12706. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12707. } break;
  12708. case GGML_OP_NORM:
  12709. {
  12710. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12711. } break;
  12712. case GGML_OP_RMS_NORM:
  12713. {
  12714. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12715. } break;
  12716. case GGML_OP_RMS_NORM_BACK:
  12717. {
  12718. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12719. } break;
  12720. case GGML_OP_GROUP_NORM:
  12721. {
  12722. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12723. } break;
  12724. case GGML_OP_MUL_MAT:
  12725. {
  12726. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12727. } break;
  12728. case GGML_OP_OUT_PROD:
  12729. {
  12730. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12731. } break;
  12732. case GGML_OP_SCALE:
  12733. {
  12734. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12735. } break;
  12736. case GGML_OP_SET:
  12737. {
  12738. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12739. } break;
  12740. case GGML_OP_CPY:
  12741. {
  12742. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12743. } break;
  12744. case GGML_OP_CONT:
  12745. {
  12746. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12747. } break;
  12748. case GGML_OP_RESHAPE:
  12749. {
  12750. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12751. } break;
  12752. case GGML_OP_VIEW:
  12753. {
  12754. ggml_compute_forward_view(params, tensor->src[0]);
  12755. } break;
  12756. case GGML_OP_PERMUTE:
  12757. {
  12758. ggml_compute_forward_permute(params, tensor->src[0]);
  12759. } break;
  12760. case GGML_OP_TRANSPOSE:
  12761. {
  12762. ggml_compute_forward_transpose(params, tensor->src[0]);
  12763. } break;
  12764. case GGML_OP_GET_ROWS:
  12765. {
  12766. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12767. } break;
  12768. case GGML_OP_GET_ROWS_BACK:
  12769. {
  12770. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12771. } break;
  12772. case GGML_OP_DIAG:
  12773. {
  12774. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12775. } break;
  12776. case GGML_OP_DIAG_MASK_INF:
  12777. {
  12778. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12779. } break;
  12780. case GGML_OP_DIAG_MASK_ZERO:
  12781. {
  12782. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12783. } break;
  12784. case GGML_OP_SOFT_MAX:
  12785. {
  12786. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12787. } break;
  12788. case GGML_OP_SOFT_MAX_BACK:
  12789. {
  12790. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12791. } break;
  12792. case GGML_OP_ROPE:
  12793. {
  12794. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12795. } break;
  12796. case GGML_OP_ROPE_BACK:
  12797. {
  12798. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12799. } break;
  12800. case GGML_OP_ALIBI:
  12801. {
  12802. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12803. } break;
  12804. case GGML_OP_CLAMP:
  12805. {
  12806. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12807. } break;
  12808. case GGML_OP_CONV_1D:
  12809. {
  12810. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12811. } break;
  12812. case GGML_OP_CONV_2D:
  12813. {
  12814. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12815. } break;
  12816. case GGML_OP_CONV_TRANSPOSE_2D:
  12817. {
  12818. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12819. } break;
  12820. case GGML_OP_POOL_1D:
  12821. {
  12822. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12823. } break;
  12824. case GGML_OP_POOL_2D:
  12825. {
  12826. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12827. } break;
  12828. case GGML_OP_UPSCALE:
  12829. {
  12830. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12831. } break;
  12832. case GGML_OP_FLASH_ATTN:
  12833. {
  12834. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12835. GGML_ASSERT(t == 0 || t == 1);
  12836. const bool masked = t != 0;
  12837. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12838. } break;
  12839. case GGML_OP_FLASH_FF:
  12840. {
  12841. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12842. } break;
  12843. case GGML_OP_FLASH_ATTN_BACK:
  12844. {
  12845. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12846. GGML_ASSERT(t == 0 || t == 1);
  12847. bool masked = t != 0;
  12848. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12849. } break;
  12850. case GGML_OP_WIN_PART:
  12851. {
  12852. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12853. } break;
  12854. case GGML_OP_WIN_UNPART:
  12855. {
  12856. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12857. } break;
  12858. case GGML_OP_UNARY:
  12859. {
  12860. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12861. } break;
  12862. case GGML_OP_GET_REL_POS:
  12863. {
  12864. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12865. } break;
  12866. case GGML_OP_ADD_REL_POS:
  12867. {
  12868. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12869. } break;
  12870. case GGML_OP_MAP_UNARY:
  12871. {
  12872. ggml_unary_op_f32_t fun;
  12873. memcpy(&fun, tensor->op_params, sizeof(fun));
  12874. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12875. }
  12876. break;
  12877. case GGML_OP_MAP_BINARY:
  12878. {
  12879. ggml_binary_op_f32_t fun;
  12880. memcpy(&fun, tensor->op_params, sizeof(fun));
  12881. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12882. }
  12883. break;
  12884. case GGML_OP_MAP_CUSTOM1_F32:
  12885. {
  12886. ggml_custom1_op_f32_t fun;
  12887. memcpy(&fun, tensor->op_params, sizeof(fun));
  12888. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12889. }
  12890. break;
  12891. case GGML_OP_MAP_CUSTOM2_F32:
  12892. {
  12893. ggml_custom2_op_f32_t fun;
  12894. memcpy(&fun, tensor->op_params, sizeof(fun));
  12895. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12896. }
  12897. break;
  12898. case GGML_OP_MAP_CUSTOM3_F32:
  12899. {
  12900. ggml_custom3_op_f32_t fun;
  12901. memcpy(&fun, tensor->op_params, sizeof(fun));
  12902. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12903. }
  12904. break;
  12905. case GGML_OP_MAP_CUSTOM1:
  12906. {
  12907. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12908. }
  12909. break;
  12910. case GGML_OP_MAP_CUSTOM2:
  12911. {
  12912. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12913. }
  12914. break;
  12915. case GGML_OP_MAP_CUSTOM3:
  12916. {
  12917. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12918. }
  12919. break;
  12920. case GGML_OP_CROSS_ENTROPY_LOSS:
  12921. {
  12922. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12923. }
  12924. break;
  12925. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12926. {
  12927. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12928. }
  12929. break;
  12930. case GGML_OP_NONE:
  12931. {
  12932. // nop
  12933. } break;
  12934. case GGML_OP_COUNT:
  12935. {
  12936. GGML_ASSERT(false);
  12937. } break;
  12938. }
  12939. }
  12940. ////////////////////////////////////////////////////////////////////////////////
  12941. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12942. struct ggml_tensor * src0 = tensor->src[0];
  12943. struct ggml_tensor * src1 = tensor->src[1];
  12944. switch (tensor->op) {
  12945. case GGML_OP_DUP:
  12946. {
  12947. if (src0->grad) {
  12948. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12949. }
  12950. } break;
  12951. case GGML_OP_ADD:
  12952. {
  12953. if (src0->grad) {
  12954. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12955. }
  12956. if (src1->grad) {
  12957. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12958. }
  12959. } break;
  12960. case GGML_OP_ADD1:
  12961. {
  12962. if (src0->grad) {
  12963. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12964. }
  12965. if (src1->grad) {
  12966. src1->grad = ggml_add_impl(ctx,
  12967. src1->grad,
  12968. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12969. inplace);
  12970. }
  12971. } break;
  12972. case GGML_OP_ACC:
  12973. {
  12974. if (src0->grad) {
  12975. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12976. }
  12977. if (src1->grad) {
  12978. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12979. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12980. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12981. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12982. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12983. tensor->grad,
  12984. src1->grad->ne[0],
  12985. src1->grad->ne[1],
  12986. src1->grad->ne[2],
  12987. src1->grad->ne[3],
  12988. nb1, nb2, nb3, offset);
  12989. src1->grad =
  12990. ggml_add_impl(ctx,
  12991. src1->grad,
  12992. ggml_reshape(ctx,
  12993. ggml_cont(ctx, tensor_grad_view),
  12994. src1->grad),
  12995. inplace);
  12996. }
  12997. } break;
  12998. case GGML_OP_SUB:
  12999. {
  13000. if (src0->grad) {
  13001. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13002. }
  13003. if (src1->grad) {
  13004. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13005. }
  13006. } break;
  13007. case GGML_OP_MUL:
  13008. {
  13009. if (src0->grad) {
  13010. src0->grad =
  13011. ggml_add_impl(ctx,
  13012. src0->grad,
  13013. ggml_mul(ctx, src1, tensor->grad),
  13014. inplace);
  13015. }
  13016. if (src1->grad) {
  13017. src1->grad =
  13018. ggml_add_impl(ctx,
  13019. src1->grad,
  13020. ggml_mul(ctx, src0, tensor->grad),
  13021. inplace);
  13022. }
  13023. } break;
  13024. case GGML_OP_DIV:
  13025. {
  13026. if (src0->grad) {
  13027. src0->grad =
  13028. ggml_add_impl(ctx,
  13029. src0->grad,
  13030. ggml_div(ctx, tensor->grad, src1),
  13031. inplace);
  13032. }
  13033. if (src1->grad) {
  13034. src1->grad =
  13035. ggml_sub_impl(ctx,
  13036. src1->grad,
  13037. ggml_mul(ctx,
  13038. tensor->grad,
  13039. ggml_div(ctx, tensor, src1)),
  13040. inplace);
  13041. }
  13042. } break;
  13043. case GGML_OP_SQR:
  13044. {
  13045. if (src0->grad) {
  13046. src0->grad =
  13047. ggml_add_impl(ctx,
  13048. src0->grad,
  13049. ggml_scale(ctx,
  13050. ggml_mul(ctx, src0, tensor->grad),
  13051. ggml_new_f32(ctx, 2.0f)),
  13052. inplace);
  13053. }
  13054. } break;
  13055. case GGML_OP_SQRT:
  13056. {
  13057. if (src0->grad) {
  13058. src0->grad =
  13059. ggml_add_impl(ctx,
  13060. src0->grad,
  13061. ggml_scale(ctx,
  13062. ggml_div(ctx,
  13063. tensor->grad,
  13064. tensor),
  13065. ggml_new_f32(ctx, 0.5f)),
  13066. inplace);
  13067. }
  13068. } break;
  13069. case GGML_OP_LOG:
  13070. {
  13071. if (src0->grad) {
  13072. src0->grad =
  13073. ggml_add_impl(ctx,
  13074. src0->grad,
  13075. ggml_div(ctx,
  13076. tensor->grad,
  13077. src0),
  13078. inplace);
  13079. }
  13080. } break;
  13081. case GGML_OP_SUM:
  13082. {
  13083. if (src0->grad) {
  13084. src0->grad =
  13085. ggml_add1_impl(ctx,
  13086. src0->grad,
  13087. tensor->grad,
  13088. inplace);
  13089. }
  13090. } break;
  13091. case GGML_OP_SUM_ROWS:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad =
  13095. ggml_add_impl(ctx,
  13096. src0->grad,
  13097. ggml_repeat(ctx,
  13098. tensor->grad,
  13099. src0->grad),
  13100. inplace);
  13101. }
  13102. } break;
  13103. case GGML_OP_MEAN:
  13104. case GGML_OP_ARGMAX:
  13105. {
  13106. GGML_ASSERT(false); // TODO: implement
  13107. } break;
  13108. case GGML_OP_REPEAT:
  13109. {
  13110. // necessary for llama
  13111. if (src0->grad) {
  13112. src0->grad = ggml_add_impl(ctx,
  13113. src0->grad,
  13114. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13115. inplace);
  13116. }
  13117. } break;
  13118. case GGML_OP_REPEAT_BACK:
  13119. {
  13120. if (src0->grad) {
  13121. // TODO: test this
  13122. src0->grad = ggml_add_impl(ctx,
  13123. src0->grad,
  13124. ggml_repeat(ctx, tensor->grad, src0->grad),
  13125. inplace);
  13126. }
  13127. } break;
  13128. case GGML_OP_CONCAT:
  13129. {
  13130. GGML_ASSERT(false); // TODO: implement
  13131. } break;
  13132. case GGML_OP_SILU_BACK:
  13133. {
  13134. GGML_ASSERT(false); // TODO: not implemented
  13135. } break;
  13136. case GGML_OP_NORM:
  13137. {
  13138. GGML_ASSERT(false); // TODO: not implemented
  13139. } break;
  13140. case GGML_OP_RMS_NORM:
  13141. {
  13142. // necessary for llama
  13143. if (src0->grad) {
  13144. src0->grad = ggml_add_impl(ctx,
  13145. src0->grad,
  13146. ggml_rms_norm_back(ctx, src0, tensor->grad),
  13147. inplace);
  13148. }
  13149. } break;
  13150. case GGML_OP_RMS_NORM_BACK:
  13151. {
  13152. GGML_ASSERT(false); // TODO: not implemented
  13153. } break;
  13154. case GGML_OP_GROUP_NORM:
  13155. {
  13156. GGML_ASSERT(false); // TODO: not implemented
  13157. } break;
  13158. case GGML_OP_MUL_MAT:
  13159. {
  13160. // https://cs231n.github.io/optimization-2/#staged
  13161. // # forward pass
  13162. // s0 = np.random.randn(5, 10)
  13163. // s1 = np.random.randn(10, 3)
  13164. // t = s0.dot(s1)
  13165. // # now suppose we had the gradient on t from above in the circuit
  13166. // dt = np.random.randn(*t.shape) # same shape as t
  13167. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13168. // ds1 = t.T.dot(dt)
  13169. // tensor.shape [m,p]
  13170. // src0.shape [n,m]
  13171. // src1.shape [n,p]
  13172. // necessary for llama
  13173. if (src0->grad) {
  13174. src0->grad =
  13175. ggml_add_impl(ctx,
  13176. src0->grad,
  13177. ggml_out_prod(ctx, // [n,m]
  13178. src1, // [n,p]
  13179. tensor->grad), // [m,p]
  13180. inplace);
  13181. }
  13182. if (src1->grad) {
  13183. src1->grad =
  13184. ggml_add_impl(ctx,
  13185. src1->grad,
  13186. // ggml_mul_mat(ctx, // [n,p]
  13187. // ggml_cont(ctx, // [m,n]
  13188. // ggml_transpose(ctx, src0)), // [m,n]
  13189. // tensor->grad), // [m,p]
  13190. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13191. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13192. // // and then use ggml_out_prod
  13193. ggml_out_prod(ctx, // [n,p]
  13194. src0, // [n,m]
  13195. ggml_transpose(ctx, // [p,m]
  13196. tensor->grad)), // [m,p]
  13197. inplace);
  13198. }
  13199. } break;
  13200. case GGML_OP_OUT_PROD:
  13201. {
  13202. GGML_ASSERT(false); // TODO: not implemented
  13203. } break;
  13204. case GGML_OP_SCALE:
  13205. {
  13206. // necessary for llama
  13207. if (src0->grad) {
  13208. src0->grad =
  13209. ggml_add_impl(ctx,
  13210. src0->grad,
  13211. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13212. inplace);
  13213. }
  13214. if (src1->grad) {
  13215. src1->grad =
  13216. ggml_add_impl(ctx,
  13217. src1->grad,
  13218. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13219. inplace);
  13220. }
  13221. } break;
  13222. case GGML_OP_SET:
  13223. {
  13224. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13225. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13226. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13227. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13228. struct ggml_tensor * tensor_grad_view = NULL;
  13229. if (src0->grad || src1->grad) {
  13230. GGML_ASSERT(src0->type == tensor->type);
  13231. GGML_ASSERT(tensor->grad->type == tensor->type);
  13232. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13233. tensor_grad_view = ggml_view_4d(ctx,
  13234. tensor->grad,
  13235. src1->grad->ne[0],
  13236. src1->grad->ne[1],
  13237. src1->grad->ne[2],
  13238. src1->grad->ne[3],
  13239. nb1, nb2, nb3, offset);
  13240. }
  13241. if (src0->grad) {
  13242. src0->grad = ggml_add_impl(ctx,
  13243. src0->grad,
  13244. ggml_acc_impl(ctx,
  13245. tensor->grad,
  13246. ggml_neg(ctx, tensor_grad_view),
  13247. nb1, nb2, nb3, offset, false),
  13248. inplace);
  13249. }
  13250. if (src1->grad) {
  13251. src1->grad =
  13252. ggml_add_impl(ctx,
  13253. src1->grad,
  13254. ggml_reshape(ctx,
  13255. ggml_cont(ctx, tensor_grad_view),
  13256. src1->grad),
  13257. inplace);
  13258. }
  13259. } break;
  13260. case GGML_OP_CPY:
  13261. {
  13262. // necessary for llama
  13263. // cpy overwrites value of src1 by src0 and returns view(src1)
  13264. // the overwriting is mathematically equivalent to:
  13265. // tensor = src0 * 1 + src1 * 0
  13266. if (src0->grad) {
  13267. // dsrc0 = dtensor * 1
  13268. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13269. }
  13270. if (src1->grad) {
  13271. // dsrc1 = dtensor * 0 -> noop
  13272. }
  13273. } break;
  13274. case GGML_OP_CONT:
  13275. {
  13276. // same as cpy
  13277. if (src0->grad) {
  13278. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13279. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13280. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13281. }
  13282. } break;
  13283. case GGML_OP_RESHAPE:
  13284. {
  13285. // necessary for llama
  13286. if (src0->grad) {
  13287. src0->grad =
  13288. ggml_add_impl(ctx, src0->grad,
  13289. ggml_reshape(ctx, tensor->grad, src0->grad),
  13290. inplace);
  13291. }
  13292. } break;
  13293. case GGML_OP_VIEW:
  13294. {
  13295. // necessary for llama
  13296. if (src0->grad) {
  13297. size_t offset;
  13298. memcpy(&offset, tensor->op_params, sizeof(offset));
  13299. size_t nb1 = tensor->nb[1];
  13300. size_t nb2 = tensor->nb[2];
  13301. size_t nb3 = tensor->nb[3];
  13302. if (src0->type != src0->grad->type) {
  13303. // gradient is typically F32, but src0 could be other type
  13304. size_t ng = ggml_element_size(src0->grad);
  13305. size_t n0 = ggml_element_size(src0);
  13306. GGML_ASSERT(offset % n0 == 0);
  13307. GGML_ASSERT(nb1 % n0 == 0);
  13308. GGML_ASSERT(nb2 % n0 == 0);
  13309. GGML_ASSERT(nb3 % n0 == 0);
  13310. offset = (offset / n0) * ng;
  13311. nb1 = (nb1 / n0) * ng;
  13312. nb2 = (nb2 / n0) * ng;
  13313. nb3 = (nb3 / n0) * ng;
  13314. }
  13315. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13316. }
  13317. } break;
  13318. case GGML_OP_PERMUTE:
  13319. {
  13320. // necessary for llama
  13321. if (src0->grad) {
  13322. int32_t * axes = (int32_t *) tensor->op_params;
  13323. int axis0 = axes[0] & 0x3;
  13324. int axis1 = axes[1] & 0x3;
  13325. int axis2 = axes[2] & 0x3;
  13326. int axis3 = axes[3] & 0x3;
  13327. int axes_backward[4] = {0,0,0,0};
  13328. axes_backward[axis0] = 0;
  13329. axes_backward[axis1] = 1;
  13330. axes_backward[axis2] = 2;
  13331. axes_backward[axis3] = 3;
  13332. src0->grad =
  13333. ggml_add_impl(ctx, src0->grad,
  13334. ggml_permute(ctx,
  13335. tensor->grad,
  13336. axes_backward[0],
  13337. axes_backward[1],
  13338. axes_backward[2],
  13339. axes_backward[3]),
  13340. inplace);
  13341. }
  13342. } break;
  13343. case GGML_OP_TRANSPOSE:
  13344. {
  13345. // necessary for llama
  13346. if (src0->grad) {
  13347. src0->grad =
  13348. ggml_add_impl(ctx, src0->grad,
  13349. ggml_transpose(ctx, tensor->grad),
  13350. inplace);
  13351. }
  13352. } break;
  13353. case GGML_OP_GET_ROWS:
  13354. {
  13355. // necessary for llama (only for tokenizer)
  13356. if (src0->grad) {
  13357. src0->grad =
  13358. ggml_add_impl(ctx, src0->grad,
  13359. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13360. inplace);
  13361. }
  13362. if (src1->grad) {
  13363. // noop
  13364. }
  13365. } break;
  13366. case GGML_OP_GET_ROWS_BACK:
  13367. {
  13368. GGML_ASSERT(false); // TODO: not implemented
  13369. } break;
  13370. case GGML_OP_DIAG:
  13371. {
  13372. GGML_ASSERT(false); // TODO: not implemented
  13373. } break;
  13374. case GGML_OP_DIAG_MASK_INF:
  13375. {
  13376. // necessary for llama
  13377. if (src0->grad) {
  13378. const int n_past = ((int32_t *) tensor->op_params)[0];
  13379. src0->grad =
  13380. ggml_add_impl(ctx, src0->grad,
  13381. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13382. inplace);
  13383. }
  13384. } break;
  13385. case GGML_OP_DIAG_MASK_ZERO:
  13386. {
  13387. // necessary for llama
  13388. if (src0->grad) {
  13389. const int n_past = ((int32_t *) tensor->op_params)[0];
  13390. src0->grad =
  13391. ggml_add_impl(ctx, src0->grad,
  13392. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13393. inplace);
  13394. }
  13395. } break;
  13396. case GGML_OP_SOFT_MAX:
  13397. {
  13398. // necessary for llama
  13399. if (src0->grad) {
  13400. src0->grad =
  13401. ggml_add_impl(ctx, src0->grad,
  13402. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13403. inplace);
  13404. }
  13405. } break;
  13406. case GGML_OP_SOFT_MAX_BACK:
  13407. {
  13408. GGML_ASSERT(false); // TODO: not implemented
  13409. } break;
  13410. case GGML_OP_ROPE:
  13411. {
  13412. // necessary for llama
  13413. if (src0->grad) {
  13414. const int n_past = ((int32_t *) tensor->op_params)[0];
  13415. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13416. const int mode = ((int32_t *) tensor->op_params)[2];
  13417. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13418. float freq_base;
  13419. float freq_scale;
  13420. float xpos_base;
  13421. bool xpos_down;
  13422. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13423. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13424. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13425. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13426. src0->grad = ggml_add_impl(ctx,
  13427. src0->grad,
  13428. ggml_rope_back(ctx,
  13429. tensor->grad,
  13430. n_past,
  13431. n_dims,
  13432. mode,
  13433. n_ctx,
  13434. freq_base,
  13435. freq_scale,
  13436. xpos_base,
  13437. xpos_down),
  13438. inplace);
  13439. }
  13440. } break;
  13441. case GGML_OP_ROPE_BACK:
  13442. {
  13443. if (src0->grad) {
  13444. const int n_past = ((int32_t *) tensor->op_params)[0];
  13445. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13446. const int mode = ((int32_t *) tensor->op_params)[2];
  13447. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13448. float freq_base;
  13449. float freq_scale;
  13450. float xpos_base;
  13451. bool xpos_down;
  13452. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13453. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13454. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13455. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13456. src0->grad = ggml_add_impl(ctx,
  13457. src0->grad,
  13458. ggml_rope_impl(ctx,
  13459. tensor->grad,
  13460. n_past,
  13461. n_dims,
  13462. mode,
  13463. n_ctx,
  13464. freq_base,
  13465. freq_scale,
  13466. xpos_base,
  13467. xpos_down,
  13468. false),
  13469. inplace);
  13470. }
  13471. } break;
  13472. case GGML_OP_ALIBI:
  13473. {
  13474. GGML_ASSERT(false); // TODO: not implemented
  13475. } break;
  13476. case GGML_OP_CLAMP:
  13477. {
  13478. GGML_ASSERT(false); // TODO: not implemented
  13479. } break;
  13480. case GGML_OP_CONV_1D:
  13481. {
  13482. GGML_ASSERT(false); // TODO: not implemented
  13483. } break;
  13484. case GGML_OP_CONV_2D:
  13485. {
  13486. GGML_ASSERT(false); // TODO: not implemented
  13487. } break;
  13488. case GGML_OP_CONV_TRANSPOSE_2D:
  13489. {
  13490. GGML_ASSERT(false); // TODO: not implemented
  13491. } break;
  13492. case GGML_OP_POOL_1D:
  13493. {
  13494. GGML_ASSERT(false); // TODO: not implemented
  13495. } break;
  13496. case GGML_OP_POOL_2D:
  13497. {
  13498. GGML_ASSERT(false); // TODO: not implemented
  13499. } break;
  13500. case GGML_OP_UPSCALE:
  13501. {
  13502. GGML_ASSERT(false); // TODO: not implemented
  13503. } break;
  13504. case GGML_OP_FLASH_ATTN:
  13505. {
  13506. struct ggml_tensor * flash_grad = NULL;
  13507. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13508. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13509. GGML_ASSERT(t == 0 || t == 1);
  13510. bool masked = t != 0;
  13511. flash_grad =
  13512. ggml_flash_attn_back(ctx,
  13513. src0,
  13514. src1,
  13515. tensor->src[2],
  13516. tensor->grad,
  13517. masked);
  13518. }
  13519. if (src0->grad) {
  13520. struct ggml_tensor * grad_q = NULL;
  13521. const size_t nb0 = flash_grad->nb[0];
  13522. const size_t offset = 0;
  13523. switch(src0->n_dims) {
  13524. case 2:
  13525. {
  13526. grad_q = ggml_view_2d(ctx,
  13527. flash_grad,
  13528. src0->ne[0],
  13529. src0->ne[1],
  13530. nb0*src0->ne[0],
  13531. offset);
  13532. } break;
  13533. case 3:
  13534. {
  13535. grad_q = ggml_view_3d(ctx,
  13536. flash_grad,
  13537. src0->ne[0],
  13538. src0->ne[1],
  13539. src0->ne[2],
  13540. nb0*src0->ne[0],
  13541. nb0*src0->ne[0]*src0->ne[1],
  13542. offset);
  13543. } break;
  13544. case 4:
  13545. {
  13546. grad_q = ggml_view_4d(ctx,
  13547. flash_grad,
  13548. src0->ne[0],
  13549. src0->ne[1],
  13550. src0->ne[2],
  13551. src0->ne[3],
  13552. nb0*src0->ne[0],
  13553. nb0*src0->ne[0]*src0->ne[1],
  13554. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13555. offset);
  13556. } break;
  13557. }
  13558. src0->grad = ggml_add_impl(ctx,
  13559. src0->grad,
  13560. grad_q,
  13561. inplace);
  13562. }
  13563. if (src1->grad) {
  13564. struct ggml_tensor * grad_k = NULL;
  13565. const size_t nb0 = flash_grad->nb[0];
  13566. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13567. switch(src1->n_dims) {
  13568. case 2:
  13569. {
  13570. grad_k = ggml_view_2d(ctx,
  13571. flash_grad,
  13572. src1->ne[0],
  13573. src1->ne[1],
  13574. nb0*src1->ne[0],
  13575. offset);
  13576. } break;
  13577. case 3:
  13578. {
  13579. grad_k = ggml_view_3d(ctx,
  13580. flash_grad,
  13581. src1->ne[0],
  13582. src1->ne[1],
  13583. src1->ne[2],
  13584. nb0*src1->ne[0],
  13585. nb0*src1->ne[0]*src1->ne[1],
  13586. offset);
  13587. } break;
  13588. case 4:
  13589. {
  13590. grad_k = ggml_view_4d(ctx,
  13591. flash_grad,
  13592. src1->ne[0],
  13593. src1->ne[1],
  13594. src1->ne[2],
  13595. src1->ne[3],
  13596. nb0*src1->ne[0],
  13597. nb0*src1->ne[0]*src1->ne[1],
  13598. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13599. offset);
  13600. } break;
  13601. }
  13602. src1->grad = ggml_add_impl(ctx,
  13603. src1->grad,
  13604. grad_k,
  13605. inplace);
  13606. }
  13607. struct ggml_tensor * opt0 = tensor->src[2];
  13608. if (opt0->grad) {
  13609. struct ggml_tensor * grad_v = NULL;
  13610. const size_t nb0 = flash_grad->nb[0];
  13611. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13612. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13613. switch(opt0->n_dims) {
  13614. case 2:
  13615. {
  13616. grad_v = ggml_view_2d(ctx,
  13617. flash_grad,
  13618. opt0->ne[0],
  13619. opt0->ne[1],
  13620. nb0*opt0->ne[0],
  13621. offset);
  13622. } break;
  13623. case 3:
  13624. {
  13625. grad_v = ggml_view_3d(ctx,
  13626. flash_grad,
  13627. opt0->ne[0],
  13628. opt0->ne[1],
  13629. opt0->ne[2],
  13630. nb0*opt0->ne[0],
  13631. nb0*opt0->ne[0]*opt0->ne[1],
  13632. offset);
  13633. } break;
  13634. case 4:
  13635. {
  13636. grad_v = ggml_view_4d(ctx,
  13637. flash_grad,
  13638. opt0->ne[0],
  13639. opt0->ne[1],
  13640. opt0->ne[2],
  13641. opt0->ne[3],
  13642. nb0*opt0->ne[0],
  13643. nb0*opt0->ne[0]*opt0->ne[1],
  13644. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13645. offset);
  13646. } break;
  13647. }
  13648. opt0->grad = ggml_add_impl(ctx,
  13649. opt0->grad,
  13650. grad_v,
  13651. inplace);
  13652. }
  13653. } break;
  13654. case GGML_OP_FLASH_FF:
  13655. {
  13656. GGML_ASSERT(false); // not supported
  13657. } break;
  13658. case GGML_OP_FLASH_ATTN_BACK:
  13659. {
  13660. GGML_ASSERT(false); // not supported
  13661. } break;
  13662. case GGML_OP_WIN_PART:
  13663. case GGML_OP_WIN_UNPART:
  13664. case GGML_OP_UNARY:
  13665. {
  13666. switch (ggml_get_unary_op(tensor)) {
  13667. case GGML_UNARY_OP_ABS:
  13668. {
  13669. if (src0->grad) {
  13670. src0->grad =
  13671. ggml_add_impl(ctx,
  13672. src0->grad,
  13673. ggml_mul(ctx,
  13674. ggml_sgn(ctx, src0),
  13675. tensor->grad),
  13676. inplace);
  13677. }
  13678. } break;
  13679. case GGML_UNARY_OP_SGN:
  13680. {
  13681. if (src0->grad) {
  13682. // noop
  13683. }
  13684. } break;
  13685. case GGML_UNARY_OP_NEG:
  13686. {
  13687. if (src0->grad) {
  13688. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13689. }
  13690. } break;
  13691. case GGML_UNARY_OP_STEP:
  13692. {
  13693. if (src0->grad) {
  13694. // noop
  13695. }
  13696. } break;
  13697. case GGML_UNARY_OP_TANH:
  13698. {
  13699. GGML_ASSERT(false); // TODO: not implemented
  13700. } break;
  13701. case GGML_UNARY_OP_ELU:
  13702. {
  13703. GGML_ASSERT(false); // TODO: not implemented
  13704. } break;
  13705. case GGML_UNARY_OP_RELU:
  13706. {
  13707. if (src0->grad) {
  13708. src0->grad = ggml_add_impl(ctx,
  13709. src0->grad,
  13710. ggml_mul(ctx,
  13711. ggml_step(ctx, src0),
  13712. tensor->grad),
  13713. inplace);
  13714. }
  13715. } break;
  13716. case GGML_UNARY_OP_GELU:
  13717. {
  13718. GGML_ASSERT(false); // TODO: not implemented
  13719. } break;
  13720. case GGML_UNARY_OP_GELU_QUICK:
  13721. {
  13722. GGML_ASSERT(false); // TODO: not implemented
  13723. } break;
  13724. case GGML_UNARY_OP_SILU:
  13725. {
  13726. // necessary for llama
  13727. if (src0->grad) {
  13728. src0->grad = ggml_add_impl(ctx,
  13729. src0->grad,
  13730. ggml_silu_back(ctx, src0, tensor->grad),
  13731. inplace);
  13732. }
  13733. } break;
  13734. default:
  13735. GGML_ASSERT(false);
  13736. }
  13737. } break;
  13738. case GGML_OP_GET_REL_POS:
  13739. case GGML_OP_ADD_REL_POS:
  13740. case GGML_OP_MAP_UNARY:
  13741. case GGML_OP_MAP_BINARY:
  13742. case GGML_OP_MAP_CUSTOM1_F32:
  13743. case GGML_OP_MAP_CUSTOM2_F32:
  13744. case GGML_OP_MAP_CUSTOM3_F32:
  13745. case GGML_OP_MAP_CUSTOM1:
  13746. case GGML_OP_MAP_CUSTOM2:
  13747. case GGML_OP_MAP_CUSTOM3:
  13748. {
  13749. GGML_ASSERT(false); // not supported
  13750. } break;
  13751. case GGML_OP_CROSS_ENTROPY_LOSS:
  13752. {
  13753. if (src0->grad) {
  13754. src0->grad = ggml_add_impl(ctx,
  13755. src0->grad,
  13756. ggml_cross_entropy_loss_back(ctx,
  13757. src0,
  13758. src1,
  13759. tensor->grad),
  13760. inplace);
  13761. }
  13762. } break;
  13763. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13764. {
  13765. GGML_ASSERT(false); // not supported
  13766. } break;
  13767. case GGML_OP_NONE:
  13768. {
  13769. // nop
  13770. } break;
  13771. case GGML_OP_COUNT:
  13772. {
  13773. GGML_ASSERT(false);
  13774. } break;
  13775. }
  13776. }
  13777. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13778. static size_t hash(void * p) {
  13779. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13780. }
  13781. static bool hash_insert(void * hash_table[], void * p) {
  13782. size_t h = hash(p);
  13783. // linear probing
  13784. size_t i = h;
  13785. while (hash_table[i] != NULL && hash_table[i] != p) {
  13786. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13787. if (i == h) {
  13788. // hash table is full
  13789. GGML_ASSERT(false);
  13790. }
  13791. }
  13792. if (hash_table[i] == p) {
  13793. return true;
  13794. }
  13795. // insert
  13796. hash_table[i] = p;
  13797. return false;
  13798. }
  13799. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13800. if (node->grad == NULL) {
  13801. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13802. // it can also happen during forward pass, if the user performs computations with constants
  13803. if (node->op != GGML_OP_NONE) {
  13804. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13805. }
  13806. }
  13807. // check if already visited
  13808. if (hash_insert(cgraph->visited_hash_table, node)) {
  13809. return;
  13810. }
  13811. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13812. if (node->src[i]) {
  13813. ggml_visit_parents(cgraph, node->src[i]);
  13814. }
  13815. }
  13816. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13817. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13818. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13819. if (strlen(node->name) == 0) {
  13820. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13821. }
  13822. cgraph->leafs[cgraph->n_leafs] = node;
  13823. cgraph->n_leafs++;
  13824. } else {
  13825. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13826. if (strlen(node->name) == 0) {
  13827. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13828. }
  13829. cgraph->nodes[cgraph->n_nodes] = node;
  13830. cgraph->grads[cgraph->n_nodes] = node->grad;
  13831. cgraph->n_nodes++;
  13832. }
  13833. }
  13834. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13835. if (!expand) {
  13836. cgraph->n_nodes = 0;
  13837. cgraph->n_leafs = 0;
  13838. }
  13839. const int n0 = cgraph->n_nodes;
  13840. UNUSED(n0);
  13841. ggml_visit_parents(cgraph, tensor);
  13842. const int n_new = cgraph->n_nodes - n0;
  13843. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13844. if (n_new > 0) {
  13845. // the last added node should always be starting point
  13846. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13847. }
  13848. }
  13849. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13850. ggml_build_forward_impl(cgraph, tensor, true);
  13851. }
  13852. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13853. struct ggml_cgraph result = {
  13854. /*.n_nodes =*/ 0,
  13855. /*.n_leafs =*/ 0,
  13856. /*.nodes =*/ { NULL },
  13857. /*.grads =*/ { NULL },
  13858. /*.leafs =*/ { NULL },
  13859. /*.hash_table =*/ { NULL },
  13860. /*.perf_runs =*/ 0,
  13861. /*.perf_cycles =*/ 0,
  13862. /*.perf_time_us =*/ 0,
  13863. };
  13864. ggml_build_forward_impl(&result, tensor, false);
  13865. return result;
  13866. }
  13867. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13868. struct ggml_cgraph result = *gf;
  13869. GGML_ASSERT(gf->n_nodes > 0);
  13870. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13871. if (keep) {
  13872. for (int i = 0; i < gf->n_nodes; i++) {
  13873. struct ggml_tensor * node = gf->nodes[i];
  13874. if (node->grad) {
  13875. node->grad = ggml_dup_tensor(ctx, node);
  13876. gf->grads[i] = node->grad;
  13877. }
  13878. }
  13879. }
  13880. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13881. struct ggml_tensor * node = gf->nodes[i];
  13882. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13883. if (node->grad) {
  13884. ggml_compute_backward(ctx, node, keep);
  13885. }
  13886. }
  13887. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13888. struct ggml_tensor * node = gf->nodes[i];
  13889. if (node->is_param) {
  13890. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13891. ggml_build_forward_expand(&result, node->grad);
  13892. }
  13893. }
  13894. return result;
  13895. }
  13896. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13897. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13898. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13899. *cgraph = (struct ggml_cgraph) {
  13900. /*.n_nodes =*/ 0,
  13901. /*.n_leafs =*/ 0,
  13902. /*.nodes =*/ { NULL },
  13903. /*.grads =*/ { NULL },
  13904. /*.leafs =*/ { NULL },
  13905. /*.hash_table =*/ { NULL },
  13906. /*.perf_runs =*/ 0,
  13907. /*.perf_cycles =*/ 0,
  13908. /*.perf_time_us =*/ 0,
  13909. };
  13910. return cgraph;
  13911. }
  13912. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13913. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13914. ggml_build_forward_impl(cgraph, tensor, false);
  13915. return cgraph;
  13916. }
  13917. size_t ggml_graph_overhead(void) {
  13918. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13919. }
  13920. //
  13921. // thread data
  13922. //
  13923. // synchronization is done via busy loops
  13924. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13925. //
  13926. #ifdef __APPLE__
  13927. //#include <os/lock.h>
  13928. //
  13929. //typedef os_unfair_lock ggml_lock_t;
  13930. //
  13931. //#define ggml_lock_init(x) UNUSED(x)
  13932. //#define ggml_lock_destroy(x) UNUSED(x)
  13933. //#define ggml_lock_lock os_unfair_lock_lock
  13934. //#define ggml_lock_unlock os_unfair_lock_unlock
  13935. //
  13936. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13937. typedef int ggml_lock_t;
  13938. #define ggml_lock_init(x) UNUSED(x)
  13939. #define ggml_lock_destroy(x) UNUSED(x)
  13940. #define ggml_lock_lock(x) UNUSED(x)
  13941. #define ggml_lock_unlock(x) UNUSED(x)
  13942. #define GGML_LOCK_INITIALIZER 0
  13943. typedef pthread_t ggml_thread_t;
  13944. #define ggml_thread_create pthread_create
  13945. #define ggml_thread_join pthread_join
  13946. #else
  13947. //typedef pthread_spinlock_t ggml_lock_t;
  13948. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13949. //#define ggml_lock_destroy pthread_spin_destroy
  13950. //#define ggml_lock_lock pthread_spin_lock
  13951. //#define ggml_lock_unlock pthread_spin_unlock
  13952. typedef int ggml_lock_t;
  13953. #define ggml_lock_init(x) UNUSED(x)
  13954. #define ggml_lock_destroy(x) UNUSED(x)
  13955. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13956. #define ggml_lock_lock(x) _mm_pause()
  13957. #else
  13958. #define ggml_lock_lock(x) UNUSED(x)
  13959. #endif
  13960. #define ggml_lock_unlock(x) UNUSED(x)
  13961. #define GGML_LOCK_INITIALIZER 0
  13962. typedef pthread_t ggml_thread_t;
  13963. #define ggml_thread_create pthread_create
  13964. #define ggml_thread_join pthread_join
  13965. #endif
  13966. // Android's libc implementation "bionic" does not support setting affinity
  13967. #if defined(__linux__) && !defined(__BIONIC__)
  13968. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13969. if (!ggml_is_numa()) {
  13970. return;
  13971. }
  13972. // run thread on node_num thread_n / (threads per node)
  13973. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13974. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13975. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13976. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13977. CPU_ZERO_S(setsize, cpus);
  13978. for (size_t i = 0; i < node->n_cpus; ++i) {
  13979. CPU_SET_S(node->cpus[i], setsize, cpus);
  13980. }
  13981. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13982. if (rv) {
  13983. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13984. strerror(rv));
  13985. }
  13986. CPU_FREE(cpus);
  13987. }
  13988. static void clear_numa_thread_affinity(void) {
  13989. if (!ggml_is_numa()) {
  13990. return;
  13991. }
  13992. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13993. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13994. CPU_ZERO_S(setsize, cpus);
  13995. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13996. CPU_SET_S(i, setsize, cpus);
  13997. }
  13998. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13999. if (rv) {
  14000. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14001. strerror(rv));
  14002. }
  14003. CPU_FREE(cpus);
  14004. }
  14005. #else
  14006. // TODO: Windows etc.
  14007. // (the linux implementation may also work on BSD, someone should test)
  14008. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14009. static void clear_numa_thread_affinity(void) {}
  14010. #endif
  14011. struct ggml_compute_state_shared {
  14012. const struct ggml_cgraph * cgraph;
  14013. const struct ggml_cplan * cplan;
  14014. int64_t perf_node_start_cycles;
  14015. int64_t perf_node_start_time_us;
  14016. const int n_threads;
  14017. // synchronization primitives
  14018. atomic_int n_active; // num active threads
  14019. atomic_int node_n; // active graph node
  14020. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14021. void * abort_callback_data;
  14022. };
  14023. struct ggml_compute_state {
  14024. ggml_thread_t thrd;
  14025. int ith;
  14026. struct ggml_compute_state_shared * shared;
  14027. };
  14028. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14029. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14030. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14031. node->perf_runs++;
  14032. node->perf_cycles += cycles_cur;
  14033. node->perf_time_us += time_us_cur;
  14034. }
  14035. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14036. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14037. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14038. const struct ggml_cplan * cplan = state->shared->cplan;
  14039. const int * n_tasks_arr = cplan->n_tasks;
  14040. const int n_threads = state->shared->n_threads;
  14041. set_numa_thread_affinity(state->ith, n_threads);
  14042. int node_n = -1;
  14043. while (true) {
  14044. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14045. state->shared->node_n += 1;
  14046. return (thread_ret_t) GGML_EXIT_ABORTED;
  14047. }
  14048. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14049. // all other threads are finished and spinning
  14050. // do finalize and init here so we don't have synchronize again
  14051. struct ggml_compute_params params = {
  14052. /*.type =*/ GGML_TASK_FINALIZE,
  14053. /*.ith =*/ 0,
  14054. /*.nth =*/ 0,
  14055. /*.wsize =*/ cplan->work_size,
  14056. /*.wdata =*/ cplan->work_data,
  14057. };
  14058. if (node_n != -1) {
  14059. /* FINALIZE */
  14060. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14061. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14062. params.nth = n_tasks_arr[node_n];
  14063. ggml_compute_forward(&params, node);
  14064. }
  14065. ggml_graph_compute_perf_stats_node(node, state->shared);
  14066. }
  14067. // distribute new work or execute it direct if 1T
  14068. while (++node_n < cgraph->n_nodes) {
  14069. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14070. struct ggml_tensor * node = cgraph->nodes[node_n];
  14071. const int n_tasks = n_tasks_arr[node_n];
  14072. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14073. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14074. params.nth = n_tasks;
  14075. /* INIT */
  14076. if (GGML_OP_HAS_INIT[node->op]) {
  14077. params.type = GGML_TASK_INIT;
  14078. ggml_compute_forward(&params, node);
  14079. }
  14080. if (n_tasks == 1) {
  14081. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14082. // they do something more efficient than spinning (?)
  14083. params.type = GGML_TASK_COMPUTE;
  14084. ggml_compute_forward(&params, node);
  14085. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14086. params.type = GGML_TASK_FINALIZE;
  14087. ggml_compute_forward(&params, node);
  14088. }
  14089. ggml_graph_compute_perf_stats_node(node, state->shared);
  14090. } else {
  14091. break;
  14092. }
  14093. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14094. break;
  14095. }
  14096. }
  14097. atomic_store(&state->shared->n_active, n_threads);
  14098. atomic_store(&state->shared->node_n, node_n);
  14099. } else {
  14100. // wait for other threads to finish
  14101. const int last = node_n;
  14102. do {
  14103. //sched_yield();
  14104. node_n = atomic_load(&state->shared->node_n);
  14105. } while (node_n == last);
  14106. }
  14107. // check if we should stop
  14108. if (node_n >= cgraph->n_nodes) break;
  14109. /* COMPUTE */
  14110. struct ggml_tensor * node = cgraph->nodes[node_n];
  14111. const int n_tasks = n_tasks_arr[node_n];
  14112. struct ggml_compute_params params = {
  14113. /*.type =*/ GGML_TASK_COMPUTE,
  14114. /*.ith =*/ state->ith,
  14115. /*.nth =*/ n_tasks,
  14116. /*.wsize =*/ cplan->work_size,
  14117. /*.wdata =*/ cplan->work_data,
  14118. };
  14119. if (state->ith < n_tasks) {
  14120. ggml_compute_forward(&params, node);
  14121. }
  14122. }
  14123. return GGML_EXIT_SUCCESS;
  14124. }
  14125. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14126. if (n_threads <= 0) {
  14127. n_threads = GGML_DEFAULT_N_THREADS;
  14128. }
  14129. size_t work_size = 0;
  14130. struct ggml_cplan cplan;
  14131. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14132. // thread scheduling for the different operations + work buffer size estimation
  14133. for (int i = 0; i < cgraph->n_nodes; i++) {
  14134. int n_tasks = 1;
  14135. struct ggml_tensor * node = cgraph->nodes[i];
  14136. switch (node->op) {
  14137. case GGML_OP_CPY:
  14138. case GGML_OP_DUP:
  14139. {
  14140. n_tasks = n_threads;
  14141. size_t cur = 0;
  14142. if (ggml_is_quantized(node->type)) {
  14143. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14144. }
  14145. work_size = MAX(work_size, cur);
  14146. } break;
  14147. case GGML_OP_ADD:
  14148. case GGML_OP_ADD1:
  14149. {
  14150. n_tasks = n_threads;
  14151. size_t cur = 0;
  14152. if (ggml_is_quantized(node->src[0]->type)) {
  14153. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14154. }
  14155. work_size = MAX(work_size, cur);
  14156. } break;
  14157. case GGML_OP_ACC:
  14158. {
  14159. n_tasks = n_threads;
  14160. size_t cur = 0;
  14161. if (ggml_is_quantized(node->src[0]->type)) {
  14162. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14163. }
  14164. work_size = MAX(work_size, cur);
  14165. } break;
  14166. case GGML_OP_SUB:
  14167. case GGML_OP_DIV:
  14168. case GGML_OP_SQR:
  14169. case GGML_OP_SQRT:
  14170. case GGML_OP_LOG:
  14171. case GGML_OP_SUM:
  14172. case GGML_OP_SUM_ROWS:
  14173. case GGML_OP_MEAN:
  14174. case GGML_OP_ARGMAX:
  14175. case GGML_OP_REPEAT:
  14176. case GGML_OP_REPEAT_BACK:
  14177. {
  14178. n_tasks = 1;
  14179. } break;
  14180. case GGML_OP_UNARY:
  14181. {
  14182. switch (ggml_get_unary_op(node)) {
  14183. case GGML_UNARY_OP_ABS:
  14184. case GGML_UNARY_OP_SGN:
  14185. case GGML_UNARY_OP_NEG:
  14186. case GGML_UNARY_OP_STEP:
  14187. case GGML_UNARY_OP_TANH:
  14188. case GGML_UNARY_OP_ELU:
  14189. case GGML_UNARY_OP_RELU:
  14190. {
  14191. n_tasks = 1;
  14192. } break;
  14193. case GGML_UNARY_OP_GELU:
  14194. case GGML_UNARY_OP_GELU_QUICK:
  14195. case GGML_UNARY_OP_SILU:
  14196. {
  14197. n_tasks = n_threads;
  14198. } break;
  14199. }
  14200. } break;
  14201. case GGML_OP_SILU_BACK:
  14202. case GGML_OP_MUL:
  14203. case GGML_OP_NORM:
  14204. case GGML_OP_RMS_NORM:
  14205. case GGML_OP_RMS_NORM_BACK:
  14206. case GGML_OP_GROUP_NORM:
  14207. {
  14208. n_tasks = n_threads;
  14209. } break;
  14210. case GGML_OP_CONCAT:
  14211. case GGML_OP_MUL_MAT:
  14212. case GGML_OP_OUT_PROD:
  14213. {
  14214. n_tasks = n_threads;
  14215. // TODO: use different scheduling for different matrix sizes
  14216. //const int nr0 = ggml_nrows(node->src[0]);
  14217. //const int nr1 = ggml_nrows(node->src[1]);
  14218. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14219. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14220. size_t cur = 0;
  14221. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14222. #if defined(GGML_USE_CUBLAS)
  14223. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14224. n_tasks = 1; // TODO: this actually is doing nothing
  14225. // the threads are still spinning
  14226. } else
  14227. #elif defined(GGML_USE_CLBLAST)
  14228. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14229. n_tasks = 1; // TODO: this actually is doing nothing
  14230. // the threads are still spinning
  14231. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14232. } else
  14233. #endif
  14234. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14235. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14236. n_tasks = 1; // TODO: this actually is doing nothing
  14237. // the threads are still spinning
  14238. if (node->src[0]->type != GGML_TYPE_F32) {
  14239. // here we need memory just for single 2D matrix from src0
  14240. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14241. }
  14242. } else
  14243. #endif
  14244. if (node->src[1]->type != vec_dot_type) {
  14245. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14246. } else {
  14247. cur = 0;
  14248. }
  14249. work_size = MAX(work_size, cur);
  14250. } break;
  14251. case GGML_OP_SCALE:
  14252. {
  14253. n_tasks = 1;
  14254. } break;
  14255. case GGML_OP_SET:
  14256. case GGML_OP_CONT:
  14257. case GGML_OP_RESHAPE:
  14258. case GGML_OP_VIEW:
  14259. case GGML_OP_PERMUTE:
  14260. case GGML_OP_TRANSPOSE:
  14261. case GGML_OP_GET_ROWS:
  14262. case GGML_OP_GET_ROWS_BACK:
  14263. case GGML_OP_DIAG:
  14264. {
  14265. n_tasks = 1;
  14266. } break;
  14267. case GGML_OP_DIAG_MASK_ZERO:
  14268. case GGML_OP_DIAG_MASK_INF:
  14269. case GGML_OP_SOFT_MAX:
  14270. case GGML_OP_SOFT_MAX_BACK:
  14271. case GGML_OP_ROPE:
  14272. case GGML_OP_ROPE_BACK:
  14273. case GGML_OP_ADD_REL_POS:
  14274. {
  14275. n_tasks = n_threads;
  14276. } break;
  14277. case GGML_OP_ALIBI:
  14278. {
  14279. n_tasks = 1; //TODO
  14280. } break;
  14281. case GGML_OP_CLAMP:
  14282. {
  14283. n_tasks = 1; //TODO
  14284. } break;
  14285. case GGML_OP_CONV_1D:
  14286. {
  14287. n_tasks = n_threads;
  14288. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14289. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14290. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14291. size_t cur = 0;
  14292. const int nk = node->src[0]->ne[0];
  14293. if (node->src[0]->type == GGML_TYPE_F16 &&
  14294. node->src[1]->type == GGML_TYPE_F32) {
  14295. cur = sizeof(ggml_fp16_t)*(
  14296. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14297. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14298. );
  14299. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14300. node->src[1]->type == GGML_TYPE_F32) {
  14301. cur = sizeof(float)*(
  14302. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14303. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14304. );
  14305. } else {
  14306. GGML_ASSERT(false);
  14307. }
  14308. work_size = MAX(work_size, cur);
  14309. } break;
  14310. case GGML_OP_CONV_2D:
  14311. {
  14312. n_tasks = n_threads;
  14313. const int64_t ne00 = node->src[0]->ne[0]; // W
  14314. const int64_t ne01 = node->src[0]->ne[1]; // H
  14315. const int64_t ne02 = node->src[0]->ne[2]; // C
  14316. const int64_t ne03 = node->src[0]->ne[3]; // N
  14317. const int64_t ne10 = node->src[1]->ne[0]; // W
  14318. const int64_t ne11 = node->src[1]->ne[1]; // H
  14319. const int64_t ne12 = node->src[1]->ne[2]; // C
  14320. const int64_t ne0 = node->ne[0];
  14321. const int64_t ne1 = node->ne[1];
  14322. const int64_t ne2 = node->ne[2];
  14323. const int64_t nk = ne00*ne01;
  14324. const int64_t ew0 = nk * ne02;
  14325. UNUSED(ne03);
  14326. UNUSED(ne2);
  14327. size_t cur = 0;
  14328. if (node->src[0]->type == GGML_TYPE_F16 &&
  14329. node->src[1]->type == GGML_TYPE_F32) {
  14330. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14331. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14332. node->src[1]->type == GGML_TYPE_F32) {
  14333. cur = sizeof(float)* (ne10*ne11*ne12);
  14334. } else {
  14335. GGML_ASSERT(false);
  14336. }
  14337. work_size = MAX(work_size, cur);
  14338. } break;
  14339. case GGML_OP_CONV_TRANSPOSE_2D:
  14340. {
  14341. n_tasks = n_threads;
  14342. const int64_t ne00 = node->src[0]->ne[0]; // W
  14343. const int64_t ne01 = node->src[0]->ne[1]; // H
  14344. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14345. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14346. const int64_t ne10 = node->src[1]->ne[0]; // W
  14347. const int64_t ne11 = node->src[1]->ne[1]; // H
  14348. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14349. size_t cur = 0;
  14350. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14351. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14352. work_size = MAX(work_size, cur);
  14353. } break;
  14354. case GGML_OP_POOL_1D:
  14355. case GGML_OP_POOL_2D:
  14356. {
  14357. n_tasks = 1;
  14358. } break;
  14359. case GGML_OP_UPSCALE:
  14360. {
  14361. n_tasks = n_threads;
  14362. } break;
  14363. case GGML_OP_FLASH_ATTN:
  14364. {
  14365. n_tasks = n_threads;
  14366. size_t cur = 0;
  14367. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14368. if (node->src[1]->type == GGML_TYPE_F32) {
  14369. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14370. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14371. }
  14372. if (node->src[1]->type == GGML_TYPE_F16) {
  14373. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14374. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14375. }
  14376. work_size = MAX(work_size, cur);
  14377. } break;
  14378. case GGML_OP_FLASH_FF:
  14379. {
  14380. n_tasks = n_threads;
  14381. size_t cur = 0;
  14382. if (node->src[1]->type == GGML_TYPE_F32) {
  14383. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14384. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14385. }
  14386. if (node->src[1]->type == GGML_TYPE_F16) {
  14387. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14388. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14389. }
  14390. work_size = MAX(work_size, cur);
  14391. } break;
  14392. case GGML_OP_FLASH_ATTN_BACK:
  14393. {
  14394. n_tasks = n_threads;
  14395. size_t cur = 0;
  14396. const int64_t D = node->src[0]->ne[0];
  14397. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14398. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14399. if (node->src[1]->type == GGML_TYPE_F32) {
  14400. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14401. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14402. }
  14403. if (node->src[1]->type == GGML_TYPE_F16) {
  14404. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14405. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14406. }
  14407. work_size = MAX(work_size, cur);
  14408. } break;
  14409. case GGML_OP_WIN_PART:
  14410. case GGML_OP_WIN_UNPART:
  14411. case GGML_OP_GET_REL_POS:
  14412. case GGML_OP_MAP_UNARY:
  14413. case GGML_OP_MAP_BINARY:
  14414. case GGML_OP_MAP_CUSTOM1_F32:
  14415. case GGML_OP_MAP_CUSTOM2_F32:
  14416. case GGML_OP_MAP_CUSTOM3_F32:
  14417. {
  14418. n_tasks = 1;
  14419. } break;
  14420. case GGML_OP_MAP_CUSTOM1:
  14421. {
  14422. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14423. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14424. n_tasks = n_threads;
  14425. } else {
  14426. n_tasks = MIN(p->n_tasks, n_threads);
  14427. }
  14428. } break;
  14429. case GGML_OP_MAP_CUSTOM2:
  14430. {
  14431. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14432. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14433. n_tasks = n_threads;
  14434. } else {
  14435. n_tasks = MIN(p->n_tasks, n_threads);
  14436. }
  14437. } break;
  14438. case GGML_OP_MAP_CUSTOM3:
  14439. {
  14440. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14441. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14442. n_tasks = n_threads;
  14443. } else {
  14444. n_tasks = MIN(p->n_tasks, n_threads);
  14445. }
  14446. } break;
  14447. case GGML_OP_CROSS_ENTROPY_LOSS:
  14448. {
  14449. n_tasks = n_threads;
  14450. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14451. work_size = MAX(work_size, cur);
  14452. } break;
  14453. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14454. {
  14455. n_tasks = n_threads;
  14456. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  14457. work_size = MAX(work_size, cur);
  14458. } break;
  14459. case GGML_OP_NONE:
  14460. {
  14461. n_tasks = 1;
  14462. } break;
  14463. case GGML_OP_COUNT:
  14464. {
  14465. GGML_ASSERT(false);
  14466. } break;
  14467. }
  14468. cplan.n_tasks[i] = n_tasks;
  14469. }
  14470. if (work_size > 0) {
  14471. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14472. }
  14473. cplan.n_threads = n_threads;
  14474. cplan.work_size = work_size;
  14475. cplan.work_data = NULL;
  14476. return cplan;
  14477. }
  14478. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14479. {
  14480. GGML_ASSERT(cplan);
  14481. GGML_ASSERT(cplan->n_threads > 0);
  14482. if (cplan->work_size > 0) {
  14483. GGML_ASSERT(cplan->work_data);
  14484. }
  14485. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14486. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14487. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14488. }
  14489. }
  14490. }
  14491. const int n_threads = cplan->n_threads;
  14492. struct ggml_compute_state_shared state_shared = {
  14493. /*.cgraph =*/ cgraph,
  14494. /*.cgraph_plan =*/ cplan,
  14495. /*.perf_node_start_cycles =*/ 0,
  14496. /*.perf_node_start_time_us =*/ 0,
  14497. /*.n_threads =*/ n_threads,
  14498. /*.n_active =*/ n_threads,
  14499. /*.node_n =*/ -1,
  14500. /*.abort_callback =*/ NULL,
  14501. /*.abort_callback_data =*/ NULL,
  14502. };
  14503. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14504. // create thread pool
  14505. if (n_threads > 1) {
  14506. for (int j = 1; j < n_threads; ++j) {
  14507. workers[j] = (struct ggml_compute_state) {
  14508. .thrd = 0,
  14509. .ith = j,
  14510. .shared = &state_shared,
  14511. };
  14512. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14513. GGML_ASSERT(rc == 0);
  14514. UNUSED(rc);
  14515. }
  14516. }
  14517. workers[0].ith = 0;
  14518. workers[0].shared = &state_shared;
  14519. const int64_t perf_start_cycles = ggml_perf_cycles();
  14520. const int64_t perf_start_time_us = ggml_perf_time_us();
  14521. // this is a work thread too
  14522. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14523. // don't leave affinity set on the main thread
  14524. clear_numa_thread_affinity();
  14525. // join or kill thread pool
  14526. if (n_threads > 1) {
  14527. for (int j = 1; j < n_threads; j++) {
  14528. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14529. GGML_ASSERT(rc == 0);
  14530. }
  14531. }
  14532. // performance stats (graph)
  14533. {
  14534. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14535. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14536. cgraph->perf_runs++;
  14537. cgraph->perf_cycles += perf_cycles_cur;
  14538. cgraph->perf_time_us += perf_time_us_cur;
  14539. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14540. __func__, cgraph->perf_runs,
  14541. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14542. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14543. (double) perf_time_us_cur / 1000.0,
  14544. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14545. }
  14546. return compute_status;
  14547. }
  14548. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14549. for (int i = 0; i < cgraph->n_nodes; i++) {
  14550. struct ggml_tensor * grad = cgraph->grads[i];
  14551. if (grad) {
  14552. ggml_set_zero(grad);
  14553. }
  14554. }
  14555. }
  14556. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14557. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14558. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14559. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14560. ggml_graph_compute(cgraph, &cplan);
  14561. }
  14562. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14563. for (int i = 0; i < cgraph->n_leafs; i++) {
  14564. struct ggml_tensor * leaf = cgraph->leafs[i];
  14565. if (strcmp(leaf->name, name) == 0) {
  14566. return leaf;
  14567. }
  14568. }
  14569. for (int i = 0; i < cgraph->n_nodes; i++) {
  14570. struct ggml_tensor * node = cgraph->nodes[i];
  14571. if (strcmp(node->name, name) == 0) {
  14572. return node;
  14573. }
  14574. }
  14575. return NULL;
  14576. }
  14577. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14578. const int64_t * ne = tensor->ne;
  14579. const size_t * nb = tensor->nb;
  14580. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14581. ggml_type_name(tensor->type),
  14582. ggml_op_name (tensor->op),
  14583. tensor->n_dims,
  14584. ne[0], ne[1], ne[2], ne[3],
  14585. nb[0], nb[1], nb[2], nb[3],
  14586. tensor->data,
  14587. tensor->name);
  14588. }
  14589. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14590. const int64_t * ne = tensor->ne;
  14591. const size_t * nb = tensor->nb;
  14592. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14593. arg,
  14594. ggml_type_name(tensor->type),
  14595. ggml_op_name (tensor->op),
  14596. tensor->n_dims,
  14597. ne[0], ne[1], ne[2], ne[3],
  14598. nb[0], nb[1], nb[2], nb[3],
  14599. tensor->data,
  14600. tensor->name);
  14601. }
  14602. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14603. uint64_t size_eval = 0;
  14604. // compute size of intermediate results
  14605. // TODO: does not take into account scratch buffers !!!!
  14606. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14607. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14608. }
  14609. // print
  14610. {
  14611. FILE * fout = stdout;
  14612. fprintf(fout, "\n");
  14613. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14614. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14615. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14616. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14617. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14618. // header
  14619. fprintf(fout, "\n");
  14620. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14621. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14622. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14623. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14624. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14625. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14626. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14627. }
  14628. // header
  14629. fprintf(fout, "\n");
  14630. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14631. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14632. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14633. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14634. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14635. if (cgraph->nodes[i]->src[j]) {
  14636. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14637. }
  14638. }
  14639. fprintf(fout, "\n");
  14640. }
  14641. fprintf(fout, "\n");
  14642. }
  14643. // write binary data
  14644. {
  14645. FILE * fout = fopen(fname, "wb");
  14646. if (!fout) {
  14647. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14648. return;
  14649. }
  14650. // header
  14651. {
  14652. const uint32_t magic = GGML_FILE_MAGIC;
  14653. const uint32_t version = GGML_FILE_VERSION;
  14654. const uint32_t n_leafs = cgraph->n_leafs;
  14655. const uint32_t nodes = cgraph->n_nodes;
  14656. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14657. fwrite(&version, sizeof(uint32_t), 1, fout);
  14658. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14659. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14660. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14661. }
  14662. // leafs
  14663. {
  14664. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14665. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14666. const uint32_t type = tensor->type;
  14667. const uint32_t op = tensor->op;
  14668. const uint32_t n_dims = tensor->n_dims;
  14669. fwrite(&type, sizeof(uint32_t), 1, fout);
  14670. fwrite(&op, sizeof(uint32_t), 1, fout);
  14671. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14672. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14673. const uint64_t ne = tensor->ne[j];
  14674. const uint64_t nb = tensor->nb[j];
  14675. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14676. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14677. }
  14678. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14679. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14680. // dump the data
  14681. // TODO: pad this to 32 byte boundary
  14682. {
  14683. const size_t size = ggml_nbytes(tensor);
  14684. fwrite(tensor->data, sizeof(char), size, fout);
  14685. }
  14686. }
  14687. }
  14688. // nodes
  14689. {
  14690. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14691. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14692. const uint32_t type = tensor->type;
  14693. const uint32_t op = tensor->op;
  14694. const uint32_t n_dims = tensor->n_dims;
  14695. fwrite(&type, sizeof(uint32_t), 1, fout);
  14696. fwrite(&op, sizeof(uint32_t), 1, fout);
  14697. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14698. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14699. const uint64_t ne = tensor->ne[j];
  14700. const uint64_t nb = tensor->nb[j];
  14701. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14702. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14703. }
  14704. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14705. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14706. // output the op arguments
  14707. {
  14708. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14709. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14710. args[j] = tensor->src[j];
  14711. }
  14712. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14713. if (args[j]) {
  14714. int32_t idx = -1;
  14715. // check if leaf
  14716. {
  14717. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14718. if (args[j] == cgraph->leafs[k]) {
  14719. idx = k;
  14720. break;
  14721. }
  14722. }
  14723. }
  14724. // check if node
  14725. if (idx == -1) {
  14726. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14727. if (args[j] == cgraph->nodes[k]) {
  14728. idx = GGML_MAX_NODES + k;
  14729. break;
  14730. }
  14731. }
  14732. }
  14733. if (idx == -1) {
  14734. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14735. return;
  14736. }
  14737. fwrite(&idx, sizeof(int32_t), 1, fout);
  14738. } else {
  14739. const int32_t nul = -1;
  14740. fwrite(&nul, sizeof(int32_t), 1, fout);
  14741. }
  14742. }
  14743. }
  14744. }
  14745. }
  14746. fclose(fout);
  14747. }
  14748. }
  14749. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14750. assert(*ctx_data == NULL);
  14751. assert(*ctx_eval == NULL);
  14752. struct ggml_cgraph result = { 0 };
  14753. struct ggml_tensor * data = NULL;
  14754. // read file into data
  14755. {
  14756. FILE * fin = fopen(fname, "rb");
  14757. if (!fin) {
  14758. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14759. return result;
  14760. }
  14761. size_t fsize = 0;
  14762. fseek(fin, 0, SEEK_END);
  14763. fsize = ftell(fin);
  14764. fseek(fin, 0, SEEK_SET);
  14765. // create the data context
  14766. {
  14767. const size_t overhead = 1*ggml_tensor_overhead();
  14768. struct ggml_init_params params = {
  14769. .mem_size = fsize + overhead,
  14770. .mem_buffer = NULL,
  14771. .no_alloc = false,
  14772. };
  14773. *ctx_data = ggml_init(params);
  14774. if (!*ctx_data) {
  14775. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14776. fclose(fin);
  14777. return result;
  14778. }
  14779. }
  14780. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14781. {
  14782. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14783. if (ret != fsize) {
  14784. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14785. fclose(fin);
  14786. return result;
  14787. }
  14788. }
  14789. fclose(fin);
  14790. }
  14791. // populate result
  14792. {
  14793. char * ptr = (char *) data->data;
  14794. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14795. if (magic != GGML_FILE_MAGIC) {
  14796. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14797. return result;
  14798. }
  14799. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14800. if (version != GGML_FILE_VERSION) {
  14801. fprintf(stderr, "%s: invalid version number\n", __func__);
  14802. return result;
  14803. }
  14804. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14805. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14806. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14807. result.n_leafs = n_leafs;
  14808. result.n_nodes = n_nodes;
  14809. // create the data context
  14810. {
  14811. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14812. struct ggml_init_params params = {
  14813. .mem_size = size_eval + overhead,
  14814. .mem_buffer = NULL,
  14815. .no_alloc = true,
  14816. };
  14817. *ctx_eval = ggml_init(params);
  14818. if (!*ctx_eval) {
  14819. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14820. return result;
  14821. }
  14822. }
  14823. // leafs
  14824. {
  14825. uint32_t type;
  14826. uint32_t op;
  14827. uint32_t n_dims;
  14828. for (uint32_t i = 0; i < n_leafs; ++i) {
  14829. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14830. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14831. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14832. int64_t ne[GGML_MAX_DIMS];
  14833. size_t nb[GGML_MAX_DIMS];
  14834. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14835. uint64_t ne_cur;
  14836. uint64_t nb_cur;
  14837. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14838. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14839. ne[j] = ne_cur;
  14840. nb[j] = nb_cur;
  14841. }
  14842. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14843. tensor->op = (enum ggml_op) op;
  14844. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14845. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14846. tensor->data = (void *) ptr;
  14847. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14848. tensor->nb[j] = nb[j];
  14849. }
  14850. result.leafs[i] = tensor;
  14851. ptr += ggml_nbytes(tensor);
  14852. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14853. }
  14854. }
  14855. ggml_set_no_alloc(*ctx_eval, false);
  14856. // nodes
  14857. {
  14858. uint32_t type;
  14859. uint32_t op;
  14860. uint32_t n_dims;
  14861. for (uint32_t i = 0; i < n_nodes; ++i) {
  14862. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14863. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14864. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14865. enum ggml_op eop = (enum ggml_op) op;
  14866. int64_t ne[GGML_MAX_DIMS];
  14867. size_t nb[GGML_MAX_DIMS];
  14868. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14869. uint64_t ne_cur;
  14870. uint64_t nb_cur;
  14871. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14872. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14873. ne[j] = ne_cur;
  14874. nb[j] = nb_cur;
  14875. }
  14876. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14877. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14878. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14879. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14880. // parse args
  14881. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14882. const int32_t arg_idx = ptr_arg_idx[j];
  14883. if (arg_idx == -1) {
  14884. continue;
  14885. }
  14886. if (arg_idx < GGML_MAX_NODES) {
  14887. args[j] = result.leafs[arg_idx];
  14888. } else {
  14889. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14890. }
  14891. }
  14892. // create the tensor
  14893. // "view" operations are handled differently
  14894. // TODO: handle inplace ops - currently a copy is always made
  14895. struct ggml_tensor * tensor = NULL;
  14896. switch (eop) {
  14897. // TODO: implement other view ops
  14898. case GGML_OP_RESHAPE:
  14899. {
  14900. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14901. } break;
  14902. case GGML_OP_VIEW:
  14903. {
  14904. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14905. size_t offs;
  14906. memcpy(&offs, ptr_op_params, sizeof(offs));
  14907. tensor->data = ((char *) tensor->data) + offs;
  14908. } break;
  14909. case GGML_OP_TRANSPOSE:
  14910. {
  14911. tensor = ggml_transpose(*ctx_eval, args[0]);
  14912. } break;
  14913. case GGML_OP_PERMUTE:
  14914. {
  14915. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14916. } break;
  14917. default:
  14918. {
  14919. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14920. tensor->op = eop;
  14921. } break;
  14922. }
  14923. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14924. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14925. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14926. tensor->nb[j] = nb[j];
  14927. }
  14928. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14929. tensor->src[j] = args[j];
  14930. }
  14931. result.nodes[i] = tensor;
  14932. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14933. }
  14934. }
  14935. }
  14936. return result;
  14937. }
  14938. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14939. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14940. GGML_PRINT("=== GRAPH ===\n");
  14941. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14942. for (int i = 0; i < cgraph->n_nodes; i++) {
  14943. struct ggml_tensor * node = cgraph->nodes[i];
  14944. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14945. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14946. i,
  14947. node->ne[0], node->ne[1], node->ne[2],
  14948. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14949. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14950. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14951. (double) node->perf_time_us / 1000.0,
  14952. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14953. }
  14954. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14955. for (int i = 0; i < cgraph->n_leafs; i++) {
  14956. struct ggml_tensor * node = cgraph->leafs[i];
  14957. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14958. i,
  14959. node->ne[0], node->ne[1],
  14960. ggml_op_name(node->op));
  14961. }
  14962. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14963. if (perf_total_per_op_us[i] == 0) {
  14964. continue;
  14965. }
  14966. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14967. }
  14968. GGML_PRINT("========================================\n");
  14969. }
  14970. // check if node is part of the graph
  14971. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14972. if (cgraph == NULL) {
  14973. return true;
  14974. }
  14975. for (int i = 0; i < cgraph->n_nodes; i++) {
  14976. if (cgraph->nodes[i] == node) {
  14977. return true;
  14978. }
  14979. }
  14980. return false;
  14981. }
  14982. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14983. for (int i = 0; i < cgraph->n_nodes; i++) {
  14984. struct ggml_tensor * parent = cgraph->nodes[i];
  14985. if (parent->grad == node) {
  14986. return parent;
  14987. }
  14988. }
  14989. return NULL;
  14990. }
  14991. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14992. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14993. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14994. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14995. gparent0 ? (void *) gparent0 : (void *) parent,
  14996. gparent0 ? "g" : "x",
  14997. gparent ? (void *) gparent : (void *) node,
  14998. gparent ? "g" : "x",
  14999. gparent ? "empty" : "vee",
  15000. gparent ? "dashed" : "solid",
  15001. label);
  15002. }
  15003. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15004. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15005. (void *) parent, "x",
  15006. (void *) node, "x",
  15007. label);
  15008. }
  15009. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15010. char color[16];
  15011. FILE * fp = fopen(filename, "w");
  15012. GGML_ASSERT(fp);
  15013. fprintf(fp, "digraph G {\n");
  15014. fprintf(fp, " newrank = true;\n");
  15015. fprintf(fp, " rankdir = LR;\n");
  15016. for (int i = 0; i < gb->n_nodes; i++) {
  15017. struct ggml_tensor * node = gb->nodes[i];
  15018. if (ggml_graph_get_parent(gb, node) != NULL) {
  15019. continue;
  15020. }
  15021. if (node->is_param) {
  15022. snprintf(color, sizeof(color), "yellow");
  15023. } else if (node->grad) {
  15024. if (ggml_graph_find(gf, node)) {
  15025. snprintf(color, sizeof(color), "green");
  15026. } else {
  15027. snprintf(color, sizeof(color), "lightblue");
  15028. }
  15029. } else {
  15030. snprintf(color, sizeof(color), "white");
  15031. }
  15032. fprintf(fp, " \"%p\" [ "
  15033. "style = filled; fillcolor = %s; shape = record; "
  15034. "label=\"",
  15035. (void *) node, color);
  15036. if (strlen(node->name) > 0) {
  15037. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15038. } else {
  15039. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15040. }
  15041. if (node->n_dims == 2) {
  15042. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15043. } else {
  15044. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15045. }
  15046. if (node->grad) {
  15047. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15048. } else {
  15049. fprintf(fp, "\"; ]\n");
  15050. }
  15051. }
  15052. for (int i = 0; i < gb->n_leafs; i++) {
  15053. struct ggml_tensor * node = gb->leafs[i];
  15054. snprintf(color, sizeof(color), "pink");
  15055. fprintf(fp, " \"%p\" [ "
  15056. "style = filled; fillcolor = %s; shape = record; "
  15057. "label=\"<x>",
  15058. (void *) node, color);
  15059. if (strlen(node->name) > 0) {
  15060. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15061. } else {
  15062. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15063. }
  15064. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15065. if (ggml_nelements(node) < 5) {
  15066. fprintf(fp, " | (");
  15067. for (int j = 0; j < ggml_nelements(node); j++) {
  15068. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15069. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15070. }
  15071. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15072. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15073. }
  15074. else {
  15075. fprintf(fp, "#");
  15076. }
  15077. if (j < ggml_nelements(node) - 1) {
  15078. fprintf(fp, ", ");
  15079. }
  15080. }
  15081. fprintf(fp, ")");
  15082. }
  15083. fprintf(fp, "\"; ]\n");
  15084. }
  15085. for (int i = 0; i < gb->n_nodes; i++) {
  15086. struct ggml_tensor * node = gb->nodes[i];
  15087. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15088. if (node->src[j]) {
  15089. char label[16];
  15090. snprintf(label, sizeof(label), "src %d", j);
  15091. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15092. }
  15093. }
  15094. }
  15095. for (int i = 0; i < gb->n_leafs; i++) {
  15096. struct ggml_tensor * node = gb->leafs[i];
  15097. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15098. if (node->src[j]) {
  15099. char label[16];
  15100. snprintf(label, sizeof(label), "src %d", j);
  15101. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15102. }
  15103. }
  15104. }
  15105. fprintf(fp, "}\n");
  15106. fclose(fp);
  15107. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15108. }
  15109. ////////////////////////////////////////////////////////////////////////////////
  15110. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15111. int i = 0;
  15112. for (int p = 0; p < np; ++p) {
  15113. const int64_t ne = ggml_nelements(ps[p]) ;
  15114. // TODO: add function to set tensor from array
  15115. for (int64_t j = 0; j < ne; ++j) {
  15116. ggml_set_f32_1d(ps[p], j, x[i++]);
  15117. }
  15118. }
  15119. }
  15120. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15121. int i = 0;
  15122. for (int p = 0; p < np; ++p) {
  15123. const int64_t ne = ggml_nelements(ps[p]) ;
  15124. // TODO: add function to get all elements at once
  15125. for (int64_t j = 0; j < ne; ++j) {
  15126. x[i++] = ggml_get_f32_1d(ps[p], j);
  15127. }
  15128. }
  15129. }
  15130. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15131. int i = 0;
  15132. for (int p = 0; p < np; ++p) {
  15133. const int64_t ne = ggml_nelements(ps[p]) ;
  15134. // TODO: add function to get all elements at once
  15135. for (int64_t j = 0; j < ne; ++j) {
  15136. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15137. }
  15138. }
  15139. }
  15140. //
  15141. // ADAM
  15142. //
  15143. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15144. //
  15145. static enum ggml_opt_result ggml_opt_adam(
  15146. struct ggml_context * ctx,
  15147. struct ggml_opt_context * opt,
  15148. struct ggml_opt_params params,
  15149. struct ggml_tensor * f,
  15150. struct ggml_cgraph * gf,
  15151. struct ggml_cgraph * gb) {
  15152. GGML_ASSERT(ggml_is_scalar(f));
  15153. // these will store the parameters we want to optimize
  15154. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15155. int np = 0;
  15156. int nx = 0;
  15157. for (int i = 0; i < gf->n_nodes; ++i) {
  15158. if (gf->nodes[i]->is_param) {
  15159. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15160. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15161. ps[np++] = gf->nodes[i];
  15162. nx += ggml_nelements(gf->nodes[i]);
  15163. }
  15164. }
  15165. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15166. int iter = opt->iter;
  15167. ggml_opt_init(opt->ctx, opt, params, nx);
  15168. opt->iter = iter;
  15169. }
  15170. // constants
  15171. const float sched = params.adam.sched;
  15172. const float decay = params.adam.decay * sched;
  15173. const float alpha = params.adam.alpha * sched;
  15174. const float beta1 = params.adam.beta1;
  15175. const float beta2 = params.adam.beta2;
  15176. const float eps = params.adam.eps;
  15177. float * x = opt->adam.x->data; // view of the parameters
  15178. float * g1 = opt->adam.g1->data; // gradient
  15179. float * g2 = opt->adam.g2->data; // gradient squared
  15180. float * m = opt->adam.m->data; // first moment
  15181. float * v = opt->adam.v->data; // second moment
  15182. float * mh = opt->adam.mh->data; // first moment hat
  15183. float * vh = opt->adam.vh->data; // second moment hat
  15184. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15185. // update view
  15186. ggml_opt_get_params(np, ps, x);
  15187. // compute the function value
  15188. ggml_graph_reset (gf);
  15189. ggml_set_f32 (f->grad, 1.0f);
  15190. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15191. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15192. opt->adam.fx_best = opt->adam.fx_prev;
  15193. if (pf) {
  15194. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15195. }
  15196. // initialize
  15197. if (opt->just_initialized) {
  15198. opt->adam.n_no_improvement = 0;
  15199. opt->just_initialized = false;
  15200. }
  15201. float * fx_best = &opt->adam.fx_best;
  15202. float * fx_prev = &opt->adam.fx_prev;
  15203. int * n_no_improvement = &opt->adam.n_no_improvement;
  15204. int iter0 = opt->iter;
  15205. // run the optimizer
  15206. for (int t = 0; t < params.adam.n_iter; ++t) {
  15207. opt->iter = iter0 + t + 1;
  15208. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15209. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15210. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15211. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15212. for (int i = 0; i < np; ++i) {
  15213. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15214. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15215. }
  15216. const int64_t t_start_wall = ggml_time_us();
  15217. const int64_t t_start_cpu = ggml_cycles();
  15218. UNUSED(t_start_wall);
  15219. UNUSED(t_start_cpu);
  15220. {
  15221. // update the gradient
  15222. ggml_opt_get_grad(np, ps, g1);
  15223. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  15224. ggml_vec_scale_f32(nx, m, beta1);
  15225. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  15226. // g2 = g1^2
  15227. ggml_vec_sqr_f32 (nx, g2, g1);
  15228. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  15229. ggml_vec_scale_f32(nx, v, beta2);
  15230. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  15231. // m^hat = m_t / (1 - beta1^t)
  15232. // v^hat = v_t / (1 - beta2^t)
  15233. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  15234. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  15235. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  15236. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  15237. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  15238. ggml_vec_cpy_f32 (nx, mh, m);
  15239. ggml_vec_cpy_f32 (nx, vh, v);
  15240. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  15241. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  15242. ggml_vec_sqrt_f32 (nx, vh, vh);
  15243. ggml_vec_acc1_f32 (nx, vh, eps);
  15244. ggml_vec_div_f32 (nx, mh, mh, vh);
  15245. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  15246. ggml_vec_sub_f32 (nx, x, x, mh);
  15247. // update the parameters
  15248. ggml_opt_set_params(np, ps, x);
  15249. }
  15250. ggml_graph_reset (gf);
  15251. ggml_set_f32 (f->grad, 1.0f);
  15252. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15253. const float fx = ggml_get_f32_1d(f, 0);
  15254. // check convergence
  15255. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15256. GGML_PRINT_DEBUG("converged\n");
  15257. return GGML_OPT_OK;
  15258. }
  15259. // delta-based convergence test
  15260. if (pf != NULL) {
  15261. // need at least params.past iterations to start checking for convergence
  15262. if (params.past <= iter0 + t) {
  15263. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15264. if (fabsf(rate) < params.delta) {
  15265. return GGML_OPT_OK;
  15266. }
  15267. }
  15268. pf[(iter0 + t)%params.past] = fx;
  15269. }
  15270. // check for improvement
  15271. if (params.max_no_improvement > 0) {
  15272. if (fx_best[0] > fx) {
  15273. fx_best[0] = fx;
  15274. n_no_improvement[0] = 0;
  15275. } else {
  15276. ++n_no_improvement[0];
  15277. if (n_no_improvement[0] >= params.max_no_improvement) {
  15278. return GGML_OPT_OK;
  15279. }
  15280. }
  15281. }
  15282. fx_prev[0] = fx;
  15283. {
  15284. const int64_t t_end_cpu = ggml_cycles();
  15285. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15286. UNUSED(t_end_cpu);
  15287. const int64_t t_end_wall = ggml_time_us();
  15288. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15289. UNUSED(t_end_wall);
  15290. }
  15291. }
  15292. return GGML_OPT_DID_NOT_CONVERGE;
  15293. }
  15294. //
  15295. // L-BFGS
  15296. //
  15297. // the L-BFGS implementation below is based on the following implementation:
  15298. //
  15299. // https://github.com/chokkan/liblbfgs
  15300. //
  15301. struct ggml_lbfgs_iteration_data {
  15302. float alpha;
  15303. float ys;
  15304. float * s;
  15305. float * y;
  15306. };
  15307. static enum ggml_opt_result linesearch_backtracking(
  15308. struct ggml_context * ctx,
  15309. const struct ggml_opt_params * params,
  15310. int nx,
  15311. float * x,
  15312. float * fx,
  15313. float * g,
  15314. float * d,
  15315. float * step,
  15316. const float * xp,
  15317. struct ggml_tensor * f,
  15318. struct ggml_cgraph * gf,
  15319. struct ggml_cgraph * gb,
  15320. const int np,
  15321. struct ggml_tensor * ps[]) {
  15322. int count = 0;
  15323. float width = 0.0f;
  15324. float dg = 0.0f;
  15325. float finit = 0.0f;
  15326. float dginit = 0.0f;
  15327. float dgtest = 0.0f;
  15328. const float dec = 0.5f;
  15329. const float inc = 2.1f;
  15330. if (*step <= 0.f) {
  15331. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15332. }
  15333. // compute the initial gradient in the search direction
  15334. ggml_vec_dot_f32(nx, &dginit, g, d);
  15335. // make sure that d points to a descent direction
  15336. if (0 < dginit) {
  15337. return GGML_LINESEARCH_FAIL;
  15338. }
  15339. // initialize local variables
  15340. finit = *fx;
  15341. dgtest = params->lbfgs.ftol*dginit;
  15342. while (true) {
  15343. ggml_vec_cpy_f32(nx, x, xp);
  15344. ggml_vec_mad_f32(nx, x, d, *step);
  15345. // evaluate the function and gradient values
  15346. {
  15347. ggml_opt_set_params(np, ps, x);
  15348. ggml_graph_reset (gf);
  15349. ggml_set_f32 (f->grad, 1.0f);
  15350. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  15351. ggml_opt_get_grad(np, ps, g);
  15352. *fx = ggml_get_f32_1d(f, 0);
  15353. }
  15354. ++count;
  15355. if (*fx > finit + (*step)*dgtest) {
  15356. width = dec;
  15357. } else {
  15358. // Armijo condition is satisfied
  15359. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15360. return count;
  15361. }
  15362. ggml_vec_dot_f32(nx, &dg, g, d);
  15363. // check the Wolfe condition
  15364. if (dg < params->lbfgs.wolfe * dginit) {
  15365. width = inc;
  15366. } else {
  15367. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15368. // regular Wolfe conditions
  15369. return count;
  15370. }
  15371. if(dg > -params->lbfgs.wolfe*dginit) {
  15372. width = dec;
  15373. } else {
  15374. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15375. return count;
  15376. }
  15377. return count;
  15378. }
  15379. }
  15380. if (*step < params->lbfgs.min_step) {
  15381. return GGML_LINESEARCH_MINIMUM_STEP;
  15382. }
  15383. if (*step > params->lbfgs.max_step) {
  15384. return GGML_LINESEARCH_MAXIMUM_STEP;
  15385. }
  15386. if (params->lbfgs.max_linesearch <= count) {
  15387. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15388. }
  15389. (*step) *= width;
  15390. }
  15391. return GGML_LINESEARCH_FAIL;
  15392. }
  15393. static enum ggml_opt_result ggml_opt_lbfgs(
  15394. struct ggml_context * ctx,
  15395. struct ggml_opt_context * opt,
  15396. struct ggml_opt_params params,
  15397. struct ggml_tensor * f,
  15398. struct ggml_cgraph * gf,
  15399. struct ggml_cgraph * gb) {
  15400. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15401. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15402. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15403. return GGML_OPT_INVALID_WOLFE;
  15404. }
  15405. }
  15406. const int m = params.lbfgs.m;
  15407. // these will store the parameters we want to optimize
  15408. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15409. int np = 0;
  15410. int nx = 0;
  15411. for (int i = 0; i < gf->n_nodes; ++i) {
  15412. if (gf->nodes[i]->is_param) {
  15413. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15414. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15415. ps[np++] = gf->nodes[i];
  15416. nx += ggml_nelements(gf->nodes[i]);
  15417. }
  15418. }
  15419. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15420. int iter = opt->iter;
  15421. ggml_opt_init(ctx, opt, params, nx);
  15422. opt->iter = iter;
  15423. }
  15424. float * x = opt->lbfgs.x->data; // current parameters
  15425. float * xp = opt->lbfgs.xp->data; // previous parameters
  15426. float * g = opt->lbfgs.g->data; // current gradient
  15427. float * gp = opt->lbfgs.gp->data; // previous gradient
  15428. float * d = opt->lbfgs.d->data; // search direction
  15429. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15430. float fx = 0.0f; // cost function value
  15431. float xnorm = 0.0f; // ||x||
  15432. float gnorm = 0.0f; // ||g||
  15433. // initialize x from the graph nodes
  15434. ggml_opt_get_params(np, ps, x);
  15435. // the L-BFGS memory
  15436. float * lm_alpha = opt->lbfgs.lmal->data;
  15437. float * lm_ys = opt->lbfgs.lmys->data;
  15438. float * lm_s = opt->lbfgs.lms->data;
  15439. float * lm_y = opt->lbfgs.lmy->data;
  15440. // evaluate the function value and its gradient
  15441. {
  15442. ggml_opt_set_params(np, ps, x);
  15443. ggml_graph_reset (gf);
  15444. ggml_set_f32 (f->grad, 1.0f);
  15445. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  15446. ggml_opt_get_grad(np, ps, g);
  15447. fx = ggml_get_f32_1d(f, 0);
  15448. }
  15449. // search direction = -gradient
  15450. ggml_vec_neg_f32(nx, d, g);
  15451. // ||x||, ||g||
  15452. ggml_vec_norm_f32(nx, &xnorm, x);
  15453. ggml_vec_norm_f32(nx, &gnorm, g);
  15454. if (xnorm < 1.0f) {
  15455. xnorm = 1.0f;
  15456. }
  15457. // already optimized
  15458. if (gnorm/xnorm <= params.lbfgs.eps) {
  15459. return GGML_OPT_OK;
  15460. }
  15461. if (opt->just_initialized) {
  15462. if (pf) {
  15463. pf[0] = fx;
  15464. }
  15465. opt->lbfgs.fx_best = fx;
  15466. // initial step
  15467. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15468. opt->lbfgs.j = 0;
  15469. opt->lbfgs.k = 1;
  15470. opt->lbfgs.end = 0;
  15471. opt->lbfgs.n_no_improvement = 0;
  15472. opt->just_initialized = false;
  15473. }
  15474. float * fx_best = &opt->lbfgs.fx_best;
  15475. float * step = &opt->lbfgs.step;
  15476. int * j = &opt->lbfgs.j;
  15477. int * k = &opt->lbfgs.k;
  15478. int * end = &opt->lbfgs.end;
  15479. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15480. int ls = 0;
  15481. int bound = 0;
  15482. float ys = 0.0f;
  15483. float yy = 0.0f;
  15484. float beta = 0.0f;
  15485. int it = 0;
  15486. while (true) {
  15487. // store the current position and gradient vectors
  15488. ggml_vec_cpy_f32(nx, xp, x);
  15489. ggml_vec_cpy_f32(nx, gp, g);
  15490. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15491. if (ls < 0) {
  15492. // linesearch failed - go back to the previous point and return
  15493. ggml_vec_cpy_f32(nx, x, xp);
  15494. ggml_vec_cpy_f32(nx, g, gp);
  15495. return ls;
  15496. }
  15497. ggml_vec_norm_f32(nx, &xnorm, x);
  15498. ggml_vec_norm_f32(nx, &gnorm, g);
  15499. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15500. if (xnorm < 1.0f) {
  15501. xnorm = 1.0f;
  15502. }
  15503. if (gnorm/xnorm <= params.lbfgs.eps) {
  15504. // converged
  15505. return GGML_OPT_OK;
  15506. }
  15507. // delta-based convergence test
  15508. if (pf != NULL) {
  15509. // need at least params.past iterations to start checking for convergence
  15510. if (params.past <= k[0]) {
  15511. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15512. if (fabsf(rate) < params.delta) {
  15513. return GGML_OPT_OK;
  15514. }
  15515. }
  15516. pf[k[0]%params.past] = fx;
  15517. }
  15518. // check for improvement
  15519. if (params.max_no_improvement > 0) {
  15520. if (fx < fx_best[0]) {
  15521. fx_best[0] = fx;
  15522. n_no_improvement[0] = 0;
  15523. } else {
  15524. n_no_improvement[0]++;
  15525. if (n_no_improvement[0] >= params.max_no_improvement) {
  15526. return GGML_OPT_OK;
  15527. }
  15528. }
  15529. }
  15530. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15531. // reached the maximum number of iterations
  15532. return GGML_OPT_DID_NOT_CONVERGE;
  15533. }
  15534. // update vectors s and y:
  15535. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15536. // y_{k+1} = g_{k+1} - g_{k}.
  15537. //
  15538. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15539. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15540. // compute scalars ys and yy:
  15541. // ys = y^t \cdot s -> 1 / \rho.
  15542. // yy = y^t \cdot y.
  15543. //
  15544. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15545. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15546. lm_ys[end[0]] = ys;
  15547. // find new search direction
  15548. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15549. bound = (m <= k[0]) ? m : k[0];
  15550. k[0]++;
  15551. it++;
  15552. end[0] = (end[0] + 1)%m;
  15553. // initialize search direction with -g
  15554. ggml_vec_neg_f32(nx, d, g);
  15555. j[0] = end[0];
  15556. for (int i = 0; i < bound; ++i) {
  15557. j[0] = (j[0] + m - 1) % m;
  15558. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15559. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15560. lm_alpha[j[0]] /= lm_ys[j[0]];
  15561. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15562. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15563. }
  15564. ggml_vec_scale_f32(nx, d, ys/yy);
  15565. for (int i = 0; i < bound; ++i) {
  15566. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15567. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15568. beta /= lm_ys[j[0]];
  15569. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15570. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15571. j[0] = (j[0] + 1)%m;
  15572. }
  15573. step[0] = 1.0;
  15574. }
  15575. return GGML_OPT_DID_NOT_CONVERGE;
  15576. }
  15577. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15578. struct ggml_opt_params result;
  15579. switch (type) {
  15580. case GGML_OPT_ADAM:
  15581. {
  15582. result = (struct ggml_opt_params) {
  15583. .type = GGML_OPT_ADAM,
  15584. .n_threads = 1,
  15585. .past = 0,
  15586. .delta = 1e-5f,
  15587. .max_no_improvement = 100,
  15588. .print_forward_graph = true,
  15589. .print_backward_graph = true,
  15590. .adam = {
  15591. .n_iter = 10000,
  15592. .sched = 1.000f,
  15593. .decay = 0.001f,
  15594. .alpha = 0.001f,
  15595. .beta1 = 0.9f,
  15596. .beta2 = 0.999f,
  15597. .eps = 1e-8f,
  15598. .eps_f = 1e-5f,
  15599. .eps_g = 1e-3f,
  15600. },
  15601. };
  15602. } break;
  15603. case GGML_OPT_LBFGS:
  15604. {
  15605. result = (struct ggml_opt_params) {
  15606. .type = GGML_OPT_LBFGS,
  15607. .n_threads = 1,
  15608. .past = 0,
  15609. .delta = 1e-5f,
  15610. .max_no_improvement = 0,
  15611. .print_forward_graph = true,
  15612. .print_backward_graph = true,
  15613. .lbfgs = {
  15614. .m = 6,
  15615. .n_iter = 100,
  15616. .max_linesearch = 20,
  15617. .eps = 1e-5f,
  15618. .ftol = 1e-4f,
  15619. .wolfe = 0.9f,
  15620. .min_step = 1e-20f,
  15621. .max_step = 1e+20f,
  15622. .linesearch = GGML_LINESEARCH_DEFAULT,
  15623. },
  15624. };
  15625. } break;
  15626. }
  15627. return result;
  15628. }
  15629. GGML_API void ggml_opt_init(
  15630. struct ggml_context * ctx,
  15631. struct ggml_opt_context * opt,
  15632. struct ggml_opt_params params,
  15633. int64_t nx) {
  15634. opt->ctx = ctx;
  15635. opt->params = params;
  15636. opt->iter = 0;
  15637. opt->nx = nx;
  15638. opt->just_initialized = true;
  15639. switch (opt->params.type) {
  15640. case GGML_OPT_ADAM:
  15641. {
  15642. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15643. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15644. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15645. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15646. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15647. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15648. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15649. opt->adam.pf = params.past > 0
  15650. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15651. : NULL;
  15652. ggml_set_zero(opt->adam.x);
  15653. ggml_set_zero(opt->adam.g1);
  15654. ggml_set_zero(opt->adam.g2);
  15655. ggml_set_zero(opt->adam.m);
  15656. ggml_set_zero(opt->adam.v);
  15657. ggml_set_zero(opt->adam.mh);
  15658. ggml_set_zero(opt->adam.vh);
  15659. if (opt->adam.pf) {
  15660. ggml_set_zero(opt->adam.pf);
  15661. }
  15662. } break;
  15663. case GGML_OPT_LBFGS:
  15664. {
  15665. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15666. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15667. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15668. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15669. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15670. opt->lbfgs.pf = params.past > 0
  15671. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15672. : NULL;
  15673. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15674. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15675. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15676. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15677. ggml_set_zero(opt->lbfgs.x);
  15678. ggml_set_zero(opt->lbfgs.xp);
  15679. ggml_set_zero(opt->lbfgs.g);
  15680. ggml_set_zero(opt->lbfgs.gp);
  15681. ggml_set_zero(opt->lbfgs.d);
  15682. if (opt->lbfgs.pf) {
  15683. ggml_set_zero(opt->lbfgs.pf);
  15684. }
  15685. ggml_set_zero(opt->lbfgs.lmal);
  15686. ggml_set_zero(opt->lbfgs.lmys);
  15687. ggml_set_zero(opt->lbfgs.lms);
  15688. ggml_set_zero(opt->lbfgs.lmy);
  15689. } break;
  15690. }
  15691. }
  15692. enum ggml_opt_result ggml_opt(
  15693. struct ggml_context * ctx,
  15694. struct ggml_opt_params params,
  15695. struct ggml_tensor * f) {
  15696. bool free_ctx = false;
  15697. if (ctx == NULL) {
  15698. struct ggml_init_params params_ctx = {
  15699. .mem_size = 16*1024*1024,
  15700. .mem_buffer = NULL,
  15701. .no_alloc = false,
  15702. };
  15703. ctx = ggml_init(params_ctx);
  15704. if (ctx == NULL) {
  15705. return GGML_OPT_NO_CONTEXT;
  15706. }
  15707. free_ctx = true;
  15708. }
  15709. enum ggml_opt_result result = GGML_OPT_OK;
  15710. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15711. ggml_opt_init(ctx, opt, params, 0);
  15712. result = ggml_opt_resume(ctx, opt, f);
  15713. if (free_ctx) {
  15714. ggml_free(ctx);
  15715. }
  15716. return result;
  15717. }
  15718. enum ggml_opt_result ggml_opt_resume(
  15719. struct ggml_context * ctx,
  15720. struct ggml_opt_context * opt,
  15721. struct ggml_tensor * f) {
  15722. // build forward + backward compute graphs
  15723. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15724. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15725. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15726. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15727. *gf = ggml_build_forward (f);
  15728. *gb = ggml_build_backward(ctx, gf, true);
  15729. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15730. }
  15731. enum ggml_opt_result ggml_opt_resume_g(
  15732. struct ggml_context * ctx,
  15733. struct ggml_opt_context * opt,
  15734. struct ggml_tensor * f,
  15735. struct ggml_cgraph * gf,
  15736. struct ggml_cgraph * gb) {
  15737. // build forward + backward compute graphs
  15738. enum ggml_opt_result result = GGML_OPT_OK;
  15739. switch (opt->params.type) {
  15740. case GGML_OPT_ADAM:
  15741. {
  15742. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15743. } break;
  15744. case GGML_OPT_LBFGS:
  15745. {
  15746. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15747. } break;
  15748. }
  15749. if (opt->params.print_forward_graph) {
  15750. ggml_graph_print (gf);
  15751. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15752. }
  15753. if (opt->params.print_backward_graph) {
  15754. ggml_graph_print (gb);
  15755. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15756. }
  15757. return result;
  15758. }
  15759. ////////////////////////////////////////////////////////////////////////////////
  15760. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15761. assert(k % QK4_0 == 0);
  15762. const int nb = k / QK4_0;
  15763. for (int b = 0; b < n; b += k) {
  15764. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15765. quantize_row_q4_0_reference(src + b, y, k);
  15766. for (int i = 0; i < nb; i++) {
  15767. for (int j = 0; j < QK4_0; j += 2) {
  15768. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15769. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15770. hist[vi0]++;
  15771. hist[vi1]++;
  15772. }
  15773. }
  15774. }
  15775. return (n/QK4_0*sizeof(block_q4_0));
  15776. }
  15777. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15778. assert(k % QK4_1 == 0);
  15779. const int nb = k / QK4_1;
  15780. for (int b = 0; b < n; b += k) {
  15781. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15782. quantize_row_q4_1_reference(src + b, y, k);
  15783. for (int i = 0; i < nb; i++) {
  15784. for (int j = 0; j < QK4_1; j += 2) {
  15785. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15786. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15787. hist[vi0]++;
  15788. hist[vi1]++;
  15789. }
  15790. }
  15791. }
  15792. return (n/QK4_1*sizeof(block_q4_1));
  15793. }
  15794. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15795. assert(k % QK5_0 == 0);
  15796. const int nb = k / QK5_0;
  15797. for (int b = 0; b < n; b += k) {
  15798. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15799. quantize_row_q5_0_reference(src + b, y, k);
  15800. for (int i = 0; i < nb; i++) {
  15801. uint32_t qh;
  15802. memcpy(&qh, &y[i].qh, sizeof(qh));
  15803. for (int j = 0; j < QK5_0; j += 2) {
  15804. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15805. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15806. // cast to 16 bins
  15807. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15808. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15809. hist[vi0]++;
  15810. hist[vi1]++;
  15811. }
  15812. }
  15813. }
  15814. return (n/QK5_0*sizeof(block_q5_0));
  15815. }
  15816. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15817. assert(k % QK5_1 == 0);
  15818. const int nb = k / QK5_1;
  15819. for (int b = 0; b < n; b += k) {
  15820. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15821. quantize_row_q5_1_reference(src + b, y, k);
  15822. for (int i = 0; i < nb; i++) {
  15823. uint32_t qh;
  15824. memcpy(&qh, &y[i].qh, sizeof(qh));
  15825. for (int j = 0; j < QK5_1; j += 2) {
  15826. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15827. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15828. // cast to 16 bins
  15829. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15830. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15831. hist[vi0]++;
  15832. hist[vi1]++;
  15833. }
  15834. }
  15835. }
  15836. return (n/QK5_1*sizeof(block_q5_1));
  15837. }
  15838. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15839. assert(k % QK8_0 == 0);
  15840. const int nb = k / QK8_0;
  15841. for (int b = 0; b < n; b += k) {
  15842. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15843. quantize_row_q8_0_reference(src + b, y, k);
  15844. for (int i = 0; i < nb; i++) {
  15845. for (int j = 0; j < QK8_0; ++j) {
  15846. const int8_t vi = y[i].qs[j];
  15847. hist[vi/16 + 8]++;
  15848. }
  15849. }
  15850. }
  15851. return (n/QK8_0*sizeof(block_q8_0));
  15852. }
  15853. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15854. size_t result = 0;
  15855. switch (type) {
  15856. case GGML_TYPE_Q4_0:
  15857. {
  15858. GGML_ASSERT(start % QK4_0 == 0);
  15859. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15860. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15861. } break;
  15862. case GGML_TYPE_Q4_1:
  15863. {
  15864. GGML_ASSERT(start % QK4_1 == 0);
  15865. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15866. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15867. } break;
  15868. case GGML_TYPE_Q5_0:
  15869. {
  15870. GGML_ASSERT(start % QK5_0 == 0);
  15871. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15872. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15873. } break;
  15874. case GGML_TYPE_Q5_1:
  15875. {
  15876. GGML_ASSERT(start % QK5_1 == 0);
  15877. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15878. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15879. } break;
  15880. case GGML_TYPE_Q8_0:
  15881. {
  15882. GGML_ASSERT(start % QK8_0 == 0);
  15883. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15884. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15885. } break;
  15886. #ifdef GGML_USE_K_QUANTS
  15887. case GGML_TYPE_Q2_K:
  15888. {
  15889. GGML_ASSERT(start % QK_K == 0);
  15890. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15891. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15892. } break;
  15893. case GGML_TYPE_Q3_K:
  15894. {
  15895. GGML_ASSERT(start % QK_K == 0);
  15896. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15897. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15898. } break;
  15899. case GGML_TYPE_Q4_K:
  15900. {
  15901. GGML_ASSERT(start % QK_K == 0);
  15902. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15903. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15904. } break;
  15905. case GGML_TYPE_Q5_K:
  15906. {
  15907. GGML_ASSERT(start % QK_K == 0);
  15908. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15909. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15910. } break;
  15911. case GGML_TYPE_Q6_K:
  15912. {
  15913. GGML_ASSERT(start % QK_K == 0);
  15914. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15915. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15916. } break;
  15917. #endif
  15918. case GGML_TYPE_F16:
  15919. {
  15920. int elemsize = sizeof(ggml_fp16_t);
  15921. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15922. result = n * elemsize;
  15923. } break;
  15924. case GGML_TYPE_F32:
  15925. {
  15926. int elemsize = sizeof(float);
  15927. result = n * elemsize;
  15928. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15929. } break;
  15930. default:
  15931. assert(false);
  15932. }
  15933. return result;
  15934. }
  15935. ////////////////////////////////////////////////////////////////////////////////
  15936. struct gguf_str {
  15937. uint64_t n; // GGUFv2
  15938. char * data;
  15939. };
  15940. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15941. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15942. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15943. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15944. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15945. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15946. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15947. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15948. [GGUF_TYPE_BOOL] = sizeof(bool),
  15949. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15950. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15951. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15952. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15953. [GGUF_TYPE_ARRAY] = 0, // undefined
  15954. };
  15955. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15956. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15957. [GGUF_TYPE_UINT8] = "u8",
  15958. [GGUF_TYPE_INT8] = "i8",
  15959. [GGUF_TYPE_UINT16] = "u16",
  15960. [GGUF_TYPE_INT16] = "i16",
  15961. [GGUF_TYPE_UINT32] = "u32",
  15962. [GGUF_TYPE_INT32] = "i32",
  15963. [GGUF_TYPE_FLOAT32] = "f32",
  15964. [GGUF_TYPE_BOOL] = "bool",
  15965. [GGUF_TYPE_STRING] = "str",
  15966. [GGUF_TYPE_ARRAY] = "arr",
  15967. [GGUF_TYPE_UINT64] = "u64",
  15968. [GGUF_TYPE_INT64] = "i64",
  15969. [GGUF_TYPE_FLOAT64] = "f64",
  15970. };
  15971. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15972. union gguf_value {
  15973. uint8_t uint8;
  15974. int8_t int8;
  15975. uint16_t uint16;
  15976. int16_t int16;
  15977. uint32_t uint32;
  15978. int32_t int32;
  15979. float float32;
  15980. uint64_t uint64;
  15981. int64_t int64;
  15982. double float64;
  15983. bool bool_;
  15984. struct gguf_str str;
  15985. struct {
  15986. enum gguf_type type;
  15987. uint64_t n; // GGUFv2
  15988. void * data;
  15989. } arr;
  15990. };
  15991. struct gguf_kv {
  15992. struct gguf_str key;
  15993. enum gguf_type type;
  15994. union gguf_value value;
  15995. };
  15996. struct gguf_header {
  15997. uint32_t magic;
  15998. uint32_t version;
  15999. uint64_t n_tensors; // GGUFv2
  16000. uint64_t n_kv; // GGUFv2
  16001. };
  16002. struct gguf_tensor_info {
  16003. struct gguf_str name;
  16004. uint32_t n_dims;
  16005. uint64_t ne[GGML_MAX_DIMS];
  16006. enum ggml_type type;
  16007. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16008. // for writing API
  16009. const void * data;
  16010. size_t size;
  16011. };
  16012. struct gguf_context {
  16013. struct gguf_header header;
  16014. struct gguf_kv * kv;
  16015. struct gguf_tensor_info * infos;
  16016. size_t alignment;
  16017. size_t offset; // offset of `data` from beginning of file
  16018. size_t size; // size of `data` in bytes
  16019. //uint8_t * padding;
  16020. void * data;
  16021. };
  16022. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16023. const size_t n = fread(dst, 1, size, file);
  16024. *offset += n;
  16025. return n == size;
  16026. }
  16027. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16028. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16029. p->n = 0;
  16030. p->data = NULL;
  16031. bool ok = true;
  16032. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16033. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16034. return ok;
  16035. }
  16036. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16037. p->n = 0;
  16038. p->data = NULL;
  16039. bool ok = true;
  16040. uint32_t n = 0;
  16041. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16042. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16043. return ok;
  16044. }
  16045. struct gguf_context * gguf_init_empty(void) {
  16046. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16047. ctx->header.magic = GGUF_MAGIC;
  16048. ctx->header.version = GGUF_VERSION;
  16049. ctx->header.n_tensors = 0;
  16050. ctx->header.n_kv = 0;
  16051. ctx->kv = NULL;
  16052. ctx->infos = NULL;
  16053. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16054. ctx->offset = 0;
  16055. ctx->size = 0;
  16056. ctx->data = NULL;
  16057. return ctx;
  16058. }
  16059. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16060. FILE * file = fopen(fname, "rb");
  16061. if (!file) {
  16062. return NULL;
  16063. }
  16064. // offset from start of file
  16065. size_t offset = 0;
  16066. uint32_t magic = 0;
  16067. // check the magic before making allocations
  16068. {
  16069. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16070. if (magic != GGUF_MAGIC) {
  16071. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16072. fclose(file);
  16073. return NULL;
  16074. }
  16075. }
  16076. bool ok = true;
  16077. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16078. // read the header
  16079. {
  16080. ctx->header.magic = magic;
  16081. ctx->kv = NULL;
  16082. ctx->infos = NULL;
  16083. ctx->data = NULL;
  16084. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16085. if (ctx->header.version == 1) {
  16086. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16087. uint32_t n_tensors = 0;
  16088. uint32_t n_kv = 0;
  16089. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16090. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16091. ctx->header.n_tensors = n_tensors;
  16092. ctx->header.n_kv = n_kv;
  16093. } else {
  16094. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16095. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16096. }
  16097. if (!ok) {
  16098. fprintf(stderr, "%s: failed to read header\n", __func__);
  16099. fclose(file);
  16100. gguf_free(ctx);
  16101. return NULL;
  16102. }
  16103. }
  16104. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16105. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16106. if (ctx->header.version == 1) {
  16107. gguf_fread_str = gguf_fread_str_v1;
  16108. }
  16109. // read the kv pairs
  16110. {
  16111. ctx->kv = GGML_ALIGNED_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16112. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16113. struct gguf_kv * kv = &ctx->kv[i];
  16114. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16115. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16116. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16117. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16118. switch (kv->type) {
  16119. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16120. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16121. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16122. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16123. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16124. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16125. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16126. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16127. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16128. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16129. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16130. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16131. case GGUF_TYPE_ARRAY:
  16132. {
  16133. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16134. if (ctx->header.version == 1) {
  16135. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16136. uint32_t n = 0;
  16137. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16138. kv->value.arr.n = n;
  16139. } else {
  16140. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16141. }
  16142. switch (kv->value.arr.type) {
  16143. case GGUF_TYPE_UINT8:
  16144. case GGUF_TYPE_INT8:
  16145. case GGUF_TYPE_UINT16:
  16146. case GGUF_TYPE_INT16:
  16147. case GGUF_TYPE_UINT32:
  16148. case GGUF_TYPE_INT32:
  16149. case GGUF_TYPE_FLOAT32:
  16150. case GGUF_TYPE_UINT64:
  16151. case GGUF_TYPE_INT64:
  16152. case GGUF_TYPE_FLOAT64:
  16153. case GGUF_TYPE_BOOL:
  16154. {
  16155. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16156. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16157. } break;
  16158. case GGUF_TYPE_STRING:
  16159. {
  16160. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16161. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16162. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16163. }
  16164. } break;
  16165. case GGUF_TYPE_ARRAY:
  16166. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16167. };
  16168. } break;
  16169. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16170. };
  16171. if (!ok) {
  16172. break;
  16173. }
  16174. }
  16175. if (!ok) {
  16176. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16177. fclose(file);
  16178. gguf_free(ctx);
  16179. return NULL;
  16180. }
  16181. }
  16182. // read the tensor infos
  16183. {
  16184. ctx->infos = GGML_ALIGNED_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16185. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16186. struct gguf_tensor_info * info = &ctx->infos[i];
  16187. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16188. info->ne[j] = 1;
  16189. }
  16190. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16191. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16192. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16193. if (ctx->header.version == 1) {
  16194. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16195. uint32_t t = 0;
  16196. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16197. info->ne[j] = t;
  16198. } else {
  16199. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16200. }
  16201. }
  16202. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16203. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16204. if (!ok) {
  16205. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16206. fclose(file);
  16207. gguf_free(ctx);
  16208. return NULL;
  16209. }
  16210. }
  16211. }
  16212. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16213. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16214. if (alignment_idx != -1) {
  16215. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16216. }
  16217. // we require the data section to be aligned, so take into account any padding
  16218. {
  16219. const size_t offset_pad = offset % ctx->alignment;
  16220. if (offset_pad != 0) {
  16221. offset += ctx->alignment - offset_pad;
  16222. fseek(file, offset, SEEK_SET);
  16223. }
  16224. }
  16225. // store the current file offset - this is where the data section starts
  16226. ctx->offset = offset;
  16227. // compute the total size of the data section, taking into account the alignment
  16228. {
  16229. ctx->size = 0;
  16230. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16231. struct gguf_tensor_info * info = &ctx->infos[i];
  16232. const int64_t ne =
  16233. (int64_t) info->ne[0] *
  16234. (int64_t) info->ne[1] *
  16235. (int64_t) info->ne[2] *
  16236. (int64_t) info->ne[3];
  16237. if (ne % ggml_blck_size(info->type) != 0) {
  16238. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16239. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16240. fclose(file);
  16241. gguf_free(ctx);
  16242. return NULL;
  16243. }
  16244. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16245. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16246. }
  16247. }
  16248. // load the tensor data only if requested
  16249. if (params.ctx != NULL) {
  16250. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16251. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16252. // the ggml_tensor structs to the appropriate locations in the binary blob
  16253. // compute the exact size needed for the new ggml_context
  16254. const size_t mem_size =
  16255. params.no_alloc ?
  16256. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16257. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16258. struct ggml_init_params pdata = {
  16259. .mem_size = mem_size,
  16260. .mem_buffer = NULL,
  16261. .no_alloc = params.no_alloc,
  16262. };
  16263. *params.ctx = ggml_init(pdata);
  16264. struct ggml_context * ctx_data = *params.ctx;
  16265. struct ggml_tensor * data = NULL;
  16266. if (params.no_alloc == false) {
  16267. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16268. ok = ok && data != NULL;
  16269. // read the binary blob with the tensor data
  16270. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16271. if (!ok) {
  16272. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16273. fclose(file);
  16274. ggml_free(ctx_data);
  16275. gguf_free(ctx);
  16276. return NULL;
  16277. }
  16278. ctx->data = data->data;
  16279. }
  16280. ggml_set_no_alloc(ctx_data, true);
  16281. // create the tensors
  16282. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16283. const int64_t ne[GGML_MAX_DIMS] = {
  16284. ctx->infos[i].ne[0],
  16285. ctx->infos[i].ne[1],
  16286. ctx->infos[i].ne[2],
  16287. ctx->infos[i].ne[3],
  16288. };
  16289. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16290. ok = ok && cur != NULL;
  16291. ggml_set_name(cur, ctx->infos[i].name.data);
  16292. if (!ok) {
  16293. break;
  16294. }
  16295. // point the data member to the appropriate location in the binary blob using the tensor infos
  16296. if (params.no_alloc == false) {
  16297. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16298. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16299. }
  16300. }
  16301. if (!ok) {
  16302. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16303. fclose(file);
  16304. ggml_free(ctx_data);
  16305. gguf_free(ctx);
  16306. return NULL;
  16307. }
  16308. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16309. }
  16310. fclose(file);
  16311. return ctx;
  16312. }
  16313. void gguf_free(struct gguf_context * ctx) {
  16314. if (ctx == NULL) {
  16315. return;
  16316. }
  16317. if (ctx->kv) {
  16318. // free string memory - not great..
  16319. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16320. struct gguf_kv * kv = &ctx->kv[i];
  16321. if (kv->key.data) {
  16322. free(kv->key.data);
  16323. }
  16324. if (kv->type == GGUF_TYPE_STRING) {
  16325. if (kv->value.str.data) {
  16326. free(kv->value.str.data);
  16327. }
  16328. }
  16329. if (kv->type == GGUF_TYPE_ARRAY) {
  16330. if (kv->value.arr.data) {
  16331. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16332. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16333. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16334. if (str->data) {
  16335. free(str->data);
  16336. }
  16337. }
  16338. }
  16339. free(kv->value.arr.data);
  16340. }
  16341. }
  16342. }
  16343. GGML_ALIGNED_FREE(ctx->kv);
  16344. }
  16345. if (ctx->infos) {
  16346. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16347. struct gguf_tensor_info * info = &ctx->infos[i];
  16348. if (info->name.data) {
  16349. free(info->name.data);
  16350. }
  16351. }
  16352. GGML_ALIGNED_FREE(ctx->infos);
  16353. }
  16354. GGML_ALIGNED_FREE(ctx);
  16355. }
  16356. const char * gguf_type_name(enum gguf_type type) {
  16357. return GGUF_TYPE_NAME[type];
  16358. }
  16359. int gguf_get_version(struct gguf_context * ctx) {
  16360. return ctx->header.version;
  16361. }
  16362. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16363. return ctx->alignment;
  16364. }
  16365. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16366. return ctx->offset;
  16367. }
  16368. void * gguf_get_data(struct gguf_context * ctx) {
  16369. return ctx->data;
  16370. }
  16371. int gguf_get_n_kv(struct gguf_context * ctx) {
  16372. return ctx->header.n_kv;
  16373. }
  16374. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16375. // return -1 if key not found
  16376. int keyfound = -1;
  16377. const int n_kv = gguf_get_n_kv(ctx);
  16378. for (int i = 0; i < n_kv; ++i) {
  16379. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16380. keyfound = i;
  16381. break;
  16382. }
  16383. }
  16384. return keyfound;
  16385. }
  16386. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16387. return ctx->kv[i].key.data;
  16388. }
  16389. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16390. return ctx->kv[i].type;
  16391. }
  16392. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16393. return ctx->kv[i].value.arr.type;
  16394. }
  16395. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16396. return ctx->kv[i].value.arr.data;
  16397. }
  16398. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16399. struct gguf_kv * kv = &ctx->kv[key_id];
  16400. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16401. return str->data;
  16402. }
  16403. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16404. return ctx->kv[i].value.arr.n;
  16405. }
  16406. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16407. return ctx->kv[i].value.uint8;
  16408. }
  16409. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16410. return ctx->kv[i].value.int8;
  16411. }
  16412. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16413. return ctx->kv[i].value.uint16;
  16414. }
  16415. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16416. return ctx->kv[i].value.int16;
  16417. }
  16418. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16419. return ctx->kv[i].value.uint32;
  16420. }
  16421. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16422. return ctx->kv[i].value.int32;
  16423. }
  16424. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16425. return ctx->kv[i].value.float32;
  16426. }
  16427. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16428. return ctx->kv[i].value.uint64;
  16429. }
  16430. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16431. return ctx->kv[i].value.int64;
  16432. }
  16433. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16434. return ctx->kv[i].value.float64;
  16435. }
  16436. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16437. return ctx->kv[i].value.bool_;
  16438. }
  16439. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16440. return ctx->kv[i].value.str.data;
  16441. }
  16442. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16443. return ctx->header.n_tensors;
  16444. }
  16445. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16446. // return -1 if tensor not found
  16447. int tensorfound = -1;
  16448. const int n_tensors = gguf_get_n_tensors(ctx);
  16449. for (int i = 0; i < n_tensors; ++i) {
  16450. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16451. tensorfound = i;
  16452. break;
  16453. }
  16454. }
  16455. return tensorfound;
  16456. }
  16457. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16458. return ctx->infos[i].offset;
  16459. }
  16460. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16461. return ctx->infos[i].name.data;
  16462. }
  16463. // returns the index
  16464. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16465. const int idx = gguf_find_key(ctx, key);
  16466. if (idx >= 0) {
  16467. return idx;
  16468. }
  16469. const int n_kv = gguf_get_n_kv(ctx);
  16470. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16471. ctx->kv[n_kv].key.n = strlen(key) + 1;
  16472. ctx->kv[n_kv].key.data = strdup(key);
  16473. ctx->header.n_kv++;
  16474. return n_kv;
  16475. }
  16476. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16477. const int idx = gguf_get_or_add_key(ctx, key);
  16478. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16479. ctx->kv[idx].value.uint8 = val;
  16480. }
  16481. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16482. const int idx = gguf_get_or_add_key(ctx, key);
  16483. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16484. ctx->kv[idx].value.int8 = val;
  16485. }
  16486. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16487. const int idx = gguf_get_or_add_key(ctx, key);
  16488. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16489. ctx->kv[idx].value.uint16 = val;
  16490. }
  16491. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16492. const int idx = gguf_get_or_add_key(ctx, key);
  16493. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16494. ctx->kv[idx].value.int16 = val;
  16495. }
  16496. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16497. const int idx = gguf_get_or_add_key(ctx, key);
  16498. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16499. ctx->kv[idx].value.uint32 = val;
  16500. }
  16501. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16502. const int idx = gguf_get_or_add_key(ctx, key);
  16503. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16504. ctx->kv[idx].value.int32 = val;
  16505. }
  16506. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16507. const int idx = gguf_get_or_add_key(ctx, key);
  16508. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16509. ctx->kv[idx].value.float32 = val;
  16510. }
  16511. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16512. const int idx = gguf_get_or_add_key(ctx, key);
  16513. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16514. ctx->kv[idx].value.uint64 = val;
  16515. }
  16516. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16517. const int idx = gguf_get_or_add_key(ctx, key);
  16518. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16519. ctx->kv[idx].value.int64 = val;
  16520. }
  16521. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16522. const int idx = gguf_get_or_add_key(ctx, key);
  16523. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16524. ctx->kv[idx].value.float64 = val;
  16525. }
  16526. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16527. const int idx = gguf_get_or_add_key(ctx, key);
  16528. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16529. ctx->kv[idx].value.bool_ = val;
  16530. }
  16531. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16532. const int idx = gguf_get_or_add_key(ctx, key);
  16533. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16534. ctx->kv[idx].value.str.n = strlen(val) + 1;
  16535. ctx->kv[idx].value.str.data = strdup(val);
  16536. }
  16537. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16538. const int idx = gguf_get_or_add_key(ctx, key);
  16539. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16540. ctx->kv[idx].value.arr.type = type;
  16541. ctx->kv[idx].value.arr.n = n;
  16542. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16543. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16544. }
  16545. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16546. const int idx = gguf_get_or_add_key(ctx, key);
  16547. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16548. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16549. ctx->kv[idx].value.arr.n = n;
  16550. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16551. for (int i = 0; i < n; i++) {
  16552. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16553. str->n = strlen(data[i]) + 1;
  16554. str->data = strdup(data[i]);
  16555. }
  16556. }
  16557. // set or add KV pairs from another context
  16558. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16559. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16560. switch (src->kv[i].type) {
  16561. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16562. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16563. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16564. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16565. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16566. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16567. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16568. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16569. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16570. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16571. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16572. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16573. case GGUF_TYPE_ARRAY:
  16574. {
  16575. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16576. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16577. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16578. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16579. }
  16580. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16581. free(data);
  16582. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16583. GGML_ASSERT(false && "nested arrays not supported");
  16584. } else {
  16585. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16586. }
  16587. } break;
  16588. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16589. }
  16590. }
  16591. }
  16592. void gguf_add_tensor(
  16593. struct gguf_context * ctx,
  16594. const struct ggml_tensor * tensor) {
  16595. const int idx = ctx->header.n_tensors;
  16596. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16597. ctx->infos[idx].name.n = strlen(tensor->name) + 1;
  16598. ctx->infos[idx].name.data = strdup(tensor->name);
  16599. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16600. ctx->infos[idx].ne[i] = 1;
  16601. }
  16602. ctx->infos[idx].n_dims = tensor->n_dims;
  16603. for (int i = 0; i < tensor->n_dims; i++) {
  16604. ctx->infos[idx].ne[i] = tensor->ne[i];
  16605. }
  16606. ctx->infos[idx].type = tensor->type;
  16607. ctx->infos[idx].offset = 0;
  16608. ctx->infos[idx].data = tensor->data;
  16609. ctx->infos[idx].size = ggml_nbytes(tensor);
  16610. if (ctx->header.n_tensors > 0) {
  16611. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16612. }
  16613. ctx->header.n_tensors++;
  16614. }
  16615. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16616. const int idx = gguf_find_tensor(ctx, name);
  16617. if (idx < 0) {
  16618. GGML_ASSERT(false && "tensor not found");
  16619. }
  16620. ctx->infos[idx].type = type;
  16621. }
  16622. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16623. const int idx = gguf_find_tensor(ctx, name);
  16624. if (idx < 0) {
  16625. GGML_ASSERT(false && "tensor not found");
  16626. }
  16627. ctx->infos[idx].data = data;
  16628. ctx->infos[idx].size = size;
  16629. // update offsets
  16630. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16631. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16632. }
  16633. }
  16634. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16635. // fwrite(&val->n, sizeof(val->n), 1, file);
  16636. // fwrite(val->data, sizeof(char), val->n, file);
  16637. //}
  16638. //
  16639. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16640. // fwrite(val, sizeof(char), size, file);
  16641. //}
  16642. struct gguf_buf {
  16643. void * data;
  16644. size_t size;
  16645. size_t offset;
  16646. };
  16647. static struct gguf_buf gguf_buf_init(size_t size) {
  16648. struct gguf_buf buf = {
  16649. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16650. /*buf.size =*/ size,
  16651. /*buf.offset =*/ 0,
  16652. };
  16653. return buf;
  16654. }
  16655. static void gguf_buf_free(struct gguf_buf buf) {
  16656. if (buf.data) {
  16657. free(buf.data);
  16658. }
  16659. }
  16660. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16661. if (buf->offset + size > buf->size) {
  16662. buf->size = 1.5*(buf->offset + size);
  16663. if (buf->data) {
  16664. buf->data = realloc(buf->data, buf->size);
  16665. }
  16666. }
  16667. }
  16668. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16669. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16670. if (buf->data) {
  16671. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16672. }
  16673. buf->offset += sizeof(val->n);
  16674. if (buf->data) {
  16675. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16676. }
  16677. buf->offset += val->n;
  16678. }
  16679. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16680. gguf_buf_grow(buf, el_size);
  16681. if (buf->data) {
  16682. memcpy((char *) buf->data + buf->offset, val, el_size);
  16683. }
  16684. buf->offset += el_size;
  16685. }
  16686. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16687. // write header
  16688. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16689. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16690. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16691. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16692. // write key-value pairs
  16693. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16694. struct gguf_kv * kv = &ctx->kv[i];
  16695. gguf_bwrite_str(buf, &kv->key);
  16696. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16697. switch (kv->type) {
  16698. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16699. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16700. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16701. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16702. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16703. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16704. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16705. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16706. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16707. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16708. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16709. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16710. case GGUF_TYPE_ARRAY:
  16711. {
  16712. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16713. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16714. switch (kv->value.arr.type) {
  16715. case GGUF_TYPE_UINT8:
  16716. case GGUF_TYPE_INT8:
  16717. case GGUF_TYPE_UINT16:
  16718. case GGUF_TYPE_INT16:
  16719. case GGUF_TYPE_UINT32:
  16720. case GGUF_TYPE_INT32:
  16721. case GGUF_TYPE_FLOAT32:
  16722. case GGUF_TYPE_UINT64:
  16723. case GGUF_TYPE_INT64:
  16724. case GGUF_TYPE_FLOAT64:
  16725. case GGUF_TYPE_BOOL:
  16726. {
  16727. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16728. } break;
  16729. case GGUF_TYPE_STRING:
  16730. {
  16731. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16732. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16733. }
  16734. } break;
  16735. case GGUF_TYPE_ARRAY:
  16736. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16737. };
  16738. } break;
  16739. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16740. };
  16741. }
  16742. // write tensor infos
  16743. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16744. struct gguf_tensor_info * info = &ctx->infos[i];
  16745. gguf_bwrite_str(buf, &info->name);
  16746. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16747. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16748. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16749. }
  16750. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16751. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16752. }
  16753. // we require the data section to be aligned, so take into account any padding
  16754. {
  16755. const size_t offset = buf->offset;
  16756. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16757. if (offset_pad != offset) {
  16758. uint8_t pad = 0;
  16759. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16760. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16761. }
  16762. }
  16763. }
  16764. if (only_meta) {
  16765. return;
  16766. }
  16767. size_t offset = 0;
  16768. // write tensor data
  16769. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16770. struct gguf_tensor_info * info = &ctx->infos[i];
  16771. const size_t size = info->size;
  16772. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16773. gguf_bwrite_el(buf, info->data, size);
  16774. if (size_pad != size) {
  16775. uint8_t pad = 0;
  16776. for (size_t j = 0; j < size_pad - size; ++j) {
  16777. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16778. }
  16779. }
  16780. GGML_ASSERT(offset == info->offset);
  16781. offset += size_pad;
  16782. }
  16783. }
  16784. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16785. FILE * file = fopen(fname, "wb");
  16786. if (!file) {
  16787. GGML_ASSERT(false && "failed to open file for writing");
  16788. }
  16789. struct gguf_buf buf = gguf_buf_init(16*1024);
  16790. gguf_write_to_buf(ctx, &buf, only_meta);
  16791. fwrite(buf.data, 1, buf.offset, file);
  16792. gguf_buf_free(buf);
  16793. fclose(file);
  16794. }
  16795. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16796. // no allocs - only compute size
  16797. struct gguf_buf buf = gguf_buf_init(0);
  16798. gguf_write_to_buf(ctx, &buf, true);
  16799. return buf.offset;
  16800. }
  16801. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16802. struct gguf_buf buf = gguf_buf_init(16*1024);
  16803. gguf_write_to_buf(ctx, &buf, true);
  16804. memcpy(data, buf.data, buf.offset);
  16805. gguf_buf_free(buf);
  16806. }
  16807. ////////////////////////////////////////////////////////////////////////////////
  16808. int ggml_cpu_has_avx(void) {
  16809. #if defined(__AVX__)
  16810. return 1;
  16811. #else
  16812. return 0;
  16813. #endif
  16814. }
  16815. int ggml_cpu_has_avx2(void) {
  16816. #if defined(__AVX2__)
  16817. return 1;
  16818. #else
  16819. return 0;
  16820. #endif
  16821. }
  16822. int ggml_cpu_has_avx512(void) {
  16823. #if defined(__AVX512F__)
  16824. return 1;
  16825. #else
  16826. return 0;
  16827. #endif
  16828. }
  16829. int ggml_cpu_has_avx512_vbmi(void) {
  16830. #if defined(__AVX512VBMI__)
  16831. return 1;
  16832. #else
  16833. return 0;
  16834. #endif
  16835. }
  16836. int ggml_cpu_has_avx512_vnni(void) {
  16837. #if defined(__AVX512VNNI__)
  16838. return 1;
  16839. #else
  16840. return 0;
  16841. #endif
  16842. }
  16843. int ggml_cpu_has_fma(void) {
  16844. #if defined(__FMA__)
  16845. return 1;
  16846. #else
  16847. return 0;
  16848. #endif
  16849. }
  16850. int ggml_cpu_has_neon(void) {
  16851. #if defined(__ARM_NEON)
  16852. return 1;
  16853. #else
  16854. return 0;
  16855. #endif
  16856. }
  16857. int ggml_cpu_has_arm_fma(void) {
  16858. #if defined(__ARM_FEATURE_FMA)
  16859. return 1;
  16860. #else
  16861. return 0;
  16862. #endif
  16863. }
  16864. int ggml_cpu_has_f16c(void) {
  16865. #if defined(__F16C__)
  16866. return 1;
  16867. #else
  16868. return 0;
  16869. #endif
  16870. }
  16871. int ggml_cpu_has_fp16_va(void) {
  16872. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16873. return 1;
  16874. #else
  16875. return 0;
  16876. #endif
  16877. }
  16878. int ggml_cpu_has_wasm_simd(void) {
  16879. #if defined(__wasm_simd128__)
  16880. return 1;
  16881. #else
  16882. return 0;
  16883. #endif
  16884. }
  16885. int ggml_cpu_has_blas(void) {
  16886. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16887. return 1;
  16888. #else
  16889. return 0;
  16890. #endif
  16891. }
  16892. int ggml_cpu_has_cublas(void) {
  16893. #if defined(GGML_USE_CUBLAS)
  16894. return 1;
  16895. #else
  16896. return 0;
  16897. #endif
  16898. }
  16899. int ggml_cpu_has_clblast(void) {
  16900. #if defined(GGML_USE_CLBLAST)
  16901. return 1;
  16902. #else
  16903. return 0;
  16904. #endif
  16905. }
  16906. int ggml_cpu_has_gpublas(void) {
  16907. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16908. }
  16909. int ggml_cpu_has_sse3(void) {
  16910. #if defined(__SSE3__)
  16911. return 1;
  16912. #else
  16913. return 0;
  16914. #endif
  16915. }
  16916. int ggml_cpu_has_ssse3(void) {
  16917. #if defined(__SSSE3__)
  16918. return 1;
  16919. #else
  16920. return 0;
  16921. #endif
  16922. }
  16923. int ggml_cpu_has_vsx(void) {
  16924. #if defined(__POWER9_VECTOR__)
  16925. return 1;
  16926. #else
  16927. return 0;
  16928. #endif
  16929. }
  16930. ////////////////////////////////////////////////////////////////////////////////