convert_hf_to_gguf.py 211 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.POSNET_NORM1,
  274. gguf.MODEL_TENSOR.POSNET_NORM2,
  275. )
  276. )
  277. or not new_name.endswith(".weight")
  278. ):
  279. data_qtype = gguf.GGMLQuantizationType.F32
  280. if data_qtype is False and any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.TOKEN_EMBD,
  284. gguf.MODEL_TENSOR.OUTPUT,
  285. )
  286. ):
  287. if self.ftype in (
  288. gguf.LlamaFileType.MOSTLY_TQ1_0,
  289. gguf.LlamaFileType.MOSTLY_TQ2_0,
  290. ):
  291. # TODO: use Q4_K and Q6_K
  292. data_qtype = gguf.GGMLQuantizationType.F16
  293. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  294. if isinstance(data_qtype, bool):
  295. if self.ftype == gguf.LlamaFileType.ALL_F32:
  296. data_qtype = gguf.GGMLQuantizationType.F32
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  300. data_qtype = gguf.GGMLQuantizationType.BF16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  302. data_qtype = gguf.GGMLQuantizationType.Q8_0
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  304. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  307. else:
  308. raise ValueError(f"Unknown file type: {self.ftype.name}")
  309. try:
  310. data = gguf.quants.quantize(data, data_qtype)
  311. except gguf.QuantError as e:
  312. logger.warning("%s, %s", e, "falling back to F16")
  313. data_qtype = gguf.GGMLQuantizationType.F16
  314. data = gguf.quants.quantize(data, data_qtype)
  315. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  316. # reverse shape to make it similar to the internal ggml dimension order
  317. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  318. # n_dims is implicit in the shape
  319. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  320. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  321. def set_type(self):
  322. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  323. def prepare_metadata(self, vocab_only: bool):
  324. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  325. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  326. # Fallback to model directory name if metadata name is still missing
  327. if self.metadata.name is None:
  328. self.metadata.name = self.dir_model.name
  329. # Generate parameter weight class (useful for leader boards) if not yet determined
  330. if self.metadata.size_label is None and total_params > 0:
  331. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  332. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  333. output_type: str = self.ftype.name.partition("_")[2]
  334. # Filename Output
  335. if self.fname_out.is_dir():
  336. # Generate default filename based on model specification and available metadata
  337. if not vocab_only:
  338. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  339. else:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  341. # Use the default filename
  342. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  343. else:
  344. # Output path is a custom defined templated filename
  345. # Note: `not is_dir()` is used because `.is_file()` will not detect
  346. # file template strings as it doesn't actually exist as a file
  347. # Process templated file name with the output ftype, useful with the "auto" ftype
  348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  349. self.set_type()
  350. logger.info("Set meta model")
  351. self.metadata.set_gguf_meta_model(self.gguf_writer)
  352. logger.info("Set model parameters")
  353. self.set_gguf_parameters()
  354. logger.info("Set model tokenizer")
  355. self.set_vocab()
  356. logger.info("Set model quantization version")
  357. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  358. def write(self):
  359. self.prepare_tensors()
  360. self.prepare_metadata(vocab_only=False)
  361. self.gguf_writer.write_header_to_file(path=self.fname_out)
  362. self.gguf_writer.write_kv_data_to_file()
  363. self.gguf_writer.write_tensors_to_file(progress=True)
  364. self.gguf_writer.close()
  365. def write_vocab(self):
  366. if len(self.gguf_writer.tensors) != 1:
  367. raise ValueError('Splitting the vocabulary is not supported')
  368. self.prepare_metadata(vocab_only=True)
  369. self.gguf_writer.write_header_to_file(path=self.fname_out)
  370. self.gguf_writer.write_kv_data_to_file()
  371. self.gguf_writer.close()
  372. @staticmethod
  373. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  374. part_names: list[str] = []
  375. for filename in os.listdir(dir_model):
  376. if filename.startswith(prefix) and filename.endswith(suffix):
  377. part_names.append(filename)
  378. part_names.sort()
  379. return part_names
  380. @staticmethod
  381. def load_hparams(dir_model: Path):
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. return json.load(f)
  384. @classmethod
  385. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  386. assert names
  387. def func(modelcls: AnyModel) -> AnyModel:
  388. for name in names:
  389. cls._model_classes[name] = modelcls
  390. return modelcls
  391. return func
  392. @classmethod
  393. def from_model_architecture(cls, arch: str) -> type[Model]:
  394. try:
  395. return cls._model_classes[arch]
  396. except KeyError:
  397. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  398. def does_token_look_special(self, token: str | bytes) -> bool:
  399. if isinstance(token, (bytes, bytearray)):
  400. token_text = token.decode(encoding="utf-8")
  401. elif isinstance(token, memoryview):
  402. token_text = token.tobytes().decode(encoding="utf-8")
  403. else:
  404. token_text = token
  405. # Some models mark some added tokens which ought to be control tokens as not special.
  406. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  407. seems_special = token_text in (
  408. "<pad>", # deepseek-coder
  409. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  410. )
  411. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  412. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  413. # TODO: should these be marked as UNUSED instead? (maybe not)
  414. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  415. return seems_special
  416. # used for GPT-2 BPE and WordPiece vocabs
  417. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  418. tokens: list[str] = []
  419. toktypes: list[int] = []
  420. from transformers import AutoTokenizer
  421. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  422. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  423. assert max(tokenizer.vocab.values()) < vocab_size
  424. tokpre = self.get_vocab_base_pre(tokenizer)
  425. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  426. added_vocab = tokenizer.get_added_vocab()
  427. for i in range(vocab_size):
  428. if i not in reverse_vocab:
  429. tokens.append(f"[PAD{i}]")
  430. toktypes.append(gguf.TokenType.UNUSED)
  431. else:
  432. token: str = reverse_vocab[i]
  433. if token in added_vocab:
  434. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  435. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  436. if not tokenizer.added_tokens_decoder[i].normalized:
  437. previous_token = token
  438. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  439. if previous_token != token:
  440. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  441. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  442. toktypes.append(gguf.TokenType.CONTROL)
  443. else:
  444. # NOTE: this was added for Gemma.
  445. # Encoding and decoding the tokens above isn't sufficient for this case.
  446. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  447. toktypes.append(gguf.TokenType.USER_DEFINED)
  448. else:
  449. toktypes.append(gguf.TokenType.NORMAL)
  450. tokens.append(token)
  451. return tokens, toktypes, tokpre
  452. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  453. # do not modify it manually!
  454. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  455. # Marker: Start get_vocab_base_pre
  456. def get_vocab_base_pre(self, tokenizer) -> str:
  457. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  458. # is specific for the BPE pre-tokenizer used by the model
  459. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  460. # use in llama.cpp to implement the same pre-tokenizer
  461. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  462. chktok = tokenizer.encode(chktxt)
  463. chkhsh = sha256(str(chktok).encode()).hexdigest()
  464. logger.debug(f"chktok: {chktok}")
  465. logger.debug(f"chkhsh: {chkhsh}")
  466. res = None
  467. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  468. # or pull the latest version of the model from Huggingface
  469. # don't edit the hashes manually!
  470. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  471. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  472. res = "llama-bpe"
  473. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  474. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  475. res = "deepseek-llm"
  476. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  477. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  478. res = "deepseek-coder"
  479. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  480. # ref: https://huggingface.co/tiiuae/falcon-7b
  481. res = "falcon"
  482. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  483. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  484. res = "falcon3"
  485. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  486. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  487. res = "bert-bge"
  488. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  489. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  490. res = "bert-bge-large"
  491. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  492. # ref: https://huggingface.co/mosaicml/mpt-7b
  493. res = "mpt"
  494. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  495. # ref: https://huggingface.co/bigcode/starcoder2-3b
  496. res = "starcoder"
  497. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  498. # ref: https://huggingface.co/openai-community/gpt2
  499. res = "gpt-2"
  500. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  501. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  502. res = "stablelm2"
  503. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  504. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  505. res = "refact"
  506. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  507. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  508. res = "command-r"
  509. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  510. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  511. res = "qwen2"
  512. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  513. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  514. res = "olmo"
  515. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  516. # ref: https://huggingface.co/databricks/dbrx-base
  517. res = "dbrx"
  518. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  519. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  520. res = "jina-v1-en"
  521. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  522. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  523. res = "jina-v2-en"
  524. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  525. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  526. res = "jina-v2-es"
  527. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  528. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  529. res = "jina-v2-de"
  530. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  531. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  532. res = "smaug-bpe"
  533. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  534. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  535. res = "poro-chat"
  536. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  537. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  538. res = "jina-v2-code"
  539. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  540. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  541. res = "chatglm-bpe"
  542. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  543. # ref: https://huggingface.co/LumiOpen/Viking-7B
  544. res = "viking"
  545. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  546. # ref: https://huggingface.co/core42/jais-13b
  547. res = "jais"
  548. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  549. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  550. res = "codeshell"
  551. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  552. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  553. res = "tekken"
  554. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  555. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  556. res = "smollm"
  557. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  558. # ref: https://huggingface.co/bigscience/bloom
  559. res = "bloom"
  560. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  561. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  562. res = "gpt3-finnish"
  563. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  564. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  565. res = "exaone"
  566. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  567. # ref: https://huggingface.co/microsoft/phi-2
  568. res = "phi-2"
  569. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  570. # ref: https://huggingface.co/facebook/chameleon-7b
  571. res = "chameleon"
  572. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  573. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  574. res = "minerva-7b"
  575. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  576. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  577. res = "roberta-bpe"
  578. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  579. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  580. res = "gigachat"
  581. if res is None:
  582. logger.warning("\n")
  583. logger.warning("**************************************************************************************")
  584. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  585. logger.warning("** There are 2 possible reasons for this:")
  586. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  587. logger.warning("** - the pre-tokenization config has changed upstream")
  588. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  589. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  590. logger.warning("**")
  591. logger.warning(f"** chkhsh: {chkhsh}")
  592. logger.warning("**************************************************************************************")
  593. logger.warning("\n")
  594. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  595. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  596. logger.debug(f"chkhsh: {chkhsh}")
  597. return res
  598. # Marker: End get_vocab_base_pre
  599. def _set_vocab_none(self) -> None:
  600. self.gguf_writer.add_tokenizer_model("none")
  601. def _set_vocab_gpt2(self) -> None:
  602. tokens, toktypes, tokpre = self.get_vocab_base()
  603. self.gguf_writer.add_tokenizer_model("gpt2")
  604. self.gguf_writer.add_tokenizer_pre(tokpre)
  605. self.gguf_writer.add_token_list(tokens)
  606. self.gguf_writer.add_token_types(toktypes)
  607. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  608. special_vocab.add_to_gguf(self.gguf_writer)
  609. def _set_vocab_qwen(self):
  610. dir_model = self.dir_model
  611. hparams = self.hparams
  612. tokens: list[str] = []
  613. toktypes: list[int] = []
  614. from transformers import AutoTokenizer
  615. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  616. vocab_size = hparams["vocab_size"]
  617. assert max(tokenizer.get_vocab().values()) < vocab_size
  618. tokpre = self.get_vocab_base_pre(tokenizer)
  619. merges = []
  620. vocab = {}
  621. mergeable_ranks = tokenizer.mergeable_ranks
  622. for token, rank in mergeable_ranks.items():
  623. vocab[QwenModel.token_bytes_to_string(token)] = rank
  624. if len(token) == 1:
  625. continue
  626. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  627. assert len(merged) == 2
  628. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  629. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  630. added_vocab = tokenizer.special_tokens
  631. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  632. for i in range(vocab_size):
  633. if i not in reverse_vocab:
  634. tokens.append(f"[PAD{i}]")
  635. toktypes.append(gguf.TokenType.UNUSED)
  636. elif reverse_vocab[i] in added_vocab:
  637. tokens.append(reverse_vocab[i])
  638. toktypes.append(gguf.TokenType.CONTROL)
  639. else:
  640. tokens.append(reverse_vocab[i])
  641. toktypes.append(gguf.TokenType.NORMAL)
  642. self.gguf_writer.add_tokenizer_model("gpt2")
  643. self.gguf_writer.add_tokenizer_pre(tokpre)
  644. self.gguf_writer.add_token_list(tokens)
  645. self.gguf_writer.add_token_types(toktypes)
  646. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  647. special_vocab.merges = merges
  648. # only add special tokens when they were not already loaded from config.json
  649. if len(special_vocab.special_token_ids) == 0:
  650. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  651. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  652. # this one is usually not in config.json anyway
  653. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  654. special_vocab.add_to_gguf(self.gguf_writer)
  655. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  656. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  657. self.gguf_writer.add_tokenizer_model("llama")
  658. self.gguf_writer.add_tokenizer_pre("default")
  659. self.gguf_writer.add_token_list(tokens)
  660. self.gguf_writer.add_token_scores(scores)
  661. self.gguf_writer.add_token_types(toktypes)
  662. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  663. special_vocab.add_to_gguf(self.gguf_writer)
  664. def _create_vocab_sentencepiece(self):
  665. from sentencepiece import SentencePieceProcessor
  666. tokenizer_path = self.dir_model / 'tokenizer.model'
  667. if not tokenizer_path.is_file():
  668. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  669. tokenizer = SentencePieceProcessor()
  670. tokenizer.LoadFromFile(str(tokenizer_path))
  671. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  672. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  673. scores: list[float] = [-10000.0] * vocab_size
  674. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  675. for token_id in range(tokenizer.vocab_size()):
  676. piece = tokenizer.IdToPiece(token_id)
  677. text = piece.encode("utf-8")
  678. score = tokenizer.GetScore(token_id)
  679. toktype = SentencePieceTokenTypes.NORMAL
  680. if tokenizer.IsUnknown(token_id):
  681. toktype = SentencePieceTokenTypes.UNKNOWN
  682. elif tokenizer.IsControl(token_id):
  683. toktype = SentencePieceTokenTypes.CONTROL
  684. elif tokenizer.IsUnused(token_id):
  685. toktype = SentencePieceTokenTypes.UNUSED
  686. elif tokenizer.IsByte(token_id):
  687. toktype = SentencePieceTokenTypes.BYTE
  688. tokens[token_id] = text
  689. scores[token_id] = score
  690. toktypes[token_id] = toktype
  691. added_tokens_file = self.dir_model / 'added_tokens.json'
  692. if added_tokens_file.is_file():
  693. with open(added_tokens_file, "r", encoding="utf-8") as f:
  694. added_tokens_json = json.load(f)
  695. for key in added_tokens_json:
  696. token_id = added_tokens_json[key]
  697. if token_id >= vocab_size:
  698. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  699. continue
  700. tokens[token_id] = key.encode("utf-8")
  701. scores[token_id] = -1000.0
  702. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  703. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  704. if tokenizer_config_file.is_file():
  705. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  706. tokenizer_config_json = json.load(f)
  707. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  708. for token_id, token_data in added_tokens_decoder.items():
  709. token_id = int(token_id)
  710. token: str = token_data["content"]
  711. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  712. if tokens[token_id] != token.encode("utf-8"):
  713. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  714. if token_data.get("special") or self.does_token_look_special(token):
  715. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  716. else:
  717. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  718. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  719. scores[token_id] = -1000.0
  720. tokens[token_id] = token.encode("utf-8")
  721. if vocab_size > len(tokens):
  722. pad_count = vocab_size - len(tokens)
  723. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  724. for i in range(1, pad_count + 1):
  725. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  726. scores.append(-1000.0)
  727. toktypes.append(SentencePieceTokenTypes.UNUSED)
  728. return tokens, scores, toktypes
  729. def _set_vocab_llama_hf(self):
  730. vocab = gguf.LlamaHfVocab(self.dir_model)
  731. tokens = []
  732. scores = []
  733. toktypes = []
  734. for text, score, toktype in vocab.all_tokens():
  735. tokens.append(text)
  736. scores.append(score)
  737. toktypes.append(toktype)
  738. assert len(tokens) == vocab.vocab_size
  739. self.gguf_writer.add_tokenizer_model("llama")
  740. self.gguf_writer.add_tokenizer_pre("default")
  741. self.gguf_writer.add_token_list(tokens)
  742. self.gguf_writer.add_token_scores(scores)
  743. self.gguf_writer.add_token_types(toktypes)
  744. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  745. special_vocab.add_to_gguf(self.gguf_writer)
  746. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  747. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  748. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  749. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  750. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  751. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  752. assert field # tokenizer model
  753. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  754. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  755. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  756. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  757. assert field # token list
  758. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  759. if model_name == "llama-spm":
  760. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  761. assert field # token scores
  762. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  763. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  764. assert field # token types
  765. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  766. if model_name != "llama-spm":
  767. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  768. assert field # token merges
  769. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  770. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  771. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  772. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  773. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  774. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  775. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  776. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  777. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  778. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  779. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  780. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  781. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  782. @Model.register("GPTNeoXForCausalLM")
  783. class GPTNeoXModel(Model):
  784. model_arch = gguf.MODEL_ARCH.GPTNEOX
  785. def set_gguf_parameters(self):
  786. block_count = self.hparams["num_hidden_layers"]
  787. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  788. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  789. self.gguf_writer.add_block_count(block_count)
  790. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  791. self.gguf_writer.add_rope_dimension_count(
  792. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  793. )
  794. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  795. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  796. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  797. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  798. del bid # unused
  799. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  800. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  801. tensors: list[tuple[str, Tensor]] = []
  802. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  803. # Map bloom-style qkv_linear to gpt-style qkv_linear
  804. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  805. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  806. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  807. data_torch = torch.cat(
  808. (
  809. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  810. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  811. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  812. ),
  813. dim=0,
  814. )
  815. logger.info("re-format attention.linear_qkv.weight")
  816. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  817. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  818. data_torch = torch.cat(
  819. (
  820. qkv_bias[:, 0, :].reshape((n_embed,)),
  821. qkv_bias[:, 1, :].reshape((n_embed,)),
  822. qkv_bias[:, 2, :].reshape((n_embed,)),
  823. ),
  824. dim=0,
  825. )
  826. logger.info("re-format attention.linear_qkv.bias")
  827. tensors.append((self.map_tensor_name(name), data_torch))
  828. return tensors
  829. @Model.register("BloomForCausalLM", "BloomModel")
  830. class BloomModel(Model):
  831. model_arch = gguf.MODEL_ARCH.BLOOM
  832. def set_gguf_parameters(self):
  833. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  834. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  835. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  836. self.gguf_writer.add_embedding_length(n_embed)
  837. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  838. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  839. self.gguf_writer.add_head_count(n_head)
  840. self.gguf_writer.add_head_count_kv(n_head)
  841. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  842. self.gguf_writer.add_file_type(self.ftype)
  843. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  844. del bid # unused
  845. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  846. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  847. name = re.sub(r'transformer\.', '', name)
  848. tensors: list[tuple[str, Tensor]] = []
  849. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  850. # Map bloom-style qkv_linear to gpt-style qkv_linear
  851. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  852. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  853. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  854. data_torch = torch.cat(
  855. (
  856. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  857. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  858. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  859. ),
  860. dim=0,
  861. )
  862. logger.info("re-format attention.linear_qkv.weight")
  863. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  864. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  865. data_torch = torch.cat(
  866. (
  867. qkv_bias[:, 0, :].reshape((n_embed,)),
  868. qkv_bias[:, 1, :].reshape((n_embed,)),
  869. qkv_bias[:, 2, :].reshape((n_embed,)),
  870. ),
  871. dim=0,
  872. )
  873. logger.info("re-format attention.linear_qkv.bias")
  874. tensors.append((self.map_tensor_name(name), data_torch))
  875. if name == "word_embeddings.weight":
  876. assert self.tensor_names is not None
  877. # TODO: tie them at runtime, don't duplicate in the model file
  878. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  879. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  880. return tensors
  881. @Model.register("MPTForCausalLM")
  882. class MPTModel(Model):
  883. model_arch = gguf.MODEL_ARCH.MPT
  884. def set_vocab(self):
  885. try:
  886. self._set_vocab_gpt2()
  887. except Exception:
  888. # Fallback for SEA-LION model
  889. self._set_vocab_sentencepiece()
  890. self.gguf_writer.add_add_bos_token(False)
  891. self.gguf_writer.add_pad_token_id(3)
  892. self.gguf_writer.add_eos_token_id(1)
  893. self.gguf_writer.add_unk_token_id(0)
  894. def set_gguf_parameters(self):
  895. block_count = self.hparams["n_layers"]
  896. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  897. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  898. self.gguf_writer.add_block_count(block_count)
  899. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  900. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  901. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  902. self.gguf_writer.add_head_count_kv(kv_n_heads)
  903. self.gguf_writer.add_layer_norm_eps(1e-5)
  904. if self.hparams["attn_config"]["clip_qkv"] is not None:
  905. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  906. if self.hparams["attn_config"]["alibi"]:
  907. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  908. else:
  909. self.gguf_writer.add_max_alibi_bias(0.0)
  910. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  911. del bid # unused
  912. if "scales" in name:
  913. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  914. new_name = new_name.replace("scales", "act.scales")
  915. else:
  916. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  917. return [(new_name, data_torch)]
  918. @Model.register("OrionForCausalLM")
  919. class OrionModel(Model):
  920. model_arch = gguf.MODEL_ARCH.ORION
  921. def set_vocab(self):
  922. self._set_vocab_sentencepiece()
  923. def set_gguf_parameters(self):
  924. block_count = self.hparams["num_hidden_layers"]
  925. head_count = self.hparams["num_attention_heads"]
  926. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  927. ctx_length = 0
  928. if "max_sequence_length" in self.hparams:
  929. ctx_length = self.hparams["max_sequence_length"]
  930. elif "max_position_embeddings" in self.hparams:
  931. ctx_length = self.hparams["max_position_embeddings"]
  932. elif "model_max_length" in self.hparams:
  933. ctx_length = self.hparams["model_max_length"]
  934. else:
  935. raise ValueError("gguf: can not find ctx length parameter.")
  936. self.gguf_writer.add_file_type(self.ftype)
  937. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  938. self.gguf_writer.add_context_length(ctx_length)
  939. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  940. self.gguf_writer.add_block_count(block_count)
  941. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  942. self.gguf_writer.add_head_count(head_count)
  943. self.gguf_writer.add_head_count_kv(head_count_kv)
  944. # note: config provides rms norm but it is actually layer norm
  945. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  946. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  947. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  948. class BaichuanModel(Model):
  949. model_arch = gguf.MODEL_ARCH.BAICHUAN
  950. def set_vocab(self):
  951. self._set_vocab_sentencepiece()
  952. def set_gguf_parameters(self):
  953. block_count = self.hparams["num_hidden_layers"]
  954. head_count = self.hparams["num_attention_heads"]
  955. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  956. ctx_length = 0
  957. if "max_sequence_length" in self.hparams:
  958. ctx_length = self.hparams["max_sequence_length"]
  959. elif "max_position_embeddings" in self.hparams:
  960. ctx_length = self.hparams["max_position_embeddings"]
  961. elif "model_max_length" in self.hparams:
  962. ctx_length = self.hparams["model_max_length"]
  963. else:
  964. raise ValueError("gguf: can not find ctx length parameter.")
  965. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  966. self.gguf_writer.add_context_length(ctx_length)
  967. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  968. self.gguf_writer.add_block_count(block_count)
  969. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  970. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  971. self.gguf_writer.add_head_count(head_count)
  972. self.gguf_writer.add_head_count_kv(head_count_kv)
  973. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  974. self.gguf_writer.add_file_type(self.ftype)
  975. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  976. if self.hparams["rope_scaling"].get("type") == "linear":
  977. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  978. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  980. head_count = self.hparams["num_attention_heads"]
  981. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  982. tensors: list[tuple[str, Tensor]] = []
  983. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  984. logger.info(f"Unpacking and permuting layer {bid}")
  985. tensors = [
  986. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  987. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  988. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  989. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  990. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  991. self._reverse_hf_part(data_torch, 2)),
  992. ]
  993. else:
  994. tensors = [(self.map_tensor_name(name), data_torch)]
  995. return tensors
  996. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  997. if n_kv_head is not None and n_head != n_kv_head:
  998. n_head //= n_kv_head
  999. return (
  1000. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1001. .swapaxes(1, 2)
  1002. .reshape(weights.shape)
  1003. )
  1004. def _reverse_hf_permute_part(
  1005. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1006. ) -> Tensor:
  1007. r = weights.shape[0] // 3
  1008. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1009. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1010. r = weights.shape[0] // 3
  1011. return weights[r * n_part:r * n_part + r, ...]
  1012. @Model.register("XverseForCausalLM")
  1013. class XverseModel(Model):
  1014. model_arch = gguf.MODEL_ARCH.XVERSE
  1015. def set_vocab(self):
  1016. assert (self.dir_model / "tokenizer.json").is_file()
  1017. dir_model = self.dir_model
  1018. hparams = self.hparams
  1019. tokens: list[bytes] = []
  1020. toktypes: list[int] = []
  1021. from transformers import AutoTokenizer
  1022. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1023. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1024. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1025. # because vocab_size is the count of items, and indexes start at 0.
  1026. max_vocab_index = max(tokenizer.get_vocab().values())
  1027. if max_vocab_index >= vocab_size:
  1028. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1029. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1030. added_vocab = tokenizer.get_added_vocab()
  1031. for token_id in range(vocab_size):
  1032. token_text = reverse_vocab[token_id].encode('utf-8')
  1033. # replace "\x00" to string with length > 0
  1034. if token_text == b"\x00":
  1035. toktype = gguf.TokenType.BYTE # special
  1036. token_text = f"<{token_text}>".encode('utf-8')
  1037. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1038. toktype = gguf.TokenType.BYTE # special
  1039. elif reverse_vocab[token_id] in added_vocab:
  1040. if tokenizer.added_tokens_decoder[token_id].special:
  1041. toktype = gguf.TokenType.CONTROL
  1042. else:
  1043. toktype = gguf.TokenType.USER_DEFINED
  1044. else:
  1045. toktype = gguf.TokenType.NORMAL
  1046. tokens.append(token_text)
  1047. toktypes.append(toktype)
  1048. self.gguf_writer.add_tokenizer_model("llama")
  1049. self.gguf_writer.add_tokenizer_pre("default")
  1050. self.gguf_writer.add_token_list(tokens)
  1051. self.gguf_writer.add_token_types(toktypes)
  1052. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1053. special_vocab.add_to_gguf(self.gguf_writer)
  1054. def set_gguf_parameters(self):
  1055. block_count = self.hparams["num_hidden_layers"]
  1056. head_count = self.hparams["num_attention_heads"]
  1057. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1058. ctx_length = 0
  1059. if "max_sequence_length" in self.hparams:
  1060. ctx_length = self.hparams["max_sequence_length"]
  1061. elif "max_position_embeddings" in self.hparams:
  1062. ctx_length = self.hparams["max_position_embeddings"]
  1063. elif "model_max_length" in self.hparams:
  1064. ctx_length = self.hparams["model_max_length"]
  1065. else:
  1066. raise ValueError("gguf: can not find ctx length parameter.")
  1067. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1068. self.gguf_writer.add_context_length(ctx_length)
  1069. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1070. self.gguf_writer.add_block_count(block_count)
  1071. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1072. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1073. self.gguf_writer.add_head_count(head_count)
  1074. self.gguf_writer.add_head_count_kv(head_count_kv)
  1075. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1076. self.gguf_writer.add_file_type(self.ftype)
  1077. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1078. if self.hparams["rope_scaling"].get("type") == "linear":
  1079. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1080. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1082. del bid # unused
  1083. head_count = self.hparams["num_attention_heads"]
  1084. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1085. # HF models permute some of the tensors, so we need to undo that
  1086. if name.endswith("q_proj.weight"):
  1087. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1088. if name.endswith("k_proj.weight"):
  1089. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1090. return [(self.map_tensor_name(name), data_torch)]
  1091. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1092. if n_kv_head is not None and n_head != n_kv_head:
  1093. n_head //= n_kv_head
  1094. return (
  1095. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1096. .swapaxes(1, 2)
  1097. .reshape(weights.shape)
  1098. )
  1099. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1100. class FalconModel(Model):
  1101. model_arch = gguf.MODEL_ARCH.FALCON
  1102. def set_gguf_parameters(self):
  1103. block_count = self.hparams.get("num_hidden_layers")
  1104. if block_count is None:
  1105. block_count = self.hparams["n_layer"] # old name
  1106. n_head = self.hparams.get("num_attention_heads")
  1107. if n_head is None:
  1108. n_head = self.hparams["n_head"] # old name
  1109. n_head_kv = self.hparams.get("num_kv_heads")
  1110. if n_head_kv is None:
  1111. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1112. self.gguf_writer.add_context_length(2048) # not in config.json
  1113. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1114. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1115. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1116. self.gguf_writer.add_block_count(block_count)
  1117. self.gguf_writer.add_head_count(n_head)
  1118. self.gguf_writer.add_head_count_kv(n_head_kv)
  1119. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1120. self.gguf_writer.add_file_type(self.ftype)
  1121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1122. del bid # unused
  1123. # QKV tensor transform
  1124. # The original query_key_value tensor contains n_head_kv "kv groups",
  1125. # each consisting of n_head/n_head_kv query weights followed by one key
  1126. # and one value weight (shared by all query heads in the kv group).
  1127. # This layout makes it a big pain to work with in GGML.
  1128. # So we rearrange them here,, so that we have n_head query weights
  1129. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1130. # in contiguous fashion.
  1131. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1132. if "query_key_value" in name:
  1133. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1134. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1135. head_dim = self.hparams["hidden_size"] // n_head
  1136. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1137. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1138. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1139. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1140. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1141. return [(self.map_tensor_name(name), data_torch)]
  1142. @Model.register("GPTBigCodeForCausalLM")
  1143. class StarCoderModel(Model):
  1144. model_arch = gguf.MODEL_ARCH.STARCODER
  1145. def set_gguf_parameters(self):
  1146. block_count = self.hparams["n_layer"]
  1147. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1148. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1149. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1150. self.gguf_writer.add_block_count(block_count)
  1151. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1152. self.gguf_writer.add_head_count_kv(1)
  1153. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1154. self.gguf_writer.add_file_type(self.ftype)
  1155. @Model.register("GPTRefactForCausalLM")
  1156. class RefactModel(Model):
  1157. model_arch = gguf.MODEL_ARCH.REFACT
  1158. def set_vocab(self):
  1159. super().set_vocab()
  1160. # TODO: how to determine special FIM tokens automatically?
  1161. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1162. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1163. special_vocab._set_special_token("prefix", 1)
  1164. special_vocab._set_special_token("suffix", 3)
  1165. special_vocab._set_special_token("middle", 2)
  1166. special_vocab.chat_template = None # do not add it twice
  1167. special_vocab.add_to_gguf(self.gguf_writer)
  1168. def set_gguf_parameters(self):
  1169. hidden_dim = self.hparams["n_embd"]
  1170. inner_dim = 4 * hidden_dim
  1171. hidden_dim = int(2 * inner_dim / 3)
  1172. multiple_of = 256
  1173. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1174. block_count = self.hparams["n_layer"]
  1175. # refact uses Alibi. So this is from config.json which might be used by training.
  1176. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1177. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1178. self.gguf_writer.add_feed_forward_length(ff_dim)
  1179. self.gguf_writer.add_block_count(block_count)
  1180. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1181. self.gguf_writer.add_head_count_kv(1)
  1182. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1183. self.gguf_writer.add_file_type(self.ftype)
  1184. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1185. hidden_dim = self.hparams["n_embd"]
  1186. inner_dim = 4 * hidden_dim
  1187. hidden_dim = int(2 * inner_dim / 3)
  1188. multiple_of = 256
  1189. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1190. n_head = self.hparams["n_head"]
  1191. n_head_kv = 1
  1192. head_dim = self.hparams["n_embd"] // n_head
  1193. tensors: list[tuple[str, Tensor]] = []
  1194. if bid is not None:
  1195. if name == f"transformer.h.{bid}.attn.kv.weight":
  1196. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1197. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1198. elif name == f"transformer.h.{bid}.attn.q.weight":
  1199. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1200. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1201. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1202. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1203. if len(tensors) == 0:
  1204. tensors.append((self.map_tensor_name(name), data_torch))
  1205. return tensors
  1206. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1207. class StableLMModel(Model):
  1208. model_arch = gguf.MODEL_ARCH.STABLELM
  1209. def set_vocab(self):
  1210. if (self.dir_model / "tokenizer.json").is_file():
  1211. self._set_vocab_gpt2()
  1212. else:
  1213. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1214. self._set_vocab_qwen()
  1215. def set_gguf_parameters(self):
  1216. hparams = self.hparams
  1217. block_count = hparams["num_hidden_layers"]
  1218. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1219. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1220. self.gguf_writer.add_block_count(block_count)
  1221. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1222. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1223. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1224. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1225. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1226. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1227. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1228. self.gguf_writer.add_file_type(self.ftype)
  1229. _q_norms: list[dict[str, Tensor]] | None = None
  1230. _k_norms: list[dict[str, Tensor]] | None = None
  1231. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1232. n_head = self.hparams["num_attention_heads"]
  1233. n_kv_head = self.hparams["num_key_value_heads"]
  1234. if name.find("q_layernorm.norms") != -1:
  1235. assert bid is not None
  1236. if self._q_norms is None:
  1237. self._q_norms = [{} for _ in range(self.block_count)]
  1238. self._q_norms[bid][name] = data_torch
  1239. if len(self._q_norms[bid]) >= n_head:
  1240. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1241. else:
  1242. return []
  1243. if name.find("k_layernorm.norms") != -1:
  1244. assert bid is not None
  1245. if self._k_norms is None:
  1246. self._k_norms = [{} for _ in range(self.block_count)]
  1247. self._k_norms[bid][name] = data_torch
  1248. if len(self._k_norms[bid]) >= n_kv_head:
  1249. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1250. else:
  1251. return []
  1252. return [(self.map_tensor_name(name), data_torch)]
  1253. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1254. datas: list[Tensor] = []
  1255. # extract the norms in order
  1256. for xid in range(n_head):
  1257. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1258. datas.append(norms[ename])
  1259. del norms[ename]
  1260. data_torch = torch.stack(datas, dim=0)
  1261. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1262. new_name = self.map_tensor_name(merged_name)
  1263. return [(new_name, data_torch)]
  1264. def prepare_tensors(self):
  1265. super().prepare_tensors()
  1266. if self._q_norms is not None or self._k_norms is not None:
  1267. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1268. norms = (
  1269. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1270. ) + (
  1271. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1272. )
  1273. if len(norms) > 0:
  1274. raise ValueError(f"Unprocessed norms: {norms}")
  1275. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1276. class LlamaModel(Model):
  1277. model_arch = gguf.MODEL_ARCH.LLAMA
  1278. def set_vocab(self):
  1279. try:
  1280. self._set_vocab_sentencepiece()
  1281. except FileNotFoundError:
  1282. try:
  1283. self._set_vocab_llama_hf()
  1284. except (FileNotFoundError, TypeError):
  1285. # Llama 3
  1286. self._set_vocab_gpt2()
  1287. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1288. if self.hparams.get("vocab_size", 32000) == 32016:
  1289. special_vocab = gguf.SpecialVocab(
  1290. self.dir_model, load_merges=False,
  1291. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1292. )
  1293. special_vocab._set_special_token("prefix", 32007)
  1294. special_vocab._set_special_token("suffix", 32008)
  1295. special_vocab._set_special_token("middle", 32009)
  1296. special_vocab._set_special_token("eot", 32010)
  1297. special_vocab.add_to_gguf(self.gguf_writer)
  1298. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1299. if tokenizer_config_file.is_file():
  1300. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1301. tokenizer_config_json = json.load(f)
  1302. if "add_prefix_space" in tokenizer_config_json:
  1303. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1304. # Apply to granite small models only
  1305. if self.hparams.get("vocab_size", 32000) == 49152:
  1306. self.gguf_writer.add_add_bos_token(False)
  1307. def set_gguf_parameters(self):
  1308. super().set_gguf_parameters()
  1309. hparams = self.hparams
  1310. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1311. if "head_dim" in hparams:
  1312. rope_dim = hparams["head_dim"]
  1313. else:
  1314. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1315. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1316. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1317. if self.hparams["rope_scaling"].get("type") == "linear":
  1318. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1319. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1320. @staticmethod
  1321. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1322. if n_head_kv is not None and n_head != n_head_kv:
  1323. n_head = n_head_kv
  1324. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1325. .swapaxes(1, 2)
  1326. .reshape(weights.shape))
  1327. _experts: list[dict[str, Tensor]] | None = None
  1328. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1329. n_head = self.hparams["num_attention_heads"]
  1330. n_kv_head = self.hparams.get("num_key_value_heads")
  1331. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1332. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1333. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1334. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1335. # process the experts separately
  1336. if name.find("block_sparse_moe.experts") != -1:
  1337. n_experts = self.hparams["num_local_experts"]
  1338. assert bid is not None
  1339. if self._experts is None:
  1340. self._experts = [{} for _ in range(self.block_count)]
  1341. self._experts[bid][name] = data_torch
  1342. if len(self._experts[bid]) >= n_experts * 3:
  1343. tensors: list[tuple[str, Tensor]] = []
  1344. # merge the experts into a single 3d tensor
  1345. for wid in ["w1", "w2", "w3"]:
  1346. datas: list[Tensor] = []
  1347. for xid in range(n_experts):
  1348. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1349. datas.append(self._experts[bid][ename])
  1350. del self._experts[bid][ename]
  1351. data_torch = torch.stack(datas, dim=0)
  1352. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1353. new_name = self.map_tensor_name(merged_name)
  1354. tensors.append((new_name, data_torch))
  1355. return tensors
  1356. else:
  1357. return []
  1358. return [(self.map_tensor_name(name), data_torch)]
  1359. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1360. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1361. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1362. base = self.hparams.get("rope_theta", 10000.0)
  1363. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1364. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1365. factor = rope_scaling.get("factor", 8.0)
  1366. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1367. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1368. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1369. low_freq_wavelen = old_context_len / low_freq_factor
  1370. high_freq_wavelen = old_context_len / high_freq_factor
  1371. assert low_freq_wavelen != high_freq_wavelen
  1372. rope_factors = []
  1373. for freq in freqs:
  1374. wavelen = 2 * math.pi / freq
  1375. if wavelen < high_freq_wavelen:
  1376. rope_factors.append(1)
  1377. elif wavelen > low_freq_wavelen:
  1378. rope_factors.append(factor)
  1379. else:
  1380. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1381. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1382. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1383. def prepare_tensors(self):
  1384. super().prepare_tensors()
  1385. if self._experts is not None:
  1386. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1387. experts = [k for d in self._experts for k in d.keys()]
  1388. if len(experts) > 0:
  1389. raise ValueError(f"Unprocessed experts: {experts}")
  1390. @Model.register("BitnetForCausalLM")
  1391. class BitnetModel(Model):
  1392. model_arch = gguf.MODEL_ARCH.BITNET
  1393. def set_vocab(self):
  1394. self._set_vocab_sentencepiece()
  1395. def set_gguf_parameters(self):
  1396. super().set_gguf_parameters()
  1397. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1398. self.gguf_writer.add_rope_scaling_factor(1.0)
  1399. def weight_quant(self, weight: Tensor) -> Tensor:
  1400. dtype = weight.dtype
  1401. weight = weight.float()
  1402. scale = weight.abs().mean().clamp(min=1e-5)
  1403. iscale = 1 / scale
  1404. # TODO: multiply by the scale directly instead of inverting it twice
  1405. # (this is also unnecessarily doubly inverted upstream)
  1406. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1407. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1408. return result.type(dtype)
  1409. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1410. new_name = self.map_tensor_name(name)
  1411. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1412. gguf.MODEL_TENSOR.ATTN_Q,
  1413. gguf.MODEL_TENSOR.ATTN_K,
  1414. gguf.MODEL_TENSOR.ATTN_V,
  1415. gguf.MODEL_TENSOR.ATTN_OUT,
  1416. gguf.MODEL_TENSOR.FFN_UP,
  1417. gguf.MODEL_TENSOR.FFN_DOWN,
  1418. gguf.MODEL_TENSOR.FFN_GATE,
  1419. ]):
  1420. # transform weight into 1/0/-1 (in fp32)
  1421. data_torch = self.weight_quant(data_torch)
  1422. yield (new_name, data_torch)
  1423. @Model.register("GrokForCausalLM")
  1424. class GrokModel(Model):
  1425. model_arch = gguf.MODEL_ARCH.GROK
  1426. def set_vocab(self):
  1427. self._set_vocab_sentencepiece()
  1428. def __init__(self, *args, **kwargs):
  1429. super().__init__(*args, **kwargs)
  1430. def set_gguf_parameters(self):
  1431. super().set_gguf_parameters()
  1432. _experts: list[dict[str, Tensor]] | None = None
  1433. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1434. # process the experts separately
  1435. if name.find(".moe.") != -1:
  1436. n_experts = self.hparams["num_local_experts"]
  1437. assert bid is not None
  1438. if self._experts is None:
  1439. self._experts = [{} for _ in range(self.block_count)]
  1440. self._experts[bid][name] = data_torch
  1441. if len(self._experts[bid]) >= n_experts * 3:
  1442. tensors: list[tuple[str, Tensor]] = []
  1443. # merge the experts into a single 3d tensor
  1444. for wid in ["linear", "linear_1", "linear_v"]:
  1445. datas: list[Tensor] = []
  1446. for xid in range(n_experts):
  1447. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1448. datas.append(self._experts[bid][ename])
  1449. del self._experts[bid][ename]
  1450. data_torch = torch.stack(datas, dim=0)
  1451. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1452. new_name = self.map_tensor_name(merged_name)
  1453. tensors.append((new_name, data_torch))
  1454. return tensors
  1455. else:
  1456. return []
  1457. return [(self.map_tensor_name(name), data_torch)]
  1458. @Model.register("DbrxForCausalLM")
  1459. class DbrxModel(Model):
  1460. model_arch = gguf.MODEL_ARCH.DBRX
  1461. def set_gguf_parameters(self):
  1462. ffn_config = self.hparams["ffn_config"]
  1463. attn_config = self.hparams["attn_config"]
  1464. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1465. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1466. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1467. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1468. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1469. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1470. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1471. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1472. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1473. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1474. self.gguf_writer.add_layer_norm_eps(1e-5)
  1475. self.gguf_writer.add_file_type(self.ftype)
  1476. logger.info(f"gguf: file type = {self.ftype}")
  1477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1478. del bid # unused
  1479. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1480. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1481. n_embd = self.hparams["d_model"]
  1482. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1483. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1484. # But llama.cpp moe graph works differently
  1485. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1486. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1487. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1488. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1489. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1490. experts = False
  1491. for exp_tensor_name in exp_tensor_names.keys():
  1492. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1493. experts = True
  1494. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1495. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1496. data_torch = data_torch.permute(*permute_tensor)
  1497. break
  1498. # map tensor names
  1499. # In MoE models the ffn tensors are typically most of the model weights,
  1500. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1501. # Every other model has the weight names ending in .weight,
  1502. # let's assume that is the convention which is not the case for dbrx:
  1503. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1504. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1505. return [(new_name, data_torch)]
  1506. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1507. del name, new_name, bid # unused
  1508. return n_dims > 1
  1509. @Model.register("MiniCPMForCausalLM")
  1510. class MiniCPMModel(Model):
  1511. model_arch = gguf.MODEL_ARCH.MINICPM
  1512. def set_gguf_parameters(self):
  1513. super().set_gguf_parameters()
  1514. embedding_scale = float(self.hparams["scale_emb"])
  1515. self.gguf_writer.add_embedding_scale(embedding_scale)
  1516. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1517. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1518. self.gguf_writer.add_residual_scale(residual_scale)
  1519. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1520. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1521. self.gguf_writer.add_logit_scale(logit_scale)
  1522. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1523. if self.hparams.get("rope_scaling") is not None:
  1524. if self.hparams["rope_scaling"].get("type") == "longrope":
  1525. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1526. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1527. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1528. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1529. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1530. if rope_scaling is not None:
  1531. long_factors = rope_scaling.get('long_factor', None)
  1532. short_factors = rope_scaling.get('short_factor', None)
  1533. if long_factors is None or short_factors is None:
  1534. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1535. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1536. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1537. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1538. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1539. def set_vocab(self):
  1540. self._set_vocab_sentencepiece()
  1541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1542. del bid # unused
  1543. n_head = self.hparams["num_attention_heads"]
  1544. n_kv_head = self.hparams.get("num_key_value_heads")
  1545. # HF models permute some of the tensors, so we need to undo that
  1546. if name.endswith(("q_proj.weight")):
  1547. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1548. if name.endswith(("k_proj.weight")):
  1549. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1550. return [(self.map_tensor_name(name), data_torch)]
  1551. @Model.register("MiniCPM3ForCausalLM")
  1552. class MiniCPM3Model(Model):
  1553. model_arch = gguf.MODEL_ARCH.MINICPM3
  1554. def set_gguf_parameters(self):
  1555. hparams = self.hparams
  1556. self.gguf_writer.add_file_type(self.ftype)
  1557. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1558. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1559. self.gguf_writer.add_block_count(self.block_count)
  1560. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1561. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1562. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1563. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1564. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1565. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1566. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1567. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1568. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1569. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1570. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1571. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1572. if rope_scaling is not None:
  1573. rope_dims = self.hparams["qk_rope_head_dim"]
  1574. long_factors = rope_scaling.get('long_factor', None)
  1575. short_factors = rope_scaling.get('short_factor', None)
  1576. if long_factors is None or short_factors is None:
  1577. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1578. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1579. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1580. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1581. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1582. def set_vocab(self):
  1583. self._set_vocab_sentencepiece()
  1584. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1585. if n_kv_head is not None and n_head != n_kv_head:
  1586. n_head //= n_kv_head
  1587. return (
  1588. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1589. .swapaxes(1, 2)
  1590. .reshape(weights.shape)
  1591. )
  1592. @Model.register("QWenLMHeadModel")
  1593. class QwenModel(Model):
  1594. model_arch = gguf.MODEL_ARCH.QWEN
  1595. @staticmethod
  1596. def token_bytes_to_string(b):
  1597. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1598. byte_encoder = bytes_to_unicode()
  1599. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1600. @staticmethod
  1601. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1602. parts = [bytes([b]) for b in token]
  1603. while True:
  1604. min_idx = None
  1605. min_rank = None
  1606. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1607. rank = mergeable_ranks.get(pair[0] + pair[1])
  1608. if rank is not None and (min_rank is None or rank < min_rank):
  1609. min_idx = i
  1610. min_rank = rank
  1611. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1612. break
  1613. assert min_idx is not None
  1614. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1615. return parts
  1616. def set_vocab(self):
  1617. self._set_vocab_qwen()
  1618. def set_gguf_parameters(self):
  1619. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1620. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1621. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1622. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1623. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1624. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1625. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1626. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1627. self.gguf_writer.add_file_type(self.ftype)
  1628. @Model.register("Qwen2ForCausalLM")
  1629. class Qwen2Model(Model):
  1630. model_arch = gguf.MODEL_ARCH.QWEN2
  1631. def set_vocab(self):
  1632. try:
  1633. self._set_vocab_sentencepiece()
  1634. except FileNotFoundError:
  1635. self._set_vocab_gpt2()
  1636. def set_gguf_parameters(self):
  1637. super().set_gguf_parameters()
  1638. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1639. if self.hparams["rope_scaling"].get("type") == "yarn":
  1640. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1641. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1642. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1643. @Model.register("Qwen2VLForConditionalGeneration")
  1644. class Qwen2VLModel(Model):
  1645. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1646. def set_gguf_parameters(self):
  1647. super().set_gguf_parameters()
  1648. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1649. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1650. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1651. def set_vocab(self):
  1652. try:
  1653. self._set_vocab_sentencepiece()
  1654. except FileNotFoundError:
  1655. self._set_vocab_gpt2()
  1656. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1657. for name, data in super().get_tensors():
  1658. if name.startswith("visual."):
  1659. continue
  1660. yield name, data
  1661. @Model.register("WavTokenizerDec")
  1662. class WavTokenizerDecModel(Model):
  1663. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1665. del bid # unused
  1666. if \
  1667. name.endswith("codebook.cluster_size") or \
  1668. name.endswith("codebook.embed_avg") or \
  1669. name.endswith("codebook.inited"):
  1670. logger.debug(f"Skipping {name!r}")
  1671. return []
  1672. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1673. return [(self.map_tensor_name(name), data_torch)]
  1674. def set_vocab(self):
  1675. self._set_vocab_none()
  1676. def set_gguf_parameters(self):
  1677. super().set_gguf_parameters()
  1678. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1679. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1680. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1681. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1682. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1683. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1684. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1685. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1686. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1687. self.gguf_writer.add_causal_attention(False)
  1688. @Model.register("Qwen2MoeForCausalLM")
  1689. class Qwen2MoeModel(Model):
  1690. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1691. def set_gguf_parameters(self):
  1692. super().set_gguf_parameters()
  1693. if (n_experts := self.hparams.get("num_experts")) is not None:
  1694. self.gguf_writer.add_expert_count(n_experts)
  1695. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1696. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1697. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1698. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1699. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1700. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1701. _experts: list[dict[str, Tensor]] | None = None
  1702. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1703. # process the experts separately
  1704. if name.find("experts") != -1:
  1705. n_experts = self.hparams["num_experts"]
  1706. assert bid is not None
  1707. if self._experts is None:
  1708. self._experts = [{} for _ in range(self.block_count)]
  1709. self._experts[bid][name] = data_torch
  1710. if len(self._experts[bid]) >= n_experts * 3:
  1711. tensors: list[tuple[str, Tensor]] = []
  1712. # merge the experts into a single 3d tensor
  1713. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1714. datas: list[Tensor] = []
  1715. for xid in range(n_experts):
  1716. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1717. datas.append(self._experts[bid][ename])
  1718. del self._experts[bid][ename]
  1719. data_torch = torch.stack(datas, dim=0)
  1720. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1721. new_name = self.map_tensor_name(merged_name)
  1722. tensors.append((new_name, data_torch))
  1723. return tensors
  1724. else:
  1725. return []
  1726. return [(self.map_tensor_name(name), data_torch)]
  1727. def prepare_tensors(self):
  1728. super().prepare_tensors()
  1729. if self._experts is not None:
  1730. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1731. experts = [k for d in self._experts for k in d.keys()]
  1732. if len(experts) > 0:
  1733. raise ValueError(f"Unprocessed experts: {experts}")
  1734. @Model.register("GPT2LMHeadModel")
  1735. class GPT2Model(Model):
  1736. model_arch = gguf.MODEL_ARCH.GPT2
  1737. def set_gguf_parameters(self):
  1738. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1739. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1740. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1741. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1742. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1743. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1744. self.gguf_writer.add_file_type(self.ftype)
  1745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1746. del bid # unused
  1747. tensors: list[tuple[str, Tensor]] = []
  1748. # we don't need these
  1749. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1750. return tensors
  1751. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1752. data_torch = data_torch.transpose(1, 0)
  1753. new_name = self.map_tensor_name(name)
  1754. tensors.append((new_name, data_torch))
  1755. # note: GPT2 output is tied to (same as) wte in original model
  1756. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1757. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1758. return tensors
  1759. @Model.register("PhiForCausalLM")
  1760. class Phi2Model(Model):
  1761. model_arch = gguf.MODEL_ARCH.PHI2
  1762. def set_gguf_parameters(self):
  1763. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1764. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1765. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1766. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1767. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1768. self.gguf_writer.add_embedding_length(n_embd)
  1769. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1770. self.gguf_writer.add_block_count(block_count)
  1771. self.gguf_writer.add_head_count(n_head)
  1772. self.gguf_writer.add_head_count_kv(n_head)
  1773. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1774. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1775. self.gguf_writer.add_file_type(self.ftype)
  1776. self.gguf_writer.add_add_bos_token(False)
  1777. @Model.register("Phi3ForCausalLM")
  1778. class Phi3MiniModel(Model):
  1779. model_arch = gguf.MODEL_ARCH.PHI3
  1780. def set_vocab(self):
  1781. # Phi-4 model uses GPT2Tokenizer
  1782. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1783. if tokenizer_config_file.is_file():
  1784. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1785. tokenizer_config_json = json.load(f)
  1786. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1787. if tokenizer_class == 'GPT2Tokenizer':
  1788. return self._set_vocab_gpt2()
  1789. from sentencepiece import SentencePieceProcessor
  1790. tokenizer_path = self.dir_model / 'tokenizer.model'
  1791. if not tokenizer_path.is_file():
  1792. raise ValueError(f'Error: Missing {tokenizer_path}')
  1793. tokenizer = SentencePieceProcessor()
  1794. tokenizer.LoadFromFile(str(tokenizer_path))
  1795. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1796. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1797. scores: list[float] = [-10000.0] * vocab_size
  1798. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1799. for token_id in range(tokenizer.vocab_size()):
  1800. piece = tokenizer.IdToPiece(token_id)
  1801. text = piece.encode("utf-8")
  1802. score = tokenizer.GetScore(token_id)
  1803. toktype = SentencePieceTokenTypes.NORMAL
  1804. if tokenizer.IsUnknown(token_id):
  1805. toktype = SentencePieceTokenTypes.UNKNOWN
  1806. elif tokenizer.IsControl(token_id):
  1807. toktype = SentencePieceTokenTypes.CONTROL
  1808. elif tokenizer.IsUnused(token_id):
  1809. toktype = SentencePieceTokenTypes.UNUSED
  1810. elif tokenizer.IsByte(token_id):
  1811. toktype = SentencePieceTokenTypes.BYTE
  1812. tokens[token_id] = text
  1813. scores[token_id] = score
  1814. toktypes[token_id] = toktype
  1815. added_tokens_file = self.dir_model / 'added_tokens.json'
  1816. if added_tokens_file.is_file():
  1817. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1818. added_tokens_json = json.load(f)
  1819. for key in added_tokens_json:
  1820. token_id = added_tokens_json[key]
  1821. if token_id >= vocab_size:
  1822. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1823. continue
  1824. tokens[token_id] = key.encode("utf-8")
  1825. scores[token_id] = -1000.0
  1826. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1827. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1828. if tokenizer_config_file.is_file():
  1829. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1830. tokenizer_config_json = json.load(f)
  1831. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1832. for token_id, foken_data in added_tokens_decoder.items():
  1833. token_id = int(token_id)
  1834. token = foken_data["content"].encode("utf-8")
  1835. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1836. if tokens[token_id] != token:
  1837. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1838. tokens[token_id] = token
  1839. scores[token_id] = -1000.0
  1840. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1841. if foken_data.get("special"):
  1842. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1843. tokenizer_file = self.dir_model / 'tokenizer.json'
  1844. if tokenizer_file.is_file():
  1845. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1846. tokenizer_json = json.load(f)
  1847. added_tokens = tokenizer_json.get("added_tokens", [])
  1848. for foken_data in added_tokens:
  1849. token_id = int(foken_data["id"])
  1850. token = foken_data["content"].encode("utf-8")
  1851. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1852. if tokens[token_id] != token:
  1853. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1854. tokens[token_id] = token
  1855. scores[token_id] = -1000.0
  1856. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1857. if foken_data.get("special"):
  1858. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1859. self.gguf_writer.add_tokenizer_model("llama")
  1860. self.gguf_writer.add_tokenizer_pre("default")
  1861. self.gguf_writer.add_token_list(tokens)
  1862. self.gguf_writer.add_token_scores(scores)
  1863. self.gguf_writer.add_token_types(toktypes)
  1864. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1865. special_vocab.add_to_gguf(self.gguf_writer)
  1866. def set_gguf_parameters(self):
  1867. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1868. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1869. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1870. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1871. rms_eps = self.find_hparam(["rms_norm_eps"])
  1872. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1873. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1874. rope_dims = n_embd // n_head
  1875. self.gguf_writer.add_context_length(max_pos_embds)
  1876. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1877. self.gguf_writer.add_embedding_length(n_embd)
  1878. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1879. self.gguf_writer.add_block_count(block_count)
  1880. self.gguf_writer.add_head_count(n_head)
  1881. self.gguf_writer.add_head_count_kv(n_head_kv)
  1882. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1883. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1884. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1885. self.gguf_writer.add_file_type(self.ftype)
  1886. sliding_window = self.hparams.get("sliding_window")
  1887. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  1888. if sliding_window is None:
  1889. sliding_window = 0
  1890. self.gguf_writer.add_sliding_window(sliding_window)
  1891. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1892. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1893. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1894. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1895. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1896. rope_dims = n_embd // n_head
  1897. # write rope scaling for long context (128k) model
  1898. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1899. if rope_scaling is None:
  1900. return
  1901. scale = max_pos_embds / orig_max_pos_embds
  1902. rope_scaling_type = rope_scaling.get('type', '').lower()
  1903. if len(rope_scaling_type) == 0:
  1904. raise KeyError('Missing the required key rope_scaling.type')
  1905. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1906. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1907. elif rope_scaling_type == 'yarn':
  1908. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1909. else:
  1910. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1911. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1912. long_factors = rope_scaling.get('long_factor', None)
  1913. short_factors = rope_scaling.get('short_factor', None)
  1914. if long_factors is None or short_factors is None:
  1915. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1916. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1917. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1918. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1919. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1920. @Model.register("PlamoForCausalLM")
  1921. class PlamoModel(Model):
  1922. model_arch = gguf.MODEL_ARCH.PLAMO
  1923. def set_vocab(self):
  1924. self._set_vocab_sentencepiece()
  1925. def set_gguf_parameters(self):
  1926. hparams = self.hparams
  1927. block_count = hparams["num_hidden_layers"]
  1928. self.gguf_writer.add_context_length(4096) # not in config.json
  1929. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1930. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1931. self.gguf_writer.add_block_count(block_count)
  1932. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1933. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1934. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1935. self.gguf_writer.add_file_type(self.ftype)
  1936. def shuffle_attn_q_weight(self, data_torch):
  1937. assert data_torch.size() == (5120, 5120)
  1938. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1939. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1940. data_torch = torch.reshape(data_torch, (5120, 5120))
  1941. return data_torch
  1942. def shuffle_attn_output_weight(self, data_torch):
  1943. assert data_torch.size() == (5120, 5120)
  1944. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1945. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1946. data_torch = torch.reshape(data_torch, (5120, 5120))
  1947. return data_torch
  1948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1949. del bid # unused
  1950. new_name = self.map_tensor_name(name)
  1951. # shuffle for broadcasting of gqa in ggml_mul_mat
  1952. if new_name.endswith("attn_q.weight"):
  1953. data_torch = self.shuffle_attn_q_weight(data_torch)
  1954. elif new_name.endswith("attn_output.weight"):
  1955. data_torch = self.shuffle_attn_output_weight(data_torch)
  1956. return [(new_name, data_torch)]
  1957. @Model.register("CodeShellForCausalLM")
  1958. class CodeShellModel(Model):
  1959. model_arch = gguf.MODEL_ARCH.CODESHELL
  1960. def set_gguf_parameters(self):
  1961. block_count = self.hparams["n_layer"]
  1962. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1963. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1964. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1965. self.gguf_writer.add_block_count(block_count)
  1966. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1967. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1968. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1969. self.gguf_writer.add_file_type(self.ftype)
  1970. self.gguf_writer.add_rope_freq_base(10000.0)
  1971. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1972. self.gguf_writer.add_rope_scaling_factor(1.0)
  1973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1974. del bid # unused
  1975. new_name = self.map_tensor_name(name)
  1976. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1977. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1978. assert self.tensor_names is not None
  1979. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1980. # copy tok_embd.weight to output.weight
  1981. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1982. return tensors
  1983. @Model.register("InternLM2ForCausalLM")
  1984. class InternLM2Model(Model):
  1985. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1986. def set_vocab(self):
  1987. # (TODO): Is there a better way?
  1988. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1989. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1990. # recognized as an empty string in C++.
  1991. from sentencepiece import SentencePieceProcessor
  1992. from sentencepiece import sentencepiece_model_pb2 as model
  1993. tokenizer_path = self.dir_model / 'tokenizer.model'
  1994. tokens: list[bytes] = []
  1995. scores: list[float] = []
  1996. toktypes: list[int] = []
  1997. if not tokenizer_path.is_file():
  1998. logger.error(f'Error: Missing {tokenizer_path}')
  1999. sys.exit(1)
  2000. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2001. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2002. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2003. tokenizer = SentencePieceProcessor()
  2004. tokenizer.LoadFromFile(str(tokenizer_path))
  2005. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2006. for token_id in range(vocab_size):
  2007. piece = tokenizer.IdToPiece(token_id)
  2008. text = piece.encode("utf-8")
  2009. score = tokenizer.GetScore(token_id)
  2010. if text == b"\x00":
  2011. # (TODO): fixme
  2012. # Hack here and replace the \x00 characters.
  2013. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2014. text = "🐉".encode("utf-8")
  2015. toktype = SentencePieceTokenTypes.NORMAL
  2016. if tokenizer.IsUnknown(token_id):
  2017. toktype = SentencePieceTokenTypes.UNKNOWN
  2018. elif tokenizer.IsControl(token_id):
  2019. toktype = SentencePieceTokenTypes.CONTROL
  2020. elif tokenizer.IsUnused(token_id):
  2021. toktype = SentencePieceTokenTypes.UNUSED
  2022. elif tokenizer.IsByte(token_id):
  2023. toktype = SentencePieceTokenTypes.BYTE
  2024. # take care of ununsed raw token
  2025. if piece.startswith('[UNUSED'):
  2026. toktype = SentencePieceTokenTypes.UNUSED
  2027. tokens.append(text)
  2028. scores.append(score)
  2029. toktypes.append(toktype)
  2030. added_tokens_file = self.dir_model / 'added_tokens.json'
  2031. if added_tokens_file.is_file():
  2032. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2033. added_tokens_json = json.load(f)
  2034. for key in added_tokens_json:
  2035. tokens.append(key.encode("utf-8"))
  2036. scores.append(-1000.0)
  2037. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2038. chat_eos_token = '<|im_end|>'
  2039. chat_eos_token_id = None
  2040. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2041. if tokenizer_config_file.is_file():
  2042. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2043. tokenizer_config_json = json.load(f)
  2044. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2045. for token_id, foken_data in added_tokens_decoder.items():
  2046. token_id = int(token_id)
  2047. token = foken_data["content"]
  2048. if token == chat_eos_token:
  2049. chat_eos_token_id = token_id
  2050. token = token.encode("utf-8")
  2051. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2052. if tokens[token_id] != token:
  2053. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2054. tokens[token_id] = token
  2055. scores[token_id] = -1000.0
  2056. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2057. if foken_data.get("special"):
  2058. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2059. tokenizer_file = self.dir_model / 'tokenizer.json'
  2060. if tokenizer_file.is_file():
  2061. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2062. tokenizer_json = json.load(f)
  2063. added_tokens = tokenizer_json.get("added_tokens", [])
  2064. for foken_data in added_tokens:
  2065. token_id = int(foken_data["id"])
  2066. token = foken_data["content"]
  2067. if token == chat_eos_token:
  2068. chat_eos_token_id = token_id
  2069. token = token.encode("utf-8")
  2070. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2071. if tokens[token_id] != token:
  2072. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2073. tokens[token_id] = token
  2074. scores[token_id] = -1000.0
  2075. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2076. if foken_data.get("special"):
  2077. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2078. self.gguf_writer.add_tokenizer_model("llama")
  2079. self.gguf_writer.add_tokenizer_pre("default")
  2080. self.gguf_writer.add_token_list(tokens)
  2081. self.gguf_writer.add_token_scores(scores)
  2082. self.gguf_writer.add_token_types(toktypes)
  2083. self.gguf_writer.add_add_space_prefix(add_prefix)
  2084. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2085. old_eos = special_vocab.special_token_ids["eos"]
  2086. if chat_eos_token_id is not None:
  2087. # For the chat model, we replace the eos with '<|im_end|>'.
  2088. # TODO: this is a hack, should be fixed
  2089. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2090. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2091. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2092. " in chat mode so that the conversation can end normally.")
  2093. special_vocab.add_to_gguf(self.gguf_writer)
  2094. def set_gguf_parameters(self):
  2095. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2096. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2097. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2098. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2099. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2100. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2101. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2102. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2103. self.gguf_writer.add_file_type(self.ftype)
  2104. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2105. if self.hparams["rope_scaling"].get("type") == "linear":
  2106. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2107. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2108. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2109. num_heads = self.hparams["num_attention_heads"]
  2110. num_kv_heads = self.hparams["num_key_value_heads"]
  2111. n_embd = self.hparams["hidden_size"]
  2112. q_per_kv = num_heads // num_kv_heads
  2113. head_dim = n_embd // num_heads
  2114. num_groups = num_heads // q_per_kv
  2115. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2116. qkv = data_torch
  2117. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2118. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2119. # The model weights of q and k equire additional reshape.
  2120. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2121. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2122. v = v.reshape((-1, v.shape[-1]))
  2123. return [
  2124. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2125. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2126. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2127. ]
  2128. else:
  2129. return [(self.map_tensor_name(name), data_torch)]
  2130. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2131. class BertModel(Model):
  2132. model_arch = gguf.MODEL_ARCH.BERT
  2133. def __init__(self, *args, **kwargs):
  2134. super().__init__(*args, **kwargs)
  2135. self.vocab_size = None
  2136. def set_gguf_parameters(self):
  2137. super().set_gguf_parameters()
  2138. self.gguf_writer.add_causal_attention(False)
  2139. # get pooling path
  2140. pooling_path = None
  2141. module_path = self.dir_model / "modules.json"
  2142. if module_path.is_file():
  2143. with open(module_path, encoding="utf-8") as f:
  2144. modules = json.load(f)
  2145. for mod in modules:
  2146. if mod["type"] == "sentence_transformers.models.Pooling":
  2147. pooling_path = mod["path"]
  2148. break
  2149. # get pooling type
  2150. if pooling_path is not None:
  2151. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2152. pooling = json.load(f)
  2153. if pooling["pooling_mode_mean_tokens"]:
  2154. pooling_type = gguf.PoolingType.MEAN
  2155. elif pooling["pooling_mode_cls_token"]:
  2156. pooling_type = gguf.PoolingType.CLS
  2157. else:
  2158. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2159. self.gguf_writer.add_pooling_type(pooling_type)
  2160. def set_vocab(self):
  2161. tokens, toktypes, tokpre = self.get_vocab_base()
  2162. self.vocab_size = len(tokens)
  2163. # we need this to validate the size of the token_type embeddings
  2164. # though currently we are passing all zeros to the token_type embeddings
  2165. # "Sequence A" or "Sequence B"
  2166. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2167. # convert to phantom space vocab
  2168. def phantom(tok):
  2169. if tok.startswith("[") and tok.endswith("]"):
  2170. return tok
  2171. if tok.startswith("##"):
  2172. return tok[2:]
  2173. return "\u2581" + tok
  2174. tokens = list(map(phantom, tokens))
  2175. # add vocab to gguf
  2176. self.gguf_writer.add_tokenizer_model("bert")
  2177. self.gguf_writer.add_tokenizer_pre(tokpre)
  2178. self.gguf_writer.add_token_list(tokens)
  2179. self.gguf_writer.add_token_types(toktypes)
  2180. # handle special tokens
  2181. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2182. special_vocab.add_to_gguf(self.gguf_writer)
  2183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2184. del bid # unused
  2185. if name.startswith("bert."):
  2186. name = name[5:]
  2187. if name.endswith(".gamma"):
  2188. name = name[:-6] + ".weight"
  2189. if name.endswith(".beta"):
  2190. name = name[:-5] + ".bias"
  2191. # we are only using BERT for embeddings so we don't need the pooling layer
  2192. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2193. return [] # we don't need these
  2194. if name.startswith("cls.predictions"):
  2195. return []
  2196. if name.startswith("cls.seq_relationship"):
  2197. return []
  2198. return [(self.map_tensor_name(name), data_torch)]
  2199. @Model.register("RobertaModel")
  2200. class RobertaModel(BertModel):
  2201. model_arch = gguf.MODEL_ARCH.BERT
  2202. def __init__(self, *args, **kwargs):
  2203. super().__init__(*args, **kwargs)
  2204. # we need the pad_token_id to know how to chop down position_embd matrix
  2205. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2206. self._position_offset = 1 + pad_token_id
  2207. if "max_position_embeddings" in self.hparams:
  2208. self.hparams["max_position_embeddings"] -= self._position_offset
  2209. else:
  2210. self._position_offset = None
  2211. def set_vocab(self):
  2212. """Support BPE tokenizers for roberta models"""
  2213. bpe_tok_path = self.dir_model / "tokenizer.json"
  2214. if bpe_tok_path.exists():
  2215. self._set_vocab_gpt2()
  2216. self.gguf_writer.add_add_bos_token(True)
  2217. self.gguf_writer.add_add_eos_token(True)
  2218. # we need this to validate the size of the token_type embeddings
  2219. # though currently we are passing all zeros to the token_type embeddings
  2220. # "Sequence A" or "Sequence B"
  2221. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2222. else:
  2223. return super().set_vocab()
  2224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2225. # if name starts with "roberta.", remove the prefix
  2226. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2227. if name.startswith("roberta."):
  2228. name = name[8:]
  2229. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2230. if name == "embeddings.position_embeddings.weight":
  2231. if self._position_offset is not None:
  2232. data_torch = data_torch[self._position_offset:,:]
  2233. return super().modify_tensors(data_torch, name, bid)
  2234. @Model.register("NomicBertModel")
  2235. class NomicBertModel(BertModel):
  2236. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2237. def __init__(self, *args, **kwargs):
  2238. super().__init__(*args, **kwargs)
  2239. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2240. self.hparams["n_ctx"] = 2048
  2241. # SwigLU activation
  2242. assert self.hparams["activation_function"] == "swiglu"
  2243. # this doesn't do anything in the HF version
  2244. assert self.hparams["causal"] is False
  2245. # no bias tensors
  2246. assert self.hparams["qkv_proj_bias"] is False
  2247. assert self.hparams["mlp_fc1_bias"] is False
  2248. assert self.hparams["mlp_fc2_bias"] is False
  2249. # norm at end of layer
  2250. assert self.hparams["prenorm"] is False
  2251. # standard RoPE
  2252. assert self.hparams["rotary_emb_fraction"] == 1.0
  2253. assert self.hparams["rotary_emb_interleaved"] is False
  2254. assert self.hparams["rotary_emb_scale_base"] is None
  2255. def set_gguf_parameters(self):
  2256. super().set_gguf_parameters()
  2257. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2258. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2259. class XLMRobertaModel(BertModel):
  2260. model_arch = gguf.MODEL_ARCH.BERT
  2261. def __init__(self, *args, **kwargs):
  2262. super().__init__(*args, **kwargs)
  2263. # we need the pad_token_id to know how to chop down position_embd matrix
  2264. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2265. self._position_offset = 1 + pad_token_id
  2266. if "max_position_embeddings" in self.hparams:
  2267. self.hparams["max_position_embeddings"] -= self._position_offset
  2268. else:
  2269. self._position_offset = None
  2270. def set_vocab(self):
  2271. # to avoid TypeError: Descriptors cannot be created directly
  2272. # exception when importing sentencepiece_model_pb2
  2273. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2274. from sentencepiece import SentencePieceProcessor
  2275. from sentencepiece import sentencepiece_model_pb2 as model
  2276. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2277. if not tokenizer_path.is_file():
  2278. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2279. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2280. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2281. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2282. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2283. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2284. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2285. tokenizer = SentencePieceProcessor()
  2286. tokenizer.LoadFromFile(str(tokenizer_path))
  2287. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2288. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2289. scores: list[float] = [-10000.0] * vocab_size
  2290. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2291. for token_id in range(tokenizer.vocab_size()):
  2292. piece = tokenizer.IdToPiece(token_id)
  2293. text = piece.encode("utf-8")
  2294. score = tokenizer.GetScore(token_id)
  2295. toktype = SentencePieceTokenTypes.NORMAL
  2296. if tokenizer.IsUnknown(token_id):
  2297. toktype = SentencePieceTokenTypes.UNKNOWN
  2298. elif tokenizer.IsControl(token_id):
  2299. toktype = SentencePieceTokenTypes.CONTROL
  2300. elif tokenizer.IsUnused(token_id):
  2301. toktype = SentencePieceTokenTypes.UNUSED
  2302. elif tokenizer.IsByte(token_id):
  2303. toktype = SentencePieceTokenTypes.BYTE
  2304. tokens[token_id] = text
  2305. scores[token_id] = score
  2306. toktypes[token_id] = toktype
  2307. if vocab_size > len(tokens):
  2308. pad_count = vocab_size - len(tokens)
  2309. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2310. for i in range(1, pad_count + 1):
  2311. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2312. scores.append(-1000.0)
  2313. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2314. # realign tokens (see HF tokenizer code)
  2315. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2316. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2317. toktypes = [
  2318. SentencePieceTokenTypes.CONTROL,
  2319. SentencePieceTokenTypes.CONTROL,
  2320. SentencePieceTokenTypes.CONTROL,
  2321. SentencePieceTokenTypes.UNKNOWN,
  2322. ] + toktypes[3:-1]
  2323. self.gguf_writer.add_tokenizer_model("t5")
  2324. self.gguf_writer.add_tokenizer_pre("default")
  2325. self.gguf_writer.add_token_list(tokens)
  2326. self.gguf_writer.add_token_scores(scores)
  2327. self.gguf_writer.add_token_types(toktypes)
  2328. self.gguf_writer.add_add_space_prefix(add_prefix)
  2329. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2330. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2331. if precompiled_charsmap:
  2332. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2333. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2334. special_vocab.add_to_gguf(self.gguf_writer)
  2335. self.gguf_writer.add_add_bos_token(True)
  2336. self.gguf_writer.add_add_eos_token(True)
  2337. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2338. # if name starts with "roberta.", remove the prefix
  2339. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2340. if name.startswith("roberta."):
  2341. name = name[8:]
  2342. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2343. if name == "embeddings.position_embeddings.weight":
  2344. if self._position_offset is not None:
  2345. data_torch = data_torch[self._position_offset:,:]
  2346. return super().modify_tensors(data_torch, name, bid)
  2347. @Model.register("GemmaForCausalLM")
  2348. class GemmaModel(Model):
  2349. model_arch = gguf.MODEL_ARCH.GEMMA
  2350. def set_vocab(self):
  2351. self._set_vocab_sentencepiece()
  2352. # TODO: these special tokens should be exported only for the CodeGemma family
  2353. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2354. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2355. special_vocab._set_special_token("prefix", 67)
  2356. special_vocab._set_special_token("suffix", 69)
  2357. special_vocab._set_special_token("middle", 68)
  2358. special_vocab._set_special_token("fsep", 70)
  2359. special_vocab._set_special_token("eot", 107)
  2360. special_vocab.chat_template = None # do not add it twice
  2361. special_vocab.add_to_gguf(self.gguf_writer)
  2362. self.gguf_writer.add_add_space_prefix(False)
  2363. def set_gguf_parameters(self):
  2364. hparams = self.hparams
  2365. block_count = hparams["num_hidden_layers"]
  2366. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2367. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2368. self.gguf_writer.add_block_count(block_count)
  2369. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2370. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2371. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2372. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2373. self.gguf_writer.add_key_length(hparams["head_dim"])
  2374. self.gguf_writer.add_value_length(hparams["head_dim"])
  2375. self.gguf_writer.add_file_type(self.ftype)
  2376. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2377. del bid # unused
  2378. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2379. # To prevent errors, skip loading lm_head.weight.
  2380. if name == "lm_head.weight":
  2381. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2382. return []
  2383. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2384. if name.endswith("norm.weight"):
  2385. data_torch = data_torch + 1
  2386. return [(self.map_tensor_name(name), data_torch)]
  2387. @Model.register("Gemma2ForCausalLM")
  2388. class Gemma2Model(Model):
  2389. model_arch = gguf.MODEL_ARCH.GEMMA2
  2390. def set_vocab(self):
  2391. self._set_vocab_sentencepiece()
  2392. self.gguf_writer.add_add_space_prefix(False)
  2393. def set_gguf_parameters(self):
  2394. hparams = self.hparams
  2395. block_count = hparams["num_hidden_layers"]
  2396. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2397. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2398. self.gguf_writer.add_block_count(block_count)
  2399. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2400. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2401. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2402. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2403. self.gguf_writer.add_key_length(hparams["head_dim"])
  2404. self.gguf_writer.add_value_length(hparams["head_dim"])
  2405. self.gguf_writer.add_file_type(self.ftype)
  2406. self.gguf_writer.add_attn_logit_softcapping(
  2407. self.hparams["attn_logit_softcapping"]
  2408. )
  2409. self.gguf_writer.add_final_logit_softcapping(
  2410. self.hparams["final_logit_softcapping"]
  2411. )
  2412. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2413. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2414. del bid # unused
  2415. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2416. # To prevent errors, skip loading lm_head.weight.
  2417. if name == "lm_head.weight":
  2418. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2419. return []
  2420. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2421. if name.endswith("norm.weight"):
  2422. data_torch = data_torch + 1
  2423. return [(self.map_tensor_name(name), data_torch)]
  2424. @Model.register("Starcoder2ForCausalLM")
  2425. class StarCoder2Model(Model):
  2426. model_arch = gguf.MODEL_ARCH.STARCODER2
  2427. @Model.register("Rwkv6ForCausalLM")
  2428. class Rwkv6Model(Model):
  2429. model_arch = gguf.MODEL_ARCH.RWKV6
  2430. def set_vocab(self):
  2431. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2432. vocab_size = self.hparams.get("vocab_size", 65536)
  2433. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2434. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2435. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2436. lines = f.readlines()
  2437. for line in lines:
  2438. parts = line.split(' ')
  2439. assert len(parts) >= 3
  2440. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2441. token = token.encode("utf-8") if isinstance(token, str) else token
  2442. assert isinstance(token, bytes)
  2443. assert len(token) == token_len
  2444. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2445. tokens.append(token_text.encode("utf-8"))
  2446. toktypes.append(gguf.TokenType.NORMAL)
  2447. remainder = vocab_size - len(tokens)
  2448. assert remainder >= 0
  2449. for i in range(len(tokens), vocab_size):
  2450. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2451. toktypes.append(gguf.TokenType.UNUSED)
  2452. self.gguf_writer.add_tokenizer_model("rwkv")
  2453. self.gguf_writer.add_token_list(tokens)
  2454. self.gguf_writer.add_token_types(toktypes)
  2455. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2456. special_vocab.chat_template = "rwkv-world"
  2457. # hack: Add '\n\n' as the EOT token to make it chat normally
  2458. special_vocab._set_special_token("eot", 261)
  2459. special_vocab.add_to_gguf(self.gguf_writer)
  2460. def set_gguf_parameters(self):
  2461. block_count = self.hparams["num_hidden_layers"]
  2462. head_size = self.hparams["head_size"]
  2463. hidden_size = self.hparams["hidden_size"]
  2464. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2465. rescale_every_n_layers = self.hparams["rescale_every"]
  2466. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2467. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2468. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2469. # RWKV isn't context limited
  2470. self.gguf_writer.add_context_length(1048576)
  2471. self.gguf_writer.add_embedding_length(hidden_size)
  2472. self.gguf_writer.add_block_count(block_count)
  2473. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2474. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2475. self.gguf_writer.add_wkv_head_size(head_size)
  2476. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2477. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2478. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2479. self.gguf_writer.add_file_type(self.ftype)
  2480. # required by llama.cpp, unused
  2481. self.gguf_writer.add_head_count(0)
  2482. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2483. new_name = self.map_tensor_name(name)
  2484. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2485. new_name += ".weight"
  2486. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2487. data_torch = data_torch.transpose(0, 1)
  2488. if new_name.endswith("time_mix_w2.weight"):
  2489. data_torch = data_torch.permute(0, 2, 1)
  2490. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2491. data_torch = data_torch.squeeze()
  2492. rescale_every_n_layers = self.hparams["rescale_every"]
  2493. if rescale_every_n_layers > 0:
  2494. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2495. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2496. yield (new_name, data_torch)
  2497. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2498. class MambaModel(Model):
  2499. model_arch = gguf.MODEL_ARCH.MAMBA
  2500. def set_vocab(self):
  2501. vocab_size = self.hparams["vocab_size"]
  2502. # Round vocab size to next multiple of 8
  2503. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2504. # pad using ceiling division
  2505. # ref: https://stackoverflow.com/a/17511341/22827863
  2506. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2507. self.hparams["vocab_size"] = vocab_size
  2508. if (self.dir_model / "tokenizer.json").is_file():
  2509. self._set_vocab_gpt2()
  2510. elif (self.dir_model / "tokenizer.model").is_file():
  2511. self._set_vocab_sentencepiece()
  2512. else:
  2513. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2514. self._set_vocab_builtin("gpt-neox", vocab_size)
  2515. def set_gguf_parameters(self):
  2516. d_model = self.find_hparam(["hidden_size", "d_model"])
  2517. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2518. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2519. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2520. # ceiling division
  2521. # ref: https://stackoverflow.com/a/17511341/22827863
  2522. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2523. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2524. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2525. use_dt_b_c_norm = False
  2526. # For falconmamba we do apply RMS norm on B / DT and C layers
  2527. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2528. use_dt_b_c_norm = True
  2529. # Fail early for models which don't have a block expansion factor of 2
  2530. assert d_inner == 2 * d_model
  2531. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2532. self.gguf_writer.add_embedding_length(d_model)
  2533. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2534. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2535. self.gguf_writer.add_block_count(self.block_count)
  2536. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2537. self.gguf_writer.add_ssm_inner_size(d_inner)
  2538. self.gguf_writer.add_ssm_state_size(d_state)
  2539. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2540. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2541. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2542. self.gguf_writer.add_file_type(self.ftype)
  2543. _tok_embd = None
  2544. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2545. del bid # unused
  2546. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2547. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2548. new_name = self.map_tensor_name(name)
  2549. if name.endswith(".A_log"):
  2550. logger.debug("A_log --> A ==> " + new_name)
  2551. data_torch = -torch.exp(data_torch)
  2552. # assuming token_embd.weight is seen before output.weight
  2553. if self._tok_embd is not None and new_name == output_name:
  2554. if torch.equal(self._tok_embd, data_torch):
  2555. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2556. return []
  2557. elif new_name == tok_embd_name:
  2558. self._tok_embd = data_torch
  2559. return [(new_name, data_torch)]
  2560. @Model.register("CohereForCausalLM")
  2561. class CommandR2Model(Model):
  2562. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2563. def __init__(self, *args, **kwargs):
  2564. super().__init__(*args, **kwargs)
  2565. # max_position_embeddings = 8192 in config.json but model was actually
  2566. # trained on 128k context length
  2567. # aya-23 models don't have model_max_length specified
  2568. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2569. def set_gguf_parameters(self):
  2570. super().set_gguf_parameters()
  2571. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2572. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2573. @Model.register("OlmoForCausalLM")
  2574. @Model.register("OLMoForCausalLM")
  2575. class OlmoModel(Model):
  2576. model_arch = gguf.MODEL_ARCH.OLMO
  2577. def set_gguf_parameters(self):
  2578. super().set_gguf_parameters()
  2579. self.gguf_writer.add_layer_norm_eps(1e-5)
  2580. clip_qkv = self.hparams.get("clip_qkv")
  2581. if clip_qkv is not None:
  2582. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2583. # Same as super class, but permuting q_proj, k_proj
  2584. # Copied from: LlamaModel
  2585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2586. del bid # unused
  2587. n_head = self.hparams["num_attention_heads"]
  2588. n_kv_head = self.hparams.get("num_key_value_heads")
  2589. if name.endswith("q_proj.weight"):
  2590. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2591. if name.endswith("k_proj.weight"):
  2592. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2593. return [(self.map_tensor_name(name), data_torch)]
  2594. @Model.register("Olmo2ForCausalLM")
  2595. class Olmo2Model(Model):
  2596. model_arch = gguf.MODEL_ARCH.OLMO2
  2597. @Model.register("OlmoeForCausalLM")
  2598. class OlmoeModel(Model):
  2599. model_arch = gguf.MODEL_ARCH.OLMOE
  2600. def set_gguf_parameters(self):
  2601. super().set_gguf_parameters()
  2602. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2603. if (n_experts := self.hparams.get("num_experts")) is not None:
  2604. self.gguf_writer.add_expert_count(n_experts)
  2605. _experts: list[dict[str, Tensor]] | None = None
  2606. # Copied from: Qwen2MoeModel
  2607. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2608. # process the experts separately
  2609. if name.find("experts") != -1:
  2610. n_experts = self.hparams["num_experts"]
  2611. assert bid is not None
  2612. if self._experts is None:
  2613. self._experts = [{} for _ in range(self.block_count)]
  2614. self._experts[bid][name] = data_torch
  2615. if len(self._experts[bid]) >= n_experts * 3:
  2616. tensors: list[tuple[str, Tensor]] = []
  2617. # merge the experts into a single 3d tensor
  2618. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2619. datas: list[Tensor] = []
  2620. for xid in range(n_experts):
  2621. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2622. datas.append(self._experts[bid][ename])
  2623. del self._experts[bid][ename]
  2624. data_torch = torch.stack(datas, dim=0)
  2625. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2626. new_name = self.map_tensor_name(merged_name)
  2627. tensors.append((new_name, data_torch))
  2628. return tensors
  2629. else:
  2630. return []
  2631. return [(self.map_tensor_name(name), data_torch)]
  2632. # Copied from: Qwen2MoeModel
  2633. def prepare_tensors(self):
  2634. super().prepare_tensors()
  2635. if self._experts is not None:
  2636. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2637. experts = [k for d in self._experts for k in d.keys()]
  2638. if len(experts) > 0:
  2639. raise ValueError(f"Unprocessed experts: {experts}")
  2640. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2641. class JinaBertV2Model(BertModel):
  2642. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2643. def __init__(self, *args, **kwargs):
  2644. super().__init__(*args, **kwargs)
  2645. self.intermediate_size = self.hparams["intermediate_size"]
  2646. def get_tensors(self):
  2647. for name, data in super().get_tensors():
  2648. if 'gated_layer' in name:
  2649. d1 = data[:self.intermediate_size, :]
  2650. name1 = name.replace('gated_layers', 'gated_layers_w')
  2651. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2652. d2 = data[self.intermediate_size:, :]
  2653. name2 = name.replace('gated_layers', 'gated_layers_v')
  2654. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2655. yield name1, d1
  2656. yield name2, d2
  2657. continue
  2658. yield name, data
  2659. def set_vocab(self):
  2660. tokenizer_class = 'BertTokenizer'
  2661. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2662. tokenizer_class = json.load(f)['tokenizer_class']
  2663. if tokenizer_class == 'BertTokenizer':
  2664. super().set_vocab()
  2665. elif tokenizer_class == 'RobertaTokenizer':
  2666. self._set_vocab_gpt2()
  2667. self.gguf_writer.add_token_type_count(2)
  2668. else:
  2669. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2670. self.gguf_writer.add_add_bos_token(True)
  2671. self.gguf_writer.add_add_eos_token(True)
  2672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2673. # if name starts with "bert.", remove the prefix
  2674. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2675. if name.startswith("bert."):
  2676. name = name[5:]
  2677. return super().modify_tensors(data_torch, name, bid)
  2678. @Model.register("OpenELMForCausalLM")
  2679. class OpenELMModel(Model):
  2680. model_arch = gguf.MODEL_ARCH.OPENELM
  2681. @staticmethod
  2682. def _make_divisible(v: float | int, divisor: int) -> int:
  2683. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2684. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2685. # Make sure that round down does not go down by more than 10%.
  2686. if new_v < 0.9 * v:
  2687. new_v += divisor
  2688. return new_v
  2689. def __init__(self, *args, **kwargs):
  2690. super().__init__(*args, **kwargs)
  2691. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2692. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2693. self._n_embd: int = self.hparams["model_dim"]
  2694. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2695. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2696. self._ffn_dims: list[int] = [
  2697. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2698. for multiplier in ffn_multipliers
  2699. ]
  2700. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2701. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2702. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2703. def set_vocab(self):
  2704. try:
  2705. self._set_vocab_sentencepiece()
  2706. except FileNotFoundError:
  2707. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2708. def set_gguf_parameters(self):
  2709. n_embd = self._n_embd
  2710. head_dim = self.hparams["head_dim"]
  2711. rot_pct = 1.0
  2712. assert self.block_count == len(self._num_kv_heads)
  2713. assert self.block_count == len(self._num_query_heads)
  2714. assert self.block_count == len(self._ffn_dims)
  2715. self.gguf_writer.add_block_count(self.block_count)
  2716. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2717. self.gguf_writer.add_embedding_length(n_embd)
  2718. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2719. self.gguf_writer.add_head_count(self._num_query_heads)
  2720. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2721. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2722. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2723. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2724. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2725. self.gguf_writer.add_key_length(head_dim)
  2726. self.gguf_writer.add_value_length(head_dim)
  2727. self.gguf_writer.add_file_type(self.ftype)
  2728. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2729. if "n_layers" in keys:
  2730. return self.hparams["num_transformer_layers"]
  2731. return super().find_hparam(keys, optional)
  2732. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2733. # split ff
  2734. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2735. ff_dim = self._ffn_dims[bid]
  2736. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2737. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2738. return
  2739. yield (self.map_tensor_name(name), data_torch)
  2740. @Model.register("ArcticForCausalLM")
  2741. class ArcticModel(Model):
  2742. model_arch = gguf.MODEL_ARCH.ARCTIC
  2743. def set_vocab(self):
  2744. # The reason for using a custom implementation here is that the
  2745. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2746. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2747. from sentencepiece import SentencePieceProcessor
  2748. tokenizer_path = self.dir_model / 'tokenizer.model'
  2749. if not tokenizer_path.is_file():
  2750. logger.error(f'Error: Missing {tokenizer_path}')
  2751. sys.exit(1)
  2752. # Read the whole vocabulary from the tokenizer.model file
  2753. tokenizer = SentencePieceProcessor()
  2754. tokenizer.LoadFromFile(str(tokenizer_path))
  2755. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2756. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2757. scores: list[float] = [-10000.0] * vocab_size
  2758. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2759. for token_id in range(tokenizer.vocab_size()):
  2760. piece = tokenizer.IdToPiece(token_id)
  2761. text = piece.encode("utf-8")
  2762. score = tokenizer.GetScore(token_id)
  2763. toktype = SentencePieceTokenTypes.NORMAL
  2764. if tokenizer.IsUnknown(token_id):
  2765. toktype = SentencePieceTokenTypes.UNKNOWN
  2766. elif tokenizer.IsControl(token_id):
  2767. toktype = SentencePieceTokenTypes.CONTROL
  2768. elif tokenizer.IsUnused(token_id):
  2769. toktype = SentencePieceTokenTypes.UNUSED
  2770. elif tokenizer.IsByte(token_id):
  2771. toktype = SentencePieceTokenTypes.BYTE
  2772. tokens[token_id] = text
  2773. scores[token_id] = score
  2774. toktypes[token_id] = toktype
  2775. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2776. # of information about added/redefined tokens and modify them accordingly.
  2777. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2778. if tokenizer_config_file.is_file():
  2779. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2780. tokenizer_config_json = json.load(f)
  2781. if "added_tokens_decoder" in tokenizer_config_json:
  2782. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2783. for token_id, token_json in added_tokens_decoder.items():
  2784. token_id = int(token_id)
  2785. if token_id >= vocab_size:
  2786. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2787. continue
  2788. token_content = token_json["content"]
  2789. token_type = SentencePieceTokenTypes.USER_DEFINED
  2790. token_score = -10000.0
  2791. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2792. # Set the score to 0.0 as in the original tokenizer.model
  2793. if ("special" in token_json) and token_json["special"]:
  2794. if token_content == tokenizer_config_json["unk_token"]:
  2795. token_type = SentencePieceTokenTypes.UNKNOWN
  2796. else:
  2797. token_type = SentencePieceTokenTypes.CONTROL
  2798. token_score = 0.0
  2799. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2800. tokens[token_id] = token_content.encode("utf-8")
  2801. toktypes[token_id] = token_type
  2802. scores[token_id] = token_score
  2803. self.gguf_writer.add_tokenizer_model("llama")
  2804. self.gguf_writer.add_tokenizer_pre("default")
  2805. self.gguf_writer.add_token_list(tokens)
  2806. self.gguf_writer.add_token_scores(scores)
  2807. self.gguf_writer.add_token_types(toktypes)
  2808. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2809. special_vocab.add_to_gguf(self.gguf_writer)
  2810. def set_gguf_parameters(self):
  2811. super().set_gguf_parameters()
  2812. hparams = self.hparams
  2813. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2814. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2815. _experts: list[dict[str, Tensor]] | None = None
  2816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2817. n_head = self.hparams["num_attention_heads"]
  2818. n_kv_head = self.hparams.get("num_key_value_heads")
  2819. if name.endswith("q_proj.weight"):
  2820. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2821. if name.endswith("k_proj.weight"):
  2822. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2823. # process the experts separately
  2824. if name.find("block_sparse_moe.experts") != -1:
  2825. n_experts = self.hparams["num_local_experts"]
  2826. assert bid is not None
  2827. if self._experts is None:
  2828. self._experts = [{} for _ in range(self.block_count)]
  2829. self._experts[bid][name] = data_torch
  2830. if len(self._experts[bid]) >= n_experts * 3:
  2831. tensors: list[tuple[str, Tensor]] = []
  2832. # merge the experts into a single 3d tensor
  2833. for wid in ["w1", "w2", "w3"]:
  2834. datas: list[Tensor] = []
  2835. for xid in range(n_experts):
  2836. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2837. datas.append(self._experts[bid][ename])
  2838. del self._experts[bid][ename]
  2839. data_torch = torch.stack(datas, dim=0)
  2840. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2841. new_name = self.map_tensor_name(merged_name)
  2842. tensors.append((new_name, data_torch))
  2843. return tensors
  2844. else:
  2845. return []
  2846. return [(self.map_tensor_name(name), data_torch)]
  2847. def prepare_tensors(self):
  2848. super().prepare_tensors()
  2849. if self._experts is not None:
  2850. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2851. experts = [k for d in self._experts for k in d.keys()]
  2852. if len(experts) > 0:
  2853. raise ValueError(f"Unprocessed experts: {experts}")
  2854. @Model.register("DeepseekForCausalLM")
  2855. class DeepseekModel(Model):
  2856. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  2857. def set_vocab(self):
  2858. try:
  2859. self._set_vocab_sentencepiece()
  2860. except FileNotFoundError:
  2861. self._set_vocab_gpt2()
  2862. def set_gguf_parameters(self):
  2863. super().set_gguf_parameters()
  2864. hparams = self.hparams
  2865. if "head_dim" in hparams:
  2866. rope_dim = hparams["head_dim"]
  2867. else:
  2868. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2869. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2870. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2871. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2872. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2873. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2874. self.gguf_writer.add_expert_weights_scale(1.0)
  2875. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2876. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2877. _experts: list[dict[str, Tensor]] | None = None
  2878. @staticmethod
  2879. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2880. if n_head_kv is not None and n_head != n_head_kv:
  2881. n_head = n_head_kv
  2882. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2883. .swapaxes(1, 2)
  2884. .reshape(weights.shape))
  2885. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2886. n_head = self.hparams["num_attention_heads"]
  2887. n_kv_head = self.hparams.get("num_key_value_heads")
  2888. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2889. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  2890. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2891. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  2892. # process the experts separately
  2893. if name.find("mlp.experts") != -1:
  2894. n_experts = self.hparams["n_routed_experts"]
  2895. assert bid is not None
  2896. if self._experts is None:
  2897. self._experts = [{} for _ in range(self.block_count)]
  2898. self._experts[bid][name] = data_torch
  2899. if len(self._experts[bid]) >= n_experts * 3:
  2900. tensors: list[tuple[str, Tensor]] = []
  2901. # merge the experts into a single 3d tensor
  2902. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2903. datas: list[Tensor] = []
  2904. for xid in range(n_experts):
  2905. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2906. datas.append(self._experts[bid][ename])
  2907. del self._experts[bid][ename]
  2908. data_torch = torch.stack(datas, dim=0)
  2909. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2910. new_name = self.map_tensor_name(merged_name)
  2911. tensors.append((new_name, data_torch))
  2912. return tensors
  2913. else:
  2914. return []
  2915. return [(self.map_tensor_name(name), data_torch)]
  2916. def prepare_tensors(self):
  2917. super().prepare_tensors()
  2918. if self._experts is not None:
  2919. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2920. experts = [k for d in self._experts for k in d.keys()]
  2921. if len(experts) > 0:
  2922. raise ValueError(f"Unprocessed experts: {experts}")
  2923. @Model.register("DeepseekV2ForCausalLM")
  2924. class DeepseekV2Model(Model):
  2925. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2926. def set_vocab(self):
  2927. self._set_vocab_gpt2()
  2928. def set_gguf_parameters(self):
  2929. super().set_gguf_parameters()
  2930. hparams = self.hparams
  2931. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2932. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2933. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2934. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2935. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2936. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2937. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2938. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2939. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2940. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2941. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2942. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2943. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2944. if self.hparams["rope_scaling"].get("type") == "yarn":
  2945. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2946. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2947. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2948. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2949. _experts: list[dict[str, Tensor]] | None = None
  2950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2951. # process the experts separately
  2952. if name.find("mlp.experts") != -1:
  2953. n_experts = self.hparams["n_routed_experts"]
  2954. assert bid is not None
  2955. if self._experts is None:
  2956. self._experts = [{} for _ in range(self.block_count)]
  2957. self._experts[bid][name] = data_torch
  2958. if len(self._experts[bid]) >= n_experts * 3:
  2959. tensors: list[tuple[str, Tensor]] = []
  2960. # merge the experts into a single 3d tensor
  2961. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2962. datas: list[Tensor] = []
  2963. for xid in range(n_experts):
  2964. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2965. datas.append(self._experts[bid][ename])
  2966. del self._experts[bid][ename]
  2967. data_torch = torch.stack(datas, dim=0)
  2968. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2969. new_name = self.map_tensor_name(merged_name)
  2970. tensors.append((new_name, data_torch))
  2971. return tensors
  2972. else:
  2973. return []
  2974. return [(self.map_tensor_name(name), data_torch)]
  2975. def prepare_tensors(self):
  2976. super().prepare_tensors()
  2977. if self._experts is not None:
  2978. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2979. experts = [k for d in self._experts for k in d.keys()]
  2980. if len(experts) > 0:
  2981. raise ValueError(f"Unprocessed experts: {experts}")
  2982. @Model.register("T5WithLMHeadModel")
  2983. @Model.register("T5ForConditionalGeneration")
  2984. @Model.register("MT5ForConditionalGeneration")
  2985. @Model.register("UMT5ForConditionalGeneration")
  2986. class T5Model(Model):
  2987. model_arch = gguf.MODEL_ARCH.T5
  2988. def __init__(self, *args, **kwargs):
  2989. super().__init__(*args, **kwargs)
  2990. self.shared_token_embeddings_found = False
  2991. def set_vocab(self):
  2992. # to avoid TypeError: Descriptors cannot be created directly
  2993. # exception when importing sentencepiece_model_pb2
  2994. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2995. from sentencepiece import SentencePieceProcessor
  2996. from sentencepiece import sentencepiece_model_pb2 as model
  2997. tokenizer_path = self.dir_model / 'tokenizer.model'
  2998. # many older models use spiece.model tokenizer model filename
  2999. if not tokenizer_path.is_file():
  3000. tokenizer_path = self.dir_model / 'spiece.model'
  3001. if not tokenizer_path.is_file():
  3002. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3003. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3004. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3005. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3006. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3007. # assure the tokenizer model file name is correct
  3008. assert tokenizer_path.name == 'tokenizer.model'
  3009. return self._set_vocab_sentencepiece()
  3010. else:
  3011. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3012. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3013. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3014. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3015. tokenizer = SentencePieceProcessor()
  3016. tokenizer.LoadFromFile(str(tokenizer_path))
  3017. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3018. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3019. scores: list[float] = [-10000.0] * vocab_size
  3020. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3021. for token_id in range(tokenizer.vocab_size()):
  3022. piece = tokenizer.IdToPiece(token_id)
  3023. text = piece.encode("utf-8")
  3024. score = tokenizer.GetScore(token_id)
  3025. toktype = SentencePieceTokenTypes.NORMAL
  3026. if tokenizer.IsUnknown(token_id):
  3027. toktype = SentencePieceTokenTypes.UNKNOWN
  3028. elif tokenizer.IsControl(token_id):
  3029. toktype = SentencePieceTokenTypes.CONTROL
  3030. elif tokenizer.IsUnused(token_id):
  3031. toktype = SentencePieceTokenTypes.UNUSED
  3032. elif tokenizer.IsByte(token_id):
  3033. toktype = SentencePieceTokenTypes.BYTE
  3034. tokens[token_id] = text
  3035. scores[token_id] = score
  3036. toktypes[token_id] = toktype
  3037. added_tokens_file = self.dir_model / 'added_tokens.json'
  3038. if added_tokens_file.is_file():
  3039. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3040. added_tokens_json = json.load(f)
  3041. for key in added_tokens_json:
  3042. token_id = added_tokens_json[key]
  3043. if token_id >= vocab_size:
  3044. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3045. continue
  3046. tokens[token_id] = key.encode("utf-8")
  3047. scores[token_id] = -1000.0
  3048. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3049. if vocab_size > len(tokens):
  3050. pad_count = vocab_size - len(tokens)
  3051. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3052. for i in range(1, pad_count + 1):
  3053. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3054. scores.append(-1000.0)
  3055. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3056. self.gguf_writer.add_tokenizer_model("t5")
  3057. self.gguf_writer.add_tokenizer_pre("default")
  3058. self.gguf_writer.add_token_list(tokens)
  3059. self.gguf_writer.add_token_scores(scores)
  3060. self.gguf_writer.add_token_types(toktypes)
  3061. self.gguf_writer.add_add_space_prefix(add_prefix)
  3062. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3063. if precompiled_charsmap:
  3064. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3065. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3066. special_vocab.add_to_gguf(self.gguf_writer)
  3067. self.gguf_writer.add_add_bos_token(False)
  3068. self.gguf_writer.add_add_eos_token(True)
  3069. def set_gguf_parameters(self):
  3070. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3071. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3072. n_ctx = 512
  3073. self.gguf_writer.add_context_length(n_ctx)
  3074. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3075. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3076. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3077. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3078. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3079. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3080. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3081. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3082. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3083. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3084. self.gguf_writer.add_file_type(self.ftype)
  3085. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3086. del bid # unused
  3087. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3088. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3089. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3090. # and decoder and ignore the remaining ones.
  3091. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3092. if not self.shared_token_embeddings_found:
  3093. name = "shared.weight"
  3094. self.shared_token_embeddings_found = True
  3095. else:
  3096. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3097. return []
  3098. return [(self.map_tensor_name(name), data_torch)]
  3099. @Model.register("T5EncoderModel")
  3100. class T5EncoderModel(Model):
  3101. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3102. def __init__(self, *args, **kwargs):
  3103. super().__init__(*args, **kwargs)
  3104. self.shared_token_embeddings_found = False
  3105. def set_vocab(self):
  3106. # to avoid TypeError: Descriptors cannot be created directly
  3107. # exception when importing sentencepiece_model_pb2
  3108. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3109. from sentencepiece import SentencePieceProcessor
  3110. from sentencepiece import sentencepiece_model_pb2 as model
  3111. tokenizer_path = self.dir_model / 'tokenizer.model'
  3112. # many older models use spiece.model tokenizer model filename
  3113. if not tokenizer_path.is_file():
  3114. tokenizer_path = self.dir_model / 'spiece.model'
  3115. if not tokenizer_path.is_file():
  3116. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3117. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3118. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3119. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3120. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3121. # assure the tokenizer model file name is correct
  3122. assert tokenizer_path.name == 'tokenizer.model'
  3123. return self._set_vocab_sentencepiece()
  3124. else:
  3125. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3126. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3127. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3128. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3129. tokenizer = SentencePieceProcessor()
  3130. tokenizer.LoadFromFile(str(tokenizer_path))
  3131. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3132. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3133. scores: list[float] = [-10000.0] * vocab_size
  3134. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3135. for token_id in range(tokenizer.vocab_size()):
  3136. piece = tokenizer.IdToPiece(token_id)
  3137. text = piece.encode("utf-8")
  3138. score = tokenizer.GetScore(token_id)
  3139. toktype = SentencePieceTokenTypes.NORMAL
  3140. if tokenizer.IsUnknown(token_id):
  3141. toktype = SentencePieceTokenTypes.UNKNOWN
  3142. elif tokenizer.IsControl(token_id):
  3143. toktype = SentencePieceTokenTypes.CONTROL
  3144. elif tokenizer.IsUnused(token_id):
  3145. toktype = SentencePieceTokenTypes.UNUSED
  3146. elif tokenizer.IsByte(token_id):
  3147. toktype = SentencePieceTokenTypes.BYTE
  3148. tokens[token_id] = text
  3149. scores[token_id] = score
  3150. toktypes[token_id] = toktype
  3151. added_tokens_file = self.dir_model / 'added_tokens.json'
  3152. if added_tokens_file.is_file():
  3153. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3154. added_tokens_json = json.load(f)
  3155. for key in added_tokens_json:
  3156. token_id = added_tokens_json[key]
  3157. if token_id >= vocab_size:
  3158. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3159. continue
  3160. tokens[token_id] = key.encode("utf-8")
  3161. scores[token_id] = -1000.0
  3162. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3163. if vocab_size > len(tokens):
  3164. pad_count = vocab_size - len(tokens)
  3165. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3166. for i in range(1, pad_count + 1):
  3167. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3168. scores.append(-1000.0)
  3169. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3170. self.gguf_writer.add_tokenizer_model("t5")
  3171. self.gguf_writer.add_tokenizer_pre("default")
  3172. self.gguf_writer.add_token_list(tokens)
  3173. self.gguf_writer.add_token_scores(scores)
  3174. self.gguf_writer.add_token_types(toktypes)
  3175. self.gguf_writer.add_add_space_prefix(add_prefix)
  3176. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3177. if precompiled_charsmap:
  3178. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3179. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3180. special_vocab.add_to_gguf(self.gguf_writer)
  3181. self.gguf_writer.add_add_bos_token(False)
  3182. self.gguf_writer.add_add_eos_token(True)
  3183. def set_gguf_parameters(self):
  3184. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3185. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3186. n_ctx = 512
  3187. self.gguf_writer.add_context_length(n_ctx)
  3188. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3189. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3190. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3191. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3192. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3193. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3194. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3195. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3196. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3197. self.gguf_writer.add_file_type(self.ftype)
  3198. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3199. del bid # unused
  3200. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3201. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3202. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3203. # and decoder and ignore the remaining ones.
  3204. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3205. if not self.shared_token_embeddings_found:
  3206. name = "shared.weight"
  3207. self.shared_token_embeddings_found = True
  3208. else:
  3209. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3210. return []
  3211. return [(self.map_tensor_name(name), data_torch)]
  3212. @Model.register("JAISLMHeadModel")
  3213. class JaisModel(Model):
  3214. model_arch = gguf.MODEL_ARCH.JAIS
  3215. def __init__(self, *args, **kwargs):
  3216. super().__init__(*args, **kwargs)
  3217. # SwigLU activation
  3218. assert self.hparams["activation_function"] == "swiglu"
  3219. # ALiBi position embedding
  3220. assert self.hparams["position_embedding_type"] == "alibi"
  3221. # Embeddings scale
  3222. self.embeddings_scale = 1.0
  3223. if 'mup_embeddings_scale' in self.hparams:
  3224. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3225. elif 'embeddings_scale' in self.hparams:
  3226. self.embeddings_scale = self.hparams['embeddings_scale']
  3227. else:
  3228. assert False
  3229. self.width_scale = 1.0
  3230. if 'mup_output_alpha' in self.hparams:
  3231. assert 'mup_width_scale' in self.hparams
  3232. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3233. elif 'width_scale' in self.hparams:
  3234. self.width_scale = self.hparams['width_scale']
  3235. else:
  3236. assert False
  3237. self.max_alibi_bias = 8.0
  3238. def set_vocab(self):
  3239. self._set_vocab_gpt2()
  3240. def set_gguf_parameters(self):
  3241. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3242. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3243. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3244. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3245. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3246. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3247. self.gguf_writer.add_file_type(self.ftype)
  3248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3249. del bid # unused
  3250. tensors: list[tuple[str, Tensor]] = []
  3251. # we don't need these
  3252. if name.endswith((".attn.bias")):
  3253. return tensors
  3254. if name.endswith(("relative_pe.slopes")):
  3255. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3256. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3257. # but Jais's PyTorch model simply precalculates the slope values and places them
  3258. # in relative_pes.slopes
  3259. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3260. first_val = float(data_torch[0].item())
  3261. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3262. return tensors
  3263. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3264. data_torch = data_torch.transpose(1, 0)
  3265. new_name = self.map_tensor_name(name)
  3266. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3267. tensors.append((new_name, data_torch * self.embeddings_scale))
  3268. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3269. tensors.append((new_name, data_torch * self.width_scale))
  3270. else:
  3271. tensors.append((new_name, data_torch))
  3272. return tensors
  3273. def prepare_tensors(self):
  3274. super().prepare_tensors()
  3275. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3276. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3277. class ChatGLMModel(Model):
  3278. model_arch = gguf.MODEL_ARCH.CHATGLM
  3279. def set_vocab_chatglm3(self):
  3280. dir_model = self.dir_model
  3281. hparams = self.hparams
  3282. tokens: list[bytes] = []
  3283. toktypes: list[int] = []
  3284. scores: list[float] = []
  3285. from transformers import AutoTokenizer
  3286. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3287. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3288. assert max(tokenizer.get_vocab().values()) < vocab_size
  3289. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3290. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3291. for token_id in range(vocab_size):
  3292. piece = tokenizer._convert_id_to_token(token_id)
  3293. if token_id == 0:
  3294. piece = "<unk>"
  3295. elif token_id == 1:
  3296. piece = "<bos>"
  3297. elif token_id == 2:
  3298. piece = "<eos>"
  3299. text = piece.encode("utf-8")
  3300. score = 0.0
  3301. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3302. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3303. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3304. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3305. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3306. if piece in special_tokens:
  3307. toktype = SentencePieceTokenTypes.CONTROL
  3308. elif len(piece) == 0:
  3309. text = f"[PAD{token_id}]".encode("utf-8")
  3310. toktype = SentencePieceTokenTypes.UNUSED
  3311. else:
  3312. toktype = SentencePieceTokenTypes.USER_DEFINED
  3313. tokens.append(text)
  3314. scores.append(score)
  3315. toktypes.append(toktype)
  3316. continue
  3317. toktype = SentencePieceTokenTypes.NORMAL
  3318. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3319. toktype = SentencePieceTokenTypes.UNKNOWN
  3320. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3321. toktype = SentencePieceTokenTypes.CONTROL
  3322. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3323. toktype = SentencePieceTokenTypes.UNUSED
  3324. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3325. toktype = SentencePieceTokenTypes.BYTE
  3326. tokens.append(text)
  3327. scores.append(score)
  3328. toktypes.append(toktype)
  3329. self.gguf_writer.add_tokenizer_model("llama")
  3330. # glm3 needs prefix and suffix formatted as:
  3331. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3332. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3333. self.gguf_writer.add_token_list(tokens)
  3334. self.gguf_writer.add_token_scores(scores)
  3335. self.gguf_writer.add_token_types(toktypes)
  3336. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3337. special_vocab.add_to_gguf(self.gguf_writer)
  3338. @staticmethod
  3339. def token_bytes_to_string(b):
  3340. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3341. byte_encoder = bytes_to_unicode()
  3342. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3343. @staticmethod
  3344. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3345. parts = [bytes([b]) for b in token]
  3346. while True:
  3347. min_idx = None
  3348. min_rank = None
  3349. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3350. rank = mergeable_ranks.get(pair[0] + pair[1])
  3351. if rank is not None and (min_rank is None or rank < min_rank):
  3352. min_idx = i
  3353. min_rank = rank
  3354. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3355. break
  3356. assert min_idx is not None
  3357. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3358. return parts
  3359. def set_vocab(self):
  3360. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3361. self.set_vocab_chatglm3()
  3362. return
  3363. dir_model = self.dir_model
  3364. hparams = self.hparams
  3365. tokens: list[str] = []
  3366. toktypes: list[int] = []
  3367. from transformers import AutoTokenizer
  3368. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3369. vocab_size = hparams["padded_vocab_size"]
  3370. assert max(tokenizer.get_vocab().values()) < vocab_size
  3371. tokpre = self.get_vocab_base_pre(tokenizer)
  3372. merges = []
  3373. vocab = {}
  3374. mergeable_ranks = tokenizer.mergeable_ranks
  3375. for token, rank in mergeable_ranks.items():
  3376. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3377. if len(token) == 1:
  3378. continue
  3379. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3380. assert len(merged) >= 2 and len(merged) <= 7
  3381. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3382. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3383. added_vocab = tokenizer.get_added_vocab()
  3384. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3385. for i in range(vocab_size):
  3386. if i not in reverse_vocab:
  3387. tokens.append(f"[PAD{i}]")
  3388. toktypes.append(gguf.TokenType.UNUSED)
  3389. elif reverse_vocab[i] in added_vocab:
  3390. tokens.append(reverse_vocab[i])
  3391. if tokenizer.added_tokens_decoder[i].special:
  3392. toktypes.append(gguf.TokenType.CONTROL)
  3393. else:
  3394. toktypes.append(gguf.TokenType.USER_DEFINED)
  3395. else:
  3396. tokens.append(reverse_vocab[i])
  3397. toktypes.append(gguf.TokenType.NORMAL)
  3398. self.gguf_writer.add_tokenizer_model("gpt2")
  3399. self.gguf_writer.add_tokenizer_pre(tokpre)
  3400. self.gguf_writer.add_token_list(tokens)
  3401. self.gguf_writer.add_token_types(toktypes)
  3402. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3403. special_vocab.merges = merges
  3404. # only add special tokens when they were not already loaded from config.json
  3405. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3406. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3407. # this one is usually not in config.json anyway
  3408. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3409. special_vocab.add_to_gguf(self.gguf_writer)
  3410. def set_gguf_parameters(self):
  3411. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3412. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3413. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3414. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3415. self.gguf_writer.add_embedding_length(n_embed)
  3416. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3417. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3418. self.gguf_writer.add_head_count(n_head)
  3419. self.gguf_writer.add_head_count_kv(n_head_kv)
  3420. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3421. self.gguf_writer.add_file_type(self.ftype)
  3422. self.gguf_writer.add_rope_dimension_count(64)
  3423. self.gguf_writer.add_add_bos_token(False)
  3424. rope_freq = 10000
  3425. if "rope_ratio" in self.hparams:
  3426. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3427. self.gguf_writer.add_rope_freq_base(rope_freq)
  3428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3429. del bid # unused
  3430. if name.endswith(".rotary_pos_emb.inv_freq"):
  3431. return []
  3432. name = name.removeprefix("transformer.")
  3433. return [(self.map_tensor_name(name), data_torch)]
  3434. @Model.register("NemotronForCausalLM")
  3435. class NemotronModel(Model):
  3436. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3437. def set_vocab(self):
  3438. self._set_vocab_sentencepiece()
  3439. self.gguf_writer.add_pad_token_id(0)
  3440. self.gguf_writer.add_unk_token_id(1)
  3441. def set_gguf_parameters(self):
  3442. super().set_gguf_parameters()
  3443. hparams = self.hparams
  3444. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3445. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3446. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3447. # * Partial RoPE
  3448. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3449. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3450. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3451. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3452. # * RopeScaling for Nemotron
  3453. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3454. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3455. else:
  3456. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3457. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3458. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3459. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3460. # model.layers.{l}.input_layernorm.weight
  3461. # model.layers.{l}.post_attention_layernorm.weight
  3462. # model.norm.weight
  3463. if name.endswith("norm.weight"):
  3464. data_torch = data_torch + 1
  3465. return [(self.map_tensor_name(name), data_torch)]
  3466. @Model.register("ExaoneForCausalLM")
  3467. class ExaoneModel(Model):
  3468. model_arch = gguf.MODEL_ARCH.EXAONE
  3469. def set_gguf_parameters(self):
  3470. hparams = self.hparams
  3471. assert (hparams["activation_function"] == "silu")
  3472. max_position_embeddings = hparams["max_position_embeddings"]
  3473. embed_dim = hparams["hidden_size"]
  3474. num_heads = hparams["num_attention_heads"]
  3475. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3476. layer_norm_eps = hparams["layer_norm_epsilon"]
  3477. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3478. num_layers = hparams["num_layers"]
  3479. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3480. # attention_dropout_rate = hparams["attention_dropout"]
  3481. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3482. # embed_dropout_rate = hparams["embed_dropout"]
  3483. self.gguf_writer.add_embedding_length(embed_dim)
  3484. self.gguf_writer.add_head_count(num_heads)
  3485. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3486. self.gguf_writer.add_context_length(max_position_embeddings)
  3487. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3488. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3489. self.gguf_writer.add_block_count(num_layers)
  3490. self.gguf_writer.add_file_type(self.ftype)
  3491. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3492. self.gguf_writer.add_rope_freq_base(rope_theta)
  3493. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3494. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3495. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3496. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3497. if hparams["rope_scaling"].get("type") == "linear":
  3498. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3499. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3500. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3501. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3502. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3503. base = self.hparams.get("rope_theta", 10000.0)
  3504. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3505. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3506. factor = rope_scaling.get("factor", 8.0)
  3507. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3508. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3509. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3510. low_freq_wavelen = old_context_len / low_freq_factor
  3511. high_freq_wavelen = old_context_len / high_freq_factor
  3512. assert low_freq_wavelen != high_freq_wavelen
  3513. rope_factors = []
  3514. for freq in freqs:
  3515. wavelen = 2 * math.pi / freq
  3516. if wavelen < high_freq_wavelen:
  3517. rope_factors.append(1)
  3518. elif wavelen > low_freq_wavelen:
  3519. rope_factors.append(factor)
  3520. else:
  3521. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3522. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3523. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3524. @Model.register("GraniteForCausalLM")
  3525. class GraniteModel(LlamaModel):
  3526. """Conversion for IBM's GraniteForCausalLM"""
  3527. model_arch = gguf.MODEL_ARCH.GRANITE
  3528. def set_gguf_parameters(self):
  3529. """Granite uses standard llama parameters with the following differences:
  3530. - No head_dim support
  3531. - New multiplier params:
  3532. - attention_scale
  3533. - embedding_scale
  3534. - residual_scale
  3535. - logits_scaling
  3536. """
  3537. if head_dim := self.hparams.pop("head_dim", None):
  3538. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3539. super().set_gguf_parameters()
  3540. # NOTE: Convert _multiplier params to _scale params for naming
  3541. # consistency
  3542. if attention_scale := self.hparams.get("attention_multiplier"):
  3543. self.gguf_writer.add_attention_scale(attention_scale)
  3544. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3545. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3546. self.gguf_writer.add_embedding_scale(embedding_scale)
  3547. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3548. if residual_scale := self.hparams.get("residual_multiplier"):
  3549. self.gguf_writer.add_residual_scale(residual_scale)
  3550. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3551. if logits_scale := self.hparams.get("logits_scaling"):
  3552. self.gguf_writer.add_logit_scale(logits_scale)
  3553. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3554. @Model.register("GraniteMoeForCausalLM")
  3555. class GraniteMoeModel(GraniteModel):
  3556. """Conversion for IBM's GraniteMoeForCausalLM"""
  3557. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3559. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3560. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3561. the hidden size that is then split during forward. To keep compatibility
  3562. with existing mixtral support, we pull them apart here.
  3563. """
  3564. if name.endswith("block_sparse_moe.input_linear.weight"):
  3565. ffn_dim = self.hparams["intermediate_size"]
  3566. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3567. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3568. return [
  3569. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3570. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3571. ]
  3572. return super().modify_tensors(data_torch, name, bid)
  3573. @Model.register("ChameleonForConditionalGeneration")
  3574. @Model.register("ChameleonForCausalLM") # obsolete
  3575. class ChameleonModel(Model):
  3576. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3577. def set_gguf_parameters(self):
  3578. super().set_gguf_parameters()
  3579. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3580. def set_vocab(self):
  3581. self._set_vocab_gpt2()
  3582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3583. # ignore image tokenizer for now
  3584. # TODO: remove this once image support is implemented for Chameleon
  3585. if name.startswith("model.vqmodel"):
  3586. return []
  3587. n_head = self.hparams["num_attention_heads"]
  3588. n_kv_head = self.hparams.get("num_key_value_heads")
  3589. hidden_dim = self.hparams.get("hidden_size")
  3590. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3591. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3592. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3593. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3594. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3595. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3596. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3597. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3598. return [(self.map_tensor_name(name), data_torch)]
  3599. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3600. @staticmethod
  3601. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3602. head_dim = hidden_dim // n_heads
  3603. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3604. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3605. return data_torch
  3606. ###### CONVERSION LOGIC ######
  3607. # tree of lazy tensors
  3608. class LazyTorchTensor(gguf.LazyBase):
  3609. _tensor_type = torch.Tensor
  3610. # to keep the type-checker happy
  3611. dtype: torch.dtype
  3612. shape: torch.Size
  3613. # only used when converting a torch.Tensor to a np.ndarray
  3614. _dtype_map: dict[torch.dtype, type] = {
  3615. torch.float16: np.float16,
  3616. torch.float32: np.float32,
  3617. }
  3618. # used for safetensors slices
  3619. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3620. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3621. _dtype_str_map: dict[str, torch.dtype] = {
  3622. "F64": torch.float64,
  3623. "F32": torch.float32,
  3624. "BF16": torch.bfloat16,
  3625. "F16": torch.float16,
  3626. # "U64": torch.uint64,
  3627. "I64": torch.int64,
  3628. # "U32": torch.uint32,
  3629. "I32": torch.int32,
  3630. # "U16": torch.uint16,
  3631. "I16": torch.int16,
  3632. "U8": torch.uint8,
  3633. "I8": torch.int8,
  3634. "BOOL": torch.bool,
  3635. "F8_E4M3": torch.float8_e4m3fn,
  3636. "F8_E5M2": torch.float8_e5m2,
  3637. }
  3638. def numpy(self) -> gguf.LazyNumpyTensor:
  3639. dtype = self._dtype_map[self.dtype]
  3640. return gguf.LazyNumpyTensor(
  3641. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3642. args=(self,),
  3643. func=(lambda s: s.numpy())
  3644. )
  3645. @classmethod
  3646. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3647. return torch.empty(size=shape, dtype=dtype, device="meta")
  3648. @classmethod
  3649. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3650. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3651. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3652. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3653. return cast(torch.Tensor, lazy)
  3654. @classmethod
  3655. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3656. del types # unused
  3657. if kwargs is None:
  3658. kwargs = {}
  3659. if func is torch.Tensor.numpy:
  3660. return args[0].numpy()
  3661. return cls._wrap_fn(func)(*args, **kwargs)
  3662. def parse_args() -> argparse.Namespace:
  3663. parser = argparse.ArgumentParser(
  3664. description="Convert a huggingface model to a GGML compatible file")
  3665. parser.add_argument(
  3666. "--vocab-only", action="store_true",
  3667. help="extract only the vocab",
  3668. )
  3669. parser.add_argument(
  3670. "--outfile", type=Path,
  3671. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3672. )
  3673. parser.add_argument(
  3674. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3675. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3676. )
  3677. parser.add_argument(
  3678. "--bigendian", action="store_true",
  3679. help="model is executed on big endian machine",
  3680. )
  3681. parser.add_argument(
  3682. "model", type=Path,
  3683. help="directory containing model file",
  3684. )
  3685. parser.add_argument(
  3686. "--use-temp-file", action="store_true",
  3687. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3688. )
  3689. parser.add_argument(
  3690. "--no-lazy", action="store_true",
  3691. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3692. )
  3693. parser.add_argument(
  3694. "--model-name", type=str, default=None,
  3695. help="name of the model",
  3696. )
  3697. parser.add_argument(
  3698. "--verbose", action="store_true",
  3699. help="increase output verbosity",
  3700. )
  3701. parser.add_argument(
  3702. "--split-max-tensors", type=int, default=0,
  3703. help="max tensors in each split",
  3704. )
  3705. parser.add_argument(
  3706. "--split-max-size", type=str, default="0",
  3707. help="max size per split N(M|G)",
  3708. )
  3709. parser.add_argument(
  3710. "--dry-run", action="store_true",
  3711. help="only print out a split plan and exit, without writing any new files",
  3712. )
  3713. parser.add_argument(
  3714. "--no-tensor-first-split", action="store_true",
  3715. help="do not add tensors to the first split (disabled by default)"
  3716. )
  3717. parser.add_argument(
  3718. "--metadata", type=Path,
  3719. help="Specify the path for an authorship metadata override file"
  3720. )
  3721. return parser.parse_args()
  3722. def split_str_to_n_bytes(split_str: str) -> int:
  3723. if split_str.endswith("K"):
  3724. n = int(split_str[:-1]) * 1000
  3725. elif split_str.endswith("M"):
  3726. n = int(split_str[:-1]) * 1000 * 1000
  3727. elif split_str.endswith("G"):
  3728. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3729. elif split_str.isnumeric():
  3730. n = int(split_str)
  3731. else:
  3732. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3733. if n < 0:
  3734. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3735. return n
  3736. def main() -> None:
  3737. args = parse_args()
  3738. if args.verbose:
  3739. logging.basicConfig(level=logging.DEBUG)
  3740. else:
  3741. logging.basicConfig(level=logging.INFO)
  3742. dir_model = args.model
  3743. if not dir_model.is_dir():
  3744. logger.error(f'Error: {args.model} is not a directory')
  3745. sys.exit(1)
  3746. ftype_map: dict[str, gguf.LlamaFileType] = {
  3747. "f32": gguf.LlamaFileType.ALL_F32,
  3748. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3749. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3750. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3751. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3752. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3753. "auto": gguf.LlamaFileType.GUESSED,
  3754. }
  3755. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3756. if args.use_temp_file and is_split:
  3757. logger.error("Error: Cannot use temp file when splitting")
  3758. sys.exit(1)
  3759. if args.outfile is not None:
  3760. fname_out = args.outfile
  3761. else:
  3762. fname_out = dir_model
  3763. logger.info(f"Loading model: {dir_model.name}")
  3764. hparams = Model.load_hparams(dir_model)
  3765. with torch.inference_mode():
  3766. output_type = ftype_map[args.outtype]
  3767. model_architecture = hparams["architectures"][0]
  3768. try:
  3769. model_class = Model.from_model_architecture(model_architecture)
  3770. except NotImplementedError:
  3771. logger.error(f"Model {model_architecture} is not supported")
  3772. sys.exit(1)
  3773. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3774. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3775. eager=args.no_lazy,
  3776. metadata_override=args.metadata, model_name=args.model_name,
  3777. split_max_tensors=args.split_max_tensors,
  3778. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3779. small_first_shard=args.no_tensor_first_split)
  3780. if args.vocab_only:
  3781. logger.info("Exporting model vocab...")
  3782. model_instance.write_vocab()
  3783. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3784. else:
  3785. logger.info("Exporting model...")
  3786. model_instance.write()
  3787. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3788. logger.info(f"Model successfully exported to {out_path}")
  3789. if __name__ == '__main__':
  3790. main()