llama-model.cpp 594 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836
  1. #include "llama-model.h"
  2. #include "llama-impl.h"
  3. #include "llama-mmap.h"
  4. #include "llama-batch.h"
  5. #include "llama-cparams.h"
  6. #include "llama-model-loader.h"
  7. #include "llama-kv-cache-unified.h"
  8. #include "llama-kv-cache-unified-iswa.h"
  9. #include "llama-kv-cache-recurrent.h"
  10. #include "ggml-cpp.h"
  11. #include <algorithm>
  12. #include <cassert>
  13. #include <cmath>
  14. #include <cfloat>
  15. #include <cstring>
  16. #include <cmath>
  17. #include <functional>
  18. #include <map>
  19. #include <regex>
  20. #include <sstream>
  21. #include <stdexcept>
  22. const char * llm_type_name(llm_type type) {
  23. switch (type) {
  24. case LLM_TYPE_14M: return "14M";
  25. case LLM_TYPE_17M: return "17M";
  26. case LLM_TYPE_22M: return "22M";
  27. case LLM_TYPE_33M: return "33M";
  28. case LLM_TYPE_60M: return "60M";
  29. case LLM_TYPE_70M: return "70M";
  30. case LLM_TYPE_80M: return "80M";
  31. case LLM_TYPE_109M: return "109M";
  32. case LLM_TYPE_137M: return "137M";
  33. case LLM_TYPE_160M: return "160M";
  34. case LLM_TYPE_190M: return "190M";
  35. case LLM_TYPE_220M: return "220M";
  36. case LLM_TYPE_250M: return "250M";
  37. case LLM_TYPE_270M: return "270M";
  38. case LLM_TYPE_335M: return "335M";
  39. case LLM_TYPE_410M: return "410M";
  40. case LLM_TYPE_450M: return "450M";
  41. case LLM_TYPE_475M: return "475M";
  42. case LLM_TYPE_770M: return "770M";
  43. case LLM_TYPE_780M: return "780M";
  44. case LLM_TYPE_0_5B: return "0.5B";
  45. case LLM_TYPE_0_6B: return "0.6B";
  46. case LLM_TYPE_1B: return "1B";
  47. case LLM_TYPE_1_3B: return "1.3B";
  48. case LLM_TYPE_1_4B: return "1.4B";
  49. case LLM_TYPE_1_5B: return "1.5B";
  50. case LLM_TYPE_1_6B: return "1.6B";
  51. case LLM_TYPE_1_7B: return "1.7B";
  52. case LLM_TYPE_1_8B: return "1.8B";
  53. case LLM_TYPE_2B: return "2B";
  54. case LLM_TYPE_2_8B: return "2.8B";
  55. case LLM_TYPE_2_9B: return "2.9B";
  56. case LLM_TYPE_3B: return "3B";
  57. case LLM_TYPE_4B: return "4B";
  58. case LLM_TYPE_6B: return "6B";
  59. case LLM_TYPE_6_9B: return "6.9B";
  60. case LLM_TYPE_7B: return "7B";
  61. case LLM_TYPE_8B: return "8B";
  62. case LLM_TYPE_9B: return "9B";
  63. case LLM_TYPE_11B: return "11B";
  64. case LLM_TYPE_12B: return "12B";
  65. case LLM_TYPE_13B: return "13B";
  66. case LLM_TYPE_14B: return "14B";
  67. case LLM_TYPE_15B: return "15B";
  68. case LLM_TYPE_16B: return "16B";
  69. case LLM_TYPE_20B: return "20B";
  70. case LLM_TYPE_27B: return "27B";
  71. case LLM_TYPE_30B: return "30B";
  72. case LLM_TYPE_32B: return "32B";
  73. case LLM_TYPE_34B: return "34B";
  74. case LLM_TYPE_35B: return "35B";
  75. case LLM_TYPE_40B: return "40B";
  76. case LLM_TYPE_65B: return "65B";
  77. case LLM_TYPE_70B: return "70B";
  78. case LLM_TYPE_236B: return "236B";
  79. case LLM_TYPE_290B: return "290B";
  80. case LLM_TYPE_314B: return "314B";
  81. case LLM_TYPE_405B: return "405B";
  82. case LLM_TYPE_671B: return "671B";
  83. case LLM_TYPE_SMALL: return "0.1B";
  84. case LLM_TYPE_MEDIUM: return "0.4B";
  85. case LLM_TYPE_LARGE: return "0.8B";
  86. case LLM_TYPE_XL: return "1.5B";
  87. case LLM_TYPE_A1_7B: return "A1.7B";
  88. case LLM_TYPE_A2_7B: return "A2.7B";
  89. case LLM_TYPE_8x7B: return "8x7B";
  90. case LLM_TYPE_8x22B: return "8x22B";
  91. case LLM_TYPE_16x12B: return "16x12B";
  92. case LLM_TYPE_16x3_8B: return "16x3.8B";
  93. case LLM_TYPE_10B_128x3_66B: return "10B+128x3.66B";
  94. case LLM_TYPE_57B_A14B: return "57B.A14B";
  95. case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
  96. case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
  97. case LLM_TYPE_30B_A3B: return "30B.A3B";
  98. case LLM_TYPE_235B_A22B: return "235B.A22B";
  99. default: return "?B";
  100. }
  101. }
  102. static const char * llama_expert_gating_func_name(llama_expert_gating_func_type type) {
  103. switch (type) {
  104. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX: return "softmax";
  105. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID: return "sigmoid";
  106. default: return "unknown";
  107. }
  108. }
  109. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  110. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  111. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  112. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  113. { LLAMA_ROPE_SCALING_TYPE_LONGROPE, "longrope" },
  114. };
  115. std::string llama_rope_scaling_type_name(llama_rope_scaling_type rope_scaling_type) {
  116. return LLAMA_ROPE_SCALING_TYPES.at(rope_scaling_type);
  117. }
  118. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  119. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  120. if (kv.second == name) {
  121. return (llama_rope_scaling_type) kv.first;
  122. }
  123. }
  124. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  125. }
  126. // checks if the weight tensor can be used with the specified buffer type and device
  127. static bool weight_buft_supported(const llama_hparams & hparams, ggml_tensor * w, ggml_op op, ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev) {
  128. GGML_ASSERT(w != nullptr);
  129. if (op == GGML_OP_NONE) {
  130. return true;
  131. }
  132. ggml_init_params params = {
  133. /*.mem_size =*/ ggml_tensor_overhead()*8,
  134. /*.mem_buffer =*/ NULL,
  135. /*.no_alloc =*/ true,
  136. };
  137. ggml_context_ptr ctx_ptr { ggml_init(params) };
  138. if (!ctx_ptr) {
  139. throw std::runtime_error(format("failed to create ggml context"));
  140. }
  141. ggml_context * ctx = ctx_ptr.get();
  142. ggml_tensor * op_tensor = nullptr;
  143. switch (op) {
  144. case GGML_OP_GET_ROWS:
  145. {
  146. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  147. op_tensor = ggml_get_rows(ctx, w, b);
  148. } break;
  149. case GGML_OP_MUL_MAT:
  150. {
  151. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], 512, w->ne[2], w->ne[3]);
  152. op_tensor = ggml_mul_mat(ctx, w, b);
  153. } break;
  154. case GGML_OP_MUL_MAT_ID:
  155. {
  156. int n_expert_used = hparams.n_expert_used;
  157. ggml_tensor * b = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, w->ne[0], n_expert_used, 512);
  158. ggml_tensor * ids = ggml_new_tensor_2d(ctx, GGML_TYPE_I32, n_expert_used, 512);
  159. op_tensor = ggml_mul_mat_id(ctx, w, b, ids);
  160. } break;
  161. case GGML_OP_ADD:
  162. {
  163. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  164. op_tensor = ggml_add(ctx, a, w);
  165. } break;
  166. case GGML_OP_MUL:
  167. {
  168. ggml_tensor * a = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, w->ne[0], w->ne[1], w->ne[2], w->ne[3]);
  169. op_tensor = ggml_mul(ctx, a, w);
  170. } break;
  171. case GGML_OP_DIV:
  172. {
  173. ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, w->ne[0]);
  174. op_tensor = ggml_div(ctx, a, w);
  175. } break;
  176. case GGML_OP_ROPE:
  177. {
  178. int n_embd_head = hparams.n_embd_head_v;
  179. int n_head = hparams.n_head();
  180. ggml_tensor * a = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd_head, n_head, 512);
  181. ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 512);
  182. op_tensor = ggml_rope_ext(
  183. ctx, a, b, w,
  184. 0, 0, 0, 0, 0,
  185. 0, 0, 0, 0
  186. );
  187. } break;
  188. case GGML_OP_SSM_CONV:
  189. {
  190. // FIXME
  191. ggml_tensor * conv_x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, 12345, w->ne[1], 6789);
  192. op_tensor = ggml_ssm_conv(ctx, conv_x, w);
  193. } break;
  194. case GGML_OP_SSM_SCAN:
  195. {
  196. // FIXME
  197. const int64_t d_state = w->ne[0];
  198. const int64_t d_inner = w->ne[1];
  199. const int64_t n_seq_tokens = 512;
  200. const int64_t n_seqs = 1;
  201. ggml_tensor * s = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, d_inner, n_seqs);
  202. ggml_tensor * x = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  203. ggml_tensor * dt = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_inner, n_seq_tokens, n_seqs);
  204. ggml_tensor * B = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  205. ggml_tensor * C = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, d_state, n_seq_tokens, n_seqs);
  206. op_tensor = ggml_ssm_scan(ctx, s, x, dt, w, B, C);
  207. } break;
  208. case GGML_OP_RWKV_WKV6:
  209. {
  210. // FIXME
  211. const int64_t S = 123;
  212. const int64_t H = 123;
  213. const int64_t n_tokens = 123;
  214. const int64_t n_seqs = 123;
  215. ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  216. ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  217. ggml_tensor * r = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  218. ggml_tensor * tf = w;
  219. ggml_tensor * td = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, S, H, n_tokens);
  220. ggml_tensor * state = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, S, n_seqs, S, H);
  221. op_tensor = ggml_rwkv_wkv6(ctx, k, v, r, tf, td, state);
  222. } break;
  223. case GGML_OP_IM2COL:
  224. {
  225. const int n_embd = hparams.n_embd;
  226. ggml_tensor * b = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, n_embd, w->ne[1], 1, 1);
  227. op_tensor = ggml_im2col(ctx, w, b, 1, 0, 0, 0, 1, 0, false, GGML_TYPE_F16);
  228. } break;
  229. default:
  230. GGML_ABORT("%s: missing test for op %s for tensor %s", __func__, ggml_op_name(op), w->name);
  231. }
  232. // create a temporary dummy buffer for the weight so that supports_op can check the buffer type
  233. GGML_ASSERT(w->buffer == nullptr);
  234. w->buffer = ggml_backend_buft_alloc_buffer(buft, 0);
  235. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  236. ggml_backend_buffer_free(w->buffer);
  237. w->buffer = nullptr;
  238. return op_supported;
  239. }
  240. // lists of buffer types used for each layer
  241. using buft_list_t = std::vector<std::pair<ggml_backend_dev_t, ggml_backend_buffer_type_t>>;
  242. // find the first buffer type in the list that can use the tensor
  243. static ggml_backend_buffer_type_t select_weight_buft(const llama_hparams & hparams, ggml_tensor * tensor, ggml_op op, const buft_list_t & buft_list) {
  244. GGML_ASSERT(!buft_list.empty());
  245. for (const auto & cur : buft_list) {
  246. ggml_backend_dev_t cur_dev = cur.first;
  247. ggml_backend_buffer_type_t cur_buft = cur.second;
  248. if (weight_buft_supported(hparams, tensor, op, cur_buft, cur_dev)) {
  249. return cur_buft;
  250. }
  251. }
  252. return nullptr;
  253. }
  254. // CPU: ACCEL -> GPU host -> CPU extra -> CPU
  255. static buft_list_t make_cpu_buft_list(const std::vector<ggml_backend_dev_t> & devices) {
  256. buft_list_t buft_list;
  257. // add ACCEL buffer types
  258. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  259. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  260. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  261. auto * buft = ggml_backend_dev_buffer_type(dev);
  262. // skip
  263. if (buft != ggml_backend_cpu_buffer_type()) {
  264. buft_list.emplace_back(dev, buft);
  265. }
  266. }
  267. }
  268. // add a host buffer type
  269. // storing the tensors in a host buffer is useful when the processing of large batches
  270. // is offloaded to a GPU device, since it reduces the time spent on data transfers
  271. // generally, this will be done using the first device in the list
  272. // a better approach would be to handle this on a weight-by-weight basis using the offload_op
  273. // function of the device to determine if it would benefit from being stored in a host buffer
  274. for (auto * dev : devices) {
  275. ggml_backend_buffer_type_t buft = ggml_backend_dev_host_buffer_type(dev);
  276. if (buft) {
  277. buft_list.emplace_back(dev, buft);
  278. break;
  279. }
  280. }
  281. // add extra buffer types, only if no GPU device is present
  282. // ref: https://github.com/ggml-org/llama.cpp/issues/12481#issuecomment-2743136094
  283. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  284. if (cpu_dev == nullptr) {
  285. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  286. }
  287. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  288. auto ggml_backend_dev_get_extra_bufts_fn = (ggml_backend_dev_get_extra_bufts_t)
  289. ggml_backend_reg_get_proc_address(cpu_reg, "ggml_backend_dev_get_extra_bufts");
  290. if (ggml_backend_dev_get_extra_bufts_fn) {
  291. ggml_backend_buffer_type_t * extra_bufts = ggml_backend_dev_get_extra_bufts_fn(cpu_dev);
  292. while (extra_bufts && *extra_bufts) {
  293. buft_list.emplace_back(cpu_dev, *extra_bufts);
  294. ++extra_bufts;
  295. }
  296. }
  297. // add the CPU buffer type
  298. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  299. ggml_backend_dev_t dev = ggml_backend_dev_get(i);
  300. if (ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  301. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  302. }
  303. }
  304. return buft_list;
  305. }
  306. // GPU: split if LLAMA_SPLIT_MODE_ROW -> GPU
  307. static buft_list_t make_gpu_buft_list(ggml_backend_dev_t dev, llama_split_mode split_mode, const float * tensor_split) {
  308. buft_list_t buft_list;
  309. // add the device split buffer type if requested and available
  310. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  311. ggml_backend_reg_t reg = ggml_backend_dev_backend_reg(dev);
  312. auto ggml_backend_split_buffer_type_fn = (ggml_backend_split_buffer_type_t)
  313. ggml_backend_reg_get_proc_address(reg, "ggml_backend_split_buffer_type");
  314. if (ggml_backend_split_buffer_type_fn) {
  315. size_t dev_index = [&]() {
  316. auto * reg = ggml_backend_dev_backend_reg(dev);
  317. for (size_t i = 0; i < ggml_backend_reg_dev_count(reg); ++i) {
  318. if (ggml_backend_reg_dev_get(reg, i) == dev) {
  319. return i;
  320. }
  321. }
  322. throw std::runtime_error(format("device %s not found in its backend reg", ggml_backend_dev_name(dev)));
  323. }();
  324. auto * buft = ggml_backend_split_buffer_type_fn(dev_index, tensor_split);
  325. if (buft != nullptr) {
  326. buft_list.emplace_back(dev, buft);
  327. }
  328. }
  329. }
  330. // add the device default buffer type
  331. buft_list.emplace_back(dev, ggml_backend_dev_buffer_type(dev));
  332. return buft_list;
  333. }
  334. struct llama_model::impl {
  335. impl() {}
  336. ~impl() {}
  337. uint64_t n_elements = 0;
  338. size_t n_bytes = 0;
  339. std::string desc_str;
  340. // model memory mapped files
  341. llama_mmaps mappings;
  342. // objects representing data potentially being locked in memory
  343. llama_mlocks mlock_bufs;
  344. llama_mlocks mlock_mmaps;
  345. // contexts where the model tensors metadata is stored
  346. std::vector<ggml_context_ptr> ctxs;
  347. // the model memory buffers for the tensor data
  348. std::vector<ggml_backend_buffer_ptr> bufs;
  349. buft_list_t cpu_buft_list;
  350. std::map<ggml_backend_dev_t, buft_list_t> gpu_buft_list;
  351. struct layer_dev {
  352. ggml_backend_dev_t dev;
  353. buft_list_t * buft_list;
  354. };
  355. layer_dev dev_input = {};
  356. layer_dev dev_output = {};
  357. std::vector<layer_dev> dev_layer;
  358. bool has_tensor_overrides;
  359. };
  360. llama_model::llama_model(const llama_model_params & params) : params(params), pimpl(std::make_unique<impl>()) {
  361. pimpl->has_tensor_overrides = params.tensor_buft_overrides && params.tensor_buft_overrides[0].pattern;
  362. }
  363. llama_model::~llama_model() {}
  364. void llama_model::load_stats(llama_model_loader & ml) {
  365. pimpl->n_elements = ml.n_elements;
  366. pimpl->n_bytes = ml.n_bytes;
  367. }
  368. void llama_model::load_arch(llama_model_loader & ml) {
  369. arch = ml.get_arch();
  370. if (arch == LLM_ARCH_UNKNOWN) {
  371. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  372. }
  373. }
  374. void llama_model::load_hparams(llama_model_loader & ml) {
  375. const gguf_context * ctx = ml.meta.get();
  376. // get metadata as string
  377. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  378. gguf_type type = gguf_get_kv_type(ctx, i);
  379. if (type == GGUF_TYPE_ARRAY) {
  380. continue;
  381. }
  382. const char * name = gguf_get_key(ctx, i);
  383. const std::string value = gguf_kv_to_str(ctx, i);
  384. gguf_kv.emplace(name, value);
  385. }
  386. // get general kv
  387. ml.get_key(LLM_KV_GENERAL_NAME, name, false);
  388. // everything past this point is not vocab-related
  389. if (hparams.vocab_only) {
  390. return;
  391. }
  392. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  393. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  394. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  395. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  396. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  397. if (arch == LLM_ARCH_WAVTOKENIZER_DEC) {
  398. ml.get_key(LLM_KV_FEATURES_LENGTH, hparams.n_embd_features);
  399. ml.get_key(LLM_KV_POSNET_EMBEDDING_LENGTH, hparams.posnet.n_embd);
  400. ml.get_key(LLM_KV_POSNET_BLOCK_COUNT, hparams.posnet.n_layer);
  401. ml.get_key(LLM_KV_CONVNEXT_EMBEDDING_LENGTH, hparams.convnext.n_embd);
  402. ml.get_key(LLM_KV_CONVNEXT_BLOCK_COUNT, hparams.convnext.n_layer);
  403. }
  404. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  405. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  406. if (hparams.n_expert > 0) {
  407. GGML_ASSERT(hparams.n_expert_used > 0);
  408. } else {
  409. GGML_ASSERT(hparams.n_expert_used == 0);
  410. }
  411. std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
  412. std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
  413. std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
  414. std::fill(hparams.rope_sections.begin(), hparams.rope_sections.end(), 0);
  415. std::fill(hparams.swa_layers.begin(), hparams.swa_layers.end(), 0);
  416. ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer, false);
  417. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer, false);
  418. // n_head_kv is optional, default to n_head
  419. hparams.n_head_kv_arr = hparams.n_head_arr;
  420. ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv_arr, hparams.n_layer, false);
  421. bool rope_finetuned = false;
  422. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  423. hparams.rope_finetuned = rope_finetuned;
  424. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  425. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  426. // rope_freq_base (optional)
  427. hparams.rope_freq_base_train = 10000.0f;
  428. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  429. std::string rope_scaling("linear");
  430. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  431. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  432. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  433. // rope_freq_scale (inverse of the kv) is optional
  434. float ropescale = 0.0f;
  435. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  436. // try the old key name
  437. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  438. }
  439. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  440. // by default assume that the sliding-window layers use the same scaling type as the non-sliding-window layers
  441. hparams.rope_freq_base_train_swa = hparams.rope_freq_base_train;
  442. hparams.rope_freq_scale_train_swa = hparams.rope_freq_scale_train;
  443. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  444. // non-transformer models do not have attention heads
  445. if (hparams.n_head() > 0) {
  446. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  447. // gpt-j n_rot = rotary_dim
  448. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head();
  449. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  450. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head();
  451. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  452. // sanity check for n_rot (optional)
  453. hparams.n_rot = hparams.n_embd_head_k;
  454. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  455. if (arch == LLM_ARCH_LLAMA || arch == LLM_ARCH_DECI || arch == LLM_ARCH_FALCON) {
  456. if (hparams.n_rot != hparams.n_embd_head_k) {
  457. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
  458. }
  459. }
  460. } else {
  461. hparams.n_rot = 0;
  462. hparams.n_embd_head_k = 0;
  463. hparams.n_embd_head_v = 0;
  464. }
  465. // for differentiating model types
  466. uint32_t n_vocab = 0;
  467. ml.get_key(LLM_KV_VOCAB_SIZE, n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, n_vocab, false);
  468. // for classifier models
  469. ml.get_arr(LLM_KV_CLASSIFIER_OUTPUT_LABELS, classifier_labels, false);
  470. if (!classifier_labels.empty()) {
  471. hparams.n_cls_out = classifier_labels.size();
  472. }
  473. // arch-specific KVs
  474. switch (arch) {
  475. case LLM_ARCH_LLAMA:
  476. {
  477. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  478. if (hparams.n_expert == 8) {
  479. switch (hparams.n_layer) {
  480. case 32: type = LLM_TYPE_8x7B; break;
  481. case 56: type = LLM_TYPE_8x22B; break;
  482. default: type = LLM_TYPE_UNKNOWN;
  483. }
  484. } else {
  485. switch (hparams.n_layer) {
  486. case 16: type = LLM_TYPE_1B; break; // Llama 3.2 1B
  487. case 22: type = LLM_TYPE_1B; break;
  488. case 26: type = LLM_TYPE_3B; break;
  489. case 28: type = LLM_TYPE_3B; break; // Llama 3.2 3B
  490. // granite uses a vocab with len 49152
  491. case 32: type = n_vocab == 49152 ? LLM_TYPE_3B : (n_vocab < 40000 ? LLM_TYPE_7B : LLM_TYPE_8B); break;
  492. case 36: type = LLM_TYPE_8B; break; // granite
  493. case 40: type = LLM_TYPE_13B; break;
  494. case 48: type = LLM_TYPE_34B; break;
  495. case 60: type = LLM_TYPE_30B; break;
  496. case 80: type = hparams.n_head() == hparams.n_head_kv() ? LLM_TYPE_65B : LLM_TYPE_70B; break;
  497. default: type = LLM_TYPE_UNKNOWN;
  498. }
  499. }
  500. } break;
  501. case LLM_ARCH_LLAMA4:
  502. {
  503. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  504. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  505. ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
  506. hparams.swa_type = LLAMA_SWA_TYPE_CHUNKED;
  507. hparams.n_swa = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
  508. hparams.set_swa_pattern(4); // pattern: 3 chunked - 1 full
  509. switch (hparams.n_expert) {
  510. case 16: type = LLM_TYPE_17B_16E; break;
  511. case 128: type = LLM_TYPE_17B_128E; break;
  512. default: type = LLM_TYPE_UNKNOWN;
  513. }
  514. if (type == LLM_TYPE_17B_128E) {
  515. hparams.use_kq_norm = false;
  516. }
  517. } break;
  518. case LLM_ARCH_DECI:
  519. {
  520. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  521. switch (hparams.n_layer) {
  522. case 32: type = LLM_TYPE_7B; break;
  523. case 80: type = LLM_TYPE_70B; break;
  524. case 162: type = LLM_TYPE_405B; break;
  525. default: type = LLM_TYPE_UNKNOWN;
  526. }
  527. } break;
  528. case LLM_ARCH_MINICPM:
  529. {
  530. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  531. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  532. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  533. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  534. switch (hparams.n_layer) {
  535. case 52: type = LLM_TYPE_1B; break;
  536. case 40: type = LLM_TYPE_2B; break;
  537. default: type = LLM_TYPE_UNKNOWN;
  538. }
  539. } break;
  540. case LLM_ARCH_MINICPM3:
  541. {
  542. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  543. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  544. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  545. switch (hparams.n_layer) {
  546. case 62: type = LLM_TYPE_4B; break;
  547. default: type = LLM_TYPE_UNKNOWN;
  548. }
  549. } break;
  550. case LLM_ARCH_GROK:
  551. {
  552. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  553. switch (hparams.n_layer) {
  554. case 64: type = LLM_TYPE_314B; break;
  555. default: type = LLM_TYPE_UNKNOWN;
  556. }
  557. } break;
  558. case LLM_ARCH_FALCON:
  559. {
  560. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  561. switch (hparams.n_layer) {
  562. case 32: type = LLM_TYPE_7B; break;
  563. case 60: type = LLM_TYPE_40B; break;
  564. default: type = LLM_TYPE_UNKNOWN;
  565. }
  566. } break;
  567. case LLM_ARCH_BAICHUAN:
  568. {
  569. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  570. switch (hparams.n_layer) {
  571. case 32: type = LLM_TYPE_7B; break;
  572. case 40: type = LLM_TYPE_13B; break;
  573. default: type = LLM_TYPE_UNKNOWN;
  574. }
  575. if (type == LLM_TYPE_13B) {
  576. // TODO: become GGUF KV parameter
  577. hparams.f_max_alibi_bias = 8.0f;
  578. }
  579. } break;
  580. case LLM_ARCH_STARCODER:
  581. {
  582. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  583. switch (hparams.n_layer) {
  584. case 24: type = LLM_TYPE_1B; break;
  585. case 36: type = LLM_TYPE_3B; break;
  586. case 42: type = LLM_TYPE_7B; break;
  587. case 40: type = LLM_TYPE_15B; break;
  588. default: type = LLM_TYPE_UNKNOWN;
  589. }
  590. } break;
  591. case LLM_ARCH_REFACT:
  592. {
  593. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  594. switch (hparams.n_layer) {
  595. case 32: type = LLM_TYPE_1B; break;
  596. default: type = LLM_TYPE_UNKNOWN;
  597. }
  598. // TODO: become GGUF KV parameter
  599. hparams.f_max_alibi_bias = 8.0f;
  600. } break;
  601. case LLM_ARCH_BERT:
  602. {
  603. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  604. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  605. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  606. switch (hparams.n_layer) {
  607. case 3:
  608. type = LLM_TYPE_17M; break; // bge-micro
  609. case 6:
  610. type = LLM_TYPE_22M; break; // MiniLM-L6
  611. case 12:
  612. switch (hparams.n_embd) {
  613. case 384: type = LLM_TYPE_33M; break; // MiniLM-L12, bge-small
  614. case 768: type = LLM_TYPE_109M; break; // bge-base
  615. default: type = LLM_TYPE_UNKNOWN;
  616. } break;
  617. case 24:
  618. type = LLM_TYPE_335M; break; // bge-large
  619. default: type = LLM_TYPE_UNKNOWN;
  620. }
  621. } break;
  622. case LLM_ARCH_JINA_BERT_V2:
  623. {
  624. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  625. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  626. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  627. hparams.f_max_alibi_bias = 8.0f;
  628. switch (hparams.n_layer) {
  629. case 4: type = LLM_TYPE_33M; break; // jina-embeddings-small
  630. case 12: type = LLM_TYPE_137M; break; // jina-embeddings-base
  631. default: type = LLM_TYPE_UNKNOWN;
  632. }
  633. } break;
  634. case LLM_ARCH_NOMIC_BERT:
  635. case LLM_ARCH_NOMIC_BERT_MOE:
  636. {
  637. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  638. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  639. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  640. ml.get_key(LLM_KV_MOE_EVERY_N_LAYERS, hparams.moe_every_n_layers, 0);
  641. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  642. if (arch == LLM_ARCH_NOMIC_BERT) {
  643. type = LLM_TYPE_137M;
  644. } else if (arch == LLM_ARCH_NOMIC_BERT_MOE && hparams.moe_every_n_layers == 2) {
  645. type = LLM_TYPE_475M;
  646. }
  647. }
  648. } break;
  649. case LLM_ARCH_BLOOM:
  650. {
  651. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  652. switch (hparams.n_layer) {
  653. case 24: type = LLM_TYPE_1B; break;
  654. case 30:
  655. switch (hparams.n_embd) {
  656. case 2560: type = LLM_TYPE_3B; break;
  657. case 4096: type = LLM_TYPE_7B; break;
  658. default: type = LLM_TYPE_UNKNOWN;
  659. } break;
  660. default: type = LLM_TYPE_UNKNOWN;
  661. }
  662. // TODO: become GGUF KV parameter
  663. hparams.f_max_alibi_bias = 8.0f;
  664. } break;
  665. case LLM_ARCH_MPT:
  666. {
  667. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  668. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  669. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  670. switch (hparams.n_layer) {
  671. case 32: type = LLM_TYPE_7B; break;
  672. case 48: type = LLM_TYPE_30B; break;
  673. default: type = LLM_TYPE_UNKNOWN;
  674. }
  675. } break;
  676. case LLM_ARCH_STABLELM:
  677. {
  678. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  679. switch (hparams.n_layer) {
  680. case 24: type = LLM_TYPE_1B; break;
  681. case 32: type = LLM_TYPE_3B; break;
  682. case 40: type = LLM_TYPE_12B; break;
  683. default: type = LLM_TYPE_UNKNOWN;
  684. }
  685. } break;
  686. case LLM_ARCH_QWEN:
  687. {
  688. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  689. switch (hparams.n_layer) {
  690. case 32: type = LLM_TYPE_7B; break;
  691. case 40: type = LLM_TYPE_13B; break;
  692. default: type = LLM_TYPE_UNKNOWN;
  693. }
  694. } break;
  695. case LLM_ARCH_QWEN2VL:
  696. {
  697. ml.get_key_or_arr(LLM_KV_ROPE_DIMENSION_SECTIONS, hparams.rope_sections, 4, true);
  698. }
  699. // fall through
  700. case LLM_ARCH_QWEN2:
  701. {
  702. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  703. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  704. switch (hparams.n_layer) {
  705. case 24: type = hparams.n_embd == 1024 ? LLM_TYPE_0_5B : LLM_TYPE_1B; break;
  706. case 28: type = hparams.n_embd == 1536 ? LLM_TYPE_1_5B : LLM_TYPE_7B; break;
  707. case 32: type = LLM_TYPE_7B; break;
  708. case 36: type = LLM_TYPE_3B; break;
  709. case 40: type = hparams.n_head() == 20 ? LLM_TYPE_4B : LLM_TYPE_13B; break;
  710. case 48: type = LLM_TYPE_14B; break;
  711. case 64: type = LLM_TYPE_32B; break;
  712. case 80: type = LLM_TYPE_70B; break;
  713. default: type = LLM_TYPE_UNKNOWN;
  714. }
  715. } break;
  716. case LLM_ARCH_QWEN2MOE:
  717. {
  718. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  719. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, false);
  720. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  721. switch (hparams.n_layer) {
  722. case 24: type = LLM_TYPE_A2_7B; break;
  723. case 28: type = LLM_TYPE_57B_A14B; break;
  724. default: type = LLM_TYPE_UNKNOWN;
  725. }
  726. } break;
  727. case LLM_ARCH_QWEN3:
  728. {
  729. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  730. switch (hparams.n_layer) {
  731. case 28: type = hparams.n_embd == 1024 ? LLM_TYPE_0_6B : LLM_TYPE_1_7B; break;
  732. case 36: type = hparams.n_embd == 2560 ? LLM_TYPE_4B : LLM_TYPE_8B; break;
  733. case 40: type = LLM_TYPE_14B; break;
  734. case 64: type = LLM_TYPE_32B; break;
  735. default: type = LLM_TYPE_UNKNOWN;
  736. }
  737. } break;
  738. case LLM_ARCH_QWEN3MOE:
  739. {
  740. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp, false);
  741. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  742. switch (hparams.n_layer) {
  743. case 48: type = LLM_TYPE_30B_A3B; break;
  744. case 94: type = LLM_TYPE_235B_A22B; break;
  745. default: type = LLM_TYPE_UNKNOWN;
  746. }
  747. } break;
  748. case LLM_ARCH_PHI2:
  749. {
  750. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  751. switch (hparams.n_layer) {
  752. case 24: type = LLM_TYPE_1B; break;
  753. case 32: type = LLM_TYPE_3B; break;
  754. default: type = LLM_TYPE_UNKNOWN;
  755. }
  756. } break;
  757. case LLM_ARCH_PHI3:
  758. {
  759. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  760. switch (hparams.n_layer) {
  761. case 24: type = LLM_TYPE_1B; break;
  762. case 32: type = LLM_TYPE_3B; break;
  763. case 40: type = LLM_TYPE_14B; break;
  764. default: type = LLM_TYPE_UNKNOWN;
  765. }
  766. const bool found_swa = ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  767. if (found_swa && hparams.n_swa > 0) {
  768. LLAMA_LOG_WARN("%s: Phi SWA is currently disabled - results might be suboptimal for some models (see %s)\n",
  769. __func__, "https://github.com/ggml-org/llama.cpp/pull/13676");
  770. // TODO: fix conversion scripts to correctly populate `n_swa` and `n_swa_pattern`
  771. hparams.swa_type = LLAMA_SWA_TYPE_NONE;
  772. hparams.n_swa = 0;
  773. hparams.set_swa_pattern(1);
  774. }
  775. } break;
  776. case LLM_ARCH_PHIMOE:
  777. {
  778. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  779. switch (hparams.n_layer) {
  780. case 32: type = LLM_TYPE_16x3_8B; break;
  781. default: type = LLM_TYPE_UNKNOWN;
  782. }
  783. } break;
  784. case LLM_ARCH_PLAMO:
  785. {
  786. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  787. switch (hparams.n_layer) {
  788. case 40: type = LLM_TYPE_13B; break;
  789. default: type = LLM_TYPE_UNKNOWN;
  790. }
  791. } break;
  792. case LLM_ARCH_GPT2:
  793. {
  794. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  795. switch (hparams.n_layer) {
  796. case 12: type = LLM_TYPE_SMALL; break;
  797. case 24: type = LLM_TYPE_MEDIUM; break;
  798. case 36: type = LLM_TYPE_LARGE; break;
  799. case 48: type = LLM_TYPE_XL; break;
  800. default: type = LLM_TYPE_UNKNOWN;
  801. }
  802. } break;
  803. case LLM_ARCH_CODESHELL:
  804. {
  805. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  806. switch (hparams.n_layer) {
  807. case 42: type = LLM_TYPE_7B; break;
  808. default: type = LLM_TYPE_UNKNOWN;
  809. }
  810. } break;
  811. case LLM_ARCH_ORION:
  812. {
  813. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  814. switch (hparams.n_layer) {
  815. case 40: type = LLM_TYPE_14B; break;
  816. default: type = LLM_TYPE_UNKNOWN;
  817. }
  818. } break;
  819. case LLM_ARCH_INTERNLM2:
  820. {
  821. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  822. switch (hparams.n_layer) {
  823. case 32: type = LLM_TYPE_7B; break;
  824. case 48: type = LLM_TYPE_20B; break;
  825. default: type = LLM_TYPE_UNKNOWN;
  826. }
  827. } break;
  828. case LLM_ARCH_GEMMA:
  829. {
  830. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  831. switch (hparams.n_layer) {
  832. case 18: type = LLM_TYPE_2B; break;
  833. case 28: type = LLM_TYPE_7B; break;
  834. default: type = LLM_TYPE_UNKNOWN;
  835. }
  836. } break;
  837. case LLM_ARCH_GEMMA2:
  838. {
  839. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  840. hparams.n_swa = 4096; // default value of gemma 2
  841. hparams.set_swa_pattern(2);
  842. hparams.attn_soft_cap = true;
  843. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa, false);
  844. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  845. ml.get_key(LLM_KV_ATTN_LOGIT_SOFTCAPPING, hparams.f_attn_logit_softcapping, false);
  846. ml.get_key(LLM_KV_FINAL_LOGIT_SOFTCAPPING, hparams.f_final_logit_softcapping, false);
  847. switch (hparams.n_layer) {
  848. case 26: type = LLM_TYPE_2B; break;
  849. case 42: type = LLM_TYPE_9B; break;
  850. case 46: type = LLM_TYPE_27B; break;
  851. default: type = LLM_TYPE_UNKNOWN;
  852. }
  853. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L173
  854. hparams.f_attention_scale = type == LLM_TYPE_27B
  855. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  856. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  857. } break;
  858. case LLM_ARCH_GEMMA3:
  859. {
  860. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  861. hparams.set_swa_pattern(6);
  862. hparams.rope_freq_base_train_swa = 10000.0f;
  863. hparams.rope_freq_scale_train_swa = 1.0f;
  864. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  865. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  866. switch (hparams.n_layer) {
  867. case 26: type = LLM_TYPE_1B; break;
  868. case 34: type = LLM_TYPE_4B; break;
  869. case 48: type = LLM_TYPE_12B; break;
  870. case 62: type = LLM_TYPE_27B; break;
  871. default: type = LLM_TYPE_UNKNOWN;
  872. }
  873. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/config.py#L289
  874. hparams.f_attention_scale = type == LLM_TYPE_27B
  875. ? 1.0f / std::sqrt(float(hparams.n_embd / hparams.n_head(0)))
  876. : 1.0f / std::sqrt(float(hparams.n_embd_head_k));
  877. } break;
  878. case LLM_ARCH_STARCODER2:
  879. {
  880. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  881. switch (hparams.n_layer) {
  882. case 30: type = LLM_TYPE_3B; break;
  883. case 32: type = LLM_TYPE_7B; break;
  884. case 40: type = LLM_TYPE_15B; break;
  885. case 52: type = LLM_TYPE_20B; break; // granite
  886. case 88: type = LLM_TYPE_34B; break; // granite
  887. default: type = LLM_TYPE_UNKNOWN;
  888. }
  889. } break;
  890. case LLM_ARCH_MAMBA:
  891. {
  892. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  893. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  894. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  895. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  896. ml.get_key(LLM_KV_SSM_DT_B_C_RMS, hparams.ssm_dt_b_c_rms, false);
  897. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  898. switch (hparams.n_layer) {
  899. case 24:
  900. switch (hparams.n_embd) {
  901. case 768: type = LLM_TYPE_SMALL; break;
  902. default: type = LLM_TYPE_UNKNOWN;
  903. } break;
  904. case 48:
  905. switch (hparams.n_embd) {
  906. case 1024: type = LLM_TYPE_MEDIUM; break;
  907. case 1536: type = LLM_TYPE_LARGE; break;
  908. case 2048: type = LLM_TYPE_XL; break;
  909. default: type = LLM_TYPE_UNKNOWN;
  910. } break;
  911. case 64:
  912. switch (hparams.n_embd) {
  913. case 2560: type = LLM_TYPE_3B; break;
  914. default: type = LLM_TYPE_UNKNOWN;
  915. } break;
  916. default: type = LLM_TYPE_UNKNOWN;
  917. }
  918. } break;
  919. case LLM_ARCH_XVERSE:
  920. {
  921. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  922. switch (hparams.n_layer) {
  923. case 32: type = LLM_TYPE_7B; break;
  924. case 40: type = LLM_TYPE_13B; break;
  925. case 80: type = LLM_TYPE_65B; break;
  926. default: type = LLM_TYPE_UNKNOWN;
  927. }
  928. } break;
  929. case LLM_ARCH_COMMAND_R:
  930. {
  931. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  932. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  933. switch (hparams.n_layer) {
  934. case 40: type = LLM_TYPE_35B; break;
  935. default: type = LLM_TYPE_UNKNOWN;
  936. }
  937. } break;
  938. case LLM_ARCH_COHERE2:
  939. {
  940. hparams.swa_type = LLAMA_SWA_TYPE_STANDARD;
  941. hparams.set_swa_pattern(4);
  942. ml.get_key(LLM_KV_ATTENTION_SLIDING_WINDOW, hparams.n_swa);
  943. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  944. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  945. switch (hparams.n_layer) {
  946. case 32: type = LLM_TYPE_8B; break;
  947. default: type = LLM_TYPE_UNKNOWN;
  948. }
  949. } break;
  950. case LLM_ARCH_DBRX:
  951. {
  952. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  953. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  954. switch (hparams.n_layer) {
  955. case 40: type = LLM_TYPE_16x12B; break;
  956. default: type = LLM_TYPE_UNKNOWN;
  957. }
  958. } break;
  959. case LLM_ARCH_OLMO:
  960. {
  961. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  962. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  963. switch (hparams.n_layer) {
  964. case 22: type = LLM_TYPE_1B; break;
  965. case 32: type = LLM_TYPE_7B; break;
  966. case 80: type = LLM_TYPE_70B; break;
  967. default: type = LLM_TYPE_UNKNOWN;
  968. }
  969. } break;
  970. case LLM_ARCH_OLMO2:
  971. {
  972. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  973. switch (hparams.n_layer) {
  974. case 16: type = LLM_TYPE_1B; break;
  975. case 32: type = LLM_TYPE_7B; break;
  976. case 40: type = LLM_TYPE_13B; break;
  977. case 64: type = LLM_TYPE_32B; break;
  978. default: type = LLM_TYPE_UNKNOWN;
  979. }
  980. } break;
  981. case LLM_ARCH_OLMOE:
  982. {
  983. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  984. switch (hparams.n_layer) {
  985. case 16: type = LLM_TYPE_A1_7B; break;
  986. default: type = LLM_TYPE_UNKNOWN;
  987. }
  988. } break;
  989. case LLM_ARCH_OPENELM:
  990. {
  991. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  992. switch (hparams.n_layer) {
  993. case 16: type = LLM_TYPE_270M; break;
  994. case 20: type = LLM_TYPE_450M; break;
  995. case 28: type = LLM_TYPE_1B; break;
  996. case 36: type = LLM_TYPE_3B; break;
  997. default: type = LLM_TYPE_UNKNOWN;
  998. }
  999. } break;
  1000. case LLM_ARCH_GPTNEOX:
  1001. {
  1002. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1003. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  1004. switch (hparams.n_layer) {
  1005. case 6:
  1006. switch (hparams.n_ff()) {
  1007. case 512: type = LLM_TYPE_14M; break;
  1008. case 2048: type = LLM_TYPE_70M; break;
  1009. default: type = LLM_TYPE_UNKNOWN;
  1010. } break;
  1011. case 12:
  1012. switch (hparams.n_ff()) {
  1013. case 3072: type = LLM_TYPE_160M; break;
  1014. default: type = LLM_TYPE_UNKNOWN;
  1015. } break;
  1016. case 16:
  1017. switch (hparams.n_ff()) {
  1018. case 8192: type = LLM_TYPE_1B; break;
  1019. default: type = LLM_TYPE_UNKNOWN;
  1020. } break;
  1021. case 24:
  1022. switch (hparams.n_ff()) {
  1023. case 4096: type = LLM_TYPE_410M; break;
  1024. case 8192: type = LLM_TYPE_1_4B; break;
  1025. default: type = LLM_TYPE_UNKNOWN;
  1026. } break;
  1027. case 32:
  1028. switch (hparams.n_ff()) {
  1029. case 10240: type = LLM_TYPE_2_8B; break;
  1030. case 16384: type = LLM_TYPE_6_9B; break;
  1031. default: type = LLM_TYPE_UNKNOWN;
  1032. } break;
  1033. case 36:
  1034. switch (hparams.n_ff()) {
  1035. case 20480: type = LLM_TYPE_12B; break;
  1036. default: type = LLM_TYPE_UNKNOWN;
  1037. } break;
  1038. case 44:
  1039. switch (hparams.n_ff()) {
  1040. case 24576: type = LLM_TYPE_20B; break;
  1041. default: type = LLM_TYPE_UNKNOWN;
  1042. } break;
  1043. default: type = LLM_TYPE_UNKNOWN;
  1044. }
  1045. } break;
  1046. case LLM_ARCH_ARCTIC:
  1047. {
  1048. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1049. if (hparams.n_expert == 128) {
  1050. switch (hparams.n_layer) {
  1051. case 35: type = LLM_TYPE_10B_128x3_66B; break;
  1052. default: type = LLM_TYPE_UNKNOWN;
  1053. }
  1054. } else {
  1055. type = LLM_TYPE_UNKNOWN;
  1056. }
  1057. } break;
  1058. case LLM_ARCH_DEEPSEEK:
  1059. {
  1060. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1061. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1062. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1063. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1064. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1065. switch (hparams.n_layer) {
  1066. case 28: type = LLM_TYPE_20B; break;
  1067. default: type = LLM_TYPE_UNKNOWN;
  1068. }
  1069. } break;
  1070. case LLM_ARCH_DEEPSEEK2:
  1071. {
  1072. bool is_lite = (hparams.n_layer == 27);
  1073. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1074. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1075. if (!is_lite) {
  1076. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  1077. }
  1078. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1079. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH_MLA, hparams.n_embd_head_k_mla, false);
  1080. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH_MLA, hparams.n_embd_head_v_mla, false);
  1081. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1082. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1083. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1084. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1085. ml.get_key(LLM_KV_EXPERT_GATING_FUNC, hparams.expert_gating_func, false);
  1086. if (hparams.expert_gating_func == LLAMA_EXPERT_GATING_FUNC_TYPE_NONE) {
  1087. // for compatibility with existing DeepSeek V2 and V2.5 GGUFs
  1088. // that have no expert_gating_func model parameter set
  1089. hparams.expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX;
  1090. }
  1091. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  1092. switch (hparams.n_layer) {
  1093. case 27: type = LLM_TYPE_16B; break;
  1094. case 60: type = LLM_TYPE_236B; break;
  1095. case 61: type = LLM_TYPE_671B; break;
  1096. default: type = LLM_TYPE_UNKNOWN;
  1097. }
  1098. } break;
  1099. case LLM_ARCH_PLM:
  1100. {
  1101. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1102. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  1103. switch (hparams.n_layer) {
  1104. case 32: type = LLM_TYPE_1_8B; break;
  1105. default: type = LLM_TYPE_UNKNOWN;
  1106. }
  1107. } break;
  1108. case LLM_ARCH_CHATGLM:
  1109. {
  1110. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1111. switch (hparams.n_layer) {
  1112. case 28: {
  1113. if (hparams.n_head(0) == 16) {
  1114. type = LLM_TYPE_1_5B;
  1115. } else {
  1116. type = LLM_TYPE_6B;
  1117. }
  1118. } break;
  1119. case 40: {
  1120. if (hparams.n_head(0) == 24) {
  1121. type = LLM_TYPE_4B;
  1122. } else {
  1123. type = LLM_TYPE_9B;
  1124. }
  1125. } break;
  1126. default: type = LLM_TYPE_UNKNOWN;
  1127. }
  1128. } break;
  1129. case LLM_ARCH_GLM4:
  1130. {
  1131. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1132. switch (hparams.n_layer) {
  1133. case 40: type = LLM_TYPE_9B; break;
  1134. case 61: type = LLM_TYPE_32B; break;
  1135. default: type = LLM_TYPE_UNKNOWN;
  1136. }
  1137. } break;
  1138. case LLM_ARCH_BITNET:
  1139. {
  1140. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1141. switch (hparams.n_layer) {
  1142. case 26: type = LLM_TYPE_3B; break;
  1143. default: type = LLM_TYPE_UNKNOWN;
  1144. }
  1145. } break;
  1146. case LLM_ARCH_T5:
  1147. {
  1148. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1149. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1150. uint32_t dec_start_token_id;
  1151. if (ml.get_key(LLM_KV_DECODER_START_TOKEN_ID, dec_start_token_id, false)) {
  1152. hparams.dec_start_token_id = dec_start_token_id;
  1153. }
  1154. switch (hparams.n_layer) {
  1155. case 6: type = LLM_TYPE_60M; break; // t5-small
  1156. case 8: type = LLM_TYPE_80M; break; // flan-t5-small
  1157. case 12:
  1158. switch (hparams.n_ff()) {
  1159. case 3072: type = LLM_TYPE_220M; break; // t5-base
  1160. case 2048: type = LLM_TYPE_250M; break; // flan-t5-base
  1161. default: type = LLM_TYPE_UNKNOWN;
  1162. } break;
  1163. case 24:
  1164. switch (hparams.n_ff()) {
  1165. case 4096: type = LLM_TYPE_770M; break; // t5-large
  1166. case 2816: type = LLM_TYPE_780M; break; // flan-t5-large
  1167. case 16384: type = LLM_TYPE_3B; break; // t5-3b
  1168. case 5120: type = LLM_TYPE_3B; break; // flan-t5-xl
  1169. case 65536: type = LLM_TYPE_11B; break; // t5-11b
  1170. case 10240: type = LLM_TYPE_11B; break; // flan-t5-xxl
  1171. default: type = LLM_TYPE_UNKNOWN;
  1172. } break;
  1173. default: type = LLM_TYPE_UNKNOWN;
  1174. }
  1175. } break;
  1176. case LLM_ARCH_T5ENCODER:
  1177. {
  1178. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1179. ml.get_key(LLM_KV_ATTENTION_RELATIVE_BUCKETS_COUNT, hparams.n_rel_attn_bkts);
  1180. type = LLM_TYPE_UNKNOWN;
  1181. } break;
  1182. case LLM_ARCH_JAIS:
  1183. {
  1184. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1185. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  1186. switch (hparams.n_layer) {
  1187. case 24: type = LLM_TYPE_1_3B; break;
  1188. case 40: type = LLM_TYPE_13B; break;
  1189. /* TODO: add variants */
  1190. default: type = LLM_TYPE_UNKNOWN;
  1191. }
  1192. } break;
  1193. case LLM_ARCH_NEMOTRON:
  1194. {
  1195. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1196. switch (hparams.n_layer) {
  1197. case 32: type = LLM_TYPE_4B; break;
  1198. default: type = LLM_TYPE_UNKNOWN;
  1199. }
  1200. } break;
  1201. case LLM_ARCH_EXAONE:
  1202. {
  1203. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1204. switch (hparams.n_layer) {
  1205. case 32: type = LLM_TYPE_8B; break;
  1206. default: type = LLM_TYPE_UNKNOWN;
  1207. }
  1208. } break;
  1209. case LLM_ARCH_RWKV6:
  1210. case LLM_ARCH_RWKV6QWEN2:
  1211. {
  1212. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1213. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1214. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1215. ml.get_key(LLM_KV_TIME_MIX_EXTRA_DIM, hparams.time_mix_extra_dim);
  1216. ml.get_key(LLM_KV_TIME_DECAY_EXTRA_DIM, hparams.time_decay_extra_dim);
  1217. ml.get_key(LLM_KV_RESCALE_EVERY_N_LAYERS, hparams.rescale_every_n_layers, false);
  1218. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1219. switch (hparams.n_layer) {
  1220. case 24: type = LLM_TYPE_1_6B; break;
  1221. case 32:
  1222. switch (hparams.n_embd) {
  1223. case 2560: type = LLM_TYPE_3B; break;
  1224. case 4096: type = LLM_TYPE_7B; break;
  1225. default: type = LLM_TYPE_UNKNOWN;
  1226. } break;
  1227. case 61: type = LLM_TYPE_14B; break;
  1228. case 64: type = LLM_TYPE_32B; break;
  1229. default: type = LLM_TYPE_UNKNOWN;
  1230. }
  1231. } break;
  1232. case LLM_ARCH_RWKV7:
  1233. case LLM_ARCH_ARWKV7:
  1234. {
  1235. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps, false);
  1236. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps, false);
  1237. ml.get_key(LLM_KV_WKV_HEAD_SIZE, hparams.wkv_head_size);
  1238. ml.get_key(LLM_KV_ATTENTION_DECAY_LORA_RANK, hparams.n_lora_decay);
  1239. ml.get_key(LLM_KV_ATTENTION_ICLR_LORA_RANK, hparams.n_lora_iclr);
  1240. ml.get_key(LLM_KV_ATTENTION_VALUE_RESIDUAL_MIX_LORA_RANK, hparams.n_lora_value_res_mix);
  1241. ml.get_key(LLM_KV_ATTENTION_GATE_LORA_RANK, hparams.n_lora_gate, false);
  1242. ml.get_key(LLM_KV_TOKEN_SHIFT_COUNT, hparams.token_shift_count, false);
  1243. switch (hparams.n_layer) {
  1244. case 12: type = LLM_TYPE_190M; break;
  1245. case 24:
  1246. switch (hparams.n_embd) {
  1247. case 1024: type = LLM_TYPE_450M; break;
  1248. case 2048: type = LLM_TYPE_1_5B; break;
  1249. default: type = LLM_TYPE_UNKNOWN;
  1250. } break;
  1251. case 28:
  1252. switch (hparams.n_embd) {
  1253. case 1536: type = LLM_TYPE_1_5B; break;
  1254. case 3584: type = LLM_TYPE_7B; break;
  1255. default: type = LLM_TYPE_UNKNOWN;
  1256. } break;
  1257. case 32: type = LLM_TYPE_2_9B; break; // RWKV-7-World
  1258. default: type = LLM_TYPE_UNKNOWN;
  1259. }
  1260. } break;
  1261. case LLM_ARCH_GRANITE:
  1262. case LLM_ARCH_GRANITE_MOE:
  1263. {
  1264. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1265. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  1266. ml.get_key(LLM_KV_RESIDUAL_SCALE, hparams.f_residual_scale);
  1267. ml.get_key(LLM_KV_EMBEDDING_SCALE, hparams.f_embedding_scale);
  1268. ml.get_key(LLM_KV_ATTENTION_SCALE, hparams.f_attention_scale);
  1269. switch (hparams.n_layer) {
  1270. case 32: type = LLM_TYPE_3B; break;
  1271. case 40: type = LLM_TYPE_3B; break;
  1272. // Add additional layer/vocab/etc checks here for other model sizes
  1273. default: type = LLM_TYPE_UNKNOWN;
  1274. }
  1275. // For Granite MoE Shared
  1276. ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp, /* required */ false);
  1277. } break;
  1278. case LLM_ARCH_CHAMELEON:
  1279. {
  1280. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1281. hparams.f_norm_eps = 1e-5; // eps for qk-norm, torch default
  1282. ml.get_key(LLM_KV_SWIN_NORM, hparams.swin_norm);
  1283. switch (hparams.n_layer) {
  1284. case 32: type = LLM_TYPE_7B; break;
  1285. case 48: type = LLM_TYPE_34B; break;
  1286. default: type = LLM_TYPE_UNKNOWN;
  1287. }
  1288. } break;
  1289. case LLM_ARCH_WAVTOKENIZER_DEC:
  1290. {
  1291. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  1292. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_EPS, hparams.f_norm_group_eps);
  1293. ml.get_key(LLM_KV_ATTENTION_GROUPNORM_GROUPS, hparams.n_norm_groups);
  1294. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  1295. } break;
  1296. case LLM_ARCH_BAILINGMOE:
  1297. {
  1298. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  1299. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  1300. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  1301. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  1302. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  1303. ml.get_key(LLM_KV_EXPERT_WEIGHTS_NORM, hparams.expert_weights_norm, false);
  1304. switch (hparams.n_layer) {
  1305. case 28: type = LLM_TYPE_16B; break;
  1306. case 88: type = LLM_TYPE_290B; break;
  1307. default: type = LLM_TYPE_UNKNOWN;
  1308. }
  1309. } break;
  1310. default: throw std::runtime_error("unsupported model architecture");
  1311. }
  1312. pimpl->n_bytes = ml.n_bytes;
  1313. pimpl->desc_str = arch_name() + " " + type_name() + " " + ml.ftype_name();
  1314. if (hparams.f_max_alibi_bias > 0.0f) {
  1315. hparams.use_alibi = true;
  1316. }
  1317. hparams.rope_type = llama_model_rope_type(this);
  1318. }
  1319. void llama_model::load_vocab(llama_model_loader & ml) {
  1320. const auto kv = LLM_KV(arch);
  1321. vocab.load(ml, kv);
  1322. }
  1323. bool llama_model::load_tensors(llama_model_loader & ml) {
  1324. const auto & split_mode = params.split_mode;
  1325. const auto & n_gpu_layers = params.n_gpu_layers;
  1326. const auto & use_mlock = params.use_mlock;
  1327. const auto & tensor_split = params.tensor_split;
  1328. const int n_layer = hparams.n_layer;
  1329. const bool use_mmap_buffer = true;
  1330. LLAMA_LOG_INFO("%s: loading model tensors, this can take a while... (mmap = %s)\n", __func__, ml.use_mmap ? "true" : "false");
  1331. // build a list of buffer types for the CPU and GPU devices
  1332. pimpl->cpu_buft_list = make_cpu_buft_list(devices);
  1333. for (auto * dev : devices) {
  1334. buft_list_t buft_list = make_gpu_buft_list(dev, split_mode, tensor_split);
  1335. // add CPU buffer types as a fallback
  1336. buft_list.insert(buft_list.end(), pimpl->cpu_buft_list.begin(), pimpl->cpu_buft_list.end());
  1337. pimpl->gpu_buft_list.emplace(dev, std::move(buft_list));
  1338. }
  1339. // calculate the split points
  1340. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + n_devices(), [](float x) { return x == 0.0f; });
  1341. std::vector<float> splits(n_devices());
  1342. if (all_zero) {
  1343. // default split, by free memory
  1344. for (size_t i = 0; i < n_devices(); ++i) {
  1345. ggml_backend_dev_t dev = devices[i];
  1346. size_t total;
  1347. size_t free;
  1348. ggml_backend_dev_memory(dev, &free, &total);
  1349. splits[i] = free;
  1350. }
  1351. } else {
  1352. std::copy(tensor_split, tensor_split + n_devices(), splits.begin());
  1353. }
  1354. // sum and normalize the splits to get the split points
  1355. float split_sum = 0.0f;
  1356. for (size_t i = 0; i < n_devices(); ++i) {
  1357. split_sum += splits[i];
  1358. splits[i] = split_sum;
  1359. }
  1360. for (size_t i = 0; i < n_devices(); ++i) {
  1361. splits[i] /= split_sum;
  1362. }
  1363. ggml_backend_dev_t cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1364. if (cpu_dev == nullptr) {
  1365. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  1366. }
  1367. const int i_gpu_start = std::max((int) hparams.n_layer - n_gpu_layers, (int) 0);
  1368. const int act_gpu_layers = devices.empty() ? 0 : std::min(n_gpu_layers, (int)n_layer + 1);
  1369. auto get_layer_buft_list = [&](int il) -> llama_model::impl::layer_dev {
  1370. const bool is_swa = il < (int) hparams.n_layer && hparams.is_swa(il);
  1371. if (il < i_gpu_start || (il - i_gpu_start) >= act_gpu_layers) {
  1372. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(cpu_dev), is_swa);
  1373. return {cpu_dev, &pimpl->cpu_buft_list};
  1374. }
  1375. const int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + n_devices(), float(il - i_gpu_start)/act_gpu_layers) - splits.begin();
  1376. auto * dev = devices.at(layer_gpu);
  1377. LLAMA_LOG_DEBUG("load_tensors: layer %3d assigned to device %s, is_swa = %d\n", il, ggml_backend_dev_name(dev), is_swa);
  1378. return {dev, &pimpl->gpu_buft_list.at(dev)};
  1379. };
  1380. // assign the input layer
  1381. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  1382. pimpl->dev_input = { cpu_dev, &pimpl->cpu_buft_list };
  1383. // assign the repeating layers to the devices according to the splits
  1384. pimpl->dev_layer.resize(n_layer);
  1385. for (int il = 0; il < n_layer; ++il) {
  1386. pimpl->dev_layer[il] = get_layer_buft_list(il);
  1387. }
  1388. // assign the output layer
  1389. pimpl->dev_output = get_layer_buft_list(n_layer);
  1390. // one ggml context per buffer type
  1391. int max_n_tensors = ml.n_tensors;
  1392. max_n_tensors += 1; // duplicated output tensor
  1393. max_n_tensors += n_layer*2; // duplicated rope freq tensors
  1394. const size_t ctx_size = ggml_tensor_overhead()*max_n_tensors;
  1395. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1396. auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
  1397. auto it = ctx_map.find(buft);
  1398. if (it == ctx_map.end()) {
  1399. ggml_init_params params = {
  1400. /*.mem_size =*/ ctx_size,
  1401. /*.mem_buffer =*/ NULL,
  1402. /*.no_alloc =*/ true,
  1403. };
  1404. ggml_context * ctx = ggml_init(params);
  1405. if (!ctx) {
  1406. throw std::runtime_error(format("failed to create ggml context"));
  1407. }
  1408. ctx_map[buft] = ctx;
  1409. pimpl->ctxs.emplace_back(ctx);
  1410. return ctx;
  1411. }
  1412. return it->second;
  1413. };
  1414. const auto TENSOR_DUPLICATED = llama_model_loader::TENSOR_DUPLICATED;
  1415. const auto TENSOR_NOT_REQUIRED = llama_model_loader::TENSOR_NOT_REQUIRED;
  1416. // create tensors for the weights
  1417. {
  1418. // note: cast to int64_t since we will use these for the tensor dimensions
  1419. const int64_t n_head = hparams.n_head();
  1420. const int64_t n_head_kv = hparams.n_head_kv();
  1421. const int64_t n_embd = hparams.n_embd;
  1422. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1423. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1424. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  1425. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  1426. const int64_t n_ff = hparams.n_ff();
  1427. const int64_t n_embd_gqa = n_embd_v_gqa;
  1428. const int64_t n_vocab = vocab.n_tokens();
  1429. const int64_t n_token_types = vocab.n_token_types();
  1430. const int64_t n_rot = hparams.n_rot;
  1431. const int64_t n_expert = hparams.n_expert;
  1432. const int64_t n_expert_used = hparams.n_expert_used;
  1433. const int64_t n_ctx_train = hparams.n_ctx_train;
  1434. if (n_expert > 0 && hparams.n_expert_used == 0) {
  1435. throw std::runtime_error("model has expert layers but no expert layers are used");
  1436. }
  1437. int n_moved_tensors = 0;
  1438. ggml_tensor * first_moved_tensor = nullptr;
  1439. ggml_backend_buffer_type_t first_moved_from_buft = nullptr;
  1440. ggml_backend_buffer_type_t first_moved_to_buft = nullptr;
  1441. auto create_tensor = [&](const LLM_TN_IMPL & tn, const std::initializer_list<int64_t> & ne, int flags) -> ggml_tensor * {
  1442. ggml_tensor * t_meta = ml.get_tensor_meta(tn.str().c_str());
  1443. if (!t_meta) {
  1444. if (flags & TENSOR_NOT_REQUIRED) {
  1445. return nullptr;
  1446. }
  1447. throw std::runtime_error(format("missing tensor '%s'", tn.str().c_str()));
  1448. }
  1449. // some models use the token embedding tensor as the output, but since these are used in different layers and with different ops
  1450. // the tensor is duplicated
  1451. // to handle this, we check if the tensor is duplicated, and if so, we assume that it is being loaded as the output tensor
  1452. llm_tensor tn_tensor = tn.tensor;
  1453. if (tn.tensor == LLM_TENSOR_TOKEN_EMBD && flags & TENSOR_DUPLICATED) {
  1454. tn_tensor = LLM_TENSOR_OUTPUT;
  1455. }
  1456. llm_tensor_info info;
  1457. try {
  1458. info = llm_tensor_info_for(tn_tensor);
  1459. } catch (const std::out_of_range & e) {
  1460. throw std::runtime_error(format("missing tensor info mapping for %s", tn.str().c_str()));
  1461. }
  1462. // skip unused tensors
  1463. if (info.op == GGML_OP_NONE) {
  1464. const size_t nbytes = ggml_nbytes(t_meta);
  1465. LLAMA_LOG_WARN("model has unused tensor %s (size = %zu bytes) -- ignoring\n", tn.str().c_str(), nbytes);
  1466. ml.size_data -= nbytes;
  1467. ml.n_created++;
  1468. return nullptr;
  1469. }
  1470. // tensors with "bias" suffix are always used with GGML_OP_ADD
  1471. ggml_op op;
  1472. bool bias = tn.suffix != nullptr && strcmp(tn.suffix, "bias") == 0;
  1473. if (bias) {
  1474. op = GGML_OP_ADD;
  1475. } else {
  1476. op = info.op;
  1477. }
  1478. // sanity checks
  1479. if (info.layer == LLM_TENSOR_LAYER_INPUT || info.layer == LLM_TENSOR_LAYER_OUTPUT) {
  1480. if (tn.bid != -1) {
  1481. GGML_ABORT("input/output layer tensor %s used with a layer number", tn.str().c_str());
  1482. }
  1483. } else {
  1484. if (tn.bid == -1) {
  1485. GGML_ABORT("repeating layer tensor %s used without a layer number", tn.str().c_str());
  1486. }
  1487. }
  1488. // select the buffer type for this tensor
  1489. buft_list_t * buft_list;
  1490. switch (info.layer) {
  1491. case LLM_TENSOR_LAYER_INPUT:
  1492. buft_list = pimpl->dev_input.buft_list;
  1493. break;
  1494. case LLM_TENSOR_LAYER_OUTPUT:
  1495. buft_list = pimpl->dev_output.buft_list;
  1496. break;
  1497. case LLM_TENSOR_LAYER_REPEATING:
  1498. buft_list = pimpl->dev_layer.at(tn.bid).buft_list;
  1499. break;
  1500. default:
  1501. GGML_ABORT("invalid layer %d for tensor %s", info.layer, tn.str().c_str());
  1502. }
  1503. ggml_backend_buffer_type_t buft = nullptr;
  1504. // check overrides
  1505. if (ml.tensor_buft_overrides) {
  1506. std::string tensor_name = tn.str();
  1507. for (const auto * overrides = ml.tensor_buft_overrides; overrides->pattern != nullptr; ++overrides) {
  1508. std::regex pattern(overrides->pattern);
  1509. if (std::regex_search(tensor_name, pattern)) {
  1510. buft = overrides->buft;
  1511. LLAMA_LOG_DEBUG("tensor %s (%zu MiB %s) buffer type overridden to %s\n",
  1512. tensor_name.c_str(),
  1513. ggml_nbytes(t_meta) / 1024 / 1024, ggml_type_name(t_meta->type),
  1514. ggml_backend_buft_name(buft));
  1515. break;
  1516. }
  1517. }
  1518. }
  1519. if (!buft) {
  1520. buft = select_weight_buft(hparams, t_meta, op, *buft_list);
  1521. if (!buft) {
  1522. throw std::runtime_error(format("failed to find a compatible buffer type for tensor %s", tn.str().c_str()));
  1523. }
  1524. }
  1525. // avoid using a host buffer when using mmap
  1526. auto * buft_dev = ggml_backend_buft_get_device(buft);
  1527. if (ml.use_mmap && buft_dev && buft == ggml_backend_dev_host_buffer_type(buft_dev)) {
  1528. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1529. if (!cpu_dev) {
  1530. throw std::runtime_error("no CPU backend found");
  1531. }
  1532. buft = ggml_backend_dev_buffer_type(cpu_dev);
  1533. }
  1534. if (buft != buft_list->front().second) {
  1535. n_moved_tensors++;
  1536. if (!first_moved_tensor) {
  1537. first_moved_tensor = t_meta;
  1538. first_moved_from_buft = buft_list->front().second;
  1539. first_moved_to_buft = buft;
  1540. }
  1541. }
  1542. ggml_context * ctx = ctx_for_buft(buft);
  1543. // if duplicated, check if the original tensor was allocated in the same buffer type context and avoid creating a new one
  1544. if (flags & TENSOR_DUPLICATED) {
  1545. ggml_tensor * t = ggml_get_tensor(ctx, tn.str().c_str());
  1546. if (t) {
  1547. return t;
  1548. }
  1549. }
  1550. return ml.create_tensor(ctx, tn, ne, flags);
  1551. };
  1552. layers.resize(n_layer);
  1553. // TODO: move to a separate function
  1554. const auto tn = LLM_TN(arch);
  1555. switch (arch) {
  1556. case LLM_ARCH_LLAMA:
  1557. case LLM_ARCH_REFACT:
  1558. case LLM_ARCH_MINICPM:
  1559. case LLM_ARCH_GRANITE:
  1560. case LLM_ARCH_GRANITE_MOE:
  1561. {
  1562. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1563. // output
  1564. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1565. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1566. // if output is NULL, init from the input tok embed
  1567. if (output == NULL) {
  1568. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1569. }
  1570. for (int i = 0; i < n_layer; ++i) {
  1571. auto & layer = layers[i];
  1572. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1573. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1574. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1575. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1576. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1577. // optional bias tensors
  1578. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1579. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1580. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1581. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1582. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1583. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1584. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1585. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1586. }
  1587. else {
  1588. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1589. }
  1590. if (n_expert == 0) {
  1591. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1592. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1593. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1594. // optional MLP bias
  1595. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1596. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1597. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1598. } else {
  1599. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1600. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1601. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1602. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1603. // For Granite MoE Shared
  1604. if (hparams.n_ff_shexp > 0) {
  1605. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1606. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
  1607. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
  1608. }
  1609. }
  1610. }
  1611. } break;
  1612. case LLM_ARCH_LLAMA4:
  1613. {
  1614. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1615. // output
  1616. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1617. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1618. // if output is NULL, init from the input tok embed
  1619. if (output == NULL) {
  1620. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1621. }
  1622. GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
  1623. for (int i = 0; i < n_layer; ++i) {
  1624. bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
  1625. auto & layer = layers[i];
  1626. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1627. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1628. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1629. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1630. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1631. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1632. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1633. if (is_moe_layer) {
  1634. int n_ff_exp = hparams.n_ff_exp;
  1635. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1636. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1637. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
  1638. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
  1639. // Shared expert
  1640. const int64_t n_ff_shexp = n_ff_exp;
  1641. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1642. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
  1643. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  1644. } else {
  1645. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1646. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1647. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1648. }
  1649. }
  1650. } break;
  1651. case LLM_ARCH_DECI:
  1652. {
  1653. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1654. // output
  1655. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1656. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1657. // if output is NULL, init from the input tok embed
  1658. if (output == NULL) {
  1659. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1660. }
  1661. for (int i = 0; i < n_layer; ++i) {
  1662. auto & layer = layers[i];
  1663. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(i);
  1664. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(i);
  1665. const int64_t n_embd_gqa = hparams.n_embd_v_gqa(i);
  1666. const int64_t n_ff = hparams.n_ff(i);
  1667. const int64_t n_head = hparams.n_head(i);
  1668. const int64_t n_head_kv = hparams.n_head_kv(i);
  1669. if (n_head_kv == 0 && n_head > 0) {
  1670. // linear attention for DeciLMCausalModel
  1671. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1672. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1673. }
  1674. else if (n_head_kv > 0) {
  1675. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1676. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  1677. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  1678. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  1679. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  1680. }
  1681. // optional bias tensors
  1682. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1683. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1684. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1685. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1686. if (n_ff > 0) {
  1687. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1688. }
  1689. if (hparams.rope_scaling_type_train == LLAMA_ROPE_SCALING_TYPE_LONGROPE) {
  1690. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1691. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1692. }
  1693. else {
  1694. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1695. }
  1696. if (n_ff > 0) {
  1697. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1698. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1699. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1700. }
  1701. // optional MLP bias
  1702. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1703. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1704. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  1705. }
  1706. } break;
  1707. case LLM_ARCH_MINICPM3:
  1708. {
  1709. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  1710. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  1711. const int64_t q_lora_rank = hparams.n_lora_q;
  1712. const int64_t kv_lora_rank = hparams.n_lora_kv;
  1713. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1714. // output
  1715. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1716. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1717. // if output is NULL, init from the input tok embed
  1718. if (output == NULL) {
  1719. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1720. }
  1721. for (int i = 0; i < n_layer; ++i) {
  1722. auto & layer = layers[i];
  1723. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1724. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  1725. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  1726. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  1727. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k}, 0);
  1728. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  1729. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  1730. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  1731. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1732. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1733. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1734. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1735. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1736. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head_qk_rope/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  1737. }
  1738. } break;
  1739. case LLM_ARCH_GROK:
  1740. {
  1741. if (n_expert == 0) {
  1742. throw std::runtime_error("Grok model cannot have zero experts");
  1743. }
  1744. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1745. // output
  1746. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1747. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1748. // if output is NULL, init from the input tok embed
  1749. if (output == NULL) {
  1750. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1751. }
  1752. for (int i = 0; i < n_layer; ++i) {
  1753. auto & layer = layers[i];
  1754. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1755. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1756. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1757. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1758. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1759. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1760. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1761. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1762. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, TENSOR_NOT_REQUIRED);
  1763. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1764. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1765. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1766. }
  1767. } break;
  1768. case LLM_ARCH_DBRX:
  1769. {
  1770. if (n_expert == 0) {
  1771. throw std::runtime_error("DBRX model cannot have zero experts");
  1772. }
  1773. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1774. // output
  1775. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1776. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1777. for (int i = 0; i < n_layer; ++i) {
  1778. auto & layer = layers[i];
  1779. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1780. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1781. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1782. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1783. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1784. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1785. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  1786. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  1787. }
  1788. } break;
  1789. case LLM_ARCH_BAICHUAN:
  1790. {
  1791. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1792. {
  1793. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1794. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  1795. }
  1796. for (int i = 0; i < n_layer; ++i) {
  1797. auto & layer = layers[i];
  1798. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1799. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1800. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1801. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1802. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1803. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1804. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1805. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1806. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1807. }
  1808. } break;
  1809. case LLM_ARCH_FALCON:
  1810. {
  1811. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1812. // output
  1813. {
  1814. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1815. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1816. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1817. if (!output) {
  1818. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1819. }
  1820. }
  1821. for (int i = 0; i < n_layer; ++i) {
  1822. auto & layer = layers[i];
  1823. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1824. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1825. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1826. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1827. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1828. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1829. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  1830. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1831. }
  1832. } break;
  1833. case LLM_ARCH_STARCODER:
  1834. {
  1835. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1836. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1837. // output
  1838. {
  1839. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1840. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1841. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1842. if (!output) {
  1843. // needs to be on GPU
  1844. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1845. }
  1846. }
  1847. for (int i = 0; i < n_layer; ++i) {
  1848. auto & layer = layers[i];
  1849. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1850. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1851. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1852. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1853. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1854. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1855. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1856. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1857. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1858. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1859. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1860. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1861. }
  1862. } break;
  1863. case LLM_ARCH_BERT:
  1864. case LLM_ARCH_NOMIC_BERT:
  1865. case LLM_ARCH_NOMIC_BERT_MOE:
  1866. {
  1867. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1868. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, TENSOR_NOT_REQUIRED);
  1869. if (arch == LLM_ARCH_BERT) {
  1870. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  1871. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, n_embd}, TENSOR_NOT_REQUIRED);
  1872. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1873. cls_out = create_tensor(tn(LLM_TENSOR_CLS_OUT, "weight"), {n_embd, hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  1874. cls_out_b = create_tensor(tn(LLM_TENSOR_CLS_OUT, "bias"), {hparams.n_cls_out}, TENSOR_NOT_REQUIRED);
  1875. }
  1876. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1877. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1878. for (int i = 0; i < n_layer; ++i) {
  1879. auto & layer = layers[i];
  1880. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1881. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1882. if (!layer.wqkv) {
  1883. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1884. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1885. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1886. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1887. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1888. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1889. }
  1890. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1891. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0);
  1892. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1893. if (hparams.moe_every_n_layers > 0 && i % hparams.moe_every_n_layers == 1) {
  1894. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1895. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert}, 0);
  1896. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  1897. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  1898. } else {
  1899. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1900. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1901. if (arch == LLM_ARCH_BERT || arch == LLM_ARCH_NOMIC_BERT_MOE) {
  1902. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1903. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1904. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1905. } else {
  1906. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  1907. }
  1908. }
  1909. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1910. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1911. }
  1912. } break;
  1913. case LLM_ARCH_JINA_BERT_V2:
  1914. {
  1915. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0); // word_embeddings
  1916. type_embd = create_tensor(tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_token_types}, 0); // token_type_embeddings
  1917. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0); // LayerNorm
  1918. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0); //LayerNorm bias
  1919. cls = create_tensor(tn(LLM_TENSOR_CLS, "weight"), {n_embd, 1}, TENSOR_NOT_REQUIRED);
  1920. cls_b = create_tensor(tn(LLM_TENSOR_CLS, "bias"), {1}, TENSOR_NOT_REQUIRED);
  1921. for (int i = 0; i < n_layer; ++i) {
  1922. auto & layer = layers[i]; // JinaBertLayer
  1923. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  1924. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  1925. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1926. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1927. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  1928. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  1929. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1930. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1931. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  1932. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  1933. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0); //output_dens
  1934. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0); //output_dens
  1935. layer.attn_out_norm = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}, 0); //output_norm
  1936. layer.attn_out_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}, 0);
  1937. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1938. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1939. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  1940. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, layer.ffn_gate ? n_ff : n_ff * 2}, 0);
  1941. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1942. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1943. layer.layer_out_norm = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}, 0);
  1944. layer.layer_out_norm_b = create_tensor(tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}, 0);
  1945. }
  1946. } break;
  1947. case LLM_ARCH_BLOOM:
  1948. {
  1949. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1950. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  1951. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  1952. // output
  1953. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1954. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  1955. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1956. // if output is NULL, init from the input tok embed
  1957. if (output == NULL) {
  1958. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  1959. }
  1960. for (int i = 0; i < n_layer; ++i) {
  1961. auto & layer = layers[i];
  1962. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1963. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  1964. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1965. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  1966. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1967. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  1968. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1969. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  1970. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1971. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  1972. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  1973. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  1974. }
  1975. } break;
  1976. case LLM_ARCH_MPT:
  1977. {
  1978. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  1979. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, TENSOR_NOT_REQUIRED);
  1980. // output
  1981. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  1982. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  1983. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  1984. if (!output) {
  1985. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // needs to be on GPU
  1986. }
  1987. for (int i = 0; i < n_layer; ++i) {
  1988. auto & layer = layers[i];
  1989. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  1990. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1991. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  1992. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  1993. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  1994. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1995. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  1996. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1997. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  1998. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  1999. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2000. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2001. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2002. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2003. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2004. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2005. // AWQ ScaleActivation layer
  2006. layer.ffn_act = create_tensor(tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, TENSOR_NOT_REQUIRED);
  2007. }
  2008. } break;
  2009. case LLM_ARCH_STABLELM:
  2010. {
  2011. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2012. // output
  2013. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2014. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2015. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2016. for (int i = 0; i < n_layer; ++i) {
  2017. auto & layer = layers[i];
  2018. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2019. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2020. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2021. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2022. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2023. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2024. // optional bias tensors, present in Stable LM 2 1.6B
  2025. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2026. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2027. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2028. // optional q and k layernorms, present in StableLM 2 12B
  2029. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  2030. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  2031. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  2032. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2033. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2034. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2035. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2036. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2037. }
  2038. } break;
  2039. case LLM_ARCH_QWEN:
  2040. {
  2041. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2042. // output
  2043. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2044. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2045. for (int i = 0; i < n_layer; ++i) {
  2046. auto & layer = layers[i];
  2047. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2048. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}, 0);
  2049. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}, 0);
  2050. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2051. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2052. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}, 0);
  2053. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}, 0);
  2054. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}, 0);
  2055. }
  2056. } break;
  2057. case LLM_ARCH_QWEN2:
  2058. case LLM_ARCH_QWEN2VL:
  2059. {
  2060. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2061. // output
  2062. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2063. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2064. // if output is NULL, init from the input tok embed
  2065. if (output == NULL) {
  2066. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2067. }
  2068. for (int i = 0; i < n_layer; ++i) {
  2069. auto & layer = layers[i];
  2070. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2071. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2072. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2073. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2074. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2075. // optional bias tensors
  2076. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2077. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2078. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2079. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2080. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2081. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2082. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2083. }
  2084. } break;
  2085. case LLM_ARCH_QWEN2MOE:
  2086. {
  2087. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2088. // output
  2089. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2090. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2091. for (int i = 0; i < n_layer; ++i) {
  2092. auto & layer = layers[i];
  2093. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2094. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2095. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2096. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2097. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2098. // optional bias tensors
  2099. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2100. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2101. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2102. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2103. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2104. if (n_expert == 0) {
  2105. throw std::runtime_error("n_expert must be > 0 for QWEN2MOE");
  2106. }
  2107. if (n_expert_used == 0) {
  2108. throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
  2109. }
  2110. // MoE branch
  2111. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2112. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2113. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2114. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2115. // Shared expert branch
  2116. const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
  2117. layer.ffn_gate_inp_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}, 0);
  2118. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2119. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, 0);
  2120. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
  2121. }
  2122. } break;
  2123. case LLM_ARCH_QWEN3:
  2124. {
  2125. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2126. // output
  2127. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2128. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2129. // if output is NULL, init from the input tok embed
  2130. if (output == NULL) {
  2131. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2132. }
  2133. for (int i = 0; i < n_layer; ++i) {
  2134. auto & layer = layers[i];
  2135. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2136. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2137. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2138. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2139. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2140. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2141. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2142. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2143. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2144. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2145. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2146. }
  2147. } break;
  2148. case LLM_ARCH_QWEN3MOE:
  2149. {
  2150. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2151. // output
  2152. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2153. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2154. // if output is NULL, init from the input tok embed
  2155. if (output == NULL) {
  2156. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2157. }
  2158. for (int i = 0; i < n_layer; ++i) {
  2159. auto & layer = layers[i];
  2160. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2161. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2162. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2163. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2164. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2165. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2166. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2167. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2168. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2169. if (n_expert == 0) {
  2170. throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
  2171. }
  2172. if (n_expert_used == 0) {
  2173. throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
  2174. }
  2175. // MoE branch
  2176. const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
  2177. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2178. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2179. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2180. }
  2181. } break;
  2182. case LLM_ARCH_PHI2:
  2183. {
  2184. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2185. // output
  2186. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2187. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2188. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2189. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}, 0);
  2190. for (int i = 0; i < n_layer; ++i) {
  2191. auto & layer = layers[i];
  2192. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2193. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2194. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2195. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2196. if (layer.wqkv == nullptr) {
  2197. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2198. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2199. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2200. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2201. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2202. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2203. }
  2204. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2205. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2206. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2207. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2208. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2209. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2210. }
  2211. } break;
  2212. case LLM_ARCH_PHI3:
  2213. {
  2214. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2215. // output
  2216. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2217. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2218. // if output is NULL, init from the input tok embed
  2219. if (output == NULL) {
  2220. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2221. }
  2222. for (int i = 0; i < n_layer; ++i) {
  2223. auto & layer = layers[i];
  2224. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2225. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2226. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2227. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2228. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2229. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff }, 0);
  2230. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2231. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_rot/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2232. }
  2233. } break;
  2234. case LLM_ARCH_PHIMOE:
  2235. {
  2236. const int64_t n_embd_head = n_embd / n_head;
  2237. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2238. // output
  2239. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2240. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2241. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab }, 0);
  2242. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), { n_vocab }, 0);
  2243. for (int i = 0; i < n_layer; ++i) {
  2244. auto & layer = layers[i];
  2245. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2246. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), { n_embd }, 0);
  2247. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, TENSOR_NOT_REQUIRED);
  2248. if (layer.wqkv == nullptr) {
  2249. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2250. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2251. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2252. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2253. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2254. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2255. }
  2256. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2257. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), { n_embd }, 0);
  2258. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
  2259. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), { n_embd }, 0);
  2260. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2261. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2262. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2263. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2264. layer.rope_long = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2265. layer.rope_short = create_tensor(tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight", i), { n_embd_head/2 }, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  2266. }
  2267. } break;
  2268. case LLM_ARCH_PLAMO:
  2269. {
  2270. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2271. // output
  2272. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2273. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2274. for (int i = 0; i < n_layer; ++i) {
  2275. auto & layer = layers[i];
  2276. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2277. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2278. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2279. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2280. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2281. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2282. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2283. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2284. }
  2285. } break;
  2286. case LLM_ARCH_GPT2:
  2287. {
  2288. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2289. pos_embd = create_tensor(tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, n_ctx_train}, 0);
  2290. // output
  2291. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2292. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2293. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2294. // if output is NULL, init from the input tok embed
  2295. if (output == NULL) {
  2296. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2297. }
  2298. for (int i = 0; i < n_layer; ++i) {
  2299. auto & layer = layers[i];
  2300. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2301. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2302. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2303. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2304. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2305. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2306. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2307. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2308. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2309. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2310. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2311. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2312. }
  2313. } break;
  2314. case LLM_ARCH_CODESHELL:
  2315. {
  2316. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2317. // if tok embd is NULL, init from output
  2318. if (tok_embd == NULL) {
  2319. tok_embd = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2320. }
  2321. // output
  2322. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2323. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2324. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2325. for (int i = 0; i < n_layer; ++i) {
  2326. auto & layer = layers[i];
  2327. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2328. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2329. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2330. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2331. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2332. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2333. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2334. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2335. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2336. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2337. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2338. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2339. }
  2340. } break;
  2341. case LLM_ARCH_ORION:
  2342. {
  2343. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2344. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2345. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2346. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2347. for (int i = 0; i < n_layer; ++i) {
  2348. auto & layer = layers[i];
  2349. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2350. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2351. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2352. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2353. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2354. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2355. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2356. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2357. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2358. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2359. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2360. }
  2361. } break;
  2362. case LLM_ARCH_INTERNLM2:
  2363. {
  2364. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2365. // output
  2366. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2367. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2368. for (int i = 0; i < n_layer; ++i) {
  2369. auto & layer = layers[i];
  2370. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2371. // layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2372. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2373. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2374. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2375. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2376. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2377. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2378. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2379. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2380. }
  2381. } break;
  2382. case LLM_ARCH_GEMMA:
  2383. {
  2384. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2385. // output
  2386. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2387. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2388. for (int i = 0; i < n_layer; ++i) {
  2389. auto & layer = layers[i];
  2390. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2391. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2392. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2393. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2394. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2395. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2396. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2397. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2398. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2399. }
  2400. } break;
  2401. case LLM_ARCH_GEMMA2:
  2402. {
  2403. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2404. // output
  2405. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2406. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  2407. for (int i = 0; i < n_layer; ++i) {
  2408. auto & layer = layers[i];
  2409. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2410. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2411. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2412. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2413. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2414. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2415. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2416. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2417. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2418. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2419. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2420. }
  2421. } break;
  2422. case LLM_ARCH_GEMMA3:
  2423. {
  2424. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2425. // output
  2426. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2427. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2428. // if output is NULL, init from the input tok embed
  2429. if (output == NULL) {
  2430. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2431. }
  2432. for (int i = 0; i < n_layer; ++i) {
  2433. auto & layer = layers[i];
  2434. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2435. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2436. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2437. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2438. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  2439. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2440. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2441. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2442. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2443. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2444. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2445. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2446. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2447. }
  2448. } break;
  2449. case LLM_ARCH_STARCODER2:
  2450. {
  2451. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2452. // output
  2453. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2454. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2455. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2456. // if output is NULL, init from the input tok embed
  2457. if (output == NULL) {
  2458. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2459. }
  2460. for (int i = 0; i < n_layer; ++i) {
  2461. auto & layer = layers[i];
  2462. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2463. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2464. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2465. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2466. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2467. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2468. // optional bias tensors
  2469. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, 0);
  2470. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, 0);
  2471. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, 0);
  2472. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2473. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2474. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2475. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2476. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2477. // optional bias tensors
  2478. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2479. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}, 0);
  2480. }
  2481. } break;
  2482. case LLM_ARCH_MAMBA:
  2483. {
  2484. const int64_t d_conv = hparams.ssm_d_conv;
  2485. const int64_t d_inner = hparams.ssm_d_inner;
  2486. const int64_t d_state = hparams.ssm_d_state;
  2487. const int64_t dt_rank = hparams.ssm_dt_rank;
  2488. // only an expansion factor of 2 is supported for now
  2489. if (2 * n_embd != d_inner) {
  2490. throw std::runtime_error("only an expansion factor of 2 is supported for now");
  2491. }
  2492. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2493. // output
  2494. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2495. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2496. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  2497. if (output == NULL) {
  2498. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2499. }
  2500. for (int i = 0; i < n_layer; ++i) {
  2501. auto & layer = layers[i];
  2502. // norm
  2503. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2504. layer.ssm_in = create_tensor(tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}, 0);
  2505. layer.ssm_conv1d = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}, 0);
  2506. layer.ssm_conv1d_b = create_tensor(tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}, 0);
  2507. layer.ssm_x = create_tensor(tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}, 0);
  2508. layer.ssm_dt = create_tensor(tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}, 0);
  2509. layer.ssm_dt_b = create_tensor(tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}, 0);
  2510. // no "weight" suffix for these
  2511. layer.ssm_a = create_tensor(tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}, 0);
  2512. layer.ssm_d = create_tensor(tn(LLM_TENSOR_SSM_D, i), {d_inner}, 0);
  2513. // out_proj
  2514. layer.ssm_out = create_tensor(tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}, 0);
  2515. }
  2516. } break;
  2517. case LLM_ARCH_XVERSE:
  2518. {
  2519. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2520. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2521. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2522. for (int i = 0; i < n_layer; ++i) {
  2523. auto & layer = layers[i];
  2524. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2525. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2526. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2527. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2528. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2529. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2530. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2531. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2532. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2533. }
  2534. } break;
  2535. case LLM_ARCH_COMMAND_R:
  2536. {
  2537. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2538. // output
  2539. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2540. // init output from the input tok embed
  2541. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2542. for (int i = 0; i < n_layer; ++i) {
  2543. auto & layer = layers[i];
  2544. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2545. if (n_layer >= 64){
  2546. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  2547. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  2548. }
  2549. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2550. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2551. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2552. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2553. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2554. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2555. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2556. }
  2557. } break;
  2558. case LLM_ARCH_COHERE2:
  2559. {
  2560. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab }, 0);
  2561. // output
  2562. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd }, 0);
  2563. // init output from the input tok embed
  2564. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab },
  2565. TENSOR_DUPLICATED);
  2566. for (int i = 0; i < n_layer; ++i) {
  2567. auto & layer = layers[i];
  2568. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd }, 0);
  2569. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), { n_embd, n_embd }, 0);
  2570. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), { n_embd, n_embd_gqa }, 0);
  2571. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), { n_embd, n_embd_gqa }, 0);
  2572. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd }, 0);
  2573. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), { n_embd, n_ff }, 0);
  2574. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd }, 0);
  2575. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, n_ff }, 0);
  2576. }
  2577. }
  2578. break;
  2579. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  2580. {
  2581. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2582. // output
  2583. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2584. // if output is NULL, init from the input tok embed
  2585. if (output == NULL) {
  2586. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2587. }
  2588. for (int i = 0; i < n_layer; ++i) {
  2589. auto & layer = layers[i];
  2590. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2591. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2592. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2593. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2594. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2595. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2596. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2597. }
  2598. } break;
  2599. case LLM_ARCH_OLMO2:
  2600. {
  2601. const int64_t n_embd_head = n_embd / n_head;
  2602. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2603. // output
  2604. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2605. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2606. for (int i = 0; i < n_layer; ++i) {
  2607. auto & layer = layers[i];
  2608. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2609. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2610. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2611. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2612. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2613. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_head_kv * n_embd_head}, 0);
  2614. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  2615. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2616. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2617. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2618. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  2619. }
  2620. } break;
  2621. case LLM_ARCH_OLMOE:
  2622. {
  2623. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2624. // output
  2625. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2626. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2627. for (int i = 0; i < n_layer; ++i) {
  2628. auto & layer = layers[i];
  2629. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2630. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2631. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2632. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2633. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2634. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, 0);
  2635. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, 0);
  2636. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2637. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2638. if (n_expert == 0) {
  2639. throw std::runtime_error("n_expert must be > 0");
  2640. }
  2641. if (n_expert_used == 0) {
  2642. throw std::runtime_error("n_expert_used must be > 0");
  2643. }
  2644. // MoE branch
  2645. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2646. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}, 0);
  2647. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2648. }
  2649. } break;
  2650. case LLM_ARCH_OPENELM:
  2651. {
  2652. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2653. // output
  2654. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2655. // init output from the input tok embed
  2656. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2657. for (int i = 0; i < n_layer; ++i) {
  2658. const int64_t n_head = hparams.n_head(i);
  2659. const int64_t n_head_qkv = 2*hparams.n_head_kv(i) + n_head;
  2660. const int64_t n_ff = hparams.n_ff(i);
  2661. auto & layer = layers[i];
  2662. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2663. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_head_qkv*n_embd_head_k}, 0);
  2664. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
  2665. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
  2666. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head*n_embd_head_k, n_embd}, 0);
  2667. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2668. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2669. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2670. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2671. }
  2672. } break;
  2673. case LLM_ARCH_GPTNEOX:
  2674. {
  2675. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2676. // output
  2677. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2678. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2679. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2680. for (int i = 0; i < n_layer; ++i) {
  2681. auto & layer = layers[i];
  2682. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2683. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2684. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2685. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2686. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2687. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2688. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2689. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2690. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2691. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2692. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2693. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2694. }
  2695. } break;
  2696. case LLM_ARCH_ARCTIC:
  2697. {
  2698. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2699. // output
  2700. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2701. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2702. // if output is NULL, init from the input tok embed
  2703. if (output == NULL) {
  2704. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2705. }
  2706. for (int i = 0; i < n_layer; ++i) {
  2707. auto & layer = layers[i];
  2708. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2709. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2710. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2711. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2712. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2713. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2714. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd}, 0);
  2715. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd}, 0);
  2716. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd}, 0);
  2717. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2718. layer.ffn_norm_exps = create_tensor(tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd}, 0);
  2719. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  2720. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
  2721. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
  2722. }
  2723. } break;
  2724. case LLM_ARCH_DEEPSEEK:
  2725. {
  2726. const int64_t n_ff_exp = hparams.n_ff_exp;
  2727. const int64_t n_expert_shared = hparams.n_expert_shared;
  2728. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2729. // output
  2730. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2731. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2732. for (int i = 0; i < n_layer; ++i) {
  2733. auto & layer = layers[i];
  2734. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2735. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2736. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2737. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2738. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2739. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2740. if (i < (int) hparams.n_layer_dense_lead) {
  2741. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2742. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2743. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2744. } else {
  2745. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2746. if (n_expert == 0) {
  2747. throw std::runtime_error("n_expert must be > 0");
  2748. }
  2749. if (n_expert_used == 0) {
  2750. throw std::runtime_error("n_expert_used must be > 0");
  2751. }
  2752. // MoE branch
  2753. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2754. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2755. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2756. // Shared expert branch
  2757. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2758. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2759. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2760. }
  2761. }
  2762. } break;
  2763. case LLM_ARCH_DEEPSEEK2:
  2764. {
  2765. const bool is_lite = (hparams.n_layer == 27);
  2766. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  2767. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  2768. const int64_t n_embd_head_k_mla = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  2769. const int64_t n_embd_head_v_mla = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  2770. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2771. const int64_t n_embd_head_qk_nope = n_embd_head_k_mla - n_embd_head_qk_rope;
  2772. const int64_t q_lora_rank = hparams.n_lora_q;
  2773. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2774. const int64_t n_ff_exp = hparams.n_ff_exp;
  2775. const int64_t n_expert_shared = hparams.n_expert_shared;
  2776. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2777. // output
  2778. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2779. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2780. for (int i = 0; i < n_layer; ++i) {
  2781. auto & layer = layers[i];
  2782. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2783. if (!is_lite) {
  2784. layer.attn_q_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank}, 0);
  2785. }
  2786. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2787. if (!is_lite) {
  2788. layer.wq_a = create_tensor(tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank}, 0);
  2789. layer.wq_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, n_head * n_embd_head_k_mla}, 0);
  2790. } else {
  2791. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_embd_head_k_mla}, 0);
  2792. }
  2793. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope}, 0);
  2794. // note: only old legacy GGUF files will have the unsplit wkv_b tensor in
  2795. if (is_mla) {
  2796. layer.wk_b = create_tensor(tn(LLM_TENSOR_ATTN_K_B, "weight", i), {n_embd_head_qk_nope, kv_lora_rank, n_head}, 0);
  2797. layer.wv_b = create_tensor(tn(LLM_TENSOR_ATTN_V_B, "weight", i), {kv_lora_rank, n_embd_head_v_mla, n_head}, 0);
  2798. } else {
  2799. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v_mla)}, 0);
  2800. }
  2801. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_embd_head_v_mla, n_embd}, 0);
  2802. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2803. if (i < (int) hparams.n_layer_dense_lead) {
  2804. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2805. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2806. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2807. } else {
  2808. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  2809. layer.ffn_exp_probs_b = create_tensor(tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, TENSOR_NOT_REQUIRED);
  2810. if (n_expert == 0) {
  2811. throw std::runtime_error("n_expert must be > 0");
  2812. }
  2813. if (n_expert_used == 0) {
  2814. throw std::runtime_error("n_expert_used must be > 0");
  2815. }
  2816. // MoE branch
  2817. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2818. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  2819. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  2820. // Shared expert branch
  2821. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2822. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  2823. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  2824. }
  2825. }
  2826. } break;
  2827. case LLM_ARCH_PLM:
  2828. {
  2829. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  2830. const int64_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  2831. const int64_t kv_lora_rank = hparams.n_lora_kv;
  2832. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2833. // output
  2834. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2835. // output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2836. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2837. for (int i = 0; i < n_layer; ++i) {
  2838. auto & layer = layers[i];
  2839. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2840. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2841. layer.wkv_a_mqa = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + (n_embd_head_qk_rope)}, 0);
  2842. layer.attn_kv_a_norm = create_tensor(tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank}, 0);
  2843. layer.wkv_b = create_tensor(tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)}, 0);
  2844. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_head * ( n_embd_head_v), n_embd}, 0);
  2845. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2846. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2847. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2848. }
  2849. } break;
  2850. case LLM_ARCH_BITNET:
  2851. {
  2852. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2853. // output
  2854. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2855. for (int i = 0; i < n_layer; ++i) {
  2856. auto & layer = layers[i];
  2857. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2858. layer.attn_sub_norm = create_tensor(tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd}, 0);
  2859. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  2860. layer.wq_scale = create_tensor(tn(LLM_TENSOR_ATTN_Q, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2861. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  2862. layer.wk_scale = create_tensor(tn(LLM_TENSOR_ATTN_K, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2863. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  2864. layer.wv_scale = create_tensor(tn(LLM_TENSOR_ATTN_V, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2865. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2866. layer.wo_scale = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2867. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2868. layer.ffn_sub_norm = create_tensor(tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff}, 0);
  2869. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2870. layer.ffn_gate_scale = create_tensor(tn(LLM_TENSOR_FFN_GATE, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2871. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2872. layer.ffn_down_scale = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2873. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2874. layer.ffn_up_scale = create_tensor(tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, TENSOR_NOT_REQUIRED);
  2875. }
  2876. } break;
  2877. case LLM_ARCH_T5:
  2878. {
  2879. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2880. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2881. // output
  2882. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2883. output_norm = create_tensor(tn(LLM_TENSOR_DEC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2884. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2885. // if output is NULL, init from the input tok embed
  2886. if (output == NULL) {
  2887. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2888. }
  2889. for (int i = 0; i < n_layer; ++i) {
  2890. auto & layer = layers[i];
  2891. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2892. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2893. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2894. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2895. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2896. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2897. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2898. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2899. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2900. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2901. layer.attn_norm = create_tensor(tn(LLM_TENSOR_DEC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2902. layer.attn_rel_b = create_tensor(tn(LLM_TENSOR_DEC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2903. layer.wq = create_tensor(tn(LLM_TENSOR_DEC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2904. layer.wk = create_tensor(tn(LLM_TENSOR_DEC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2905. layer.wv = create_tensor(tn(LLM_TENSOR_DEC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2906. layer.wo = create_tensor(tn(LLM_TENSOR_DEC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2907. layer.attn_norm_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_NORM, "weight", i), {n_embd}, 0);
  2908. // this tensor seems to be unused in HF transformers implementation
  2909. layer.attn_rel_b_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2910. layer.wq_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2911. layer.wk_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2912. layer.wv_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2913. layer.wo_cross = create_tensor(tn(LLM_TENSOR_DEC_CROSS_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2914. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_DEC_FFN_NORM, "weight", i), {n_embd}, 0);
  2915. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_DEC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2916. layer.ffn_down = create_tensor(tn(LLM_TENSOR_DEC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2917. layer.ffn_up = create_tensor(tn(LLM_TENSOR_DEC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2918. }
  2919. } break;
  2920. case LLM_ARCH_T5ENCODER:
  2921. {
  2922. const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
  2923. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2924. // output
  2925. output_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2926. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2927. // if output is NULL, init from the input tok embed
  2928. if (output == NULL) {
  2929. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2930. }
  2931. for (int i = 0; i < n_layer; ++i) {
  2932. auto & layer = layers[i];
  2933. layer.attn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_NORM, "weight", i), {n_embd}, 0);
  2934. layer.attn_rel_b_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_REL_B, "weight", i), {n_head, n_rel_attn_bkts}, TENSOR_NOT_REQUIRED);
  2935. layer.wq_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2936. layer.wk_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2937. layer.wv_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2938. layer.wo_enc = create_tensor(tn(LLM_TENSOR_ENC_ATTN_OUT, "weight", i), {n_embd_v_gqa, n_embd}, 0);
  2939. layer.ffn_norm_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_NORM, "weight", i), {n_embd}, 0);
  2940. layer.ffn_gate_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_GATE, "weight", i), {n_embd, n_ff}, TENSOR_NOT_REQUIRED);
  2941. layer.ffn_down_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  2942. layer.ffn_up_enc = create_tensor(tn(LLM_TENSOR_ENC_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2943. }
  2944. } break;
  2945. case LLM_ARCH_JAIS:
  2946. {
  2947. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2948. // output
  2949. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2950. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  2951. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  2952. for (int i = 0; i < n_layer; ++i) {
  2953. auto & layer = layers[i];
  2954. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2955. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  2956. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, 0);
  2957. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, 0);
  2958. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2959. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, 0);
  2960. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2961. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  2962. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2963. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, 0);
  2964. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  2965. layer.ffn_gate_b = create_tensor(tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, 0);
  2966. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  2967. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, 0);
  2968. }
  2969. } break;
  2970. case LLM_ARCH_CHATGLM:
  2971. {
  2972. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  2973. // output
  2974. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  2975. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  2976. // if output is NULL, init from the input tok embed
  2977. if (output == NULL) {
  2978. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  2979. }
  2980. for (int i = 0; i < n_layer; ++i) {
  2981. auto & layer = layers[i];
  2982. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  2983. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2984. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2985. if (layer.wqkv == nullptr) {
  2986. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  2987. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  2988. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  2989. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  2990. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2991. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  2992. }
  2993. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  2994. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  2995. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  2996. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}, 0);
  2997. }
  2998. } break;
  2999. case LLM_ARCH_GLM4:
  3000. {
  3001. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3002. // output
  3003. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3004. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3005. // if output is NULL, init from the input tok embed
  3006. if (output == NULL) {
  3007. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3008. }
  3009. for (int i = 0; i < n_layer; ++i) {
  3010. auto & layer = layers[i];
  3011. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3012. layer.wqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3013. layer.bqkv = create_tensor(tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3014. if (layer.wqkv == nullptr) {
  3015. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3016. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3017. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3018. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3019. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3020. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3021. }
  3022. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3023. layer.attn_post_norm = create_tensor(tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd}, 0);
  3024. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3025. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3026. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff * 2}, 0);
  3027. layer.ffn_post_norm = create_tensor(tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
  3028. }
  3029. } break;
  3030. case LLM_ARCH_NEMOTRON:
  3031. {
  3032. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3033. // output
  3034. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3035. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3036. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3037. for (int i = 0; i < n_layer; ++i) {
  3038. auto & layer = layers[i];
  3039. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3040. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3041. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3042. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3043. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3044. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3045. // optional bias tensors
  3046. layer.bq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3047. layer.bk = create_tensor(tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3048. layer.bv = create_tensor(tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, TENSOR_NOT_REQUIRED);
  3049. layer.bo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3050. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3051. layer.ffn_norm_b = create_tensor(tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, 0);
  3052. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3053. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3054. // optional MLP bias
  3055. layer.ffn_down_b = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3056. layer.ffn_up_b = create_tensor(tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, TENSOR_NOT_REQUIRED);
  3057. }
  3058. } break;
  3059. case LLM_ARCH_EXAONE:
  3060. {
  3061. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3062. // output
  3063. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3064. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3065. // if output is NULL, init from the input tok embed
  3066. if (output == NULL) {
  3067. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3068. }
  3069. for (int i = 0; i < n_layer; ++i) {
  3070. auto & layer = layers[i];
  3071. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3072. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
  3073. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
  3074. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
  3075. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
  3076. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3077. layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
  3078. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3079. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3080. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3081. }
  3082. } break;
  3083. case LLM_ARCH_RWKV6:
  3084. {
  3085. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3086. // Block 0, LN0
  3087. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3088. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3089. // output
  3090. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3091. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3092. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3093. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3094. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3095. const int head_size = hparams.wkv_head_size;
  3096. const int attn_hidden_size = n_embd;
  3097. const int ffn_size = hparams.n_ff_arr[0];
  3098. for (int i = 0; i < n_layer; ++i) {
  3099. auto & layer = layers[i];
  3100. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3101. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3102. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3103. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3104. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3105. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3106. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3107. layer.time_mix_lerp_w = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_W, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3108. layer.time_mix_lerp_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3109. layer.time_mix_lerp_v = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_V, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3110. layer.time_mix_lerp_r = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3111. layer.time_mix_lerp_g = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_G, "weight", i), {n_embd, 1, 1}, TENSOR_NOT_REQUIRED);
  3112. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, TENSOR_NOT_REQUIRED);
  3113. GGML_ASSERT(!(layer.time_mix_lerp_fused == NULL && layer.time_mix_lerp_w == NULL));
  3114. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, 0);
  3115. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3116. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3117. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3118. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3119. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3120. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3121. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3122. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3123. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3124. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3125. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3126. layer.channel_mix_lerp_r = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_R, "weight", i), {n_embd, 1, 1}, 0);
  3127. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3128. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3129. layer.channel_mix_receptance = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_RECEPTANCE, "weight", i), {n_embd, n_embd}, 0);
  3130. }
  3131. } break;
  3132. case LLM_ARCH_RWKV6QWEN2:
  3133. {
  3134. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3135. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3136. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, TENSOR_NOT_REQUIRED);
  3137. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3138. const int time_mix_extra_dim = hparams.time_mix_extra_dim;
  3139. const int time_decay_extra_dim = hparams.time_decay_extra_dim;
  3140. const int head_size = hparams.wkv_head_size;
  3141. const int attn_hidden_size = n_embd;
  3142. const int n_head_kv = hparams.n_head_kv();
  3143. int attn_key_value_size;
  3144. if (n_head_kv == 0 || attn_hidden_size / head_size == n_head_kv) {
  3145. attn_key_value_size = attn_hidden_size;
  3146. } else {
  3147. attn_key_value_size = n_head_kv * head_size;
  3148. }
  3149. for (int i = 0; i < n_layer; ++i) {
  3150. auto & layer = layers[i];
  3151. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3152. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, time_mix_extra_dim * 5}, 0);
  3153. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {time_mix_extra_dim, n_embd, 5}, 0);
  3154. layer.time_mix_lerp_x = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_X, "weight", i), {n_embd, 1, 1}, 0);
  3155. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3156. layer.time_mix_first = create_tensor(tn(LLM_TENSOR_TIME_MIX_FIRST, "weight", i), {head_size, n_embd / head_size}, TENSOR_NOT_REQUIRED);
  3157. layer.time_mix_decay = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY, "weight", i), {n_embd}, 0);
  3158. layer.time_mix_decay_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W1, "weight", i), {n_embd, time_decay_extra_dim}, 0);
  3159. layer.time_mix_decay_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_DECAY_W2, "weight", i), {time_decay_extra_dim, attn_hidden_size}, 0);
  3160. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {n_embd, attn_key_value_size}, 0);
  3161. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {n_embd, attn_key_value_size}, 0);
  3162. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3163. layer.time_mix_gate = create_tensor(tn(LLM_TENSOR_TIME_MIX_GATE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3164. // optional bias tensors
  3165. layer.time_mix_key_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3166. layer.time_mix_value_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "bias", i), {attn_key_value_size}, TENSOR_NOT_REQUIRED);
  3167. layer.time_mix_receptance_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "bias", i), {attn_hidden_size}, TENSOR_NOT_REQUIRED);
  3168. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3169. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3170. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3171. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3172. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3173. }
  3174. } break;
  3175. case LLM_ARCH_RWKV7:
  3176. {
  3177. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3178. // Block 0, LN0
  3179. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}, 0);
  3180. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}, 0);
  3181. // output
  3182. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3183. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3184. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3185. const int n_lora_decay = hparams.n_lora_decay;
  3186. const int n_lora_iclr = hparams.n_lora_iclr;
  3187. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3188. const int n_lora_gate = hparams.n_lora_gate;
  3189. const int attn_hidden_size = n_embd;
  3190. const int ffn_size = hparams.n_ff_arr[0];
  3191. for (int i = 0; i < n_layer; ++i) {
  3192. auto & layer = layers[i];
  3193. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3194. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, 0);
  3195. layer.attn_norm_2 = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, 0);
  3196. layer.attn_norm_2_b = create_tensor(tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, 0);
  3197. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3198. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3199. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3200. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3201. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3202. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3203. if (i == 0) {
  3204. // actually not used
  3205. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3206. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3207. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3208. } else {
  3209. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3210. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3211. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3212. }
  3213. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, 0);
  3214. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, 0);
  3215. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3216. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3217. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3218. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3219. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3220. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3221. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3222. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, 0);
  3223. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, 0);
  3224. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3225. layer.channel_mix_lerp_k = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_LERP_K, "weight", i), {n_embd, 1, 1}, 0);
  3226. layer.channel_mix_key = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_KEY, "weight", i), {n_embd, ffn_size}, 0);
  3227. layer.channel_mix_value = create_tensor(tn(LLM_TENSOR_CHANNEL_MIX_VALUE, "weight", i), {ffn_size, n_embd}, 0);
  3228. }
  3229. } break;
  3230. case LLM_ARCH_ARWKV7:
  3231. {
  3232. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3233. // output
  3234. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3235. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3236. const int n_lora_decay = hparams.n_lora_decay;
  3237. const int n_lora_iclr = hparams.n_lora_iclr;
  3238. const int n_lora_value_res_mix = hparams.n_lora_value_res_mix;
  3239. const int n_lora_gate = hparams.n_lora_gate;
  3240. const int attn_hidden_size = n_embd;
  3241. for (int i = 0; i < n_layer; ++i) {
  3242. auto & layer = layers[i];
  3243. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3244. layer.time_mix_w0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W0, "weight", i), {n_embd}, 0);
  3245. layer.time_mix_w1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W1, "weight", i), {n_embd, n_lora_decay}, 0);
  3246. layer.time_mix_w2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_W2, "weight", i), {n_lora_decay, n_embd}, 0);
  3247. layer.time_mix_a0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A0, "weight", i), {n_embd}, 0);
  3248. layer.time_mix_a1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3249. layer.time_mix_a2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_A2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3250. if (i == 0) {
  3251. // actually not used
  3252. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3253. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_iclr}, 0);
  3254. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_iclr, n_embd}, 0);
  3255. } else {
  3256. layer.time_mix_v0 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V0, "weight", i), {n_embd}, 0);
  3257. layer.time_mix_v1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V1, "weight", i), {n_embd, n_lora_value_res_mix}, 0);
  3258. layer.time_mix_v2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_V2, "weight", i), {n_lora_value_res_mix, n_embd}, 0);
  3259. }
  3260. layer.time_mix_g1 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G1, "weight", i), {n_embd, n_lora_gate}, TENSOR_NOT_REQUIRED);
  3261. layer.time_mix_g2 = create_tensor(tn(LLM_TENSOR_TIME_MIX_G2, "weight", i), {n_lora_gate, n_embd}, TENSOR_NOT_REQUIRED);
  3262. try {
  3263. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 6}, 0);
  3264. } catch(std::runtime_error & e) {
  3265. // ARWKV models may not have gate tensors
  3266. layer.time_mix_lerp_fused = create_tensor(tn(LLM_TENSOR_TIME_MIX_LERP_FUSED, "weight", i), {n_embd, 1, 1, 5}, 0);
  3267. }
  3268. layer.time_mix_k_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_K, "weight", i), {attn_hidden_size}, 0);
  3269. layer.time_mix_k_a = create_tensor(tn(LLM_TENSOR_TIME_MIX_K_A, "weight", i), {attn_hidden_size}, 0);
  3270. layer.time_mix_r_k = create_tensor(tn(LLM_TENSOR_TIME_MIX_R_K, "weight", i), {attn_hidden_size}, 0);
  3271. layer.time_mix_key = create_tensor(tn(LLM_TENSOR_TIME_MIX_KEY, "weight", i), {attn_hidden_size, n_embd}, 0);
  3272. layer.time_mix_value = create_tensor(tn(LLM_TENSOR_TIME_MIX_VALUE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3273. layer.time_mix_receptance = create_tensor(tn(LLM_TENSOR_TIME_MIX_RECEPTANCE, "weight", i), {attn_hidden_size, n_embd}, 0);
  3274. layer.time_mix_ln = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "weight", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3275. layer.time_mix_ln_b = create_tensor(tn(LLM_TENSOR_TIME_MIX_LN, "bias", i), {n_embd}, TENSOR_NOT_REQUIRED);
  3276. layer.time_mix_output = create_tensor(tn(LLM_TENSOR_TIME_MIX_OUTPUT, "weight", i), {n_embd, attn_hidden_size}, 0);
  3277. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3278. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3279. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3280. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3281. }
  3282. } break;
  3283. case LLM_ARCH_CHAMELEON:
  3284. {
  3285. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3286. // output
  3287. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3288. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
  3289. // if output is NULL, init from the input tok embed
  3290. if (output == NULL) {
  3291. output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
  3292. }
  3293. for (int i = 0; i < n_layer; ++i) {
  3294. auto & layer = layers[i];
  3295. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3296. layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k, n_head}, 0);
  3297. layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k, n_head_kv}, 0);
  3298. layer.attn_q_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd_head_k, n_head}, TENSOR_NOT_REQUIRED);
  3299. layer.attn_k_norm_b = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd_head_k, n_head_kv}, TENSOR_NOT_REQUIRED);
  3300. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, 0);
  3301. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, 0);
  3302. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, 0);
  3303. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, 0);
  3304. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3305. layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
  3306. layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
  3307. layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
  3308. }
  3309. } break;
  3310. case LLM_ARCH_WAVTOKENIZER_DEC:
  3311. {
  3312. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {hparams.n_embd_features, n_vocab}, 0);
  3313. conv1d = create_tensor(tn(LLM_TENSOR_CONV1D, "weight"), {7, hparams.n_embd_features, hparams.posnet.n_embd}, 0);
  3314. conv1d_b = create_tensor(tn(LLM_TENSOR_CONV1D, "bias"), {1, hparams.posnet.n_embd}, 0);
  3315. // posnet
  3316. {
  3317. const int64_t n_embd = hparams.posnet.n_embd;
  3318. for (uint32_t i = 0; i < hparams.posnet.n_layer; ++i) {
  3319. auto & layer = layers[i].posnet;
  3320. // posnet:
  3321. //
  3322. // - resnet
  3323. // - resnet
  3324. // - attn
  3325. // - resnet
  3326. // - resnet
  3327. // - norm
  3328. //
  3329. switch (i) {
  3330. case 0:
  3331. case 1:
  3332. case 3:
  3333. case 4:
  3334. {
  3335. layer.norm1 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "weight", i), {1, n_embd}, 0);
  3336. layer.norm1_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM1, "bias", i), {1, n_embd}, 0);
  3337. layer.conv1 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "weight", i), {3, n_embd, n_embd}, 0);
  3338. layer.conv1_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV1, "bias", i), {1, n_embd}, 0);
  3339. layer.norm2 = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "weight", i), {1, n_embd}, 0);
  3340. layer.norm2_b = create_tensor(tn(LLM_TENSOR_POS_NET_NORM2, "bias", i), {1, n_embd}, 0);
  3341. layer.conv2 = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "weight", i), {3, n_embd, n_embd}, 0);
  3342. layer.conv2_b = create_tensor(tn(LLM_TENSOR_POS_NET_CONV2, "bias", i), {1, n_embd}, 0);
  3343. } break;
  3344. case 2:
  3345. {
  3346. layer.attn_norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3347. layer.attn_norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3348. layer.attn_q = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "weight", i), {1, n_embd, n_embd}, 0);
  3349. layer.attn_q_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_Q, "bias", i), {1, n_embd}, 0);
  3350. layer.attn_k = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "weight", i), {1, n_embd, n_embd}, 0);
  3351. layer.attn_k_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_K, "bias", i), {1, n_embd}, 0);
  3352. layer.attn_v = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "weight", i), {1, n_embd, n_embd}, 0);
  3353. layer.attn_v_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_V, "bias", i), {1, n_embd}, 0);
  3354. layer.attn_o = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "weight", i), {1, n_embd, n_embd}, 0);
  3355. layer.attn_o_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_OUT, "bias", i), {1, n_embd}, 0);
  3356. } break;
  3357. case 5:
  3358. {
  3359. layer.norm = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "weight", i), {1, n_embd}, 0);
  3360. layer.norm_b = create_tensor(tn(LLM_TENSOR_POS_NET_ATTN_NORM, "bias", i), {1, n_embd}, 0);
  3361. } break;
  3362. default: GGML_ABORT("unknown posnet layer");
  3363. };
  3364. }
  3365. }
  3366. GGML_ASSERT(hparams.posnet.n_embd == hparams.convnext.n_embd);
  3367. tok_norm = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {hparams.posnet.n_embd}, 0);
  3368. tok_norm_b = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {hparams.posnet.n_embd}, 0);
  3369. // convnext
  3370. {
  3371. const int64_t n_embd = hparams.convnext.n_embd;
  3372. for (uint32_t i = 0; i < hparams.convnext.n_layer; ++i) {
  3373. auto & layer = layers[i].convnext;
  3374. layer.dw = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "weight", i), {7, 1, n_embd}, 0);
  3375. layer.dw_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_DW, "bias", i), {1, n_embd}, 0);
  3376. layer.norm = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "weight", i), {n_embd}, 0);
  3377. layer.norm_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_NORM, "bias", i), {n_embd}, 0);
  3378. layer.pw1 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "weight", i), {n_embd, n_ff}, 0);
  3379. layer.pw1_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW1, "bias", i), {n_ff}, 0);
  3380. layer.pw2 = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "weight", i), {n_ff, n_embd}, 0);
  3381. layer.pw2_b = create_tensor(tn(LLM_TENSOR_CONVNEXT_PW2, "bias", i), {n_embd}, 0);
  3382. layer.gamma = create_tensor(tn(LLM_TENSOR_CONVNEXT_GAMMA, "weight", i), {n_embd}, 0);
  3383. }
  3384. // output
  3385. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3386. output_norm_b = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, 0);
  3387. }
  3388. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {hparams.convnext.n_embd, n_embd}, 0);
  3389. output_b = create_tensor(tn(LLM_TENSOR_OUTPUT, "bias"), {n_embd}, 0);
  3390. } break;
  3391. case LLM_ARCH_BAILINGMOE:
  3392. {
  3393. const int64_t n_ff_exp = hparams.n_ff_exp;
  3394. const int64_t n_expert_shared = hparams.n_expert_shared;
  3395. tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
  3396. // output
  3397. output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
  3398. output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, 0);
  3399. for (int i = 0; i < n_layer; ++i) {
  3400. auto & layer = layers[i];
  3401. layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
  3402. layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_head * n_rot}, 0);
  3403. layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3404. layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_head_kv * n_rot}, 0);
  3405. layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_head * n_rot, n_embd}, 0);
  3406. layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
  3407. layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
  3408. if (n_expert == 0) {
  3409. throw std::runtime_error("n_expert must be > 0");
  3410. }
  3411. if (n_expert_used == 0) {
  3412. throw std::runtime_error("n_expert_used must be > 0");
  3413. }
  3414. layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3415. layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
  3416. layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
  3417. layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3418. layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
  3419. layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
  3420. }
  3421. } break;
  3422. default:
  3423. throw std::runtime_error("unknown architecture");
  3424. }
  3425. if (n_moved_tensors > 0) {
  3426. LLAMA_LOG_DEBUG("%s: tensor '%s' (%s) (and %d others) cannot be used with preferred buffer type %s, using %s instead\n",
  3427. __func__, first_moved_tensor->name, ggml_type_name(first_moved_tensor->type), n_moved_tensors - 1,
  3428. ggml_backend_buft_name(first_moved_from_buft), ggml_backend_buft_name(first_moved_to_buft));
  3429. }
  3430. }
  3431. ml.done_getting_tensors();
  3432. ml.init_mappings(true, use_mlock ? &pimpl->mlock_mmaps : nullptr);
  3433. pimpl->mappings.reserve(ml.mappings.size());
  3434. // create the backend buffers
  3435. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  3436. ctx_bufs.reserve(ctx_map.size());
  3437. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  3438. const size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  3439. pimpl->bufs.reserve(n_max_backend_buffer);
  3440. for (auto & it : ctx_map) {
  3441. ggml_backend_buffer_type_t buft = it.first;
  3442. ggml_context * ctx = it.second;
  3443. // skip contexts without tensors
  3444. if (ggml_get_first_tensor(ctx) == nullptr) {
  3445. continue;
  3446. }
  3447. llama_buf_map buf_map;
  3448. buf_map.reserve(n_max_backend_buffer);
  3449. // check if it is possible to use buffer_from_host_ptr with this buffer type
  3450. ggml_backend_dev_t dev = ggml_backend_buft_get_device(buft);
  3451. if (!dev) {
  3452. // FIXME: workaround for CPU backend buft having a NULL device
  3453. dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  3454. if (!dev) {
  3455. throw std::runtime_error(format("%s: no CPU backend found", __func__));
  3456. }
  3457. }
  3458. ggml_backend_dev_props props;
  3459. ggml_backend_dev_get_props(dev, &props);
  3460. bool buffer_from_host_ptr_supported = props.caps.buffer_from_host_ptr;
  3461. bool is_default_buft = buft == ggml_backend_dev_buffer_type(dev);
  3462. if (ml.use_mmap && use_mmap_buffer && buffer_from_host_ptr_supported && is_default_buft) {
  3463. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3464. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3465. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3466. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3467. void * addr = nullptr;
  3468. size_t first, last; // NOLINT
  3469. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  3470. if (first >= last) {
  3471. continue;
  3472. }
  3473. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3474. ggml_backend_buffer_t buf = ggml_backend_dev_buffer_from_host_ptr(dev, (char *) addr + first, last - first, max_size);
  3475. if (buf == nullptr) {
  3476. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3477. }
  3478. pimpl->bufs.emplace_back(buf);
  3479. buf_map.emplace(idx, buf);
  3480. }
  3481. }
  3482. else {
  3483. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3484. if (buf == nullptr) {
  3485. throw std::runtime_error(format("unable to allocate %s buffer", ggml_backend_buft_name(buft)));
  3486. }
  3487. pimpl->bufs.emplace_back(buf);
  3488. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  3489. pimpl->mlock_bufs.emplace_back(new llama_mlock);
  3490. auto & mlock_buf = pimpl->mlock_bufs.back();
  3491. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3492. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3493. }
  3494. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  3495. buf_map.emplace(idx, buf);
  3496. }
  3497. }
  3498. if (pimpl->bufs.empty()) {
  3499. throw std::runtime_error("failed to allocate buffer");
  3500. }
  3501. for (auto & buf : buf_map) {
  3502. // indicate that this buffer contains weights
  3503. // this is used by ggml_backend_sched to improve op scheduling: ops that use a weight are preferably scheduled to the backend that contains the weight
  3504. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3505. }
  3506. ctx_bufs.emplace_back(ctx, buf_map);
  3507. }
  3508. if (llama_supports_gpu_offload()) {
  3509. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3510. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3511. if (n_gpu_layers > (int) hparams.n_layer) {
  3512. LLAMA_LOG_INFO("%s: offloading output layer to GPU\n", __func__);
  3513. }
  3514. const int max_backend_supported_layers = hparams.n_layer + 1;
  3515. const int max_offloadable_layers = hparams.n_layer + 1;
  3516. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3517. }
  3518. // print memory requirements per buffer type
  3519. for (auto & buf : pimpl->bufs) {
  3520. LLAMA_LOG_INFO("%s: %12s model buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf.get()), ggml_backend_buffer_get_size(buf.get()) / 1024.0 / 1024.0);
  3521. }
  3522. // populate tensors_by_name
  3523. for (auto & ctx : pimpl->ctxs) {
  3524. for (auto * cur = ggml_get_first_tensor(ctx.get()); cur != NULL; cur = ggml_get_next_tensor(ctx.get(), cur)) {
  3525. tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3526. }
  3527. }
  3528. // load tensor data
  3529. for (auto & it : ctx_bufs) {
  3530. ggml_context * ctx = it.first;
  3531. auto & bufs = it.second;
  3532. if (!ml.load_all_data(ctx, bufs, use_mlock ? &pimpl->mlock_mmaps : NULL, params.progress_callback, params.progress_callback_user_data)) {
  3533. return false;
  3534. }
  3535. }
  3536. if (use_mmap_buffer) {
  3537. for (auto & mapping : ml.mappings) {
  3538. pimpl->mappings.emplace_back(std::move(mapping));
  3539. }
  3540. }
  3541. return true;
  3542. }
  3543. std::string llama_model::arch_name() const {
  3544. return llm_arch_name(arch);
  3545. }
  3546. std::string llama_model::type_name() const {
  3547. return llm_type_name(type);
  3548. }
  3549. std::string llama_model::desc() const {
  3550. return pimpl->desc_str;
  3551. }
  3552. size_t llama_model::size() const {
  3553. return pimpl->n_bytes;
  3554. }
  3555. size_t llama_model::n_tensors() const {
  3556. return tensors_by_name.size();
  3557. }
  3558. size_t llama_model::n_devices() const {
  3559. return devices.size();
  3560. }
  3561. uint64_t llama_model::n_elements() const {
  3562. return pimpl->n_elements;
  3563. }
  3564. void llama_model::print_info() const {
  3565. const std::string rope_scaling_type = llama_rope_scaling_type_name(hparams.rope_scaling_type_train);
  3566. auto print_f = [](const std::function<uint32_t(uint32_t)> & f, uint32_t n) {
  3567. bool is_var = false;
  3568. std::vector<uint32_t> v;
  3569. for (uint32_t i = 0; i < n; ++i) {
  3570. v.push_back(f(i));
  3571. if (v[i] != v[0]) {
  3572. is_var = true;
  3573. }
  3574. }
  3575. std::stringstream ss;
  3576. if (is_var) {
  3577. ss << "[";
  3578. for (uint32_t i = 0; i < n; ++i) {
  3579. ss << v[i];
  3580. if (i < n - 1) {
  3581. ss << ", ";
  3582. }
  3583. }
  3584. ss << "]";
  3585. } else {
  3586. ss << v[0];
  3587. }
  3588. return ss.str();
  3589. };
  3590. // hparams
  3591. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, arch_name().c_str());
  3592. LLAMA_LOG_INFO("%s: vocab_only = %d\n", __func__, hparams.vocab_only);
  3593. if (!hparams.vocab_only) {
  3594. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3595. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3596. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3597. LLAMA_LOG_INFO("%s: n_head = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head(il); }, hparams.n_layer).c_str());
  3598. LLAMA_LOG_INFO("%s: n_head_kv = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_head_kv(il); }, hparams.n_layer).c_str());
  3599. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3600. LLAMA_LOG_INFO("%s: n_swa = %u\n", __func__, hparams.n_swa);
  3601. LLAMA_LOG_INFO("%s: is_swa_any = %u\n", __func__, hparams.is_swa_any());
  3602. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3603. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3604. LLAMA_LOG_INFO("%s: n_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_gqa(il); }, hparams.n_layer).c_str());
  3605. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_k_gqa(il); }, hparams.n_layer).c_str());
  3606. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_embd_v_gqa(il); }, hparams.n_layer).c_str());
  3607. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3608. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3609. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3610. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3611. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3612. LLAMA_LOG_INFO("%s: f_attn_scale = %.1e\n", __func__, hparams.f_attention_scale);
  3613. LLAMA_LOG_INFO("%s: n_ff = %s\n", __func__, print_f([&](uint32_t il) { return hparams.n_ff(il); }, hparams.n_layer).c_str());
  3614. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3615. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3616. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3617. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3618. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3619. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type.c_str());
  3620. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3621. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3622. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  3623. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3624. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3625. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3626. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3627. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3628. LLAMA_LOG_INFO("%s: ssm_dt_b_c_rms = %d\n", __func__, hparams.ssm_dt_b_c_rms);
  3629. if (!classifier_labels.empty()) {
  3630. LLAMA_LOG_INFO("%s: n_cls_out = %u\n", __func__, hparams.n_cls_out);
  3631. size_t i = 0;
  3632. for (auto label : classifier_labels) {
  3633. LLAMA_LOG_INFO("%s: cls_label[%2zu] = %s\n", __func__, i++, label.c_str());
  3634. }
  3635. }
  3636. }
  3637. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, type_name().c_str());
  3638. if (pimpl->n_elements >= 1e12) {
  3639. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, pimpl->n_elements*1e-12);
  3640. } else if (pimpl->n_elements >= 1e9) {
  3641. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, pimpl->n_elements*1e-9);
  3642. } else if (pimpl->n_elements >= 1e6) {
  3643. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, pimpl->n_elements*1e-6);
  3644. } else {
  3645. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, pimpl->n_elements*1e-3);
  3646. }
  3647. // general kv
  3648. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, name.c_str());
  3649. if (arch == LLM_ARCH_DEEPSEEK) {
  3650. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3651. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3652. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3653. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3654. }
  3655. if (arch == LLM_ARCH_DEEPSEEK2) {
  3656. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3657. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  3658. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  3659. LLAMA_LOG_INFO("%s: n_embd_head_k_mla = %d\n", __func__, hparams.n_embd_head_k_mla);
  3660. LLAMA_LOG_INFO("%s: n_embd_head_v_mla = %d\n", __func__, hparams.n_embd_head_v_mla);
  3661. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3662. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3663. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3664. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3665. LLAMA_LOG_INFO("%s: expert_gating_func = %s\n", __func__, llama_expert_gating_func_name((llama_expert_gating_func_type) hparams.expert_gating_func));
  3666. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  3667. }
  3668. if (arch == LLM_ARCH_QWEN2MOE) {
  3669. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3670. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3671. }
  3672. if (arch == LLM_ARCH_QWEN3MOE) {
  3673. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3674. }
  3675. if (arch == LLM_ARCH_MINICPM ||
  3676. arch == LLM_ARCH_GRANITE ||
  3677. arch == LLM_ARCH_GRANITE_MOE) {
  3678. LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
  3679. LLAMA_LOG_INFO("%s: f_residual_scale = %f\n", __func__, hparams.f_residual_scale);
  3680. LLAMA_LOG_INFO("%s: f_attention_scale = %f\n", __func__, hparams.f_attention_scale);
  3681. LLAMA_LOG_INFO("%s: n_ff_shexp = %d\n", __func__, hparams.n_ff_shexp);
  3682. }
  3683. if (arch == LLM_ARCH_BAILINGMOE) {
  3684. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  3685. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  3686. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  3687. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  3688. LLAMA_LOG_INFO("%s: expert_weights_norm = %d\n", __func__, hparams.expert_weights_norm);
  3689. }
  3690. vocab.print_info();
  3691. }
  3692. ggml_backend_dev_t llama_model::dev_layer(int il) const {
  3693. return pimpl->dev_layer.at(il).dev;
  3694. }
  3695. ggml_backend_dev_t llama_model::dev_output() const {
  3696. return pimpl->dev_output.dev;
  3697. }
  3698. template<typename F>
  3699. static bool buft_supported(ggml_backend_buffer_type_t buft, ggml_backend_dev_t dev, F & fn) {
  3700. ggml_init_params params = {
  3701. /*.mem_size =*/ ggml_tensor_overhead()*8,
  3702. /*.mem_buffer =*/ NULL,
  3703. /*.no_alloc =*/ true,
  3704. };
  3705. ggml_context_ptr ctx { ggml_init(params) };
  3706. if (!ctx) {
  3707. throw std::runtime_error(format("failed to create ggml context"));
  3708. }
  3709. ggml_backend_buffer_ptr buf { ggml_backend_buft_alloc_buffer(buft, 0) };
  3710. ggml_tensor * op_tensor = fn(ctx.get());
  3711. for (int i = 0; i < GGML_MAX_SRC; i++) {
  3712. if (op_tensor->src[i] != nullptr) {
  3713. assert(op_tensor->src[i]->buffer == nullptr);
  3714. op_tensor->src[i]->buffer = buf.get();
  3715. }
  3716. }
  3717. bool op_supported = ggml_backend_dev_supports_op(dev, op_tensor);
  3718. return op_supported;
  3719. }
  3720. template<typename F>
  3721. static ggml_backend_buffer_type_t select_buft(const buft_list_t & buft_list, const F & fn) {
  3722. for (const auto & cur : buft_list) {
  3723. ggml_backend_dev_t cur_dev = cur.first;
  3724. ggml_backend_buffer_type_t cur_buft = cur.second;
  3725. if (buft_supported(cur_buft, cur_dev, fn)) {
  3726. return cur_buft;
  3727. }
  3728. }
  3729. throw std::runtime_error(format("no suitable buffer type found"));
  3730. }
  3731. ggml_backend_buffer_type_t llama_model::select_buft(int il) const {
  3732. return ::select_buft(
  3733. *pimpl->dev_layer.at(il).buft_list,
  3734. [&](ggml_context * ctx) {
  3735. ggml_tensor * cur = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3736. ggml_tensor * layer_dir = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, hparams.n_embd);
  3737. return ggml_add(ctx, cur, layer_dir);
  3738. });
  3739. }
  3740. bool llama_model::has_tensor_overrides() const {
  3741. return pimpl->has_tensor_overrides;
  3742. }
  3743. const ggml_tensor * llama_model::get_tensor(const char * name) const {
  3744. auto it = std::find_if(tensors_by_name.begin(), tensors_by_name.end(),
  3745. [name](const std::pair<std::string, ggml_tensor *> & it) {
  3746. return it.first == name;
  3747. });
  3748. if (it == tensors_by_name.end()) {
  3749. return nullptr;
  3750. }
  3751. return it->second;
  3752. }
  3753. float llama_model::get_rope_freq_base (const llama_cparams & cparams, int il) const {
  3754. return hparams.is_swa(il) ? hparams.rope_freq_base_train_swa : cparams.rope_freq_base;
  3755. }
  3756. float llama_model::get_rope_freq_scale(const llama_cparams & cparams, int il) const {
  3757. return hparams.is_swa(il) ? hparams.rope_freq_scale_train_swa : cparams.rope_freq_scale;
  3758. }
  3759. ggml_tensor * llama_model::get_rope_factors(const llama_cparams & cparams, int il) const {
  3760. const uint32_t n_ctx_per_seq = cparams.n_ctx / cparams.n_seq_max;
  3761. // choose long/short freq factors based on the context size
  3762. if (layers[il].rope_freqs != nullptr) {
  3763. return layers[il].rope_freqs;
  3764. }
  3765. if (n_ctx_per_seq > hparams.n_ctx_orig_yarn) {
  3766. return layers[il].rope_long;
  3767. }
  3768. return layers[il].rope_short;
  3769. }
  3770. struct llm_build_llama : public llm_graph_context {
  3771. llm_build_llama(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3772. const int64_t n_embd_head = hparams.n_embd_head_v;
  3773. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3774. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3775. ggml_tensor * cur;
  3776. ggml_tensor * inpL;
  3777. inpL = build_inp_embd(model.tok_embd);
  3778. // inp_pos - contains the positions
  3779. ggml_tensor * inp_pos = build_inp_pos();
  3780. auto * inp_attn = build_attn_inp_kv_unified();
  3781. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3782. for (int il = 0; il < n_layer; ++il) {
  3783. ggml_tensor * inpSA = inpL;
  3784. // norm
  3785. cur = build_norm(inpL,
  3786. model.layers[il].attn_norm, NULL,
  3787. LLM_NORM_RMS, il);
  3788. cb(cur, "attn_norm", il);
  3789. // self-attention
  3790. {
  3791. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3792. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  3793. // compute Q and K and RoPE them
  3794. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3795. cb(Qcur, "Qcur", il);
  3796. if (model.layers[il].bq) {
  3797. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3798. cb(Qcur, "Qcur", il);
  3799. }
  3800. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3801. cb(Kcur, "Kcur", il);
  3802. if (model.layers[il].bk) {
  3803. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3804. cb(Kcur, "Kcur", il);
  3805. }
  3806. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3807. cb(Vcur, "Vcur", il);
  3808. if (model.layers[il].bv) {
  3809. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3810. cb(Vcur, "Vcur", il);
  3811. }
  3812. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3813. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3814. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3815. Qcur = ggml_rope_ext(
  3816. ctx0, Qcur, inp_pos, rope_factors,
  3817. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3818. ext_factor, attn_factor, beta_fast, beta_slow
  3819. );
  3820. Kcur = ggml_rope_ext(
  3821. ctx0, Kcur, inp_pos, rope_factors,
  3822. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3823. ext_factor, attn_factor, beta_fast, beta_slow
  3824. );
  3825. cb(Qcur, "Qcur", il);
  3826. cb(Kcur, "Kcur", il);
  3827. cb(Vcur, "Vcur", il);
  3828. cur = build_attn(inp_attn, gf,
  3829. model.layers[il].wo, model.layers[il].bo,
  3830. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3831. cb(cur, "attn_out", il);
  3832. }
  3833. if (il == n_layer - 1) {
  3834. // skip computing output for unused tokens
  3835. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3836. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3837. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3838. }
  3839. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3840. cb(ffn_inp, "ffn_inp", il);
  3841. // feed-forward network (non-MoE)
  3842. if (model.layers[il].ffn_gate_inp == nullptr) {
  3843. cur = build_norm(ffn_inp,
  3844. model.layers[il].ffn_norm, NULL,
  3845. LLM_NORM_RMS, il);
  3846. cb(cur, "ffn_norm", il);
  3847. cur = build_ffn(cur,
  3848. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3849. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3850. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3851. NULL,
  3852. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3853. cb(cur, "ffn_out", il);
  3854. } else {
  3855. // MoE branch
  3856. cur = build_norm(ffn_inp,
  3857. model.layers[il].ffn_norm, NULL,
  3858. LLM_NORM_RMS, il);
  3859. cb(cur, "ffn_norm", il);
  3860. cur = build_moe_ffn(cur,
  3861. model.layers[il].ffn_gate_inp,
  3862. model.layers[il].ffn_up_exps,
  3863. model.layers[il].ffn_gate_exps,
  3864. model.layers[il].ffn_down_exps,
  3865. nullptr,
  3866. n_expert, n_expert_used,
  3867. LLM_FFN_SILU, true,
  3868. false, 0.0,
  3869. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  3870. il);
  3871. cb(cur, "ffn_moe_out", il);
  3872. }
  3873. cur = ggml_add(ctx0, cur, ffn_inp);
  3874. cb(cur, "ffn_out", il);
  3875. cur = build_cvec(cur, il);
  3876. cb(cur, "l_out", il);
  3877. // input for next layer
  3878. inpL = cur;
  3879. }
  3880. cur = inpL;
  3881. cur = build_norm(cur,
  3882. model.output_norm, NULL,
  3883. LLM_NORM_RMS, -1);
  3884. cb(cur, "result_norm", -1);
  3885. res->t_embd = cur;
  3886. // lm_head
  3887. cur = build_lora_mm(model.output, cur);
  3888. cb(cur, "result_output", -1);
  3889. res->t_logits = cur;
  3890. ggml_build_forward_expand(gf, cur);
  3891. }
  3892. };
  3893. struct llm_build_llama_iswa : public llm_graph_context {
  3894. llm_build_llama_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  3895. const int64_t n_embd_head = hparams.n_embd_head_v;
  3896. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  3897. GGML_ASSERT(n_embd_head == hparams.n_rot);
  3898. ggml_tensor * cur;
  3899. ggml_tensor * inpL;
  3900. inpL = build_inp_embd(model.tok_embd);
  3901. // inp_pos - contains the positions
  3902. ggml_tensor * inp_pos = build_inp_pos();
  3903. // temperature tuning
  3904. ggml_tensor * inp_attn_scale = nullptr;
  3905. inp_attn_scale = build_inp_attn_scale();
  3906. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  3907. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  3908. for (int il = 0; il < n_layer; ++il) {
  3909. ggml_tensor * inpSA = inpL;
  3910. const bool use_rope = (il + 1) % hparams.n_no_rope_layer_step != 0;
  3911. // norm
  3912. cur = build_norm(inpL,
  3913. model.layers[il].attn_norm, NULL,
  3914. LLM_NORM_RMS, il);
  3915. cb(cur, "attn_norm", il);
  3916. // self-attention
  3917. {
  3918. // rope freq factors for llama3; may return nullptr for llama2 and other models
  3919. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  3920. // compute Q and K and RoPE them
  3921. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  3922. cb(Qcur, "Qcur", il);
  3923. if (model.layers[il].bq) {
  3924. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  3925. cb(Qcur, "Qcur", il);
  3926. }
  3927. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  3928. cb(Kcur, "Kcur", il);
  3929. if (model.layers[il].bk) {
  3930. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  3931. cb(Kcur, "Kcur", il);
  3932. }
  3933. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  3934. cb(Vcur, "Vcur", il);
  3935. if (model.layers[il].bv) {
  3936. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  3937. cb(Vcur, "Vcur", il);
  3938. }
  3939. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  3940. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  3941. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  3942. if (use_rope) {
  3943. Qcur = ggml_rope_ext(
  3944. ctx0, Qcur, inp_pos, rope_factors,
  3945. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3946. ext_factor, attn_factor, beta_fast, beta_slow
  3947. );
  3948. Kcur = ggml_rope_ext(
  3949. ctx0, Kcur, inp_pos, rope_factors,
  3950. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  3951. ext_factor, attn_factor, beta_fast, beta_slow
  3952. );
  3953. } else if (inp_attn_scale) {
  3954. Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
  3955. }
  3956. cb(Qcur, "Qcur", il);
  3957. cb(Kcur, "Kcur", il);
  3958. cb(Vcur, "Vcur", il);
  3959. if (use_rope && hparams.use_kq_norm) {
  3960. // Llama4TextL2Norm
  3961. Qcur = ggml_rms_norm(ctx0, Qcur, hparams.f_norm_rms_eps);
  3962. Kcur = ggml_rms_norm(ctx0, Kcur, hparams.f_norm_rms_eps);
  3963. cb(Qcur, "Qcur_normed", il);
  3964. cb(Kcur, "Kcur_normed", il);
  3965. }
  3966. cur = build_attn(inp_attn, gf,
  3967. model.layers[il].wo, model.layers[il].bo,
  3968. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  3969. cb(cur, "attn_out", il);
  3970. }
  3971. if (il == n_layer - 1) {
  3972. // skip computing output for unused tokens
  3973. ggml_tensor * inp_out_ids = build_inp_out_ids();
  3974. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  3975. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  3976. }
  3977. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  3978. cb(ffn_inp, "ffn_inp", il);
  3979. // feed-forward network (non-MoE)
  3980. if (model.layers[il].ffn_gate_inp == nullptr) {
  3981. cur = build_norm(ffn_inp,
  3982. model.layers[il].ffn_norm, NULL,
  3983. LLM_NORM_RMS, il);
  3984. cb(cur, "ffn_norm", il);
  3985. cur = build_ffn(cur,
  3986. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  3987. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  3988. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  3989. NULL,
  3990. LLM_FFN_SILU, LLM_FFN_PAR, il);
  3991. cb(cur, "ffn_out", il);
  3992. } else {
  3993. ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
  3994. model.layers[il].ffn_norm, NULL,
  3995. LLM_NORM_RMS, il);
  3996. cb(cur, "ffn_norm", il);
  3997. ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
  3998. model.layers[il].ffn_gate_inp,
  3999. model.layers[il].ffn_up_exps,
  4000. model.layers[il].ffn_gate_exps,
  4001. model.layers[il].ffn_down_exps,
  4002. nullptr,
  4003. n_expert, n_expert_used,
  4004. LLM_FFN_SILU, false,
  4005. false, 0.0,
  4006. LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
  4007. il);
  4008. // Shared experts
  4009. ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
  4010. model.layers[il].ffn_up_shexp, NULL, NULL,
  4011. model.layers[il].ffn_gate_shexp, NULL, NULL,
  4012. model.layers[il].ffn_down_shexp, NULL, NULL,
  4013. NULL,
  4014. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4015. cb(shexp_out, "ffn_moe_shexp", il);
  4016. cur = ggml_add(ctx0, moe_out, shexp_out);
  4017. cb(cur, "ffn_moe_out_merged", il);
  4018. }
  4019. cur = ggml_add(ctx0, cur, ffn_inp);
  4020. cb(cur, "ffn_out", il);
  4021. cur = build_cvec(cur, il);
  4022. cb(cur, "l_out", il);
  4023. // input for next layer
  4024. inpL = cur;
  4025. }
  4026. cur = inpL;
  4027. cur = build_norm(cur,
  4028. model.output_norm, NULL,
  4029. LLM_NORM_RMS, -1);
  4030. cb(cur, "result_norm", -1);
  4031. res->t_embd = cur;
  4032. // lm_head
  4033. cur = build_lora_mm(model.output, cur);
  4034. cb(cur, "result_output", -1);
  4035. res->t_logits = cur;
  4036. ggml_build_forward_expand(gf, cur);
  4037. }
  4038. };
  4039. struct llm_build_deci : public llm_graph_context {
  4040. llm_build_deci(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4041. const int64_t n_embd_head = hparams.n_embd_head_v;
  4042. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4043. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4044. ggml_tensor * cur;
  4045. ggml_tensor * inpL;
  4046. inpL = build_inp_embd(model.tok_embd);
  4047. // inp_pos - contains the positions
  4048. ggml_tensor * inp_pos = build_inp_pos();
  4049. auto * inp_attn = build_attn_inp_kv_unified();
  4050. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  4051. for (int il = 0; il < n_layer; ++il) {
  4052. ggml_tensor * inpSA = inpL;
  4053. const int64_t n_head_kv = hparams.n_head_kv(il);
  4054. const int64_t n_head = hparams.n_head(il);
  4055. const int64_t n_ff = hparams.n_ff(il);
  4056. if (n_head == 0) {
  4057. // attention-free layer of Llama-3_1-Nemotron-51B
  4058. cur = inpL;
  4059. } else {
  4060. // norm
  4061. cur = build_norm(inpL,
  4062. model.layers[il].attn_norm, NULL,
  4063. LLM_NORM_RMS, il);
  4064. cb(cur, "attn_norm", il);
  4065. }
  4066. if (n_head > 0 && n_head_kv == 0) {
  4067. // "linear attention" of Llama-3_1-Nemotron-51B
  4068. cur = build_lora_mm(model.layers[il].wo, cur);
  4069. cb(cur, "wo", il);
  4070. } else if (n_head > 0) {
  4071. // self-attention
  4072. // rope freq factors for llama3; may return nullptr for llama2 and other models
  4073. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  4074. // compute Q and K and RoPE them
  4075. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4076. cb(Qcur, "Qcur", il);
  4077. if (model.layers[il].bq) {
  4078. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4079. cb(Qcur, "Qcur", il);
  4080. }
  4081. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4082. cb(Kcur, "Kcur", il);
  4083. if (model.layers[il].bk) {
  4084. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4085. cb(Kcur, "Kcur", il);
  4086. }
  4087. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4088. cb(Vcur, "Vcur", il);
  4089. if (model.layers[il].bv) {
  4090. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4091. cb(Vcur, "Vcur", il);
  4092. }
  4093. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4094. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4095. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4096. Qcur = ggml_rope_ext(
  4097. ctx0, Qcur, inp_pos, rope_factors,
  4098. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4099. ext_factor, attn_factor, beta_fast, beta_slow
  4100. );
  4101. Kcur = ggml_rope_ext(
  4102. ctx0, Kcur, inp_pos, rope_factors,
  4103. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4104. ext_factor, attn_factor, beta_fast, beta_slow
  4105. );
  4106. cb(Qcur, "Qcur", il);
  4107. cb(Kcur, "Kcur", il);
  4108. cb(Vcur, "Vcur", il);
  4109. cur = build_attn(inp_attn, gf,
  4110. model.layers[il].wo, model.layers[il].bo,
  4111. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  4112. }
  4113. if (il == n_layer - 1) {
  4114. // skip computing output for unused tokens
  4115. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4116. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4117. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4118. }
  4119. // FFN-free layer of Llama-3_1-Nemotron-Ultra-253B
  4120. if (n_ff == 0) {
  4121. continue;
  4122. }
  4123. // modified to support attention-free layer of Llama-3_1-Nemotron-51B
  4124. ggml_tensor * ffn_inp = cur;
  4125. if (n_head > 0) {
  4126. ffn_inp = ggml_add(ctx0, cur, inpSA);
  4127. cb(ffn_inp, "ffn_inp", il);
  4128. }
  4129. // feed-forward network
  4130. if (model.layers[il].ffn_gate_inp == nullptr) {
  4131. cur = build_norm(ffn_inp,
  4132. model.layers[il].ffn_norm, NULL,
  4133. LLM_NORM_RMS, il);
  4134. cb(cur, "ffn_norm", il);
  4135. cur = build_ffn(cur,
  4136. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4137. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  4138. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4139. NULL,
  4140. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4141. cb(cur, "ffn_out", il);
  4142. }
  4143. cur = ggml_add(ctx0, cur, ffn_inp);
  4144. cb(cur, "ffn_out", il);
  4145. cur = build_cvec(cur, il);
  4146. cb(cur, "l_out", il);
  4147. // input for next layer
  4148. inpL = cur;
  4149. }
  4150. cur = inpL;
  4151. cur = build_norm(cur,
  4152. model.output_norm, NULL,
  4153. LLM_NORM_RMS, -1);
  4154. cb(cur, "result_norm", -1);
  4155. res->t_embd = cur;
  4156. // lm_head
  4157. cur = build_lora_mm(model.output, cur);
  4158. cb(cur, "result_output", -1);
  4159. res->t_logits = cur;
  4160. ggml_build_forward_expand(gf, cur);
  4161. }
  4162. };
  4163. struct llm_build_baichuan : public llm_graph_context {
  4164. llm_build_baichuan(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4165. const int64_t n_embd_head = hparams.n_embd_head_v;
  4166. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4167. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4168. ggml_tensor * cur;
  4169. ggml_tensor * inpL;
  4170. inpL = build_inp_embd(model.tok_embd);
  4171. // inp_pos - contains the positions
  4172. ggml_tensor * inp_pos = model.type == LLM_TYPE_7B ? build_inp_pos() : nullptr;
  4173. auto * inp_attn = build_attn_inp_kv_unified();
  4174. for (int il = 0; il < n_layer; ++il) {
  4175. ggml_tensor * inpSA = inpL;
  4176. cur = build_norm(inpL,
  4177. model.layers[il].attn_norm, NULL,
  4178. LLM_NORM_RMS, il);
  4179. cb(cur, "attn_norm", il);
  4180. // self-attention
  4181. {
  4182. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4183. cb(Qcur, "Qcur", il);
  4184. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4185. cb(Kcur, "Kcur", il);
  4186. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4187. cb(Vcur, "Vcur", il);
  4188. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4189. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4190. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4191. switch (model.type) {
  4192. case LLM_TYPE_7B:
  4193. Qcur = ggml_rope_ext(
  4194. ctx0, Qcur, inp_pos, nullptr,
  4195. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4196. ext_factor, attn_factor, beta_fast, beta_slow
  4197. );
  4198. Kcur = ggml_rope_ext(
  4199. ctx0, Kcur, inp_pos, nullptr,
  4200. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4201. ext_factor, attn_factor, beta_fast, beta_slow
  4202. );
  4203. break;
  4204. case LLM_TYPE_13B:
  4205. break;
  4206. default:
  4207. GGML_ABORT("fatal error");
  4208. }
  4209. cb(Qcur, "Qcur", il);
  4210. cb(Kcur, "Kcur", il);
  4211. cb(Vcur, "Vcur", il);
  4212. cur = build_attn(inp_attn, gf,
  4213. model.layers[il].wo, NULL,
  4214. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4215. }
  4216. if (il == n_layer - 1) {
  4217. // skip computing output for unused tokens
  4218. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4219. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4220. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4221. }
  4222. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4223. cb(ffn_inp, "ffn_inp", il);
  4224. // feed-forward network
  4225. {
  4226. cur = build_norm(ffn_inp,
  4227. model.layers[il].ffn_norm, NULL,
  4228. LLM_NORM_RMS, il);
  4229. cb(cur, "ffn_norm", il);
  4230. cur = build_ffn(cur,
  4231. model.layers[il].ffn_up, NULL, NULL,
  4232. model.layers[il].ffn_gate, NULL, NULL,
  4233. model.layers[il].ffn_down, NULL, NULL,
  4234. NULL,
  4235. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4236. cb(cur, "ffn_out", il);
  4237. }
  4238. cur = ggml_add(ctx0, cur, ffn_inp);
  4239. cur = build_cvec(cur, il);
  4240. cb(cur, "l_out", il);
  4241. // input for next layer
  4242. inpL = cur;
  4243. }
  4244. cur = inpL;
  4245. cur = build_norm(cur,
  4246. model.output_norm, NULL,
  4247. LLM_NORM_RMS, -1);
  4248. cb(cur, "result_norm", -1);
  4249. res->t_embd = cur;
  4250. // lm_head
  4251. cur = build_lora_mm(model.output, cur);
  4252. cb(cur, "result_output", -1);
  4253. res->t_logits = cur;
  4254. ggml_build_forward_expand(gf, cur);
  4255. }
  4256. };
  4257. struct llm_build_xverse : public llm_graph_context {
  4258. llm_build_xverse(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4259. const int64_t n_embd_head = hparams.n_embd_head_v;
  4260. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4261. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4262. ggml_tensor * cur;
  4263. ggml_tensor * inpL;
  4264. inpL = build_inp_embd(model.tok_embd);
  4265. // inp_pos - contains the positions
  4266. ggml_tensor * inp_pos = build_inp_pos();
  4267. auto * inp_attn = build_attn_inp_kv_unified();
  4268. for (int il = 0; il < n_layer; ++il) {
  4269. ggml_tensor * inpSA = inpL;
  4270. cur = build_norm(inpL,
  4271. model.layers[il].attn_norm, NULL,
  4272. LLM_NORM_RMS, il);
  4273. cb(cur, "attn_norm", il);
  4274. // self-attention
  4275. {
  4276. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4277. cb(Qcur, "Qcur", il);
  4278. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4279. cb(Kcur, "Kcur", il);
  4280. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4281. cb(Vcur, "Vcur", il);
  4282. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4283. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4284. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4285. Qcur = ggml_rope_ext(
  4286. ctx0, Qcur, inp_pos, nullptr,
  4287. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4288. ext_factor, attn_factor, beta_fast, beta_slow
  4289. );
  4290. Kcur = ggml_rope_ext(
  4291. ctx0, Kcur, inp_pos, nullptr,
  4292. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4293. ext_factor, attn_factor, beta_fast, beta_slow
  4294. );
  4295. cb(Qcur, "Qcur", il);
  4296. cb(Kcur, "Kcur", il);
  4297. cb(Vcur, "Vcur", il);
  4298. cur = build_attn(inp_attn, gf,
  4299. model.layers[il].wo, NULL,
  4300. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4301. }
  4302. if (il == n_layer - 1) {
  4303. // skip computing output for unused tokens
  4304. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4305. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4306. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4307. }
  4308. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4309. cb(ffn_inp, "ffn_inp", il);
  4310. // feed-forward network
  4311. {
  4312. cur = build_norm(ffn_inp,
  4313. model.layers[il].ffn_norm, NULL,
  4314. LLM_NORM_RMS, il);
  4315. cb(cur, "ffn_norm", il);
  4316. cur = build_ffn(cur,
  4317. model.layers[il].ffn_up, NULL, NULL,
  4318. model.layers[il].ffn_gate, NULL, NULL,
  4319. model.layers[il].ffn_down, NULL, NULL,
  4320. NULL,
  4321. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4322. cb(cur, "ffn_out", il);
  4323. }
  4324. cur = ggml_add(ctx0, cur, ffn_inp);
  4325. cur = build_cvec(cur, il);
  4326. cb(cur, "l_out", il);
  4327. // input for next layer
  4328. inpL = cur;
  4329. }
  4330. cur = inpL;
  4331. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM_RMS, -1);
  4332. cb(cur, "result_norm", -1);
  4333. res->t_embd = cur;
  4334. // lm_head
  4335. cur = build_lora_mm(model.output, cur);
  4336. cb(cur, "result_output", -1);
  4337. res->t_logits = cur;
  4338. ggml_build_forward_expand(gf, cur);
  4339. }
  4340. };
  4341. struct llm_build_falcon : public llm_graph_context {
  4342. llm_build_falcon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4343. const int64_t n_embd_head = hparams.n_embd_head_v;
  4344. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4345. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4346. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4347. ggml_tensor * cur;
  4348. ggml_tensor * inpL;
  4349. inpL = build_inp_embd(model.tok_embd);
  4350. // inp_pos - contains the positions
  4351. ggml_tensor * inp_pos = build_inp_pos();
  4352. auto * inp_attn = build_attn_inp_kv_unified();
  4353. for (int il = 0; il < n_layer; ++il) {
  4354. ggml_tensor * attn_norm;
  4355. attn_norm = build_norm(inpL,
  4356. model.layers[il].attn_norm,
  4357. model.layers[il].attn_norm_b,
  4358. LLM_NORM, il);
  4359. cb(attn_norm, "attn_norm", il);
  4360. // self-attention
  4361. {
  4362. if (model.layers[il].attn_norm_2) {
  4363. // Falcon-40B
  4364. cur = build_norm(inpL,
  4365. model.layers[il].attn_norm_2,
  4366. model.layers[il].attn_norm_2_b,
  4367. LLM_NORM, il);
  4368. cb(cur, "attn_norm_2", il);
  4369. } else {
  4370. cur = attn_norm;
  4371. }
  4372. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4373. cb(cur, "wqkv", il);
  4374. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4375. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4376. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4377. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4378. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4379. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4380. // using mode = 2 for neox mode
  4381. Qcur = ggml_rope_ext(
  4382. ctx0, Qcur, inp_pos, nullptr,
  4383. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4384. ext_factor, attn_factor, beta_fast, beta_slow
  4385. );
  4386. Kcur = ggml_rope_ext(
  4387. ctx0, Kcur, inp_pos, nullptr,
  4388. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4389. ext_factor, attn_factor, beta_fast, beta_slow
  4390. );
  4391. cb(Qcur, "Qcur", il);
  4392. cb(Kcur, "Kcur", il);
  4393. cb(Vcur, "Vcur", il);
  4394. cur = build_attn(inp_attn, gf,
  4395. model.layers[il].wo, NULL,
  4396. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4397. }
  4398. if (il == n_layer - 1) {
  4399. // skip computing output for unused tokens
  4400. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4401. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4402. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4403. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  4404. }
  4405. ggml_tensor * ffn_inp = cur;
  4406. // feed forward
  4407. {
  4408. cur = build_ffn(attn_norm, // !! use the attn norm, not the result
  4409. model.layers[il].ffn_up, NULL, NULL,
  4410. NULL, NULL, NULL,
  4411. model.layers[il].ffn_down, NULL, NULL,
  4412. NULL,
  4413. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4414. cb(cur, "ffn_out", il);
  4415. }
  4416. cur = ggml_add(ctx0, cur, ffn_inp);
  4417. cur = ggml_add(ctx0, cur, inpL);
  4418. cur = build_cvec(cur, il);
  4419. cb(cur, "l_out", il);
  4420. // input for next layer
  4421. inpL = cur;
  4422. }
  4423. cur = inpL;
  4424. // norm
  4425. cur = build_norm(cur,
  4426. model.output_norm,
  4427. model.output_norm_b,
  4428. LLM_NORM, -1);
  4429. cb(cur, "result_norm", -1);
  4430. res->t_embd = cur;
  4431. cur = build_lora_mm(model.output, cur);
  4432. cb(cur, "result_output", -1);
  4433. res->t_logits = cur;
  4434. ggml_build_forward_expand(gf, cur);
  4435. }
  4436. };
  4437. struct llm_build_grok : public llm_graph_context {
  4438. llm_build_grok(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4439. const int64_t n_embd_head = hparams.n_embd_head_v;
  4440. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4441. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4442. ggml_tensor * cur;
  4443. ggml_tensor * inpL;
  4444. inpL = build_inp_embd(model.tok_embd);
  4445. // multiply by embedding_multiplier_scale of 78.38367176906169
  4446. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  4447. // inp_pos - contains the positions
  4448. ggml_tensor * inp_pos = build_inp_pos();
  4449. auto * inp_attn = build_attn_inp_kv_unified();
  4450. for (int il = 0; il < n_layer; ++il) {
  4451. ggml_tensor * inpSA = inpL;
  4452. // norm
  4453. cur = build_norm(inpL,
  4454. model.layers[il].attn_norm, NULL,
  4455. LLM_NORM_RMS, il);
  4456. cb(cur, "attn_norm", il);
  4457. // self-attention
  4458. {
  4459. // compute Q and K and RoPE them
  4460. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4461. cb(Qcur, "Qcur", il);
  4462. if (model.layers[il].bq) {
  4463. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4464. cb(Qcur, "Qcur", il);
  4465. }
  4466. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4467. cb(Kcur, "Kcur", il);
  4468. if (model.layers[il].bk) {
  4469. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4470. cb(Kcur, "Kcur", il);
  4471. }
  4472. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4473. cb(Vcur, "Vcur", il);
  4474. if (model.layers[il].bv) {
  4475. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4476. cb(Vcur, "Vcur", il);
  4477. }
  4478. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4479. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4480. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4481. Qcur = ggml_rope_ext(
  4482. ctx0, Qcur, inp_pos, nullptr,
  4483. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4484. ext_factor, attn_factor, beta_fast, beta_slow
  4485. );
  4486. Kcur = ggml_rope_ext(
  4487. ctx0, Kcur, inp_pos, nullptr,
  4488. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4489. ext_factor, attn_factor, beta_fast, beta_slow
  4490. );
  4491. cb(Qcur, "Qcur", il);
  4492. cb(Kcur, "Kcur", il);
  4493. cb(Vcur, "Vcur", il);
  4494. cur = build_attn(inp_attn, gf,
  4495. model.layers[il].wo, model.layers[il].bo,
  4496. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  4497. }
  4498. if (il == n_layer - 1) {
  4499. // skip computing output for unused tokens
  4500. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4501. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4502. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4503. }
  4504. // Grok
  4505. // if attn_out_norm is present then apply it before adding the input
  4506. if (model.layers[il].attn_out_norm) {
  4507. cur = build_norm(cur,
  4508. model.layers[il].attn_out_norm, NULL,
  4509. LLM_NORM_RMS, il);
  4510. cb(cur, "attn_out_norm", il);
  4511. }
  4512. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4513. cb(ffn_inp, "ffn_inp", il);
  4514. // feed-forward network
  4515. // MoE branch
  4516. cur = build_norm(ffn_inp,
  4517. model.layers[il].ffn_norm, NULL,
  4518. LLM_NORM_RMS, il);
  4519. cb(cur, "ffn_norm", il);
  4520. cur = build_moe_ffn(cur,
  4521. model.layers[il].ffn_gate_inp,
  4522. model.layers[il].ffn_up_exps,
  4523. model.layers[il].ffn_gate_exps,
  4524. model.layers[il].ffn_down_exps,
  4525. nullptr,
  4526. n_expert, n_expert_used,
  4527. LLM_FFN_GELU, true,
  4528. false, 0.0,
  4529. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4530. il);
  4531. cb(cur, "ffn_moe_out", il);
  4532. // Grok
  4533. // if layer_out_norm is present then apply it before adding the input
  4534. // Idea: maybe ffn_out_norm is a better name
  4535. if (model.layers[il].layer_out_norm) {
  4536. cur = build_norm(cur,
  4537. model.layers[il].layer_out_norm, NULL,
  4538. LLM_NORM_RMS, il);
  4539. cb(cur, "layer_out_norm", il);
  4540. }
  4541. cur = ggml_add(ctx0, cur, ffn_inp);
  4542. cb(cur, "ffn_out", il);
  4543. cur = build_cvec(cur, il);
  4544. cb(cur, "l_out", il);
  4545. // input for next layer
  4546. inpL = cur;
  4547. }
  4548. cur = inpL;
  4549. cur = build_norm(cur,
  4550. model.output_norm, NULL,
  4551. LLM_NORM_RMS, -1);
  4552. cb(cur, "result_norm", -1);
  4553. res->t_embd = cur;
  4554. // lm_head
  4555. cur = build_lora_mm(model.output, cur);
  4556. // Grok
  4557. // multiply logits by output_multiplier_scale of 0.5773502691896257
  4558. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  4559. cb(cur, "result_output", -1);
  4560. res->t_logits = cur;
  4561. ggml_build_forward_expand(gf, cur);
  4562. }
  4563. };
  4564. struct llm_build_dbrx : public llm_graph_context {
  4565. llm_build_dbrx(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4566. const int64_t n_embd_head = hparams.n_embd_head_v;
  4567. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4568. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4569. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4570. ggml_tensor * cur;
  4571. ggml_tensor * inpL;
  4572. inpL = build_inp_embd(model.tok_embd);
  4573. // inp_pos - contains the positions
  4574. ggml_tensor * inp_pos = build_inp_pos();
  4575. auto * inp_attn = build_attn_inp_kv_unified();
  4576. for (int il = 0; il < n_layer; ++il) {
  4577. ggml_tensor * inpSA = inpL;
  4578. // norm
  4579. cur = build_norm(inpL,
  4580. model.layers[il].attn_norm, NULL,
  4581. LLM_NORM, il);
  4582. cb(cur, "attn_norm", il);
  4583. // self-attention
  4584. {
  4585. ggml_tensor * Qcur = nullptr;
  4586. ggml_tensor * Kcur = nullptr;
  4587. ggml_tensor * Vcur = nullptr;
  4588. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4589. cb(cur, "wqkv", il);
  4590. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  4591. cb(cur, "wqkv_clamped", il);
  4592. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4593. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4594. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4595. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4596. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4597. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4598. Qcur = ggml_rope_ext(
  4599. ctx0, Qcur, inp_pos, nullptr,
  4600. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4601. ext_factor, attn_factor, beta_fast, beta_slow
  4602. );
  4603. Kcur = ggml_rope_ext(
  4604. ctx0, Kcur, inp_pos, nullptr,
  4605. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4606. ext_factor, attn_factor, beta_fast, beta_slow
  4607. );
  4608. cb(Qcur, "Qcur", il);
  4609. cb(Kcur, "Kcur", il);
  4610. cb(Vcur, "Vcur", il);
  4611. cur = build_attn(inp_attn, gf,
  4612. model.layers[il].wo, NULL,
  4613. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4614. }
  4615. if (il == n_layer - 1) {
  4616. // skip computing output for unused tokens
  4617. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4618. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4619. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4620. }
  4621. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4622. cb(ffn_inp, "ffn_inp", il);
  4623. // feed-forward network
  4624. // MoE branch
  4625. cur = build_norm(ffn_inp,
  4626. model.layers[il].attn_out_norm, NULL,
  4627. LLM_NORM, il);
  4628. cb(cur, "attn_out_norm", il);
  4629. cur = build_moe_ffn(cur,
  4630. model.layers[il].ffn_gate_inp,
  4631. model.layers[il].ffn_up_exps,
  4632. model.layers[il].ffn_gate_exps,
  4633. model.layers[il].ffn_down_exps,
  4634. nullptr,
  4635. n_expert, n_expert_used,
  4636. LLM_FFN_SILU, true,
  4637. false, 0.0,
  4638. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  4639. il);
  4640. cb(cur, "ffn_moe_out", il);
  4641. cur = ggml_add(ctx0, cur, ffn_inp);
  4642. cb(cur, "ffn_out", il);
  4643. cur = build_cvec(cur, il);
  4644. cb(cur, "l_out", il);
  4645. // input for next layer
  4646. inpL = cur;
  4647. }
  4648. cur = inpL;
  4649. cur = build_norm(cur,
  4650. model.output_norm, NULL,
  4651. LLM_NORM, -1);
  4652. cb(cur, "result_norm", -1);
  4653. res->t_embd = cur;
  4654. // lm_head
  4655. cur = build_lora_mm(model.output, cur);
  4656. cb(cur, "result_output", -1);
  4657. res->t_logits = cur;
  4658. ggml_build_forward_expand(gf, cur);
  4659. }
  4660. };
  4661. struct llm_build_starcoder : public llm_graph_context {
  4662. llm_build_starcoder(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4663. const int64_t n_embd_head = hparams.n_embd_head_v;
  4664. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4665. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4666. ggml_tensor * cur;
  4667. ggml_tensor * inpL;
  4668. inpL = build_inp_embd(model.tok_embd);
  4669. // inp_pos - contains the positions
  4670. ggml_tensor * inp_pos = build_inp_pos();
  4671. auto * inp_attn = build_attn_inp_kv_unified();
  4672. ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4673. cb(pos, "pos_embd", -1);
  4674. inpL = ggml_add(ctx0, inpL, pos);
  4675. cb(inpL, "inpL", -1);
  4676. for (int il = 0; il < n_layer; ++il) {
  4677. cur = build_norm(inpL,
  4678. model.layers[il].attn_norm,
  4679. model.layers[il].attn_norm_b,
  4680. LLM_NORM, il);
  4681. cb(cur, "attn_norm", il);
  4682. // self-attention
  4683. {
  4684. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4685. cb(cur, "wqkv", il);
  4686. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4687. cb(cur, "bqkv", il);
  4688. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4689. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4690. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4691. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4692. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4693. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4694. cb(Qcur, "Qcur", il);
  4695. cb(Kcur, "Kcur", il);
  4696. cb(Vcur, "Vcur", il);
  4697. cur = build_attn(inp_attn, gf,
  4698. model.layers[il].wo, model.layers[il].bo,
  4699. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4700. }
  4701. if (il == n_layer - 1) {
  4702. // skip computing output for unused tokens
  4703. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4704. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4705. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4706. }
  4707. // add the input
  4708. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4709. cb(ffn_inp, "ffn_inp", il);
  4710. // FF
  4711. {
  4712. cur = build_norm(ffn_inp,
  4713. model.layers[il].ffn_norm,
  4714. model.layers[il].ffn_norm_b,
  4715. LLM_NORM, il);
  4716. cb(cur, "ffn_norm", il);
  4717. cur = build_ffn(cur,
  4718. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4719. NULL, NULL, NULL,
  4720. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4721. NULL,
  4722. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4723. cb(cur, "ffn_out", il);
  4724. }
  4725. cur = ggml_add(ctx0, cur, ffn_inp);
  4726. cur = build_cvec(cur, il);
  4727. cb(cur, "l_out", il);
  4728. // input for next layer
  4729. inpL = cur;
  4730. }
  4731. cur = build_norm(inpL,
  4732. model.output_norm,
  4733. model.output_norm_b,
  4734. LLM_NORM, -1);
  4735. cb(cur, "result_norm", -1);
  4736. res->t_embd = cur;
  4737. cur = build_lora_mm(model.output, cur);
  4738. cb(cur, "result_output", -1);
  4739. res->t_logits = cur;
  4740. ggml_build_forward_expand(gf, cur);
  4741. }
  4742. };
  4743. struct llm_build_refact : public llm_graph_context {
  4744. llm_build_refact(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4745. const int64_t n_embd_head = hparams.n_embd_head_v;
  4746. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4747. ggml_tensor * cur;
  4748. ggml_tensor * inpL;
  4749. inpL = build_inp_embd(model.tok_embd);
  4750. auto * inp_attn = build_attn_inp_kv_unified();
  4751. for (int il = 0; il < n_layer; ++il) {
  4752. ggml_tensor * inpSA = inpL;
  4753. cur = build_norm(inpL,
  4754. model.layers[il].attn_norm, NULL,
  4755. LLM_NORM_RMS, il);
  4756. cb(cur, "attn_norm", il);
  4757. // self-attention
  4758. {
  4759. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  4760. cb(Qcur, "Qcur", il);
  4761. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  4762. cb(Kcur, "Kcur", il);
  4763. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  4764. cb(Vcur, "Vcur", il);
  4765. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4766. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4767. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4768. cb(Qcur, "Qcur", il);
  4769. cb(Kcur, "Kcur", il);
  4770. cb(Vcur, "Vcur", il);
  4771. cur = build_attn(inp_attn, gf,
  4772. model.layers[il].wo, NULL,
  4773. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4774. }
  4775. if (il == n_layer - 1) {
  4776. // skip computing output for unused tokens
  4777. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4778. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4779. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  4780. }
  4781. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4782. cb(ffn_inp, "ffn_inp", il);
  4783. // feed-forward network
  4784. {
  4785. cur = build_norm(ffn_inp,
  4786. model.layers[il].ffn_norm, NULL,
  4787. LLM_NORM_RMS, il);
  4788. cb(cur, "ffn_norm", il);
  4789. cur = build_ffn(cur,
  4790. model.layers[il].ffn_up, NULL, NULL,
  4791. model.layers[il].ffn_gate, NULL, NULL,
  4792. model.layers[il].ffn_down, NULL, NULL,
  4793. NULL,
  4794. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4795. cb(cur, "ffn_out", il);
  4796. }
  4797. cur = ggml_add(ctx0, cur, ffn_inp);
  4798. cur = build_cvec(cur, il);
  4799. cb(cur, "l_out", il);
  4800. // input for next layer
  4801. inpL = cur;
  4802. }
  4803. cur = inpL;
  4804. cur = build_norm(cur,
  4805. model.output_norm, NULL,
  4806. LLM_NORM_RMS, -1);
  4807. cb(cur, "result_norm", -1);
  4808. res->t_embd = cur;
  4809. // lm_head
  4810. cur = build_lora_mm(model.output, cur);
  4811. cb(cur, "result_output", -1);
  4812. res->t_logits = cur;
  4813. ggml_build_forward_expand(gf, cur);
  4814. }
  4815. };
  4816. struct llm_build_bert : public llm_graph_context {
  4817. llm_build_bert(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4818. const int64_t n_embd_head = hparams.n_embd_head_v;
  4819. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4820. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4821. ggml_tensor * cur;
  4822. ggml_tensor * inpL;
  4823. ggml_tensor * inp_pos = nullptr;
  4824. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  4825. inp_pos = build_inp_pos();
  4826. }
  4827. // construct input embeddings (token, type, position)
  4828. inpL = build_inp_embd(model.tok_embd);
  4829. // token types are hardcoded to zero ("Sentence A")
  4830. if (model.type_embd) {
  4831. ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  4832. inpL = ggml_add(ctx0, inpL, type_row0);
  4833. }
  4834. if (model.arch == LLM_ARCH_BERT) {
  4835. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  4836. }
  4837. cb(inpL, "inp_embd", -1);
  4838. // embed layer norm
  4839. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  4840. cb(inpL, "inp_norm", -1);
  4841. auto * inp_attn = build_attn_inp_no_cache();
  4842. // iterate layers
  4843. for (int il = 0; il < n_layer; ++il) {
  4844. ggml_tensor * cur = inpL;
  4845. ggml_tensor * Qcur;
  4846. ggml_tensor * Kcur;
  4847. ggml_tensor * Vcur;
  4848. // self-attention
  4849. if (model.layers[il].wqkv) {
  4850. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4851. cb(cur, "wqkv", il);
  4852. if (model.layers[il].bqkv) {
  4853. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4854. cb(cur, "bqkv", il);
  4855. }
  4856. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4857. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4858. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4859. } else {
  4860. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, cur), model.layers[il].bq);
  4861. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, cur), model.layers[il].bk);
  4862. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, cur), model.layers[il].bv);
  4863. }
  4864. if (model.layers[il].attn_q_norm) {
  4865. Qcur = build_norm(Qcur,
  4866. model.layers[il].attn_q_norm,
  4867. model.layers[il].attn_q_norm_b,
  4868. LLM_NORM, il);
  4869. }
  4870. if (model.layers[il].attn_k_norm) {
  4871. Kcur = build_norm(Kcur,
  4872. model.layers[il].attn_k_norm,
  4873. model.layers[il].attn_k_norm_b,
  4874. LLM_NORM, il);
  4875. }
  4876. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4877. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4878. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  4879. // RoPE
  4880. if (model.arch == LLM_ARCH_NOMIC_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4881. Qcur = ggml_rope_ext(
  4882. ctx0, Qcur, inp_pos, nullptr,
  4883. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4884. ext_factor, attn_factor, beta_fast, beta_slow
  4885. );
  4886. Kcur = ggml_rope_ext(
  4887. ctx0, Kcur, inp_pos, nullptr,
  4888. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  4889. ext_factor, attn_factor, beta_fast, beta_slow
  4890. );
  4891. }
  4892. cb(Qcur, "Qcur", il);
  4893. cb(Kcur, "Kcur", il);
  4894. cb(Vcur, "Vcur", il);
  4895. cur = build_attn(inp_attn, gf,
  4896. model.layers[il].wo, model.layers[il].bo,
  4897. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  4898. cb(cur, "kqv_out", il);
  4899. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  4900. // skip computing output for unused tokens
  4901. ggml_tensor * inp_out_ids = build_inp_out_ids();
  4902. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  4903. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  4904. }
  4905. // re-add the layer input
  4906. cur = ggml_add(ctx0, cur, inpL);
  4907. // attention layer norm
  4908. cur = build_norm(cur, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, il);
  4909. if (model.layers[il].attn_norm_2 != nullptr) {
  4910. cur = ggml_add(ctx0, cur, inpL); // re-add the layer input
  4911. cur = build_norm(cur, model.layers[il].attn_norm_2, model.layers[il].attn_norm_2_b, LLM_NORM, il);
  4912. }
  4913. ggml_tensor * ffn_inp = cur;
  4914. cb(ffn_inp, "ffn_inp", il);
  4915. // feed-forward network
  4916. if (hparams.moe_every_n_layers > 0 && il % hparams.moe_every_n_layers == 1) {
  4917. // MoE branch
  4918. cur = build_moe_ffn(cur,
  4919. model.layers[il].ffn_gate_inp,
  4920. model.layers[il].ffn_up_exps,
  4921. nullptr,
  4922. model.layers[il].ffn_down_exps,
  4923. nullptr,
  4924. hparams.n_expert,
  4925. hparams.n_expert_used,
  4926. LLM_FFN_GELU,
  4927. false, false,
  4928. 0.0f,
  4929. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX, il);
  4930. cb(cur, "ffn_moe_out", il);
  4931. } else if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_NOMIC_BERT_MOE) {
  4932. cur = build_ffn(cur,
  4933. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  4934. NULL, NULL, NULL,
  4935. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4936. NULL,
  4937. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  4938. cb(cur, "ffn_out", il);
  4939. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  4940. cur = build_ffn(cur,
  4941. model.layers[il].ffn_up, NULL, NULL,
  4942. model.layers[il].ffn_gate, NULL, NULL,
  4943. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  4944. NULL,
  4945. model.layers[il].ffn_gate ? LLM_FFN_GELU : LLM_FFN_GEGLU, LLM_FFN_PAR, il);
  4946. cb(cur, "ffn_out", il);
  4947. } else {
  4948. cur = build_ffn(cur,
  4949. model.layers[il].ffn_up, NULL, NULL,
  4950. model.layers[il].ffn_gate, NULL, NULL,
  4951. model.layers[il].ffn_down, NULL, NULL,
  4952. NULL,
  4953. LLM_FFN_SILU, LLM_FFN_PAR, il);
  4954. cb(cur, "ffn_out", il);
  4955. }
  4956. // attentions bypass the intermediate layer
  4957. cur = ggml_add(ctx0, cur, ffn_inp);
  4958. // output layer norm
  4959. cur = build_norm(cur, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, il);
  4960. // input for next layer
  4961. inpL = cur;
  4962. }
  4963. cur = inpL;
  4964. cb(cur, "result_embd", -1);
  4965. res->t_embd = cur;
  4966. ggml_build_forward_expand(gf, cur);
  4967. }
  4968. };
  4969. struct llm_build_bloom : public llm_graph_context {
  4970. llm_build_bloom(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  4971. const int64_t n_embd_head = hparams.n_embd_head_v;
  4972. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4973. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4974. ggml_tensor * cur;
  4975. ggml_tensor * inpL;
  4976. inpL = build_inp_embd(model.tok_embd);
  4977. auto * inp_attn = build_attn_inp_kv_unified();
  4978. inpL = build_norm(inpL,
  4979. model.tok_norm,
  4980. model.tok_norm_b,
  4981. LLM_NORM, -1);
  4982. cb(inpL, "inp_norm", -1);
  4983. for (int il = 0; il < n_layer; ++il) {
  4984. cur = build_norm(inpL,
  4985. model.layers[il].attn_norm,
  4986. model.layers[il].attn_norm_b,
  4987. LLM_NORM, il);
  4988. cb(cur, "attn_norm", il);
  4989. // self-attention
  4990. {
  4991. cur = build_lora_mm(model.layers[il].wqkv, cur);
  4992. cb(cur, "wqkv", il);
  4993. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4994. cb(cur, "bqkv", il);
  4995. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4996. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4997. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4998. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4999. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5000. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5001. cb(Qcur, "Qcur", il);
  5002. cb(Kcur, "Kcur", il);
  5003. cb(Vcur, "Vcur", il);
  5004. cur = build_attn(inp_attn, gf,
  5005. model.layers[il].wo, model.layers[il].bo,
  5006. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5007. }
  5008. if (il == n_layer - 1) {
  5009. // skip computing output for unused tokens
  5010. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5011. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5012. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5013. }
  5014. // Add the input
  5015. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5016. cb(ffn_inp, "ffn_inp", il);
  5017. // FF
  5018. {
  5019. cur = build_norm(ffn_inp,
  5020. model.layers[il].ffn_norm,
  5021. model.layers[il].ffn_norm_b,
  5022. LLM_NORM, il);
  5023. cb(cur, "ffn_norm", il);
  5024. cur = build_ffn(cur,
  5025. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5026. NULL, NULL, NULL,
  5027. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5028. NULL,
  5029. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5030. cb(cur, "ffn_out", il);
  5031. }
  5032. cur = ggml_add(ctx0, cur, ffn_inp);
  5033. cur = build_cvec(cur, il);
  5034. cb(cur, "l_out", il);
  5035. // input for next layer
  5036. inpL = cur;
  5037. }
  5038. cur = build_norm(inpL,
  5039. model.output_norm,
  5040. model.output_norm_b,
  5041. LLM_NORM, -1);
  5042. cb(cur, "result_norm", -1);
  5043. res->t_embd = cur;
  5044. cur = build_lora_mm(model.output, cur);
  5045. cb(cur, "result_output", -1);
  5046. res->t_logits = cur;
  5047. ggml_build_forward_expand(gf, cur);
  5048. }
  5049. };
  5050. struct llm_build_mpt : public llm_graph_context {
  5051. llm_build_mpt(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5052. const int64_t n_embd_head = hparams.n_embd_head_v;
  5053. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5054. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5055. ggml_tensor * cur;
  5056. ggml_tensor * pos;
  5057. ggml_tensor * inpL;
  5058. inpL = build_inp_embd(model.tok_embd);
  5059. auto * inp_attn = build_attn_inp_kv_unified();
  5060. if (model.pos_embd) {
  5061. // inp_pos - contains the positions
  5062. ggml_tensor * inp_pos = build_inp_pos();
  5063. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5064. cb(pos, "pos_embd", -1);
  5065. inpL = ggml_add(ctx0, inpL, pos);
  5066. cb(inpL, "inpL", -1);
  5067. }
  5068. for (int il = 0; il < n_layer; ++il) {
  5069. ggml_tensor * attn_norm;
  5070. attn_norm = build_norm(inpL,
  5071. model.layers[il].attn_norm,
  5072. model.layers[il].attn_norm_b,
  5073. LLM_NORM, il);
  5074. cb(attn_norm, "attn_norm", il);
  5075. // self-attention
  5076. {
  5077. cur = attn_norm;
  5078. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5079. cb(cur, "wqkv", il);
  5080. if (model.layers[il].bqkv){
  5081. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5082. cb(cur, "bqkv", il);
  5083. }
  5084. if (hparams.f_clamp_kqv > 0.0f) {
  5085. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  5086. cb(cur, "wqkv_clamped", il);
  5087. }
  5088. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5089. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5090. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5091. cb(Qcur, "Qcur", il);
  5092. cb(Kcur, "Kcur", il);
  5093. cb(Vcur, "Vcur", il);
  5094. // Q/K Layernorm
  5095. if (model.layers[il].attn_q_norm) {
  5096. Qcur = build_norm(Qcur,
  5097. model.layers[il].attn_q_norm,
  5098. model.layers[il].attn_q_norm_b,
  5099. LLM_NORM, il);
  5100. cb(Qcur, "Qcur", il);
  5101. Kcur = build_norm(Kcur,
  5102. model.layers[il].attn_k_norm,
  5103. model.layers[il].attn_k_norm_b,
  5104. LLM_NORM, il);
  5105. cb(Kcur, "Kcur", il);
  5106. }
  5107. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5108. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5109. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5110. cb(Qcur, "Qcur", il);
  5111. cb(Kcur, "Kcur", il);
  5112. cb(Vcur, "Vcur", il);
  5113. cur = build_attn(inp_attn, gf,
  5114. model.layers[il].wo, model.layers[il].bo,
  5115. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5116. }
  5117. if (il == n_layer - 1) {
  5118. // skip computing output for unused tokens
  5119. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5120. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5121. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5122. }
  5123. // Add the input
  5124. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5125. cb(ffn_inp, "ffn_inp", il);
  5126. // feed forward
  5127. {
  5128. cur = build_norm(ffn_inp,
  5129. model.layers[il].ffn_norm,
  5130. model.layers[il].ffn_norm_b,
  5131. LLM_NORM, il);
  5132. cb(cur, "ffn_norm", il);
  5133. cur = build_ffn(cur,
  5134. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5135. NULL, NULL, NULL,
  5136. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5137. model.layers[il].ffn_act,
  5138. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5139. cb(cur, "ffn_out", il);
  5140. }
  5141. cur = ggml_add(ctx0, cur, ffn_inp);
  5142. cur = build_cvec(cur, il);
  5143. cb(cur, "l_out", il);
  5144. // input for next layer
  5145. inpL = cur;
  5146. }
  5147. cur = inpL;
  5148. cur = build_norm(cur,
  5149. model.output_norm,
  5150. model.output_norm_b,
  5151. LLM_NORM, -1);
  5152. cb(cur, "result_norm", -1);
  5153. res->t_embd = cur;
  5154. cur = build_lora_mm(model.output, cur);
  5155. cb(cur, "result_output", -1);
  5156. res->t_logits = cur;
  5157. ggml_build_forward_expand(gf, cur);
  5158. }
  5159. };
  5160. struct llm_build_stablelm : public llm_graph_context {
  5161. llm_build_stablelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5162. const int64_t n_embd_head = hparams.n_embd_head_v;
  5163. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5164. ggml_tensor * cur;
  5165. ggml_tensor * inpL;
  5166. inpL = build_inp_embd(model.tok_embd);
  5167. // inp_pos - contains the positions
  5168. ggml_tensor * inp_pos = build_inp_pos();
  5169. auto * inp_attn = build_attn_inp_kv_unified();
  5170. for (int il = 0; il < n_layer; ++il) {
  5171. // norm
  5172. cur = build_norm(inpL,
  5173. model.layers[il].attn_norm,
  5174. model.layers[il].attn_norm_b,
  5175. LLM_NORM, il);
  5176. cb(cur, "attn_norm", il);
  5177. ggml_tensor * inpSA = cur;
  5178. // self-attention
  5179. {
  5180. // compute Q and K and RoPE them
  5181. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5182. cb(Qcur, "Qcur", il);
  5183. if (model.layers[il].bq) {
  5184. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5185. cb(Qcur, "Qcur", il);
  5186. }
  5187. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5188. cb(Kcur, "Kcur", il);
  5189. if (model.layers[il].bk) {
  5190. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5191. cb(Kcur, "Kcur", il);
  5192. }
  5193. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5194. cb(Vcur, "Vcur", il);
  5195. if (model.layers[il].bv) {
  5196. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5197. cb(Vcur, "Vcur", il);
  5198. }
  5199. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5200. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5201. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5202. if (model.layers[il].attn_q_norm) {
  5203. Qcur = build_norm(Qcur,
  5204. model.layers[il].attn_q_norm,
  5205. NULL,
  5206. LLM_NORM, il);
  5207. cb(Qcur, "Qcur", il);
  5208. }
  5209. if (model.layers[il].attn_k_norm) {
  5210. Kcur = build_norm(Kcur,
  5211. model.layers[il].attn_k_norm,
  5212. NULL,
  5213. LLM_NORM, il);
  5214. cb(Kcur, "Kcur", il);
  5215. }
  5216. Qcur = ggml_rope_ext(
  5217. ctx0, Qcur, inp_pos, nullptr,
  5218. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5219. ext_factor, attn_factor, beta_fast, beta_slow
  5220. );
  5221. Kcur = ggml_rope_ext(
  5222. ctx0, Kcur, inp_pos, nullptr,
  5223. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5224. ext_factor, attn_factor, beta_fast, beta_slow
  5225. );
  5226. cb(Qcur, "Qcur", il);
  5227. cb(Kcur, "Kcur", il);
  5228. cb(Vcur, "Vcur", il);
  5229. cur = build_attn(inp_attn, gf,
  5230. model.layers[il].wo, NULL,
  5231. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5232. }
  5233. if (il == n_layer - 1) {
  5234. // skip computing output for unused tokens
  5235. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5236. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5237. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5238. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5239. }
  5240. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5241. cb(ffn_inp, "ffn_inp", il);
  5242. // feed-forward network
  5243. {
  5244. if (model.layers[il].ffn_norm) {
  5245. cur = build_norm(ffn_inp,
  5246. model.layers[il].ffn_norm,
  5247. model.layers[il].ffn_norm_b,
  5248. LLM_NORM, il);
  5249. cb(cur, "ffn_norm", il);
  5250. } else {
  5251. // parallel residual
  5252. cur = inpSA;
  5253. }
  5254. cur = build_ffn(cur,
  5255. model.layers[il].ffn_up, NULL, NULL,
  5256. model.layers[il].ffn_gate, NULL, NULL,
  5257. model.layers[il].ffn_down, NULL, NULL,
  5258. NULL,
  5259. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5260. cb(cur, "ffn_out", il);
  5261. }
  5262. cur = ggml_add(ctx0, cur, ffn_inp);
  5263. cur = build_cvec(cur, il);
  5264. cb(cur, "l_out", il);
  5265. // input for next layer
  5266. inpL = cur;
  5267. }
  5268. cur = inpL;
  5269. cur = build_norm(cur,
  5270. model.output_norm,
  5271. model.output_norm_b,
  5272. LLM_NORM, -1);
  5273. cb(cur, "result_norm", -1);
  5274. res->t_embd = cur;
  5275. // lm_head
  5276. cur = build_lora_mm(model.output, cur);
  5277. cb(cur, "result_output", -1);
  5278. res->t_logits = cur;
  5279. ggml_build_forward_expand(gf, cur);
  5280. }
  5281. };
  5282. struct llm_build_qwen : public llm_graph_context {
  5283. llm_build_qwen(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5284. const int64_t n_embd_head = hparams.n_embd_head_v;
  5285. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5286. ggml_tensor * cur;
  5287. ggml_tensor * inpL;
  5288. inpL = build_inp_embd(model.tok_embd);
  5289. // inp_pos - contains the positions
  5290. ggml_tensor * inp_pos = build_inp_pos();
  5291. auto * inp_attn = build_attn_inp_kv_unified();
  5292. for (int il = 0; il < n_layer; ++il) {
  5293. ggml_tensor * inpSA = inpL;
  5294. cur = build_norm(inpL,
  5295. model.layers[il].attn_norm, NULL,
  5296. LLM_NORM_RMS, il);
  5297. cb(cur, "attn_norm", il);
  5298. // self-attention
  5299. {
  5300. cur = build_lora_mm(model.layers[il].wqkv, cur);
  5301. cb(cur, "wqkv", il);
  5302. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5303. cb(cur, "bqkv", il);
  5304. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5305. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5306. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5307. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5308. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5309. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5310. // using mode = 2 for neox mode
  5311. Qcur = ggml_rope_ext(
  5312. ctx0, Qcur, inp_pos, nullptr,
  5313. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5314. ext_factor, attn_factor, beta_fast, beta_slow
  5315. );
  5316. Kcur = ggml_rope_ext(
  5317. ctx0, Kcur, inp_pos, nullptr,
  5318. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5319. ext_factor, attn_factor, beta_fast, beta_slow
  5320. );
  5321. cb(Qcur, "Qcur", il);
  5322. cb(Kcur, "Kcur", il);
  5323. cb(Vcur, "Vcur", il);
  5324. cur = build_attn(inp_attn, gf,
  5325. model.layers[il].wo, NULL,
  5326. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5327. }
  5328. if (il == n_layer - 1) {
  5329. // skip computing output for unused tokens
  5330. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5331. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5332. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5333. }
  5334. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5335. cb(ffn_inp, "ffn_inp", il);
  5336. // feed-forward forward
  5337. {
  5338. cur = build_norm(ffn_inp,
  5339. model.layers[il].ffn_norm, NULL,
  5340. LLM_NORM_RMS, il);
  5341. cb(cur, "ffn_norm", il);
  5342. cur = build_ffn(cur,
  5343. model.layers[il].ffn_up, NULL, NULL,
  5344. model.layers[il].ffn_gate, NULL, NULL,
  5345. model.layers[il].ffn_down, NULL, NULL,
  5346. NULL,
  5347. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5348. cb(cur, "ffn_out", il);
  5349. }
  5350. cur = ggml_add(ctx0, cur, ffn_inp);
  5351. cur = build_cvec(cur, il);
  5352. cb(cur, "l_out", il);
  5353. // input for next layer
  5354. inpL = cur;
  5355. }
  5356. cur = inpL;
  5357. cur = build_norm(cur,
  5358. model.output_norm, NULL,
  5359. LLM_NORM_RMS, -1);
  5360. cb(cur, "result_norm", -1);
  5361. res->t_embd = cur;
  5362. // lm_head
  5363. cur = build_lora_mm(model.output, cur);
  5364. cb(cur, "result_output", -1);
  5365. res->t_logits = cur;
  5366. ggml_build_forward_expand(gf, cur);
  5367. }
  5368. };
  5369. struct llm_build_qwen2 : public llm_graph_context {
  5370. llm_build_qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5371. const int64_t n_embd_head = hparams.n_embd_head_v;
  5372. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5373. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5374. ggml_tensor * cur;
  5375. ggml_tensor * inpL;
  5376. inpL = build_inp_embd(model.tok_embd);
  5377. // inp_pos - contains the positions
  5378. ggml_tensor * inp_pos = build_inp_pos();
  5379. auto * inp_attn = build_attn_inp_kv_unified();
  5380. for (int il = 0; il < n_layer; ++il) {
  5381. ggml_tensor * inpSA = inpL;
  5382. // norm
  5383. cur = build_norm(inpL,
  5384. model.layers[il].attn_norm, NULL,
  5385. LLM_NORM_RMS, il);
  5386. cb(cur, "attn_norm", il);
  5387. // self-attention
  5388. {
  5389. // compute Q and K and RoPE them
  5390. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5391. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5392. cb(Qcur, "Qcur", il);
  5393. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5394. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5395. cb(Kcur, "Kcur", il);
  5396. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5397. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5398. cb(Vcur, "Vcur", il);
  5399. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5400. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5401. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5402. Qcur = ggml_rope_ext(
  5403. ctx0, Qcur, inp_pos, nullptr,
  5404. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5405. ext_factor, attn_factor, beta_fast, beta_slow
  5406. );
  5407. Kcur = ggml_rope_ext(
  5408. ctx0, Kcur, inp_pos, nullptr,
  5409. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5410. ext_factor, attn_factor, beta_fast, beta_slow
  5411. );
  5412. cb(Qcur, "Qcur", il);
  5413. cb(Kcur, "Kcur", il);
  5414. cb(Vcur, "Vcur", il);
  5415. cur = build_attn(inp_attn, gf,
  5416. model.layers[il].wo, model.layers[il].bo,
  5417. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5418. }
  5419. if (il == n_layer - 1) {
  5420. // skip computing output for unused tokens
  5421. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5422. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5423. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5424. }
  5425. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5426. cb(ffn_inp, "ffn_inp", il);
  5427. // feed-forward network
  5428. cur = build_norm(ffn_inp,
  5429. model.layers[il].ffn_norm, NULL,
  5430. LLM_NORM_RMS, il);
  5431. cb(cur, "ffn_norm", il);
  5432. cur = build_ffn(cur,
  5433. model.layers[il].ffn_up, NULL, NULL,
  5434. model.layers[il].ffn_gate, NULL, NULL,
  5435. model.layers[il].ffn_down, NULL, NULL,
  5436. NULL,
  5437. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5438. cb(cur, "ffn_out", il);
  5439. cur = ggml_add(ctx0, cur, ffn_inp);
  5440. cur = build_cvec(cur, il);
  5441. cb(cur, "l_out", il);
  5442. // input for next layer
  5443. inpL = cur;
  5444. }
  5445. cur = inpL;
  5446. cur = build_norm(cur,
  5447. model.output_norm, NULL,
  5448. LLM_NORM_RMS, -1);
  5449. cb(cur, "result_norm", -1);
  5450. res->t_embd = cur;
  5451. // lm_head
  5452. cur = build_lora_mm(model.output, cur);
  5453. cb(cur, "result_output", -1);
  5454. res->t_logits = cur;
  5455. ggml_build_forward_expand(gf, cur);
  5456. }
  5457. };
  5458. struct llm_build_qwen2vl : public llm_graph_context {
  5459. llm_build_qwen2vl(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5460. const int64_t n_embd_head = hparams.n_embd_head_v;
  5461. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5462. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5463. ggml_tensor * cur;
  5464. ggml_tensor * inpL;
  5465. inpL = build_inp_embd(model.tok_embd);
  5466. // inp_pos - contains the positions
  5467. ggml_tensor * inp_pos = build_inp_pos();
  5468. auto * inp_attn = build_attn_inp_kv_unified();
  5469. int sections[4];
  5470. std::copy(std::begin(hparams.rope_sections), std::begin(hparams.rope_sections) + 4, sections);
  5471. for (int il = 0; il < n_layer; ++il) {
  5472. ggml_tensor * inpSA = inpL;
  5473. // norm
  5474. cur = build_norm(inpL,
  5475. model.layers[il].attn_norm, NULL,
  5476. LLM_NORM_RMS, il);
  5477. cb(cur, "attn_norm", il);
  5478. // self-attention
  5479. {
  5480. // compute Q and K and RoPE them
  5481. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5482. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5483. cb(Qcur, "Qcur", il);
  5484. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5485. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5486. cb(Kcur, "Kcur", il);
  5487. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5488. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5489. cb(Vcur, "Vcur", il);
  5490. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5491. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5492. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5493. Qcur = ggml_rope_multi(
  5494. ctx0, Qcur, inp_pos, nullptr,
  5495. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5496. ext_factor, attn_factor, beta_fast, beta_slow
  5497. );
  5498. Kcur = ggml_rope_multi(
  5499. ctx0, Kcur, inp_pos, nullptr,
  5500. n_rot, sections, rope_type, n_ctx_orig, freq_base, freq_scale,
  5501. ext_factor, attn_factor, beta_fast, beta_slow
  5502. );
  5503. cb(Qcur, "Qcur", il);
  5504. cb(Kcur, "Kcur", il);
  5505. cb(Vcur, "Vcur", il);
  5506. cur = build_attn(inp_attn, gf,
  5507. model.layers[il].wo, model.layers[il].bo,
  5508. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5509. }
  5510. if (il == n_layer - 1) {
  5511. // skip computing output for unused tokens
  5512. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5513. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5514. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5515. }
  5516. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5517. cb(ffn_inp, "ffn_inp", il);
  5518. // feed-forward network
  5519. cur = build_norm(ffn_inp,
  5520. model.layers[il].ffn_norm, NULL,
  5521. LLM_NORM_RMS, il);
  5522. cb(cur, "ffn_norm", il);
  5523. cur = build_ffn(cur,
  5524. model.layers[il].ffn_up, NULL, NULL,
  5525. model.layers[il].ffn_gate, NULL, NULL,
  5526. model.layers[il].ffn_down, NULL, NULL,
  5527. NULL,
  5528. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5529. cb(cur, "ffn_out", il);
  5530. cur = ggml_add(ctx0, cur, ffn_inp);
  5531. cur = build_cvec(cur, il);
  5532. cb(cur, "l_out", il);
  5533. // input for next layer
  5534. inpL = cur;
  5535. }
  5536. cur = inpL;
  5537. cur = build_norm(cur,
  5538. model.output_norm, NULL,
  5539. LLM_NORM_RMS, -1);
  5540. cb(cur, "result_norm", -1);
  5541. res->t_embd = cur;
  5542. // lm_head
  5543. cur = build_lora_mm(model.output, cur);
  5544. cb(cur, "result_output", -1);
  5545. res->t_logits = cur;
  5546. ggml_build_forward_expand(gf, cur);
  5547. }
  5548. };
  5549. struct llm_build_qwen2moe : public llm_graph_context {
  5550. llm_build_qwen2moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5551. const int64_t n_embd_head = hparams.n_embd_head_v;
  5552. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5553. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5554. ggml_tensor * cur;
  5555. ggml_tensor * inpL;
  5556. inpL = build_inp_embd(model.tok_embd);
  5557. // inp_pos - contains the positions
  5558. ggml_tensor * inp_pos = build_inp_pos();
  5559. auto * inp_attn = build_attn_inp_kv_unified();
  5560. for (int il = 0; il < n_layer; ++il) {
  5561. ggml_tensor * inpSA = inpL;
  5562. // norm
  5563. cur = build_norm(inpL,
  5564. model.layers[il].attn_norm, NULL,
  5565. LLM_NORM_RMS, il);
  5566. cb(cur, "attn_norm", il);
  5567. // self_attention
  5568. {
  5569. // compute Q and K and RoPE them
  5570. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5571. cb(Qcur, "Qcur", il);
  5572. if (model.layers[il].bq) {
  5573. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5574. cb(Qcur, "Qcur", il);
  5575. }
  5576. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5577. cb(Kcur, "Kcur", il);
  5578. if (model.layers[il].bk) {
  5579. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5580. cb(Kcur, "Kcur", il);
  5581. }
  5582. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5583. cb(Vcur, "Vcur", il);
  5584. if (model.layers[il].bv) {
  5585. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5586. cb(Vcur, "Vcur", il);
  5587. }
  5588. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5589. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5590. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5591. Qcur = ggml_rope_ext(
  5592. ctx0, Qcur, inp_pos, nullptr,
  5593. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5594. ext_factor, attn_factor, beta_fast, beta_slow
  5595. );
  5596. Kcur = ggml_rope_ext(
  5597. ctx0, Kcur, inp_pos, nullptr,
  5598. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5599. ext_factor, attn_factor, beta_fast, beta_slow
  5600. );
  5601. cb(Qcur, "Qcur", il);
  5602. cb(Kcur, "Kcur", il);
  5603. cb(Vcur, "Vcur", il);
  5604. cur = build_attn(inp_attn, gf,
  5605. model.layers[il].wo, model.layers[il].bo,
  5606. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5607. }
  5608. if (il == n_layer - 1) {
  5609. // skip computing output for unused tokens
  5610. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5611. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5612. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5613. }
  5614. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5615. cb(ffn_inp, "ffn_inp", il);
  5616. // MoE branch
  5617. cur = build_norm(ffn_inp,
  5618. model.layers[il].ffn_norm, NULL,
  5619. LLM_NORM_RMS, il);
  5620. cb(cur, "ffn_norm", il);
  5621. ggml_tensor * moe_out =
  5622. build_moe_ffn(cur,
  5623. model.layers[il].ffn_gate_inp,
  5624. model.layers[il].ffn_up_exps,
  5625. model.layers[il].ffn_gate_exps,
  5626. model.layers[il].ffn_down_exps,
  5627. nullptr,
  5628. n_expert, n_expert_used,
  5629. LLM_FFN_SILU, false,
  5630. false, 0.0,
  5631. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5632. il);
  5633. cb(moe_out, "ffn_moe_out", il);
  5634. // FFN shared expert
  5635. {
  5636. ggml_tensor * cur_gate_inp = build_lora_mm(model.layers[il].ffn_gate_inp_shexp, cur);
  5637. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  5638. // sigmoid
  5639. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  5640. cb(cur_gate, "ffn_shexp_gate", il);
  5641. ggml_tensor * cur_ffn = build_ffn(cur,
  5642. model.layers[il].ffn_up_shexp, NULL, NULL,
  5643. model.layers[il].ffn_gate_shexp, NULL, NULL,
  5644. model.layers[il].ffn_down_shexp, NULL, NULL,
  5645. NULL,
  5646. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5647. cb(cur_ffn, "ffn_shexp", il);
  5648. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  5649. cb(ffn_shexp_out, "ffn_shexp_out", il);
  5650. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  5651. cb(moe_out, "ffn_out", il);
  5652. cur = moe_out;
  5653. }
  5654. cur = ggml_add(ctx0, cur, ffn_inp);
  5655. cur = build_cvec(cur, il);
  5656. cb(cur, "l_out", il);
  5657. // input for next layer
  5658. inpL = cur;
  5659. }
  5660. cur = inpL;
  5661. cur = build_norm(cur,
  5662. model.output_norm, NULL,
  5663. LLM_NORM_RMS, -1);
  5664. cb(cur, "result_norm", -1);
  5665. res->t_embd = cur;
  5666. // lm_head
  5667. cur = build_lora_mm(model.output, cur);
  5668. cb(cur, "result_output", -1);
  5669. res->t_logits = cur;
  5670. ggml_build_forward_expand(gf, cur);
  5671. }
  5672. };
  5673. struct llm_build_qwen3 : public llm_graph_context {
  5674. llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5675. const int64_t n_embd_head = hparams.n_embd_head_v;
  5676. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5677. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5678. ggml_tensor * cur;
  5679. ggml_tensor * inpL;
  5680. inpL = build_inp_embd(model.tok_embd);
  5681. // inp_pos - contains the positions
  5682. ggml_tensor * inp_pos = build_inp_pos();
  5683. auto * inp_attn = build_attn_inp_kv_unified();
  5684. for (int il = 0; il < n_layer; ++il) {
  5685. ggml_tensor * inpSA = inpL;
  5686. // norm
  5687. cur = build_norm(inpL,
  5688. model.layers[il].attn_norm, NULL,
  5689. LLM_NORM_RMS, il);
  5690. cb(cur, "attn_norm", il);
  5691. // self-attention
  5692. {
  5693. // compute Q and K and RoPE them
  5694. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5695. cb(Qcur, "Qcur", il);
  5696. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5697. cb(Kcur, "Kcur", il);
  5698. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5699. cb(Vcur, "Vcur", il);
  5700. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5701. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5702. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5703. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5704. cb(Qcur, "Qcur_normed", il);
  5705. Qcur = ggml_rope_ext(
  5706. ctx0, Qcur, inp_pos, nullptr,
  5707. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5708. ext_factor, attn_factor, beta_fast, beta_slow
  5709. );
  5710. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5711. cb(Kcur, "Kcur_normed", il);
  5712. Kcur = ggml_rope_ext(
  5713. ctx0, Kcur, inp_pos, nullptr,
  5714. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5715. ext_factor, attn_factor, beta_fast, beta_slow
  5716. );
  5717. cb(Qcur, "Qcur", il);
  5718. cb(Kcur, "Kcur", il);
  5719. cb(Vcur, "Vcur", il);
  5720. cur = build_attn(inp_attn, gf,
  5721. model.layers[il].wo, model.layers[il].bo,
  5722. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5723. }
  5724. if (il == n_layer - 1) {
  5725. // skip computing output for unused tokens
  5726. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5727. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5728. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5729. }
  5730. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5731. cb(ffn_inp, "ffn_inp", il);
  5732. // feed-forward network
  5733. cur = build_norm(ffn_inp,
  5734. model.layers[il].ffn_norm, NULL,
  5735. LLM_NORM_RMS, il);
  5736. cb(cur, "ffn_norm", il);
  5737. cur = build_ffn(cur,
  5738. model.layers[il].ffn_up, NULL, NULL,
  5739. model.layers[il].ffn_gate, NULL, NULL,
  5740. model.layers[il].ffn_down, NULL, NULL,
  5741. NULL,
  5742. LLM_FFN_SILU, LLM_FFN_PAR, il);
  5743. cb(cur, "ffn_out", il);
  5744. cur = ggml_add(ctx0, cur, ffn_inp);
  5745. cur = build_cvec(cur, il);
  5746. cb(cur, "l_out", il);
  5747. // input for next layer
  5748. inpL = cur;
  5749. }
  5750. cur = inpL;
  5751. cur = build_norm(cur,
  5752. model.output_norm, NULL,
  5753. LLM_NORM_RMS, -1);
  5754. cb(cur, "result_norm", -1);
  5755. res->t_embd = cur;
  5756. // lm_head
  5757. cur = build_lora_mm(model.output, cur);
  5758. cb(cur, "result_output", -1);
  5759. res->t_logits = cur;
  5760. ggml_build_forward_expand(gf, cur);
  5761. }
  5762. };
  5763. struct llm_build_qwen3moe : public llm_graph_context {
  5764. llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5765. const int64_t n_embd_head = hparams.n_embd_head_v;
  5766. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5767. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5768. ggml_tensor * cur;
  5769. ggml_tensor * inpL;
  5770. inpL = build_inp_embd(model.tok_embd);
  5771. // inp_pos - contains the positions
  5772. ggml_tensor * inp_pos = build_inp_pos();
  5773. auto * inp_attn = build_attn_inp_kv_unified();
  5774. for (int il = 0; il < n_layer; ++il) {
  5775. ggml_tensor * inpSA = inpL;
  5776. // norm
  5777. cur = build_norm(inpL,
  5778. model.layers[il].attn_norm, NULL,
  5779. LLM_NORM_RMS, il);
  5780. cb(cur, "attn_norm", il);
  5781. // self_attention
  5782. {
  5783. // compute Q and K and RoPE them
  5784. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  5785. cb(Qcur, "Qcur", il);
  5786. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  5787. cb(Kcur, "Kcur", il);
  5788. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  5789. cb(Vcur, "Vcur", il);
  5790. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5791. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5792. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5793. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  5794. cb(Qcur, "Qcur_normed", il);
  5795. Qcur = ggml_rope_ext(
  5796. ctx0, Qcur, inp_pos, nullptr,
  5797. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5798. ext_factor, attn_factor, beta_fast, beta_slow
  5799. );
  5800. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  5801. cb(Kcur, "Kcur_normed", il);
  5802. Kcur = ggml_rope_ext(
  5803. ctx0, Kcur, inp_pos, nullptr,
  5804. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5805. ext_factor, attn_factor, beta_fast, beta_slow
  5806. );
  5807. cb(Qcur, "Qcur", il);
  5808. cb(Kcur, "Kcur", il);
  5809. cb(Vcur, "Vcur", il);
  5810. cur = build_attn(inp_attn, gf,
  5811. model.layers[il].wo, model.layers[il].bo,
  5812. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  5813. }
  5814. if (il == n_layer - 1) {
  5815. // skip computing output for unused tokens
  5816. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5817. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5818. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5819. }
  5820. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5821. cb(ffn_inp, "ffn_inp", il);
  5822. // MoE branch
  5823. cur = build_norm(ffn_inp,
  5824. model.layers[il].ffn_norm, NULL,
  5825. LLM_NORM_RMS, il);
  5826. cb(cur, "ffn_norm", il);
  5827. ggml_tensor * moe_out =
  5828. build_moe_ffn(cur,
  5829. model.layers[il].ffn_gate_inp,
  5830. model.layers[il].ffn_up_exps,
  5831. model.layers[il].ffn_gate_exps,
  5832. model.layers[il].ffn_down_exps,
  5833. nullptr,
  5834. n_expert, n_expert_used,
  5835. LLM_FFN_SILU, true,
  5836. false, 0.0,
  5837. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  5838. il);
  5839. cb(moe_out, "ffn_moe_out", il);
  5840. cur = moe_out;
  5841. cur = ggml_add(ctx0, cur, ffn_inp);
  5842. cur = build_cvec(cur, il);
  5843. cb(cur, "l_out", il);
  5844. // input for next layer
  5845. inpL = cur;
  5846. }
  5847. cur = inpL;
  5848. cur = build_norm(cur,
  5849. model.output_norm, NULL,
  5850. LLM_NORM_RMS, -1);
  5851. cb(cur, "result_norm", -1);
  5852. res->t_embd = cur;
  5853. // lm_head
  5854. cur = build_lora_mm(model.output, cur);
  5855. cb(cur, "result_output", -1);
  5856. res->t_logits = cur;
  5857. ggml_build_forward_expand(gf, cur);
  5858. }
  5859. };
  5860. struct llm_build_phi2 : public llm_graph_context {
  5861. llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5862. const int64_t n_embd_head = hparams.n_embd_head_v;
  5863. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5864. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5865. ggml_tensor * cur;
  5866. ggml_tensor * attn_norm_output;
  5867. ggml_tensor * ffn_output;
  5868. ggml_tensor * inpL;
  5869. inpL = build_inp_embd(model.tok_embd);
  5870. // inp_pos - contains the positions
  5871. ggml_tensor * inp_pos = build_inp_pos();
  5872. auto * inp_attn = build_attn_inp_kv_unified();
  5873. for (int il = 0; il < n_layer; ++il) {
  5874. attn_norm_output = build_norm(inpL,
  5875. model.layers[il].attn_norm,
  5876. model.layers[il].attn_norm_b,
  5877. LLM_NORM, il);
  5878. cb(attn_norm_output, "attn_norm", il);
  5879. // self-attention
  5880. {
  5881. ggml_tensor * Qcur = nullptr;
  5882. ggml_tensor * Kcur = nullptr;
  5883. ggml_tensor * Vcur = nullptr;
  5884. if (model.layers[il].wqkv) {
  5885. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5886. cb(cur, "wqkv", il);
  5887. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5888. cb(cur, "bqkv", il);
  5889. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5890. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5891. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5892. } else {
  5893. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5894. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5895. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5896. }
  5897. cb(Qcur, "Qcur", il);
  5898. cb(Kcur, "Kcur", il);
  5899. cb(Vcur, "Vcur", il);
  5900. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5901. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5902. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  5903. Qcur = ggml_rope_ext(
  5904. ctx0, Qcur, inp_pos, nullptr,
  5905. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5906. ext_factor, attn_factor, beta_fast, beta_slow
  5907. );
  5908. Kcur = ggml_rope_ext(
  5909. ctx0, Kcur, inp_pos, nullptr,
  5910. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  5911. ext_factor, attn_factor, beta_fast, beta_slow
  5912. );
  5913. cb(Qcur, "Qcur", il);
  5914. cb(Kcur, "Kcur", il);
  5915. cb(Vcur, "Vcur", il);
  5916. // with phi2, we scale the Q to avoid precision issues
  5917. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5918. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5919. cur = build_attn(inp_attn, gf,
  5920. model.layers[il].wo, model.layers[il].bo,
  5921. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  5922. }
  5923. if (il == n_layer - 1) {
  5924. // skip computing output for unused tokens
  5925. ggml_tensor * inp_out_ids = build_inp_out_ids();
  5926. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5927. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5928. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  5929. }
  5930. // FF
  5931. {
  5932. ffn_output = build_ffn(attn_norm_output,
  5933. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  5934. NULL, NULL, NULL,
  5935. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  5936. NULL,
  5937. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  5938. cb(ffn_output, "ffn_out", il);
  5939. }
  5940. cur = ggml_add(ctx0, cur, ffn_output);
  5941. cur = ggml_add(ctx0, cur, inpL);
  5942. cur = build_cvec(cur, il);
  5943. cb(cur, "l_out", il);
  5944. // input for next layer
  5945. inpL = cur;
  5946. }
  5947. cur = build_norm(inpL,
  5948. model.output_norm,
  5949. model.output_norm_b,
  5950. LLM_NORM, -1);
  5951. cb(cur, "result_norm", -1);
  5952. res->t_embd = cur;
  5953. cur = build_lora_mm(model.output, cur);
  5954. cb(cur, "result_output_no_bias", -1);
  5955. cur = ggml_add(ctx0, cur, model.output_b);
  5956. cb(cur, "result_output", -1);
  5957. res->t_logits = cur;
  5958. ggml_build_forward_expand(gf, cur);
  5959. }
  5960. };
  5961. template<bool iswa>
  5962. struct llm_build_phi3 : public llm_graph_context {
  5963. llm_build_phi3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  5964. const int64_t n_embd_head = hparams.n_embd_head_v;
  5965. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5966. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5967. ggml_tensor * cur;
  5968. ggml_tensor * inpL;
  5969. inpL = build_inp_embd(model.tok_embd);
  5970. // inp_pos - contains the positions
  5971. ggml_tensor * inp_pos = build_inp_pos();
  5972. using inp_attn_type = std::conditional_t<iswa, llm_graph_input_attn_kv_unified_iswa, llm_graph_input_attn_kv_unified>;
  5973. inp_attn_type * inp_attn = nullptr;
  5974. if constexpr (iswa) {
  5975. inp_attn = build_attn_inp_kv_unified_iswa();
  5976. } else {
  5977. inp_attn = build_attn_inp_kv_unified();
  5978. }
  5979. for (int il = 0; il < n_layer; ++il) {
  5980. auto * residual = inpL;
  5981. // self-attention
  5982. {
  5983. // rope freq factors for 128k context
  5984. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  5985. ggml_tensor* attn_norm_output = build_norm(inpL,
  5986. model.layers[il].attn_norm,
  5987. model.layers[il].attn_norm_b,
  5988. LLM_NORM_RMS, il);
  5989. cb(attn_norm_output, "attn_norm", il);
  5990. ggml_tensor * Qcur = nullptr;
  5991. ggml_tensor * Kcur = nullptr;
  5992. ggml_tensor * Vcur = nullptr;
  5993. if (model.layers[il].wqkv) {
  5994. cur = build_lora_mm(model.layers[il].wqkv, attn_norm_output);
  5995. cb(cur, "wqkv", il);
  5996. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  5997. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  5998. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  5999. } else {
  6000. Qcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  6001. Kcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  6002. Vcur = ggml_add(ctx0, build_lora_mm(model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  6003. }
  6004. cb(Qcur, "Qcur", il);
  6005. cb(Kcur, "Kcur", il);
  6006. cb(Vcur, "Vcur", il);
  6007. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6008. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6009. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6010. Qcur = ggml_rope_ext(
  6011. ctx0, Qcur, inp_pos, rope_factors,
  6012. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6013. ext_factor, attn_factor, beta_fast, beta_slow
  6014. );
  6015. Kcur = ggml_rope_ext(
  6016. ctx0, Kcur, inp_pos, rope_factors,
  6017. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6018. ext_factor, attn_factor, beta_fast, beta_slow
  6019. );
  6020. cb(Qcur, "Qcur", il);
  6021. cb(Kcur, "Kcur", il);
  6022. cb(Vcur, "Vcur", il);
  6023. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6024. cb(Qcur, "Qcur", il);
  6025. cur = build_attn(inp_attn, gf,
  6026. model.layers[il].wo, model.layers[il].bo,
  6027. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6028. }
  6029. if (il == n_layer - 1) {
  6030. // skip computing output for unused tokens
  6031. ggml_tensor* inp_out_ids = build_inp_out_ids();
  6032. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6033. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6034. }
  6035. cur = ggml_add(ctx0, cur, residual);
  6036. residual = cur;
  6037. cur = build_norm(cur,
  6038. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6039. LLM_NORM_RMS, il);
  6040. cb(cur, "ffn_norm", il);
  6041. // feed-forward network
  6042. if (model.layers[il].ffn_gate_inp == nullptr) {
  6043. cur = build_ffn(cur,
  6044. model.layers[il].ffn_up, NULL, NULL,
  6045. NULL, NULL, NULL,
  6046. model.layers[il].ffn_down, NULL, NULL,
  6047. NULL,
  6048. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  6049. cb(cur, "ffn_out", il);
  6050. } else {
  6051. // MoE branch
  6052. cur = build_moe_ffn(cur,
  6053. model.layers[il].ffn_gate_inp,
  6054. model.layers[il].ffn_up_exps,
  6055. model.layers[il].ffn_gate_exps,
  6056. model.layers[il].ffn_down_exps,
  6057. nullptr,
  6058. n_expert, n_expert_used,
  6059. LLM_FFN_SILU, true,
  6060. false, 0.0,
  6061. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  6062. il);
  6063. cb(cur, "ffn_moe_out", il);
  6064. }
  6065. cur = ggml_add(ctx0, residual, cur);
  6066. cur = build_cvec(cur, il);
  6067. cb(cur, "l_out", il);
  6068. // input for next layer
  6069. inpL = cur;
  6070. }
  6071. cur = build_norm(inpL,
  6072. model.output_norm,
  6073. model.output_norm_b,
  6074. LLM_NORM_RMS, -1);
  6075. cb(cur, "result_norm", -1);
  6076. res->t_embd = cur;
  6077. cur = build_lora_mm(model.output, cur);
  6078. if (model.output_b != nullptr) {
  6079. cb(cur, "result_output_no_bias", -1);
  6080. cur = ggml_add(ctx0, cur, model.output_b);
  6081. }
  6082. cb(cur, "result_output", -1);
  6083. res->t_logits = cur;
  6084. ggml_build_forward_expand(gf, cur);
  6085. }
  6086. };
  6087. struct llm_build_plamo : public llm_graph_context {
  6088. llm_build_plamo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6089. const int64_t n_embd_head = hparams.n_embd_head_v;
  6090. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6091. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6092. ggml_tensor * cur;
  6093. ggml_tensor * inpL;
  6094. inpL = build_inp_embd(model.tok_embd);
  6095. // inp_pos - contains the positions
  6096. ggml_tensor * inp_pos = build_inp_pos();
  6097. auto * inp_attn = build_attn_inp_kv_unified();
  6098. for (int il = 0; il < n_layer; ++il) {
  6099. // norm
  6100. cur = build_norm(inpL,
  6101. model.layers[il].attn_norm, NULL,
  6102. LLM_NORM_RMS, il);
  6103. cb(cur, "attn_norm", il);
  6104. ggml_tensor * attention_norm = cur;
  6105. // self-attention
  6106. {
  6107. // compute Q and K and RoPE them
  6108. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6109. cb(Qcur, "Qcur", il);
  6110. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6111. cb(Kcur, "Kcur", il);
  6112. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6113. cb(Vcur, "Vcur", il);
  6114. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6115. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6116. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6117. Qcur = ggml_rope_ext(
  6118. ctx0, Qcur, inp_pos, nullptr,
  6119. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  6120. ext_factor, attn_factor, beta_fast, beta_slow
  6121. );
  6122. Kcur = ggml_rope_ext(
  6123. ctx0, Kcur, inp_pos, nullptr,
  6124. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  6125. ext_factor, attn_factor, beta_fast, beta_slow
  6126. );
  6127. cb(Qcur, "Qcur", il);
  6128. cb(Kcur, "Kcur", il);
  6129. cb(Vcur, "Vcur", il);
  6130. cur = build_attn(inp_attn, gf,
  6131. model.layers[il].wo, NULL,
  6132. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6133. }
  6134. ggml_tensor * sa_out = cur;
  6135. cur = attention_norm;
  6136. if (il == n_layer - 1) {
  6137. // skip computing output for unused tokens
  6138. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6139. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6140. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6141. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6142. }
  6143. // feed-forward network
  6144. {
  6145. cur = build_ffn(cur,
  6146. model.layers[il].ffn_up, NULL, NULL,
  6147. model.layers[il].ffn_gate, NULL, NULL,
  6148. model.layers[il].ffn_down, NULL, NULL,
  6149. NULL,
  6150. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6151. cb(cur, "ffn_out", il);
  6152. }
  6153. cur = ggml_add(ctx0, cur, sa_out);
  6154. cur = ggml_add(ctx0, cur, inpL);
  6155. cur = build_cvec(cur, il);
  6156. cb(cur, "l_out", il);
  6157. // input for next layer
  6158. inpL = cur;
  6159. }
  6160. cur = inpL;
  6161. cur = build_norm(cur,
  6162. model.output_norm, NULL,
  6163. LLM_NORM_RMS, -1);
  6164. cb(cur, "result_norm", -1);
  6165. res->t_embd = cur;
  6166. // lm_head
  6167. cur = build_lora_mm(model.output, cur);
  6168. cb(cur, "result_output", -1);
  6169. res->t_logits = cur;
  6170. ggml_build_forward_expand(gf, cur);
  6171. }
  6172. };
  6173. struct llm_build_gpt2 : public llm_graph_context {
  6174. llm_build_gpt2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6175. const int64_t n_embd_head = hparams.n_embd_head_v;
  6176. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6177. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6178. ggml_tensor * cur;
  6179. ggml_tensor * pos;
  6180. ggml_tensor * inpL;
  6181. inpL = build_inp_embd(model.tok_embd);
  6182. // inp_pos - contains the positions
  6183. ggml_tensor * inp_pos = build_inp_pos();
  6184. auto * inp_attn = build_attn_inp_kv_unified();
  6185. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6186. cb(pos, "pos_embd", -1);
  6187. inpL = ggml_add(ctx0, inpL, pos);
  6188. cb(inpL, "inpL", -1);
  6189. for (int il = 0; il < n_layer; ++il) {
  6190. cur = build_norm(inpL,
  6191. model.layers[il].attn_norm,
  6192. model.layers[il].attn_norm_b,
  6193. LLM_NORM, il);
  6194. cb(cur, "attn_norm", il);
  6195. // self-attention
  6196. {
  6197. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6198. cb(cur, "wqkv", il);
  6199. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6200. cb(cur, "bqkv", il);
  6201. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6202. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6203. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6204. cb(Qcur, "Qcur", il);
  6205. cb(Kcur, "Kcur", il);
  6206. cb(Vcur, "Vcur", il);
  6207. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6208. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6209. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6210. cur = build_attn(inp_attn, gf,
  6211. model.layers[il].wo, model.layers[il].bo,
  6212. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6213. }
  6214. if (il == n_layer - 1) {
  6215. // skip computing output for unused tokens
  6216. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6217. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6218. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6219. }
  6220. // add the input
  6221. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6222. cb(ffn_inp, "ffn_inp", il);
  6223. // FF
  6224. {
  6225. cur = build_norm(ffn_inp,
  6226. model.layers[il].ffn_norm,
  6227. model.layers[il].ffn_norm_b,
  6228. LLM_NORM, il);
  6229. cb(cur, "ffn_norm", il);
  6230. cur = build_ffn(cur,
  6231. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6232. NULL, NULL, NULL,
  6233. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6234. NULL,
  6235. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6236. cb(cur, "ffn_out", il);
  6237. }
  6238. cur = ggml_add(ctx0, cur, ffn_inp);
  6239. cur = build_cvec(cur, il);
  6240. cb(cur, "l_out", il);
  6241. // input for next layer
  6242. inpL = cur;
  6243. }
  6244. cur = build_norm(inpL,
  6245. model.output_norm,
  6246. model.output_norm_b,
  6247. LLM_NORM, -1);
  6248. cb(cur, "result_norm", -1);
  6249. res->t_embd = cur;
  6250. cur = build_lora_mm(model.output, cur);
  6251. cb(cur, "result_output", -1);
  6252. res->t_logits = cur;
  6253. ggml_build_forward_expand(gf, cur);
  6254. }
  6255. };
  6256. struct llm_build_codeshell : public llm_graph_context {
  6257. llm_build_codeshell(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6258. const int64_t n_embd_head = hparams.n_embd_head_v;
  6259. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6260. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6261. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6262. ggml_tensor * cur;
  6263. ggml_tensor * inpL;
  6264. inpL = build_inp_embd(model.tok_embd);
  6265. // inp_pos - contains the positions
  6266. ggml_tensor * inp_pos = build_inp_pos();
  6267. auto * inp_attn = build_attn_inp_kv_unified();
  6268. for (int il = 0; il < n_layer; ++il) {
  6269. cur = build_norm(inpL,
  6270. model.layers[il].attn_norm,
  6271. model.layers[il].attn_norm_b,
  6272. LLM_NORM, il);
  6273. cb(cur, "attn_norm", il);
  6274. // self-attention
  6275. {
  6276. cur = build_lora_mm(model.layers[il].wqkv, cur);
  6277. cb(cur, "wqkv", il);
  6278. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6279. cb(cur, "bqkv", il);
  6280. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6281. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6282. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6283. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6284. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6285. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6286. Qcur = ggml_rope_ext(
  6287. ctx0, Qcur, inp_pos, nullptr,
  6288. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6289. ext_factor, attn_factor, beta_fast, beta_slow
  6290. );
  6291. Kcur = ggml_rope_ext(
  6292. ctx0, Kcur, inp_pos, nullptr,
  6293. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6294. ext_factor, attn_factor, beta_fast, beta_slow
  6295. );
  6296. cb(Qcur, "Qcur", il);
  6297. cb(Kcur, "Kcur", il);
  6298. cb(Vcur, "Vcur", il);
  6299. cur = build_attn(inp_attn, gf,
  6300. model.layers[il].wo, model.layers[il].bo,
  6301. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6302. }
  6303. if (il == n_layer - 1) {
  6304. // skip computing output for unused tokens
  6305. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6306. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6307. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6308. }
  6309. // add the input
  6310. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6311. cb(ffn_inp, "ffn_inp", il);
  6312. // FF
  6313. {
  6314. cur = build_norm(ffn_inp,
  6315. model.layers[il].ffn_norm,
  6316. model.layers[il].ffn_norm_b,
  6317. LLM_NORM, il);
  6318. cb(cur, "ffn_norm", il);
  6319. cur = build_ffn(cur,
  6320. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  6321. NULL, NULL, NULL,
  6322. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  6323. NULL,
  6324. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  6325. cb(cur, "ffn_out", il);
  6326. }
  6327. cur = ggml_add(ctx0, cur, ffn_inp);
  6328. cur = build_cvec(cur, il);
  6329. cb(cur, "l_out", il);
  6330. // input for next layer
  6331. inpL = cur;
  6332. }
  6333. cur = build_norm(inpL,
  6334. model.output_norm,
  6335. model.output_norm_b,
  6336. LLM_NORM, -1);
  6337. cb(cur, "result_norm", -1);
  6338. res->t_embd = cur;
  6339. cur = build_lora_mm(model.output, cur);
  6340. cb(cur, "result_output", -1);
  6341. res->t_logits = cur;
  6342. ggml_build_forward_expand(gf, cur);
  6343. }
  6344. };
  6345. struct llm_build_orion : public llm_graph_context {
  6346. llm_build_orion(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6347. const int64_t n_embd_head = hparams.n_embd_head_v;
  6348. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6349. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6350. ggml_tensor * cur;
  6351. ggml_tensor * inpL;
  6352. inpL = build_inp_embd(model.tok_embd);
  6353. // inp_pos - contains the positions
  6354. ggml_tensor * inp_pos = build_inp_pos();
  6355. auto * inp_attn = build_attn_inp_kv_unified();
  6356. for (int il = 0; il < n_layer; ++il) {
  6357. ggml_tensor * inpSA = inpL;
  6358. // norm
  6359. cur = build_norm(inpL,
  6360. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  6361. LLM_NORM, il);
  6362. cb(cur, "attn_norm", il);
  6363. // self-attention
  6364. {
  6365. // compute Q and K and RoPE them
  6366. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6367. cb(Qcur, "Qcur", il);
  6368. // if (model.layers[il].bq) {
  6369. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6370. // cb(Qcur, "Qcur", il);
  6371. // }
  6372. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6373. cb(Kcur, "Kcur", il);
  6374. // if (model.layers[il].bk) {
  6375. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6376. // cb(Kcur, "Kcur", il);
  6377. // }
  6378. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6379. cb(Vcur, "Vcur", il);
  6380. // if (model.layers[il].bv) {
  6381. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6382. // cb(Vcur, "Vcur", il);
  6383. // }
  6384. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6385. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6386. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6387. Qcur = ggml_rope_ext(
  6388. ctx0, Qcur, inp_pos, nullptr,
  6389. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6390. ext_factor, attn_factor, beta_fast, beta_slow
  6391. );
  6392. Kcur = ggml_rope_ext(
  6393. ctx0, Kcur, inp_pos, nullptr,
  6394. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6395. ext_factor, attn_factor, beta_fast, beta_slow
  6396. );
  6397. cb(Qcur, "Qcur", il);
  6398. cb(Kcur, "Kcur", il);
  6399. cb(Vcur, "Vcur", il);
  6400. cur = build_attn(inp_attn, gf,
  6401. model.layers[il].wo, NULL,
  6402. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6403. }
  6404. if (il == n_layer - 1) {
  6405. // skip computing output for unused tokens
  6406. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6407. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6408. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6409. }
  6410. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6411. cb(ffn_inp, "ffn_inp", il);
  6412. // feed-forward network
  6413. cur = build_norm(ffn_inp,
  6414. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  6415. LLM_NORM, il);
  6416. cb(cur, "ffn_norm", il);
  6417. cur = build_ffn(cur,
  6418. model.layers[il].ffn_up, NULL, NULL,
  6419. model.layers[il].ffn_gate, NULL, NULL,
  6420. model.layers[il].ffn_down, NULL, NULL,
  6421. NULL,
  6422. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6423. cb(cur, "ffn_out", il);
  6424. cur = ggml_add(ctx0, cur, ffn_inp);
  6425. cur = build_cvec(cur, il);
  6426. cb(cur, "l_out", il);
  6427. // input for next layer
  6428. inpL = cur;
  6429. }
  6430. cur = inpL;
  6431. cur = build_norm(cur,
  6432. model.output_norm, model.output_norm_b,
  6433. LLM_NORM, -1);
  6434. cb(cur, "result_norm", -1);
  6435. res->t_embd = cur;
  6436. // lm_head
  6437. cur = build_lora_mm(model.output, cur);
  6438. cb(cur, "result_output", -1);
  6439. res->t_logits = cur;
  6440. ggml_build_forward_expand(gf, cur);
  6441. }
  6442. };
  6443. struct llm_build_internlm2 : public llm_graph_context {
  6444. llm_build_internlm2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6445. const int64_t n_embd_head = hparams.n_embd_head_v;
  6446. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6447. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6448. ggml_tensor * cur;
  6449. ggml_tensor * inpL;
  6450. inpL = build_inp_embd(model.tok_embd);
  6451. // inp_pos - contains the positions
  6452. ggml_tensor * inp_pos = build_inp_pos();
  6453. auto * inp_attn = build_attn_inp_kv_unified();
  6454. for (int il = 0; il < n_layer; ++il) {
  6455. ggml_tensor * inpSA = inpL;
  6456. // norm
  6457. cur = build_norm(inpL,
  6458. model.layers[il].attn_norm, NULL,
  6459. LLM_NORM_RMS, il);
  6460. cb(cur, "attn_norm", il);
  6461. // self-attention
  6462. {
  6463. // compute Q and K and RoPE them
  6464. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6465. cb(Qcur, "Qcur", il);
  6466. if (model.layers[il].bq) {
  6467. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6468. cb(Qcur, "Qcur", il);
  6469. }
  6470. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6471. cb(Kcur, "Kcur", il);
  6472. if (model.layers[il].bk) {
  6473. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6474. cb(Kcur, "Kcur", il);
  6475. }
  6476. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6477. cb(Vcur, "Vcur", il);
  6478. if (model.layers[il].bv) {
  6479. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6480. cb(Vcur, "Vcur", il);
  6481. }
  6482. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6483. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6484. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6485. Qcur = ggml_rope_ext(
  6486. ctx0, Qcur, inp_pos, nullptr,
  6487. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6488. ext_factor, attn_factor, beta_fast, beta_slow
  6489. );
  6490. Kcur = ggml_rope_ext(
  6491. ctx0, Kcur, inp_pos, nullptr,
  6492. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6493. ext_factor, attn_factor, beta_fast, beta_slow
  6494. );
  6495. cb(Qcur, "Qcur", il);
  6496. cb(Kcur, "Kcur", il);
  6497. cb(Vcur, "Vcur", il);
  6498. cur = build_attn(inp_attn, gf,
  6499. model.layers[il].wo, model.layers[il].bo,
  6500. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  6501. }
  6502. if (il == n_layer - 1) {
  6503. // skip computing output for unused tokens
  6504. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6505. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6506. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6507. }
  6508. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6509. cb(ffn_inp, "ffn_inp", il);
  6510. // feed-forward network
  6511. cur = build_norm(ffn_inp,
  6512. model.layers[il].ffn_norm, NULL,
  6513. LLM_NORM_RMS, il);
  6514. cb(cur, "ffn_norm", il);
  6515. cur = build_ffn(cur,
  6516. model.layers[il].ffn_up, NULL, NULL,
  6517. model.layers[il].ffn_gate, NULL, NULL,
  6518. model.layers[il].ffn_down, NULL, NULL,
  6519. NULL,
  6520. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6521. cb(cur, "ffn_out", il);
  6522. cur = ggml_add(ctx0, cur, ffn_inp);
  6523. cur = build_cvec(cur, il);
  6524. cb(cur, "l_out", il);
  6525. // input for next layer
  6526. inpL = cur;
  6527. }
  6528. cur = inpL;
  6529. cur = build_norm(cur,
  6530. model.output_norm, NULL,
  6531. LLM_NORM_RMS, -1);
  6532. cb(cur, "result_norm", -1);
  6533. res->t_embd = cur;
  6534. // lm_head
  6535. cur = build_lora_mm(model.output, cur);
  6536. cb(cur, "result_output", -1);
  6537. res->t_logits = cur;
  6538. ggml_build_forward_expand(gf, cur);
  6539. }
  6540. };
  6541. struct llm_build_minicpm3 : public llm_graph_context {
  6542. llm_build_minicpm3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6543. //TODO: if the model varies, these parameters need to be read from the model
  6544. const int64_t n_embd_base = 256;
  6545. const float scale_embd = 12.0f;
  6546. const float scale_depth = 1.4f;
  6547. const float kq_scale = 1.0f / sqrtf(float(hparams.n_embd_head_k));
  6548. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  6549. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  6550. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  6551. ggml_tensor * cur;
  6552. ggml_tensor * inpL;
  6553. inpL = build_inp_embd(model.tok_embd);
  6554. // scale the input embeddings
  6555. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6556. cb(inpL, "inp_scaled", -1);
  6557. // inp_pos - contains the positions
  6558. ggml_tensor * inp_pos = build_inp_pos();
  6559. auto * inp_attn = build_attn_inp_kv_unified();
  6560. for (int il = 0; il < n_layer; ++il) {
  6561. ggml_tensor * inpSA = inpL;
  6562. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  6563. // norm
  6564. cur = build_norm(inpL,
  6565. model.layers[il].attn_norm, NULL,
  6566. LLM_NORM_RMS, il);
  6567. cb(cur, "attn_norm", il);
  6568. // self_attention
  6569. {
  6570. ggml_tensor * q = NULL;
  6571. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  6572. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  6573. cb(q, "q", il);
  6574. q = build_norm(q,
  6575. model.layers[il].attn_q_a_norm, NULL,
  6576. LLM_NORM_RMS, il);
  6577. cb(q, "q", il);
  6578. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  6579. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  6580. cb(q, "q", il);
  6581. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6582. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  6583. ggml_row_size(q->type, hparams.n_embd_head_k),
  6584. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6585. 0);
  6586. cb(q_nope, "q_nope", il);
  6587. // and {n_head * n_embd_head_qk_rope, n_tokens}
  6588. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  6589. ggml_row_size(q->type, hparams.n_embd_head_k),
  6590. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  6591. ggml_row_size(q->type, n_embd_head_qk_nope));
  6592. cb(q_pe, "q_pe", il);
  6593. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  6594. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  6595. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  6596. // split into {kv_lora_rank, n_tokens}
  6597. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  6598. kv_pe_compresseed->nb[1],
  6599. 0);
  6600. cb(kv_compressed, "kv_compressed", il);
  6601. // and {n_embd_head_qk_rope, n_tokens}
  6602. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  6603. kv_pe_compresseed->nb[1],
  6604. kv_pe_compresseed->nb[1],
  6605. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  6606. cb(k_pe, "k_pe", il);
  6607. // TODO: the CUDA backend used to not support non-cont. (RMS) norm, investigate removing ggml_cont
  6608. kv_compressed = ggml_cont(ctx0, kv_compressed);
  6609. kv_compressed = build_norm(kv_compressed,
  6610. model.layers[il].attn_kv_a_norm, NULL,
  6611. LLM_NORM_RMS, il);
  6612. cb(kv_compressed, "kv_compressed", il);
  6613. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  6614. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  6615. cb(kv, "kv", il);
  6616. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  6617. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  6618. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  6619. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6620. 0);
  6621. cb(k_nope, "k_nope", il);
  6622. // and {n_head * n_embd_head_v, n_tokens}
  6623. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  6624. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  6625. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  6626. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  6627. cb(v_states, "v_states", il);
  6628. v_states = ggml_cont(ctx0, v_states);
  6629. cb(v_states, "v_states", il);
  6630. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  6631. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  6632. 0);
  6633. cb(v_states, "v_states", il);
  6634. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6635. q_pe = ggml_rope_ext(
  6636. ctx0, q_pe, inp_pos, rope_factors,
  6637. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6638. ext_factor, attn_factor, beta_fast, beta_slow
  6639. );
  6640. cb(q_pe, "q_pe", il);
  6641. // shared RoPE key
  6642. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend used to not support non-cont. RoPE, investigate removing this
  6643. k_pe = ggml_rope_ext(
  6644. ctx0, k_pe, inp_pos, rope_factors,
  6645. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6646. ext_factor, attn_factor, beta_fast, beta_slow
  6647. );
  6648. cb(k_pe, "k_pe", il);
  6649. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  6650. cb(q_states, "q_states", il);
  6651. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  6652. cb(k_states, "k_states", il);
  6653. cur = build_attn(inp_attn, gf,
  6654. model.layers[il].wo, NULL,
  6655. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  6656. }
  6657. if (il == n_layer - 1) {
  6658. // skip computing output for unused tokens
  6659. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6660. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6661. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6662. }
  6663. // scale_res - scale the hidden states for residual connection
  6664. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6665. cur = ggml_scale(ctx0, cur, scale_res);
  6666. cb(cur, "hidden_scaled", il);
  6667. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6668. cb(ffn_inp, "ffn_inp", il);
  6669. // feed-forward network
  6670. {
  6671. cur = build_norm(ffn_inp,
  6672. model.layers[il].ffn_norm, NULL,
  6673. LLM_NORM_RMS, il);
  6674. cb(cur, "ffn_norm", il);
  6675. cur = build_ffn(cur,
  6676. model.layers[il].ffn_up, NULL, NULL,
  6677. model.layers[il].ffn_gate, NULL, NULL,
  6678. model.layers[il].ffn_down, NULL, NULL,
  6679. NULL,
  6680. LLM_FFN_SILU, LLM_FFN_PAR, il);
  6681. cb(cur, "ffn_out", il);
  6682. }
  6683. // scale the hidden states for residual connection
  6684. cur = ggml_scale(ctx0, cur, scale_res);
  6685. cb(cur, "hidden_scaled_ffn", il);
  6686. cur = ggml_add(ctx0, cur, ffn_inp);
  6687. cur = build_cvec(cur, il);
  6688. cb(cur, "l_out", il);
  6689. // input for next layer
  6690. inpL = cur;
  6691. }
  6692. cur = inpL;
  6693. cur = build_norm(cur,
  6694. model.output_norm, NULL,
  6695. LLM_NORM_RMS, -1);
  6696. cb(cur, "result_norm", -1);
  6697. res->t_embd = cur;
  6698. // lm_head scaling
  6699. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6700. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6701. cb(cur, "lmhead_scaling", -1);
  6702. // lm_head
  6703. cur = build_lora_mm(model.output, cur);
  6704. cb(cur, "result_output", -1);
  6705. res->t_logits = cur;
  6706. ggml_build_forward_expand(gf, cur);
  6707. }
  6708. };
  6709. struct llm_build_gemma : public llm_graph_context {
  6710. llm_build_gemma(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6711. const int64_t n_embd_head = hparams.n_embd_head_v;
  6712. ggml_tensor * cur;
  6713. ggml_tensor * inpL;
  6714. inpL = build_inp_embd(model.tok_embd);
  6715. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6716. cb(inpL, "inp_scaled", -1);
  6717. // inp_pos - contains the positions
  6718. ggml_tensor * inp_pos = build_inp_pos();
  6719. auto * inp_attn = build_attn_inp_kv_unified();
  6720. for (int il = 0; il < n_layer; ++il) {
  6721. // norm
  6722. cur = build_norm(inpL,
  6723. model.layers[il].attn_norm, NULL,
  6724. LLM_NORM_RMS, il);
  6725. cb(cur, "attn_norm", il);
  6726. // self-attention
  6727. {
  6728. // compute Q and K and RoPE them
  6729. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6730. cb(Qcur, "Qcur", il);
  6731. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6732. cb(Kcur, "Kcur", il);
  6733. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6734. cb(Vcur, "Vcur", il);
  6735. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6736. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6737. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6738. Qcur = ggml_rope_ext(
  6739. ctx0, Qcur, inp_pos, nullptr,
  6740. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6741. ext_factor, attn_factor, beta_fast, beta_slow);
  6742. Kcur = ggml_rope_ext(
  6743. ctx0, Kcur, inp_pos, nullptr,
  6744. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6745. ext_factor, attn_factor, beta_fast, beta_slow);
  6746. cb(Qcur, "Qcur", il);
  6747. cb(Kcur, "Kcur", il);
  6748. cb(Vcur, "Vcur", il);
  6749. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  6750. cb(Qcur, "Qcur_scaled", il);
  6751. cur = build_attn(inp_attn, gf,
  6752. model.layers[il].wo, NULL,
  6753. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6754. }
  6755. if (il == n_layer - 1) {
  6756. // skip computing output for unused tokens
  6757. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6758. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6759. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6760. }
  6761. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6762. cb(sa_out, "sa_out", il);
  6763. cur = build_norm(sa_out,
  6764. model.layers[il].ffn_norm, NULL,
  6765. LLM_NORM_RMS, il);
  6766. cb(cur, "ffn_norm", il);
  6767. // feed-forward network
  6768. {
  6769. cur = build_ffn(cur,
  6770. model.layers[il].ffn_up, NULL, NULL,
  6771. model.layers[il].ffn_gate, NULL, NULL,
  6772. model.layers[il].ffn_down, NULL, NULL,
  6773. NULL,
  6774. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6775. cb(cur, "ffn_out", il);
  6776. }
  6777. cur = ggml_add(ctx0, cur, sa_out);
  6778. cur = build_cvec(cur, il);
  6779. cb(cur, "l_out", il);
  6780. // input for next layer
  6781. inpL = cur;
  6782. }
  6783. cur = inpL;
  6784. cur = build_norm(cur,
  6785. model.output_norm, NULL,
  6786. LLM_NORM_RMS, -1);
  6787. cb(cur, "result_norm", -1);
  6788. res->t_embd = cur;
  6789. // lm_head
  6790. cur = build_lora_mm(model.output, cur);
  6791. cb(cur, "result_output", -1);
  6792. res->t_logits = cur;
  6793. ggml_build_forward_expand(gf, cur);
  6794. }
  6795. };
  6796. struct llm_build_gemma2_iswa : public llm_graph_context {
  6797. llm_build_gemma2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6798. const int64_t n_embd_head = hparams.n_embd_head_k;
  6799. ggml_tensor * cur;
  6800. ggml_tensor * inpL;
  6801. inpL = build_inp_embd(model.tok_embd);
  6802. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6803. cb(inpL, "inp_scaled", -1);
  6804. // inp_pos - contains the positions
  6805. ggml_tensor * inp_pos = build_inp_pos();
  6806. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  6807. for (int il = 0; il < n_layer; ++il) {
  6808. // norm
  6809. cur = build_norm(inpL,
  6810. model.layers[il].attn_norm, NULL,
  6811. LLM_NORM_RMS, il);
  6812. cb(cur, "attn_norm", il);
  6813. // self-attention
  6814. {
  6815. // compute Q and K and RoPE them
  6816. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6817. cb(Qcur, "Qcur", il);
  6818. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6819. cb(Kcur, "Kcur", il);
  6820. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6821. cb(Vcur, "Vcur", il);
  6822. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6823. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6824. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6825. Qcur = ggml_rope_ext(
  6826. ctx0, Qcur, inp_pos, nullptr,
  6827. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6828. ext_factor, attn_factor, beta_fast, beta_slow);
  6829. Kcur = ggml_rope_ext(
  6830. ctx0, Kcur, inp_pos, nullptr,
  6831. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6832. ext_factor, attn_factor, beta_fast, beta_slow);
  6833. cb(Qcur, "Qcur", il);
  6834. cb(Kcur, "Kcur", il);
  6835. cb(Vcur, "Vcur", il);
  6836. Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
  6837. cur = build_attn(inp_attn, gf,
  6838. model.layers[il].wo, NULL,
  6839. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6840. }
  6841. cur = build_norm(cur,
  6842. model.layers[il].attn_post_norm, NULL,
  6843. LLM_NORM_RMS, il);
  6844. cb(cur, "attn_post_norm", il);
  6845. if (il == n_layer - 1) {
  6846. // skip computing output for unused tokens
  6847. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6848. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6849. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6850. }
  6851. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6852. cb(sa_out, "sa_out", il);
  6853. cur = build_norm(sa_out,
  6854. model.layers[il].ffn_norm, NULL,
  6855. LLM_NORM_RMS, il);
  6856. cb(cur, "ffn_norm", il);
  6857. // feed-forward network
  6858. {
  6859. cur = build_ffn(cur,
  6860. model.layers[il].ffn_up, NULL, NULL,
  6861. model.layers[il].ffn_gate, NULL, NULL,
  6862. model.layers[il].ffn_down, NULL, NULL,
  6863. NULL,
  6864. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6865. cb(cur, "ffn_out", il);
  6866. }
  6867. cur = build_norm(cur,
  6868. model.layers[il].ffn_post_norm, NULL,
  6869. LLM_NORM_RMS, -1);
  6870. cb(cur, "ffn_post_norm", -1);
  6871. cur = ggml_add(ctx0, cur, sa_out);
  6872. cur = build_cvec(cur, il);
  6873. cb(cur, "l_out", il);
  6874. // input for next layer
  6875. inpL = cur;
  6876. }
  6877. cur = inpL;
  6878. cur = build_norm(cur,
  6879. model.output_norm, NULL,
  6880. LLM_NORM_RMS, -1);
  6881. cb(cur, "result_norm", -1);
  6882. res->t_embd = cur;
  6883. // lm_head
  6884. cur = build_lora_mm(model.output, cur);
  6885. // final logit soft-capping
  6886. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_final_logit_softcapping);
  6887. cur = ggml_tanh(ctx0, cur);
  6888. cur = ggml_scale(ctx0, cur, hparams.f_final_logit_softcapping);
  6889. cb(cur, "result_output", -1);
  6890. res->t_logits = cur;
  6891. ggml_build_forward_expand(gf, cur);
  6892. }
  6893. };
  6894. struct llm_build_gemma3_iswa : public llm_graph_context {
  6895. llm_build_gemma3_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  6896. const int64_t n_embd_head = hparams.n_embd_head_k;
  6897. ggml_tensor * cur;
  6898. ggml_tensor * inpL;
  6899. inpL = build_inp_embd(model.tok_embd);
  6900. // important: do not normalize weights for raw embeddings input (i.e. encoded image emdeddings)
  6901. if (ubatch.token) {
  6902. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6903. cb(inpL, "inp_scaled", -1);
  6904. }
  6905. // inp_pos - contains the positions
  6906. ggml_tensor * inp_pos = build_inp_pos();
  6907. // TODO: is causal == true correct? might need some changes
  6908. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  6909. for (int il = 0; il < n_layer; ++il) {
  6910. const float freq_base_l = model.get_rope_freq_base (cparams, il);
  6911. const float freq_scale_l = model.get_rope_freq_scale(cparams, il);
  6912. // norm
  6913. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, il);
  6914. cb(cur, "attn_norm", il);
  6915. // self-attention
  6916. {
  6917. // compute Q and K and RoPE them
  6918. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  6919. cb(Qcur, "Qcur", il);
  6920. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  6921. cb(Kcur, "Kcur", il);
  6922. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  6923. cb(Vcur, "Vcur", il);
  6924. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6925. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6926. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  6927. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
  6928. cb(Qcur, "Qcur_normed", il);
  6929. Qcur = ggml_rope_ext(
  6930. ctx0, Qcur, inp_pos, nullptr,
  6931. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6932. ext_factor, attn_factor, beta_fast, beta_slow);
  6933. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
  6934. cb(Kcur, "Kcur_normed", il);
  6935. Kcur = ggml_rope_ext(
  6936. ctx0, Kcur, inp_pos, nullptr,
  6937. n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
  6938. ext_factor, attn_factor, beta_fast, beta_slow);
  6939. cb(Qcur, "Qcur", il);
  6940. cb(Kcur, "Kcur", il);
  6941. cb(Vcur, "Vcur", il);
  6942. // ref: https://github.com/google/gemma_pytorch/blob/014acb7ac4563a5f77c76d7ff98f31b568c16508/gemma/model.py#L315
  6943. Qcur = ggml_scale(ctx0, Qcur, hparams.f_attention_scale);
  6944. cur = build_attn(inp_attn, gf,
  6945. model.layers[il].wo, NULL,
  6946. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  6947. }
  6948. cur = build_norm(cur,
  6949. model.layers[il].attn_post_norm, NULL,
  6950. LLM_NORM_RMS, il);
  6951. cb(cur, "attn_post_norm", il);
  6952. if (il == n_layer - 1) {
  6953. // skip computing output for unused tokens
  6954. ggml_tensor * inp_out_ids = build_inp_out_ids();
  6955. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6956. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6957. }
  6958. ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6959. cb(sa_out, "sa_out", il);
  6960. cur = build_norm(sa_out,
  6961. model.layers[il].ffn_norm, NULL,
  6962. LLM_NORM_RMS, il);
  6963. cb(cur, "ffn_norm", il);
  6964. // feed-forward network
  6965. {
  6966. cur = build_ffn(cur,
  6967. model.layers[il].ffn_up, NULL, NULL,
  6968. model.layers[il].ffn_gate, NULL, NULL,
  6969. model.layers[il].ffn_down, NULL, NULL,
  6970. NULL,
  6971. LLM_FFN_GELU, LLM_FFN_PAR, il);
  6972. cb(cur, "ffn_out", il);
  6973. }
  6974. cur = build_norm(cur,
  6975. model.layers[il].ffn_post_norm, NULL,
  6976. LLM_NORM_RMS, -1);
  6977. cb(cur, "ffn_post_norm", -1);
  6978. cur = ggml_add(ctx0, cur, sa_out);
  6979. cur = build_cvec(cur, il);
  6980. cb(cur, "l_out", il);
  6981. // input for next layer
  6982. inpL = cur;
  6983. }
  6984. cur = inpL;
  6985. cur = build_norm(cur,
  6986. model.output_norm, NULL,
  6987. LLM_NORM_RMS, -1);
  6988. cb(cur, "result_norm", -1);
  6989. res->t_embd = cur;
  6990. // lm_head
  6991. cur = build_lora_mm(model.output, cur);
  6992. cb(cur, "result_output", -1);
  6993. res->t_logits = cur;
  6994. ggml_build_forward_expand(gf, cur);
  6995. }
  6996. };
  6997. // TODO: move up next to build_starcoder
  6998. struct llm_build_starcoder2 : public llm_graph_context {
  6999. llm_build_starcoder2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7000. const int64_t n_embd_head = hparams.n_embd_head_v;
  7001. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7002. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7003. ggml_tensor * cur;
  7004. ggml_tensor * inpL;
  7005. inpL = build_inp_embd(model.tok_embd);
  7006. // inp_pos - contains the positions
  7007. ggml_tensor * inp_pos = build_inp_pos();
  7008. auto * inp_attn = build_attn_inp_kv_unified();
  7009. for (int il = 0; il < n_layer; ++il) {
  7010. ggml_tensor * inpSA = inpL;
  7011. // norm
  7012. cur = build_norm(inpL,
  7013. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7014. LLM_NORM, il);
  7015. cb(cur, "attn_norm", il);
  7016. // self-attention
  7017. {
  7018. // compute Q and K and RoPE them
  7019. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7020. cb(Qcur, "Qcur", il);
  7021. if (model.layers[il].bq) {
  7022. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7023. cb(Qcur, "Qcur", il);
  7024. }
  7025. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7026. cb(Kcur, "Kcur", il);
  7027. if (model.layers[il].bk) {
  7028. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7029. cb(Kcur, "Kcur", il);
  7030. }
  7031. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7032. cb(Vcur, "Vcur", il);
  7033. if (model.layers[il].bv) {
  7034. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7035. cb(Vcur, "Vcur", il);
  7036. }
  7037. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7038. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7039. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7040. Qcur = ggml_rope_ext(
  7041. ctx0, Qcur, inp_pos, nullptr,
  7042. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7043. ext_factor, attn_factor, beta_fast, beta_slow
  7044. );
  7045. Kcur = ggml_rope_ext(
  7046. ctx0, Kcur, inp_pos, nullptr,
  7047. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7048. ext_factor, attn_factor, beta_fast, beta_slow
  7049. );
  7050. cb(Qcur, "Qcur", il);
  7051. cb(Kcur, "Kcur", il);
  7052. cb(Vcur, "Vcur", il);
  7053. cur = build_attn(inp_attn, gf,
  7054. model.layers[il].wo, model.layers[il].bo,
  7055. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7056. }
  7057. if (il == n_layer - 1) {
  7058. // skip computing output for unused tokens
  7059. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7060. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7061. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7062. }
  7063. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7064. cb(ffn_inp, "ffn_inp", il);
  7065. // feed-forward network
  7066. cur = build_norm(ffn_inp,
  7067. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7068. LLM_NORM, il);
  7069. cb(cur, "ffn_norm", il);
  7070. cur = build_ffn(cur,
  7071. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7072. NULL, NULL, NULL,
  7073. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7074. NULL,
  7075. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7076. cb(cur, "ffn_out", il);
  7077. cur = ggml_add(ctx0, cur, ffn_inp);
  7078. cur = build_cvec(cur, il);
  7079. cb(cur, "l_out", il);
  7080. // input for next layer
  7081. inpL = cur;
  7082. }
  7083. cur = inpL;
  7084. cur = build_norm(cur,
  7085. model.output_norm, model.output_norm_b,
  7086. LLM_NORM, -1);
  7087. cb(cur, "result_norm", -1);
  7088. res->t_embd = cur;
  7089. // lm_head
  7090. cur = build_lora_mm(model.output, cur);
  7091. cb(cur, "result_output", -1);
  7092. res->t_logits = cur;
  7093. ggml_build_forward_expand(gf, cur);
  7094. }
  7095. };
  7096. struct llm_build_mamba : public llm_graph_context {
  7097. const llama_model & model;
  7098. llm_build_mamba(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params), model(model) {
  7099. ggml_tensor * cur;
  7100. ggml_tensor * inpL;
  7101. // {n_embd, n_tokens}
  7102. inpL = build_inp_embd(model.tok_embd);
  7103. ggml_tensor * state_copy = build_inp_s_copy();
  7104. for (int il = 0; il < n_layer; ++il) {
  7105. // norm
  7106. cur = build_norm(inpL,
  7107. model.layers[il].attn_norm, NULL,
  7108. LLM_NORM_RMS, il);
  7109. cb(cur, "attn_norm", il);
  7110. cur = build_mamba_layer(gf, cur, state_copy, ubatch, il);
  7111. if (il == n_layer - 1) {
  7112. // skip computing output for unused tokens
  7113. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7114. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7115. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7116. }
  7117. // residual
  7118. cur = ggml_add(ctx0, cur, inpL);
  7119. cur = build_cvec(cur, il);
  7120. cb(cur, "l_out", il);
  7121. // input for next layer
  7122. inpL = cur;
  7123. }
  7124. // final rmsnorm
  7125. cur = build_norm(inpL,
  7126. model.output_norm, NULL,
  7127. LLM_NORM_RMS, -1);
  7128. cb(cur, "result_norm", -1);
  7129. res->t_embd = cur;
  7130. // lm_head
  7131. cur = build_lora_mm(model.output, cur);
  7132. cb(cur, "result_output", -1);
  7133. res->t_logits = cur;
  7134. ggml_build_forward_expand(gf, cur);
  7135. }
  7136. // TODO: split
  7137. ggml_tensor * build_mamba_layer(
  7138. ggml_cgraph * gf,
  7139. ggml_tensor * cur,
  7140. ggml_tensor * state_copy,
  7141. const llama_ubatch & ubatch,
  7142. int il) const {
  7143. const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
  7144. const auto kv_head = kv_state->get_head();
  7145. const int64_t d_conv = hparams.ssm_d_conv;
  7146. const int64_t d_inner = hparams.ssm_d_inner;
  7147. const int64_t d_state = hparams.ssm_d_state;
  7148. const int64_t dt_rank = hparams.ssm_dt_rank;
  7149. const int64_t n_seqs = ubatch.n_seqs;
  7150. // Some variants of Mamba arch (e.g. FalconMamba do apply layer norm on B and Dt layers)
  7151. const bool ssm_dt_b_c_rms = hparams.ssm_dt_b_c_rms;
  7152. // Use the same RMS norm as the final layer norm
  7153. const float norm_rms_eps = hparams.f_norm_rms_eps;
  7154. const int64_t n_seq_tokens = ubatch.n_seq_tokens;
  7155. GGML_ASSERT(n_seqs != 0);
  7156. GGML_ASSERT(ubatch.equal_seqs);
  7157. GGML_ASSERT(ubatch.n_tokens == n_seq_tokens * n_seqs);
  7158. ggml_tensor * conv_states_all = kv_state->get_k_l(il);
  7159. ggml_tensor * ssm_states_all = kv_state->get_v_l(il);
  7160. // (ab)using the KV cache to store the states
  7161. ggml_tensor * conv = build_recurrent_state(
  7162. gf, conv_states_all, state_copy,
  7163. hparams.n_embd_k_s(), n_seqs);
  7164. conv = ggml_reshape_3d(ctx0, conv, d_conv - 1, d_inner, n_seqs);
  7165. ggml_tensor * ssm = build_recurrent_state(
  7166. gf, ssm_states_all, state_copy,
  7167. hparams.n_embd_v_s(), n_seqs);
  7168. ssm = ggml_reshape_3d(ctx0, ssm, d_state, d_inner, n_seqs);
  7169. // {n_embd, n_tokens} => {n_embd, n_seq_tokens, n_seqs}
  7170. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], n_seq_tokens, n_seqs);
  7171. // {n_embd, 2*d_inner} @ {n_embd, n_seq_tokens, n_seqs} => {2*d_inner, n_seq_tokens, n_seqs}
  7172. ggml_tensor * xz = build_lora_mm(model.layers[il].ssm_in, cur);
  7173. // split the above in two
  7174. // => {d_inner, n_seq_tokens, n_seqs}
  7175. ggml_tensor * x = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], 0);
  7176. ggml_tensor * z = ggml_view_3d(ctx0, xz, d_inner, xz->ne[1], xz->ne[2], xz->nb[1], xz->nb[2], d_inner*ggml_element_size(xz));
  7177. // conv
  7178. {
  7179. // => {d_conv - 1 + n_seq_tokens, d_inner, n_seqs}
  7180. ggml_tensor * conv_x = ggml_concat(ctx0, conv, ggml_transpose(ctx0, x), 0);
  7181. // copy last (d_conv - 1) columns back into the state cache
  7182. ggml_tensor * last_conv = ggml_view_3d(ctx0, conv_x, d_conv - 1, d_inner, n_seqs, conv_x->nb[1], conv_x->nb[2], n_seq_tokens*(conv_x->nb[0]));
  7183. ggml_build_forward_expand(gf,
  7184. ggml_cpy(ctx0, last_conv,
  7185. ggml_view_1d(ctx0, conv_states_all,
  7186. (d_conv - 1)*(d_inner)*(n_seqs),
  7187. kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(conv_states_all))));
  7188. // 1D convolution
  7189. // The equivalent is to make a self-overlapping view of conv_x
  7190. // over d_conv columns at each stride in the 3rd dimension,
  7191. // then element-wise multiply that with the conv1d weight,
  7192. // then sum the elements of each row,
  7193. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7194. // then permute away the ne[0] dimension,
  7195. // and then you're left with the resulting x tensor.
  7196. // For simultaneous sequences, all sequences need to have the same length.
  7197. x = ggml_ssm_conv(ctx0, conv_x, model.layers[il].ssm_conv1d);
  7198. // bias
  7199. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7200. x = ggml_silu(ctx0, x);
  7201. }
  7202. // ssm
  7203. {
  7204. // {d_inner, dt_rank + 2*d_state} @ {d_inner, n_seq_tokens, n_seqs} => {dt_rank + 2*d_state, n_seq_tokens, n_seqs}
  7205. ggml_tensor * x_db = build_lora_mm(model.layers[il].ssm_x, x);
  7206. // split
  7207. ggml_tensor * dt = ggml_view_3d(ctx0, x_db, dt_rank, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], 0);
  7208. ggml_tensor * B = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*dt_rank);
  7209. ggml_tensor * C = ggml_view_3d(ctx0, x_db, d_state, n_seq_tokens, n_seqs, x_db->nb[1], x_db->nb[2], ggml_element_size(x_db)*(dt_rank+d_state));
  7210. // Some Mamba variants (e.g. FalconMamba) apply RMS norm in B, C & Dt layers
  7211. if (ssm_dt_b_c_rms) {
  7212. dt = ggml_rms_norm(ctx0, dt, norm_rms_eps);
  7213. B = ggml_rms_norm(ctx0, B, norm_rms_eps);
  7214. C = ggml_rms_norm(ctx0, C, norm_rms_eps);
  7215. }
  7216. // {dt_rank, d_inner} @ {dt_rank, n_seq_tokens, n_seqs} => {d_inner, n_seq_tokens, n_seqs}
  7217. dt = build_lora_mm(model.layers[il].ssm_dt, dt);
  7218. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7219. // Custom operator to optimize the parallel associative scan
  7220. // as described in the Annex D of the Mamba paper.
  7221. // => {d_inner, n_seq_tokens, n_seqs} and {d_state, d_inner, n_seqs}
  7222. ggml_tensor * y_ssm = ggml_ssm_scan(ctx0, ssm, x, dt, model.layers[il].ssm_a, B, C);
  7223. // store last states
  7224. ggml_build_forward_expand(gf,
  7225. ggml_cpy(ctx0,
  7226. ggml_view_1d(ctx0, y_ssm, d_state*d_inner*n_seqs, x->nb[3]),
  7227. ggml_view_1d(ctx0, ssm_states_all, d_state*d_inner*n_seqs, kv_head*d_state*d_inner*ggml_element_size(ssm_states_all))));
  7228. ggml_tensor * y = ggml_view_3d(ctx0, y_ssm, d_inner, n_seq_tokens, n_seqs, x->nb[1], x->nb[2], 0);
  7229. // TODO: skip computing output earlier for unused tokens
  7230. // {d_inner, n_seq_tokens, n_seqs} * {d_inner} => {d_inner, n_seq_tokens, n_seqs}
  7231. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7232. y = ggml_mul(ctx0, y, ggml_silu(ctx0, ggml_cont(ctx0, z)));
  7233. // {d_inner, n_embd} @ {d_inner, n_seq_tokens, n_seqs} => {n_embd, n_seq_tokens, n_seqs}
  7234. cur = build_lora_mm(model.layers[il].ssm_out, y);
  7235. }
  7236. // {n_embd, n_seq_tokens, n_seqs} => {n_embd, n_tokens}
  7237. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], n_seq_tokens * n_seqs);
  7238. //cb(cur, "mamba_out", il);
  7239. return cur;
  7240. }
  7241. };
  7242. struct llm_build_command_r : public llm_graph_context {
  7243. llm_build_command_r(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7244. const int64_t n_embd_head = hparams.n_embd_head_v;
  7245. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7246. const float f_logit_scale = hparams.f_logit_scale;
  7247. ggml_tensor * cur;
  7248. ggml_tensor * inpL;
  7249. inpL = build_inp_embd(model.tok_embd);
  7250. // inp_pos - contains the positions
  7251. ggml_tensor * inp_pos = build_inp_pos();
  7252. auto * inp_attn = build_attn_inp_kv_unified();
  7253. for (int il = 0; il < n_layer; ++il) {
  7254. // norm
  7255. cur = build_norm(inpL,
  7256. model.layers[il].attn_norm, NULL,
  7257. LLM_NORM, il);
  7258. cb(cur, "attn_norm", il);
  7259. ggml_tensor * ffn_inp = cur;
  7260. // self-attention
  7261. {
  7262. // compute Q and K and RoPE them
  7263. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7264. cb(Qcur, "Qcur", il);
  7265. if (model.layers[il].bq) {
  7266. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7267. cb(Qcur, "Qcur", il);
  7268. }
  7269. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7270. cb(Kcur, "Kcur", il);
  7271. if (model.layers[il].bk) {
  7272. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7273. cb(Kcur, "Kcur", il);
  7274. }
  7275. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7276. cb(Vcur, "Vcur", il);
  7277. if (model.layers[il].bv) {
  7278. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7279. cb(Vcur, "Vcur", il);
  7280. }
  7281. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7282. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7283. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7284. if (model.layers[il].attn_q_norm) {
  7285. Qcur = build_norm(Qcur,
  7286. model.layers[il].attn_q_norm,
  7287. NULL,
  7288. LLM_NORM, il);
  7289. cb(Qcur, "Qcur", il);
  7290. }
  7291. Qcur = ggml_rope_ext(
  7292. ctx0, Qcur, inp_pos, nullptr,
  7293. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7294. ext_factor, attn_factor, beta_fast, beta_slow
  7295. );
  7296. if (model.layers[il].attn_k_norm) {
  7297. Kcur = build_norm(Kcur,
  7298. model.layers[il].attn_k_norm,
  7299. NULL,
  7300. LLM_NORM, il);
  7301. cb(Kcur, "Kcur", il);
  7302. }
  7303. Kcur = ggml_rope_ext(
  7304. ctx0, Kcur, inp_pos, nullptr,
  7305. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7306. ext_factor, attn_factor, beta_fast, beta_slow
  7307. );
  7308. cb(Qcur, "Qcur", il);
  7309. cb(Kcur, "Kcur", il);
  7310. cb(Vcur, "Vcur", il);
  7311. cur = build_attn(inp_attn, gf,
  7312. model.layers[il].wo, model.layers[il].bo,
  7313. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7314. }
  7315. if (il == n_layer - 1) {
  7316. // skip computing output for unused tokens
  7317. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7318. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7319. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7320. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7321. }
  7322. ggml_tensor * attn_out = cur;
  7323. // feed-forward network
  7324. {
  7325. cur = build_ffn(ffn_inp,
  7326. model.layers[il].ffn_up, NULL, NULL,
  7327. model.layers[il].ffn_gate, NULL, NULL,
  7328. model.layers[il].ffn_down, NULL, NULL,
  7329. NULL,
  7330. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7331. cb(cur, "ffn_out", il);
  7332. }
  7333. // add together residual + FFN + self-attention
  7334. cur = ggml_add(ctx0, cur, inpL);
  7335. cur = ggml_add(ctx0, cur, attn_out);
  7336. cur = build_cvec(cur, il);
  7337. cb(cur, "l_out", il);
  7338. // input for next layer
  7339. inpL = cur;
  7340. }
  7341. cur = inpL;
  7342. cur = build_norm(cur,
  7343. model.output_norm, NULL,
  7344. LLM_NORM, -1);
  7345. cb(cur, "result_norm", -1);
  7346. res->t_embd = cur;
  7347. // lm_head
  7348. cur = build_lora_mm(model.output, cur);
  7349. if (f_logit_scale) {
  7350. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7351. }
  7352. cb(cur, "result_output", -1);
  7353. res->t_logits = cur;
  7354. ggml_build_forward_expand(gf, cur);
  7355. }
  7356. };
  7357. struct llm_build_cohere2_iswa : public llm_graph_context {
  7358. llm_build_cohere2_iswa(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7359. const int64_t n_embd_head = hparams.n_embd_head_v;
  7360. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7361. const float f_logit_scale = hparams.f_logit_scale;
  7362. ggml_tensor * cur;
  7363. ggml_tensor * inpL;
  7364. inpL = build_inp_embd(model.tok_embd);
  7365. // inp_pos - contains the positions
  7366. ggml_tensor * inp_pos = build_inp_pos();
  7367. auto * inp_attn = build_attn_inp_kv_unified_iswa();
  7368. for (int il = 0; il < n_layer; ++il) {
  7369. const bool is_swa = hparams.is_swa(il);
  7370. // norm
  7371. cur = build_norm(inpL, model.layers[il].attn_norm, NULL, LLM_NORM, il);
  7372. cb(cur, "attn_norm", il);
  7373. ggml_tensor * ffn_inp = cur;
  7374. // self-attention
  7375. {
  7376. // rope freq factors for 128k context
  7377. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  7378. // compute Q and K and RoPE them
  7379. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7380. cb(Qcur, "Qcur", il);
  7381. if (model.layers[il].bq) {
  7382. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7383. cb(Qcur, "Qcur", il);
  7384. }
  7385. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7386. cb(Kcur, "Kcur", il);
  7387. if (model.layers[il].bk) {
  7388. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7389. cb(Kcur, "Kcur", il);
  7390. }
  7391. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7392. cb(Vcur, "Vcur", il);
  7393. if (model.layers[il].bv) {
  7394. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7395. cb(Vcur, "Vcur", il);
  7396. }
  7397. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7398. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7399. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7400. if (is_swa) {
  7401. Qcur = ggml_rope_ext(
  7402. ctx0, Qcur, inp_pos, rope_factors,
  7403. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7404. ext_factor, attn_factor, beta_fast, beta_slow
  7405. );
  7406. Kcur = ggml_rope_ext(
  7407. ctx0, Kcur, inp_pos, rope_factors,
  7408. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7409. ext_factor, attn_factor, beta_fast, beta_slow
  7410. );
  7411. }
  7412. cb(Qcur, "Qcur", il);
  7413. cb(Kcur, "Kcur", il);
  7414. cb(Vcur, "Vcur", il);
  7415. cur = build_attn(inp_attn, gf,
  7416. model.layers[il].wo, model.layers[il].bo,
  7417. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7418. }
  7419. if (il == n_layer - 1) {
  7420. // skip computing output for unused tokens
  7421. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7422. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7423. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7424. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7425. }
  7426. ggml_tensor * attn_out = cur;
  7427. // feed-forward network
  7428. {
  7429. cur = build_ffn(ffn_inp, model.layers[il].ffn_up, NULL, NULL, model.layers[il].ffn_gate,
  7430. NULL, NULL, model.layers[il].ffn_down, NULL, NULL, NULL, LLM_FFN_SILU, LLM_FFN_PAR,
  7431. il);
  7432. cb(cur, "ffn_out", il);
  7433. }
  7434. // add together residual + FFN + self-attention
  7435. cur = ggml_add(ctx0, cur, inpL);
  7436. cur = ggml_add(ctx0, cur, attn_out);
  7437. cur = build_cvec(cur, il);
  7438. cb(cur, "l_out", il);
  7439. // input for next layer
  7440. inpL = cur;
  7441. }
  7442. cur = inpL;
  7443. cur = build_norm(cur, model.output_norm, NULL, LLM_NORM, -1);
  7444. cb(cur, "result_norm", -1);
  7445. res->t_embd = cur;
  7446. // lm_head
  7447. cur = build_lora_mm(model.output, cur);
  7448. if (f_logit_scale) {
  7449. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7450. }
  7451. cb(cur, "result_output", -1);
  7452. res->t_logits = cur;
  7453. ggml_build_forward_expand(gf, cur);
  7454. }
  7455. };
  7456. // ref: https://allenai.org/olmo
  7457. // based on the original build_llama() function, changes:
  7458. // * non-parametric layer norm
  7459. // * clamp qkv
  7460. // * removed bias
  7461. // * removed MoE
  7462. struct llm_build_olmo : public llm_graph_context {
  7463. llm_build_olmo(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7464. const int64_t n_embd_head = hparams.n_embd_head_v;
  7465. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7466. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7467. ggml_tensor * cur;
  7468. ggml_tensor * inpL;
  7469. inpL = build_inp_embd(model.tok_embd);
  7470. // inp_pos - contains the positions
  7471. ggml_tensor * inp_pos = build_inp_pos();
  7472. auto * inp_attn = build_attn_inp_kv_unified();
  7473. for (int il = 0; il < n_layer; ++il) {
  7474. ggml_tensor * inpSA = inpL;
  7475. // norm
  7476. cur = build_norm(inpL,
  7477. NULL, NULL,
  7478. LLM_NORM, il);
  7479. cb(cur, "attn_norm", il);
  7480. // self-attention
  7481. {
  7482. // compute Q and K and RoPE them
  7483. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7484. cb(Qcur, "Qcur", il);
  7485. if (hparams.f_clamp_kqv > 0.0f) {
  7486. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7487. cb(Qcur, "Qcur", il);
  7488. }
  7489. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7490. cb(Kcur, "Kcur", il);
  7491. if (hparams.f_clamp_kqv > 0.0f) {
  7492. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7493. cb(Kcur, "Kcur", il);
  7494. }
  7495. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7496. cb(Vcur, "Vcur", il);
  7497. if (hparams.f_clamp_kqv > 0.0f) {
  7498. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7499. cb(Vcur, "Vcur", il);
  7500. }
  7501. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7502. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7503. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7504. Qcur = ggml_rope_ext(
  7505. ctx0, Qcur, inp_pos, nullptr,
  7506. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7507. ext_factor, attn_factor, beta_fast, beta_slow
  7508. );
  7509. Kcur = ggml_rope_ext(
  7510. ctx0, Kcur, inp_pos, nullptr,
  7511. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7512. ext_factor, attn_factor, beta_fast, beta_slow
  7513. );
  7514. cb(Qcur, "Qcur", il);
  7515. cb(Kcur, "Kcur", il);
  7516. cb(Vcur, "Vcur", il);
  7517. cur = build_attn(inp_attn, gf,
  7518. model.layers[il].wo, nullptr,
  7519. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7520. }
  7521. if (il == n_layer - 1) {
  7522. // skip computing output for unused tokens
  7523. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7524. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7525. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7526. }
  7527. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7528. cb(ffn_inp, "ffn_inp", il);
  7529. // feed-forward network
  7530. cur = build_norm(ffn_inp,
  7531. NULL, NULL,
  7532. LLM_NORM, il);
  7533. cb(cur, "ffn_norm", il);
  7534. cur = build_ffn(cur,
  7535. model.layers[il].ffn_up, NULL, NULL,
  7536. model.layers[il].ffn_gate, NULL, NULL,
  7537. model.layers[il].ffn_down, NULL, NULL,
  7538. NULL,
  7539. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7540. cb(cur, "ffn_out", il);
  7541. cur = ggml_add(ctx0, cur, ffn_inp);
  7542. cb(cur, "ffn_out", il);
  7543. cur = build_cvec(cur, il);
  7544. cb(cur, "l_out", il);
  7545. // input for next layer
  7546. inpL = cur;
  7547. }
  7548. cur = inpL;
  7549. cur = build_norm(cur,
  7550. NULL, NULL,
  7551. LLM_NORM, -1);
  7552. cb(cur, "result_norm", -1);
  7553. res->t_embd = cur;
  7554. // lm_head
  7555. cur = build_lora_mm(model.output, cur);
  7556. cb(cur, "result_output", -1);
  7557. res->t_logits = cur;
  7558. ggml_build_forward_expand(gf, cur);
  7559. }
  7560. };
  7561. struct llm_build_olmo2 : public llm_graph_context {
  7562. llm_build_olmo2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7563. const int64_t n_embd_head = hparams.n_embd_head_v;
  7564. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7565. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7566. ggml_tensor * cur;
  7567. ggml_tensor * inpL;
  7568. inpL = build_inp_embd(model.tok_embd);
  7569. // inp_pos - contains the positions
  7570. ggml_tensor * inp_pos = build_inp_pos();
  7571. auto * inp_attn = build_attn_inp_kv_unified();
  7572. for (int il = 0; il < n_layer; ++il) {
  7573. ggml_tensor * inpSA = inpL;
  7574. cur = inpL;
  7575. // self_attention
  7576. {
  7577. // compute Q and K and RoPE them
  7578. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7579. cb(Qcur, "Qcur", il);
  7580. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7581. cb(Kcur, "Kcur", il);
  7582. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7583. cb(Vcur, "Vcur", il);
  7584. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7585. LLM_NORM_RMS, il);
  7586. cb(Qcur, "Qcur_normed", il);
  7587. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7588. LLM_NORM_RMS, il);
  7589. cb(Kcur, "Kcur_normed", il);
  7590. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7591. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7592. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7593. Qcur = ggml_rope_ext(
  7594. ctx0, Qcur, inp_pos, nullptr,
  7595. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7596. ext_factor, attn_factor, beta_fast, beta_slow
  7597. );
  7598. Kcur = ggml_rope_ext(
  7599. ctx0, Kcur, inp_pos, nullptr,
  7600. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7601. ext_factor, attn_factor, beta_fast, beta_slow
  7602. );
  7603. cb(Qcur, "Qcur", il);
  7604. cb(Kcur, "Kcur", il);
  7605. cb(Vcur, "Vcur", il);
  7606. cur = build_attn(inp_attn, gf,
  7607. model.layers[il].wo, NULL,
  7608. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7609. }
  7610. cur = build_norm(cur,
  7611. model.layers[il].attn_post_norm, NULL,
  7612. LLM_NORM_RMS, il);
  7613. cb(cur, "attn_post_norm", il);
  7614. if (il == n_layer - 1) {
  7615. // skip computing output for unused tokens
  7616. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7617. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7618. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7619. }
  7620. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7621. cb(ffn_inp, "ffn_inp", il);
  7622. // feed-forward network
  7623. cur = build_ffn(ffn_inp,
  7624. model.layers[il].ffn_up, NULL, NULL,
  7625. model.layers[il].ffn_gate, NULL, NULL,
  7626. model.layers[il].ffn_down, NULL, NULL,
  7627. NULL,
  7628. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7629. cb(cur, "ffn_out", il);
  7630. cur = build_norm(cur,
  7631. model.layers[il].ffn_post_norm, NULL,
  7632. LLM_NORM_RMS, -1);
  7633. cb(cur, "ffn_post_norm", -1);
  7634. cur = ggml_add(ctx0, cur, ffn_inp);
  7635. cb(cur, "ffn_out", il);
  7636. cur = build_cvec(cur, il);
  7637. cb(cur, "l_out", il);
  7638. // input for next layer
  7639. inpL = cur;
  7640. }
  7641. cur = inpL;
  7642. cur = build_norm(cur,
  7643. model.output_norm, NULL,
  7644. LLM_NORM_RMS, -1);
  7645. cb(cur, "result_norm", -1);
  7646. res->t_embd = cur;
  7647. // lm_head
  7648. cur = build_lora_mm(model.output, cur);
  7649. cb(cur, "result_output", -1);
  7650. res->t_logits = cur;
  7651. ggml_build_forward_expand(gf, cur);
  7652. }
  7653. };
  7654. // based on the build_qwen2moe() function, changes:
  7655. // * removed shared experts
  7656. // * removed bias
  7657. // * added q, k norm
  7658. struct llm_build_olmoe : public llm_graph_context {
  7659. llm_build_olmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7660. const int64_t n_embd_head = hparams.n_embd_head_v;
  7661. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7662. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7663. ggml_tensor * cur;
  7664. ggml_tensor * inpL;
  7665. inpL = build_inp_embd(model.tok_embd);
  7666. // inp_pos - contains the positions
  7667. ggml_tensor * inp_pos = build_inp_pos();
  7668. auto * inp_attn = build_attn_inp_kv_unified();
  7669. for (int il = 0; il < n_layer; ++il) {
  7670. ggml_tensor * inpSA = inpL;
  7671. // norm
  7672. cur = build_norm(inpL,
  7673. model.layers[il].attn_norm, NULL,
  7674. LLM_NORM_RMS, il);
  7675. cb(cur, "attn_norm", il);
  7676. // self_attention
  7677. {
  7678. // compute Q and K and RoPE them
  7679. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7680. cb(Qcur, "Qcur", il);
  7681. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7682. cb(Kcur, "Kcur", il);
  7683. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7684. cb(Vcur, "Vcur", il);
  7685. Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL,
  7686. LLM_NORM_RMS, il);
  7687. cb(Qcur, "Qcur_normed", il);
  7688. Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL,
  7689. LLM_NORM_RMS, il);
  7690. cb(Kcur, "Kcur_normed", il);
  7691. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7692. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7693. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7694. Qcur = ggml_rope_ext(
  7695. ctx0, Qcur, inp_pos, nullptr,
  7696. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7697. ext_factor, attn_factor, beta_fast, beta_slow
  7698. );
  7699. Kcur = ggml_rope_ext(
  7700. ctx0, Kcur, inp_pos, nullptr,
  7701. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7702. ext_factor, attn_factor, beta_fast, beta_slow
  7703. );
  7704. cb(Qcur, "Qcur", il);
  7705. cb(Kcur, "Kcur", il);
  7706. cb(Vcur, "Vcur", il);
  7707. cur = build_attn(inp_attn, gf,
  7708. model.layers[il].wo, NULL,
  7709. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7710. }
  7711. if (il == n_layer - 1) {
  7712. // skip computing output for unused tokens
  7713. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7714. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7715. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7716. }
  7717. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7718. cb(ffn_inp, "ffn_inp", il);
  7719. // MoE branch
  7720. cur = build_norm(ffn_inp,
  7721. model.layers[il].ffn_norm, NULL,
  7722. LLM_NORM_RMS, il);
  7723. cb(cur, "ffn_norm", il);
  7724. cur = build_moe_ffn(cur,
  7725. model.layers[il].ffn_gate_inp,
  7726. model.layers[il].ffn_up_exps,
  7727. model.layers[il].ffn_gate_exps,
  7728. model.layers[il].ffn_down_exps,
  7729. nullptr,
  7730. n_expert, n_expert_used,
  7731. LLM_FFN_SILU, false,
  7732. false, 0.0,
  7733. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  7734. il);
  7735. cb(cur, "ffn_moe_out", il);
  7736. cur = ggml_add(ctx0, cur, ffn_inp);
  7737. cur = build_cvec(cur, il);
  7738. cb(cur, "l_out", il);
  7739. // input for next layer
  7740. inpL = cur;
  7741. }
  7742. cur = inpL;
  7743. cur = build_norm(cur,
  7744. model.output_norm, NULL,
  7745. LLM_NORM_RMS, -1);
  7746. cb(cur, "result_norm", -1);
  7747. res->t_embd = cur;
  7748. // lm_head
  7749. cur = build_lora_mm(model.output, cur);
  7750. cb(cur, "result_output", -1);
  7751. res->t_logits = cur;
  7752. ggml_build_forward_expand(gf, cur);
  7753. }
  7754. };
  7755. struct llm_build_openelm : public llm_graph_context {
  7756. llm_build_openelm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7757. const int64_t n_embd_head = hparams.n_embd_head_v;
  7758. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7759. ggml_tensor * cur;
  7760. ggml_tensor * inpL;
  7761. inpL = build_inp_embd(model.tok_embd);
  7762. // inp_pos - contains the positions
  7763. ggml_tensor * inp_pos = build_inp_pos();
  7764. auto * inp_attn = build_attn_inp_kv_unified();
  7765. for (int il = 0; il < n_layer; ++il) {
  7766. const int64_t n_head = hparams.n_head(il);
  7767. const int64_t n_head_kv = hparams.n_head_kv(il);
  7768. const int64_t n_head_qkv = 2*n_head_kv + n_head;
  7769. cur = inpL;
  7770. ggml_tensor * residual = cur;
  7771. // norm
  7772. cur = build_norm(inpL,
  7773. model.layers[il].attn_norm, NULL,
  7774. LLM_NORM_RMS, il);
  7775. cb(cur, "attn_norm", il);
  7776. // self-attention
  7777. {
  7778. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7779. cb(cur, "wqkv", il);
  7780. cur = ggml_reshape_3d(ctx0, cur, n_embd_head_k, n_head_qkv, n_tokens);
  7781. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head, n_tokens, cur->nb[1], cur->nb[2], 0));
  7782. cb(Qcur, "Qcur", il);
  7783. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*n_head));
  7784. cb(Kcur, "Kcur", il);
  7785. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_3d(ctx0, cur, n_embd_head, n_head_kv, n_tokens, cur->nb[1], cur->nb[2], cur->nb[1]*(n_head+n_head_kv)));
  7786. cb(Vcur, "Vcur", il);
  7787. Qcur = build_norm(Qcur,
  7788. model.layers[il].attn_q_norm, NULL,
  7789. LLM_NORM_RMS, il);
  7790. cb(Qcur, "Qcur", il);
  7791. Kcur = build_norm(Kcur,
  7792. model.layers[il].attn_k_norm, NULL,
  7793. LLM_NORM_RMS, il);
  7794. cb(Kcur, "Kcur", il);
  7795. Qcur = ggml_rope_ext(
  7796. ctx0, Qcur, inp_pos, NULL,
  7797. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7798. ext_factor, attn_factor, beta_fast, beta_slow
  7799. );
  7800. Kcur = ggml_rope_ext(
  7801. ctx0, Kcur, inp_pos, NULL,
  7802. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7803. ext_factor, attn_factor, beta_fast, beta_slow
  7804. );
  7805. cb(Qcur, "Qcur", il);
  7806. cb(Kcur, "Kcur", il);
  7807. cb(Qcur, "Vcur", il);
  7808. cur = build_attn(inp_attn, gf,
  7809. model.layers[il].wo, NULL,
  7810. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7811. }
  7812. if (il == n_layer - 1) {
  7813. // skip computing output for unused tokens
  7814. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7815. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  7816. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7817. }
  7818. ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  7819. cb(ffn_inp, "ffn_inp", il);
  7820. // feed-forward network
  7821. {
  7822. cur = build_norm(ffn_inp,
  7823. model.layers[il].ffn_norm, NULL,
  7824. LLM_NORM_RMS, il);
  7825. cb(cur, "ffn_norm", il);
  7826. cur = build_ffn(cur,
  7827. model.layers[il].ffn_up, NULL, NULL,
  7828. model.layers[il].ffn_gate, NULL, NULL,
  7829. model.layers[il].ffn_down, NULL, NULL,
  7830. NULL,
  7831. LLM_FFN_SILU, LLM_FFN_PAR, il);
  7832. cb(cur, "ffn_out", il);
  7833. }
  7834. cur = ggml_add(ctx0, cur, ffn_inp);
  7835. cur = build_cvec(cur, il);
  7836. cb(cur, "l_out", il);
  7837. inpL = cur;
  7838. }
  7839. cur = inpL;
  7840. // norm
  7841. cur = build_norm(cur,
  7842. model.output_norm, NULL,
  7843. LLM_NORM_RMS, -1);
  7844. cb(cur, "result_norm", -1);
  7845. res->t_embd = cur;
  7846. cur = build_lora_mm(model.output, cur);
  7847. cb(cur, "result_output", -1);
  7848. res->t_logits = cur;
  7849. ggml_build_forward_expand(gf, cur);
  7850. }
  7851. };
  7852. struct llm_build_gptneox : public llm_graph_context {
  7853. llm_build_gptneox(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7854. const int64_t n_embd_head = hparams.n_embd_head_v;
  7855. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7856. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7857. ggml_tensor * cur;
  7858. ggml_tensor * inpL;
  7859. inpL = build_inp_embd(model.tok_embd);
  7860. // inp_pos - contains the positions
  7861. ggml_tensor * inp_pos = build_inp_pos();
  7862. auto * inp_attn = build_attn_inp_kv_unified();
  7863. for (int il = 0; il < n_layer; ++il) {
  7864. cur = build_norm(inpL,
  7865. model.layers[il].attn_norm,
  7866. model.layers[il].attn_norm_b,
  7867. LLM_NORM, il);
  7868. cb(cur, "attn_norm", il);
  7869. // self-attention
  7870. {
  7871. cur = build_lora_mm(model.layers[il].wqkv, cur);
  7872. cb(cur, "wqkv", il);
  7873. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7874. cb(cur, "bqkv", il);
  7875. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7876. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7877. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7878. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7879. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7880. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7881. Qcur = ggml_rope_ext(
  7882. ctx0, Qcur, inp_pos, nullptr,
  7883. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7884. ext_factor, attn_factor, beta_fast, beta_slow
  7885. );
  7886. Kcur = ggml_rope_ext(
  7887. ctx0, Kcur, inp_pos, nullptr,
  7888. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7889. ext_factor, attn_factor, beta_fast, beta_slow
  7890. );
  7891. cb(Qcur, "Qcur", il);
  7892. cb(Kcur, "Kcur", il);
  7893. cb(Vcur, "Vcur", il);
  7894. cur = build_attn(inp_attn, gf,
  7895. model.layers[il].wo, model.layers[il].bo,
  7896. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  7897. }
  7898. if (il == n_layer - 1) {
  7899. // skip computing output for unused tokens
  7900. ggml_tensor * inp_out_ids = build_inp_out_ids();
  7901. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7902. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7903. }
  7904. // ffn
  7905. if (hparams.use_par_res) {
  7906. // attention and ffn are computed in parallel
  7907. // x = x + attn(ln1(x)) + ffn(ln2(x))
  7908. ggml_tensor * attn_out = cur;
  7909. cur = build_norm(inpL,
  7910. model.layers[il].ffn_norm,
  7911. model.layers[il].ffn_norm_b,
  7912. LLM_NORM, il);
  7913. cb(cur, "ffn_norm", il);
  7914. cur = build_ffn(cur,
  7915. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7916. NULL, NULL, NULL,
  7917. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7918. NULL,
  7919. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7920. cb(cur, "ffn_out", il);
  7921. cur = ggml_add(ctx0, cur, inpL);
  7922. cb(cur, "ffn_out", il);
  7923. cur = ggml_add(ctx0, cur, attn_out);
  7924. cur = build_cvec(cur, il);
  7925. cb(cur, "l_out", il);
  7926. // input for next layer
  7927. inpL = cur;
  7928. } else {
  7929. // attention and ffn are computed sequentially
  7930. // x = x + attn(ln1(x))
  7931. // x = x + ffn(ln2(x))
  7932. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7933. cb(ffn_inp, "ffn_inp", il);
  7934. cur = build_norm(ffn_inp,
  7935. model.layers[il].ffn_norm,
  7936. model.layers[il].ffn_norm_b,
  7937. LLM_NORM, il);
  7938. cb(cur, "ffn_norm", il);
  7939. cur = build_ffn(cur,
  7940. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  7941. NULL, NULL, NULL,
  7942. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  7943. NULL,
  7944. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  7945. cb(cur, "ffn_out", il);
  7946. cur = ggml_add(ctx0, cur, ffn_inp);
  7947. cur = build_cvec(cur, il);
  7948. cb(cur, "l_out", il);
  7949. // input for next layer
  7950. inpL = cur;
  7951. }
  7952. }
  7953. cur = build_norm(inpL,
  7954. model.output_norm,
  7955. model.output_norm_b,
  7956. LLM_NORM, -1);
  7957. cb(cur, "result_norm", -1);
  7958. res->t_embd = cur;
  7959. cur = build_lora_mm(model.output, cur);
  7960. cb(cur, "result_output", -1);
  7961. res->t_logits = cur;
  7962. ggml_build_forward_expand(gf, cur);
  7963. }
  7964. };
  7965. struct llm_build_arctic : public llm_graph_context {
  7966. llm_build_arctic(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  7967. const int64_t n_embd_head = hparams.n_embd_head_v;
  7968. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7969. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7970. ggml_tensor * cur;
  7971. ggml_tensor * inpL;
  7972. inpL = build_inp_embd(model.tok_embd);
  7973. // inp_pos - contains the positions
  7974. ggml_tensor * inp_pos = build_inp_pos();
  7975. auto * inp_attn = build_attn_inp_kv_unified();
  7976. for (int il = 0; il < n_layer; ++il) {
  7977. ggml_tensor * inpSA = inpL;
  7978. // norm
  7979. cur = build_norm(inpL,
  7980. model.layers[il].attn_norm, NULL,
  7981. LLM_NORM_RMS, il);
  7982. cb(cur, "attn_norm", il);
  7983. // self-attention
  7984. {
  7985. // compute Q and K and RoPE them
  7986. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  7987. cb(Qcur, "Qcur", il);
  7988. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  7989. cb(Kcur, "Kcur", il);
  7990. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  7991. cb(Vcur, "Vcur", il);
  7992. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7993. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7994. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  7995. Qcur = ggml_rope_ext(
  7996. ctx0, Qcur, inp_pos, nullptr,
  7997. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7998. ext_factor, attn_factor, beta_fast, beta_slow
  7999. );
  8000. Kcur = ggml_rope_ext(
  8001. ctx0, Kcur, inp_pos, nullptr,
  8002. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8003. ext_factor, attn_factor, beta_fast, beta_slow
  8004. );
  8005. cb(Qcur, "Qcur", il);
  8006. cb(Kcur, "Kcur", il);
  8007. cb(Vcur, "Vcur", il);
  8008. cur = build_attn(inp_attn, gf,
  8009. model.layers[il].wo, NULL,
  8010. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8011. }
  8012. if (il == n_layer - 1) {
  8013. // skip computing output for unused tokens
  8014. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8015. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8016. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8017. }
  8018. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8019. cb(ffn_inp, "ffn_inp", il);
  8020. // feed-forward network
  8021. cur = build_norm(ffn_inp,
  8022. model.layers[il].ffn_norm, NULL,
  8023. LLM_NORM_RMS, il);
  8024. cb(cur, "ffn_norm", il);
  8025. cur = build_ffn(cur,
  8026. model.layers[il].ffn_up, NULL, NULL,
  8027. model.layers[il].ffn_gate, NULL, NULL,
  8028. model.layers[il].ffn_down, NULL, NULL,
  8029. NULL,
  8030. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8031. cb(cur, "ffn_out", il);
  8032. ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  8033. cb(ffn_out, "ffn_out", il);
  8034. // MoE
  8035. cur = build_norm(inpSA,
  8036. model.layers[il].ffn_norm_exps, NULL,
  8037. LLM_NORM_RMS, il);
  8038. cb(cur, "ffn_norm_exps", il);
  8039. cur = build_moe_ffn(cur,
  8040. model.layers[il].ffn_gate_inp,
  8041. model.layers[il].ffn_up_exps,
  8042. model.layers[il].ffn_gate_exps,
  8043. model.layers[il].ffn_down_exps,
  8044. nullptr,
  8045. n_expert, n_expert_used,
  8046. LLM_FFN_SILU, true,
  8047. false, 0.0,
  8048. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8049. il);
  8050. cb(cur, "ffn_moe_out", il);
  8051. cur = ggml_add(ctx0, cur, ffn_out);
  8052. cb(cur, "ffn_out", il);
  8053. cur = build_cvec(cur, il);
  8054. cb(cur, "l_out", il);
  8055. // input for next layer
  8056. inpL = cur;
  8057. }
  8058. cur = inpL;
  8059. cur = build_norm(cur,
  8060. model.output_norm, NULL,
  8061. LLM_NORM_RMS, -1);
  8062. cb(cur, "result_norm", -1);
  8063. res->t_embd = cur;
  8064. // lm_head
  8065. cur = build_lora_mm(model.output, cur);
  8066. cb(cur, "result_output", -1);
  8067. res->t_logits = cur;
  8068. ggml_build_forward_expand(gf, cur);
  8069. }
  8070. };
  8071. struct llm_build_deepseek : public llm_graph_context {
  8072. llm_build_deepseek(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8073. const int64_t n_embd_head = hparams.n_embd_head_v;
  8074. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8075. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8076. ggml_tensor * cur;
  8077. ggml_tensor * inpL;
  8078. inpL = build_inp_embd(model.tok_embd);
  8079. // inp_pos - contains the positions
  8080. ggml_tensor * inp_pos = build_inp_pos();
  8081. auto * inp_attn = build_attn_inp_kv_unified();
  8082. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  8083. for (int il = 0; il < n_layer; ++il) {
  8084. ggml_tensor * inpSA = inpL;
  8085. // norm
  8086. cur = build_norm(inpL,
  8087. model.layers[il].attn_norm, NULL,
  8088. LLM_NORM_RMS, il);
  8089. cb(cur, "attn_norm", il);
  8090. // self-attention
  8091. {
  8092. // rope freq factors for llama3; may return nullptr for llama2 and other models
  8093. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  8094. // compute Q and K and RoPE them
  8095. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8096. cb(Qcur, "Qcur", il);
  8097. if (model.layers[il].bq) {
  8098. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8099. cb(Qcur, "Qcur", il);
  8100. }
  8101. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8102. cb(Kcur, "Kcur", il);
  8103. if (model.layers[il].bk) {
  8104. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8105. cb(Kcur, "Kcur", il);
  8106. }
  8107. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8108. cb(Vcur, "Vcur", il);
  8109. if (model.layers[il].bv) {
  8110. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8111. cb(Vcur, "Vcur", il);
  8112. }
  8113. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8114. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8115. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8116. Qcur = ggml_rope_ext(
  8117. ctx0, Qcur, inp_pos, rope_factors,
  8118. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8119. ext_factor, attn_factor, beta_fast, beta_slow
  8120. );
  8121. Kcur = ggml_rope_ext(
  8122. ctx0, Kcur, inp_pos, rope_factors,
  8123. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8124. ext_factor, attn_factor, beta_fast, beta_slow
  8125. );
  8126. cb(Qcur, "Qcur", il);
  8127. cb(Kcur, "Kcur", il);
  8128. cb(Vcur, "Vcur", il);
  8129. cur = build_attn(inp_attn, gf,
  8130. model.layers[il].wo, model.layers[il].bo,
  8131. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8132. }
  8133. if (il == n_layer - 1) {
  8134. // skip computing output for unused tokens
  8135. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8136. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8137. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8138. }
  8139. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8140. cb(ffn_inp, "ffn_inp", il);
  8141. cur = build_norm(ffn_inp,
  8142. model.layers[il].ffn_norm, NULL,
  8143. LLM_NORM_RMS, il);
  8144. cb(cur, "ffn_norm", il);
  8145. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8146. cur = build_ffn(cur,
  8147. model.layers[il].ffn_up, NULL, NULL,
  8148. model.layers[il].ffn_gate, NULL, NULL,
  8149. model.layers[il].ffn_down, NULL, NULL,
  8150. NULL,
  8151. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8152. cb(cur, "ffn_out", il);
  8153. } else {
  8154. // MoE branch
  8155. ggml_tensor * moe_out =
  8156. build_moe_ffn(cur,
  8157. model.layers[il].ffn_gate_inp,
  8158. model.layers[il].ffn_up_exps,
  8159. model.layers[il].ffn_gate_exps,
  8160. model.layers[il].ffn_down_exps,
  8161. nullptr,
  8162. n_expert, n_expert_used,
  8163. LLM_FFN_SILU, false,
  8164. false, hparams.expert_weights_scale,
  8165. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  8166. il);
  8167. cb(moe_out, "ffn_moe_out", il);
  8168. // FFN shared expert
  8169. {
  8170. ggml_tensor * ffn_shexp = build_ffn(cur,
  8171. model.layers[il].ffn_up_shexp, NULL, NULL,
  8172. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8173. model.layers[il].ffn_down_shexp, NULL, NULL,
  8174. NULL,
  8175. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8176. cb(ffn_shexp, "ffn_shexp", il);
  8177. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8178. cb(cur, "ffn_out", il);
  8179. }
  8180. }
  8181. cur = ggml_add(ctx0, cur, ffn_inp);
  8182. cur = build_cvec(cur, il);
  8183. cb(cur, "l_out", il);
  8184. // input for next layer
  8185. inpL = cur;
  8186. }
  8187. cur = inpL;
  8188. cur = build_norm(cur,
  8189. model.output_norm, NULL,
  8190. LLM_NORM_RMS, -1);
  8191. cb(cur, "result_norm", -1);
  8192. res->t_embd = cur;
  8193. // lm_head
  8194. cur = build_lora_mm(model.output, cur);
  8195. cb(cur, "result_output", -1);
  8196. res->t_logits = cur;
  8197. ggml_build_forward_expand(gf, cur);
  8198. }
  8199. };
  8200. struct llm_build_deepseek2 : public llm_graph_context {
  8201. llm_build_deepseek2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8202. bool is_lite = (hparams.n_layer == 27);
  8203. const bool is_mla = (hparams.n_embd_head_k_mla != 0 && hparams.n_embd_head_v_mla != 0);
  8204. // note: these are the actual head sizes you get when treating as MHA or after "decompression" using wv_b for MLA
  8205. const int64_t n_embd_head_k = is_mla ? hparams.n_embd_head_k_mla : hparams.n_embd_head_k;
  8206. const int64_t n_embd_head_v = is_mla ? hparams.n_embd_head_v_mla : hparams.n_embd_head_v;
  8207. const int64_t n_embd_head_qk_rope = hparams.n_rot;
  8208. const int64_t n_embd_head_qk_nope = n_embd_head_k - n_embd_head_qk_rope;
  8209. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  8210. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  8211. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  8212. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  8213. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(n_embd_head_k));
  8214. const float attn_factor = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  8215. ggml_tensor * cur;
  8216. ggml_tensor * inpL;
  8217. // {n_embd, n_tokens}
  8218. inpL = build_inp_embd(model.tok_embd);
  8219. // inp_pos - contains the positions
  8220. ggml_tensor * inp_pos = build_inp_pos();
  8221. auto * inp_attn = build_attn_inp_kv_unified();
  8222. for (int il = 0; il < n_layer; ++il) {
  8223. ggml_tensor * inpSA = inpL;
  8224. // norm
  8225. cur = build_norm(inpL,
  8226. model.layers[il].attn_norm, NULL,
  8227. LLM_NORM_RMS, il);
  8228. cb(cur, "attn_norm", il);
  8229. // self_attention
  8230. {
  8231. ggml_tensor * q = NULL;
  8232. if (!is_lite) {
  8233. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  8234. cb(q, "q", il);
  8235. q = build_norm(q,
  8236. model.layers[il].attn_q_a_norm, nullptr,
  8237. LLM_NORM_RMS, il);
  8238. cb(q, "q", il);
  8239. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  8240. cb(q, "q", il);
  8241. } else {
  8242. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8243. cb(q, "q", il);
  8244. }
  8245. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8246. ggml_tensor * q_nope = ggml_view_3d(ctx0, q,
  8247. n_embd_head_qk_nope, n_head, n_tokens,
  8248. ggml_row_size(q->type, n_embd_head_k),
  8249. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8250. 0);
  8251. cb(q_nope, "q_nope", il);
  8252. // and {n_embd_head_qk_rope, n_head, n_tokens}
  8253. ggml_tensor * q_pe = ggml_view_3d(ctx0, q,
  8254. n_embd_head_qk_rope, n_head, n_tokens,
  8255. ggml_row_size(q->type, n_embd_head_k),
  8256. ggml_row_size(q->type, n_embd_head_k) * n_head,
  8257. ggml_row_size(q->type, n_embd_head_qk_nope));
  8258. cb(q_pe, "q_pe", il);
  8259. ggml_tensor * kv_cmpr_pe = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  8260. cb(kv_cmpr_pe, "kv_cmpr_pe", il);
  8261. // split into {kv_lora_rank, n_tokens}
  8262. ggml_tensor * kv_cmpr = ggml_view_2d(ctx0, kv_cmpr_pe,
  8263. kv_lora_rank, n_tokens,
  8264. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8265. 0);
  8266. cb(kv_cmpr, "kv_cmpr", il);
  8267. // and {n_embd_head_qk_rope, 1, n_tokens}
  8268. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_cmpr_pe,
  8269. n_embd_head_qk_rope, 1, n_tokens,
  8270. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8271. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank + n_embd_head_qk_rope),
  8272. ggml_row_size(kv_cmpr_pe->type, kv_lora_rank));
  8273. cb(k_pe, "k_pe", il);
  8274. q_pe = ggml_rope_ext(ctx0, q_pe, inp_pos, nullptr,
  8275. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8276. ext_factor, attn_factor, beta_fast, beta_slow
  8277. );
  8278. cb(q_pe, "q_pe", il);
  8279. k_pe = ggml_rope_ext(ctx0, k_pe, inp_pos, nullptr,
  8280. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8281. ext_factor, attn_factor, beta_fast, beta_slow
  8282. );
  8283. cb(k_pe, "k_pe", il);
  8284. kv_cmpr = build_norm(kv_cmpr,
  8285. model.layers[il].attn_kv_a_norm, nullptr,
  8286. LLM_NORM_RMS, il);
  8287. cb(kv_cmpr, "kv_cmpr", il);
  8288. if (is_mla) {
  8289. // {n_embd_head_qk_nope, n_tokens, n_head}
  8290. q_nope = ggml_permute(ctx0, q_nope, 0, 2, 1, 3);
  8291. cb(q_nope, "q_nope_perm", il);
  8292. // {n_embd_head_qk_nope, kv_lora_rank, n_head} x {n_embd_head_qk_nope, n_tokens, n_head}
  8293. ggml_tensor * q_nope_absorbed = ggml_mul_mat(ctx0, model.layers[il].wk_b, q_nope);
  8294. cb(q_nope_absorbed, "q_nope_absorbed", il);
  8295. // {kv_lora_rank, n_head, n_tokens}
  8296. q_nope_absorbed = ggml_permute(ctx0, q_nope_absorbed, 0, 2, 1, 3);
  8297. cb(q_nope_absorbed, "q_nope_absorbed_perm", il);
  8298. // {n_embd_head_qk_rope + kv_lora_rank, n_head, n_tokens}
  8299. // note: rope must go first for in-place context shifting in build_rope_shift()
  8300. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope_absorbed, 0);
  8301. cb(Qcur, "Qcur", il);
  8302. kv_cmpr = ggml_reshape_3d(ctx0, kv_cmpr, kv_lora_rank, 1, n_tokens);
  8303. cb(kv_cmpr, "kv_cmpr_reshape", il);
  8304. // {n_embd_head_qk_rope + kv_lora_rank, 1, n_tokens}
  8305. ggml_tensor * Kcur = ggml_concat(ctx0, k_pe, kv_cmpr, 0);
  8306. cb(Kcur, "Kcur", il);
  8307. // {kv_lora_rank, 1, n_tokens}
  8308. ggml_tensor * Vcur = kv_cmpr;
  8309. cb(Vcur, "Vcur", il);
  8310. // note: MLA with the absorption optimzation converts into MQA (ie: GQA with 1 group)
  8311. cur = build_attn(inp_attn, gf,
  8312. model.layers[il].wo, NULL,
  8313. Qcur, Kcur, Vcur, nullptr, model.layers[il].wv_b, kq_scale, il);
  8314. } else {
  8315. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_cmpr);
  8316. cb(kv, "kv", il);
  8317. // split into {n_embd_head_qk_nope, n_head, n_tokens}
  8318. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv,
  8319. n_embd_head_qk_nope, n_head, n_tokens,
  8320. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8321. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8322. 0);
  8323. cb(k_nope, "k_nope_view", il);
  8324. // and {n_embd_head_v, n_head, n_tokens}
  8325. ggml_tensor * Vcur = ggml_view_3d(ctx0, kv,
  8326. n_embd_head_v, n_head, n_tokens,
  8327. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v),
  8328. ggml_row_size(kv->type, n_embd_head_qk_nope + n_embd_head_v) * n_head,
  8329. ggml_row_size(kv->type, n_embd_head_qk_nope));
  8330. cb(Vcur, "Vcur_view", il);
  8331. Vcur = ggml_cont(ctx0, Vcur);
  8332. cb(Vcur, "Vcur_cont", il);
  8333. // note: rope must go first for in-place context shifting in build_rope_shift()
  8334. ggml_tensor * Qcur = ggml_concat(ctx0, q_pe, q_nope, 0);
  8335. cb(Qcur, "Qcur", il);
  8336. ggml_tensor * Kcur = ggml_concat(ctx0, ggml_repeat(ctx0, k_pe, q_pe), k_nope, 0);
  8337. cb(Kcur, "Kcur", il);
  8338. // note: MLA without the absorption optimization converts into MHA (ie: GQA with full n_head groups)
  8339. cur = build_attn(inp_attn, gf,
  8340. model.layers[il].wo, NULL,
  8341. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  8342. }
  8343. }
  8344. if (il == n_layer - 1) {
  8345. // skip computing output for unused tokens
  8346. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8347. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8348. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8349. }
  8350. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8351. cb(ffn_inp, "ffn_inp", il);
  8352. cur = build_norm(ffn_inp,
  8353. model.layers[il].ffn_norm, NULL,
  8354. LLM_NORM_RMS, il);
  8355. cb(cur, "ffn_norm", il);
  8356. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  8357. cur = build_ffn(cur,
  8358. model.layers[il].ffn_up, NULL, NULL,
  8359. model.layers[il].ffn_gate, NULL, NULL,
  8360. model.layers[il].ffn_down, NULL, NULL,
  8361. NULL,
  8362. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8363. cb(cur, "ffn_out", il);
  8364. } else {
  8365. // MoE branch
  8366. ggml_tensor * moe_out =
  8367. build_moe_ffn(cur,
  8368. model.layers[il].ffn_gate_inp,
  8369. model.layers[il].ffn_up_exps,
  8370. model.layers[il].ffn_gate_exps,
  8371. model.layers[il].ffn_down_exps,
  8372. model.layers[il].ffn_exp_probs_b,
  8373. n_expert, n_expert_used,
  8374. LLM_FFN_SILU, hparams.expert_weights_norm,
  8375. true, hparams.expert_weights_scale,
  8376. (llama_expert_gating_func_type) hparams.expert_gating_func,
  8377. il);
  8378. cb(moe_out, "ffn_moe_out", il);
  8379. // FFN shared expert
  8380. {
  8381. ggml_tensor * ffn_shexp = build_ffn(cur,
  8382. model.layers[il].ffn_up_shexp, NULL, NULL,
  8383. model.layers[il].ffn_gate_shexp, NULL, NULL,
  8384. model.layers[il].ffn_down_shexp, NULL, NULL,
  8385. NULL,
  8386. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8387. cb(ffn_shexp, "ffn_shexp", il);
  8388. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  8389. cb(cur, "ffn_out", il);
  8390. }
  8391. }
  8392. cur = ggml_add(ctx0, cur, ffn_inp);
  8393. cur = build_cvec(cur, il);
  8394. cb(cur, "l_out", il);
  8395. // input for next layer
  8396. inpL = cur;
  8397. }
  8398. cur = inpL;
  8399. cur = build_norm(cur,
  8400. model.output_norm, NULL,
  8401. LLM_NORM_RMS, -1);
  8402. cb(cur, "result_norm", -1);
  8403. res->t_embd = cur;
  8404. // lm_head
  8405. cur = ggml_mul_mat(ctx0, model.output, cur);
  8406. cb(cur, "result_output", -1);
  8407. res->t_logits = cur;
  8408. ggml_build_forward_expand(gf, cur);
  8409. }
  8410. };
  8411. struct llm_build_bitnet : public llm_graph_context {
  8412. llm_build_bitnet(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8413. const int64_t n_embd_head = hparams.n_embd_head_v;
  8414. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8415. ggml_tensor * cur;
  8416. ggml_tensor * inpL;
  8417. inpL = build_inp_embd(model.tok_embd);
  8418. // inp_pos - contains the positions
  8419. ggml_tensor * inp_pos = build_inp_pos();
  8420. auto * inp_attn = build_attn_inp_kv_unified();
  8421. for (int il = 0; il < n_layer; ++il) {
  8422. ggml_tensor * inpSA = inpL;
  8423. cur = build_norm(inpL,
  8424. model.layers[il].attn_norm, NULL,
  8425. LLM_NORM_RMS, il);
  8426. cb(cur, "attn_norm", il);
  8427. // self-attention
  8428. {
  8429. // compute Q and K and RoPE them
  8430. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8431. if (model.layers[il].wq_scale) {
  8432. Qcur = ggml_mul(ctx0, Qcur, model.layers[il].wq_scale);
  8433. }
  8434. cb(Qcur, "Qcur", il);
  8435. if (model.layers[il].bq) {
  8436. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8437. cb(Qcur, "Qcur", il);
  8438. }
  8439. // B1.K
  8440. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8441. if (model.layers[il].wk_scale) {
  8442. Kcur = ggml_mul(ctx0, Kcur, model.layers[il].wk_scale);
  8443. }
  8444. cb(Kcur, "Kcur", il);
  8445. if (model.layers[il].bk) {
  8446. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8447. cb(Kcur, "Kcur", il);
  8448. }
  8449. // B1.V
  8450. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8451. if (model.layers[il].wv_scale) {
  8452. Vcur = ggml_mul(ctx0, Vcur, model.layers[il].wv_scale);
  8453. }
  8454. cb(Vcur, "Vcur", il);
  8455. if (model.layers[il].bv) {
  8456. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8457. cb(Vcur, "Vcur", il);
  8458. }
  8459. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8460. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8461. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8462. Qcur = ggml_rope_ext(
  8463. ctx0, Qcur, inp_pos, nullptr,
  8464. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8465. ext_factor, attn_factor, beta_fast, beta_slow
  8466. );
  8467. Kcur = ggml_rope_ext(
  8468. ctx0, Kcur, inp_pos, nullptr,
  8469. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8470. ext_factor, attn_factor, beta_fast, beta_slow
  8471. );
  8472. cb(Qcur, "Qcur", il);
  8473. cb(Kcur, "Kcur", il);
  8474. cb(Vcur, "Vcur", il);
  8475. cur = build_attn(inp_attn, gf,
  8476. NULL, NULL,
  8477. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8478. cur = build_norm(cur,
  8479. model.layers[il].attn_sub_norm, NULL,
  8480. LLM_NORM_RMS, il);
  8481. cb(cur, "attn_sub_norm", il);
  8482. cur = build_lora_mm(model.layers[il].wo, cur);
  8483. if (model.layers[il].wo_scale) {
  8484. cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
  8485. }
  8486. if (model.layers[il].bo) {
  8487. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  8488. }
  8489. cb(cur, "attn_o_out", il);
  8490. }
  8491. if (il == n_layer - 1) {
  8492. // skip computing output for unused tokens
  8493. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8494. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8495. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8496. }
  8497. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8498. cb(ffn_inp, "ffn_inp", il);
  8499. // feed-forward forward
  8500. cur = build_norm(ffn_inp,
  8501. model.layers[il].ffn_norm, NULL,
  8502. LLM_NORM_RMS, il);
  8503. cb(cur, "ffn_norm", il);
  8504. cur = build_ffn(cur,
  8505. model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
  8506. model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
  8507. NULL, NULL, NULL,
  8508. NULL,
  8509. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8510. cb(cur, "ffn_sub_out", il);
  8511. cur = build_norm(cur,
  8512. model.layers[il].ffn_sub_norm, NULL,
  8513. LLM_NORM_RMS, il);
  8514. cb(cur, "ffn_sub_norm", il);
  8515. cur = build_lora_mm(model.layers[il].ffn_down, cur);
  8516. if (model.layers[il].ffn_down_scale) {
  8517. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
  8518. }
  8519. cb(cur, "ffn_down", il);
  8520. cur = ggml_add(ctx0, cur, ffn_inp);
  8521. cb(cur, "l_out", il);
  8522. // input for next layer
  8523. inpL = cur;
  8524. }
  8525. cur = inpL;
  8526. cur = build_norm(cur,
  8527. model.output_norm, NULL,
  8528. LLM_NORM_RMS, -1);
  8529. cb(cur, "result_norm", -1);
  8530. res->t_embd = cur;
  8531. // lm_head
  8532. // FIXME: do not use model.tok_embd directly, duplicate as model.output
  8533. cur = build_lora_mm(model.tok_embd, cur);
  8534. cb(cur, "result_output", -1);
  8535. res->t_logits = cur;
  8536. ggml_build_forward_expand(gf, cur);
  8537. }
  8538. };
  8539. struct llm_build_t5_enc : public llm_graph_context {
  8540. llm_build_t5_enc(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8541. const int64_t n_embd_head = hparams.n_embd_head_v;
  8542. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8543. ggml_tensor * cur;
  8544. ggml_tensor * inpL;
  8545. inpL = build_inp_embd(model.tok_embd);
  8546. ggml_tensor * pos_bucket_enc = build_inp_pos_bucket_enc();
  8547. auto * inp_attn = build_attn_inp_no_cache();
  8548. for (int il = 0; il < n_layer; ++il) {
  8549. ggml_tensor * inpSA = inpL;
  8550. // norm
  8551. cur = build_norm(inpL,
  8552. model.layers[il].attn_norm_enc, NULL,
  8553. LLM_NORM_RMS, il);
  8554. cb(cur, "attn_norm", il);
  8555. // self-attention
  8556. {
  8557. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_enc, cur);
  8558. cb(Qcur, "Qcur", il);
  8559. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_enc, cur);
  8560. cb(Kcur, "Kcur", il);
  8561. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_enc, cur);
  8562. cb(Vcur, "Vcur", il);
  8563. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8564. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8565. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8566. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b_enc ? model.layers[il].attn_rel_b_enc : model.layers[0].attn_rel_b_enc;
  8567. ggml_tensor * kq_b = build_pos_bias(pos_bucket_enc, attn_rel_b);
  8568. cur = build_attn(inp_attn, gf,
  8569. model.layers[il].wo_enc, nullptr,
  8570. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8571. cb(cur, "kqv_out", il);
  8572. }
  8573. if (il == n_layer - 1) {
  8574. // skip computing output for unused tokens
  8575. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8576. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8577. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8578. }
  8579. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8580. cb(ffn_inp, "ffn_inp", il);
  8581. // feed-forward network
  8582. {
  8583. cur = build_norm(ffn_inp,
  8584. model.layers[il].ffn_norm_enc, NULL,
  8585. LLM_NORM_RMS, il);
  8586. cb(cur, "ffn_norm", il);
  8587. // T5 uses relu, flan-T5 uses gelu-gated
  8588. cur = build_ffn(cur,
  8589. model.layers[il].ffn_up_enc, NULL, NULL,
  8590. model.layers[il].ffn_gate_enc, NULL, NULL,
  8591. model.layers[il].ffn_down_enc, NULL, NULL,
  8592. NULL,
  8593. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8594. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8595. il);
  8596. cb(cur, "ffn_out", il);
  8597. }
  8598. cur = ggml_add(ctx0, cur, ffn_inp);
  8599. cb(cur, "ffn_out", il);
  8600. cur = build_cvec(cur, il);
  8601. cb(cur, "l_out", il);
  8602. // input for next layer
  8603. inpL = cur;
  8604. }
  8605. cur = inpL;
  8606. cb(cur, "result_embd", -1);
  8607. cur = build_norm(cur,
  8608. model.output_norm_enc, NULL,
  8609. LLM_NORM_RMS, -1);
  8610. cb(cur, "result_norm", -1);
  8611. res->t_embd = cur;
  8612. ggml_build_forward_expand(gf, cur);
  8613. }
  8614. };
  8615. struct llm_build_t5_dec : public llm_graph_context {
  8616. llm_build_t5_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8617. const int64_t n_embd_head = hparams.n_embd_head_v;
  8618. //const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8619. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8620. ggml_tensor * cur;
  8621. ggml_tensor * inpL;
  8622. inpL = build_inp_embd(model.tok_embd);
  8623. ggml_tensor * embd_enc = build_inp_cross_embd();
  8624. ggml_tensor * pos_bucket_dec = build_inp_pos_bucket_dec();
  8625. const int64_t n_outputs_enc = embd_enc->ne[1];
  8626. auto * inp_attn_self = build_attn_inp_kv_unified();
  8627. auto * inp_attn_cross = build_attn_inp_cross();
  8628. for (int il = 0; il < n_layer; ++il) {
  8629. ggml_tensor * inpSA = inpL;
  8630. // norm
  8631. cur = build_norm(inpL,
  8632. model.layers[il].attn_norm, NULL,
  8633. LLM_NORM_RMS, il);
  8634. cb(cur, "attn_norm", il);
  8635. // self-attention
  8636. {
  8637. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  8638. cb(Qcur, "Qcur", il);
  8639. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  8640. cb(Kcur, "Kcur", il);
  8641. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  8642. cb(Vcur, "Vcur", il);
  8643. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8644. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8645. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8646. ggml_tensor * attn_rel_b = model.layers[il].attn_rel_b ? model.layers[il].attn_rel_b : model.layers[0].attn_rel_b;
  8647. ggml_tensor * kq_b = build_pos_bias(pos_bucket_dec, attn_rel_b);
  8648. cur = build_attn(inp_attn_self, gf,
  8649. model.layers[il].wo, model.layers[il].bo,
  8650. Qcur, Kcur, Vcur, kq_b, nullptr, 1.0f, il);
  8651. cb(cur, "kqv_out", il);
  8652. }
  8653. cur = ggml_add(ctx0, cur, inpSA);
  8654. cb(cur, "cross_inp", il);
  8655. ggml_tensor * inpCA = cur;
  8656. // norm
  8657. cur = build_norm(cur,
  8658. model.layers[il].attn_norm_cross, NULL,
  8659. LLM_NORM_RMS, il);
  8660. cb(cur, "attn_norm_cross", il);
  8661. // cross-attention
  8662. {
  8663. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq_cross, cur);
  8664. cb(Qcur, "Qcur", il);
  8665. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk_cross, embd_enc);
  8666. cb(Kcur, "Kcur", il);
  8667. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv_cross, embd_enc);
  8668. cb(Vcur, "Vcur", il);
  8669. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8670. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_outputs_enc);
  8671. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_outputs_enc);
  8672. cur = build_attn(inp_attn_cross, gf,
  8673. model.layers[il].wo_cross, nullptr,
  8674. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f, il);
  8675. cb(cur, "kqv_out", il);
  8676. //ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  8677. //ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  8678. //ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  8679. //cb(kq, "kq", il);
  8680. //kq = ggml_soft_max_ext(ctx0, kq, KQ_mask_cross, 1.0f, hparams.f_max_alibi_bias);
  8681. //cb(kq, "kq_soft_max_ext", il);
  8682. //ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_outputs_enc)));
  8683. //cb(v, "v", il);
  8684. //ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_outputs_enc, n_embd_head, n_head_kv), kq);
  8685. //cb(kqv, "kqv", il);
  8686. //ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  8687. //cb(kqv_merged, "kqv_merged", il);
  8688. //cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  8689. //cb(cur, "kqv_merged_cont", il);
  8690. //ggml_build_forward_expand(gf, cur);
  8691. //cur = build_lora_mm(model.layers[il].wo_cross, cur);
  8692. //cb(cur, "kqv_out", il);
  8693. }
  8694. if (il == n_layer - 1) {
  8695. // skip computing output for unused tokens
  8696. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8697. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8698. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8699. inpCA = ggml_get_rows(ctx0, inpCA, inp_out_ids);
  8700. }
  8701. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpCA);
  8702. cb(ffn_inp, "ffn_inp", il);
  8703. // feed-forward network
  8704. {
  8705. cur = build_norm(ffn_inp,
  8706. model.layers[il].ffn_norm, NULL,
  8707. LLM_NORM_RMS, il);
  8708. cb(cur, "ffn_norm", il);
  8709. // T5 uses relu, flan-T5 uses gelu-gated
  8710. cur = build_ffn(cur,
  8711. model.layers[il].ffn_up, NULL, NULL,
  8712. model.layers[il].ffn_gate, NULL, NULL,
  8713. model.layers[il].ffn_down, NULL, NULL,
  8714. NULL,
  8715. model.layers[il].ffn_gate_enc ? LLM_FFN_GELU : LLM_FFN_RELU,
  8716. model.layers[il].ffn_gate_enc ? LLM_FFN_PAR : LLM_FFN_SEQ,
  8717. il);
  8718. cb(cur, "ffn_out", il);
  8719. }
  8720. cur = ggml_add(ctx0, cur, ffn_inp);
  8721. cb(cur, "ffn_out", il);
  8722. cur = build_cvec(cur, il);
  8723. cb(cur, "l_out", il);
  8724. // input for next layer
  8725. inpL = cur;
  8726. }
  8727. cur = inpL;
  8728. cb(cur, "result_embd", -1);
  8729. cur = build_norm(cur,
  8730. model.output_norm, NULL,
  8731. LLM_NORM_RMS, -1);
  8732. cb(cur, "result_norm", -1);
  8733. res->t_embd = cur;
  8734. // lm_head
  8735. cur = build_lora_mm(model.output, cur);
  8736. cb(cur, "result_output", -1);
  8737. res->t_logits = cur;
  8738. ggml_build_forward_expand(gf, cur);
  8739. }
  8740. };
  8741. struct llm_build_jais : public llm_graph_context {
  8742. llm_build_jais(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8743. const int64_t n_embd_head = hparams.n_embd_head_v;
  8744. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8745. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8746. ggml_tensor * cur;
  8747. ggml_tensor * inpL;
  8748. inpL = build_inp_embd(model.tok_embd);
  8749. auto * inp_attn = build_attn_inp_kv_unified();
  8750. for (int il = 0; il < n_layer; ++il) {
  8751. cur = build_norm(inpL,
  8752. model.layers[il].attn_norm,
  8753. model.layers[il].attn_norm_b,
  8754. LLM_NORM, il);
  8755. cb(cur, "attn_norm", il);
  8756. // self-attention
  8757. {
  8758. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8759. cb(cur, "wqkv", il);
  8760. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8761. cb(cur, "bqkv", il);
  8762. ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*cur->nb[0]*(n_embd)));
  8763. ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd)));
  8764. ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*cur->nb[0]*(n_embd + n_embd_gqa)));
  8765. cb(Qcur, "Qcur", il);
  8766. cb(Kcur, "Kcur", il);
  8767. cb(Vcur, "Vcur", il);
  8768. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8769. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8770. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8771. cur = build_attn(inp_attn, gf,
  8772. model.layers[il].wo, model.layers[il].bo,
  8773. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/float(n_embd_head), il);
  8774. }
  8775. if (il == n_layer - 1) {
  8776. // skip computing output for unused tokens
  8777. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8778. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8779. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8780. }
  8781. // add the input
  8782. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8783. cb(ffn_inp, "ffn_inp", il);
  8784. // FF
  8785. {
  8786. cur = build_norm(ffn_inp,
  8787. model.layers[il].ffn_norm,
  8788. model.layers[il].ffn_norm_b,
  8789. LLM_NORM, il);
  8790. cb(cur, "ffn_norm", il);
  8791. cur = build_ffn(cur,
  8792. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  8793. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  8794. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  8795. NULL,
  8796. LLM_FFN_SILU, LLM_FFN_PAR, il);
  8797. cb(cur, "ffn_out", il);
  8798. }
  8799. inpL = ggml_add(ctx0, cur, ffn_inp);
  8800. cb(inpL, "l_out", il);
  8801. }
  8802. cur = build_norm(inpL,
  8803. model.output_norm,
  8804. model.output_norm_b,
  8805. LLM_NORM, -1);
  8806. cb(cur, "result_norm", -1);
  8807. res->t_embd = cur;
  8808. cur = build_lora_mm(model.output, cur);
  8809. cb(cur, "result_output", -1);
  8810. res->t_logits = cur;
  8811. ggml_build_forward_expand(gf, cur);
  8812. }
  8813. };
  8814. struct llm_build_chatglm : public llm_graph_context {
  8815. llm_build_chatglm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8816. const int64_t n_embd_head = hparams.n_embd_head_v;
  8817. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8818. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8819. ggml_tensor * cur;
  8820. ggml_tensor * inpL;
  8821. inpL = build_inp_embd(model.tok_embd);
  8822. // inp_pos - contains the positions
  8823. ggml_tensor * inp_pos = build_inp_pos();
  8824. auto * inp_attn = build_attn_inp_kv_unified();
  8825. for (int il = 0; il < n_layer; ++il) {
  8826. ggml_tensor * inpSA = inpL;
  8827. cur = build_norm(inpL,
  8828. model.layers[il].attn_norm,
  8829. NULL,
  8830. LLM_NORM_RMS, il);
  8831. cb(cur, "attn_norm", il);
  8832. // self-attention
  8833. {
  8834. ggml_tensor * Qcur = nullptr;
  8835. ggml_tensor * Kcur = nullptr;
  8836. ggml_tensor * Vcur = nullptr;
  8837. if (model.layers[il].wqkv == nullptr) {
  8838. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8839. if (model.layers[il].bq) {
  8840. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8841. }
  8842. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8843. if (model.layers[il].bk) {
  8844. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8845. }
  8846. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8847. if (model.layers[il].bv) {
  8848. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8849. }
  8850. } else {
  8851. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8852. cb(cur, "wqkv", il);
  8853. if (model.layers[il].bqkv) {
  8854. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8855. cb(cur, "bqkv", il);
  8856. }
  8857. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8858. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8859. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8860. }
  8861. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8862. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8863. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8864. //printf("freq_base: %f freq_scale: %f ext_factor: %f attn_factor: %f\n", freq_base, freq_scale, ext_factor, attn_factor);
  8865. Qcur = ggml_rope_ext(
  8866. ctx0, Qcur, inp_pos, nullptr,
  8867. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8868. ext_factor, attn_factor, beta_fast, beta_slow
  8869. );
  8870. Kcur = ggml_rope_ext(
  8871. ctx0, Kcur, inp_pos, nullptr,
  8872. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8873. ext_factor, attn_factor, beta_fast, beta_slow
  8874. );
  8875. cb(Qcur, "Qcur", il);
  8876. cb(Kcur, "Kcur", il);
  8877. cb(Vcur, "Vcur", il);
  8878. cur = build_attn(inp_attn, gf,
  8879. model.layers[il].wo, NULL,
  8880. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8881. }
  8882. if (il == n_layer - 1) {
  8883. // skip computing output for unused tokens
  8884. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8885. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8886. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8887. }
  8888. // Add the input
  8889. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8890. cb(ffn_inp, "ffn_inp", il);
  8891. // FF
  8892. {
  8893. cur = build_norm(ffn_inp,
  8894. model.layers[il].ffn_norm,
  8895. NULL,
  8896. LLM_NORM_RMS, il);
  8897. cb(cur, "ffn_norm", il);
  8898. cur = build_ffn(cur,
  8899. model.layers[il].ffn_up, NULL, NULL,
  8900. NULL, NULL, NULL,
  8901. model.layers[il].ffn_down, NULL, NULL,
  8902. NULL,
  8903. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  8904. cb(cur, "ffn_out", il);
  8905. }
  8906. inpL = ggml_add(ctx0, cur, ffn_inp);
  8907. cb(inpL, "l_out", il);
  8908. }
  8909. cur = build_norm(inpL,
  8910. model.output_norm,
  8911. NULL,
  8912. LLM_NORM_RMS, -1);
  8913. cb(cur, "result_norm", -1);
  8914. res->t_embd = cur;
  8915. cur = build_lora_mm(model.output, cur);
  8916. cb(cur, "result_output", -1);
  8917. res->t_logits = cur;
  8918. ggml_build_forward_expand(gf, cur);
  8919. }
  8920. };
  8921. struct llm_build_glm4 : public llm_graph_context {
  8922. llm_build_glm4(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  8923. const int64_t n_embd_head = hparams.n_embd_head_v;
  8924. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8925. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8926. ggml_tensor * cur;
  8927. ggml_tensor * inpL;
  8928. inpL = build_inp_embd(model.tok_embd);
  8929. // inp_pos - contains the positions
  8930. ggml_tensor * inp_pos = build_inp_pos();
  8931. auto * inp_attn = build_attn_inp_kv_unified();
  8932. for (int il = 0; il < n_layer; ++il) {
  8933. ggml_tensor * inpSA = inpL;
  8934. // Pre-attention norm
  8935. cur = build_norm(inpL,
  8936. model.layers[il].attn_norm,
  8937. NULL,
  8938. LLM_NORM_RMS, il);
  8939. cb(cur, "attn_norm", il);
  8940. // self-attention
  8941. {
  8942. ggml_tensor * Qcur = nullptr;
  8943. ggml_tensor * Kcur = nullptr;
  8944. ggml_tensor * Vcur = nullptr;
  8945. if (model.layers[il].wqkv == nullptr) {
  8946. Qcur = build_lora_mm(model.layers[il].wq, cur);
  8947. if (model.layers[il].bq) {
  8948. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8949. }
  8950. Kcur = build_lora_mm(model.layers[il].wk, cur);
  8951. if (model.layers[il].bk) {
  8952. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8953. }
  8954. Vcur = build_lora_mm(model.layers[il].wv, cur);
  8955. if (model.layers[il].bv) {
  8956. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8957. }
  8958. } else {
  8959. cur = build_lora_mm(model.layers[il].wqkv, cur);
  8960. cb(cur, "wqkv", il);
  8961. if (model.layers[il].bqkv) {
  8962. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8963. cb(cur, "bqkv", il);
  8964. }
  8965. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8966. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8967. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8968. }
  8969. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8970. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8971. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  8972. Qcur = ggml_rope_ext(
  8973. ctx0, Qcur, inp_pos, nullptr,
  8974. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8975. ext_factor, attn_factor, beta_fast, beta_slow
  8976. );
  8977. Kcur = ggml_rope_ext(
  8978. ctx0, Kcur, inp_pos, nullptr,
  8979. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8980. ext_factor, attn_factor, beta_fast, beta_slow
  8981. );
  8982. cb(Qcur, "Qcur", il);
  8983. cb(Kcur, "Kcur", il);
  8984. cb(Vcur, "Vcur", il);
  8985. cur = build_attn(inp_attn, gf,
  8986. model.layers[il].wo, NULL,
  8987. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  8988. }
  8989. if (il == n_layer - 1) {
  8990. // skip computing output for unused tokens
  8991. ggml_tensor * inp_out_ids = build_inp_out_ids();
  8992. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8993. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8994. }
  8995. // Post-attention norm (new!)
  8996. cur = build_norm(cur,
  8997. model.layers[il].attn_post_norm,
  8998. NULL,
  8999. LLM_NORM_RMS, il);
  9000. cb(cur, "post_attn_norm", il);
  9001. // Add the input (residual connection after post-attention norm)
  9002. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9003. cb(ffn_inp, "ffn_inp", il);
  9004. // FF
  9005. {
  9006. // Pre-MLP norm
  9007. cur = build_norm(ffn_inp,
  9008. model.layers[il].ffn_norm,
  9009. NULL,
  9010. LLM_NORM_RMS, il);
  9011. cb(cur, "ffn_norm", il);
  9012. // MLP
  9013. cur = build_ffn(cur,
  9014. model.layers[il].ffn_up, NULL, NULL,
  9015. NULL, NULL, NULL,
  9016. model.layers[il].ffn_down, NULL, NULL,
  9017. NULL,
  9018. LLM_FFN_SWIGLU, LLM_FFN_SEQ, il);
  9019. cb(cur, "ffn_out", il);
  9020. // Post-MLP norm
  9021. cur = build_norm(cur,
  9022. model.layers[il].ffn_post_norm,
  9023. NULL,
  9024. LLM_NORM_RMS, il);
  9025. cb(cur, "post_mlp_norm", il);
  9026. }
  9027. // Add residual connection after post-MLP norm
  9028. inpL = ggml_add(ctx0, cur, ffn_inp);
  9029. cb(inpL, "l_out", il);
  9030. }
  9031. // Final norm
  9032. cur = build_norm(inpL,
  9033. model.output_norm,
  9034. NULL,
  9035. LLM_NORM_RMS, -1);
  9036. cb(cur, "result_norm", -1);
  9037. res->t_embd = cur;
  9038. // Output projection
  9039. cur = build_lora_mm(model.output, cur);
  9040. cb(cur, "result_output", -1);
  9041. res->t_logits = cur;
  9042. ggml_build_forward_expand(gf, cur);
  9043. }
  9044. };
  9045. struct llm_build_nemotron : public llm_graph_context {
  9046. llm_build_nemotron(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9047. const int64_t n_embd_head = hparams.n_embd_head_v;
  9048. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9049. //GGML_ASSERT(n_embd_head == hparams.n_rot);
  9050. ggml_tensor * cur;
  9051. ggml_tensor * inpL;
  9052. inpL = build_inp_embd(model.tok_embd);
  9053. // inp_pos - contains the positions
  9054. ggml_tensor * inp_pos = build_inp_pos();
  9055. auto * inp_attn = build_attn_inp_kv_unified();
  9056. for (int il = 0; il < n_layer; ++il) {
  9057. ggml_tensor * inpSA = inpL;
  9058. // norm
  9059. cur = build_norm(inpL,
  9060. model.layers[il].attn_norm,
  9061. model.layers[il].attn_norm_b,
  9062. LLM_NORM, il);
  9063. cb(cur, "attn_norm", il);
  9064. // self-attention
  9065. {
  9066. // compute Q and K and RoPE them
  9067. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9068. cb(Qcur, "Qcur", il);
  9069. if (model.layers[il].bq) {
  9070. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9071. cb(Qcur, "Qcur", il);
  9072. }
  9073. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9074. cb(Kcur, "Kcur", il);
  9075. if (model.layers[il].bk) {
  9076. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9077. cb(Kcur, "Kcur", il);
  9078. }
  9079. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9080. cb(Vcur, "Vcur", il);
  9081. if (model.layers[il].bv) {
  9082. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9083. cb(Vcur, "Vcur", il);
  9084. }
  9085. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9086. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9087. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9088. Qcur = ggml_rope_ext(
  9089. ctx0, Qcur, inp_pos, nullptr,
  9090. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9091. ext_factor, attn_factor, beta_fast, beta_slow
  9092. );
  9093. Kcur = ggml_rope_ext(
  9094. ctx0, Kcur, inp_pos, nullptr,
  9095. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9096. ext_factor, attn_factor, beta_fast, beta_slow
  9097. );
  9098. cb(Qcur, "Qcur", il);
  9099. cb(Kcur, "Kcur", il);
  9100. cb(Vcur, "Vcur", il);
  9101. cur = build_attn(inp_attn, gf,
  9102. model.layers[il].wo, model.layers[il].bo,
  9103. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9104. }
  9105. if (il == n_layer - 1) {
  9106. // skip computing output for unused tokens
  9107. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9108. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9109. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9110. }
  9111. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9112. cb(ffn_inp, "ffn_inp", il);
  9113. // feed-forward network
  9114. cur = build_norm(ffn_inp,
  9115. model.layers[il].ffn_norm,
  9116. model.layers[il].ffn_norm_b,
  9117. LLM_NORM, il);
  9118. cb(cur, "ffn_norm", il);
  9119. cur = build_ffn(cur,
  9120. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9121. NULL, NULL, NULL,
  9122. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9123. NULL,
  9124. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  9125. cur = ggml_add(ctx0, cur, ffn_inp);
  9126. cb(cur, "ffn_out", il);
  9127. cur = build_cvec(cur, il);
  9128. cb(cur, "l_out", il);
  9129. // input for next layer
  9130. inpL = cur;
  9131. }
  9132. cur = inpL;
  9133. cur = build_norm(cur,
  9134. model.output_norm, model.output_norm_b,
  9135. LLM_NORM, -1);
  9136. cb(cur, "result_norm", -1);
  9137. res->t_embd = cur;
  9138. // lm_head
  9139. cur = build_lora_mm(model.output, cur);
  9140. cb(cur, "result_output", -1);
  9141. res->t_logits = cur;
  9142. ggml_build_forward_expand(gf, cur);
  9143. }
  9144. };
  9145. struct llm_build_exaone : public llm_graph_context {
  9146. llm_build_exaone(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9147. const int64_t n_embd_head = hparams.n_embd_head_v;
  9148. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9149. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9150. ggml_tensor * cur;
  9151. ggml_tensor * inpL;
  9152. inpL = build_inp_embd(model.tok_embd);
  9153. // inp_pos - contains the positions
  9154. ggml_tensor * inp_pos = build_inp_pos();
  9155. auto * inp_attn = build_attn_inp_kv_unified();
  9156. for (int il = 0; il < n_layer; ++il) {
  9157. ggml_tensor * inpSA = inpL;
  9158. // norm
  9159. cur = build_norm(inpL,
  9160. model.layers[il].attn_norm, NULL,
  9161. LLM_NORM_RMS, il);
  9162. cb(cur, "attn_norm", il);
  9163. // self-attention
  9164. {
  9165. // rope freq factors for llama3; may return nullptr for llama2 and other models
  9166. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  9167. // compute Q and K and RoPE them
  9168. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9169. cb(Qcur, "Qcur", il);
  9170. if (model.layers[il].bq) {
  9171. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9172. cb(Qcur, "Qcur", il);
  9173. }
  9174. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9175. cb(Kcur, "Kcur", il);
  9176. if (model.layers[il].bk) {
  9177. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9178. cb(Kcur, "Kcur", il);
  9179. }
  9180. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9181. cb(Vcur, "Vcur", il);
  9182. if (model.layers[il].bv) {
  9183. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9184. cb(Vcur, "Vcur", il);
  9185. }
  9186. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9187. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9188. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9189. Qcur = ggml_rope_ext(
  9190. ctx0, Qcur, inp_pos, rope_factors,
  9191. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9192. ext_factor, attn_factor, beta_fast, beta_slow
  9193. );
  9194. Kcur = ggml_rope_ext(
  9195. ctx0, Kcur, inp_pos, rope_factors,
  9196. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9197. ext_factor, attn_factor, beta_fast, beta_slow
  9198. );
  9199. cb(Qcur, "Qcur", il);
  9200. cb(Kcur, "Kcur", il);
  9201. cb(Vcur, "Vcur", il);
  9202. cur = build_attn(inp_attn, gf,
  9203. model.layers[il].wo, model.layers[il].bo,
  9204. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  9205. }
  9206. if (il == n_layer - 1) {
  9207. // skip computing output for unused tokens
  9208. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9209. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9210. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9211. }
  9212. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9213. cb(ffn_inp, "ffn_inp", il);
  9214. // feed-forward network
  9215. cur = build_norm(ffn_inp,
  9216. model.layers[il].ffn_norm, NULL,
  9217. LLM_NORM_RMS, il);
  9218. cb(cur, "ffn_norm", il);
  9219. cur = build_ffn(cur,
  9220. model.layers[il].ffn_up, NULL, NULL,
  9221. model.layers[il].ffn_gate, NULL, NULL,
  9222. model.layers[il].ffn_down, NULL, NULL,
  9223. NULL,
  9224. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9225. cb(cur, "ffn_out", il);
  9226. cur = ggml_add(ctx0, cur, ffn_inp);
  9227. cb(cur, "ffn_out", il);
  9228. cur = build_cvec(cur, il);
  9229. cb(cur, "l_out", il);
  9230. // input for next layer
  9231. inpL = cur;
  9232. }
  9233. cur = inpL;
  9234. cur = build_norm(cur,
  9235. model.output_norm, NULL,
  9236. LLM_NORM_RMS, -1);
  9237. cb(cur, "result_norm", -1);
  9238. res->t_embd = cur;
  9239. // lm_head
  9240. cur = build_lora_mm(model.output, cur);
  9241. cb(cur, "result_output", -1);
  9242. res->t_logits = cur;
  9243. ggml_build_forward_expand(gf, cur);
  9244. }
  9245. };
  9246. struct llm_build_rwkv6_base : public llm_graph_context {
  9247. const llama_model & model;
  9248. llm_build_rwkv6_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9249. }
  9250. ggml_tensor * build_rwkv6_channel_mix(
  9251. const llama_layer * layer,
  9252. ggml_tensor * cur,
  9253. ggml_tensor * x_prev,
  9254. llm_arch arch) const {
  9255. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9256. switch (arch) {
  9257. case LLM_ARCH_RWKV6:
  9258. {
  9259. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9260. ggml_tensor * xr = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_r), cur);
  9261. ggml_tensor * r = ggml_sigmoid(ctx0, build_lora_mm(layer->channel_mix_receptance, xr));
  9262. ggml_tensor * k = ggml_sqr(
  9263. ctx0,
  9264. ggml_relu(
  9265. ctx0,
  9266. build_lora_mm(layer->channel_mix_key, xk)
  9267. )
  9268. );
  9269. cur = ggml_mul(ctx0, r, build_lora_mm(layer->channel_mix_value, k));
  9270. } break;
  9271. default:
  9272. GGML_ABORT("fatal error");
  9273. }
  9274. return cur;
  9275. }
  9276. ggml_tensor * build_rwkv6_time_mix(
  9277. ggml_cgraph * gf,
  9278. ggml_tensor * cur,
  9279. ggml_tensor * x_prev,
  9280. ggml_tensor * state_copy,
  9281. const llama_ubatch & ubatch,
  9282. int il) const {
  9283. const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
  9284. const auto n_tokens = ubatch.n_tokens;
  9285. const auto n_seqs = ubatch.n_seqs;
  9286. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9287. const auto n_embd = hparams.n_embd;
  9288. const auto head_size = hparams.wkv_head_size;
  9289. const auto n_head = n_embd / head_size;
  9290. const auto n_head_kv = hparams.n_head_kv(il);
  9291. const auto kv_head = kv_state->get_head();
  9292. const auto & layer = model.layers[il];
  9293. bool is_qrwkv = layer.time_mix_first == nullptr;
  9294. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9295. sx = ggml_reshape_2d(ctx0, sx, n_embd, n_tokens);
  9296. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9297. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_x), cur);
  9298. xxx = ggml_reshape_4d(
  9299. ctx0,
  9300. ggml_tanh(
  9301. ctx0,
  9302. ggml_mul_mat(ctx0, layer.time_mix_w1, xxx)
  9303. ),
  9304. layer.time_mix_w1->ne[1] / 5, 1, 5, n_tokens
  9305. );
  9306. xxx = ggml_cont(ctx0, ggml_permute(ctx0, xxx, 0, 1, 3, 2));
  9307. xxx = ggml_mul_mat(
  9308. ctx0,
  9309. ggml_reshape_4d(
  9310. ctx0,
  9311. layer.time_mix_w2,
  9312. layer.time_mix_w2->ne[0], layer.time_mix_w2->ne[1], 1, 5
  9313. ),
  9314. xxx
  9315. );
  9316. ggml_tensor *xw, *xk, *xv, *xr, *xg;
  9317. if (layer.time_mix_lerp_fused) {
  9318. // fusing these weights makes some performance improvement
  9319. sx = ggml_reshape_3d(ctx0, sx, n_embd, 1, n_tokens);
  9320. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  9321. xxx = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xxx, layer.time_mix_lerp_fused), sx), cur);
  9322. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9323. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9324. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9325. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9326. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9327. } else {
  9328. // for backward compatibility
  9329. xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9330. xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9331. xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9332. xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9333. xg = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9334. xw = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xw, layer.time_mix_lerp_w), sx), cur);
  9335. xk = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xk, layer.time_mix_lerp_k), sx), cur);
  9336. xv = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xv, layer.time_mix_lerp_v), sx), cur);
  9337. xr = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xr, layer.time_mix_lerp_r), sx), cur);
  9338. xg = ggml_add(ctx0, ggml_mul(ctx0, ggml_add(ctx0, xg, layer.time_mix_lerp_g), sx), cur);
  9339. }
  9340. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9341. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9342. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9343. if (layer.time_mix_receptance_b) {
  9344. r = ggml_add(ctx0, r, layer.time_mix_receptance_b);
  9345. }
  9346. if (layer.time_mix_key_b) {
  9347. k = ggml_add(ctx0, k, layer.time_mix_key_b);
  9348. }
  9349. if (layer.time_mix_value_b) {
  9350. v = ggml_add(ctx0, v, layer.time_mix_value_b);
  9351. }
  9352. ggml_tensor * g = build_lora_mm(layer.time_mix_gate, xg);
  9353. if (is_qrwkv) {
  9354. g = ggml_sigmoid(ctx0, g);
  9355. } else {
  9356. g = ggml_silu(ctx0, g);
  9357. }
  9358. if (n_head_kv != 0 && n_head_kv != n_head) {
  9359. GGML_ASSERT(n_head % n_head_kv == 0);
  9360. k = ggml_reshape_4d(ctx0, k, head_size, 1, n_head_kv, n_tokens);
  9361. v = ggml_reshape_4d(ctx0, v, head_size, 1, n_head_kv, n_tokens);
  9362. ggml_tensor * tmp = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, head_size, n_head / n_head_kv, n_head_kv, n_tokens);
  9363. k = ggml_repeat(ctx0, k, tmp);
  9364. v = ggml_repeat(ctx0, v, tmp);
  9365. }
  9366. k = ggml_reshape_3d(ctx0, k, head_size, n_head, n_tokens);
  9367. v = ggml_reshape_3d(ctx0, v, head_size, n_head, n_tokens);
  9368. r = ggml_reshape_3d(ctx0, r, head_size, n_head, n_tokens);
  9369. ggml_tensor * w = ggml_mul_mat(
  9370. ctx0,
  9371. layer.time_mix_decay_w2,
  9372. ggml_tanh(
  9373. ctx0,
  9374. ggml_mul_mat(ctx0, layer.time_mix_decay_w1, xw)
  9375. )
  9376. );
  9377. w = ggml_add(ctx0, w, layer.time_mix_decay);
  9378. w = ggml_exp(ctx0, ggml_neg(ctx0, ggml_exp(ctx0, w)));
  9379. w = ggml_reshape_3d(ctx0, w, head_size, n_head, n_tokens);
  9380. if (is_qrwkv) {
  9381. // k = k * (1 - w)
  9382. k = ggml_sub(ctx0, k, ggml_mul(ctx0, k, w));
  9383. }
  9384. ggml_tensor * wkv_state = build_recurrent_state(
  9385. gf, kv_state->get_v_l(il), state_copy,
  9386. hparams.n_embd_v_s(), n_seqs);
  9387. ggml_tensor * wkv_output;
  9388. if (is_qrwkv) {
  9389. wkv_output = ggml_gated_linear_attn(ctx0, k, v, r, w, wkv_state, pow(head_size, -0.5f));
  9390. } else {
  9391. wkv_output = ggml_rwkv_wkv6(ctx0, k, v, r, layer.time_mix_first, w, wkv_state);
  9392. }
  9393. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9394. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9395. ggml_build_forward_expand(
  9396. gf,
  9397. ggml_cpy(
  9398. ctx0,
  9399. wkv_state,
  9400. ggml_view_1d(
  9401. ctx0,
  9402. kv_state->get_v_l(il),
  9403. hparams.n_embd_v_s() * n_seqs,
  9404. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
  9405. )
  9406. )
  9407. );
  9408. if (!is_qrwkv) {
  9409. // group norm with head_count groups
  9410. cur = ggml_reshape_3d(ctx0, cur, n_embd / n_head, n_head, n_tokens);
  9411. cur = ggml_norm(ctx0, cur, 64e-5f);
  9412. // Convert back to regular vectors.
  9413. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9414. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9415. } else {
  9416. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9417. }
  9418. cur = ggml_mul(ctx0, cur, g);
  9419. cur = build_lora_mm(layer.time_mix_output, cur);
  9420. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9421. }
  9422. };
  9423. struct llm_build_rwkv6 : public llm_build_rwkv6_base {
  9424. llm_build_rwkv6(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9425. GGML_ASSERT(hparams.token_shift_count == 2);
  9426. ggml_tensor * cur;
  9427. ggml_tensor * inpL;
  9428. inpL = build_inp_embd(model.tok_embd);
  9429. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9430. ggml_tensor * state_copy = build_inp_s_copy();
  9431. const auto n_embd = hparams.n_embd;
  9432. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9433. const auto n_seqs = ubatch.n_seqs;
  9434. for (int il = 0; il < n_layer; ++il) {
  9435. const llama_layer * layer = &model.layers[il];
  9436. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9437. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9438. gf, state_copy, ubatch, il
  9439. );
  9440. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9441. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9442. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9443. cb(att_norm, "attn_norm", il);
  9444. ggml_tensor * x_prev = ggml_concat(
  9445. ctx0,
  9446. att_shift,
  9447. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9448. 1
  9449. );
  9450. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il);
  9451. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9452. cb(ffn_inp, "ffn_inp", il);
  9453. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9454. cb(ffn_norm, "ffn_norm", il);
  9455. x_prev = ggml_concat(
  9456. ctx0,
  9457. ffn_shift,
  9458. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9459. 1
  9460. );
  9461. token_shift = ggml_concat(ctx0,
  9462. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9463. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9464. 1
  9465. );
  9466. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9467. if (il == n_layer - 1) {
  9468. // skip computing output for unused tokens
  9469. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9470. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9471. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9472. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9473. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9474. }
  9475. cur = build_rwkv6_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV6);
  9476. cur = ggml_add(ctx0, cur, ffn_inp);
  9477. if (hparams.rescale_every_n_layers != 0 && (il + 1) % hparams.rescale_every_n_layers == 0) {
  9478. cur = ggml_scale(ctx0, cur, 0.5F);
  9479. }
  9480. cur = build_cvec(cur, il);
  9481. cb(cur, "l_out", il);
  9482. // input for next layer
  9483. inpL = cur;
  9484. }
  9485. cur = inpL;
  9486. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9487. cb(cur, "result_norm", -1);
  9488. res->t_embd = cur;
  9489. cur = build_lora_mm(model.output, cur);
  9490. cb(cur, "result_output", -1);
  9491. res->t_logits = cur;
  9492. ggml_build_forward_expand(gf, cur);
  9493. }
  9494. };
  9495. // ref: https://huggingface.co/recursal/QRWKV6-32B-Instruct-Preview-v0.1/blob/main/modeling_rwkv6qwen2.py
  9496. struct llm_build_rwkv6qwen2 : public llm_build_rwkv6_base {
  9497. llm_build_rwkv6qwen2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv6_base(model, params) {
  9498. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9499. ggml_tensor * cur;
  9500. ggml_tensor * inpL;
  9501. inpL = build_inp_embd(model.tok_embd);
  9502. ggml_tensor * state_copy = build_inp_s_copy();
  9503. const auto n_embd = hparams.n_embd;
  9504. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9505. const auto n_seqs = ubatch.n_seqs;
  9506. for (int il = 0; il < n_layer; ++il) {
  9507. const llama_layer * layer = &model.layers[il];
  9508. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9509. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9510. gf, state_copy, ubatch, il
  9511. );
  9512. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9513. cb(att_norm, "attn_norm", il);
  9514. ggml_tensor * x_prev = ggml_concat(
  9515. ctx0,
  9516. token_shift,
  9517. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9518. 1
  9519. );
  9520. cur = build_rwkv6_time_mix(gf, att_norm, x_prev, state_copy, ubatch, il);
  9521. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9522. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9523. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9524. cb(ffn_inp, "ffn_inp", il);
  9525. if (il == n_layer - 1) {
  9526. // skip computing output for unused tokens
  9527. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9528. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9529. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9530. }
  9531. // feed-forward network
  9532. cur = build_norm(ffn_inp,
  9533. model.layers[il].ffn_norm, NULL,
  9534. LLM_NORM_RMS, il);
  9535. cb(cur, "ffn_norm", il);
  9536. cur = build_ffn(cur,
  9537. model.layers[il].ffn_up, NULL, NULL,
  9538. model.layers[il].ffn_gate, NULL, NULL,
  9539. model.layers[il].ffn_down, NULL, NULL,
  9540. NULL,
  9541. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9542. cb(cur, "ffn_out", il);
  9543. cur = ggml_add(ctx0, cur, ffn_inp);
  9544. cur = build_cvec(cur, il);
  9545. cb(cur, "l_out", il);
  9546. // input for next layer
  9547. inpL = cur;
  9548. }
  9549. cur = inpL;
  9550. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9551. cb(cur, "result_norm", -1);
  9552. res->t_embd = cur;
  9553. cur = build_lora_mm(model.output, cur);
  9554. cb(cur, "result_output", -1);
  9555. res->t_logits = cur;
  9556. ggml_build_forward_expand(gf, cur);
  9557. }
  9558. };
  9559. struct llm_build_rwkv7_base : public llm_graph_context {
  9560. const llama_model & model;
  9561. llm_build_rwkv7_base(const llama_model & model, const llm_graph_params & params) : llm_graph_context(params), model(model) {
  9562. }
  9563. ggml_tensor * build_rwkv7_channel_mix(
  9564. const llama_layer * layer,
  9565. ggml_tensor * cur,
  9566. ggml_tensor * x_prev,
  9567. llm_arch arch) const {
  9568. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9569. switch (arch) {
  9570. case LLM_ARCH_RWKV7:
  9571. {
  9572. ggml_tensor * xk = ggml_add(ctx0, ggml_mul(ctx0, sx, layer->channel_mix_lerp_k), cur);
  9573. ggml_tensor * k = ggml_sqr(
  9574. ctx0,
  9575. ggml_relu(
  9576. ctx0,
  9577. build_lora_mm(layer->channel_mix_key, xk)
  9578. )
  9579. );
  9580. cur = build_lora_mm(layer->channel_mix_value, k);
  9581. } break;
  9582. default:
  9583. GGML_ABORT("fatal error");
  9584. }
  9585. return cur;
  9586. }
  9587. ggml_tensor * build_rwkv7_time_mix(
  9588. ggml_cgraph * gf,
  9589. ggml_tensor * cur,
  9590. ggml_tensor * x_prev,
  9591. ggml_tensor * state_copy,
  9592. ggml_tensor *& first_layer_value,
  9593. const llama_ubatch & ubatch,
  9594. int il) const {
  9595. const auto * kv_state = static_cast<const llama_kv_cache_recurrent_state *>(mstate);
  9596. const auto n_tokens = ubatch.n_tokens;
  9597. const auto n_seqs = ubatch.n_seqs;
  9598. const auto n_embd = hparams.n_embd;
  9599. const auto head_size = hparams.wkv_head_size;
  9600. const auto head_count = n_embd / head_size;
  9601. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9602. const auto kv_head = kv_state->get_head();
  9603. const auto & layer = model.layers[il];
  9604. bool has_gating = layer.time_mix_g1 && layer.time_mix_g2;
  9605. ggml_tensor * sx = ggml_sub(ctx0, x_prev, cur);
  9606. ggml_tensor * dummy = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, n_embd, n_seq_tokens, n_seqs, has_gating ? 6 : 5);
  9607. sx = ggml_repeat(ctx0, sx, dummy);
  9608. ggml_tensor * xxx = ggml_add(ctx0, ggml_mul(ctx0, sx, layer.time_mix_lerp_fused), cur);
  9609. ggml_tensor * xr = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], 0);
  9610. ggml_tensor * xw = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * sizeof(float));
  9611. ggml_tensor * xk = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 2 * sizeof(float));
  9612. ggml_tensor * xv = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 3 * sizeof(float));
  9613. ggml_tensor * xa = ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 4 * sizeof(float));
  9614. ggml_tensor * xg = has_gating ? ggml_view_2d(ctx0, xxx, n_embd, n_tokens, xxx->nb[1], n_embd * n_tokens * 5 * sizeof(float)) : nullptr;
  9615. ggml_tensor * r = build_lora_mm(layer.time_mix_receptance, xr);
  9616. ggml_tensor * w = ggml_add(
  9617. ctx0,
  9618. ggml_mul_mat(ctx0, layer.time_mix_w2, ggml_tanh(ctx0, ggml_mul_mat(ctx0, layer.time_mix_w1, xw))),
  9619. layer.time_mix_w0
  9620. );
  9621. w = ggml_exp(ctx0, ggml_scale(ctx0, ggml_sigmoid(ctx0, w), -0.606531));
  9622. ggml_tensor * k = build_lora_mm(layer.time_mix_key, xk);
  9623. ggml_tensor * v = build_lora_mm(layer.time_mix_value, xv);
  9624. if (first_layer_value == nullptr) {
  9625. first_layer_value = v;
  9626. } else {
  9627. // Add the first layer value as a residual connection.
  9628. v = ggml_add(ctx0, v,
  9629. ggml_mul(ctx0,
  9630. ggml_sub(ctx0, first_layer_value, v),
  9631. ggml_sigmoid(ctx0, ggml_add(ctx0,
  9632. ggml_mul_mat(ctx0, layer.time_mix_v2, ggml_mul_mat(ctx0, layer.time_mix_v1, xv)),
  9633. layer.time_mix_v0
  9634. )
  9635. )
  9636. )
  9637. );
  9638. }
  9639. ggml_tensor * g = nullptr;
  9640. if (layer.time_mix_g1 && layer.time_mix_g2) {
  9641. g = ggml_mul_mat(ctx0, layer.time_mix_g2, ggml_sigmoid(ctx0, ggml_mul_mat(ctx0, layer.time_mix_g1, xg)));
  9642. }
  9643. ggml_tensor * a = ggml_sigmoid(ctx0,
  9644. ggml_add(
  9645. ctx0,
  9646. ggml_mul_mat(ctx0, layer.time_mix_a2, ggml_mul_mat(ctx0, layer.time_mix_a1, xa)),
  9647. layer.time_mix_a0
  9648. )
  9649. );
  9650. ggml_tensor * kk = ggml_reshape_3d(ctx0, ggml_mul(ctx0, k, layer.time_mix_k_k), head_size, head_count, n_tokens);
  9651. kk = ggml_l2_norm(ctx0, kk, 1e-12);
  9652. ggml_tensor * ka = ggml_mul(ctx0, k, layer.time_mix_k_a);
  9653. k = ggml_add(ctx0, k, ggml_sub(ctx0, ggml_mul(ctx0, a, ka), ka));
  9654. r = ggml_reshape_3d(ctx0, r, head_size, head_count, n_tokens);
  9655. w = ggml_reshape_3d(ctx0, w, head_size, head_count, n_tokens);
  9656. k = ggml_reshape_3d(ctx0, k, head_size, head_count, n_tokens);
  9657. v = ggml_reshape_3d(ctx0, v, head_size, head_count, n_tokens);
  9658. a = ggml_reshape_3d(ctx0, a, head_size, head_count, n_tokens);
  9659. ggml_tensor * wkv_state = build_recurrent_state(
  9660. gf, kv_state->get_v_l(il), state_copy,
  9661. hparams.n_embd_v_s(), n_seqs);
  9662. ggml_tensor * wkv_output = ggml_rwkv_wkv7(ctx0, r, w, k, v, ggml_neg(ctx0, kk), ggml_mul(ctx0, kk, a), wkv_state);
  9663. cur = ggml_view_1d(ctx0, wkv_output, n_embd * n_tokens, 0);
  9664. wkv_state = ggml_view_1d(ctx0, wkv_output, n_embd * head_size * n_seqs, n_embd * n_tokens * sizeof(float));
  9665. ggml_build_forward_expand(
  9666. gf,
  9667. ggml_cpy(
  9668. ctx0,
  9669. wkv_state,
  9670. ggml_view_1d(
  9671. ctx0,
  9672. kv_state->get_v_l(il),
  9673. hparams.n_embd_v_s() * n_seqs,
  9674. hparams.n_embd_v_s() * kv_head * ggml_element_size(kv_state->get_v_l(il))
  9675. )
  9676. )
  9677. );
  9678. if (layer.time_mix_ln && layer.time_mix_ln_b) {
  9679. // group norm with head_count groups
  9680. cur = ggml_reshape_3d(ctx0, cur, n_embd / head_count, head_count, n_tokens);
  9681. cur = ggml_norm(ctx0, cur, 64e-5f);
  9682. // Convert back to regular vectors.
  9683. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9684. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, layer.time_mix_ln), layer.time_mix_ln_b);
  9685. } else {
  9686. cur = ggml_reshape_2d(ctx0, cur, n_embd, n_tokens);
  9687. }
  9688. ggml_tensor * rk = ggml_sum_rows(ctx0,
  9689. ggml_mul(ctx0, ggml_mul(ctx0, k, r), ggml_reshape_2d(ctx0, layer.time_mix_r_k, head_size, head_count)));
  9690. cur = ggml_add(ctx0, cur, ggml_reshape_2d(ctx0, ggml_mul(ctx0, v, rk), n_embd, n_tokens));
  9691. if (has_gating) {
  9692. cur = ggml_mul(ctx0, cur, g);
  9693. }
  9694. cur = build_lora_mm(layer.time_mix_output, cur);
  9695. return ggml_reshape_3d(ctx0, cur, n_embd, n_seq_tokens, n_seqs);
  9696. }
  9697. };
  9698. struct llm_build_rwkv7 : public llm_build_rwkv7_base {
  9699. llm_build_rwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9700. GGML_ASSERT(hparams.token_shift_count == 2);
  9701. ggml_tensor * cur;
  9702. ggml_tensor * inpL;
  9703. ggml_tensor * v_first = nullptr;
  9704. inpL = build_inp_embd(model.tok_embd);
  9705. inpL = build_norm(inpL, model.tok_norm, model.tok_norm_b, LLM_NORM, -1);
  9706. ggml_tensor * state_copy = build_inp_s_copy();
  9707. const auto n_embd = hparams.n_embd;
  9708. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9709. const auto n_seqs = ubatch.n_seqs;
  9710. for (int il = 0; il < n_layer; ++il) {
  9711. const llama_layer * layer = &model.layers[il];
  9712. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9713. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9714. gf, state_copy, ubatch, il
  9715. );
  9716. ggml_tensor * att_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], 0);
  9717. ggml_tensor * ffn_shift = ggml_view_3d(ctx0, token_shift, n_embd, 1, n_seqs, token_shift->nb[1], token_shift->nb[2], n_embd * ggml_element_size(token_shift));
  9718. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM, il);
  9719. cb(att_norm, "attn_norm", il);
  9720. ggml_tensor * x_prev = ggml_concat(
  9721. ctx0,
  9722. att_shift,
  9723. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9724. 1
  9725. );
  9726. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il);
  9727. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9728. cb(ffn_inp, "ffn_inp", il);
  9729. ggml_tensor * ffn_norm = build_norm(ffn_inp, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, il);
  9730. cb(ffn_norm, "ffn_norm", il);
  9731. x_prev = ggml_concat(
  9732. ctx0,
  9733. ffn_shift,
  9734. ggml_view_3d(ctx0, ffn_norm, n_embd, n_seq_tokens - 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], 0),
  9735. 1
  9736. );
  9737. token_shift = ggml_concat(ctx0,
  9738. ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm)),
  9739. ggml_view_3d(ctx0, ffn_norm, n_embd, 1, n_seqs, ffn_norm->nb[1], ffn_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(ffn_norm)),
  9740. 1
  9741. );
  9742. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9743. if (il == n_layer - 1) {
  9744. // skip computing output for unused tokens
  9745. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9746. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9747. ffn_norm = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_norm, n_embd, n_tokens), inp_out_ids);
  9748. x_prev = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, x_prev, n_embd, n_tokens), inp_out_ids);
  9749. }
  9750. cur = build_rwkv7_channel_mix(layer, ffn_norm, x_prev, LLM_ARCH_RWKV7);
  9751. cur = ggml_add(ctx0, cur, ffn_inp);
  9752. cur = build_cvec(cur, il);
  9753. cb(cur, "l_out", il);
  9754. // input for next layer
  9755. inpL = cur;
  9756. }
  9757. cur = inpL;
  9758. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM, -1);
  9759. cb(cur, "result_norm", -1);
  9760. res->t_embd = cur;
  9761. cur = build_lora_mm(model.output, cur);
  9762. cb(cur, "result_output", -1);
  9763. res->t_logits = cur;
  9764. ggml_build_forward_expand(gf, cur);
  9765. }
  9766. };
  9767. struct llm_build_arwkv7 : public llm_build_rwkv7_base {
  9768. llm_build_arwkv7(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_build_rwkv7_base(model, params) {
  9769. GGML_ASSERT(n_embd == hparams.n_embd_k_s());
  9770. ggml_tensor * cur;
  9771. ggml_tensor * inpL;
  9772. ggml_tensor * v_first = nullptr;
  9773. inpL = build_inp_embd(model.tok_embd);
  9774. ggml_tensor * state_copy = build_inp_s_copy();
  9775. const auto n_embd = hparams.n_embd;
  9776. const auto n_seq_tokens = ubatch.n_seq_tokens;
  9777. const auto n_seqs = ubatch.n_seqs;
  9778. for (int il = 0; il < n_layer; ++il) {
  9779. const llama_layer * layer = &model.layers[il];
  9780. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_seq_tokens, n_seqs);
  9781. ggml_tensor * token_shift = build_rwkv_token_shift_load(
  9782. gf, state_copy, ubatch, il
  9783. );
  9784. ggml_tensor * att_norm = build_norm(inpL, layer->attn_norm, layer->attn_norm_b, LLM_NORM_RMS, il);
  9785. cb(att_norm, "attn_norm", il);
  9786. ggml_tensor * x_prev = ggml_concat(
  9787. ctx0,
  9788. token_shift,
  9789. ggml_view_3d(ctx0, att_norm, n_embd, n_seq_tokens - 1, n_seqs, att_norm->nb[1], att_norm->nb[2], 0),
  9790. 1
  9791. );
  9792. cur = build_rwkv7_time_mix(gf, att_norm, x_prev, state_copy, v_first, ubatch, il);
  9793. token_shift = ggml_view_3d(ctx0, att_norm, n_embd, 1, n_seqs, att_norm->nb[1], att_norm->nb[2], (n_seq_tokens-1)*n_embd*ggml_element_size(att_norm));
  9794. ggml_build_forward_expand(gf, build_rwkv_token_shift_store(token_shift, ubatch, il));
  9795. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9796. cb(ffn_inp, "ffn_inp", il);
  9797. if (il == n_layer - 1) {
  9798. // skip computing output for unused tokens
  9799. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9800. cur = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, cur, n_embd, n_tokens), inp_out_ids);
  9801. ffn_inp = ggml_get_rows(ctx0, ggml_reshape_2d(ctx0, ffn_inp, n_embd, n_tokens), inp_out_ids);
  9802. }
  9803. // feed-forward network
  9804. cur = build_norm(ffn_inp,
  9805. model.layers[il].ffn_norm, NULL,
  9806. LLM_NORM_RMS, il);
  9807. cb(cur, "ffn_norm", il);
  9808. cur = build_ffn(cur,
  9809. model.layers[il].ffn_up, NULL, NULL,
  9810. model.layers[il].ffn_gate, NULL, NULL,
  9811. model.layers[il].ffn_down, NULL, NULL,
  9812. NULL,
  9813. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9814. cb(cur, "ffn_out", il);
  9815. cur = ggml_add(ctx0, cur, ffn_inp);
  9816. cur = build_cvec(cur, il);
  9817. cb(cur, "l_out", il);
  9818. // input for next layer
  9819. inpL = cur;
  9820. }
  9821. cur = inpL;
  9822. cur = build_norm(cur, model.output_norm, model.output_norm_b, LLM_NORM_RMS, -1);
  9823. cb(cur, "result_norm", -1);
  9824. res->t_embd = cur;
  9825. cur = build_lora_mm(model.output, cur);
  9826. cb(cur, "result_output", -1);
  9827. res->t_logits = cur;
  9828. ggml_build_forward_expand(gf, cur);
  9829. }
  9830. };
  9831. struct llm_build_granite : public llm_graph_context {
  9832. llm_build_granite(
  9833. const llama_model & model,
  9834. const llm_graph_params & params,
  9835. ggml_cgraph * gf,
  9836. const bool use_rope = true)
  9837. : llm_graph_context(params) {
  9838. const int64_t n_embd_head = hparams.n_embd_head_v;
  9839. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9840. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9841. ggml_tensor * cur;
  9842. ggml_tensor * inpL;
  9843. inpL = build_inp_embd(model.tok_embd);
  9844. // inp_pos - built only if rope enabled
  9845. ggml_tensor * inp_pos = nullptr;
  9846. if (use_rope) {
  9847. inp_pos = build_inp_pos();
  9848. }
  9849. auto * inp_attn = build_attn_inp_kv_unified();
  9850. const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
  9851. for (int il = 0; il < n_layer; ++il) {
  9852. ggml_tensor * inpSA = inpL;
  9853. // norm
  9854. cur = build_norm(inpL,
  9855. model.layers[il].attn_norm, NULL,
  9856. LLM_NORM_RMS, il);
  9857. cb(cur, "attn_norm", il);
  9858. // self-attention
  9859. {
  9860. // compute Q and K and (optionally) RoPE them
  9861. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  9862. cb(Qcur, "Qcur", il);
  9863. if (model.layers[il].bq) {
  9864. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  9865. cb(Qcur, "Qcur", il);
  9866. }
  9867. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  9868. cb(Kcur, "Kcur", il);
  9869. if (model.layers[il].bk) {
  9870. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  9871. cb(Kcur, "Kcur", il);
  9872. }
  9873. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  9874. cb(Vcur, "Vcur", il);
  9875. if (model.layers[il].bv) {
  9876. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  9877. cb(Vcur, "Vcur", il);
  9878. }
  9879. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  9880. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  9881. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  9882. if (use_rope) {
  9883. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  9884. Qcur = ggml_rope_ext(
  9885. ctx0, Qcur, inp_pos, rope_factors,
  9886. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9887. ext_factor, attn_factor, beta_fast, beta_slow
  9888. );
  9889. Kcur = ggml_rope_ext(
  9890. ctx0, Kcur, inp_pos, rope_factors,
  9891. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9892. ext_factor, attn_factor, beta_fast, beta_slow
  9893. );
  9894. }
  9895. cb(Qcur, "Qcur", il);
  9896. cb(Kcur, "Kcur", il);
  9897. cb(Vcur, "Vcur", il);
  9898. cur = build_attn(inp_attn, gf,
  9899. model.layers[il].wo, model.layers[il].bo,
  9900. Qcur, Kcur, Vcur, nullptr, nullptr, kq_scale, il);
  9901. cb(cur, "attn_out", il);
  9902. }
  9903. if (il == n_layer - 1) {
  9904. // skip computing output for unused tokens
  9905. ggml_tensor * inp_out_ids = build_inp_out_ids();
  9906. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9907. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9908. }
  9909. // For Granite architectures - scale residual
  9910. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9911. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9912. cb(ffn_inp, "ffn_inp", il);
  9913. // feed-forward network (non-MoE)
  9914. if (model.layers[il].ffn_gate_inp == nullptr) {
  9915. cur = build_norm(ffn_inp,
  9916. model.layers[il].ffn_norm, NULL,
  9917. LLM_NORM_RMS, il);
  9918. cb(cur, "ffn_norm", il);
  9919. cur = build_ffn(cur,
  9920. model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
  9921. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
  9922. model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
  9923. NULL,
  9924. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9925. cb(cur, "ffn_out", il);
  9926. } else {
  9927. // MoE branch
  9928. cur = build_norm(ffn_inp,
  9929. model.layers[il].ffn_norm, NULL,
  9930. LLM_NORM_RMS, il);
  9931. cb(cur, "ffn_norm", il);
  9932. ggml_tensor * moe_out = build_moe_ffn(cur,
  9933. model.layers[il].ffn_gate_inp,
  9934. model.layers[il].ffn_up_exps,
  9935. model.layers[il].ffn_gate_exps,
  9936. model.layers[il].ffn_down_exps,
  9937. nullptr,
  9938. n_expert, n_expert_used,
  9939. LLM_FFN_SILU, true,
  9940. false, 0.0,
  9941. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  9942. il);
  9943. cb(moe_out, "ffn_moe_out", il);
  9944. // For Granite MoE Shared
  9945. if (hparams.n_ff_shexp > 0) {
  9946. ggml_tensor * ffn_shexp = build_ffn(cur,
  9947. model.layers[il].ffn_up_shexp, NULL, NULL,
  9948. model.layers[il].ffn_gate_shexp, NULL, NULL,
  9949. model.layers[il].ffn_down_shexp, NULL, NULL,
  9950. NULL,
  9951. LLM_FFN_SILU, LLM_FFN_PAR, il);
  9952. cb(ffn_shexp, "ffn_shexp", il);
  9953. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9954. cb(cur, "ffn_out", il);
  9955. } else {
  9956. cur = moe_out;
  9957. }
  9958. }
  9959. // For Granite architectures - scale residual
  9960. cur = ggml_scale(ctx0, cur, hparams.f_residual_scale);
  9961. cur = ggml_add(ctx0, cur, ffn_inp);
  9962. cb(cur, "ffn_out", il);
  9963. cur = build_cvec(cur, il);
  9964. cb(cur, "l_out", il);
  9965. // input for next layer
  9966. inpL = cur;
  9967. }
  9968. cur = inpL;
  9969. cur = build_norm(cur,
  9970. model.output_norm, NULL,
  9971. LLM_NORM_RMS, -1);
  9972. cb(cur, "result_norm", -1);
  9973. res->t_embd = cur;
  9974. // lm_head
  9975. cur = build_lora_mm(model.output, cur);
  9976. // For Granite architectures - scale logits
  9977. cur = ggml_scale(ctx0, cur, 1.0f / hparams.f_logit_scale);
  9978. cb(cur, "result_output", -1);
  9979. res->t_logits = cur;
  9980. ggml_build_forward_expand(gf, cur);
  9981. }
  9982. };
  9983. // ref: https://github.com/facebookresearch/chameleon
  9984. // based on the original build_llama() function, changes:
  9985. // * qk-norm
  9986. // * swin-norm
  9987. // * removed bias
  9988. // * removed MoE
  9989. struct llm_build_chameleon : public llm_graph_context {
  9990. llm_build_chameleon(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  9991. const int64_t n_embd_head = hparams.n_embd_head_v;
  9992. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9993. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9994. ggml_tensor * cur;
  9995. ggml_tensor * inpL;
  9996. inpL = build_inp_embd(model.tok_embd);
  9997. // inp_pos - contains the positions
  9998. ggml_tensor * inp_pos = build_inp_pos();
  9999. auto * inp_attn = build_attn_inp_kv_unified();
  10000. for (int il = 0; il < n_layer; ++il) {
  10001. ggml_tensor * inpSA = inpL;
  10002. // norm
  10003. if (hparams.swin_norm) {
  10004. cur = inpL;
  10005. } else {
  10006. cur = build_norm(inpL,
  10007. model.layers[il].attn_norm, NULL,
  10008. LLM_NORM_RMS, il);
  10009. cb(cur, "attn_norm", il);
  10010. }
  10011. // self-attention
  10012. {
  10013. // compute Q and K and RoPE them
  10014. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10015. cb(Qcur, "Qcur", il);
  10016. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10017. cb(Kcur, "Kcur", il);
  10018. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10019. cb(Vcur, "Vcur", il);
  10020. if (model.layers[il].attn_q_norm) {
  10021. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  10022. ggml_element_size(Qcur) * n_embd_head,
  10023. ggml_element_size(Qcur) * n_embd_head * n_head,
  10024. 0);
  10025. cb(Qcur, "Qcur", il);
  10026. Qcur = build_norm(Qcur,
  10027. model.layers[il].attn_q_norm,
  10028. model.layers[il].attn_q_norm_b,
  10029. LLM_NORM, il);
  10030. cb(Qcur, "Qcur", il);
  10031. }
  10032. if (model.layers[il].attn_k_norm) {
  10033. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  10034. ggml_element_size(Kcur) * n_embd_head,
  10035. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  10036. 0);
  10037. cb(Kcur, "Kcur", il);
  10038. Kcur = build_norm(Kcur,
  10039. model.layers[il].attn_k_norm,
  10040. model.layers[il].attn_k_norm_b,
  10041. LLM_NORM, il);
  10042. cb(Kcur, "Kcur", il);
  10043. }
  10044. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  10045. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  10046. Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
  10047. Qcur = ggml_rope_ext(
  10048. ctx0, Qcur, inp_pos, nullptr,
  10049. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10050. ext_factor, attn_factor, beta_fast, beta_slow
  10051. );
  10052. Kcur = ggml_rope_ext(
  10053. ctx0, Kcur, inp_pos, nullptr,
  10054. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10055. ext_factor, attn_factor, beta_fast, beta_slow
  10056. );
  10057. cb(Qcur, "Qcur", il);
  10058. cb(Kcur, "Kcur", il);
  10059. cb(Vcur, "Vcur", il);
  10060. cur = build_attn(inp_attn, gf,
  10061. model.layers[il].wo, nullptr,
  10062. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
  10063. if (hparams.swin_norm) {
  10064. cur = build_norm(cur,
  10065. model.layers[il].attn_norm, NULL,
  10066. LLM_NORM_RMS, il);
  10067. }
  10068. }
  10069. if (il == n_layer - 1) {
  10070. // skip computing output for unused tokens
  10071. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10072. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10073. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10074. }
  10075. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10076. cb(ffn_inp, "ffn_inp", il);
  10077. // feed-forward network
  10078. if (!hparams.swin_norm) {
  10079. cur = build_norm(ffn_inp,
  10080. model.layers[il].ffn_norm, NULL,
  10081. LLM_NORM_RMS, il);
  10082. cb(cur, "ffn_norm", il);
  10083. }
  10084. cur = build_ffn(cur,
  10085. model.layers[il].ffn_up, NULL, NULL,
  10086. model.layers[il].ffn_gate, NULL, NULL,
  10087. model.layers[il].ffn_down, NULL, NULL,
  10088. NULL,
  10089. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10090. cb(cur, "ffn_out", il);
  10091. if (hparams.swin_norm) {
  10092. cur = build_norm(cur,
  10093. model.layers[il].ffn_norm, NULL,
  10094. LLM_NORM_RMS, il);
  10095. cb(cur, "ffn_norm", il);
  10096. }
  10097. cur = ggml_add(ctx0, cur, ffn_inp);
  10098. cb(cur, "ffn_out", il);
  10099. cur = build_cvec(cur, il);
  10100. cb(cur, "l_out", il);
  10101. // input for next layer
  10102. inpL = cur;
  10103. }
  10104. cur = inpL;
  10105. cur = build_norm(cur,
  10106. model.output_norm, NULL,
  10107. LLM_NORM_RMS, -1);
  10108. cb(cur, "result_norm", -1);
  10109. res->t_embd = cur;
  10110. // lm_head
  10111. cur = build_lora_mm(model.output, cur);
  10112. cb(cur, "result_output_with_img_logits", -1);
  10113. // TODO: this suppresses the output of image tokens, which is required to enable text-only outputs.
  10114. // Needs to be removed once image outputs are supported.
  10115. int img_token_end_idx = 8196;
  10116. int img_token_start_idx = 4;
  10117. int num_img_tokens = img_token_end_idx - img_token_start_idx;
  10118. // creates 1d tensor of size num_img_tokens and values -FLT_MAX,
  10119. // which ensures that text token values are always at least larger than image token values
  10120. ggml_tensor * img_logits = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, num_img_tokens);
  10121. img_logits = ggml_clamp(ctx0, img_logits, -FLT_MAX, -FLT_MAX);
  10122. cb(img_logits, "img_logits", -1);
  10123. cur = ggml_set_1d(ctx0, cur, img_logits, ggml_element_size(cur) * img_token_start_idx);
  10124. cb(cur, "result_output", -1);
  10125. res->t_logits = cur;
  10126. ggml_build_forward_expand(gf, cur);
  10127. }
  10128. };
  10129. struct llm_build_wavtokenizer_dec : public llm_graph_context {
  10130. llm_build_wavtokenizer_dec(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10131. ggml_tensor * cur;
  10132. ggml_tensor * inpL;
  10133. inpL = build_inp_embd(model.tok_embd);
  10134. cur = ggml_cont(ctx0, ggml_transpose(ctx0, inpL));
  10135. cur = ggml_conv_1d_ph(ctx0, model.conv1d, cur, 1, 1);
  10136. cur = ggml_add(ctx0, cur, model.conv1d_b);
  10137. // posnet
  10138. for (uint32_t il = 0; il < hparams.posnet.n_layer; ++il) {
  10139. const auto & layer = model.layers[il].posnet;
  10140. inpL = cur;
  10141. switch (il) {
  10142. case 0:
  10143. case 1:
  10144. case 3:
  10145. case 4:
  10146. {
  10147. cur = build_norm(cur,
  10148. layer.norm1,
  10149. layer.norm1_b,
  10150. LLM_NORM_GROUP, 0);
  10151. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10152. cur = ggml_conv_1d_ph(ctx0, layer.conv1, cur, 1, 1);
  10153. cur = ggml_add(ctx0, cur, layer.conv1_b);
  10154. cur = build_norm(cur,
  10155. layer.norm2,
  10156. layer.norm2_b,
  10157. LLM_NORM_GROUP, 0);
  10158. cur = ggml_mul(ctx0, ggml_sigmoid(ctx0, cur), cur);
  10159. cur = ggml_conv_1d_ph(ctx0, layer.conv2, cur, 1, 1);
  10160. cur = ggml_add(ctx0, cur, layer.conv2_b);
  10161. cur = ggml_add(ctx0, cur, inpL);
  10162. } break;
  10163. case 2:
  10164. {
  10165. cur = build_norm(cur,
  10166. layer.attn_norm,
  10167. layer.attn_norm_b,
  10168. LLM_NORM_GROUP, 0);
  10169. ggml_tensor * q;
  10170. ggml_tensor * k;
  10171. ggml_tensor * v;
  10172. q = ggml_conv_1d_ph(ctx0, layer.attn_q, cur, 1, 1);
  10173. k = ggml_conv_1d_ph(ctx0, layer.attn_k, cur, 1, 1);
  10174. v = ggml_conv_1d_ph(ctx0, layer.attn_v, cur, 1, 1);
  10175. q = ggml_add(ctx0, q, layer.attn_q_b);
  10176. k = ggml_add(ctx0, k, layer.attn_k_b);
  10177. v = ggml_add(ctx0, v, layer.attn_v_b);
  10178. q = ggml_cont(ctx0, ggml_transpose(ctx0, q));
  10179. k = ggml_cont(ctx0, ggml_transpose(ctx0, k));
  10180. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  10181. kq = ggml_soft_max_ext(ctx0, kq, nullptr, 1.0f/sqrtf(float(hparams.posnet.n_embd)), 0.0f);
  10182. cur = ggml_mul_mat(ctx0, kq, v);
  10183. cur = ggml_conv_1d_ph(ctx0, layer.attn_o, cur, 1, 1);
  10184. cur = ggml_add(ctx0, cur, layer.attn_o_b);
  10185. cur = ggml_add(ctx0, cur, inpL);
  10186. } break;
  10187. case 5:
  10188. {
  10189. cur = build_norm(cur,
  10190. layer.norm,
  10191. layer.norm_b,
  10192. LLM_NORM_GROUP, 0);
  10193. } break;
  10194. default: GGML_ABORT("unknown posnet layer");
  10195. };
  10196. }
  10197. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10198. cur = build_norm(cur,
  10199. model.tok_norm,
  10200. model.tok_norm_b,
  10201. LLM_NORM, -1);
  10202. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10203. inpL = cur;
  10204. // convnext
  10205. for (uint32_t il = 0; il < hparams.convnext.n_layer; ++il) {
  10206. const auto & layer = model.layers[il].convnext;
  10207. cur = inpL;
  10208. cur = ggml_conv_1d_dw_ph(ctx0, layer.dw, cur, 1, 1);
  10209. cur = ggml_add(ctx0, cur, layer.dw_b);
  10210. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10211. cur = build_norm(cur,
  10212. layer.norm,
  10213. layer.norm_b,
  10214. LLM_NORM, -1);
  10215. cur = build_ffn(cur,
  10216. layer.pw1, layer.pw1_b, NULL,
  10217. NULL, NULL, NULL,
  10218. layer.pw2, layer.pw2_b, NULL,
  10219. NULL,
  10220. LLM_FFN_GELU, LLM_FFN_SEQ, il);
  10221. cur = ggml_mul(ctx0, cur, layer.gamma);
  10222. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10223. inpL = ggml_add(ctx0, cur, inpL);
  10224. }
  10225. cur = inpL;
  10226. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  10227. cur = build_norm(cur,
  10228. model.output_norm,
  10229. model.output_norm_b,
  10230. LLM_NORM, -1);
  10231. // lm_head
  10232. cur = build_lora_mm(model.output, cur);
  10233. cur = ggml_add(ctx0, cur, model.output_b);
  10234. cb(cur, "result_embd", -1);
  10235. res->t_embd = cur;
  10236. ggml_build_forward_expand(gf, cur);
  10237. }
  10238. };
  10239. struct llm_build_plm : public llm_graph_context {
  10240. llm_build_plm(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10241. const float kq_scale = 1.0f/sqrtf(float(hparams.n_embd_head_k));
  10242. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  10243. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  10244. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  10245. ggml_tensor * cur;
  10246. ggml_tensor * inpL;
  10247. // {n_embd, n_tokens}
  10248. inpL = build_inp_embd(model.tok_embd);
  10249. // inp_pos - contains the positions
  10250. ggml_tensor * inp_pos = build_inp_pos();
  10251. auto * inp_attn = build_attn_inp_kv_unified();
  10252. for (int il = 0; il < n_layer; ++il) {
  10253. ggml_tensor * inpSA = inpL;
  10254. // norm
  10255. cur = build_norm(inpL,
  10256. model.layers[il].attn_norm, NULL,
  10257. LLM_NORM_RMS, il);
  10258. cb(cur, "attn_norm", il);
  10259. // self_attention
  10260. {
  10261. ggml_tensor * q = NULL;
  10262. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  10263. cb(q, "q", il);
  10264. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10265. ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  10266. ggml_row_size(q->type, hparams.n_embd_head_k),
  10267. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10268. 0);
  10269. cb(q_nope, "q_nope", il);
  10270. // and {n_head * n_embd_head_qk_rope, n_tokens}
  10271. ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  10272. ggml_row_size(q->type, hparams.n_embd_head_k),
  10273. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  10274. ggml_row_size(q->type, n_embd_head_qk_nope));
  10275. cb(q_pe, "q_pe", il);
  10276. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  10277. ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  10278. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  10279. // split into {kv_lora_rank, n_tokens}
  10280. ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  10281. kv_pe_compresseed->nb[1],
  10282. 0);
  10283. cb(kv_compressed, "kv_compressed", il);
  10284. // and {n_embd_head_qk_rope, n_tokens}
  10285. ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  10286. kv_pe_compresseed->nb[1],
  10287. kv_pe_compresseed->nb[1],
  10288. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  10289. cb(k_pe, "k_pe", il);
  10290. kv_compressed = build_norm(kv_compressed,
  10291. model.layers[il].attn_kv_a_norm, NULL,
  10292. LLM_NORM_RMS, il);
  10293. cb(kv_compressed, "kv_compressed", il);
  10294. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  10295. ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  10296. cb(kv, "kv", il);
  10297. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  10298. ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  10299. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  10300. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10301. 0);
  10302. cb(k_nope, "k_nope", il);
  10303. // and {n_head * n_embd_head_v, n_tokens}
  10304. ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  10305. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  10306. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  10307. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  10308. cb(v_states, "v_states", il);
  10309. v_states = ggml_cont(ctx0, v_states);
  10310. cb(v_states, "v_states", il);
  10311. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  10312. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  10313. 0);
  10314. cb(v_states, "v_states", il);
  10315. q_pe = ggml_rope_ext(
  10316. ctx0, q_pe, inp_pos, nullptr,
  10317. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10318. ext_factor, attn_factor, beta_fast, beta_slow
  10319. );
  10320. cb(q_pe, "q_pe", il);
  10321. // shared RoPE key
  10322. k_pe = ggml_rope_ext(
  10323. ctx0, k_pe, inp_pos, nullptr,
  10324. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10325. ext_factor, attn_factor, beta_fast, beta_slow
  10326. );
  10327. cb(k_pe, "k_pe", il);
  10328. ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  10329. cb(q_states, "q_states", il);
  10330. ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  10331. cb(k_states, "k_states", il);
  10332. cur = build_attn(inp_attn, gf,
  10333. model.layers[il].wo, NULL,
  10334. q_states, k_states, v_states, nullptr, nullptr, kq_scale, il);
  10335. }
  10336. if (il == n_layer - 1) {
  10337. // skip computing output for unused tokens
  10338. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10339. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10340. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10341. }
  10342. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10343. cb(ffn_inp, "ffn_inp", il);
  10344. cur = build_norm(ffn_inp,
  10345. model.layers[il].ffn_norm, NULL,
  10346. LLM_NORM_RMS, il);
  10347. cb(cur, "ffn_norm", il);
  10348. cur = build_ffn(cur,
  10349. model.layers[il].ffn_up, NULL, NULL,
  10350. NULL, NULL, NULL,
  10351. model.layers[il].ffn_down, NULL, NULL,
  10352. NULL,
  10353. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, il);
  10354. cb(cur, "ffn_out", il);
  10355. cur = ggml_add(ctx0, cur, ffn_inp);
  10356. cur = build_cvec(cur, il);
  10357. cb(cur, "l_out", il);
  10358. // input for next layer
  10359. inpL = cur;
  10360. }
  10361. cur = inpL;
  10362. cur = build_norm(cur,
  10363. model.output_norm, NULL,
  10364. LLM_NORM_RMS, -1);
  10365. cb(cur, "result_norm", -1);
  10366. res->t_embd = cur;
  10367. cur = build_lora_mm(model.output, cur);
  10368. cb(cur, "result_output", -1);
  10369. res->t_logits = cur;
  10370. ggml_build_forward_expand(gf, cur);
  10371. }
  10372. };
  10373. struct llm_build_bailingmoe : public llm_graph_context {
  10374. llm_build_bailingmoe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
  10375. ggml_tensor * cur;
  10376. ggml_tensor * inpL;
  10377. inpL = build_inp_embd(model.tok_embd);
  10378. // inp_pos - contains the positions
  10379. ggml_tensor * inp_pos = build_inp_pos();
  10380. auto * inp_attn = build_attn_inp_kv_unified();
  10381. for (int il = 0; il < n_layer; ++il) {
  10382. ggml_tensor * inpSA = inpL;
  10383. // norm
  10384. cur = build_norm(inpL,
  10385. model.layers[il].attn_norm, NULL,
  10386. LLM_NORM_RMS, il);
  10387. cb(cur, "attn_norm", il);
  10388. // self-attention
  10389. {
  10390. // rope freq factors for llama3; may return nullptr for llama2 and other models
  10391. ggml_tensor * rope_factors = model.get_rope_factors(cparams, il);
  10392. // compute Q and K and RoPE them
  10393. ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
  10394. cb(Qcur, "Qcur", il);
  10395. if (model.layers[il].bq) {
  10396. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  10397. cb(Qcur, "Qcur", il);
  10398. }
  10399. ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
  10400. cb(Kcur, "Kcur", il);
  10401. if (model.layers[il].bk) {
  10402. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  10403. cb(Kcur, "Kcur", il);
  10404. }
  10405. ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
  10406. cb(Vcur, "Vcur", il);
  10407. if (model.layers[il].bv) {
  10408. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  10409. cb(Vcur, "Vcur", il);
  10410. }
  10411. Qcur = ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens);
  10412. Kcur = ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens);
  10413. Vcur = ggml_reshape_3d(ctx0, Vcur, n_rot, n_head_kv, n_tokens);
  10414. Qcur = ggml_rope_ext(
  10415. ctx0, Qcur, inp_pos, rope_factors,
  10416. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10417. ext_factor, attn_factor, beta_fast, beta_slow
  10418. );
  10419. Kcur = ggml_rope_ext(
  10420. ctx0, Kcur, inp_pos, rope_factors,
  10421. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  10422. ext_factor, attn_factor, beta_fast, beta_slow
  10423. );
  10424. cb(Qcur, "Qcur", il);
  10425. cb(Kcur, "Kcur", il);
  10426. cb(Vcur, "Vcur", il);
  10427. cur = build_attn(inp_attn, gf,
  10428. model.layers[il].wo, model.layers[il].bo,
  10429. Qcur, Kcur, Vcur, nullptr, nullptr, 1.0f/sqrtf(float(n_rot)), il);
  10430. }
  10431. if (il == n_layer - 1) {
  10432. // skip computing output for unused tokens
  10433. ggml_tensor * inp_out_ids = build_inp_out_ids();
  10434. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  10435. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  10436. }
  10437. ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  10438. cb(ffn_inp, "ffn_inp", il);
  10439. cur = build_norm(ffn_inp,
  10440. model.layers[il].ffn_norm, NULL,
  10441. LLM_NORM_RMS, il);
  10442. cb(cur, "ffn_norm", il);
  10443. ggml_tensor * moe_out =
  10444. build_moe_ffn(cur,
  10445. model.layers[il].ffn_gate_inp,
  10446. model.layers[il].ffn_up_exps,
  10447. model.layers[il].ffn_gate_exps,
  10448. model.layers[il].ffn_down_exps,
  10449. nullptr,
  10450. n_expert, n_expert_used,
  10451. LLM_FFN_SILU, hparams.expert_weights_norm,
  10452. false, hparams.expert_weights_scale,
  10453. LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
  10454. il);
  10455. cb(moe_out, "ffn_moe_out", il);
  10456. // FFN shared expert
  10457. {
  10458. ggml_tensor * ffn_shexp = build_ffn(cur,
  10459. model.layers[il].ffn_up_shexp, NULL, NULL,
  10460. model.layers[il].ffn_gate_shexp, NULL, NULL,
  10461. model.layers[il].ffn_down_shexp, NULL, NULL,
  10462. NULL,
  10463. LLM_FFN_SILU, LLM_FFN_PAR, il);
  10464. cb(ffn_shexp, "ffn_shexp", il);
  10465. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  10466. cb(cur, "ffn_out", il);
  10467. }
  10468. cur = ggml_add(ctx0, cur, ffn_inp);
  10469. cur = build_cvec(cur, il);
  10470. cb(cur, "l_out", il);
  10471. // input for next layer
  10472. inpL = cur;
  10473. }
  10474. cur = inpL;
  10475. cur = build_norm(cur,
  10476. model.output_norm, NULL,
  10477. LLM_NORM_RMS, -1);
  10478. cb(cur, "result_norm", -1);
  10479. res->t_embd = cur;
  10480. // lm_head
  10481. cur = build_lora_mm(model.output, cur);
  10482. cb(cur, "result_output", -1);
  10483. res->t_logits = cur;
  10484. ggml_build_forward_expand(gf, cur);
  10485. }
  10486. };
  10487. llama_memory_i * llama_model::create_memory(const llama_memory_params & params, llama_cparams & cparams) const {
  10488. llama_memory_i * res;
  10489. switch (arch) {
  10490. case LLM_ARCH_BERT:
  10491. case LLM_ARCH_JINA_BERT_V2:
  10492. case LLM_ARCH_NOMIC_BERT:
  10493. case LLM_ARCH_NOMIC_BERT_MOE:
  10494. case LLM_ARCH_WAVTOKENIZER_DEC:
  10495. {
  10496. res = nullptr;
  10497. } break;
  10498. case LLM_ARCH_MAMBA:
  10499. case LLM_ARCH_RWKV6:
  10500. case LLM_ARCH_RWKV6QWEN2:
  10501. case LLM_ARCH_RWKV7:
  10502. case LLM_ARCH_ARWKV7:
  10503. {
  10504. res = new llama_kv_cache_recurrent(
  10505. *this,
  10506. GGML_TYPE_F32,
  10507. GGML_TYPE_F32,
  10508. cparams.offload_kqv,
  10509. std::max((uint32_t) 1, cparams.n_seq_max),
  10510. cparams.n_seq_max);
  10511. } break;
  10512. default:
  10513. {
  10514. const auto padding = llama_kv_cache_unified::get_padding(cparams);
  10515. cparams.n_ctx = GGML_PAD(cparams.n_ctx, padding);
  10516. LLAMA_LOG_DEBUG("%s: n_ctx = %u (padded)\n", __func__, cparams.n_ctx);
  10517. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  10518. GGML_ASSERT(hparams.is_swa_any());
  10519. res = new llama_kv_cache_unified_iswa(
  10520. *this,
  10521. params.type_k,
  10522. params.type_v,
  10523. !cparams.flash_attn,
  10524. cparams.offload_kqv,
  10525. params.swa_full,
  10526. cparams.n_ctx,
  10527. cparams.n_seq_max,
  10528. cparams.n_ubatch,
  10529. padding);
  10530. } else {
  10531. GGML_ASSERT(!hparams.is_swa_any());
  10532. res = new llama_kv_cache_unified(
  10533. *this,
  10534. nullptr,
  10535. params.type_k,
  10536. params.type_v,
  10537. !cparams.flash_attn,
  10538. cparams.offload_kqv,
  10539. cparams.n_ctx,
  10540. cparams.n_seq_max,
  10541. padding,
  10542. hparams.n_swa,
  10543. hparams.swa_type);
  10544. }
  10545. }
  10546. }
  10547. return res;
  10548. }
  10549. llm_graph_result_ptr llama_model::build_graph(
  10550. const llm_graph_params & params,
  10551. ggml_cgraph * gf,
  10552. llm_graph_type type) const {
  10553. std::unique_ptr<llm_graph_context> llm;
  10554. switch (arch) {
  10555. case LLM_ARCH_LLAMA:
  10556. {
  10557. llm = std::make_unique<llm_build_llama>(*this, params, gf);
  10558. } break;
  10559. case LLM_ARCH_LLAMA4:
  10560. {
  10561. llm = std::make_unique<llm_build_llama_iswa>(*this, params, gf);
  10562. } break;
  10563. case LLM_ARCH_DECI:
  10564. {
  10565. llm = std::make_unique<llm_build_deci>(*this, params, gf);
  10566. } break;
  10567. case LLM_ARCH_BAICHUAN:
  10568. {
  10569. llm = std::make_unique<llm_build_baichuan>(*this, params, gf);
  10570. } break;
  10571. case LLM_ARCH_FALCON:
  10572. {
  10573. llm = std::make_unique<llm_build_falcon>(*this, params, gf);
  10574. } break;
  10575. case LLM_ARCH_GROK:
  10576. {
  10577. llm = std::make_unique<llm_build_grok>(*this, params, gf);
  10578. } break;
  10579. case LLM_ARCH_STARCODER:
  10580. {
  10581. llm = std::make_unique<llm_build_starcoder>(*this, params, gf);
  10582. } break;
  10583. case LLM_ARCH_REFACT:
  10584. {
  10585. llm = std::make_unique<llm_build_refact>(*this, params, gf);
  10586. } break;
  10587. case LLM_ARCH_BERT:
  10588. case LLM_ARCH_JINA_BERT_V2:
  10589. case LLM_ARCH_NOMIC_BERT:
  10590. case LLM_ARCH_NOMIC_BERT_MOE:
  10591. {
  10592. llm = std::make_unique<llm_build_bert>(*this, params, gf);
  10593. } break;
  10594. case LLM_ARCH_BLOOM:
  10595. {
  10596. llm = std::make_unique<llm_build_bloom>(*this, params, gf);
  10597. } break;
  10598. case LLM_ARCH_MPT:
  10599. {
  10600. llm = std::make_unique<llm_build_mpt>(*this, params, gf);
  10601. } break;
  10602. case LLM_ARCH_STABLELM:
  10603. {
  10604. llm = std::make_unique<llm_build_stablelm>(*this, params, gf);
  10605. } break;
  10606. case LLM_ARCH_QWEN:
  10607. {
  10608. llm = std::make_unique<llm_build_qwen>(*this, params, gf);
  10609. } break;
  10610. case LLM_ARCH_QWEN2:
  10611. {
  10612. llm = std::make_unique<llm_build_qwen2>(*this, params, gf);
  10613. } break;
  10614. case LLM_ARCH_QWEN2VL:
  10615. {
  10616. llm = std::make_unique<llm_build_qwen2vl>(*this, params, gf);
  10617. } break;
  10618. case LLM_ARCH_QWEN2MOE:
  10619. {
  10620. llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
  10621. } break;
  10622. case LLM_ARCH_QWEN3:
  10623. {
  10624. llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
  10625. } break;
  10626. case LLM_ARCH_QWEN3MOE:
  10627. {
  10628. llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
  10629. } break;
  10630. case LLM_ARCH_PHI2:
  10631. {
  10632. llm = std::make_unique<llm_build_phi2>(*this, params, gf);
  10633. } break;
  10634. case LLM_ARCH_PHI3:
  10635. case LLM_ARCH_PHIMOE:
  10636. {
  10637. if (hparams.swa_type != LLAMA_SWA_TYPE_NONE) {
  10638. llm = std::make_unique<llm_build_phi3<true>> (*this, params, gf);
  10639. } else {
  10640. llm = std::make_unique<llm_build_phi3<false>>(*this, params, gf);
  10641. }
  10642. } break;
  10643. case LLM_ARCH_PLAMO:
  10644. {
  10645. llm = std::make_unique<llm_build_plamo>(*this, params, gf);
  10646. } break;
  10647. case LLM_ARCH_GPT2:
  10648. {
  10649. llm = std::make_unique<llm_build_gpt2>(*this, params, gf);
  10650. } break;
  10651. case LLM_ARCH_CODESHELL:
  10652. {
  10653. llm = std::make_unique<llm_build_codeshell>(*this, params, gf);
  10654. } break;
  10655. case LLM_ARCH_ORION:
  10656. {
  10657. llm = std::make_unique<llm_build_orion>(*this, params, gf);
  10658. } break;
  10659. case LLM_ARCH_INTERNLM2:
  10660. {
  10661. llm = std::make_unique<llm_build_internlm2>(*this, params, gf);
  10662. } break;
  10663. case LLM_ARCH_MINICPM3:
  10664. {
  10665. llm = std::make_unique<llm_build_minicpm3>(*this, params, gf);
  10666. } break;
  10667. case LLM_ARCH_GEMMA:
  10668. {
  10669. llm = std::make_unique<llm_build_gemma>(*this, params, gf);
  10670. } break;
  10671. case LLM_ARCH_GEMMA2:
  10672. {
  10673. llm = std::make_unique<llm_build_gemma2_iswa>(*this, params, gf);
  10674. } break;
  10675. case LLM_ARCH_GEMMA3:
  10676. {
  10677. llm = std::make_unique<llm_build_gemma3_iswa>(*this, params, gf);
  10678. } break;
  10679. case LLM_ARCH_STARCODER2:
  10680. {
  10681. llm = std::make_unique<llm_build_starcoder2>(*this, params, gf);
  10682. } break;
  10683. case LLM_ARCH_MAMBA:
  10684. {
  10685. llm = std::make_unique<llm_build_mamba>(*this, params, gf);
  10686. } break;
  10687. case LLM_ARCH_XVERSE:
  10688. {
  10689. llm = std::make_unique<llm_build_xverse>(*this, params, gf);
  10690. } break;
  10691. case LLM_ARCH_COMMAND_R:
  10692. {
  10693. llm = std::make_unique<llm_build_command_r>(*this, params, gf);
  10694. } break;
  10695. case LLM_ARCH_COHERE2:
  10696. {
  10697. llm = std::make_unique<llm_build_cohere2_iswa>(*this, params, gf);
  10698. } break;
  10699. case LLM_ARCH_DBRX:
  10700. {
  10701. llm = std::make_unique<llm_build_dbrx>(*this, params, gf);
  10702. } break;
  10703. case LLM_ARCH_OLMO:
  10704. {
  10705. llm = std::make_unique<llm_build_olmo>(*this, params, gf);
  10706. } break;
  10707. case LLM_ARCH_OLMO2:
  10708. {
  10709. llm = std::make_unique<llm_build_olmo2>(*this, params, gf);
  10710. } break;
  10711. case LLM_ARCH_OLMOE:
  10712. {
  10713. llm = std::make_unique<llm_build_olmoe>(*this, params, gf);
  10714. } break;
  10715. case LLM_ARCH_OPENELM:
  10716. {
  10717. llm = std::make_unique<llm_build_openelm>(*this, params, gf);
  10718. } break;
  10719. case LLM_ARCH_GPTNEOX:
  10720. {
  10721. llm = std::make_unique<llm_build_gptneox>(*this, params, gf);
  10722. } break;
  10723. case LLM_ARCH_ARCTIC:
  10724. {
  10725. llm = std::make_unique<llm_build_arctic>(*this, params, gf);
  10726. } break;
  10727. case LLM_ARCH_DEEPSEEK:
  10728. {
  10729. llm = std::make_unique<llm_build_deepseek>(*this, params, gf);
  10730. } break;
  10731. case LLM_ARCH_DEEPSEEK2:
  10732. {
  10733. llm = std::make_unique<llm_build_deepseek2>(*this, params, gf);
  10734. } break;
  10735. case LLM_ARCH_CHATGLM:
  10736. {
  10737. llm = std::make_unique<llm_build_chatglm>(*this, params, gf);
  10738. } break;
  10739. case LLM_ARCH_GLM4:
  10740. {
  10741. llm = std::make_unique<llm_build_glm4>(*this, params, gf);
  10742. } break;
  10743. case LLM_ARCH_BITNET:
  10744. {
  10745. llm = std::make_unique<llm_build_bitnet>(*this, params, gf);
  10746. } break;
  10747. case LLM_ARCH_T5:
  10748. {
  10749. switch (type) {
  10750. case LLM_GRAPH_TYPE_ENCODER:
  10751. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10752. break;
  10753. case LLM_GRAPH_TYPE_DEFAULT:
  10754. case LLM_GRAPH_TYPE_DECODER:
  10755. llm = std::make_unique<llm_build_t5_dec>(*this, params, gf);
  10756. break;
  10757. default:
  10758. GGML_ABORT("invalid graph type");
  10759. };
  10760. } break;
  10761. case LLM_ARCH_T5ENCODER:
  10762. {
  10763. llm = std::make_unique<llm_build_t5_enc>(*this, params, gf);
  10764. }
  10765. break;
  10766. case LLM_ARCH_JAIS:
  10767. {
  10768. llm = std::make_unique<llm_build_jais>(*this, params, gf);
  10769. } break;
  10770. case LLM_ARCH_NEMOTRON:
  10771. {
  10772. llm = std::make_unique<llm_build_nemotron>(*this, params, gf);
  10773. } break;
  10774. case LLM_ARCH_EXAONE:
  10775. {
  10776. llm = std::make_unique<llm_build_exaone>(*this, params, gf);
  10777. } break;
  10778. case LLM_ARCH_RWKV6:
  10779. {
  10780. llm = std::make_unique<llm_build_rwkv6>(*this, params, gf);
  10781. } break;
  10782. case LLM_ARCH_RWKV6QWEN2:
  10783. {
  10784. llm = std::make_unique<llm_build_rwkv6qwen2>(*this, params, gf);
  10785. } break;
  10786. case LLM_ARCH_RWKV7:
  10787. {
  10788. llm = std::make_unique<llm_build_rwkv7>(*this, params, gf);
  10789. } break;
  10790. case LLM_ARCH_ARWKV7:
  10791. {
  10792. llm = std::make_unique<llm_build_arwkv7>(*this, params, gf);
  10793. } break;
  10794. case LLM_ARCH_GRANITE:
  10795. case LLM_ARCH_GRANITE_MOE:
  10796. case LLM_ARCH_MINICPM:
  10797. {
  10798. llm = std::make_unique<llm_build_granite>(*this, params, gf);
  10799. } break;
  10800. case LLM_ARCH_CHAMELEON:
  10801. {
  10802. llm = std::make_unique<llm_build_chameleon>(*this, params, gf);
  10803. } break;
  10804. case LLM_ARCH_WAVTOKENIZER_DEC:
  10805. {
  10806. llm = std::make_unique<llm_build_wavtokenizer_dec>(*this, params, gf);
  10807. } break;
  10808. case LLM_ARCH_PLM:
  10809. {
  10810. llm = std::make_unique<llm_build_plm>(*this, params, gf);
  10811. } break;
  10812. case LLM_ARCH_BAILINGMOE:
  10813. {
  10814. llm = std::make_unique<llm_build_bailingmoe>(*this, params, gf);
  10815. } break;
  10816. default:
  10817. GGML_ABORT("fatal error");
  10818. }
  10819. // add on pooling layer
  10820. llm->build_pooling(gf, cls, cls_b, cls_out, cls_out_b);
  10821. return std::move(llm->res);
  10822. }
  10823. //
  10824. // interface implementation
  10825. //
  10826. llama_model_params llama_model_default_params() {
  10827. llama_model_params result = {
  10828. /*.devices =*/ nullptr,
  10829. /*.tensor_buft_overrides =*/ nullptr,
  10830. /*.n_gpu_layers =*/ 0,
  10831. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  10832. /*.main_gpu =*/ 0,
  10833. /*.tensor_split =*/ nullptr,
  10834. /*.progress_callback =*/ nullptr,
  10835. /*.progress_callback_user_data =*/ nullptr,
  10836. /*.kv_overrides =*/ nullptr,
  10837. /*.vocab_only =*/ false,
  10838. /*.use_mmap =*/ true,
  10839. /*.use_mlock =*/ false,
  10840. /*.check_tensors =*/ false,
  10841. };
  10842. #ifdef GGML_USE_METAL
  10843. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  10844. result.n_gpu_layers = 999;
  10845. #endif
  10846. return result;
  10847. }
  10848. const llama_vocab * llama_model_get_vocab(const llama_model * model) {
  10849. return &model->vocab;
  10850. }
  10851. void llama_free_model(llama_model * model) {
  10852. llama_model_free(model);
  10853. }
  10854. void llama_model_free(llama_model * model) {
  10855. delete model;
  10856. }
  10857. int32_t llama_model_n_ctx_train(const llama_model * model) {
  10858. return model->hparams.n_ctx_train;
  10859. }
  10860. int32_t llama_model_n_embd(const llama_model * model) {
  10861. return model->hparams.n_embd;
  10862. }
  10863. int32_t llama_model_n_layer(const llama_model * model) {
  10864. return model->hparams.n_layer;
  10865. }
  10866. int32_t llama_model_n_head(const llama_model * model) {
  10867. return model->hparams.n_head();
  10868. }
  10869. int32_t llama_model_n_head_kv(const llama_model * model) {
  10870. return model->hparams.n_head_kv();
  10871. }
  10872. int32_t llama_model_n_swa(const llama_model * model) {
  10873. return model->hparams.n_swa;
  10874. }
  10875. uint32_t llama_model_n_cls_out(const struct llama_model * model) {
  10876. return model->hparams.n_cls_out;
  10877. }
  10878. const char * llama_model_cls_label(const struct llama_model * model, uint32_t i) {
  10879. if (i < model->classifier_labels.size()) {
  10880. return model->classifier_labels[i].c_str();
  10881. }
  10882. return nullptr;
  10883. }
  10884. // deprecated
  10885. int32_t llama_n_ctx_train(const llama_model * model) {
  10886. return llama_model_n_ctx_train(model);
  10887. }
  10888. // deprecated
  10889. int32_t llama_n_embd(const llama_model * model) {
  10890. return llama_model_n_embd(model);
  10891. }
  10892. // deprecated
  10893. int32_t llama_n_layer(const llama_model * model) {
  10894. return llama_model_n_layer(model);
  10895. }
  10896. // deprecated
  10897. int32_t llama_n_head(const llama_model * model) {
  10898. return llama_model_n_head(model);
  10899. }
  10900. llama_rope_type llama_model_rope_type(const llama_model * model) {
  10901. switch (model->arch) {
  10902. // these models do not use RoPE
  10903. case LLM_ARCH_GPT2:
  10904. case LLM_ARCH_GPTJ:
  10905. case LLM_ARCH_MPT:
  10906. case LLM_ARCH_REFACT:
  10907. case LLM_ARCH_BLOOM:
  10908. case LLM_ARCH_MAMBA:
  10909. case LLM_ARCH_JINA_BERT_V2:
  10910. case LLM_ARCH_T5:
  10911. case LLM_ARCH_T5ENCODER:
  10912. case LLM_ARCH_JAIS:
  10913. case LLM_ARCH_RWKV6:
  10914. case LLM_ARCH_RWKV6QWEN2:
  10915. case LLM_ARCH_RWKV7:
  10916. case LLM_ARCH_ARWKV7:
  10917. case LLM_ARCH_WAVTOKENIZER_DEC:
  10918. return LLAMA_ROPE_TYPE_NONE;
  10919. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10920. case LLM_ARCH_LLAMA:
  10921. case LLM_ARCH_LLAMA4:
  10922. case LLM_ARCH_DECI:
  10923. case LLM_ARCH_BAICHUAN:
  10924. case LLM_ARCH_STARCODER:
  10925. case LLM_ARCH_INTERNLM2:
  10926. case LLM_ARCH_MINICPM:
  10927. case LLM_ARCH_XVERSE:
  10928. case LLM_ARCH_COMMAND_R:
  10929. case LLM_ARCH_COHERE2:
  10930. case LLM_ARCH_OLMO:
  10931. case LLM_ARCH_ARCTIC:
  10932. case LLM_ARCH_DEEPSEEK:
  10933. case LLM_ARCH_DEEPSEEK2:
  10934. case LLM_ARCH_PLM:
  10935. case LLM_ARCH_CHATGLM:
  10936. case LLM_ARCH_GLM4:
  10937. case LLM_ARCH_GRANITE:
  10938. case LLM_ARCH_GRANITE_MOE:
  10939. case LLM_ARCH_CHAMELEON:
  10940. case LLM_ARCH_BAILINGMOE:
  10941. return LLAMA_ROPE_TYPE_NORM;
  10942. // the pairs of head values are offset by n_rot/2
  10943. case LLM_ARCH_FALCON:
  10944. case LLM_ARCH_GROK:
  10945. case LLM_ARCH_DBRX:
  10946. case LLM_ARCH_BERT:
  10947. case LLM_ARCH_NOMIC_BERT:
  10948. case LLM_ARCH_NOMIC_BERT_MOE:
  10949. case LLM_ARCH_STABLELM:
  10950. case LLM_ARCH_BITNET:
  10951. case LLM_ARCH_QWEN:
  10952. case LLM_ARCH_QWEN2:
  10953. case LLM_ARCH_QWEN2MOE:
  10954. case LLM_ARCH_QWEN3:
  10955. case LLM_ARCH_QWEN3MOE:
  10956. case LLM_ARCH_OLMO2:
  10957. case LLM_ARCH_OLMOE:
  10958. case LLM_ARCH_PHI2:
  10959. case LLM_ARCH_PHI3:
  10960. case LLM_ARCH_PHIMOE:
  10961. case LLM_ARCH_PLAMO:
  10962. case LLM_ARCH_GEMMA:
  10963. case LLM_ARCH_GEMMA2:
  10964. case LLM_ARCH_GEMMA3:
  10965. case LLM_ARCH_STARCODER2:
  10966. case LLM_ARCH_OPENELM:
  10967. case LLM_ARCH_GPTNEOX:
  10968. case LLM_ARCH_CODESHELL:
  10969. case LLM_ARCH_ORION:
  10970. case LLM_ARCH_NEMOTRON:
  10971. case LLM_ARCH_EXAONE:
  10972. case LLM_ARCH_MINICPM3:
  10973. return LLAMA_ROPE_TYPE_NEOX;
  10974. case LLM_ARCH_QWEN2VL:
  10975. return LLAMA_ROPE_TYPE_MROPE;
  10976. // all model arches should be listed explicitly here
  10977. case LLM_ARCH_UNKNOWN:
  10978. GGML_ABORT("unknown architecture");
  10979. }
  10980. return LLAMA_ROPE_TYPE_NONE;
  10981. }
  10982. float llama_model_rope_freq_scale_train(const llama_model * model) {
  10983. return model->hparams.rope_freq_scale_train;
  10984. }
  10985. int32_t llama_model_meta_val_str(const llama_model * model, const char * key, char * buf, size_t buf_size) {
  10986. const auto & it = model->gguf_kv.find(key);
  10987. if (it == model->gguf_kv.end()) {
  10988. if (buf_size > 0) {
  10989. buf[0] = '\0';
  10990. }
  10991. return -1;
  10992. }
  10993. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10994. }
  10995. int32_t llama_model_meta_count(const llama_model * model) {
  10996. return (int)model->gguf_kv.size();
  10997. }
  10998. int32_t llama_model_meta_key_by_index(const llama_model * model, int i, char * buf, size_t buf_size) {
  10999. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  11000. if (buf_size > 0) {
  11001. buf[0] = '\0';
  11002. }
  11003. return -1;
  11004. }
  11005. auto it = model->gguf_kv.begin();
  11006. std::advance(it, i);
  11007. return snprintf(buf, buf_size, "%s", it->first.c_str());
  11008. }
  11009. int32_t llama_model_meta_val_str_by_index(const llama_model * model, int32_t i, char * buf, size_t buf_size) {
  11010. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  11011. if (buf_size > 0) {
  11012. buf[0] = '\0';
  11013. }
  11014. return -1;
  11015. }
  11016. auto it = model->gguf_kv.begin();
  11017. std::advance(it, i);
  11018. return snprintf(buf, buf_size, "%s", it->second.c_str());
  11019. }
  11020. int32_t llama_model_desc(const llama_model * model, char * buf, size_t buf_size) {
  11021. return snprintf(buf, buf_size, "%s", model->desc().c_str());
  11022. }
  11023. uint64_t llama_model_size(const llama_model * model) {
  11024. return model->size();
  11025. }
  11026. const char * llama_model_chat_template(const llama_model * model, const char * name) {
  11027. const auto key = name ? LLM_KV(model->arch, name)(LLM_KV_TOKENIZER_CHAT_TEMPLATE)
  11028. : LLM_KV(model->arch)(LLM_KV_TOKENIZER_CHAT_TEMPLATE);
  11029. const auto & it = model->gguf_kv.find(key);
  11030. if (it == model->gguf_kv.end()) {
  11031. // one-off fix for very popular models (so we are not flooded with issues)
  11032. // do not extend this list unless absolutely necessary
  11033. // Mistral-Small-2503 does not have built-in chat template
  11034. llama_vocab_pre_type pre_type = model->vocab.get_pre_type();
  11035. if (pre_type == LLAMA_VOCAB_PRE_TYPE_TEKKEN && model->layers.size() == 40) {
  11036. return "mistral-v7-tekken";
  11037. }
  11038. return nullptr;
  11039. }
  11040. return it->second.c_str();
  11041. }
  11042. uint64_t llama_model_n_params(const llama_model * model) {
  11043. return model->n_elements();
  11044. }
  11045. bool llama_model_has_encoder(const llama_model * model) {
  11046. switch (model->arch) {
  11047. case LLM_ARCH_T5: return true;
  11048. case LLM_ARCH_T5ENCODER: return true;
  11049. default: return false;
  11050. }
  11051. }
  11052. bool llama_model_has_decoder(const llama_model * model) {
  11053. switch (model->arch) {
  11054. case LLM_ARCH_T5ENCODER: return false;
  11055. default: return true;
  11056. }
  11057. }
  11058. llama_token llama_model_decoder_start_token(const llama_model * model) {
  11059. return model->hparams.dec_start_token_id;
  11060. }
  11061. bool llama_model_is_recurrent(const llama_model * model) {
  11062. switch (model->arch) {
  11063. case LLM_ARCH_MAMBA: return true;
  11064. case LLM_ARCH_RWKV6: return true;
  11065. case LLM_ARCH_RWKV6QWEN2: return true;
  11066. case LLM_ARCH_RWKV7: return true;
  11067. case LLM_ARCH_ARWKV7: return true;
  11068. default: return false;
  11069. }
  11070. }
  11071. const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model) {
  11072. return model->tensors_by_name;
  11073. }