ggml.c 600 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // static_assert should be a #define, but if it's not,
  29. // fall back to the _Static_assert C11 keyword.
  30. // if C99 - static_assert is noop
  31. // ref: https://stackoverflow.com/a/53923785/4039976
  32. #ifndef static_assert
  33. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  34. #define static_assert(cond, msg) _Static_assert(cond, msg)
  35. #else
  36. #define static_assert(cond, msg) struct global_scope_noop_trick
  37. #endif
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. #endif
  44. #if defined(_WIN32)
  45. #include <windows.h>
  46. typedef volatile LONG atomic_int;
  47. typedef atomic_int atomic_bool;
  48. static void atomic_store(atomic_int * ptr, LONG val) {
  49. InterlockedExchange(ptr, val);
  50. }
  51. static LONG atomic_load(atomic_int * ptr) {
  52. return InterlockedCompareExchange(ptr, 0, 0);
  53. }
  54. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  55. return InterlockedExchangeAdd(ptr, inc);
  56. }
  57. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  58. return atomic_fetch_add(ptr, -(dec));
  59. }
  60. typedef HANDLE pthread_t;
  61. typedef DWORD thread_ret_t;
  62. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  63. (void) unused;
  64. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  65. if (handle == NULL)
  66. {
  67. return EAGAIN;
  68. }
  69. *out = handle;
  70. return 0;
  71. }
  72. static int pthread_join(pthread_t thread, void * unused) {
  73. (void) unused;
  74. return (int) WaitForSingleObject(thread, INFINITE);
  75. }
  76. static int sched_yield (void) {
  77. Sleep (0);
  78. return 0;
  79. }
  80. #else
  81. #include <pthread.h>
  82. #include <stdatomic.h>
  83. typedef void * thread_ret_t;
  84. #include <sys/types.h>
  85. #include <sys/stat.h>
  86. #include <unistd.h>
  87. #endif
  88. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  89. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  90. #ifndef __FMA__
  91. #define __FMA__
  92. #endif
  93. #ifndef __F16C__
  94. #define __F16C__
  95. #endif
  96. #ifndef __SSE3__
  97. #define __SSE3__
  98. #endif
  99. #endif
  100. /*#define GGML_PERF*/
  101. #define GGML_DEBUG 0
  102. #define GGML_GELU_FP16
  103. #define GGML_GELU_QUICK_FP16
  104. #define GGML_SILU_FP16
  105. #define GGML_SOFT_MAX_UNROLL 4
  106. #define GGML_VEC_DOT_UNROLL 2
  107. //
  108. // logging
  109. //
  110. #if (GGML_DEBUG >= 1)
  111. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  112. #else
  113. #define GGML_PRINT_DEBUG(...)
  114. #endif
  115. #if (GGML_DEBUG >= 5)
  116. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  117. #else
  118. #define GGML_PRINT_DEBUG_5(...)
  119. #endif
  120. #if (GGML_DEBUG >= 10)
  121. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG_10(...)
  124. #endif
  125. #define GGML_PRINT(...) printf(__VA_ARGS__)
  126. #ifdef GGML_USE_ACCELERATE
  127. // uncomment to use vDSP for soft max computation
  128. // note: not sure if it is actually faster
  129. //#define GGML_SOFT_MAX_ACCELERATE
  130. #endif
  131. #if UINTPTR_MAX == 0xFFFFFFFF
  132. #define GGML_MEM_ALIGN 4
  133. #else
  134. #define GGML_MEM_ALIGN 16
  135. #endif
  136. //
  137. // logging
  138. //
  139. #if (GGML_DEBUG >= 1)
  140. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG(...)
  143. #endif
  144. #if (GGML_DEBUG >= 5)
  145. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_5(...)
  148. #endif
  149. #if (GGML_DEBUG >= 10)
  150. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  151. #else
  152. #define GGML_PRINT_DEBUG_10(...)
  153. #endif
  154. #define GGML_PRINT(...) printf(__VA_ARGS__)
  155. //
  156. // end of logging block
  157. //
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. void * aligned_memory = NULL;
  164. #ifdef GGML_USE_METAL
  165. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  166. #else
  167. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  168. #endif
  169. if (result != 0) {
  170. // Handle allocation failure
  171. const char *error_desc = "unknown allocation error";
  172. switch (result) {
  173. case EINVAL:
  174. error_desc = "invalid alignment value";
  175. break;
  176. case ENOMEM:
  177. error_desc = "insufficient memory";
  178. break;
  179. }
  180. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  181. __func__, error_desc, size/(1024.0*1024.0));
  182. return NULL;
  183. }
  184. return aligned_memory;
  185. }
  186. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  187. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  188. #endif
  189. #define UNUSED GGML_UNUSED
  190. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  191. //
  192. // tensor access macros
  193. //
  194. #define GGML_TENSOR_UNARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  197. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  199. #define GGML_TENSOR_BINARY_OP_LOCALS \
  200. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  202. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  203. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  204. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  205. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  206. #if defined(GGML_USE_ACCELERATE)
  207. #include <Accelerate/Accelerate.h>
  208. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  209. #include "ggml-opencl.h"
  210. #endif
  211. #elif defined(GGML_USE_OPENBLAS)
  212. #if defined(GGML_BLAS_USE_MKL)
  213. #include <mkl.h>
  214. #else
  215. #include <cblas.h>
  216. #endif
  217. #elif defined(GGML_USE_CUBLAS)
  218. #include "ggml-cuda.h"
  219. #elif defined(GGML_USE_CLBLAST)
  220. #include "ggml-opencl.h"
  221. #endif
  222. #undef MIN
  223. #undef MAX
  224. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  225. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  226. // floating point type used to accumulate sums
  227. typedef double ggml_float;
  228. // 16-bit float
  229. // on Arm, we use __fp16
  230. // on x86, we use uint16_t
  231. #ifdef __ARM_NEON
  232. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  233. //
  234. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  235. //
  236. #include <arm_neon.h>
  237. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  238. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  239. #define GGML_FP16_TO_FP32(x) ((float) (x))
  240. #define GGML_FP32_TO_FP16(x) (x)
  241. #else
  242. #ifdef __wasm_simd128__
  243. #include <wasm_simd128.h>
  244. #else
  245. #ifdef __POWER9_VECTOR__
  246. #include <altivec.h>
  247. #undef bool
  248. #define bool _Bool
  249. #else
  250. #if defined(_MSC_VER) || defined(__MINGW32__)
  251. #include <intrin.h>
  252. #else
  253. #if !defined(__riscv)
  254. #include <immintrin.h>
  255. #endif
  256. #endif
  257. #endif
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  703. return
  704. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  705. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  706. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  707. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  708. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  709. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  710. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  711. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  712. }
  713. inline static int16_t vaddvq_s8(int8x16_t v) {
  714. return
  715. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  716. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  717. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  718. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  719. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  720. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  721. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  722. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  723. }
  724. inline static int32_t vaddvq_s16(int16x8_t v) {
  725. return
  726. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  727. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  728. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  729. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  730. }
  731. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  732. return
  733. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  734. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  735. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  736. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  737. }
  738. inline static int32_t vaddvq_s32(int32x4_t v) {
  739. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  740. }
  741. inline static float vaddvq_f32(float32x4_t v) {
  742. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  743. }
  744. inline static float vminvq_f32(float32x4_t v) {
  745. return
  746. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  747. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  748. }
  749. inline static float vmaxvq_f32(float32x4_t v) {
  750. return
  751. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  752. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  753. }
  754. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  755. int32x4_t res;
  756. res[0] = roundf(vgetq_lane_f32(v, 0));
  757. res[1] = roundf(vgetq_lane_f32(v, 1));
  758. res[2] = roundf(vgetq_lane_f32(v, 2));
  759. res[3] = roundf(vgetq_lane_f32(v, 3));
  760. return res;
  761. }
  762. #endif
  763. #endif
  764. #define QK4_0 32
  765. typedef struct {
  766. ggml_fp16_t d; // delta
  767. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  768. } block_q4_0;
  769. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  770. #define QK4_1 32
  771. typedef struct {
  772. ggml_fp16_t d; // delta
  773. ggml_fp16_t m; // min
  774. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  775. } block_q4_1;
  776. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  777. #define QK5_0 32
  778. typedef struct {
  779. ggml_fp16_t d; // delta
  780. uint8_t qh[4]; // 5-th bit of quants
  781. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  782. } block_q5_0;
  783. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  784. #define QK5_1 32
  785. typedef struct {
  786. ggml_fp16_t d; // delta
  787. ggml_fp16_t m; // min
  788. uint8_t qh[4]; // 5-th bit of quants
  789. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  790. } block_q5_1;
  791. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  792. #define QK8_0 32
  793. typedef struct {
  794. ggml_fp16_t d; // delta
  795. int8_t qs[QK8_0]; // quants
  796. } block_q8_0;
  797. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  798. #define QK8_1 32
  799. typedef struct {
  800. float d; // delta
  801. float s; // d * sum(qs[i])
  802. int8_t qs[QK8_1]; // quants
  803. } block_q8_1;
  804. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  805. // reference implementation for deterministic creation of model files
  806. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  807. static const int qk = QK4_0;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float amax = 0.0f; // absolute max
  812. float max = 0.0f;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (amax < fabsf(v)) {
  816. amax = fabsf(v);
  817. max = v;
  818. }
  819. }
  820. const float d = max / -8;
  821. const float id = d ? 1.0f/d : 0.0f;
  822. y[i].d = GGML_FP32_TO_FP16(d);
  823. for (int j = 0; j < qk/2; ++j) {
  824. const float x0 = x[i*qk + 0 + j]*id;
  825. const float x1 = x[i*qk + qk/2 + j]*id;
  826. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  827. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  828. y[i].qs[j] = xi0;
  829. y[i].qs[j] |= xi1 << 4;
  830. }
  831. }
  832. }
  833. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  834. quantize_row_q4_0_reference(x, y, k);
  835. }
  836. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  837. const int qk = QK4_1;
  838. assert(k % qk == 0);
  839. const int nb = k / qk;
  840. for (int i = 0; i < nb; i++) {
  841. float min = FLT_MAX;
  842. float max = -FLT_MAX;
  843. for (int j = 0; j < qk; j++) {
  844. const float v = x[i*qk + j];
  845. if (v < min) min = v;
  846. if (v > max) max = v;
  847. }
  848. const float d = (max - min) / ((1 << 4) - 1);
  849. const float id = d ? 1.0f/d : 0.0f;
  850. y[i].d = GGML_FP32_TO_FP16(d);
  851. y[i].m = GGML_FP32_TO_FP16(min);
  852. for (int j = 0; j < qk/2; ++j) {
  853. const float x0 = (x[i*qk + 0 + j] - min)*id;
  854. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  855. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  856. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  857. y[i].qs[j] = xi0;
  858. y[i].qs[j] |= xi1 << 4;
  859. }
  860. }
  861. }
  862. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  863. quantize_row_q4_1_reference(x, y, k);
  864. }
  865. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  866. static const int qk = QK5_0;
  867. assert(k % qk == 0);
  868. const int nb = k / qk;
  869. for (int i = 0; i < nb; i++) {
  870. float amax = 0.0f; // absolute max
  871. float max = 0.0f;
  872. for (int j = 0; j < qk; j++) {
  873. const float v = x[i*qk + j];
  874. if (amax < fabsf(v)) {
  875. amax = fabsf(v);
  876. max = v;
  877. }
  878. }
  879. const float d = max / -16;
  880. const float id = d ? 1.0f/d : 0.0f;
  881. y[i].d = GGML_FP32_TO_FP16(d);
  882. uint32_t qh = 0;
  883. for (int j = 0; j < qk/2; ++j) {
  884. const float x0 = x[i*qk + 0 + j]*id;
  885. const float x1 = x[i*qk + qk/2 + j]*id;
  886. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  887. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  888. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  889. // get the 5-th bit and store it in qh at the right position
  890. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  891. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  892. }
  893. memcpy(&y[i].qh, &qh, sizeof(qh));
  894. }
  895. }
  896. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  897. quantize_row_q5_0_reference(x, y, k);
  898. }
  899. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  900. const int qk = QK5_1;
  901. assert(k % qk == 0);
  902. const int nb = k / qk;
  903. for (int i = 0; i < nb; i++) {
  904. float min = FLT_MAX;
  905. float max = -FLT_MAX;
  906. for (int j = 0; j < qk; j++) {
  907. const float v = x[i*qk + j];
  908. if (v < min) min = v;
  909. if (v > max) max = v;
  910. }
  911. const float d = (max - min) / ((1 << 5) - 1);
  912. const float id = d ? 1.0f/d : 0.0f;
  913. y[i].d = GGML_FP32_TO_FP16(d);
  914. y[i].m = GGML_FP32_TO_FP16(min);
  915. uint32_t qh = 0;
  916. for (int j = 0; j < qk/2; ++j) {
  917. const float x0 = (x[i*qk + 0 + j] - min)*id;
  918. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  919. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  920. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  921. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  922. // get the 5-th bit and store it in qh at the right position
  923. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  924. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  925. }
  926. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  927. }
  928. }
  929. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  930. quantize_row_q5_1_reference(x, y, k);
  931. }
  932. // reference implementation for deterministic creation of model files
  933. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  934. assert(k % QK8_0 == 0);
  935. const int nb = k / QK8_0;
  936. for (int i = 0; i < nb; i++) {
  937. float amax = 0.0f; // absolute max
  938. for (int j = 0; j < QK8_0; j++) {
  939. const float v = x[i*QK8_0 + j];
  940. amax = MAX(amax, fabsf(v));
  941. }
  942. const float d = amax / ((1 << 7) - 1);
  943. const float id = d ? 1.0f/d : 0.0f;
  944. y[i].d = GGML_FP32_TO_FP16(d);
  945. for (int j = 0; j < QK8_0; ++j) {
  946. const float x0 = x[i*QK8_0 + j]*id;
  947. y[i].qs[j] = roundf(x0);
  948. }
  949. }
  950. }
  951. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  952. assert(QK8_0 == 32);
  953. assert(k % QK8_0 == 0);
  954. const int nb = k / QK8_0;
  955. block_q8_0 * restrict y = vy;
  956. #if defined(__ARM_NEON)
  957. for (int i = 0; i < nb; i++) {
  958. float32x4_t srcv [8];
  959. float32x4_t asrcv[8];
  960. float32x4_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = vmaxvq_f32(amaxv[0]);
  967. const float d = amax / ((1 << 7) - 1);
  968. const float id = d ? 1.0f/d : 0.0f;
  969. y[i].d = GGML_FP32_TO_FP16(d);
  970. for (int j = 0; j < 8; j++) {
  971. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  972. const int32x4_t vi = vcvtnq_s32_f32(v);
  973. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  974. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  975. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  976. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  977. }
  978. }
  979. #elif defined(__wasm_simd128__)
  980. for (int i = 0; i < nb; i++) {
  981. v128_t srcv [8];
  982. v128_t asrcv[8];
  983. v128_t amaxv[8];
  984. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  985. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  986. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  987. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  988. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  989. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  990. wasm_f32x4_extract_lane(amaxv[0], 1)),
  991. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  992. wasm_f32x4_extract_lane(amaxv[0], 3)));
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. for (int j = 0; j < 8; j++) {
  997. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  998. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  999. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1000. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1001. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1002. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1003. }
  1004. }
  1005. #elif defined(__AVX2__) || defined(__AVX__)
  1006. for (int i = 0; i < nb; i++) {
  1007. // Load elements into 4 AVX vectors
  1008. __m256 v0 = _mm256_loadu_ps( x );
  1009. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1010. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1011. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1012. x += 32;
  1013. // Compute max(abs(e)) for the block
  1014. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1015. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1016. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1017. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1018. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1019. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1020. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1021. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1022. const float maxScalar = _mm_cvtss_f32( max4 );
  1023. // Quantize these floats
  1024. const float d = maxScalar / 127.f;
  1025. y[i].d = GGML_FP32_TO_FP16(d);
  1026. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1027. const __m256 mul = _mm256_set1_ps( id );
  1028. // Apply the multiplier
  1029. v0 = _mm256_mul_ps( v0, mul );
  1030. v1 = _mm256_mul_ps( v1, mul );
  1031. v2 = _mm256_mul_ps( v2, mul );
  1032. v3 = _mm256_mul_ps( v3, mul );
  1033. // Round to nearest integer
  1034. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1035. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1036. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1037. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1038. // Convert floats to integers
  1039. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1040. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1041. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1042. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1043. #if defined(__AVX2__)
  1044. // Convert int32 to int16
  1045. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1046. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1047. // Convert int16 to int8
  1048. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1049. // We got our precious signed bytes, but the order is now wrong
  1050. // These AVX2 pack instructions process 16-byte pieces independently
  1051. // The following instruction is fixing the order
  1052. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1053. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1054. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1055. #else
  1056. // Since we don't have in AVX some necessary functions,
  1057. // we split the registers in half and call AVX2 analogs from SSE
  1058. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1059. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1060. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1061. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1062. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1063. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1064. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1065. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1066. // Convert int32 to int16
  1067. ni0 = _mm_packs_epi32( ni0, ni1 );
  1068. ni2 = _mm_packs_epi32( ni2, ni3 );
  1069. ni4 = _mm_packs_epi32( ni4, ni5 );
  1070. ni6 = _mm_packs_epi32( ni6, ni7 );
  1071. // Convert int16 to int8
  1072. ni0 = _mm_packs_epi16( ni0, ni2 );
  1073. ni4 = _mm_packs_epi16( ni4, ni6 );
  1074. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1075. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1076. #endif
  1077. }
  1078. #else
  1079. // scalar
  1080. quantize_row_q8_0_reference(x, y, k);
  1081. #endif
  1082. }
  1083. // reference implementation for deterministic creation of model files
  1084. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1085. assert(QK8_1 == 32);
  1086. assert(k % QK8_1 == 0);
  1087. const int nb = k / QK8_1;
  1088. for (int i = 0; i < nb; i++) {
  1089. float amax = 0.0f; // absolute max
  1090. for (int j = 0; j < QK8_1; j++) {
  1091. const float v = x[i*QK8_1 + j];
  1092. amax = MAX(amax, fabsf(v));
  1093. }
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int sum = 0;
  1098. for (int j = 0; j < QK8_1/2; ++j) {
  1099. const float v0 = x[i*QK8_1 + j]*id;
  1100. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1101. y[i].qs[ j] = roundf(v0);
  1102. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1103. sum += y[i].qs[ j];
  1104. sum += y[i].qs[QK8_1/2 + j];
  1105. }
  1106. y[i].s = sum*d;
  1107. }
  1108. }
  1109. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1110. assert(k % QK8_1 == 0);
  1111. const int nb = k / QK8_1;
  1112. block_q8_1 * restrict y = vy;
  1113. #if defined(__ARM_NEON)
  1114. for (int i = 0; i < nb; i++) {
  1115. float32x4_t srcv [8];
  1116. float32x4_t asrcv[8];
  1117. float32x4_t amaxv[8];
  1118. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1119. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1120. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1121. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1122. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1123. const float amax = vmaxvq_f32(amaxv[0]);
  1124. const float d = amax / ((1 << 7) - 1);
  1125. const float id = d ? 1.0f/d : 0.0f;
  1126. y[i].d = d;
  1127. int32x4_t accv = vdupq_n_s32(0);
  1128. for (int j = 0; j < 8; j++) {
  1129. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1130. const int32x4_t vi = vcvtnq_s32_f32(v);
  1131. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1132. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1133. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1134. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1135. accv = vaddq_s32(accv, vi);
  1136. }
  1137. y[i].s = d * vaddvq_s32(accv);
  1138. }
  1139. #elif defined(__wasm_simd128__)
  1140. for (int i = 0; i < nb; i++) {
  1141. v128_t srcv [8];
  1142. v128_t asrcv[8];
  1143. v128_t amaxv[8];
  1144. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1145. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1146. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1147. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1148. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1149. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1150. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1151. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1152. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1153. const float d = amax / ((1 << 7) - 1);
  1154. const float id = d ? 1.0f/d : 0.0f;
  1155. y[i].d = d;
  1156. v128_t accv = wasm_i32x4_splat(0);
  1157. for (int j = 0; j < 8; j++) {
  1158. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1159. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1160. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1161. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1162. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1163. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1164. accv = wasm_i32x4_add(accv, vi);
  1165. }
  1166. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1167. wasm_i32x4_extract_lane(accv, 1) +
  1168. wasm_i32x4_extract_lane(accv, 2) +
  1169. wasm_i32x4_extract_lane(accv, 3));
  1170. }
  1171. #elif defined(__AVX2__) || defined(__AVX__)
  1172. for (int i = 0; i < nb; i++) {
  1173. // Load elements into 4 AVX vectors
  1174. __m256 v0 = _mm256_loadu_ps( x );
  1175. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1176. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1177. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1178. x += 32;
  1179. // Compute max(abs(e)) for the block
  1180. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1181. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1182. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1183. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1184. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1185. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1186. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1187. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1188. const float maxScalar = _mm_cvtss_f32( max4 );
  1189. // Quantize these floats
  1190. const float d = maxScalar / 127.f;
  1191. y[i].d = d;
  1192. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1193. const __m256 mul = _mm256_set1_ps( id );
  1194. // Apply the multiplier
  1195. v0 = _mm256_mul_ps( v0, mul );
  1196. v1 = _mm256_mul_ps( v1, mul );
  1197. v2 = _mm256_mul_ps( v2, mul );
  1198. v3 = _mm256_mul_ps( v3, mul );
  1199. // Round to nearest integer
  1200. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1201. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1202. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1203. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1204. // Convert floats to integers
  1205. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1206. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1207. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1208. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1209. #if defined(__AVX2__)
  1210. // Compute the sum of the quants and set y[i].s
  1211. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1212. // Convert int32 to int16
  1213. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1214. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1215. // Convert int16 to int8
  1216. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1217. // We got our precious signed bytes, but the order is now wrong
  1218. // These AVX2 pack instructions process 16-byte pieces independently
  1219. // The following instruction is fixing the order
  1220. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1221. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1222. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1223. #else
  1224. // Since we don't have in AVX some necessary functions,
  1225. // we split the registers in half and call AVX2 analogs from SSE
  1226. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1227. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1228. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1229. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1230. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1231. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1232. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1233. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1234. // Compute the sum of the quants and set y[i].s
  1235. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1236. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1237. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1238. // Convert int32 to int16
  1239. ni0 = _mm_packs_epi32( ni0, ni1 );
  1240. ni2 = _mm_packs_epi32( ni2, ni3 );
  1241. ni4 = _mm_packs_epi32( ni4, ni5 );
  1242. ni6 = _mm_packs_epi32( ni6, ni7 );
  1243. // Convert int16 to int8
  1244. ni0 = _mm_packs_epi16( ni0, ni2 );
  1245. ni4 = _mm_packs_epi16( ni4, ni6 );
  1246. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1247. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1248. #endif
  1249. }
  1250. #else
  1251. // scalar
  1252. quantize_row_q8_1_reference(x, y, k);
  1253. #endif
  1254. }
  1255. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1256. static const int qk = QK4_0;
  1257. assert(k % qk == 0);
  1258. const int nb = k / qk;
  1259. for (int i = 0; i < nb; i++) {
  1260. const float d = GGML_FP16_TO_FP32(x[i].d);
  1261. for (int j = 0; j < qk/2; ++j) {
  1262. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1263. const int x1 = (x[i].qs[j] >> 4) - 8;
  1264. y[i*qk + j + 0 ] = x0*d;
  1265. y[i*qk + j + qk/2] = x1*d;
  1266. }
  1267. }
  1268. }
  1269. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1270. static const int qk = QK4_1;
  1271. assert(k % qk == 0);
  1272. const int nb = k / qk;
  1273. for (int i = 0; i < nb; i++) {
  1274. const float d = GGML_FP16_TO_FP32(x[i].d);
  1275. const float m = GGML_FP16_TO_FP32(x[i].m);
  1276. for (int j = 0; j < qk/2; ++j) {
  1277. const int x0 = (x[i].qs[j] & 0x0F);
  1278. const int x1 = (x[i].qs[j] >> 4);
  1279. y[i*qk + j + 0 ] = x0*d + m;
  1280. y[i*qk + j + qk/2] = x1*d + m;
  1281. }
  1282. }
  1283. }
  1284. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1285. static const int qk = QK5_0;
  1286. assert(k % qk == 0);
  1287. const int nb = k / qk;
  1288. for (int i = 0; i < nb; i++) {
  1289. const float d = GGML_FP16_TO_FP32(x[i].d);
  1290. uint32_t qh;
  1291. memcpy(&qh, x[i].qh, sizeof(qh));
  1292. for (int j = 0; j < qk/2; ++j) {
  1293. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1294. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1295. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1296. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1297. y[i*qk + j + 0 ] = x0*d;
  1298. y[i*qk + j + qk/2] = x1*d;
  1299. }
  1300. }
  1301. }
  1302. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1303. static const int qk = QK5_1;
  1304. assert(k % qk == 0);
  1305. const int nb = k / qk;
  1306. for (int i = 0; i < nb; i++) {
  1307. const float d = GGML_FP16_TO_FP32(x[i].d);
  1308. const float m = GGML_FP16_TO_FP32(x[i].m);
  1309. uint32_t qh;
  1310. memcpy(&qh, x[i].qh, sizeof(qh));
  1311. for (int j = 0; j < qk/2; ++j) {
  1312. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1313. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1314. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1315. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1316. y[i*qk + j + 0 ] = x0*d + m;
  1317. y[i*qk + j + qk/2] = x1*d + m;
  1318. }
  1319. }
  1320. }
  1321. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1322. static const int qk = QK8_0;
  1323. assert(k % qk == 0);
  1324. const int nb = k / qk;
  1325. const block_q8_0 * restrict x = vx;
  1326. for (int i = 0; i < nb; i++) {
  1327. const float d = GGML_FP16_TO_FP32(x[i].d);
  1328. for (int j = 0; j < qk; ++j) {
  1329. y[i*qk + j] = x[i].qs[j]*d;
  1330. }
  1331. }
  1332. }
  1333. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1334. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1335. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1338. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1341. [GGML_TYPE_I8] = {
  1342. .type_name = "i8",
  1343. .blck_size = 1,
  1344. .type_size = sizeof(int8_t),
  1345. .is_quantized = false,
  1346. },
  1347. [GGML_TYPE_I16] = {
  1348. .type_name = "i16",
  1349. .blck_size = 1,
  1350. .type_size = sizeof(int16_t),
  1351. .is_quantized = false,
  1352. },
  1353. [GGML_TYPE_I32] = {
  1354. .type_name = "i32",
  1355. .blck_size = 1,
  1356. .type_size = sizeof(int32_t),
  1357. .is_quantized = false,
  1358. },
  1359. [GGML_TYPE_F32] = {
  1360. .type_name = "f32",
  1361. .blck_size = 1,
  1362. .type_size = sizeof(float),
  1363. .is_quantized = false,
  1364. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1365. .vec_dot_type = GGML_TYPE_F32,
  1366. },
  1367. [GGML_TYPE_F16] = {
  1368. .type_name = "f16",
  1369. .blck_size = 1,
  1370. .type_size = sizeof(ggml_fp16_t),
  1371. .is_quantized = false,
  1372. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1373. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1374. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1375. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1376. .vec_dot_type = GGML_TYPE_F16,
  1377. },
  1378. [GGML_TYPE_Q4_0] = {
  1379. .type_name = "q4_0",
  1380. .blck_size = QK4_0,
  1381. .type_size = sizeof(block_q4_0),
  1382. .is_quantized = true,
  1383. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1384. .from_float = quantize_row_q4_0,
  1385. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1386. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1387. .vec_dot_type = GGML_TYPE_Q8_0,
  1388. },
  1389. [GGML_TYPE_Q4_1] = {
  1390. .type_name = "q4_1",
  1391. .blck_size = QK4_1,
  1392. .type_size = sizeof(block_q4_1),
  1393. .is_quantized = true,
  1394. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1395. .from_float = quantize_row_q4_1,
  1396. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1397. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1398. .vec_dot_type = GGML_TYPE_Q8_1,
  1399. },
  1400. [GGML_TYPE_Q5_0] = {
  1401. .type_name = "q5_0",
  1402. .blck_size = QK5_0,
  1403. .type_size = sizeof(block_q5_0),
  1404. .is_quantized = true,
  1405. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1406. .from_float = quantize_row_q5_0,
  1407. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1408. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1409. .vec_dot_type = GGML_TYPE_Q8_0,
  1410. },
  1411. [GGML_TYPE_Q5_1] = {
  1412. .type_name = "q5_1",
  1413. .blck_size = QK5_1,
  1414. .type_size = sizeof(block_q5_1),
  1415. .is_quantized = true,
  1416. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1417. .from_float = quantize_row_q5_1,
  1418. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1419. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1420. .vec_dot_type = GGML_TYPE_Q8_1,
  1421. },
  1422. [GGML_TYPE_Q8_0] = {
  1423. .type_name = "q8_0",
  1424. .blck_size = QK8_0,
  1425. .type_size = sizeof(block_q8_0),
  1426. .is_quantized = true,
  1427. .to_float = dequantize_row_q8_0,
  1428. .from_float = quantize_row_q8_0,
  1429. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1430. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1431. .vec_dot_type = GGML_TYPE_Q8_0,
  1432. },
  1433. [GGML_TYPE_Q8_1] = {
  1434. .type_name = "q8_1",
  1435. .blck_size = QK8_1,
  1436. .type_size = sizeof(block_q8_1),
  1437. .is_quantized = true,
  1438. .from_float = quantize_row_q8_1,
  1439. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1440. .vec_dot_type = GGML_TYPE_Q8_1,
  1441. },
  1442. #ifdef GGML_USE_K_QUANTS
  1443. [GGML_TYPE_Q2_K] = {
  1444. .type_name = "q2_K",
  1445. .blck_size = QK_K,
  1446. .type_size = sizeof(block_q2_K),
  1447. .is_quantized = true,
  1448. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1449. .from_float = quantize_row_q2_K,
  1450. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1451. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1452. .vec_dot_type = GGML_TYPE_Q8_K,
  1453. },
  1454. [GGML_TYPE_Q3_K] = {
  1455. .type_name = "q3_K",
  1456. .blck_size = QK_K,
  1457. .type_size = sizeof(block_q3_K),
  1458. .is_quantized = true,
  1459. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1460. .from_float = quantize_row_q3_K,
  1461. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1462. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1463. .vec_dot_type = GGML_TYPE_Q8_K,
  1464. },
  1465. [GGML_TYPE_Q4_K] = {
  1466. .type_name = "q4_K",
  1467. .blck_size = QK_K,
  1468. .type_size = sizeof(block_q4_K),
  1469. .is_quantized = true,
  1470. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1471. .from_float = quantize_row_q4_K,
  1472. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1473. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1474. .vec_dot_type = GGML_TYPE_Q8_K,
  1475. },
  1476. [GGML_TYPE_Q5_K] = {
  1477. .type_name = "q5_K",
  1478. .blck_size = QK_K,
  1479. .type_size = sizeof(block_q5_K),
  1480. .is_quantized = true,
  1481. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1482. .from_float = quantize_row_q5_K,
  1483. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1484. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1485. .vec_dot_type = GGML_TYPE_Q8_K,
  1486. },
  1487. [GGML_TYPE_Q6_K] = {
  1488. .type_name = "q6_K",
  1489. .blck_size = QK_K,
  1490. .type_size = sizeof(block_q6_K),
  1491. .is_quantized = true,
  1492. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1493. .from_float = quantize_row_q6_K,
  1494. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1495. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1496. .vec_dot_type = GGML_TYPE_Q8_K,
  1497. },
  1498. [GGML_TYPE_Q8_K] = {
  1499. .type_name = "q8_K",
  1500. .blck_size = QK_K,
  1501. .type_size = sizeof(block_q8_K),
  1502. .is_quantized = true,
  1503. .from_float = quantize_row_q8_K,
  1504. }
  1505. #endif
  1506. };
  1507. // For internal test use
  1508. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1509. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1510. return type_traits[type];
  1511. }
  1512. //
  1513. // simd mappings
  1514. //
  1515. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1516. // we then implement the fundamental computation operations below using only these macros
  1517. // adding support for new architectures requires to define the corresponding SIMD macros
  1518. //
  1519. // GGML_F32_STEP / GGML_F16_STEP
  1520. // number of elements to process in a single step
  1521. //
  1522. // GGML_F32_EPR / GGML_F16_EPR
  1523. // number of elements to fit in a single register
  1524. //
  1525. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1526. #define GGML_SIMD
  1527. // F32 NEON
  1528. #define GGML_F32_STEP 16
  1529. #define GGML_F32_EPR 4
  1530. #define GGML_F32x4 float32x4_t
  1531. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1532. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1533. #define GGML_F32x4_LOAD vld1q_f32
  1534. #define GGML_F32x4_STORE vst1q_f32
  1535. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1536. #define GGML_F32x4_ADD vaddq_f32
  1537. #define GGML_F32x4_MUL vmulq_f32
  1538. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1539. #define GGML_F32x4_REDUCE(res, x) \
  1540. { \
  1541. int offset = GGML_F32_ARR >> 1; \
  1542. for (int i = 0; i < offset; ++i) { \
  1543. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1544. } \
  1545. offset >>= 1; \
  1546. for (int i = 0; i < offset; ++i) { \
  1547. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1548. } \
  1549. offset >>= 1; \
  1550. for (int i = 0; i < offset; ++i) { \
  1551. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1552. } \
  1553. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1554. }
  1555. #define GGML_F32_VEC GGML_F32x4
  1556. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1557. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1558. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1559. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1560. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1561. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1562. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1563. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1564. // F16 NEON
  1565. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1566. #define GGML_F16_STEP 32
  1567. #define GGML_F16_EPR 8
  1568. #define GGML_F16x8 float16x8_t
  1569. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1570. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1571. #define GGML_F16x8_LOAD vld1q_f16
  1572. #define GGML_F16x8_STORE vst1q_f16
  1573. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1574. #define GGML_F16x8_ADD vaddq_f16
  1575. #define GGML_F16x8_MUL vmulq_f16
  1576. #define GGML_F16x8_REDUCE(res, x) \
  1577. { \
  1578. int offset = GGML_F16_ARR >> 1; \
  1579. for (int i = 0; i < offset; ++i) { \
  1580. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1581. } \
  1582. offset >>= 1; \
  1583. for (int i = 0; i < offset; ++i) { \
  1584. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1585. } \
  1586. offset >>= 1; \
  1587. for (int i = 0; i < offset; ++i) { \
  1588. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1589. } \
  1590. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1591. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1592. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1593. }
  1594. #define GGML_F16_VEC GGML_F16x8
  1595. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1596. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1597. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1598. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1599. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1600. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1601. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1602. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1603. #else
  1604. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1605. // and take advantage of the vcvt_ functions to convert to/from FP16
  1606. #define GGML_F16_STEP 16
  1607. #define GGML_F16_EPR 4
  1608. #define GGML_F32Cx4 float32x4_t
  1609. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1610. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1611. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1612. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1613. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1614. #define GGML_F32Cx4_ADD vaddq_f32
  1615. #define GGML_F32Cx4_MUL vmulq_f32
  1616. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1617. #define GGML_F16_VEC GGML_F32Cx4
  1618. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1619. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1620. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1621. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1622. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1623. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1624. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1625. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1626. #endif
  1627. #elif defined(__AVX__)
  1628. #define GGML_SIMD
  1629. // F32 AVX
  1630. #define GGML_F32_STEP 32
  1631. #define GGML_F32_EPR 8
  1632. #define GGML_F32x8 __m256
  1633. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1634. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1635. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1636. #define GGML_F32x8_STORE _mm256_storeu_ps
  1637. #if defined(__FMA__)
  1638. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1639. #else
  1640. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1641. #endif
  1642. #define GGML_F32x8_ADD _mm256_add_ps
  1643. #define GGML_F32x8_MUL _mm256_mul_ps
  1644. #define GGML_F32x8_REDUCE(res, x) \
  1645. { \
  1646. int offset = GGML_F32_ARR >> 1; \
  1647. for (int i = 0; i < offset; ++i) { \
  1648. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1649. } \
  1650. offset >>= 1; \
  1651. for (int i = 0; i < offset; ++i) { \
  1652. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1653. } \
  1654. offset >>= 1; \
  1655. for (int i = 0; i < offset; ++i) { \
  1656. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1657. } \
  1658. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1659. _mm256_extractf128_ps(x[0], 1)); \
  1660. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1661. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1662. }
  1663. // TODO: is this optimal ?
  1664. #define GGML_F32_VEC GGML_F32x8
  1665. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1666. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1667. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1668. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1669. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1670. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1671. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1672. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1673. // F16 AVX
  1674. #define GGML_F16_STEP 32
  1675. #define GGML_F16_EPR 8
  1676. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1677. #define GGML_F32Cx8 __m256
  1678. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1679. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1680. #if defined(__F16C__)
  1681. // the _mm256_cvt intrinsics require F16C
  1682. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1683. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1684. #else
  1685. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1686. float tmp[8];
  1687. for (int i = 0; i < 8; i++) {
  1688. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1689. }
  1690. return _mm256_loadu_ps(tmp);
  1691. }
  1692. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1693. float arr[8];
  1694. _mm256_storeu_ps(arr, y);
  1695. for (int i = 0; i < 8; i++)
  1696. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1697. }
  1698. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1699. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1700. #endif
  1701. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1702. #define GGML_F32Cx8_ADD _mm256_add_ps
  1703. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1704. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1705. #define GGML_F16_VEC GGML_F32Cx8
  1706. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1707. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1708. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1709. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1710. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1711. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1712. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1713. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1714. #elif defined(__POWER9_VECTOR__)
  1715. #define GGML_SIMD
  1716. // F32 POWER9
  1717. #define GGML_F32_STEP 32
  1718. #define GGML_F32_EPR 4
  1719. #define GGML_F32x4 vector float
  1720. #define GGML_F32x4_ZERO 0.0f
  1721. #define GGML_F32x4_SET1 vec_splats
  1722. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1723. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1724. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1725. #define GGML_F32x4_ADD vec_add
  1726. #define GGML_F32x4_MUL vec_mul
  1727. #define GGML_F32x4_REDUCE(res, x) \
  1728. { \
  1729. int offset = GGML_F32_ARR >> 1; \
  1730. for (int i = 0; i < offset; ++i) { \
  1731. x[i] = vec_add(x[i], x[offset+i]); \
  1732. } \
  1733. offset >>= 1; \
  1734. for (int i = 0; i < offset; ++i) { \
  1735. x[i] = vec_add(x[i], x[offset+i]); \
  1736. } \
  1737. offset >>= 1; \
  1738. for (int i = 0; i < offset; ++i) { \
  1739. x[i] = vec_add(x[i], x[offset+i]); \
  1740. } \
  1741. res = vec_extract(x[0], 0) + \
  1742. vec_extract(x[0], 1) + \
  1743. vec_extract(x[0], 2) + \
  1744. vec_extract(x[0], 3); \
  1745. }
  1746. #define GGML_F32_VEC GGML_F32x4
  1747. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1748. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1749. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1750. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1751. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1752. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1753. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1754. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1755. // F16 POWER9
  1756. #define GGML_F16_STEP GGML_F32_STEP
  1757. #define GGML_F16_EPR GGML_F32_EPR
  1758. #define GGML_F16_VEC GGML_F32x4
  1759. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1760. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1761. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1762. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1763. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1764. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1765. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1766. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1767. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1768. #define GGML_F16_VEC_STORE(p, r, i) \
  1769. if (i & 0x1) \
  1770. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1771. r[i - GGML_ENDIAN_BYTE(0)]), \
  1772. 0, p - GGML_F16_EPR)
  1773. #elif defined(__wasm_simd128__)
  1774. #define GGML_SIMD
  1775. // F32 WASM
  1776. #define GGML_F32_STEP 16
  1777. #define GGML_F32_EPR 4
  1778. #define GGML_F32x4 v128_t
  1779. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1780. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1781. #define GGML_F32x4_LOAD wasm_v128_load
  1782. #define GGML_F32x4_STORE wasm_v128_store
  1783. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1784. #define GGML_F32x4_ADD wasm_f32x4_add
  1785. #define GGML_F32x4_MUL wasm_f32x4_mul
  1786. #define GGML_F32x4_REDUCE(res, x) \
  1787. { \
  1788. int offset = GGML_F32_ARR >> 1; \
  1789. for (int i = 0; i < offset; ++i) { \
  1790. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1791. } \
  1792. offset >>= 1; \
  1793. for (int i = 0; i < offset; ++i) { \
  1794. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1795. } \
  1796. offset >>= 1; \
  1797. for (int i = 0; i < offset; ++i) { \
  1798. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1799. } \
  1800. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1801. wasm_f32x4_extract_lane(x[0], 1) + \
  1802. wasm_f32x4_extract_lane(x[0], 2) + \
  1803. wasm_f32x4_extract_lane(x[0], 3); \
  1804. }
  1805. #define GGML_F32_VEC GGML_F32x4
  1806. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1807. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1808. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1809. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1810. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1811. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1812. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1813. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1814. // F16 WASM
  1815. #define GGML_F16_STEP 16
  1816. #define GGML_F16_EPR 4
  1817. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1818. float tmp[4];
  1819. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1820. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1821. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1822. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1823. return wasm_v128_load(tmp);
  1824. }
  1825. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1826. float tmp[4];
  1827. wasm_v128_store(tmp, x);
  1828. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1829. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1830. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1831. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1832. }
  1833. #define GGML_F16x4 v128_t
  1834. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1835. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1836. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1837. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1838. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1839. #define GGML_F16x4_ADD wasm_f32x4_add
  1840. #define GGML_F16x4_MUL wasm_f32x4_mul
  1841. #define GGML_F16x4_REDUCE(res, x) \
  1842. { \
  1843. int offset = GGML_F16_ARR >> 1; \
  1844. for (int i = 0; i < offset; ++i) { \
  1845. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1846. } \
  1847. offset >>= 1; \
  1848. for (int i = 0; i < offset; ++i) { \
  1849. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1850. } \
  1851. offset >>= 1; \
  1852. for (int i = 0; i < offset; ++i) { \
  1853. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1854. } \
  1855. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1856. wasm_f32x4_extract_lane(x[0], 1) + \
  1857. wasm_f32x4_extract_lane(x[0], 2) + \
  1858. wasm_f32x4_extract_lane(x[0], 3); \
  1859. }
  1860. #define GGML_F16_VEC GGML_F16x4
  1861. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1862. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1863. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1864. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1865. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1866. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1867. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1868. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1869. #elif defined(__SSE3__)
  1870. #define GGML_SIMD
  1871. // F32 SSE
  1872. #define GGML_F32_STEP 32
  1873. #define GGML_F32_EPR 4
  1874. #define GGML_F32x4 __m128
  1875. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1876. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1877. #define GGML_F32x4_LOAD _mm_loadu_ps
  1878. #define GGML_F32x4_STORE _mm_storeu_ps
  1879. #if defined(__FMA__)
  1880. // TODO: Does this work?
  1881. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1882. #else
  1883. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1884. #endif
  1885. #define GGML_F32x4_ADD _mm_add_ps
  1886. #define GGML_F32x4_MUL _mm_mul_ps
  1887. #define GGML_F32x4_REDUCE(res, x) \
  1888. { \
  1889. int offset = GGML_F32_ARR >> 1; \
  1890. for (int i = 0; i < offset; ++i) { \
  1891. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1892. } \
  1893. offset >>= 1; \
  1894. for (int i = 0; i < offset; ++i) { \
  1895. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1896. } \
  1897. offset >>= 1; \
  1898. for (int i = 0; i < offset; ++i) { \
  1899. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1900. } \
  1901. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1902. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1903. }
  1904. // TODO: is this optimal ?
  1905. #define GGML_F32_VEC GGML_F32x4
  1906. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1907. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1908. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1909. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1910. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1911. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1912. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1913. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1914. // F16 SSE
  1915. #define GGML_F16_STEP 32
  1916. #define GGML_F16_EPR 4
  1917. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1918. float tmp[4];
  1919. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1920. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1921. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1922. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1923. return _mm_loadu_ps(tmp);
  1924. }
  1925. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1926. float arr[4];
  1927. _mm_storeu_ps(arr, y);
  1928. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1929. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1930. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1931. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1932. }
  1933. #define GGML_F32Cx4 __m128
  1934. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1935. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1936. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1937. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1938. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1939. #define GGML_F32Cx4_ADD _mm_add_ps
  1940. #define GGML_F32Cx4_MUL _mm_mul_ps
  1941. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1942. #define GGML_F16_VEC GGML_F32Cx4
  1943. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1944. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1945. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1946. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1947. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1948. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1949. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1950. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1951. #endif
  1952. // GGML_F32_ARR / GGML_F16_ARR
  1953. // number of registers to use per step
  1954. #ifdef GGML_SIMD
  1955. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1956. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1957. #endif
  1958. //
  1959. // fundamental operations
  1960. //
  1961. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1962. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1963. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1964. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1965. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1966. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1967. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1968. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1969. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1970. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1971. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1972. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1973. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1974. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1975. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1976. #ifdef GGML_SIMD
  1977. float sumf = 0.0f;
  1978. const int np = (n & ~(GGML_F32_STEP - 1));
  1979. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1980. GGML_F32_VEC ax[GGML_F32_ARR];
  1981. GGML_F32_VEC ay[GGML_F32_ARR];
  1982. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1983. for (int j = 0; j < GGML_F32_ARR; j++) {
  1984. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1985. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1986. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1987. }
  1988. }
  1989. // reduce sum0..sum3 to sum0
  1990. GGML_F32_VEC_REDUCE(sumf, sum);
  1991. // leftovers
  1992. for (int i = np; i < n; ++i) {
  1993. sumf += x[i]*y[i];
  1994. }
  1995. #else
  1996. // scalar
  1997. ggml_float sumf = 0.0;
  1998. for (int i = 0; i < n; ++i) {
  1999. sumf += (ggml_float)(x[i]*y[i]);
  2000. }
  2001. #endif
  2002. *s = sumf;
  2003. }
  2004. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2005. ggml_float sumf = 0.0;
  2006. #if defined(GGML_SIMD)
  2007. const int np = (n & ~(GGML_F16_STEP - 1));
  2008. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2009. GGML_F16_VEC ax[GGML_F16_ARR];
  2010. GGML_F16_VEC ay[GGML_F16_ARR];
  2011. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2012. for (int j = 0; j < GGML_F16_ARR; j++) {
  2013. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2014. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2015. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2016. }
  2017. }
  2018. // reduce sum0..sum3 to sum0
  2019. GGML_F16_VEC_REDUCE(sumf, sum);
  2020. // leftovers
  2021. for (int i = np; i < n; ++i) {
  2022. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2023. }
  2024. #else
  2025. for (int i = 0; i < n; ++i) {
  2026. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2027. }
  2028. #endif
  2029. *s = sumf;
  2030. }
  2031. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2032. const int qk = QK8_0;
  2033. const int nb = n / qk;
  2034. assert(n % qk == 0);
  2035. assert(nb % 2 == 0);
  2036. const block_q4_0 * restrict x = vx;
  2037. const block_q8_0 * restrict y = vy;
  2038. #if defined(__ARM_NEON)
  2039. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2040. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2041. for (int i = 0; i < nb; i += 2) {
  2042. const block_q4_0 * restrict x0 = &x[i + 0];
  2043. const block_q4_0 * restrict x1 = &x[i + 1];
  2044. const block_q8_0 * restrict y0 = &y[i + 0];
  2045. const block_q8_0 * restrict y1 = &y[i + 1];
  2046. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2047. const int8x16_t s8b = vdupq_n_s8(0x8);
  2048. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2049. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2050. // 4-bit -> 8-bit
  2051. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2052. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2053. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2054. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2055. // sub 8
  2056. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2057. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2058. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2059. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2060. // load y
  2061. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2062. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2063. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2064. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2065. #if defined(__ARM_FEATURE_DOTPROD)
  2066. // dot product into int32x4_t
  2067. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2068. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2069. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2070. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2071. #else
  2072. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2073. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2074. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2075. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2076. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2077. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2078. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2079. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2080. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2081. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2082. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2083. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2084. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2085. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2086. #endif
  2087. }
  2088. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2089. #elif defined(__AVX2__)
  2090. // Initialize accumulator with zeros
  2091. __m256 acc = _mm256_setzero_ps();
  2092. // Main loop
  2093. for (int i = 0; i < nb; ++i) {
  2094. /* Compute combined scale for the block */
  2095. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2096. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2097. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2098. const __m256i off = _mm256_set1_epi8( 8 );
  2099. bx = _mm256_sub_epi8( bx, off );
  2100. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2101. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2102. /* Multiply q with scale and accumulate */
  2103. acc = _mm256_fmadd_ps( d, q, acc );
  2104. }
  2105. *s = hsum_float_8(acc);
  2106. #elif defined(__AVX__)
  2107. // Initialize accumulator with zeros
  2108. __m256 acc = _mm256_setzero_ps();
  2109. // Main loop
  2110. for (int i = 0; i < nb; ++i) {
  2111. // Compute combined scale for the block
  2112. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2113. const __m128i lowMask = _mm_set1_epi8(0xF);
  2114. const __m128i off = _mm_set1_epi8(8);
  2115. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2116. __m128i bx = _mm_and_si128(lowMask, tmp);
  2117. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2118. bx = _mm_sub_epi8(bx, off);
  2119. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2120. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2121. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2122. bx = _mm_sub_epi8(bx, off);
  2123. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2124. // Convert int32_t to float
  2125. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2126. // Apply the scale, and accumulate
  2127. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2128. }
  2129. *s = hsum_float_8(acc);
  2130. #elif defined(__SSSE3__)
  2131. // set constants
  2132. const __m128i lowMask = _mm_set1_epi8(0xF);
  2133. const __m128i off = _mm_set1_epi8(8);
  2134. // Initialize accumulator with zeros
  2135. __m128 acc_0 = _mm_setzero_ps();
  2136. __m128 acc_1 = _mm_setzero_ps();
  2137. __m128 acc_2 = _mm_setzero_ps();
  2138. __m128 acc_3 = _mm_setzero_ps();
  2139. // First round without accumulation
  2140. {
  2141. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2142. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2143. // Compute combined scale for the block 0 and 1
  2144. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2145. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2146. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2147. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2148. bx_0 = _mm_sub_epi8(bx_0, off);
  2149. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2150. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2151. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2152. bx_1 = _mm_sub_epi8(bx_1, off);
  2153. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2154. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2155. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2156. // Compute combined scale for the block 2 and 3
  2157. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2158. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2159. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2160. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2161. bx_2 = _mm_sub_epi8(bx_2, off);
  2162. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2163. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2164. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2165. bx_3 = _mm_sub_epi8(bx_3, off);
  2166. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2167. // Convert int32_t to float
  2168. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2169. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2170. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2171. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2172. // Apply the scale
  2173. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2174. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2175. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2176. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2177. }
  2178. // Main loop
  2179. for (int i = 2; i < nb; i+=2) {
  2180. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2181. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2182. // Compute combined scale for the block 0 and 1
  2183. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2184. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2185. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2186. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2187. bx_0 = _mm_sub_epi8(bx_0, off);
  2188. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2189. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2190. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2191. bx_1 = _mm_sub_epi8(bx_1, off);
  2192. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2193. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2194. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2195. // Compute combined scale for the block 2 and 3
  2196. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2197. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2198. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2199. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2200. bx_2 = _mm_sub_epi8(bx_2, off);
  2201. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2202. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2203. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2204. bx_3 = _mm_sub_epi8(bx_3, off);
  2205. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2206. // Convert int32_t to float
  2207. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2208. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2209. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2210. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2211. // Apply the scale
  2212. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2213. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2214. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2215. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2216. // Acummulate
  2217. acc_0 = _mm_add_ps(p0_d, acc_0);
  2218. acc_1 = _mm_add_ps(p1_d, acc_1);
  2219. acc_2 = _mm_add_ps(p2_d, acc_2);
  2220. acc_3 = _mm_add_ps(p3_d, acc_3);
  2221. }
  2222. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2223. #else
  2224. // scalar
  2225. float sumf = 0.0;
  2226. for (int i = 0; i < nb; i++) {
  2227. int sumi = 0;
  2228. for (int j = 0; j < qk/2; ++j) {
  2229. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2230. const int v1 = (x[i].qs[j] >> 4) - 8;
  2231. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2232. }
  2233. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2234. }
  2235. *s = sumf;
  2236. #endif
  2237. }
  2238. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2239. const int qk = QK8_1;
  2240. const int nb = n / qk;
  2241. assert(n % qk == 0);
  2242. assert(nb % 2 == 0);
  2243. const block_q4_1 * restrict x = vx;
  2244. const block_q8_1 * restrict y = vy;
  2245. // TODO: add WASM SIMD
  2246. #if defined(__ARM_NEON)
  2247. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2248. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2249. float summs = 0;
  2250. for (int i = 0; i < nb; i += 2) {
  2251. const block_q4_1 * restrict x0 = &x[i + 0];
  2252. const block_q4_1 * restrict x1 = &x[i + 1];
  2253. const block_q8_1 * restrict y0 = &y[i + 0];
  2254. const block_q8_1 * restrict y1 = &y[i + 1];
  2255. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2256. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2257. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2258. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2259. // 4-bit -> 8-bit
  2260. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2261. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2262. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2263. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2264. // load y
  2265. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2266. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2267. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2268. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2269. #if defined(__ARM_FEATURE_DOTPROD)
  2270. // dot product into int32x4_t
  2271. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2272. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2273. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2274. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2275. #else
  2276. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2277. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2278. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2279. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2280. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2281. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2282. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2283. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2284. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2285. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2286. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2287. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2288. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2289. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2290. #endif
  2291. }
  2292. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2293. #elif defined(__AVX2__) || defined(__AVX__)
  2294. // Initialize accumulator with zeros
  2295. __m256 acc = _mm256_setzero_ps();
  2296. float summs = 0;
  2297. // Main loop
  2298. for (int i = 0; i < nb; ++i) {
  2299. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2300. const float d1 = y[i].d;
  2301. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2302. const __m256 d0v = _mm256_set1_ps( d0 );
  2303. const __m256 d1v = _mm256_set1_ps( d1 );
  2304. // Compute combined scales
  2305. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2306. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2307. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2308. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2309. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2310. // Accumulate d0*d1*x*y
  2311. #if defined(__AVX2__)
  2312. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2313. #else
  2314. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2315. #endif
  2316. }
  2317. *s = hsum_float_8(acc) + summs;
  2318. #else
  2319. // scalar
  2320. float sumf = 0.0;
  2321. for (int i = 0; i < nb; i++) {
  2322. int sumi = 0;
  2323. for (int j = 0; j < qk/2; ++j) {
  2324. const int v0 = (x[i].qs[j] & 0x0F);
  2325. const int v1 = (x[i].qs[j] >> 4);
  2326. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2327. }
  2328. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2329. }
  2330. *s = sumf;
  2331. #endif
  2332. }
  2333. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2334. const int qk = QK8_0;
  2335. const int nb = n / qk;
  2336. assert(n % qk == 0);
  2337. assert(nb % 2 == 0);
  2338. assert(qk == QK5_0);
  2339. const block_q5_0 * restrict x = vx;
  2340. const block_q8_0 * restrict y = vy;
  2341. #if defined(__ARM_NEON)
  2342. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2343. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2344. uint32_t qh0;
  2345. uint32_t qh1;
  2346. uint64_t tmp0[4];
  2347. uint64_t tmp1[4];
  2348. for (int i = 0; i < nb; i += 2) {
  2349. const block_q5_0 * restrict x0 = &x[i];
  2350. const block_q5_0 * restrict x1 = &x[i + 1];
  2351. const block_q8_0 * restrict y0 = &y[i];
  2352. const block_q8_0 * restrict y1 = &y[i + 1];
  2353. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2354. // extract the 5th bit via lookup table ((!b) << 4)
  2355. memcpy(&qh0, x0->qh, sizeof(qh0));
  2356. memcpy(&qh1, x1->qh, sizeof(qh1));
  2357. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2358. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2359. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2360. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2361. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2362. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2363. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2364. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2365. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2366. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2367. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2368. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2369. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2370. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2371. // 4-bit -> 8-bit
  2372. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2373. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2374. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2375. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2376. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2377. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2378. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2379. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2380. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2381. // load y
  2382. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2383. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2384. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2385. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2386. #if defined(__ARM_FEATURE_DOTPROD)
  2387. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2388. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2389. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2391. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2392. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2393. #else
  2394. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2395. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2396. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2397. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2398. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2399. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2400. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2401. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2402. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2403. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2404. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2405. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2406. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2407. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2408. #endif
  2409. }
  2410. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2411. #elif defined(__wasm_simd128__)
  2412. v128_t sumv = wasm_f32x4_splat(0.0f);
  2413. uint32_t qh;
  2414. uint64_t tmp[4];
  2415. // TODO: check if unrolling this is better
  2416. for (int i = 0; i < nb; ++i) {
  2417. const block_q5_0 * restrict x0 = &x[i];
  2418. const block_q8_0 * restrict y0 = &y[i];
  2419. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2420. // extract the 5th bit
  2421. memcpy(&qh, x0->qh, sizeof(qh));
  2422. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2423. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2424. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2425. tmp[3] = table_b2b_1[(qh >> 24) ];
  2426. const v128_t qhl = wasm_v128_load(tmp + 0);
  2427. const v128_t qhh = wasm_v128_load(tmp + 2);
  2428. const v128_t v0 = wasm_v128_load(x0->qs);
  2429. // 4-bit -> 8-bit
  2430. const v128_t v0l = wasm_v128_and (v0, m4b);
  2431. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2432. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2433. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2434. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2435. // load y
  2436. const v128_t v1l = wasm_v128_load(y0->qs);
  2437. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2438. // int8x16 -> int16x8
  2439. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2440. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2441. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2442. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2443. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2444. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2445. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2446. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2447. // dot product
  2448. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2449. wasm_i32x4_add(
  2450. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2451. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2452. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2453. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2454. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2455. }
  2456. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2457. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2458. #elif defined(__AVX2__)
  2459. // Initialize accumulator with zeros
  2460. __m256 acc = _mm256_setzero_ps();
  2461. // Main loop
  2462. for (int i = 0; i < nb; i++) {
  2463. /* Compute combined scale for the block */
  2464. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2465. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2466. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2467. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2468. bx = _mm256_or_si256(bx, bxhi);
  2469. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2470. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2471. /* Multiply q with scale and accumulate */
  2472. acc = _mm256_fmadd_ps(d, q, acc);
  2473. }
  2474. *s = hsum_float_8(acc);
  2475. #elif defined(__AVX__)
  2476. // Initialize accumulator with zeros
  2477. __m256 acc = _mm256_setzero_ps();
  2478. __m128i mask = _mm_set1_epi8((char)0xF0);
  2479. // Main loop
  2480. for (int i = 0; i < nb; i++) {
  2481. /* Compute combined scale for the block */
  2482. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2483. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2484. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2485. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2486. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2487. bxhil = _mm_andnot_si128(bxhil, mask);
  2488. bxhih = _mm_andnot_si128(bxhih, mask);
  2489. __m128i bxl = _mm256_castsi256_si128(bx);
  2490. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2491. bxl = _mm_or_si128(bxl, bxhil);
  2492. bxh = _mm_or_si128(bxh, bxhih);
  2493. bx = MM256_SET_M128I(bxh, bxl);
  2494. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2495. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2496. /* Multiply q with scale and accumulate */
  2497. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2498. }
  2499. *s = hsum_float_8(acc);
  2500. #else
  2501. // scalar
  2502. float sumf = 0.0;
  2503. for (int i = 0; i < nb; i++) {
  2504. uint32_t qh;
  2505. memcpy(&qh, x[i].qh, sizeof(qh));
  2506. int sumi = 0;
  2507. for (int j = 0; j < qk/2; ++j) {
  2508. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2509. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2510. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2511. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2512. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2513. }
  2514. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2515. }
  2516. *s = sumf;
  2517. #endif
  2518. }
  2519. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2520. const int qk = QK8_1;
  2521. const int nb = n / qk;
  2522. assert(n % qk == 0);
  2523. assert(nb % 2 == 0);
  2524. assert(qk == QK5_1);
  2525. const block_q5_1 * restrict x = vx;
  2526. const block_q8_1 * restrict y = vy;
  2527. #if defined(__ARM_NEON)
  2528. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2529. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2530. float summs0 = 0.0f;
  2531. float summs1 = 0.0f;
  2532. uint32_t qh0;
  2533. uint32_t qh1;
  2534. uint64_t tmp0[4];
  2535. uint64_t tmp1[4];
  2536. for (int i = 0; i < nb; i += 2) {
  2537. const block_q5_1 * restrict x0 = &x[i];
  2538. const block_q5_1 * restrict x1 = &x[i + 1];
  2539. const block_q8_1 * restrict y0 = &y[i];
  2540. const block_q8_1 * restrict y1 = &y[i + 1];
  2541. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2542. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2543. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2544. // extract the 5th bit via lookup table ((b) << 4)
  2545. memcpy(&qh0, x0->qh, sizeof(qh0));
  2546. memcpy(&qh1, x1->qh, sizeof(qh1));
  2547. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2548. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2549. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2550. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2551. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2552. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2553. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2554. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2555. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2556. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2557. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2558. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2559. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2560. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2561. // 4-bit -> 8-bit
  2562. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2563. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2564. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2565. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2566. // add high bit
  2567. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2568. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2569. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2570. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2571. // load y
  2572. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2573. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2574. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2575. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2576. #if defined(__ARM_FEATURE_DOTPROD)
  2577. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2578. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2579. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2580. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2581. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2582. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2583. #else
  2584. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2585. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2586. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2587. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2588. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2589. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2590. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2591. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2592. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2593. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2594. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2595. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2596. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2597. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2598. #endif
  2599. }
  2600. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2601. #elif defined(__wasm_simd128__)
  2602. v128_t sumv = wasm_f32x4_splat(0.0f);
  2603. float summs = 0.0f;
  2604. uint32_t qh;
  2605. uint64_t tmp[4];
  2606. // TODO: check if unrolling this is better
  2607. for (int i = 0; i < nb; ++i) {
  2608. const block_q5_1 * restrict x0 = &x[i];
  2609. const block_q8_1 * restrict y0 = &y[i];
  2610. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2611. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2612. // extract the 5th bit
  2613. memcpy(&qh, x0->qh, sizeof(qh));
  2614. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2615. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2616. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2617. tmp[3] = table_b2b_0[(qh >> 24) ];
  2618. const v128_t qhl = wasm_v128_load(tmp + 0);
  2619. const v128_t qhh = wasm_v128_load(tmp + 2);
  2620. const v128_t v0 = wasm_v128_load(x0->qs);
  2621. // 4-bit -> 8-bit
  2622. const v128_t v0l = wasm_v128_and (v0, m4b);
  2623. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2624. // add high bit
  2625. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2626. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2627. // load y
  2628. const v128_t v1l = wasm_v128_load(y0->qs);
  2629. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2630. // int8x16 -> int16x8
  2631. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2632. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2633. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2634. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2635. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2636. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2637. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2638. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2639. // dot product
  2640. sumv = wasm_f32x4_add(sumv,
  2641. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2642. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2643. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2644. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2645. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2646. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2647. }
  2648. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2649. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2650. #elif defined(__AVX2__)
  2651. // Initialize accumulator with zeros
  2652. __m256 acc = _mm256_setzero_ps();
  2653. float summs = 0.0f;
  2654. // Main loop
  2655. for (int i = 0; i < nb; i++) {
  2656. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2657. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2658. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2659. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2660. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2661. bx = _mm256_or_si256(bx, bxhi);
  2662. const __m256 dy = _mm256_set1_ps(y[i].d);
  2663. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2664. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2665. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2666. }
  2667. *s = hsum_float_8(acc) + summs;
  2668. #elif defined(__AVX__)
  2669. // Initialize accumulator with zeros
  2670. __m256 acc = _mm256_setzero_ps();
  2671. __m128i mask = _mm_set1_epi8(0x10);
  2672. float summs = 0.0f;
  2673. // Main loop
  2674. for (int i = 0; i < nb; i++) {
  2675. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2676. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2677. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2678. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2679. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2680. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2681. bxhil = _mm_and_si128(bxhil, mask);
  2682. bxhih = _mm_and_si128(bxhih, mask);
  2683. __m128i bxl = _mm256_castsi256_si128(bx);
  2684. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2685. bxl = _mm_or_si128(bxl, bxhil);
  2686. bxh = _mm_or_si128(bxh, bxhih);
  2687. bx = MM256_SET_M128I(bxh, bxl);
  2688. const __m256 dy = _mm256_set1_ps(y[i].d);
  2689. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2690. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2691. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2692. }
  2693. *s = hsum_float_8(acc) + summs;
  2694. #else
  2695. // scalar
  2696. float sumf = 0.0;
  2697. for (int i = 0; i < nb; i++) {
  2698. uint32_t qh;
  2699. memcpy(&qh, x[i].qh, sizeof(qh));
  2700. int sumi = 0;
  2701. for (int j = 0; j < qk/2; ++j) {
  2702. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2703. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2704. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2705. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2706. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2707. }
  2708. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2709. }
  2710. *s = sumf;
  2711. #endif
  2712. }
  2713. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2714. const int qk = QK8_0;
  2715. const int nb = n / qk;
  2716. assert(n % qk == 0);
  2717. assert(nb % 2 == 0);
  2718. const block_q8_0 * restrict x = vx;
  2719. const block_q8_0 * restrict y = vy;
  2720. #if defined(__ARM_NEON)
  2721. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2722. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2723. for (int i = 0; i < nb; i += 2) {
  2724. const block_q8_0 * restrict x0 = &x[i + 0];
  2725. const block_q8_0 * restrict x1 = &x[i + 1];
  2726. const block_q8_0 * restrict y0 = &y[i + 0];
  2727. const block_q8_0 * restrict y1 = &y[i + 1];
  2728. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2729. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2730. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2731. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2732. // load y
  2733. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2734. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2735. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2736. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2737. #if defined(__ARM_FEATURE_DOTPROD)
  2738. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2739. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2740. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2741. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2742. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2743. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2744. #else
  2745. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2746. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2747. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2748. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2749. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2750. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2751. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2752. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2753. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2754. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2755. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2756. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2757. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2758. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2759. #endif
  2760. }
  2761. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2762. #elif defined(__AVX2__) || defined(__AVX__)
  2763. // Initialize accumulator with zeros
  2764. __m256 acc = _mm256_setzero_ps();
  2765. // Main loop
  2766. for (int i = 0; i < nb; ++i) {
  2767. // Compute combined scale for the block
  2768. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2769. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2770. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2771. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2772. // Multiply q with scale and accumulate
  2773. #if defined(__AVX2__)
  2774. acc = _mm256_fmadd_ps( d, q, acc );
  2775. #else
  2776. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2777. #endif
  2778. }
  2779. *s = hsum_float_8(acc);
  2780. #else
  2781. // scalar
  2782. float sumf = 0.0;
  2783. for (int i = 0; i < nb; i++) {
  2784. int sumi = 0;
  2785. for (int j = 0; j < qk; j++) {
  2786. sumi += x[i].qs[j]*y[i].qs[j];
  2787. }
  2788. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2789. }
  2790. *s = sumf;
  2791. #endif
  2792. }
  2793. // compute GGML_VEC_DOT_UNROLL dot products at once
  2794. // xs - x row stride in bytes
  2795. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2796. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2797. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2798. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2799. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2800. }
  2801. #if defined(GGML_SIMD)
  2802. const int np = (n & ~(GGML_F16_STEP - 1));
  2803. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2804. GGML_F16_VEC ax[GGML_F16_ARR];
  2805. GGML_F16_VEC ay[GGML_F16_ARR];
  2806. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2807. for (int j = 0; j < GGML_F16_ARR; j++) {
  2808. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2809. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2810. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2811. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2812. }
  2813. }
  2814. }
  2815. // reduce sum0..sum3 to sum0
  2816. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2817. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2818. }
  2819. // leftovers
  2820. for (int i = np; i < n; ++i) {
  2821. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2822. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2823. }
  2824. }
  2825. #else
  2826. for (int i = 0; i < n; ++i) {
  2827. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2828. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2829. }
  2830. }
  2831. #endif
  2832. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2833. s[i] = sumf[i];
  2834. }
  2835. }
  2836. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2837. #if defined(GGML_SIMD)
  2838. const int np = (n & ~(GGML_F32_STEP - 1));
  2839. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2840. GGML_F32_VEC ax[GGML_F32_ARR];
  2841. GGML_F32_VEC ay[GGML_F32_ARR];
  2842. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2843. for (int j = 0; j < GGML_F32_ARR; j++) {
  2844. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2845. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2846. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2847. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2848. }
  2849. }
  2850. // leftovers
  2851. for (int i = np; i < n; ++i) {
  2852. y[i] += x[i]*v;
  2853. }
  2854. #else
  2855. // scalar
  2856. for (int i = 0; i < n; ++i) {
  2857. y[i] += x[i]*v;
  2858. }
  2859. #endif
  2860. }
  2861. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2862. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2863. #if defined(GGML_USE_ACCELERATE)
  2864. vDSP_vsmul(y, 1, &v, y, 1, n);
  2865. #elif defined(GGML_SIMD)
  2866. const int np = (n & ~(GGML_F32_STEP - 1));
  2867. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2868. GGML_F32_VEC ay[GGML_F32_ARR];
  2869. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2870. for (int j = 0; j < GGML_F32_ARR; j++) {
  2871. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2872. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2873. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2874. }
  2875. }
  2876. // leftovers
  2877. for (int i = np; i < n; ++i) {
  2878. y[i] *= v;
  2879. }
  2880. #else
  2881. // scalar
  2882. for (int i = 0; i < n; ++i) {
  2883. y[i] *= v;
  2884. }
  2885. #endif
  2886. }
  2887. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2888. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2889. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2890. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2891. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2892. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2893. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2894. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2895. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2896. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2897. static const float GELU_COEF_A = 0.044715f;
  2898. static const float GELU_QUICK_COEF = -1.702f;
  2899. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2900. inline static float ggml_gelu_f32(float x) {
  2901. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2902. }
  2903. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2904. const uint16_t * i16 = (const uint16_t *) x;
  2905. for (int i = 0; i < n; ++i) {
  2906. y[i] = table_gelu_f16[i16[i]];
  2907. }
  2908. }
  2909. #ifdef GGML_GELU_FP16
  2910. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2911. uint16_t t;
  2912. for (int i = 0; i < n; ++i) {
  2913. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2914. memcpy(&t, &fp16, sizeof(uint16_t));
  2915. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2916. }
  2917. }
  2918. #else
  2919. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2920. for (int i = 0; i < n; ++i) {
  2921. y[i] = ggml_gelu_f32(x[i]);
  2922. }
  2923. }
  2924. #endif
  2925. inline static float ggml_gelu_quick_f32(float x) {
  2926. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2927. }
  2928. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2929. // const uint16_t * i16 = (const uint16_t *) x;
  2930. // for (int i = 0; i < n; ++i) {
  2931. // y[i] = table_gelu_quick_f16[i16[i]];
  2932. // }
  2933. //}
  2934. #ifdef GGML_GELU_QUICK_FP16
  2935. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2936. uint16_t t;
  2937. for (int i = 0; i < n; ++i) {
  2938. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2939. memcpy(&t, &fp16, sizeof(uint16_t));
  2940. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2941. }
  2942. }
  2943. #else
  2944. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2945. for (int i = 0; i < n; ++i) {
  2946. y[i] = ggml_gelu_quick_f32(x[i]);
  2947. }
  2948. }
  2949. #endif
  2950. // Sigmoid Linear Unit (SiLU) function
  2951. inline static float ggml_silu_f32(float x) {
  2952. return x/(1.0f + expf(-x));
  2953. }
  2954. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2955. // const uint16_t * i16 = (const uint16_t *) x;
  2956. // for (int i = 0; i < n; ++i) {
  2957. // y[i] = table_silu_f16[i16[i]];
  2958. // }
  2959. //}
  2960. #ifdef GGML_SILU_FP16
  2961. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2962. uint16_t t;
  2963. for (int i = 0; i < n; ++i) {
  2964. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2965. memcpy(&t, &fp16, sizeof(uint16_t));
  2966. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2967. }
  2968. }
  2969. #else
  2970. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2971. for (int i = 0; i < n; ++i) {
  2972. y[i] = ggml_silu_f32(x[i]);
  2973. }
  2974. }
  2975. #endif
  2976. inline static float ggml_silu_backward_f32(float x, float dy) {
  2977. const float s = 1.0f/(1.0f + expf(-x));
  2978. return dy*s*(1.0f + x*(1.0f - s));
  2979. }
  2980. #ifdef GGML_SILU_FP16
  2981. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2982. for (int i = 0; i < n; ++i) {
  2983. // we did not use x[i] to compute forward silu but its f16 equivalent
  2984. // take derivative at f16 of x[i]:
  2985. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2986. float usedx = GGML_FP16_TO_FP32(fp16);
  2987. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2988. }
  2989. }
  2990. #else
  2991. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2992. for (int i = 0; i < n; ++i) {
  2993. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2994. }
  2995. }
  2996. #endif
  2997. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2998. #ifndef GGML_USE_ACCELERATE
  2999. ggml_float sum = 0.0;
  3000. for (int i = 0; i < n; ++i) {
  3001. sum += (ggml_float)x[i];
  3002. }
  3003. *s = sum;
  3004. #else
  3005. vDSP_sve(x, 1, s, n);
  3006. #endif
  3007. }
  3008. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3009. ggml_float sum = 0.0;
  3010. for (int i = 0; i < n; ++i) {
  3011. sum += (ggml_float)x[i];
  3012. }
  3013. *s = sum;
  3014. }
  3015. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3016. float sum = 0.0f;
  3017. for (int i = 0; i < n; ++i) {
  3018. sum += GGML_FP16_TO_FP32(x[i]);
  3019. }
  3020. *s = sum;
  3021. }
  3022. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3023. #ifndef GGML_USE_ACCELERATE
  3024. float max = -INFINITY;
  3025. for (int i = 0; i < n; ++i) {
  3026. max = MAX(max, x[i]);
  3027. }
  3028. *s = max;
  3029. #else
  3030. vDSP_maxv(x, 1, s, n);
  3031. #endif
  3032. }
  3033. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3034. ggml_vec_norm_f32(n, s, x);
  3035. *s = 1.f/(*s);
  3036. }
  3037. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3038. float max = -INFINITY;
  3039. int idx = 0;
  3040. for (int i = 0; i < n; ++i) {
  3041. max = MAX(max, x[i]);
  3042. if (max == x[i]) { idx = i; }
  3043. }
  3044. *s = idx;
  3045. }
  3046. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3047. "NONE",
  3048. "DUP",
  3049. "ADD",
  3050. "ADD1",
  3051. "ACC",
  3052. "SUB",
  3053. "MUL",
  3054. "DIV",
  3055. "SQR",
  3056. "SQRT",
  3057. "LOG",
  3058. "SUM",
  3059. "SUM_ROWS",
  3060. "MEAN",
  3061. "ARGMAX",
  3062. "REPEAT",
  3063. "REPEAT_BACK",
  3064. "SILU_BACK",
  3065. "NORM",
  3066. "RMS_NORM",
  3067. "RMS_NORM_BACK",
  3068. "MUL_MAT",
  3069. "OUT_PROD",
  3070. "SCALE",
  3071. "SET",
  3072. "CPY",
  3073. "CONT",
  3074. "RESHAPE",
  3075. "VIEW",
  3076. "PERMUTE",
  3077. "TRANSPOSE",
  3078. "GET_ROWS",
  3079. "GET_ROWS_BACK",
  3080. "DIAG",
  3081. "DIAG_MASK_INF",
  3082. "DIAG_MASK_ZERO",
  3083. "SOFT_MAX",
  3084. "SOFT_MAX_BACK",
  3085. "ROPE",
  3086. "ROPE_BACK",
  3087. "ALIBI",
  3088. "CLAMP",
  3089. "CONV_1D",
  3090. "CONV_2D",
  3091. "POOL_1D",
  3092. "POOL_2D",
  3093. "FLASH_ATTN",
  3094. "FLASH_FF",
  3095. "FLASH_ATTN_BACK",
  3096. "WIN_PART",
  3097. "WIN_UNPART",
  3098. "UNARY",
  3099. "MAP_UNARY",
  3100. "MAP_BINARY",
  3101. "MAP_CUSTOM1",
  3102. "MAP_CUSTOM2",
  3103. "MAP_CUSTOM3",
  3104. "CROSS_ENTROPY_LOSS",
  3105. "CROSS_ENTROPY_LOSS_BACK",
  3106. };
  3107. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3108. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3109. "none",
  3110. "x",
  3111. "x+y",
  3112. "x+y",
  3113. "view(x,nb,offset)+=y->x",
  3114. "x-y",
  3115. "x*y",
  3116. "x/y",
  3117. "x^2",
  3118. "√x",
  3119. "log(x)",
  3120. "Σx",
  3121. "Σx_k",
  3122. "Σx/n",
  3123. "argmax(x)",
  3124. "repeat(x)",
  3125. "repeat_back(x)",
  3126. "silu_back(x)",
  3127. "norm(x)",
  3128. "rms_norm(x)",
  3129. "rms_norm_back(x)",
  3130. "X*Y",
  3131. "X*Y",
  3132. "x*v",
  3133. "y-\\>view(x)",
  3134. "x-\\>y",
  3135. "cont(x)",
  3136. "reshape(x)",
  3137. "view(x)",
  3138. "permute(x)",
  3139. "transpose(x)",
  3140. "get_rows(x)",
  3141. "get_rows_back(x)",
  3142. "diag(x)",
  3143. "diag_mask_inf(x)",
  3144. "diag_mask_zero(x)",
  3145. "soft_max(x)",
  3146. "soft_max_back(x)",
  3147. "rope(x)",
  3148. "rope_back(x)",
  3149. "alibi(x)",
  3150. "clamp(x)",
  3151. "conv_1d(x)",
  3152. "conv_2d(x)",
  3153. "pool_1d(x)",
  3154. "pool_2d(x)",
  3155. "flash_attn(x)",
  3156. "flash_ff(x)",
  3157. "flash_attn_back(x)",
  3158. "win_part(x)",
  3159. "win_unpart(x)",
  3160. "unary(x)",
  3161. "f(x)",
  3162. "f(x,y)",
  3163. "custom(x)",
  3164. "custom(x,y)",
  3165. "custom(x,y,z)",
  3166. "cross_entropy_loss(x,y)",
  3167. "cross_entropy_loss_back(x,y)",
  3168. };
  3169. static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
  3170. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3171. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3172. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3173. // WARN:
  3174. // Mis-confguration can lead to problem that's hard to reason about:
  3175. // * At best it crash or talks nosense.
  3176. // * At worst it talks slightly difference but hard to perceive.
  3177. //
  3178. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3179. // Take care about compile options (e.g., GGML_USE_xxx).
  3180. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3181. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3182. static void ggml_setup_op_has_task_pass(void) {
  3183. { // INIT
  3184. bool * p = GGML_OP_HAS_INIT;
  3185. p[GGML_OP_ACC ] = true;
  3186. p[GGML_OP_MUL_MAT ] = true;
  3187. p[GGML_OP_OUT_PROD ] = true;
  3188. p[GGML_OP_SET ] = true;
  3189. p[GGML_OP_GET_ROWS_BACK ] = true;
  3190. p[GGML_OP_DIAG_MASK_INF ] = true;
  3191. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3192. p[GGML_OP_CONV_1D ] = true;
  3193. p[GGML_OP_CONV_2D ] = true;
  3194. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3195. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3196. }
  3197. { // FINALIZE
  3198. bool * p = GGML_OP_HAS_FINALIZE;
  3199. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3200. }
  3201. }
  3202. //
  3203. // ggml context
  3204. //
  3205. struct ggml_context {
  3206. size_t mem_size;
  3207. void * mem_buffer;
  3208. bool mem_buffer_owned;
  3209. bool no_alloc;
  3210. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3211. int n_objects;
  3212. struct ggml_object * objects_begin;
  3213. struct ggml_object * objects_end;
  3214. struct ggml_scratch scratch;
  3215. struct ggml_scratch scratch_save;
  3216. };
  3217. struct ggml_context_container {
  3218. bool used;
  3219. struct ggml_context context;
  3220. };
  3221. //
  3222. // NUMA support
  3223. //
  3224. #define GGML_NUMA_MAX_NODES 8
  3225. #define GGML_NUMA_MAX_CPUS 512
  3226. struct ggml_numa_node {
  3227. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3228. uint32_t n_cpus;
  3229. };
  3230. struct ggml_numa_nodes {
  3231. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3232. uint32_t n_nodes;
  3233. uint32_t total_cpus; // hardware threads on system
  3234. };
  3235. //
  3236. // ggml state
  3237. //
  3238. struct ggml_state {
  3239. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3240. struct ggml_numa_nodes numa;
  3241. };
  3242. // global state
  3243. static struct ggml_state g_state;
  3244. static atomic_int g_state_barrier = 0;
  3245. // barrier via spin lock
  3246. inline static void ggml_critical_section_start(void) {
  3247. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3248. while (processing > 0) {
  3249. // wait for other threads to finish
  3250. atomic_fetch_sub(&g_state_barrier, 1);
  3251. sched_yield(); // TODO: reconsider this
  3252. processing = atomic_fetch_add(&g_state_barrier, 1);
  3253. }
  3254. }
  3255. // TODO: make this somehow automatically executed
  3256. // some sort of "sentry" mechanism
  3257. inline static void ggml_critical_section_end(void) {
  3258. atomic_fetch_sub(&g_state_barrier, 1);
  3259. }
  3260. void ggml_numa_init(void) {
  3261. if (g_state.numa.n_nodes > 0) {
  3262. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3263. return;
  3264. }
  3265. #ifdef __linux__
  3266. struct stat st;
  3267. char path[256];
  3268. int rv;
  3269. // enumerate nodes
  3270. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3271. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3272. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3273. if (stat(path, &st) != 0) { break; }
  3274. ++g_state.numa.n_nodes;
  3275. }
  3276. // enumerate CPUs
  3277. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3278. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3279. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3280. if (stat(path, &st) != 0) { break; }
  3281. ++g_state.numa.total_cpus;
  3282. }
  3283. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3284. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3285. g_state.numa.n_nodes = 0;
  3286. return;
  3287. }
  3288. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3289. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3290. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3291. node->n_cpus = 0;
  3292. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3293. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3294. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3295. if (stat(path, &st) == 0) {
  3296. node->cpus[node->n_cpus++] = c;
  3297. GGML_PRINT_DEBUG(" %u", c);
  3298. }
  3299. }
  3300. GGML_PRINT_DEBUG("\n");
  3301. }
  3302. if (ggml_is_numa()) {
  3303. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3304. if (fptr != NULL) {
  3305. char buf[42];
  3306. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3307. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3308. }
  3309. fclose(fptr);
  3310. }
  3311. }
  3312. #else
  3313. // TODO
  3314. #endif
  3315. }
  3316. bool ggml_is_numa(void) {
  3317. return g_state.numa.n_nodes > 1;
  3318. }
  3319. ////////////////////////////////////////////////////////////////////////////////
  3320. void ggml_print_object(const struct ggml_object * obj) {
  3321. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3322. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3323. }
  3324. void ggml_print_objects(const struct ggml_context * ctx) {
  3325. struct ggml_object * obj = ctx->objects_begin;
  3326. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3327. while (obj != NULL) {
  3328. ggml_print_object(obj);
  3329. obj = obj->next;
  3330. }
  3331. GGML_PRINT("%s: --- end ---\n", __func__);
  3332. }
  3333. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3334. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3335. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3336. }
  3337. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3338. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3339. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3340. }
  3341. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3342. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3343. // this should handle cases where the tensor is not contiguous in memory
  3344. // probaby just:
  3345. //
  3346. // return tensor->ne[3]*tensor->nb[3]
  3347. //
  3348. // is enough, but just in case, adding the second part
  3349. return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], ggml_nelements(tensor)*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type), GGML_MEM_ALIGN);
  3350. }
  3351. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3354. }
  3355. int ggml_blck_size(enum ggml_type type) {
  3356. return type_traits[type].blck_size;
  3357. }
  3358. size_t ggml_type_size(enum ggml_type type) {
  3359. return type_traits[type].type_size;
  3360. }
  3361. float ggml_type_sizef(enum ggml_type type) {
  3362. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3363. }
  3364. const char * ggml_type_name(enum ggml_type type) {
  3365. return type_traits[type].type_name;
  3366. }
  3367. bool ggml_is_quantized(enum ggml_type type) {
  3368. return type_traits[type].is_quantized;
  3369. }
  3370. const char * ggml_op_name(enum ggml_op op) {
  3371. return GGML_OP_NAME[op];
  3372. }
  3373. const char * ggml_op_symbol(enum ggml_op op) {
  3374. return GGML_OP_SYMBOL[op];
  3375. }
  3376. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3377. return ggml_type_size(tensor->type);
  3378. }
  3379. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3380. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3381. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3382. }
  3383. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3384. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3385. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3386. }
  3387. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3390. }
  3391. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3392. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3393. return (t0->ne[0] == t1->ne[0]) &&
  3394. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3395. (t1->ne[3]%t0->ne[3] == 0);
  3396. }
  3397. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3399. return
  3400. (t0->ne[1] == t1->ne[1]) &&
  3401. (t0->ne[2] == t1->ne[2]) &&
  3402. (t0->ne[3] == t1->ne[3]);
  3403. }
  3404. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3405. enum ggml_type wtype = GGML_TYPE_COUNT;
  3406. switch (ftype) {
  3407. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3408. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3409. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3410. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3411. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3412. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3413. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3414. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3415. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3416. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3417. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3418. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3419. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3420. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3421. }
  3422. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3423. return wtype;
  3424. }
  3425. size_t ggml_tensor_overhead(void) {
  3426. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3427. }
  3428. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3429. return tensor->nb[0] > tensor->nb[1];
  3430. }
  3431. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3432. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3433. return
  3434. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3435. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3436. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3437. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3438. }
  3439. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3440. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3441. return
  3442. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3443. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3444. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3445. }
  3446. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3447. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3448. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3449. }
  3450. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return
  3453. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3454. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3455. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3456. }
  3457. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3458. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3459. return
  3460. (t0->ne[0] == t1->ne[0] ) &&
  3461. (t0->ne[1] == t1->ne[1] ) &&
  3462. (t0->ne[2] == t1->ne[2] ) &&
  3463. (t0->ne[3] == t1->ne[3] );
  3464. }
  3465. // check if t1 can be represented as a repeatition of t0
  3466. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3467. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3468. return
  3469. (t1->ne[0]%t0->ne[0] == 0) &&
  3470. (t1->ne[1]%t0->ne[1] == 0) &&
  3471. (t1->ne[2]%t0->ne[2] == 0) &&
  3472. (t1->ne[3]%t0->ne[3] == 0);
  3473. }
  3474. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3475. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3476. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3477. }
  3478. static inline int ggml_up32(int n) {
  3479. return (n + 31) & ~31;
  3480. }
  3481. //static inline int ggml_up64(int n) {
  3482. // return (n + 63) & ~63;
  3483. //}
  3484. static inline int ggml_up(int n, int m) {
  3485. // assert m is a power of 2
  3486. GGML_ASSERT((m & (m - 1)) == 0);
  3487. return (n + m - 1) & ~(m - 1);
  3488. }
  3489. // assert that pointer is aligned to GGML_MEM_ALIGN
  3490. #define ggml_assert_aligned(ptr) \
  3491. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3492. ////////////////////////////////////////////////////////////////////////////////
  3493. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3494. // make this function thread safe
  3495. ggml_critical_section_start();
  3496. static bool is_first_call = true;
  3497. if (is_first_call) {
  3498. // initialize time system (required on Windows)
  3499. ggml_time_init();
  3500. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3501. {
  3502. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3503. ggml_fp16_t ii;
  3504. for (int i = 0; i < (1 << 16); ++i) {
  3505. uint16_t ui = i;
  3506. memcpy(&ii, &ui, sizeof(ii));
  3507. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3508. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3509. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3510. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3511. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3512. }
  3513. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3514. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3515. }
  3516. // initialize g_state
  3517. {
  3518. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3519. g_state = (struct ggml_state) {
  3520. /*.contexts =*/ { { 0 } },
  3521. /*.numa =*/ {
  3522. .n_nodes = 0,
  3523. .total_cpus = 0,
  3524. },
  3525. };
  3526. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3527. g_state.contexts[i].used = false;
  3528. }
  3529. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3530. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3531. }
  3532. #if defined(GGML_USE_CUBLAS)
  3533. ggml_init_cublas();
  3534. #elif defined(GGML_USE_CLBLAST)
  3535. ggml_cl_init();
  3536. #endif
  3537. ggml_setup_op_has_task_pass();
  3538. is_first_call = false;
  3539. }
  3540. // find non-used context in g_state
  3541. struct ggml_context * ctx = NULL;
  3542. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3543. if (!g_state.contexts[i].used) {
  3544. g_state.contexts[i].used = true;
  3545. ctx = &g_state.contexts[i].context;
  3546. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3547. break;
  3548. }
  3549. }
  3550. if (ctx == NULL) {
  3551. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3552. ggml_critical_section_end();
  3553. return NULL;
  3554. }
  3555. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3556. *ctx = (struct ggml_context) {
  3557. /*.mem_size =*/ mem_size,
  3558. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3559. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3560. /*.no_alloc =*/ params.no_alloc,
  3561. /*.no_alloc_save =*/ params.no_alloc,
  3562. /*.n_objects =*/ 0,
  3563. /*.objects_begin =*/ NULL,
  3564. /*.objects_end =*/ NULL,
  3565. /*.scratch =*/ { 0, 0, NULL, },
  3566. /*.scratch_save =*/ { 0, 0, NULL, },
  3567. };
  3568. GGML_ASSERT(ctx->mem_buffer != NULL);
  3569. ggml_assert_aligned(ctx->mem_buffer);
  3570. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3571. ggml_critical_section_end();
  3572. return ctx;
  3573. }
  3574. void ggml_free(struct ggml_context * ctx) {
  3575. // make this function thread safe
  3576. ggml_critical_section_start();
  3577. bool found = false;
  3578. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3579. if (&g_state.contexts[i].context == ctx) {
  3580. g_state.contexts[i].used = false;
  3581. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3582. __func__, i, ggml_used_mem(ctx));
  3583. if (ctx->mem_buffer_owned) {
  3584. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3585. }
  3586. found = true;
  3587. break;
  3588. }
  3589. }
  3590. if (!found) {
  3591. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3592. }
  3593. ggml_critical_section_end();
  3594. }
  3595. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3596. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3597. }
  3598. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3599. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3600. ctx->scratch = scratch;
  3601. return result;
  3602. }
  3603. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3604. return ctx->no_alloc;
  3605. }
  3606. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3607. ctx->no_alloc = no_alloc;
  3608. }
  3609. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3610. return ctx->mem_buffer;
  3611. }
  3612. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3613. return ctx->mem_size;
  3614. }
  3615. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3616. size_t max_size = 0;
  3617. struct ggml_object * obj = ctx->objects_begin;
  3618. while (obj != NULL) {
  3619. if (obj->type == GGML_OBJECT_TENSOR) {
  3620. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3621. const size_t size = ggml_nbytes(tensor);
  3622. if (max_size < size) {
  3623. max_size = size;
  3624. }
  3625. }
  3626. obj = obj->next;
  3627. }
  3628. return max_size;
  3629. }
  3630. // IMPORTANT:
  3631. // when creating "opt" tensors, always save and load the scratch buffer
  3632. // this is an error prone process, but it is necessary to support inplace
  3633. // operators when using scratch buffers
  3634. // TODO: implement a better way
  3635. static void ggml_scratch_save(struct ggml_context * ctx) {
  3636. // this is needed to allow opt tensors to store their data
  3637. // TODO: again, need to find a better way
  3638. ctx->no_alloc_save = ctx->no_alloc;
  3639. ctx->no_alloc = false;
  3640. ctx->scratch_save = ctx->scratch;
  3641. ctx->scratch.data = NULL;
  3642. }
  3643. static void ggml_scratch_load(struct ggml_context * ctx) {
  3644. ctx->no_alloc = ctx->no_alloc_save;
  3645. ctx->scratch = ctx->scratch_save;
  3646. }
  3647. ////////////////////////////////////////////////////////////////////////////////
  3648. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3649. // always insert objects at the end of the context's memory pool
  3650. struct ggml_object * obj_cur = ctx->objects_end;
  3651. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3652. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3653. const size_t cur_end = cur_offs + cur_size;
  3654. // align to GGML_MEM_ALIGN
  3655. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3656. char * const mem_buffer = ctx->mem_buffer;
  3657. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3658. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3659. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3660. __func__, cur_end + size_needed, ctx->mem_size);
  3661. assert(false);
  3662. return NULL;
  3663. }
  3664. *obj_new = (struct ggml_object) {
  3665. .offs = cur_end + GGML_OBJECT_SIZE,
  3666. .size = size_needed,
  3667. .next = NULL,
  3668. .type = type,
  3669. };
  3670. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3671. if (obj_cur != NULL) {
  3672. obj_cur->next = obj_new;
  3673. } else {
  3674. // this is the first object in this context
  3675. ctx->objects_begin = obj_new;
  3676. }
  3677. ctx->objects_end = obj_new;
  3678. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3679. return obj_new;
  3680. }
  3681. static struct ggml_tensor * ggml_new_tensor_impl(
  3682. struct ggml_context * ctx,
  3683. enum ggml_type type,
  3684. int n_dims,
  3685. const int64_t * ne,
  3686. void * data) {
  3687. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3688. size_t data_size = 0;
  3689. if (data == NULL && !ctx->no_alloc) {
  3690. data_size += ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3691. for (int i = 1; i < n_dims; i++) {
  3692. data_size *= ne[i];
  3693. }
  3694. }
  3695. if (ctx->scratch.data != NULL && data == NULL) {
  3696. // allocate tensor data in the scratch buffer
  3697. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3698. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3699. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3700. assert(false);
  3701. return NULL;
  3702. }
  3703. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3704. ctx->scratch.offs += data_size;
  3705. data_size = 0;
  3706. }
  3707. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + data_size);
  3708. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3709. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3710. *result = (struct ggml_tensor) {
  3711. /*.type =*/ type,
  3712. /*.backend =*/ GGML_BACKEND_CPU,
  3713. /*.n_dims =*/ n_dims,
  3714. /*.ne =*/ { 1, 1, 1, 1 },
  3715. /*.nb =*/ { 0, 0, 0, 0 },
  3716. /*.op =*/ GGML_OP_NONE,
  3717. /*.op_params =*/ { 0 },
  3718. /*.is_param =*/ false,
  3719. /*.grad =*/ NULL,
  3720. /*.src =*/ { NULL },
  3721. /*.perf_runs =*/ 0,
  3722. /*.perf_cycles =*/ 0,
  3723. /*.perf_time_us =*/ 0,
  3724. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3725. /*.name =*/ { 0 },
  3726. /*.extra =*/ NULL,
  3727. /*.padding =*/ { 0 },
  3728. };
  3729. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3730. //ggml_assert_aligned(result->data);
  3731. for (int i = 0; i < n_dims; i++) {
  3732. result->ne[i] = ne[i];
  3733. }
  3734. result->nb[0] = ggml_type_size(type);
  3735. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3736. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3737. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3738. }
  3739. ctx->n_objects++;
  3740. return result;
  3741. }
  3742. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3743. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3744. assert(params_size <= GGML_MAX_OP_PARAMS);
  3745. memcpy(tensor->op_params, params, params_size);
  3746. }
  3747. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3748. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3749. return ((const int32_t *)(tensor->op_params))[i];
  3750. }
  3751. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3752. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3753. ((int32_t *)(tensor->op_params))[i] = value;
  3754. }
  3755. struct ggml_tensor * ggml_new_tensor(
  3756. struct ggml_context * ctx,
  3757. enum ggml_type type,
  3758. int n_dims,
  3759. const int64_t * ne) {
  3760. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3761. }
  3762. struct ggml_tensor * ggml_new_tensor_1d(
  3763. struct ggml_context * ctx,
  3764. enum ggml_type type,
  3765. int64_t ne0) {
  3766. return ggml_new_tensor(ctx, type, 1, &ne0);
  3767. }
  3768. struct ggml_tensor * ggml_new_tensor_2d(
  3769. struct ggml_context * ctx,
  3770. enum ggml_type type,
  3771. int64_t ne0,
  3772. int64_t ne1) {
  3773. const int64_t ne[2] = { ne0, ne1 };
  3774. return ggml_new_tensor(ctx, type, 2, ne);
  3775. }
  3776. struct ggml_tensor * ggml_new_tensor_3d(
  3777. struct ggml_context * ctx,
  3778. enum ggml_type type,
  3779. int64_t ne0,
  3780. int64_t ne1,
  3781. int64_t ne2) {
  3782. const int64_t ne[3] = { ne0, ne1, ne2 };
  3783. return ggml_new_tensor(ctx, type, 3, ne);
  3784. }
  3785. struct ggml_tensor * ggml_new_tensor_4d(
  3786. struct ggml_context * ctx,
  3787. enum ggml_type type,
  3788. int64_t ne0,
  3789. int64_t ne1,
  3790. int64_t ne2,
  3791. int64_t ne3) {
  3792. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3793. return ggml_new_tensor(ctx, type, 4, ne);
  3794. }
  3795. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3796. ggml_scratch_save(ctx);
  3797. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3798. ggml_scratch_load(ctx);
  3799. ggml_set_i32(result, value);
  3800. return result;
  3801. }
  3802. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3803. ggml_scratch_save(ctx);
  3804. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3805. ggml_scratch_load(ctx);
  3806. ggml_set_f32(result, value);
  3807. return result;
  3808. }
  3809. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3810. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3811. }
  3812. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3813. memset(tensor->data, 0, ggml_nbytes(tensor));
  3814. return tensor;
  3815. }
  3816. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3817. const int n = ggml_nrows(tensor);
  3818. const int nc = tensor->ne[0];
  3819. const size_t n1 = tensor->nb[1];
  3820. char * const data = tensor->data;
  3821. switch (tensor->type) {
  3822. case GGML_TYPE_I8:
  3823. {
  3824. assert(tensor->nb[0] == sizeof(int8_t));
  3825. for (int i = 0; i < n; i++) {
  3826. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3827. }
  3828. } break;
  3829. case GGML_TYPE_I16:
  3830. {
  3831. assert(tensor->nb[0] == sizeof(int16_t));
  3832. for (int i = 0; i < n; i++) {
  3833. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3834. }
  3835. } break;
  3836. case GGML_TYPE_I32:
  3837. {
  3838. assert(tensor->nb[0] == sizeof(int32_t));
  3839. for (int i = 0; i < n; i++) {
  3840. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3841. }
  3842. } break;
  3843. case GGML_TYPE_F16:
  3844. {
  3845. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3846. for (int i = 0; i < n; i++) {
  3847. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3848. }
  3849. } break;
  3850. case GGML_TYPE_F32:
  3851. {
  3852. assert(tensor->nb[0] == sizeof(float));
  3853. for (int i = 0; i < n; i++) {
  3854. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3855. }
  3856. } break;
  3857. default:
  3858. {
  3859. GGML_ASSERT(false);
  3860. } break;
  3861. }
  3862. return tensor;
  3863. }
  3864. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3865. const int n = ggml_nrows(tensor);
  3866. const int nc = tensor->ne[0];
  3867. const size_t n1 = tensor->nb[1];
  3868. char * const data = tensor->data;
  3869. switch (tensor->type) {
  3870. case GGML_TYPE_I8:
  3871. {
  3872. assert(tensor->nb[0] == sizeof(int8_t));
  3873. for (int i = 0; i < n; i++) {
  3874. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3875. }
  3876. } break;
  3877. case GGML_TYPE_I16:
  3878. {
  3879. assert(tensor->nb[0] == sizeof(int16_t));
  3880. for (int i = 0; i < n; i++) {
  3881. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3882. }
  3883. } break;
  3884. case GGML_TYPE_I32:
  3885. {
  3886. assert(tensor->nb[0] == sizeof(int32_t));
  3887. for (int i = 0; i < n; i++) {
  3888. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3889. }
  3890. } break;
  3891. case GGML_TYPE_F16:
  3892. {
  3893. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3894. for (int i = 0; i < n; i++) {
  3895. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3896. }
  3897. } break;
  3898. case GGML_TYPE_F32:
  3899. {
  3900. assert(tensor->nb[0] == sizeof(float));
  3901. for (int i = 0; i < n; i++) {
  3902. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3903. }
  3904. } break;
  3905. default:
  3906. {
  3907. GGML_ASSERT(false);
  3908. } break;
  3909. }
  3910. return tensor;
  3911. }
  3912. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3913. switch (tensor->type) {
  3914. case GGML_TYPE_I8:
  3915. {
  3916. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3917. return ((int8_t *)(tensor->data))[i];
  3918. } break;
  3919. case GGML_TYPE_I16:
  3920. {
  3921. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3922. return ((int16_t *)(tensor->data))[i];
  3923. } break;
  3924. case GGML_TYPE_I32:
  3925. {
  3926. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3927. return ((int32_t *)(tensor->data))[i];
  3928. } break;
  3929. case GGML_TYPE_F16:
  3930. {
  3931. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3932. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3933. } break;
  3934. case GGML_TYPE_F32:
  3935. {
  3936. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3937. return ((float *)(tensor->data))[i];
  3938. } break;
  3939. default:
  3940. {
  3941. GGML_ASSERT(false);
  3942. } break;
  3943. }
  3944. return 0.0f;
  3945. }
  3946. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3947. switch (tensor->type) {
  3948. case GGML_TYPE_I8:
  3949. {
  3950. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3951. ((int8_t *)(tensor->data))[i] = value;
  3952. } break;
  3953. case GGML_TYPE_I16:
  3954. {
  3955. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3956. ((int16_t *)(tensor->data))[i] = value;
  3957. } break;
  3958. case GGML_TYPE_I32:
  3959. {
  3960. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3961. ((int32_t *)(tensor->data))[i] = value;
  3962. } break;
  3963. case GGML_TYPE_F16:
  3964. {
  3965. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3966. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3967. } break;
  3968. case GGML_TYPE_F32:
  3969. {
  3970. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3971. ((float *)(tensor->data))[i] = value;
  3972. } break;
  3973. default:
  3974. {
  3975. GGML_ASSERT(false);
  3976. } break;
  3977. }
  3978. }
  3979. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3980. switch (tensor->type) {
  3981. case GGML_TYPE_I8:
  3982. {
  3983. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3984. return ((int8_t *)(tensor->data))[i];
  3985. } break;
  3986. case GGML_TYPE_I16:
  3987. {
  3988. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3989. return ((int16_t *)(tensor->data))[i];
  3990. } break;
  3991. case GGML_TYPE_I32:
  3992. {
  3993. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3994. return ((int32_t *)(tensor->data))[i];
  3995. } break;
  3996. case GGML_TYPE_F16:
  3997. {
  3998. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3999. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4000. } break;
  4001. case GGML_TYPE_F32:
  4002. {
  4003. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4004. return ((float *)(tensor->data))[i];
  4005. } break;
  4006. default:
  4007. {
  4008. GGML_ASSERT(false);
  4009. } break;
  4010. }
  4011. return 0.0f;
  4012. }
  4013. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4014. switch (tensor->type) {
  4015. case GGML_TYPE_I8:
  4016. {
  4017. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4018. ((int8_t *)(tensor->data))[i] = value;
  4019. } break;
  4020. case GGML_TYPE_I16:
  4021. {
  4022. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4023. ((int16_t *)(tensor->data))[i] = value;
  4024. } break;
  4025. case GGML_TYPE_I32:
  4026. {
  4027. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4028. ((int32_t *)(tensor->data))[i] = value;
  4029. } break;
  4030. case GGML_TYPE_F16:
  4031. {
  4032. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4033. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4034. } break;
  4035. case GGML_TYPE_F32:
  4036. {
  4037. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4038. ((float *)(tensor->data))[i] = value;
  4039. } break;
  4040. default:
  4041. {
  4042. GGML_ASSERT(false);
  4043. } break;
  4044. }
  4045. }
  4046. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4047. return tensor->data;
  4048. }
  4049. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4050. assert(tensor->type == GGML_TYPE_F32);
  4051. return (float *)(tensor->data);
  4052. }
  4053. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4054. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4055. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4056. }
  4057. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4058. return tensor->name;
  4059. }
  4060. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4061. strncpy(tensor->name, name, sizeof(tensor->name));
  4062. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4063. return tensor;
  4064. }
  4065. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4066. va_list args;
  4067. va_start(args, fmt);
  4068. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4069. va_end(args);
  4070. return tensor;
  4071. }
  4072. struct ggml_tensor * ggml_view_tensor(
  4073. struct ggml_context * ctx,
  4074. const struct ggml_tensor * src) {
  4075. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4076. ggml_format_name(result, "%s (view)", src->name);
  4077. result->nb[0] = src->nb[0];
  4078. result->nb[1] = src->nb[1];
  4079. result->nb[2] = src->nb[2];
  4080. result->nb[3] = src->nb[3];
  4081. return result;
  4082. }
  4083. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4084. struct ggml_object * obj = ctx->objects_begin;
  4085. char * const mem_buffer = ctx->mem_buffer;
  4086. while (obj != NULL) {
  4087. if (obj->type == GGML_OBJECT_TENSOR) {
  4088. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4089. if (strcmp(cur->name, name) == 0) {
  4090. return cur;
  4091. }
  4092. }
  4093. obj = obj->next;
  4094. }
  4095. return NULL;
  4096. }
  4097. ////////////////////////////////////////////////////////////////////////////////
  4098. // ggml_dup
  4099. static struct ggml_tensor * ggml_dup_impl(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. bool inplace) {
  4103. bool is_node = false;
  4104. if (!inplace && (a->grad)) {
  4105. is_node = true;
  4106. }
  4107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4108. result->op = GGML_OP_DUP;
  4109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4110. result->src[0] = a;
  4111. return result;
  4112. }
  4113. struct ggml_tensor * ggml_dup(
  4114. struct ggml_context * ctx,
  4115. struct ggml_tensor * a) {
  4116. return ggml_dup_impl(ctx, a, false);
  4117. }
  4118. struct ggml_tensor * ggml_dup_inplace(
  4119. struct ggml_context * ctx,
  4120. struct ggml_tensor * a) {
  4121. return ggml_dup_impl(ctx, a, true);
  4122. }
  4123. // ggml_add
  4124. static struct ggml_tensor * ggml_add_impl(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b,
  4128. bool inplace) {
  4129. // TODO: support less-strict constraint
  4130. // GGML_ASSERT(ggml_can_repeat(b, a));
  4131. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4132. bool is_node = false;
  4133. if (!inplace && (a->grad || b->grad)) {
  4134. // TODO: support backward pass for broadcasting
  4135. GGML_ASSERT(ggml_are_same_shape(a, b));
  4136. is_node = true;
  4137. }
  4138. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4139. result->op = GGML_OP_ADD;
  4140. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4141. result->src[0] = a;
  4142. result->src[1] = b;
  4143. return result;
  4144. }
  4145. struct ggml_tensor * ggml_add(
  4146. struct ggml_context * ctx,
  4147. struct ggml_tensor * a,
  4148. struct ggml_tensor * b) {
  4149. return ggml_add_impl(ctx, a, b, false);
  4150. }
  4151. struct ggml_tensor * ggml_add_inplace(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b) {
  4155. return ggml_add_impl(ctx, a, b, true);
  4156. }
  4157. // ggml_add1
  4158. static struct ggml_tensor * ggml_add1_impl(
  4159. struct ggml_context * ctx,
  4160. struct ggml_tensor * a,
  4161. struct ggml_tensor * b,
  4162. bool inplace) {
  4163. GGML_ASSERT(ggml_is_scalar(b));
  4164. GGML_ASSERT(ggml_is_padded_1d(a));
  4165. bool is_node = false;
  4166. if (a->grad || b->grad) {
  4167. is_node = true;
  4168. }
  4169. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4170. result->op = GGML_OP_ADD1;
  4171. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4172. result->src[0] = a;
  4173. result->src[1] = b;
  4174. return result;
  4175. }
  4176. struct ggml_tensor * ggml_add1(
  4177. struct ggml_context * ctx,
  4178. struct ggml_tensor * a,
  4179. struct ggml_tensor * b) {
  4180. return ggml_add1_impl(ctx, a, b, false);
  4181. }
  4182. struct ggml_tensor * ggml_add1_inplace(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b) {
  4186. return ggml_add1_impl(ctx, a, b, true);
  4187. }
  4188. // ggml_acc
  4189. static struct ggml_tensor * ggml_acc_impl(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. struct ggml_tensor * b,
  4193. size_t nb1,
  4194. size_t nb2,
  4195. size_t nb3,
  4196. size_t offset,
  4197. bool inplace) {
  4198. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4199. GGML_ASSERT(ggml_is_contiguous(a));
  4200. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4201. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4202. bool is_node = false;
  4203. if (!inplace && (a->grad || b->grad)) {
  4204. is_node = true;
  4205. }
  4206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4207. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4208. ggml_set_op_params(result, params, sizeof(params));
  4209. result->op = GGML_OP_ACC;
  4210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4211. result->src[0] = a;
  4212. result->src[1] = b;
  4213. return result;
  4214. }
  4215. struct ggml_tensor * ggml_acc(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t nb1,
  4220. size_t nb2,
  4221. size_t nb3,
  4222. size_t offset) {
  4223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4224. }
  4225. struct ggml_tensor * ggml_acc_inplace(
  4226. struct ggml_context * ctx,
  4227. struct ggml_tensor * a,
  4228. struct ggml_tensor * b,
  4229. size_t nb1,
  4230. size_t nb2,
  4231. size_t nb3,
  4232. size_t offset) {
  4233. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4234. }
  4235. // ggml_sub
  4236. static struct ggml_tensor * ggml_sub_impl(
  4237. struct ggml_context * ctx,
  4238. struct ggml_tensor * a,
  4239. struct ggml_tensor * b,
  4240. bool inplace) {
  4241. GGML_ASSERT(ggml_are_same_shape(a, b));
  4242. bool is_node = false;
  4243. if (!inplace && (a->grad || b->grad)) {
  4244. is_node = true;
  4245. }
  4246. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4247. result->op = GGML_OP_SUB;
  4248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4249. result->src[0] = a;
  4250. result->src[1] = b;
  4251. return result;
  4252. }
  4253. struct ggml_tensor * ggml_sub(
  4254. struct ggml_context * ctx,
  4255. struct ggml_tensor * a,
  4256. struct ggml_tensor * b) {
  4257. return ggml_sub_impl(ctx, a, b, false);
  4258. }
  4259. struct ggml_tensor * ggml_sub_inplace(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b) {
  4263. return ggml_sub_impl(ctx, a, b, true);
  4264. }
  4265. // ggml_mul
  4266. static struct ggml_tensor * ggml_mul_impl(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a,
  4269. struct ggml_tensor * b,
  4270. bool inplace) {
  4271. // TODO: support less-strict constraint
  4272. // GGML_ASSERT(ggml_can_repeat(b, a));
  4273. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4274. bool is_node = false;
  4275. if (!inplace && (a->grad || b->grad)) {
  4276. // TODO: support backward pass for broadcasting
  4277. GGML_ASSERT(ggml_are_same_shape(a, b));
  4278. is_node = true;
  4279. }
  4280. if (inplace) {
  4281. GGML_ASSERT(is_node == false);
  4282. }
  4283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4284. result->op = GGML_OP_MUL;
  4285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4286. result->src[0] = a;
  4287. result->src[1] = b;
  4288. return result;
  4289. }
  4290. struct ggml_tensor * ggml_mul(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * b) {
  4294. return ggml_mul_impl(ctx, a, b, false);
  4295. }
  4296. struct ggml_tensor * ggml_mul_inplace(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_mul_impl(ctx, a, b, true);
  4301. }
  4302. // ggml_div
  4303. static struct ggml_tensor * ggml_div_impl(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b,
  4307. bool inplace) {
  4308. GGML_ASSERT(ggml_are_same_shape(a, b));
  4309. bool is_node = false;
  4310. if (!inplace && (a->grad || b->grad)) {
  4311. is_node = true;
  4312. }
  4313. if (inplace) {
  4314. GGML_ASSERT(is_node == false);
  4315. }
  4316. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4317. result->op = GGML_OP_DIV;
  4318. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4319. result->src[0] = a;
  4320. result->src[1] = b;
  4321. return result;
  4322. }
  4323. struct ggml_tensor * ggml_div(
  4324. struct ggml_context * ctx,
  4325. struct ggml_tensor * a,
  4326. struct ggml_tensor * b) {
  4327. return ggml_div_impl(ctx, a, b, false);
  4328. }
  4329. struct ggml_tensor * ggml_div_inplace(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b) {
  4333. return ggml_div_impl(ctx, a, b, true);
  4334. }
  4335. // ggml_sqr
  4336. static struct ggml_tensor * ggml_sqr_impl(
  4337. struct ggml_context * ctx,
  4338. struct ggml_tensor * a,
  4339. bool inplace) {
  4340. bool is_node = false;
  4341. if (!inplace && (a->grad)) {
  4342. is_node = true;
  4343. }
  4344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4345. result->op = GGML_OP_SQR;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src[0] = a;
  4348. return result;
  4349. }
  4350. struct ggml_tensor * ggml_sqr(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_sqr_impl(ctx, a, false);
  4354. }
  4355. struct ggml_tensor * ggml_sqr_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a) {
  4358. return ggml_sqr_impl(ctx, a, true);
  4359. }
  4360. // ggml_sqrt
  4361. static struct ggml_tensor * ggml_sqrt_impl(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a,
  4364. bool inplace) {
  4365. bool is_node = false;
  4366. if (!inplace && (a->grad)) {
  4367. is_node = true;
  4368. }
  4369. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4370. result->op = GGML_OP_SQRT;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. struct ggml_tensor * ggml_sqrt(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a) {
  4378. return ggml_sqrt_impl(ctx, a, false);
  4379. }
  4380. struct ggml_tensor * ggml_sqrt_inplace(
  4381. struct ggml_context * ctx,
  4382. struct ggml_tensor * a) {
  4383. return ggml_sqrt_impl(ctx, a, true);
  4384. }
  4385. // ggml_log
  4386. static struct ggml_tensor * ggml_log_impl(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. bool inplace) {
  4390. bool is_node = false;
  4391. if (!inplace && (a->grad)) {
  4392. is_node = true;
  4393. }
  4394. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4395. result->op = GGML_OP_LOG;
  4396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4397. result->src[0] = a;
  4398. return result;
  4399. }
  4400. struct ggml_tensor * ggml_log(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a) {
  4403. return ggml_log_impl(ctx, a, false);
  4404. }
  4405. struct ggml_tensor * ggml_log_inplace(
  4406. struct ggml_context * ctx,
  4407. struct ggml_tensor * a) {
  4408. return ggml_log_impl(ctx, a, true);
  4409. }
  4410. // ggml_sum
  4411. struct ggml_tensor * ggml_sum(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a) {
  4414. bool is_node = false;
  4415. if (a->grad) {
  4416. is_node = true;
  4417. }
  4418. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4419. result->op = GGML_OP_SUM;
  4420. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4421. result->src[0] = a;
  4422. return result;
  4423. }
  4424. // ggml_sum_rows
  4425. struct ggml_tensor * ggml_sum_rows(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a) {
  4428. bool is_node = false;
  4429. if (a->grad) {
  4430. is_node = true;
  4431. }
  4432. int64_t ne[4] = {1,1,1,1};
  4433. for (int i=1; i<a->n_dims; ++i) {
  4434. ne[i] = a->ne[i];
  4435. }
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4437. result->op = GGML_OP_SUM_ROWS;
  4438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4439. result->src[0] = a;
  4440. return result;
  4441. }
  4442. // ggml_mean
  4443. struct ggml_tensor * ggml_mean(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a) {
  4446. bool is_node = false;
  4447. if (a->grad) {
  4448. GGML_ASSERT(false); // TODO: implement
  4449. is_node = true;
  4450. }
  4451. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4452. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4453. result->op = GGML_OP_MEAN;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src[0] = a;
  4456. return result;
  4457. }
  4458. // ggml_argmax
  4459. struct ggml_tensor * ggml_argmax(
  4460. struct ggml_context * ctx,
  4461. struct ggml_tensor * a) {
  4462. GGML_ASSERT(ggml_is_matrix(a));
  4463. bool is_node = false;
  4464. if (a->grad) {
  4465. GGML_ASSERT(false);
  4466. is_node = true;
  4467. }
  4468. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4469. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4470. result->op = GGML_OP_ARGMAX;
  4471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4472. result->src[0] = a;
  4473. return result;
  4474. }
  4475. // ggml_repeat
  4476. struct ggml_tensor * ggml_repeat(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b) {
  4480. GGML_ASSERT(ggml_can_repeat(a, b));
  4481. bool is_node = false;
  4482. if (a->grad) {
  4483. is_node = true;
  4484. }
  4485. if (ggml_are_same_shape(a, b) && !is_node) {
  4486. return a;
  4487. }
  4488. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4489. result->op = GGML_OP_REPEAT;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src[0] = a;
  4492. result->src[1] = b;
  4493. return result;
  4494. }
  4495. // ggml_repeat_back
  4496. struct ggml_tensor * ggml_repeat_back(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b) {
  4500. GGML_ASSERT(ggml_can_repeat(b, a));
  4501. bool is_node = false;
  4502. if (a->grad) {
  4503. is_node = true;
  4504. }
  4505. if (ggml_are_same_shape(a, b) && !is_node) {
  4506. return a;
  4507. }
  4508. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4509. result->op = GGML_OP_REPEAT_BACK;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. // ggml_abs
  4516. struct ggml_tensor * ggml_abs(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a) {
  4519. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4520. }
  4521. struct ggml_tensor * ggml_abs_inplace(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a) {
  4524. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4525. }
  4526. // ggml_sgn
  4527. struct ggml_tensor * ggml_sgn(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4531. }
  4532. struct ggml_tensor * ggml_sgn_inplace(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a) {
  4535. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4536. }
  4537. // ggml_neg
  4538. struct ggml_tensor * ggml_neg(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a) {
  4541. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4542. }
  4543. struct ggml_tensor * ggml_neg_inplace(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a) {
  4546. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4547. }
  4548. // ggml_step
  4549. struct ggml_tensor * ggml_step(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a) {
  4552. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4553. }
  4554. struct ggml_tensor * ggml_step_inplace(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4558. }
  4559. // ggml_tanh
  4560. struct ggml_tensor * ggml_tanh(
  4561. struct ggml_context * ctx,
  4562. struct ggml_tensor * a) {
  4563. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4564. }
  4565. struct ggml_tensor * ggml_tanh_inplace(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a) {
  4568. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4569. }
  4570. // ggml_elu
  4571. struct ggml_tensor * ggml_elu(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a) {
  4574. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4575. }
  4576. struct ggml_tensor * ggml_elu_inplace(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * a) {
  4579. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4580. }
  4581. // ggml_relu
  4582. struct ggml_tensor * ggml_relu(
  4583. struct ggml_context * ctx,
  4584. struct ggml_tensor * a) {
  4585. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4586. }
  4587. struct ggml_tensor * ggml_relu_inplace(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a) {
  4590. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4591. }
  4592. // ggml_gelu
  4593. struct ggml_tensor * ggml_gelu(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a) {
  4596. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4597. }
  4598. struct ggml_tensor * ggml_gelu_inplace(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a) {
  4601. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4602. }
  4603. // ggml_gelu_quick
  4604. struct ggml_tensor * ggml_gelu_quick(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a) {
  4607. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4608. }
  4609. struct ggml_tensor * ggml_gelu_quick_inplace(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4613. }
  4614. // ggml_silu
  4615. struct ggml_tensor * ggml_silu(
  4616. struct ggml_context * ctx,
  4617. struct ggml_tensor * a) {
  4618. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4619. }
  4620. struct ggml_tensor * ggml_silu_inplace(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a) {
  4623. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4624. }
  4625. // ggml_silu_back
  4626. struct ggml_tensor * ggml_silu_back(
  4627. struct ggml_context * ctx,
  4628. struct ggml_tensor * a,
  4629. struct ggml_tensor * b) {
  4630. bool is_node = false;
  4631. if (a->grad || b->grad) {
  4632. // TODO: implement backward
  4633. is_node = true;
  4634. }
  4635. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4636. result->op = GGML_OP_SILU_BACK;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. // ggml_norm
  4643. static struct ggml_tensor * ggml_norm_impl(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. bool inplace) {
  4647. bool is_node = false;
  4648. if (!inplace && (a->grad)) {
  4649. GGML_ASSERT(false); // TODO: implement backward
  4650. is_node = true;
  4651. }
  4652. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4653. // TODO: maybe store epsilon here?
  4654. result->op = GGML_OP_NORM;
  4655. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4656. result->src[0] = a;
  4657. return result;
  4658. }
  4659. struct ggml_tensor * ggml_norm(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a) {
  4662. return ggml_norm_impl(ctx, a, false);
  4663. }
  4664. struct ggml_tensor * ggml_norm_inplace(
  4665. struct ggml_context * ctx,
  4666. struct ggml_tensor * a) {
  4667. return ggml_norm_impl(ctx, a, true);
  4668. }
  4669. static struct ggml_tensor * ggml_rms_norm_impl(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. float eps,
  4673. bool inplace) {
  4674. bool is_node = false;
  4675. if (!inplace && (a->grad)) {
  4676. is_node = true;
  4677. }
  4678. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4679. ggml_set_op_params(result, &eps, sizeof(eps));
  4680. result->op = GGML_OP_RMS_NORM;
  4681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4682. result->src[0] = a;
  4683. return result;
  4684. }
  4685. struct ggml_tensor * ggml_rms_norm(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a,
  4688. float eps) {
  4689. return ggml_rms_norm_impl(ctx, a, eps, false);
  4690. }
  4691. struct ggml_tensor * ggml_rms_norm_inplace(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. float eps) {
  4695. return ggml_rms_norm_impl(ctx, a, eps, true);
  4696. }
  4697. struct ggml_tensor * ggml_rms_norm_back(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. struct ggml_tensor * b) {
  4701. bool is_node = false;
  4702. if (a->grad) {
  4703. // TODO: implement backward
  4704. is_node = true;
  4705. }
  4706. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4707. result->op = GGML_OP_RMS_NORM_BACK;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src[0] = a;
  4710. result->src[1] = b;
  4711. return result;
  4712. }
  4713. // ggml_mul_mat
  4714. struct ggml_tensor * ggml_mul_mat(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. struct ggml_tensor * b) {
  4718. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4719. GGML_ASSERT(!ggml_is_transposed(a));
  4720. bool is_node = false;
  4721. if (a->grad || b->grad) {
  4722. is_node = true;
  4723. }
  4724. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4725. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4726. result->op = GGML_OP_MUL_MAT;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src[0] = a;
  4729. result->src[1] = b;
  4730. return result;
  4731. }
  4732. // ggml_out_prod
  4733. struct ggml_tensor * ggml_out_prod(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. struct ggml_tensor * b) {
  4737. GGML_ASSERT(ggml_can_out_prod(a, b));
  4738. GGML_ASSERT(!ggml_is_transposed(a));
  4739. bool is_node = false;
  4740. if (a->grad || b->grad) {
  4741. is_node = true;
  4742. }
  4743. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4744. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4745. result->op = GGML_OP_OUT_PROD;
  4746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4747. result->src[0] = a;
  4748. result->src[1] = b;
  4749. return result;
  4750. }
  4751. // ggml_scale
  4752. static struct ggml_tensor * ggml_scale_impl(
  4753. struct ggml_context * ctx,
  4754. struct ggml_tensor * a,
  4755. struct ggml_tensor * b,
  4756. bool inplace) {
  4757. GGML_ASSERT(ggml_is_scalar(b));
  4758. GGML_ASSERT(ggml_is_padded_1d(a));
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. is_node = true;
  4762. }
  4763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4764. result->op = GGML_OP_SCALE;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. result->src[1] = b;
  4768. return result;
  4769. }
  4770. struct ggml_tensor * ggml_scale(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a,
  4773. struct ggml_tensor * b) {
  4774. return ggml_scale_impl(ctx, a, b, false);
  4775. }
  4776. struct ggml_tensor * ggml_scale_inplace(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. struct ggml_tensor * b) {
  4780. return ggml_scale_impl(ctx, a, b, true);
  4781. }
  4782. // ggml_set
  4783. static struct ggml_tensor * ggml_set_impl(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. struct ggml_tensor * b,
  4787. size_t nb1,
  4788. size_t nb2,
  4789. size_t nb3,
  4790. size_t offset,
  4791. bool inplace) {
  4792. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4793. bool is_node = false;
  4794. if (a->grad || b->grad) {
  4795. is_node = true;
  4796. }
  4797. // make a view of the destination
  4798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4799. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4800. ggml_set_op_params(result, params, sizeof(params));
  4801. result->op = GGML_OP_SET;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src[0] = a;
  4804. result->src[1] = b;
  4805. return result;
  4806. }
  4807. struct ggml_tensor * ggml_set(
  4808. struct ggml_context * ctx,
  4809. struct ggml_tensor * a,
  4810. struct ggml_tensor * b,
  4811. size_t nb1,
  4812. size_t nb2,
  4813. size_t nb3,
  4814. size_t offset) {
  4815. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4816. }
  4817. struct ggml_tensor * ggml_set_inplace(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. struct ggml_tensor * b,
  4821. size_t nb1,
  4822. size_t nb2,
  4823. size_t nb3,
  4824. size_t offset) {
  4825. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4826. }
  4827. struct ggml_tensor * ggml_set_1d(
  4828. struct ggml_context * ctx,
  4829. struct ggml_tensor * a,
  4830. struct ggml_tensor * b,
  4831. size_t offset) {
  4832. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4833. }
  4834. struct ggml_tensor * ggml_set_1d_inplace(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. struct ggml_tensor * b,
  4838. size_t offset) {
  4839. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4840. }
  4841. struct ggml_tensor * ggml_set_2d(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. struct ggml_tensor * b,
  4845. size_t nb1,
  4846. size_t offset) {
  4847. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4848. }
  4849. struct ggml_tensor * ggml_set_2d_inplace(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. struct ggml_tensor * b,
  4853. size_t nb1,
  4854. size_t offset) {
  4855. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4856. }
  4857. // ggml_cpy
  4858. static struct ggml_tensor * ggml_cpy_impl(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b,
  4862. bool inplace) {
  4863. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4864. bool is_node = false;
  4865. if (!inplace && (a->grad || b->grad)) {
  4866. is_node = true;
  4867. }
  4868. // make a view of the destination
  4869. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4870. if (strlen(b->name) > 0) {
  4871. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4872. } else {
  4873. ggml_format_name(result, "%s (copy)", a->name);
  4874. }
  4875. result->op = GGML_OP_CPY;
  4876. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4877. result->src[0] = a;
  4878. result->src[1] = b;
  4879. return result;
  4880. }
  4881. struct ggml_tensor * ggml_cpy(
  4882. struct ggml_context * ctx,
  4883. struct ggml_tensor * a,
  4884. struct ggml_tensor * b) {
  4885. return ggml_cpy_impl(ctx, a, b, false);
  4886. }
  4887. struct ggml_tensor * ggml_cpy_inplace(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b) {
  4891. return ggml_cpy_impl(ctx, a, b, true);
  4892. }
  4893. // ggml_cont
  4894. static struct ggml_tensor * ggml_cont_impl(
  4895. struct ggml_context * ctx,
  4896. struct ggml_tensor * a,
  4897. bool inplace) {
  4898. bool is_node = false;
  4899. if (!inplace && a->grad) {
  4900. is_node = true;
  4901. }
  4902. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4903. ggml_format_name(result, "%s (cont)", a->name);
  4904. result->op = GGML_OP_CONT;
  4905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4906. result->src[0] = a;
  4907. return result;
  4908. }
  4909. struct ggml_tensor * ggml_cont(
  4910. struct ggml_context * ctx,
  4911. struct ggml_tensor * a) {
  4912. return ggml_cont_impl(ctx, a, false);
  4913. }
  4914. struct ggml_tensor * ggml_cont_inplace(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a) {
  4917. return ggml_cont_impl(ctx, a, true);
  4918. }
  4919. // ggml_reshape
  4920. struct ggml_tensor * ggml_reshape(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. struct ggml_tensor * b) {
  4924. GGML_ASSERT(ggml_is_contiguous(a));
  4925. GGML_ASSERT(ggml_is_contiguous(b));
  4926. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4927. bool is_node = false;
  4928. if (a->grad) {
  4929. is_node = true;
  4930. }
  4931. if (b->grad) {
  4932. // gradient propagation is not supported
  4933. //GGML_ASSERT(false);
  4934. }
  4935. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4936. ggml_format_name(result, "%s (reshaped)", a->name);
  4937. result->op = GGML_OP_RESHAPE;
  4938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4939. result->src[0] = a;
  4940. return result;
  4941. }
  4942. struct ggml_tensor * ggml_reshape_1d(
  4943. struct ggml_context * ctx,
  4944. struct ggml_tensor * a,
  4945. int64_t ne0) {
  4946. GGML_ASSERT(ggml_is_contiguous(a));
  4947. GGML_ASSERT(ggml_nelements(a) == ne0);
  4948. bool is_node = false;
  4949. if (a->grad) {
  4950. is_node = true;
  4951. }
  4952. const int64_t ne[1] = { ne0 };
  4953. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4954. ggml_format_name(result, "%s (reshaped)", a->name);
  4955. result->op = GGML_OP_RESHAPE;
  4956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4957. result->src[0] = a;
  4958. return result;
  4959. }
  4960. struct ggml_tensor * ggml_reshape_2d(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. int64_t ne0,
  4964. int64_t ne1) {
  4965. GGML_ASSERT(ggml_is_contiguous(a));
  4966. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4967. bool is_node = false;
  4968. if (a->grad) {
  4969. is_node = true;
  4970. }
  4971. const int64_t ne[2] = { ne0, ne1 };
  4972. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4973. ggml_format_name(result, "%s (reshaped)", a->name);
  4974. result->op = GGML_OP_RESHAPE;
  4975. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4976. result->src[0] = a;
  4977. return result;
  4978. }
  4979. struct ggml_tensor * ggml_reshape_3d(
  4980. struct ggml_context * ctx,
  4981. struct ggml_tensor * a,
  4982. int64_t ne0,
  4983. int64_t ne1,
  4984. int64_t ne2) {
  4985. GGML_ASSERT(ggml_is_contiguous(a));
  4986. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4987. bool is_node = false;
  4988. if (a->grad) {
  4989. is_node = true;
  4990. }
  4991. const int64_t ne[3] = { ne0, ne1, ne2 };
  4992. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4993. ggml_format_name(result, "%s (reshaped)", a->name);
  4994. result->op = GGML_OP_RESHAPE;
  4995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4996. result->src[0] = a;
  4997. return result;
  4998. }
  4999. struct ggml_tensor * ggml_reshape_4d(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. int64_t ne0,
  5003. int64_t ne1,
  5004. int64_t ne2,
  5005. int64_t ne3) {
  5006. GGML_ASSERT(ggml_is_contiguous(a));
  5007. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5008. bool is_node = false;
  5009. if (a->grad) {
  5010. is_node = true;
  5011. }
  5012. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5013. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5014. ggml_format_name(result, "%s (reshaped)", a->name);
  5015. result->op = GGML_OP_RESHAPE;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src[0] = a;
  5018. return result;
  5019. }
  5020. // ggml_view_1d
  5021. static struct ggml_tensor * ggml_view_tensor_offset(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. int n_dims,
  5025. const int64_t * ne,
  5026. size_t offset) {
  5027. // don't calculate an offset from an unallocated tensor
  5028. void * data = NULL;
  5029. if (a->data != NULL) {
  5030. data = (char *) a->data + offset;
  5031. }
  5032. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, data);
  5033. ggml_format_name(result, "%s (view)", a->name);
  5034. ggml_set_op_params(result, &offset, sizeof(offset));
  5035. return result;
  5036. }
  5037. struct ggml_tensor * ggml_view_1d(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. int64_t ne0,
  5041. size_t offset) {
  5042. bool is_node = false;
  5043. if (a->grad) {
  5044. is_node = true;
  5045. }
  5046. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 1, &ne0, offset);
  5047. result->op = GGML_OP_VIEW;
  5048. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5049. result->src[0] = a;
  5050. return result;
  5051. }
  5052. // ggml_view_2d
  5053. struct ggml_tensor * ggml_view_2d(
  5054. struct ggml_context * ctx,
  5055. struct ggml_tensor * a,
  5056. int64_t ne0,
  5057. int64_t ne1,
  5058. size_t nb1,
  5059. size_t offset) {
  5060. bool is_node = false;
  5061. if (a->grad) {
  5062. is_node = true;
  5063. }
  5064. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5065. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 2, ne, offset);
  5066. result->nb[1] = nb1;
  5067. result->nb[2] = result->nb[1]*ne1;
  5068. result->nb[3] = result->nb[2];
  5069. result->op = GGML_OP_VIEW;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. return result;
  5073. }
  5074. // ggml_view_3d
  5075. struct ggml_tensor * ggml_view_3d(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. int64_t ne0,
  5079. int64_t ne1,
  5080. int64_t ne2,
  5081. size_t nb1,
  5082. size_t nb2,
  5083. size_t offset) {
  5084. bool is_node = false;
  5085. if (a->grad) {
  5086. is_node = true;
  5087. }
  5088. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5089. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 3, ne, offset);
  5090. result->nb[1] = nb1;
  5091. result->nb[2] = nb2;
  5092. result->nb[3] = result->nb[2]*ne2;
  5093. result->op = GGML_OP_VIEW;
  5094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5095. result->src[0] = a;
  5096. return result;
  5097. }
  5098. // ggml_view_4d
  5099. struct ggml_tensor * ggml_view_4d(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. int64_t ne0,
  5103. int64_t ne1,
  5104. int64_t ne2,
  5105. int64_t ne3,
  5106. size_t nb1,
  5107. size_t nb2,
  5108. size_t nb3,
  5109. size_t offset) {
  5110. bool is_node = false;
  5111. if (a->grad) {
  5112. is_node = true;
  5113. }
  5114. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5115. struct ggml_tensor * result = ggml_view_tensor_offset(ctx, a, 4, ne, offset);
  5116. result->nb[1] = nb1;
  5117. result->nb[2] = nb2;
  5118. result->nb[3] = nb3;
  5119. result->op = GGML_OP_VIEW;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src[0] = a;
  5122. return result;
  5123. }
  5124. // ggml_permute
  5125. struct ggml_tensor * ggml_permute(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a,
  5128. int axis0,
  5129. int axis1,
  5130. int axis2,
  5131. int axis3) {
  5132. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5133. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5134. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5135. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5136. GGML_ASSERT(axis0 != axis1);
  5137. GGML_ASSERT(axis0 != axis2);
  5138. GGML_ASSERT(axis0 != axis3);
  5139. GGML_ASSERT(axis1 != axis2);
  5140. GGML_ASSERT(axis1 != axis3);
  5141. GGML_ASSERT(axis2 != axis3);
  5142. bool is_node = false;
  5143. if (a->grad) {
  5144. is_node = true;
  5145. }
  5146. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5147. ggml_format_name(result, "%s (permuted)", a->name);
  5148. int ne[GGML_MAX_DIMS];
  5149. int nb[GGML_MAX_DIMS];
  5150. ne[axis0] = a->ne[0];
  5151. ne[axis1] = a->ne[1];
  5152. ne[axis2] = a->ne[2];
  5153. ne[axis3] = a->ne[3];
  5154. nb[axis0] = a->nb[0];
  5155. nb[axis1] = a->nb[1];
  5156. nb[axis2] = a->nb[2];
  5157. nb[axis3] = a->nb[3];
  5158. result->ne[0] = ne[0];
  5159. result->ne[1] = ne[1];
  5160. result->ne[2] = ne[2];
  5161. result->ne[3] = ne[3];
  5162. result->nb[0] = nb[0];
  5163. result->nb[1] = nb[1];
  5164. result->nb[2] = nb[2];
  5165. result->nb[3] = nb[3];
  5166. result->op = GGML_OP_PERMUTE;
  5167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5168. result->src[0] = a;
  5169. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5170. ggml_set_op_params(result, params, sizeof(params));
  5171. return result;
  5172. }
  5173. // ggml_transpose
  5174. struct ggml_tensor * ggml_transpose(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a) {
  5177. bool is_node = false;
  5178. if (a->grad) {
  5179. is_node = true;
  5180. }
  5181. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5182. ggml_format_name(result, "%s (transposed)", a->name);
  5183. result->ne[0] = a->ne[1];
  5184. result->ne[1] = a->ne[0];
  5185. result->nb[0] = a->nb[1];
  5186. result->nb[1] = a->nb[0];
  5187. result->op = GGML_OP_TRANSPOSE;
  5188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5189. result->src[0] = a;
  5190. return result;
  5191. }
  5192. // ggml_get_rows
  5193. struct ggml_tensor * ggml_get_rows(
  5194. struct ggml_context * ctx,
  5195. struct ggml_tensor * a,
  5196. struct ggml_tensor * b) {
  5197. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5198. bool is_node = false;
  5199. if (a->grad || b->grad) {
  5200. is_node = true;
  5201. }
  5202. // TODO: implement non F32 return
  5203. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5204. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5205. result->op = GGML_OP_GET_ROWS;
  5206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5207. result->src[0] = a;
  5208. result->src[1] = b;
  5209. return result;
  5210. }
  5211. // ggml_get_rows_back
  5212. struct ggml_tensor * ggml_get_rows_back(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. struct ggml_tensor * b,
  5216. struct ggml_tensor * c) {
  5217. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5218. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5219. bool is_node = false;
  5220. if (a->grad || b->grad) {
  5221. is_node = true;
  5222. }
  5223. // TODO: implement non F32 return
  5224. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5225. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5226. result->op = GGML_OP_GET_ROWS_BACK;
  5227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5228. result->src[0] = a;
  5229. result->src[1] = b;
  5230. result->src[2] = c;
  5231. return result;
  5232. }
  5233. // ggml_diag
  5234. struct ggml_tensor * ggml_diag(
  5235. struct ggml_context * ctx,
  5236. struct ggml_tensor * a) {
  5237. GGML_ASSERT(a->ne[1] == 1);
  5238. bool is_node = false;
  5239. if (a->grad) {
  5240. is_node = true;
  5241. }
  5242. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5243. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5244. result->op = GGML_OP_DIAG;
  5245. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5246. result->src[0] = a;
  5247. return result;
  5248. }
  5249. // ggml_diag_mask_inf
  5250. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5251. struct ggml_context * ctx,
  5252. struct ggml_tensor * a,
  5253. int n_past,
  5254. bool inplace) {
  5255. bool is_node = false;
  5256. if (a->grad) {
  5257. is_node = true;
  5258. }
  5259. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5260. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5261. ggml_set_op_params(result, params, sizeof(params));
  5262. result->op = GGML_OP_DIAG_MASK_INF;
  5263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5264. result->src[0] = a;
  5265. return result;
  5266. }
  5267. struct ggml_tensor * ggml_diag_mask_inf(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. int n_past) {
  5271. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5272. }
  5273. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5274. struct ggml_context * ctx,
  5275. struct ggml_tensor * a,
  5276. int n_past) {
  5277. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5278. }
  5279. // ggml_diag_mask_zero
  5280. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5281. struct ggml_context * ctx,
  5282. struct ggml_tensor * a,
  5283. int n_past,
  5284. bool inplace) {
  5285. bool is_node = false;
  5286. if (a->grad) {
  5287. is_node = true;
  5288. }
  5289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5290. int32_t params[] = { n_past, inplace ? 1 : 0 };
  5291. ggml_set_op_params(result, params, sizeof(params));
  5292. result->op = GGML_OP_DIAG_MASK_ZERO;
  5293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5294. result->src[0] = a;
  5295. return result;
  5296. }
  5297. struct ggml_tensor * ggml_diag_mask_zero(
  5298. struct ggml_context * ctx,
  5299. struct ggml_tensor * a,
  5300. int n_past) {
  5301. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5302. }
  5303. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5304. struct ggml_context * ctx,
  5305. struct ggml_tensor * a,
  5306. int n_past) {
  5307. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5308. }
  5309. // ggml_soft_max
  5310. static struct ggml_tensor * ggml_soft_max_impl(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. bool inplace) {
  5314. bool is_node = false;
  5315. if (a->grad) {
  5316. is_node = true;
  5317. }
  5318. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5319. result->op = GGML_OP_SOFT_MAX;
  5320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5321. result->src[0] = a;
  5322. return result;
  5323. }
  5324. struct ggml_tensor * ggml_soft_max(
  5325. struct ggml_context * ctx,
  5326. struct ggml_tensor * a) {
  5327. return ggml_soft_max_impl(ctx, a, false);
  5328. }
  5329. struct ggml_tensor * ggml_soft_max_inplace(
  5330. struct ggml_context * ctx,
  5331. struct ggml_tensor * a) {
  5332. return ggml_soft_max_impl(ctx, a, true);
  5333. }
  5334. // ggml_soft_max_back
  5335. static struct ggml_tensor * ggml_soft_max_back_impl(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. struct ggml_tensor * b,
  5339. bool inplace) {
  5340. bool is_node = false;
  5341. if (a->grad || b->grad) {
  5342. is_node = true; // TODO : implement backward pass
  5343. }
  5344. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5345. result->op = GGML_OP_SOFT_MAX_BACK;
  5346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5347. result->src[0] = a;
  5348. result->src[1] = b;
  5349. return result;
  5350. }
  5351. struct ggml_tensor * ggml_soft_max_back(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b) {
  5355. return ggml_soft_max_back_impl(ctx, a, b, false);
  5356. }
  5357. struct ggml_tensor * ggml_soft_max_back_inplace(
  5358. struct ggml_context * ctx,
  5359. struct ggml_tensor * a,
  5360. struct ggml_tensor * b) {
  5361. return ggml_soft_max_back_impl(ctx, a, b, true);
  5362. }
  5363. // ggml_rope
  5364. static struct ggml_tensor * ggml_rope_impl(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a,
  5367. int n_past,
  5368. int n_dims,
  5369. int mode,
  5370. int n_ctx,
  5371. float freq_base,
  5372. float freq_scale,
  5373. bool inplace) {
  5374. GGML_ASSERT(n_past >= 0);
  5375. bool is_node = false;
  5376. if (a->grad) {
  5377. is_node = true;
  5378. }
  5379. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5380. int32_t params[6] = { n_past, n_dims, mode, n_ctx };
  5381. memcpy(params + 4, &freq_base, sizeof(float));
  5382. memcpy(params + 5, &freq_scale, sizeof(float));
  5383. ggml_set_op_params(result, params, sizeof(params));
  5384. result->op = GGML_OP_ROPE;
  5385. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5386. result->src[0] = a;
  5387. return result;
  5388. }
  5389. struct ggml_tensor * ggml_rope(
  5390. struct ggml_context * ctx,
  5391. struct ggml_tensor * a,
  5392. int n_past,
  5393. int n_dims,
  5394. int mode,
  5395. int n_ctx) {
  5396. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, false);
  5397. }
  5398. struct ggml_tensor * ggml_rope_inplace(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. int n_past,
  5402. int n_dims,
  5403. int mode,
  5404. int n_ctx) {
  5405. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, true);
  5406. }
  5407. struct ggml_tensor * ggml_rope_custom(
  5408. struct ggml_context * ctx,
  5409. struct ggml_tensor * a,
  5410. int n_past,
  5411. int n_dims,
  5412. int mode,
  5413. int n_ctx,
  5414. float freq_base,
  5415. float freq_scale) {
  5416. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, false);
  5417. }
  5418. struct ggml_tensor * ggml_rope_custom_inplace(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a,
  5421. int n_past,
  5422. int n_dims,
  5423. int mode,
  5424. int n_ctx,
  5425. float freq_base,
  5426. float freq_scale) {
  5427. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, true);
  5428. }
  5429. // ggml_rope_back
  5430. struct ggml_tensor * ggml_rope_back(
  5431. struct ggml_context * ctx,
  5432. struct ggml_tensor * a,
  5433. int n_past,
  5434. int n_dims,
  5435. int mode,
  5436. int n_ctx) {
  5437. GGML_ASSERT(n_past >= 0);
  5438. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5439. bool is_node = false;
  5440. if (a->grad) {
  5441. is_node = false; // TODO: implement backward
  5442. }
  5443. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5444. int32_t params[] = { n_past, n_dims, mode, n_ctx };
  5445. ggml_set_op_params(result, params, sizeof(params));
  5446. result->op = GGML_OP_ROPE_BACK;
  5447. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5448. result->src[0] = a;
  5449. return result;
  5450. }
  5451. // ggml_alibi
  5452. struct ggml_tensor * ggml_alibi(
  5453. struct ggml_context * ctx,
  5454. struct ggml_tensor * a,
  5455. int n_past,
  5456. int n_head,
  5457. float bias_max) {
  5458. GGML_ASSERT(n_past >= 0);
  5459. bool is_node = false;
  5460. if (a->grad) {
  5461. GGML_ASSERT(false); // TODO: implement backward
  5462. is_node = true;
  5463. }
  5464. // TODO: when implement backward, fix this:
  5465. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5466. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5467. int32_t op_params[3] = { n_past, n_head };
  5468. memcpy(op_params + 2, &bias_max, sizeof(float));
  5469. ggml_set_op_params(result, op_params, sizeof(op_params));
  5470. result->op = GGML_OP_ALIBI;
  5471. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5472. result->src[0] = a;
  5473. return result;
  5474. }
  5475. // ggml_clamp
  5476. struct ggml_tensor * ggml_clamp(
  5477. struct ggml_context * ctx,
  5478. struct ggml_tensor * a,
  5479. float min,
  5480. float max) {
  5481. bool is_node = false;
  5482. if (a->grad) {
  5483. GGML_ASSERT(false); // TODO: implement backward
  5484. is_node = true;
  5485. }
  5486. // TODO: when implement backward, fix this:
  5487. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5488. float params[] = { min, max };
  5489. ggml_set_op_params(result, params, sizeof(params));
  5490. result->op = GGML_OP_CLAMP;
  5491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5492. result->src[0] = a;
  5493. return result;
  5494. }
  5495. // ggml_conv_1d
  5496. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5497. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5498. }
  5499. GGML_API struct ggml_tensor * ggml_conv_1d(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. struct ggml_tensor * b,
  5503. int s0,
  5504. int p0,
  5505. int d0) {
  5506. GGML_ASSERT(ggml_is_matrix(b));
  5507. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5508. bool is_node = false;
  5509. if (a->grad || b->grad) {
  5510. GGML_ASSERT(false); // TODO: implement backward
  5511. is_node = true;
  5512. }
  5513. const int64_t ne[4] = {
  5514. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5515. a->ne[2], 1, 1,
  5516. };
  5517. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5518. int32_t params[] = { s0, p0, d0 };
  5519. ggml_set_op_params(result, params, sizeof(params));
  5520. result->op = GGML_OP_CONV_1D;
  5521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5522. result->src[0] = a;
  5523. result->src[1] = b;
  5524. return result;
  5525. }
  5526. // ggml_conv_2d
  5527. struct ggml_tensor * ggml_conv_2d(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. int s0,
  5532. int s1,
  5533. int p0,
  5534. int p1,
  5535. int d0,
  5536. int d1) {
  5537. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5538. bool is_node = false;
  5539. if (a->grad || b->grad) {
  5540. GGML_ASSERT(false); // TODO: implement backward
  5541. is_node = true;
  5542. }
  5543. const int64_t ne[4] = {
  5544. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5545. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5546. a->ne[3], b->ne[3],
  5547. };
  5548. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5549. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5550. ggml_set_op_params(result, params, sizeof(params));
  5551. result->op = GGML_OP_CONV_2D;
  5552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5553. result->src[0] = a;
  5554. result->src[1] = b;
  5555. return result;
  5556. }
  5557. // ggml_conv_1d_ph
  5558. struct ggml_tensor * ggml_conv_1d_ph(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. struct ggml_tensor * b,
  5562. int s,
  5563. int d) {
  5564. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5565. }
  5566. // ggml_pool_*
  5567. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5568. return (ins + 2 * p - ks) / s + 1;
  5569. }
  5570. // ggml_pool_1d
  5571. struct ggml_tensor * ggml_pool_1d(
  5572. struct ggml_context * ctx,
  5573. struct ggml_tensor * a,
  5574. enum ggml_op_pool op,
  5575. int k0,
  5576. int s0,
  5577. int p0) {
  5578. bool is_node = false;
  5579. if (a->grad) {
  5580. GGML_ASSERT(false); // TODO: implement backward
  5581. is_node = true;
  5582. }
  5583. const int64_t ne[3] = {
  5584. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5585. a->ne[1],
  5586. };
  5587. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5588. int32_t params[] = { op, k0, s0, p0 };
  5589. ggml_set_op_params(result, params, sizeof(params));
  5590. result->op = GGML_OP_POOL_1D;
  5591. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5592. result->src[0] = a;
  5593. return result;
  5594. }
  5595. // ggml_pool_2d
  5596. struct ggml_tensor * ggml_pool_2d(
  5597. struct ggml_context * ctx,
  5598. struct ggml_tensor * a,
  5599. enum ggml_op_pool op,
  5600. int k0,
  5601. int k1,
  5602. int s0,
  5603. int s1,
  5604. int p0,
  5605. int p1) {
  5606. bool is_node = false;
  5607. if (a->grad) {
  5608. GGML_ASSERT(false); // TODO: implement backward
  5609. is_node = true;
  5610. }
  5611. const int64_t ne[3] = {
  5612. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5613. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5614. a->ne[2],
  5615. };
  5616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5617. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5618. ggml_set_op_params(result, params, sizeof(params));
  5619. result->op = GGML_OP_POOL_2D;
  5620. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5621. result->src[0] = a;
  5622. return result;
  5623. }
  5624. // ggml_flash_attn
  5625. struct ggml_tensor * ggml_flash_attn(
  5626. struct ggml_context * ctx,
  5627. struct ggml_tensor * q,
  5628. struct ggml_tensor * k,
  5629. struct ggml_tensor * v,
  5630. bool masked) {
  5631. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5632. // TODO: check if vT can be multiplied by (k*qT)
  5633. bool is_node = false;
  5634. if (q->grad || k->grad || v->grad) {
  5635. is_node = true;
  5636. }
  5637. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5638. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5639. int32_t t = masked ? 1 : 0;
  5640. ggml_set_op_params(result, &t, sizeof(t));
  5641. result->op = GGML_OP_FLASH_ATTN;
  5642. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5643. result->src[0] = q;
  5644. result->src[1] = k;
  5645. result->src[2] = v;
  5646. return result;
  5647. }
  5648. // ggml_flash_ff
  5649. struct ggml_tensor * ggml_flash_ff(
  5650. struct ggml_context * ctx,
  5651. struct ggml_tensor * a,
  5652. struct ggml_tensor * b0,
  5653. struct ggml_tensor * b1,
  5654. struct ggml_tensor * c0,
  5655. struct ggml_tensor * c1) {
  5656. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5657. // TODO: more checks
  5658. bool is_node = false;
  5659. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5660. is_node = true;
  5661. }
  5662. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5663. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5664. result->op = GGML_OP_FLASH_FF;
  5665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5666. result->src[0] = a;
  5667. result->src[1] = b0;
  5668. result->src[2] = b1;
  5669. result->src[3] = c0;
  5670. result->src[4] = c1;
  5671. return result;
  5672. }
  5673. // ggml_flash_attn_back
  5674. struct ggml_tensor * ggml_flash_attn_back(
  5675. struct ggml_context * ctx,
  5676. struct ggml_tensor * q,
  5677. struct ggml_tensor * k,
  5678. struct ggml_tensor * v,
  5679. struct ggml_tensor * d,
  5680. bool masked) {
  5681. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5682. // TODO: check if vT can be multiplied by (k*qT)
  5683. // d shape [D,N,ne2,ne3]
  5684. // q shape [D,N,ne2,ne3]
  5685. // k shape [D,M,ne2,ne3]
  5686. // v shape [M,D,ne2,ne3]
  5687. const int64_t D = q->ne[0];
  5688. const int64_t N = q->ne[1];
  5689. const int64_t M = k->ne[1];
  5690. const int64_t ne2 = q->ne[2];
  5691. const int64_t ne3 = q->ne[3];
  5692. GGML_ASSERT(k->ne[0] == D);
  5693. GGML_ASSERT(v->ne[0] == M);
  5694. GGML_ASSERT(v->ne[1] == D);
  5695. GGML_ASSERT(d->ne[0] == D);
  5696. GGML_ASSERT(d->ne[1] == N);
  5697. GGML_ASSERT(k->ne[2] == ne2);
  5698. GGML_ASSERT(k->ne[3] == ne3);
  5699. GGML_ASSERT(v->ne[2] == ne2);
  5700. GGML_ASSERT(v->ne[3] == ne3);
  5701. GGML_ASSERT(d->ne[2] == ne2);
  5702. GGML_ASSERT(d->ne[3] == ne3);
  5703. bool is_node = false;
  5704. if (q->grad || k->grad || v->grad) {
  5705. // when using this operation (in backwards pass) these grads are set.
  5706. // we don't want to create (big) grad of our result, so is_node is false.
  5707. is_node = false;
  5708. }
  5709. // store gradients of q, k and v as continuous tensors concatenated in result.
  5710. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5711. // gradq->data = result->data
  5712. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5713. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5714. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5715. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5716. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5717. int32_t masked_i = masked ? 1 : 0;
  5718. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5719. result->op = GGML_OP_FLASH_ATTN_BACK;
  5720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5721. result->src[0] = q;
  5722. result->src[1] = k;
  5723. result->src[2] = v;
  5724. result->src[3] = d;
  5725. return result;
  5726. }
  5727. // ggml_win_part
  5728. struct ggml_tensor * ggml_win_part(
  5729. struct ggml_context * ctx,
  5730. struct ggml_tensor * a,
  5731. int w) {
  5732. GGML_ASSERT(a->ne[3] == 1);
  5733. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5734. bool is_node = false;
  5735. if (a->grad) {
  5736. GGML_ASSERT(false); // TODO: implement backward
  5737. is_node = true;
  5738. }
  5739. // padding
  5740. const int px = (w - a->ne[1]%w)%w;
  5741. const int py = (w - a->ne[2]%w)%w;
  5742. const int npx = (px + a->ne[1])/w;
  5743. const int npy = (py + a->ne[2])/w;
  5744. const int np = npx*npy;
  5745. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5746. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5747. int32_t params[] = { npx, npy, w };
  5748. ggml_set_op_params(result, params, sizeof(params));
  5749. result->op = GGML_OP_WIN_PART;
  5750. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5751. result->src[0] = a;
  5752. return result;
  5753. }
  5754. // ggml_win_unpart
  5755. struct ggml_tensor * ggml_win_unpart(
  5756. struct ggml_context * ctx,
  5757. struct ggml_tensor * a,
  5758. int w0,
  5759. int h0,
  5760. int w) {
  5761. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5762. bool is_node = false;
  5763. if (a->grad) {
  5764. GGML_ASSERT(false); // TODO: implement backward
  5765. is_node = true;
  5766. }
  5767. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5769. int32_t params[] = { w };
  5770. ggml_set_op_params(result, params, sizeof(params));
  5771. result->op = GGML_OP_WIN_UNPART;
  5772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5773. result->src[0] = a;
  5774. return result;
  5775. }
  5776. // gmml_unary
  5777. static struct ggml_tensor * ggml_unary_impl(
  5778. struct ggml_context * ctx,
  5779. struct ggml_tensor * a,
  5780. enum ggml_unary_op op,
  5781. bool inplace) {
  5782. bool is_node = false;
  5783. if (!inplace && (a->grad)) {
  5784. is_node = true;
  5785. }
  5786. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5787. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5788. result->op = GGML_OP_UNARY;
  5789. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5790. result->src[0] = a;
  5791. return result;
  5792. }
  5793. struct ggml_tensor * ggml_unary(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. enum ggml_unary_op op) {
  5797. return ggml_unary_impl(ctx, a, op, false);
  5798. }
  5799. struct ggml_tensor * ggml_unary_inplace(
  5800. struct ggml_context * ctx,
  5801. struct ggml_tensor * a,
  5802. enum ggml_unary_op op) {
  5803. return ggml_unary_impl(ctx, a, op, true);
  5804. }
  5805. // ggml_map_unary
  5806. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5807. struct ggml_context * ctx,
  5808. struct ggml_tensor * a,
  5809. const ggml_unary_op_f32_t fun,
  5810. bool inplace) {
  5811. bool is_node = false;
  5812. if (!inplace && a->grad) {
  5813. is_node = true;
  5814. }
  5815. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5816. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5817. result->op = GGML_OP_MAP_UNARY;
  5818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5819. result->src[0] = a;
  5820. return result;
  5821. }
  5822. struct ggml_tensor * ggml_map_unary_f32(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * a,
  5825. const ggml_unary_op_f32_t fun) {
  5826. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5827. }
  5828. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * a,
  5831. const ggml_unary_op_f32_t fun) {
  5832. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5833. }
  5834. // ggml_map_binary
  5835. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5836. struct ggml_context * ctx,
  5837. struct ggml_tensor * a,
  5838. struct ggml_tensor * b,
  5839. const ggml_binary_op_f32_t fun,
  5840. bool inplace) {
  5841. GGML_ASSERT(ggml_are_same_shape(a, b));
  5842. bool is_node = false;
  5843. if (!inplace && (a->grad || b->grad)) {
  5844. is_node = true;
  5845. }
  5846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5847. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5848. result->op = GGML_OP_MAP_BINARY;
  5849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5850. result->src[0] = a;
  5851. result->src[1] = b;
  5852. return result;
  5853. }
  5854. struct ggml_tensor * ggml_map_binary_f32(
  5855. struct ggml_context * ctx,
  5856. struct ggml_tensor * a,
  5857. struct ggml_tensor * b,
  5858. const ggml_binary_op_f32_t fun) {
  5859. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5860. }
  5861. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5862. struct ggml_context * ctx,
  5863. struct ggml_tensor * a,
  5864. struct ggml_tensor * b,
  5865. const ggml_binary_op_f32_t fun) {
  5866. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5867. }
  5868. // ggml_map_custom1_f32
  5869. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5870. struct ggml_context * ctx,
  5871. struct ggml_tensor * a,
  5872. const ggml_custom1_op_f32_t fun,
  5873. bool inplace) {
  5874. bool is_node = false;
  5875. if (!inplace && a->grad) {
  5876. is_node = true;
  5877. }
  5878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5879. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5880. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5882. result->src[0] = a;
  5883. return result;
  5884. }
  5885. struct ggml_tensor * ggml_map_custom1_f32(
  5886. struct ggml_context * ctx,
  5887. struct ggml_tensor * a,
  5888. const ggml_custom1_op_f32_t fun) {
  5889. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5890. }
  5891. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5892. struct ggml_context * ctx,
  5893. struct ggml_tensor * a,
  5894. const ggml_custom1_op_f32_t fun) {
  5895. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5896. }
  5897. // ggml_map_custom2_f32
  5898. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * a,
  5901. struct ggml_tensor * b,
  5902. const ggml_custom2_op_f32_t fun,
  5903. bool inplace) {
  5904. bool is_node = false;
  5905. if (!inplace && (a->grad || b->grad)) {
  5906. is_node = true;
  5907. }
  5908. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5909. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5910. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5912. result->src[0] = a;
  5913. result->src[1] = b;
  5914. return result;
  5915. }
  5916. struct ggml_tensor * ggml_map_custom2_f32(
  5917. struct ggml_context * ctx,
  5918. struct ggml_tensor * a,
  5919. struct ggml_tensor * b,
  5920. const ggml_custom2_op_f32_t fun) {
  5921. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5922. }
  5923. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5924. struct ggml_context * ctx,
  5925. struct ggml_tensor * a,
  5926. struct ggml_tensor * b,
  5927. const ggml_custom2_op_f32_t fun) {
  5928. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5929. }
  5930. // ggml_map_custom3_f32
  5931. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5932. struct ggml_context * ctx,
  5933. struct ggml_tensor * a,
  5934. struct ggml_tensor * b,
  5935. struct ggml_tensor * c,
  5936. const ggml_custom3_op_f32_t fun,
  5937. bool inplace) {
  5938. bool is_node = false;
  5939. if (!inplace && (a->grad || b->grad || c->grad)) {
  5940. is_node = true;
  5941. }
  5942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5943. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5944. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5946. result->src[0] = a;
  5947. result->src[1] = b;
  5948. result->src[2] = c;
  5949. return result;
  5950. }
  5951. struct ggml_tensor * ggml_map_custom3_f32(
  5952. struct ggml_context * ctx,
  5953. struct ggml_tensor * a,
  5954. struct ggml_tensor * b,
  5955. struct ggml_tensor * c,
  5956. const ggml_custom3_op_f32_t fun) {
  5957. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5958. }
  5959. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5960. struct ggml_context * ctx,
  5961. struct ggml_tensor * a,
  5962. struct ggml_tensor * b,
  5963. struct ggml_tensor * c,
  5964. const ggml_custom3_op_f32_t fun) {
  5965. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5966. }
  5967. // ggml_map_custom1
  5968. struct ggml_map_custom1_op_params {
  5969. ggml_custom1_op_t fun;
  5970. int n_tasks;
  5971. void * userdata;
  5972. };
  5973. static struct ggml_tensor * ggml_map_custom1_impl(
  5974. struct ggml_context * ctx,
  5975. struct ggml_tensor * a,
  5976. const ggml_custom1_op_t fun,
  5977. int n_tasks,
  5978. void * userdata,
  5979. bool inplace) {
  5980. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5981. bool is_node = false;
  5982. if (!inplace && a->grad) {
  5983. is_node = true;
  5984. }
  5985. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5986. struct ggml_map_custom1_op_params params = {
  5987. /*.fun =*/ fun,
  5988. /*.n_tasks =*/ n_tasks,
  5989. /*.userdata =*/ userdata
  5990. };
  5991. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5992. result->op = GGML_OP_MAP_CUSTOM1;
  5993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5994. result->src[0] = a;
  5995. return result;
  5996. }
  5997. struct ggml_tensor * ggml_map_custom1(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. const ggml_custom1_op_t fun,
  6001. int n_tasks,
  6002. void * userdata) {
  6003. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6004. }
  6005. struct ggml_tensor * ggml_map_custom1_inplace(
  6006. struct ggml_context * ctx,
  6007. struct ggml_tensor * a,
  6008. const ggml_custom1_op_t fun,
  6009. int n_tasks,
  6010. void * userdata) {
  6011. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6012. }
  6013. // ggml_map_custom2
  6014. struct ggml_map_custom2_op_params {
  6015. ggml_custom2_op_t fun;
  6016. int n_tasks;
  6017. void * userdata;
  6018. };
  6019. static struct ggml_tensor * ggml_map_custom2_impl(
  6020. struct ggml_context * ctx,
  6021. struct ggml_tensor * a,
  6022. struct ggml_tensor * b,
  6023. const ggml_custom2_op_t fun,
  6024. int n_tasks,
  6025. void * userdata,
  6026. bool inplace) {
  6027. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6028. bool is_node = false;
  6029. if (!inplace && (a->grad || b->grad)) {
  6030. is_node = true;
  6031. }
  6032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6033. struct ggml_map_custom2_op_params params = {
  6034. /*.fun =*/ fun,
  6035. /*.n_tasks =*/ n_tasks,
  6036. /*.userdata =*/ userdata
  6037. };
  6038. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6039. result->op = GGML_OP_MAP_CUSTOM2;
  6040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6041. result->src[0] = a;
  6042. result->src[1] = b;
  6043. return result;
  6044. }
  6045. struct ggml_tensor * ggml_map_custom2(
  6046. struct ggml_context * ctx,
  6047. struct ggml_tensor * a,
  6048. struct ggml_tensor * b,
  6049. const ggml_custom2_op_t fun,
  6050. int n_tasks,
  6051. void * userdata) {
  6052. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6053. }
  6054. struct ggml_tensor * ggml_map_custom2_inplace(
  6055. struct ggml_context * ctx,
  6056. struct ggml_tensor * a,
  6057. struct ggml_tensor * b,
  6058. const ggml_custom2_op_t fun,
  6059. int n_tasks,
  6060. void * userdata) {
  6061. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6062. }
  6063. // ggml_map_custom3
  6064. struct ggml_map_custom3_op_params {
  6065. ggml_custom3_op_t fun;
  6066. int n_tasks;
  6067. void * userdata;
  6068. };
  6069. static struct ggml_tensor * ggml_map_custom3_impl(
  6070. struct ggml_context * ctx,
  6071. struct ggml_tensor * a,
  6072. struct ggml_tensor * b,
  6073. struct ggml_tensor * c,
  6074. const ggml_custom3_op_t fun,
  6075. int n_tasks,
  6076. void * userdata,
  6077. bool inplace) {
  6078. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6079. bool is_node = false;
  6080. if (!inplace && (a->grad || b->grad || c->grad)) {
  6081. is_node = true;
  6082. }
  6083. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6084. struct ggml_map_custom3_op_params params = {
  6085. /*.fun =*/ fun,
  6086. /*.n_tasks =*/ n_tasks,
  6087. /*.userdata =*/ userdata
  6088. };
  6089. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6090. result->op = GGML_OP_MAP_CUSTOM3;
  6091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6092. result->src[0] = a;
  6093. result->src[1] = b;
  6094. result->src[2] = c;
  6095. return result;
  6096. }
  6097. struct ggml_tensor * ggml_map_custom3(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. struct ggml_tensor * b,
  6101. struct ggml_tensor * c,
  6102. const ggml_custom3_op_t fun,
  6103. int n_tasks,
  6104. void * userdata) {
  6105. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6106. }
  6107. struct ggml_tensor * ggml_map_custom3_inplace(
  6108. struct ggml_context * ctx,
  6109. struct ggml_tensor * a,
  6110. struct ggml_tensor * b,
  6111. struct ggml_tensor * c,
  6112. const ggml_custom3_op_t fun,
  6113. int n_tasks,
  6114. void * userdata) {
  6115. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6116. }
  6117. // ggml_cross_entropy_loss
  6118. struct ggml_tensor * ggml_cross_entropy_loss(
  6119. struct ggml_context * ctx,
  6120. struct ggml_tensor * a,
  6121. struct ggml_tensor * b) {
  6122. GGML_ASSERT(ggml_are_same_shape(a, b));
  6123. bool is_node = false;
  6124. if (a->grad || b->grad) {
  6125. is_node = true;
  6126. }
  6127. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6128. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6130. result->src[0] = a;
  6131. result->src[1] = b;
  6132. return result;
  6133. }
  6134. // ggml_cross_entropy_loss_back
  6135. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6136. struct ggml_context * ctx,
  6137. struct ggml_tensor * a,
  6138. struct ggml_tensor * b,
  6139. struct ggml_tensor * c) {
  6140. GGML_ASSERT(ggml_are_same_shape(a, b));
  6141. GGML_ASSERT(ggml_is_scalar(c));
  6142. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6143. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6144. result->grad = NULL;
  6145. result->src[0] = a;
  6146. result->src[1] = b;
  6147. result->src[2] = c;
  6148. return result;
  6149. }
  6150. ////////////////////////////////////////////////////////////////////////////////
  6151. void ggml_set_param(
  6152. struct ggml_context * ctx,
  6153. struct ggml_tensor * tensor) {
  6154. tensor->is_param = true;
  6155. GGML_ASSERT(tensor->grad == NULL);
  6156. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6157. }
  6158. // ggml_compute_forward_dup
  6159. static void ggml_compute_forward_dup_same_cont(
  6160. const struct ggml_compute_params * params,
  6161. const struct ggml_tensor * src0,
  6162. struct ggml_tensor * dst) {
  6163. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6164. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6165. GGML_ASSERT(src0->type == dst->type);
  6166. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6167. return;
  6168. }
  6169. const size_t nb00 = src0->nb[0];
  6170. const size_t nb0 = dst->nb[0];
  6171. const int ith = params->ith; // thread index
  6172. const int nth = params->nth; // number of threads
  6173. // parallelize by elements
  6174. const int ne = ggml_nelements(dst);
  6175. const int dr = (ne + nth - 1) / nth;
  6176. const int ie0 = dr * ith;
  6177. const int ie1 = MIN(ie0 + dr, ne);
  6178. if (ie0 < ie1) {
  6179. memcpy(
  6180. ((char *) dst->data + ie0*nb0),
  6181. ((char *) src0->data + ie0*nb00),
  6182. (ie1 - ie0) * ggml_type_size(src0->type));
  6183. }
  6184. }
  6185. static void ggml_compute_forward_dup_f16(
  6186. const struct ggml_compute_params * params,
  6187. const struct ggml_tensor * src0,
  6188. struct ggml_tensor * dst) {
  6189. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6191. return;
  6192. }
  6193. GGML_TENSOR_UNARY_OP_LOCALS;
  6194. const int ith = params->ith; // thread index
  6195. const int nth = params->nth; // number of threads
  6196. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6197. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6198. return;
  6199. }
  6200. // parallelize by rows
  6201. const int nr = ne01;
  6202. // number of rows per thread
  6203. const int dr = (nr + nth - 1) / nth;
  6204. // row range for this thread
  6205. const int ir0 = dr * ith;
  6206. const int ir1 = MIN(ir0 + dr, nr);
  6207. if (src0->type == dst->type &&
  6208. ne00 == ne0 &&
  6209. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6210. // copy by rows
  6211. const size_t rs = ne00*nb00;
  6212. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6213. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6214. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6215. memcpy(
  6216. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6217. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6218. rs);
  6219. }
  6220. }
  6221. }
  6222. return;
  6223. }
  6224. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6225. if (ggml_is_contiguous(dst)) {
  6226. if (nb00 == sizeof(ggml_fp16_t)) {
  6227. if (dst->type == GGML_TYPE_F16) {
  6228. size_t id = 0;
  6229. const size_t rs = ne00 * nb00;
  6230. char * dst_ptr = (char *) dst->data;
  6231. for (int i03 = 0; i03 < ne03; i03++) {
  6232. for (int i02 = 0; i02 < ne02; i02++) {
  6233. id += rs * ir0;
  6234. for (int i01 = ir0; i01 < ir1; i01++) {
  6235. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6236. memcpy(dst_ptr + id, src0_ptr, rs);
  6237. id += rs;
  6238. }
  6239. id += rs * (ne01 - ir1);
  6240. }
  6241. }
  6242. } else if (dst->type == GGML_TYPE_F32) {
  6243. size_t id = 0;
  6244. float * dst_ptr = (float *) dst->data;
  6245. for (int i03 = 0; i03 < ne03; i03++) {
  6246. for (int i02 = 0; i02 < ne02; i02++) {
  6247. id += ne00 * ir0;
  6248. for (int i01 = ir0; i01 < ir1; i01++) {
  6249. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6250. for (int i00 = 0; i00 < ne00; i00++) {
  6251. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6252. id++;
  6253. }
  6254. }
  6255. id += ne00 * (ne01 - ir1);
  6256. }
  6257. }
  6258. } else if (type_traits[dst->type].from_float) {
  6259. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6260. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6261. size_t id = 0;
  6262. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6263. char * dst_ptr = (char *) dst->data;
  6264. for (int i03 = 0; i03 < ne03; i03++) {
  6265. for (int i02 = 0; i02 < ne02; i02++) {
  6266. id += rs * ir0;
  6267. for (int i01 = ir0; i01 < ir1; i01++) {
  6268. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6269. for (int i00 = 0; i00 < ne00; i00++) {
  6270. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6271. }
  6272. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6273. id += rs;
  6274. }
  6275. id += rs * (ne01 - ir1);
  6276. }
  6277. }
  6278. } else {
  6279. GGML_ASSERT(false); // TODO: implement
  6280. }
  6281. } else {
  6282. //printf("%s: this is not optimal - fix me\n", __func__);
  6283. if (dst->type == GGML_TYPE_F32) {
  6284. size_t id = 0;
  6285. float * dst_ptr = (float *) dst->data;
  6286. for (int i03 = 0; i03 < ne03; i03++) {
  6287. for (int i02 = 0; i02 < ne02; i02++) {
  6288. id += ne00 * ir0;
  6289. for (int i01 = ir0; i01 < ir1; i01++) {
  6290. for (int i00 = 0; i00 < ne00; i00++) {
  6291. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6292. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6293. id++;
  6294. }
  6295. }
  6296. id += ne00 * (ne01 - ir1);
  6297. }
  6298. }
  6299. } else if (dst->type == GGML_TYPE_F16) {
  6300. size_t id = 0;
  6301. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6302. for (int i03 = 0; i03 < ne03; i03++) {
  6303. for (int i02 = 0; i02 < ne02; i02++) {
  6304. id += ne00 * ir0;
  6305. for (int i01 = ir0; i01 < ir1; i01++) {
  6306. for (int i00 = 0; i00 < ne00; i00++) {
  6307. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6308. dst_ptr[id] = *src0_ptr;
  6309. id++;
  6310. }
  6311. }
  6312. id += ne00 * (ne01 - ir1);
  6313. }
  6314. }
  6315. } else {
  6316. GGML_ASSERT(false); // TODO: implement
  6317. }
  6318. }
  6319. return;
  6320. }
  6321. // dst counters
  6322. int64_t i10 = 0;
  6323. int64_t i11 = 0;
  6324. int64_t i12 = 0;
  6325. int64_t i13 = 0;
  6326. if (dst->type == GGML_TYPE_F16) {
  6327. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6328. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6329. i10 += ne00 * ir0;
  6330. while (i10 >= ne0) {
  6331. i10 -= ne0;
  6332. if (++i11 == ne1) {
  6333. i11 = 0;
  6334. if (++i12 == ne2) {
  6335. i12 = 0;
  6336. if (++i13 == ne3) {
  6337. i13 = 0;
  6338. }
  6339. }
  6340. }
  6341. }
  6342. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6343. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6344. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6345. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6346. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6347. if (++i10 == ne00) {
  6348. i10 = 0;
  6349. if (++i11 == ne01) {
  6350. i11 = 0;
  6351. if (++i12 == ne02) {
  6352. i12 = 0;
  6353. if (++i13 == ne03) {
  6354. i13 = 0;
  6355. }
  6356. }
  6357. }
  6358. }
  6359. }
  6360. }
  6361. i10 += ne00 * (ne01 - ir1);
  6362. while (i10 >= ne0) {
  6363. i10 -= ne0;
  6364. if (++i11 == ne1) {
  6365. i11 = 0;
  6366. if (++i12 == ne2) {
  6367. i12 = 0;
  6368. if (++i13 == ne3) {
  6369. i13 = 0;
  6370. }
  6371. }
  6372. }
  6373. }
  6374. }
  6375. }
  6376. } else if (dst->type == GGML_TYPE_F32) {
  6377. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6379. i10 += ne00 * ir0;
  6380. while (i10 >= ne0) {
  6381. i10 -= ne0;
  6382. if (++i11 == ne1) {
  6383. i11 = 0;
  6384. if (++i12 == ne2) {
  6385. i12 = 0;
  6386. if (++i13 == ne3) {
  6387. i13 = 0;
  6388. }
  6389. }
  6390. }
  6391. }
  6392. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6393. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6394. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6395. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6396. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6397. if (++i10 == ne0) {
  6398. i10 = 0;
  6399. if (++i11 == ne1) {
  6400. i11 = 0;
  6401. if (++i12 == ne2) {
  6402. i12 = 0;
  6403. if (++i13 == ne3) {
  6404. i13 = 0;
  6405. }
  6406. }
  6407. }
  6408. }
  6409. }
  6410. }
  6411. i10 += ne00 * (ne01 - ir1);
  6412. while (i10 >= ne0) {
  6413. i10 -= ne0;
  6414. if (++i11 == ne1) {
  6415. i11 = 0;
  6416. if (++i12 == ne2) {
  6417. i12 = 0;
  6418. if (++i13 == ne3) {
  6419. i13 = 0;
  6420. }
  6421. }
  6422. }
  6423. }
  6424. }
  6425. }
  6426. } else {
  6427. GGML_ASSERT(false); // TODO: implement
  6428. }
  6429. }
  6430. static void ggml_compute_forward_dup_f32(
  6431. const struct ggml_compute_params * params,
  6432. const struct ggml_tensor * src0,
  6433. struct ggml_tensor * dst) {
  6434. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6435. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6436. return;
  6437. }
  6438. GGML_TENSOR_UNARY_OP_LOCALS;
  6439. const int ith = params->ith; // thread index
  6440. const int nth = params->nth; // number of threads
  6441. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6442. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6443. return;
  6444. }
  6445. // parallelize by rows
  6446. const int nr = ne01;
  6447. // number of rows per thread
  6448. const int dr = (nr + nth - 1) / nth;
  6449. // row range for this thread
  6450. const int ir0 = dr * ith;
  6451. const int ir1 = MIN(ir0 + dr, nr);
  6452. if (src0->type == dst->type &&
  6453. ne00 == ne0 &&
  6454. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6455. // copy by rows
  6456. const size_t rs = ne00*nb00;
  6457. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6458. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6459. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6460. memcpy(
  6461. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6462. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6463. rs);
  6464. }
  6465. }
  6466. }
  6467. return;
  6468. }
  6469. if (ggml_is_contiguous(dst)) {
  6470. // TODO: simplify
  6471. if (nb00 == sizeof(float)) {
  6472. if (dst->type == GGML_TYPE_F32) {
  6473. size_t id = 0;
  6474. const size_t rs = ne00 * nb00;
  6475. char * dst_ptr = (char *) dst->data;
  6476. for (int i03 = 0; i03 < ne03; i03++) {
  6477. for (int i02 = 0; i02 < ne02; i02++) {
  6478. id += rs * ir0;
  6479. for (int i01 = ir0; i01 < ir1; i01++) {
  6480. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6481. memcpy(dst_ptr + id, src0_ptr, rs);
  6482. id += rs;
  6483. }
  6484. id += rs * (ne01 - ir1);
  6485. }
  6486. }
  6487. } else if (type_traits[dst->type].from_float) {
  6488. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6489. size_t id = 0;
  6490. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6491. char * dst_ptr = (char *) dst->data;
  6492. for (int i03 = 0; i03 < ne03; i03++) {
  6493. for (int i02 = 0; i02 < ne02; i02++) {
  6494. id += rs * ir0;
  6495. for (int i01 = ir0; i01 < ir1; i01++) {
  6496. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6497. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6498. id += rs;
  6499. }
  6500. id += rs * (ne01 - ir1);
  6501. }
  6502. }
  6503. } else {
  6504. GGML_ASSERT(false); // TODO: implement
  6505. }
  6506. } else {
  6507. //printf("%s: this is not optimal - fix me\n", __func__);
  6508. if (dst->type == GGML_TYPE_F32) {
  6509. size_t id = 0;
  6510. float * dst_ptr = (float *) dst->data;
  6511. for (int i03 = 0; i03 < ne03; i03++) {
  6512. for (int i02 = 0; i02 < ne02; i02++) {
  6513. id += ne00 * ir0;
  6514. for (int i01 = ir0; i01 < ir1; i01++) {
  6515. for (int i00 = 0; i00 < ne00; i00++) {
  6516. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6517. dst_ptr[id] = *src0_ptr;
  6518. id++;
  6519. }
  6520. }
  6521. id += ne00 * (ne01 - ir1);
  6522. }
  6523. }
  6524. } else if (dst->type == GGML_TYPE_F16) {
  6525. size_t id = 0;
  6526. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6527. for (int i03 = 0; i03 < ne03; i03++) {
  6528. for (int i02 = 0; i02 < ne02; i02++) {
  6529. id += ne00 * ir0;
  6530. for (int i01 = ir0; i01 < ir1; i01++) {
  6531. for (int i00 = 0; i00 < ne00; i00++) {
  6532. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6533. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6534. id++;
  6535. }
  6536. }
  6537. id += ne00 * (ne01 - ir1);
  6538. }
  6539. }
  6540. } else {
  6541. GGML_ASSERT(false); // TODO: implement
  6542. }
  6543. }
  6544. return;
  6545. }
  6546. // dst counters
  6547. int64_t i10 = 0;
  6548. int64_t i11 = 0;
  6549. int64_t i12 = 0;
  6550. int64_t i13 = 0;
  6551. if (dst->type == GGML_TYPE_F32) {
  6552. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6553. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6554. i10 += ne00 * ir0;
  6555. while (i10 >= ne0) {
  6556. i10 -= ne0;
  6557. if (++i11 == ne1) {
  6558. i11 = 0;
  6559. if (++i12 == ne2) {
  6560. i12 = 0;
  6561. if (++i13 == ne3) {
  6562. i13 = 0;
  6563. }
  6564. }
  6565. }
  6566. }
  6567. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6568. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6569. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6570. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6571. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6572. if (++i10 == ne0) {
  6573. i10 = 0;
  6574. if (++i11 == ne1) {
  6575. i11 = 0;
  6576. if (++i12 == ne2) {
  6577. i12 = 0;
  6578. if (++i13 == ne3) {
  6579. i13 = 0;
  6580. }
  6581. }
  6582. }
  6583. }
  6584. }
  6585. }
  6586. i10 += ne00 * (ne01 - ir1);
  6587. while (i10 >= ne0) {
  6588. i10 -= ne0;
  6589. if (++i11 == ne1) {
  6590. i11 = 0;
  6591. if (++i12 == ne2) {
  6592. i12 = 0;
  6593. if (++i13 == ne3) {
  6594. i13 = 0;
  6595. }
  6596. }
  6597. }
  6598. }
  6599. }
  6600. }
  6601. } else if (dst->type == GGML_TYPE_F16) {
  6602. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6603. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6604. i10 += ne00 * ir0;
  6605. while (i10 >= ne0) {
  6606. i10 -= ne0;
  6607. if (++i11 == ne1) {
  6608. i11 = 0;
  6609. if (++i12 == ne2) {
  6610. i12 = 0;
  6611. if (++i13 == ne3) {
  6612. i13 = 0;
  6613. }
  6614. }
  6615. }
  6616. }
  6617. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6618. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6619. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6620. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6621. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6622. if (++i10 == ne0) {
  6623. i10 = 0;
  6624. if (++i11 == ne1) {
  6625. i11 = 0;
  6626. if (++i12 == ne2) {
  6627. i12 = 0;
  6628. if (++i13 == ne3) {
  6629. i13 = 0;
  6630. }
  6631. }
  6632. }
  6633. }
  6634. }
  6635. }
  6636. i10 += ne00 * (ne01 - ir1);
  6637. while (i10 >= ne0) {
  6638. i10 -= ne0;
  6639. if (++i11 == ne1) {
  6640. i11 = 0;
  6641. if (++i12 == ne2) {
  6642. i12 = 0;
  6643. if (++i13 == ne3) {
  6644. i13 = 0;
  6645. }
  6646. }
  6647. }
  6648. }
  6649. }
  6650. }
  6651. } else {
  6652. GGML_ASSERT(false); // TODO: implement
  6653. }
  6654. }
  6655. static void ggml_compute_forward_dup(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. struct ggml_tensor * dst) {
  6659. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6660. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6661. return;
  6662. }
  6663. switch (src0->type) {
  6664. case GGML_TYPE_F16:
  6665. {
  6666. ggml_compute_forward_dup_f16(params, src0, dst);
  6667. } break;
  6668. case GGML_TYPE_F32:
  6669. {
  6670. ggml_compute_forward_dup_f32(params, src0, dst);
  6671. } break;
  6672. default:
  6673. {
  6674. GGML_ASSERT(false);
  6675. } break;
  6676. }
  6677. }
  6678. // ggml_compute_forward_add
  6679. static void ggml_compute_forward_add_f32(
  6680. const struct ggml_compute_params * params,
  6681. const struct ggml_tensor * src0,
  6682. const struct ggml_tensor * src1,
  6683. struct ggml_tensor * dst) {
  6684. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6686. return;
  6687. }
  6688. const int ith = params->ith;
  6689. const int nth = params->nth;
  6690. const int nr = ggml_nrows(src0);
  6691. GGML_TENSOR_BINARY_OP_LOCALS;
  6692. GGML_ASSERT( nb0 == sizeof(float));
  6693. GGML_ASSERT(nb00 == sizeof(float));
  6694. // rows per thread
  6695. const int dr = (nr + nth - 1)/nth;
  6696. // row range for this thread
  6697. const int ir0 = dr*ith;
  6698. const int ir1 = MIN(ir0 + dr, nr);
  6699. if (nb10 == sizeof(float)) {
  6700. for (int ir = ir0; ir < ir1; ++ir) {
  6701. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6702. const int64_t i03 = ir/(ne02*ne01);
  6703. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6704. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6705. const int64_t i13 = i03 % ne13;
  6706. const int64_t i12 = i02 % ne12;
  6707. const int64_t i11 = i01 % ne11;
  6708. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6709. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6710. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6711. #ifdef GGML_USE_ACCELERATE
  6712. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6713. #else
  6714. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6715. #endif
  6716. // }
  6717. // }
  6718. }
  6719. } else {
  6720. // src1 is not contiguous
  6721. for (int ir = ir0; ir < ir1; ++ir) {
  6722. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6723. const int64_t i03 = ir/(ne02*ne01);
  6724. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6725. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6726. const int64_t i13 = i03 % ne13;
  6727. const int64_t i12 = i02 % ne12;
  6728. const int64_t i11 = i01 % ne11;
  6729. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6730. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6731. for (int i0 = 0; i0 < ne0; i0++) {
  6732. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6733. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6734. }
  6735. }
  6736. }
  6737. }
  6738. static void ggml_compute_forward_add_f16_f32(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. const struct ggml_tensor * src1,
  6742. struct ggml_tensor * dst) {
  6743. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6744. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6745. return;
  6746. }
  6747. const int ith = params->ith;
  6748. const int nth = params->nth;
  6749. const int nr = ggml_nrows(src0);
  6750. GGML_TENSOR_BINARY_OP_LOCALS;
  6751. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6752. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6753. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6754. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6755. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6756. // rows per thread
  6757. const int dr = (nr + nth - 1)/nth;
  6758. // row range for this thread
  6759. const int ir0 = dr*ith;
  6760. const int ir1 = MIN(ir0 + dr, nr);
  6761. if (nb10 == sizeof(float)) {
  6762. for (int ir = ir0; ir < ir1; ++ir) {
  6763. // src0, src1 and dst are same shape => same indices
  6764. const int i3 = ir/(ne2*ne1);
  6765. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6766. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6767. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6768. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6769. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6770. for (int i = 0; i < ne0; i++) {
  6771. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6772. }
  6773. }
  6774. }
  6775. else {
  6776. // src1 is not contiguous
  6777. GGML_ASSERT(false);
  6778. }
  6779. }
  6780. static void ggml_compute_forward_add_f16_f16(
  6781. const struct ggml_compute_params * params,
  6782. const struct ggml_tensor * src0,
  6783. const struct ggml_tensor * src1,
  6784. struct ggml_tensor * dst) {
  6785. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6786. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6787. return;
  6788. }
  6789. const int ith = params->ith;
  6790. const int nth = params->nth;
  6791. const int nr = ggml_nrows(src0);
  6792. GGML_TENSOR_BINARY_OP_LOCALS;
  6793. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6794. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6795. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6796. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6797. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6798. // rows per thread
  6799. const int dr = (nr + nth - 1)/nth;
  6800. // row range for this thread
  6801. const int ir0 = dr*ith;
  6802. const int ir1 = MIN(ir0 + dr, nr);
  6803. if (nb10 == sizeof(ggml_fp16_t)) {
  6804. for (int ir = ir0; ir < ir1; ++ir) {
  6805. // src0, src1 and dst are same shape => same indices
  6806. const int i3 = ir/(ne2*ne1);
  6807. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6808. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6809. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6810. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6811. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6812. for (int i = 0; i < ne0; i++) {
  6813. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6814. }
  6815. }
  6816. }
  6817. else {
  6818. // src1 is not contiguous
  6819. GGML_ASSERT(false);
  6820. }
  6821. }
  6822. static void ggml_compute_forward_add_q_f32(
  6823. const struct ggml_compute_params * params,
  6824. const struct ggml_tensor * src0,
  6825. const struct ggml_tensor * src1,
  6826. struct ggml_tensor * dst) {
  6827. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6829. return;
  6830. }
  6831. const int nr = ggml_nrows(src0);
  6832. GGML_TENSOR_BINARY_OP_LOCALS;
  6833. const int ith = params->ith;
  6834. const int nth = params->nth;
  6835. const enum ggml_type type = src0->type;
  6836. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6837. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6838. // we don't support permuted src0 or src1
  6839. GGML_ASSERT(nb00 == ggml_type_size(type));
  6840. GGML_ASSERT(nb10 == sizeof(float));
  6841. // dst cannot be transposed or permuted
  6842. GGML_ASSERT(nb0 <= nb1);
  6843. GGML_ASSERT(nb1 <= nb2);
  6844. GGML_ASSERT(nb2 <= nb3);
  6845. GGML_ASSERT(ggml_is_quantized(src0->type));
  6846. GGML_ASSERT(dst->type == src0->type);
  6847. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6848. // rows per thread
  6849. const int dr = (nr + nth - 1)/nth;
  6850. // row range for this thread
  6851. const int ir0 = dr*ith;
  6852. const int ir1 = MIN(ir0 + dr, nr);
  6853. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6854. for (int ir = ir0; ir < ir1; ++ir) {
  6855. // src0 indices
  6856. const int i03 = ir/(ne02*ne01);
  6857. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6858. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6859. // src1 and dst are same shape as src0 => same indices
  6860. const int i13 = i03;
  6861. const int i12 = i02;
  6862. const int i11 = i01;
  6863. const int i3 = i03;
  6864. const int i2 = i02;
  6865. const int i1 = i01;
  6866. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6867. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6868. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6869. assert(ne00 % 32 == 0);
  6870. // unquantize row from src0 to temp buffer
  6871. dequantize_row_q(src0_row, wdata, ne00);
  6872. // add src1
  6873. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6874. // quantize row to dst
  6875. quantize_row_q(wdata, dst_row, ne00);
  6876. }
  6877. }
  6878. static void ggml_compute_forward_add(
  6879. const struct ggml_compute_params * params,
  6880. const struct ggml_tensor * src0,
  6881. const struct ggml_tensor * src1,
  6882. struct ggml_tensor * dst) {
  6883. switch (src0->type) {
  6884. case GGML_TYPE_F32:
  6885. {
  6886. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6887. } break;
  6888. case GGML_TYPE_F16:
  6889. {
  6890. if (src1->type == GGML_TYPE_F16) {
  6891. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6892. }
  6893. else if (src1->type == GGML_TYPE_F32) {
  6894. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6895. }
  6896. else {
  6897. GGML_ASSERT(false);
  6898. }
  6899. } break;
  6900. case GGML_TYPE_Q4_0:
  6901. case GGML_TYPE_Q4_1:
  6902. case GGML_TYPE_Q5_0:
  6903. case GGML_TYPE_Q5_1:
  6904. case GGML_TYPE_Q8_0:
  6905. case GGML_TYPE_Q2_K:
  6906. case GGML_TYPE_Q3_K:
  6907. case GGML_TYPE_Q4_K:
  6908. case GGML_TYPE_Q5_K:
  6909. case GGML_TYPE_Q6_K:
  6910. {
  6911. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6912. } break;
  6913. default:
  6914. {
  6915. GGML_ASSERT(false);
  6916. } break;
  6917. }
  6918. }
  6919. // ggml_compute_forward_add1
  6920. static void ggml_compute_forward_add1_f32(
  6921. const struct ggml_compute_params * params,
  6922. const struct ggml_tensor * src0,
  6923. const struct ggml_tensor * src1,
  6924. struct ggml_tensor * dst) {
  6925. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6926. GGML_ASSERT(ggml_is_scalar(src1));
  6927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6928. return;
  6929. }
  6930. const int ith = params->ith;
  6931. const int nth = params->nth;
  6932. const int nr = ggml_nrows(src0);
  6933. GGML_TENSOR_UNARY_OP_LOCALS;
  6934. GGML_ASSERT( nb0 == sizeof(float));
  6935. GGML_ASSERT(nb00 == sizeof(float));
  6936. // rows per thread
  6937. const int dr = (nr + nth - 1)/nth;
  6938. // row range for this thread
  6939. const int ir0 = dr*ith;
  6940. const int ir1 = MIN(ir0 + dr, nr);
  6941. for (int ir = ir0; ir < ir1; ++ir) {
  6942. // src0 and dst are same shape => same indices
  6943. const int i3 = ir/(ne2*ne1);
  6944. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6945. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6946. #ifdef GGML_USE_ACCELERATE
  6947. UNUSED(ggml_vec_add1_f32);
  6948. vDSP_vadd(
  6949. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6950. (float *) ((char *) src1->data), 0,
  6951. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6952. ne0);
  6953. #else
  6954. ggml_vec_add1_f32(ne0,
  6955. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6956. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6957. *(float *) src1->data);
  6958. #endif
  6959. }
  6960. }
  6961. static void ggml_compute_forward_add1_f16_f32(
  6962. const struct ggml_compute_params * params,
  6963. const struct ggml_tensor * src0,
  6964. const struct ggml_tensor * src1,
  6965. struct ggml_tensor * dst) {
  6966. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6967. GGML_ASSERT(ggml_is_scalar(src1));
  6968. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6969. return;
  6970. }
  6971. // scalar to add
  6972. const float v = *(float *) src1->data;
  6973. const int ith = params->ith;
  6974. const int nth = params->nth;
  6975. const int nr = ggml_nrows(src0);
  6976. GGML_TENSOR_UNARY_OP_LOCALS;
  6977. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6978. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6979. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6980. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6981. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6982. // rows per thread
  6983. const int dr = (nr + nth - 1)/nth;
  6984. // row range for this thread
  6985. const int ir0 = dr*ith;
  6986. const int ir1 = MIN(ir0 + dr, nr);
  6987. for (int ir = ir0; ir < ir1; ++ir) {
  6988. // src0 and dst are same shape => same indices
  6989. const int i3 = ir/(ne2*ne1);
  6990. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6991. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6992. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6993. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6994. for (int i = 0; i < ne0; i++) {
  6995. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6996. }
  6997. }
  6998. }
  6999. static void ggml_compute_forward_add1_f16_f16(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. const struct ggml_tensor * src1,
  7003. struct ggml_tensor * dst) {
  7004. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7005. GGML_ASSERT(ggml_is_scalar(src1));
  7006. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7007. return;
  7008. }
  7009. // scalar to add
  7010. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7011. const int ith = params->ith;
  7012. const int nth = params->nth;
  7013. const int nr = ggml_nrows(src0);
  7014. GGML_TENSOR_UNARY_OP_LOCALS;
  7015. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7016. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7017. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7018. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7019. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7020. // rows per thread
  7021. const int dr = (nr + nth - 1)/nth;
  7022. // row range for this thread
  7023. const int ir0 = dr*ith;
  7024. const int ir1 = MIN(ir0 + dr, nr);
  7025. for (int ir = ir0; ir < ir1; ++ir) {
  7026. // src0 and dst are same shape => same indices
  7027. const int i3 = ir/(ne2*ne1);
  7028. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7029. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7030. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7031. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7032. for (int i = 0; i < ne0; i++) {
  7033. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7034. }
  7035. }
  7036. }
  7037. static void ggml_compute_forward_add1_q_f32(
  7038. const struct ggml_compute_params * params,
  7039. const struct ggml_tensor * src0,
  7040. const struct ggml_tensor * src1,
  7041. struct ggml_tensor * dst) {
  7042. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7043. GGML_ASSERT(ggml_is_scalar(src1));
  7044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7045. return;
  7046. }
  7047. // scalar to add
  7048. const float v = *(float *) src1->data;
  7049. const int ith = params->ith;
  7050. const int nth = params->nth;
  7051. const int nr = ggml_nrows(src0);
  7052. GGML_TENSOR_UNARY_OP_LOCALS;
  7053. const enum ggml_type type = src0->type;
  7054. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7055. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7056. // we don't support permuted src0
  7057. GGML_ASSERT(nb00 == ggml_type_size(type));
  7058. // dst cannot be transposed or permuted
  7059. GGML_ASSERT(nb0 <= nb1);
  7060. GGML_ASSERT(nb1 <= nb2);
  7061. GGML_ASSERT(nb2 <= nb3);
  7062. GGML_ASSERT(ggml_is_quantized(src0->type));
  7063. GGML_ASSERT(dst->type == src0->type);
  7064. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7065. // rows per thread
  7066. const int dr = (nr + nth - 1)/nth;
  7067. // row range for this thread
  7068. const int ir0 = dr*ith;
  7069. const int ir1 = MIN(ir0 + dr, nr);
  7070. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7071. for (int ir = ir0; ir < ir1; ++ir) {
  7072. // src0 and dst are same shape => same indices
  7073. const int i3 = ir/(ne2*ne1);
  7074. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7075. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7076. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7077. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7078. assert(ne0 % 32 == 0);
  7079. // unquantize row from src0 to temp buffer
  7080. dequantize_row_q(src0_row, wdata, ne0);
  7081. // add src1
  7082. ggml_vec_acc1_f32(ne0, wdata, v);
  7083. // quantize row to dst
  7084. quantize_row_q(wdata, dst_row, ne0);
  7085. }
  7086. }
  7087. static void ggml_compute_forward_add1(
  7088. const struct ggml_compute_params * params,
  7089. const struct ggml_tensor * src0,
  7090. const struct ggml_tensor * src1,
  7091. struct ggml_tensor * dst) {
  7092. switch (src0->type) {
  7093. case GGML_TYPE_F32:
  7094. {
  7095. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7096. } break;
  7097. case GGML_TYPE_F16:
  7098. {
  7099. if (src1->type == GGML_TYPE_F16) {
  7100. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7101. }
  7102. else if (src1->type == GGML_TYPE_F32) {
  7103. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7104. }
  7105. else {
  7106. GGML_ASSERT(false);
  7107. }
  7108. } break;
  7109. case GGML_TYPE_Q4_0:
  7110. case GGML_TYPE_Q4_1:
  7111. case GGML_TYPE_Q5_0:
  7112. case GGML_TYPE_Q5_1:
  7113. case GGML_TYPE_Q8_0:
  7114. case GGML_TYPE_Q8_1:
  7115. case GGML_TYPE_Q2_K:
  7116. case GGML_TYPE_Q3_K:
  7117. case GGML_TYPE_Q4_K:
  7118. case GGML_TYPE_Q5_K:
  7119. case GGML_TYPE_Q6_K:
  7120. {
  7121. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7122. } break;
  7123. default:
  7124. {
  7125. GGML_ASSERT(false);
  7126. } break;
  7127. }
  7128. }
  7129. // ggml_compute_forward_acc
  7130. static void ggml_compute_forward_acc_f32(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. const struct ggml_tensor * src1,
  7134. struct ggml_tensor * dst) {
  7135. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7136. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7137. // view src0 and dst with these strides and data offset inbytes during acc
  7138. // nb0 is implicitely element_size because src0 and dst are contiguous
  7139. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7140. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7141. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7142. size_t offset = ((int32_t *) dst->op_params)[3];
  7143. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7144. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7145. // memcpy needs to be synchronized across threads to avoid race conditions.
  7146. // => do it in INIT phase
  7147. memcpy(
  7148. ((char *) dst->data),
  7149. ((char *) src0->data),
  7150. ggml_nbytes(dst));
  7151. }
  7152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7153. return;
  7154. }
  7155. const int ith = params->ith;
  7156. const int nth = params->nth;
  7157. const int nr = ggml_nrows(src1);
  7158. const int nc = src1->ne[0];
  7159. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7160. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7161. // src0 and dst as viewed during acc
  7162. const size_t nb0 = ggml_element_size(src0);
  7163. const size_t nb00 = nb0;
  7164. const size_t nb01 = nb1;
  7165. const size_t nb02 = nb2;
  7166. const size_t nb03 = nb3;
  7167. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7168. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7169. GGML_ASSERT(nb10 == sizeof(float));
  7170. // rows per thread
  7171. const int dr = (nr + nth - 1)/nth;
  7172. // row range for this thread
  7173. const int ir0 = dr*ith;
  7174. const int ir1 = MIN(ir0 + dr, nr);
  7175. for (int ir = ir0; ir < ir1; ++ir) {
  7176. // src0 and dst are viewed with shape of src1 and offset
  7177. // => same indices
  7178. const int i3 = ir/(ne12*ne11);
  7179. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7180. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7181. #ifdef GGML_USE_ACCELERATE
  7182. vDSP_vadd(
  7183. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7184. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7185. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7186. #else
  7187. ggml_vec_add_f32(nc,
  7188. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7189. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7190. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7191. #endif
  7192. }
  7193. }
  7194. static void ggml_compute_forward_acc(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. const struct ggml_tensor * src1,
  7198. struct ggml_tensor * dst) {
  7199. switch (src0->type) {
  7200. case GGML_TYPE_F32:
  7201. {
  7202. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7203. } break;
  7204. case GGML_TYPE_F16:
  7205. case GGML_TYPE_Q4_0:
  7206. case GGML_TYPE_Q4_1:
  7207. case GGML_TYPE_Q5_0:
  7208. case GGML_TYPE_Q5_1:
  7209. case GGML_TYPE_Q8_0:
  7210. case GGML_TYPE_Q8_1:
  7211. case GGML_TYPE_Q2_K:
  7212. case GGML_TYPE_Q3_K:
  7213. case GGML_TYPE_Q4_K:
  7214. case GGML_TYPE_Q5_K:
  7215. case GGML_TYPE_Q6_K:
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_sub
  7223. static void ggml_compute_forward_sub_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. assert(params->ith == 0);
  7229. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7231. return;
  7232. }
  7233. const int nr = ggml_nrows(src0);
  7234. GGML_TENSOR_BINARY_OP_LOCALS;
  7235. GGML_ASSERT( nb0 == sizeof(float));
  7236. GGML_ASSERT(nb00 == sizeof(float));
  7237. if (nb10 == sizeof(float)) {
  7238. for (int ir = 0; ir < nr; ++ir) {
  7239. // src0, src1 and dst are same shape => same indices
  7240. const int i3 = ir/(ne2*ne1);
  7241. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7242. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7243. #ifdef GGML_USE_ACCELERATE
  7244. vDSP_vsub(
  7245. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7246. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7247. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7248. ne0);
  7249. #else
  7250. ggml_vec_sub_f32(ne0,
  7251. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7252. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7253. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7254. #endif
  7255. // }
  7256. // }
  7257. }
  7258. } else {
  7259. // src1 is not contiguous
  7260. for (int ir = 0; ir < nr; ++ir) {
  7261. // src0, src1 and dst are same shape => same indices
  7262. const int i3 = ir/(ne2*ne1);
  7263. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7264. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7265. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7266. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7267. for (int i0 = 0; i0 < ne0; i0++) {
  7268. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7269. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7270. }
  7271. }
  7272. }
  7273. }
  7274. static void ggml_compute_forward_sub(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. const struct ggml_tensor * src1,
  7278. struct ggml_tensor * dst) {
  7279. switch (src0->type) {
  7280. case GGML_TYPE_F32:
  7281. {
  7282. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7283. } break;
  7284. default:
  7285. {
  7286. GGML_ASSERT(false);
  7287. } break;
  7288. }
  7289. }
  7290. // ggml_compute_forward_mul
  7291. static void ggml_compute_forward_mul_f32(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. const struct ggml_tensor * src1,
  7295. struct ggml_tensor * dst) {
  7296. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7298. return;
  7299. }
  7300. const int ith = params->ith;
  7301. const int nth = params->nth;
  7302. #ifdef GGML_USE_CLBLAST
  7303. if (src1->backend == GGML_BACKEND_GPU) {
  7304. if (ith == 0) {
  7305. ggml_cl_mul(src0, src1, dst);
  7306. }
  7307. return;
  7308. }
  7309. #endif
  7310. const int64_t nr = ggml_nrows(src0);
  7311. GGML_TENSOR_BINARY_OP_LOCALS;
  7312. GGML_ASSERT( nb0 == sizeof(float));
  7313. GGML_ASSERT(nb00 == sizeof(float));
  7314. GGML_ASSERT(ne00 == ne10);
  7315. if (nb10 == sizeof(float)) {
  7316. for (int64_t ir = ith; ir < nr; ir += nth) {
  7317. // src0 and dst are same shape => same indices
  7318. const int64_t i03 = ir/(ne02*ne01);
  7319. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7320. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7321. const int64_t i13 = i03 % ne13;
  7322. const int64_t i12 = i02 % ne12;
  7323. const int64_t i11 = i01 % ne11;
  7324. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7325. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7326. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7327. #ifdef GGML_USE_ACCELERATE
  7328. UNUSED(ggml_vec_mul_f32);
  7329. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7330. #else
  7331. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7332. #endif
  7333. // }
  7334. // }
  7335. }
  7336. } else {
  7337. // src1 is not contiguous
  7338. for (int64_t ir = ith; ir < nr; ir += nth) {
  7339. // src0 and dst are same shape => same indices
  7340. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7341. const int64_t i03 = ir/(ne02*ne01);
  7342. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7343. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7344. const int64_t i13 = i03 % ne13;
  7345. const int64_t i12 = i02 % ne12;
  7346. const int64_t i11 = i01 % ne11;
  7347. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7348. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7349. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7350. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7351. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7352. }
  7353. }
  7354. }
  7355. }
  7356. static void ggml_compute_forward_mul(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. const struct ggml_tensor * src1,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_div
  7373. static void ggml_compute_forward_div_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. const struct ggml_tensor * src1,
  7377. struct ggml_tensor * dst) {
  7378. assert(params->ith == 0);
  7379. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7381. return;
  7382. }
  7383. const int nr = ggml_nrows(src0);
  7384. GGML_TENSOR_BINARY_OP_LOCALS;
  7385. GGML_ASSERT( nb0 == sizeof(float));
  7386. GGML_ASSERT(nb00 == sizeof(float));
  7387. if (nb10 == sizeof(float)) {
  7388. for (int ir = 0; ir < nr; ++ir) {
  7389. // src0, src1 and dst are same shape => same indices
  7390. const int i3 = ir/(ne2*ne1);
  7391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7393. #ifdef GGML_USE_ACCELERATE
  7394. vDSP_vdiv(
  7395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7396. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7397. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7398. ne0);
  7399. #else
  7400. ggml_vec_div_f32(ne0,
  7401. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7402. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7403. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7404. #endif
  7405. // }
  7406. // }
  7407. }
  7408. } else {
  7409. // src1 is not contiguous
  7410. for (int ir = 0; ir < nr; ++ir) {
  7411. // src0, src1 and dst are same shape => same indices
  7412. const int i3 = ir/(ne2*ne1);
  7413. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7414. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7415. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7416. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7417. for (int i0 = 0; i0 < ne0; i0++) {
  7418. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7419. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7420. }
  7421. }
  7422. }
  7423. }
  7424. static void ggml_compute_forward_div(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. const struct ggml_tensor * src1,
  7428. struct ggml_tensor * dst) {
  7429. switch (src0->type) {
  7430. case GGML_TYPE_F32:
  7431. {
  7432. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7433. } break;
  7434. default:
  7435. {
  7436. GGML_ASSERT(false);
  7437. } break;
  7438. }
  7439. }
  7440. // ggml_compute_forward_sqr
  7441. static void ggml_compute_forward_sqr_f32(
  7442. const struct ggml_compute_params * params,
  7443. const struct ggml_tensor * src0,
  7444. struct ggml_tensor * dst) {
  7445. assert(params->ith == 0);
  7446. assert(ggml_are_same_shape(src0, dst));
  7447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7448. return;
  7449. }
  7450. const int n = ggml_nrows(src0);
  7451. const int nc = src0->ne[0];
  7452. assert( dst->nb[0] == sizeof(float));
  7453. assert(src0->nb[0] == sizeof(float));
  7454. for (int i = 0; i < n; i++) {
  7455. ggml_vec_sqr_f32(nc,
  7456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7458. }
  7459. }
  7460. static void ggml_compute_forward_sqr(
  7461. const struct ggml_compute_params * params,
  7462. const struct ggml_tensor * src0,
  7463. struct ggml_tensor * dst) {
  7464. switch (src0->type) {
  7465. case GGML_TYPE_F32:
  7466. {
  7467. ggml_compute_forward_sqr_f32(params, src0, dst);
  7468. } break;
  7469. default:
  7470. {
  7471. GGML_ASSERT(false);
  7472. } break;
  7473. }
  7474. }
  7475. // ggml_compute_forward_sqrt
  7476. static void ggml_compute_forward_sqrt_f32(
  7477. const struct ggml_compute_params * params,
  7478. const struct ggml_tensor * src0,
  7479. struct ggml_tensor * dst) {
  7480. assert(params->ith == 0);
  7481. assert(ggml_are_same_shape(src0, dst));
  7482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7483. return;
  7484. }
  7485. const int n = ggml_nrows(src0);
  7486. const int nc = src0->ne[0];
  7487. assert( dst->nb[0] == sizeof(float));
  7488. assert(src0->nb[0] == sizeof(float));
  7489. for (int i = 0; i < n; i++) {
  7490. ggml_vec_sqrt_f32(nc,
  7491. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7492. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7493. }
  7494. }
  7495. static void ggml_compute_forward_sqrt(
  7496. const struct ggml_compute_params * params,
  7497. const struct ggml_tensor * src0,
  7498. struct ggml_tensor * dst) {
  7499. switch (src0->type) {
  7500. case GGML_TYPE_F32:
  7501. {
  7502. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7503. } break;
  7504. default:
  7505. {
  7506. GGML_ASSERT(false);
  7507. } break;
  7508. }
  7509. }
  7510. // ggml_compute_forward_log
  7511. static void ggml_compute_forward_log_f32(
  7512. const struct ggml_compute_params * params,
  7513. const struct ggml_tensor * src0,
  7514. struct ggml_tensor * dst) {
  7515. GGML_ASSERT(params->ith == 0);
  7516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7518. return;
  7519. }
  7520. const int n = ggml_nrows(src0);
  7521. const int nc = src0->ne[0];
  7522. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7523. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7524. for (int i = 0; i < n; i++) {
  7525. ggml_vec_log_f32(nc,
  7526. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7527. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7528. }
  7529. }
  7530. static void ggml_compute_forward_log(
  7531. const struct ggml_compute_params * params,
  7532. const struct ggml_tensor * src0,
  7533. struct ggml_tensor * dst) {
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_log_f32(params, src0, dst);
  7538. } break;
  7539. default:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. // ggml_compute_forward_sum
  7546. static void ggml_compute_forward_sum_f32(
  7547. const struct ggml_compute_params * params,
  7548. const struct ggml_tensor * src0,
  7549. struct ggml_tensor * dst) {
  7550. assert(params->ith == 0);
  7551. assert(ggml_is_scalar(dst));
  7552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7553. return;
  7554. }
  7555. assert(ggml_is_scalar(dst));
  7556. assert(src0->nb[0] == sizeof(float));
  7557. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7558. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7559. ggml_float sum = 0;
  7560. ggml_float row_sum = 0;
  7561. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7562. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7563. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7564. ggml_vec_sum_f32_ggf(ne00,
  7565. &row_sum,
  7566. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7567. sum += row_sum;
  7568. }
  7569. }
  7570. }
  7571. ((float *) dst->data)[0] = sum;
  7572. }
  7573. static void ggml_compute_forward_sum_f16(
  7574. const struct ggml_compute_params * params,
  7575. const struct ggml_tensor * src0,
  7576. struct ggml_tensor * dst) {
  7577. assert(params->ith == 0);
  7578. assert(ggml_is_scalar(dst));
  7579. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7580. return;
  7581. }
  7582. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7583. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7584. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7585. float sum = 0;
  7586. float row_sum = 0;
  7587. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7588. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7589. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7590. ggml_vec_sum_f16_ggf(ne00,
  7591. &row_sum,
  7592. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7593. sum += row_sum;
  7594. }
  7595. }
  7596. }
  7597. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7598. }
  7599. static void ggml_compute_forward_sum(
  7600. const struct ggml_compute_params * params,
  7601. const struct ggml_tensor * src0,
  7602. struct ggml_tensor * dst) {
  7603. switch (src0->type) {
  7604. case GGML_TYPE_F32:
  7605. {
  7606. ggml_compute_forward_sum_f32(params, src0, dst);
  7607. } break;
  7608. case GGML_TYPE_F16:
  7609. {
  7610. ggml_compute_forward_sum_f16(params, src0, dst);
  7611. } break;
  7612. default:
  7613. {
  7614. GGML_ASSERT(false);
  7615. } break;
  7616. }
  7617. }
  7618. // ggml_compute_forward_sum_rows
  7619. static void ggml_compute_forward_sum_rows_f32(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * src0,
  7622. struct ggml_tensor * dst) {
  7623. GGML_ASSERT(params->ith == 0);
  7624. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7625. return;
  7626. }
  7627. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7628. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7629. GGML_TENSOR_UNARY_OP_LOCALS;
  7630. GGML_ASSERT(ne0 == 1);
  7631. GGML_ASSERT(ne1 == ne01);
  7632. GGML_ASSERT(ne2 == ne02);
  7633. GGML_ASSERT(ne3 == ne03);
  7634. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7635. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7636. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7637. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7638. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7639. float row_sum = 0;
  7640. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7641. dst_row[0] = row_sum;
  7642. }
  7643. }
  7644. }
  7645. }
  7646. static void ggml_compute_forward_sum_rows(
  7647. const struct ggml_compute_params * params,
  7648. const struct ggml_tensor * src0,
  7649. struct ggml_tensor * dst) {
  7650. switch (src0->type) {
  7651. case GGML_TYPE_F32:
  7652. {
  7653. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7654. } break;
  7655. default:
  7656. {
  7657. GGML_ASSERT(false);
  7658. } break;
  7659. }
  7660. }
  7661. // ggml_compute_forward_mean
  7662. static void ggml_compute_forward_mean_f32(
  7663. const struct ggml_compute_params * params,
  7664. const struct ggml_tensor * src0,
  7665. struct ggml_tensor * dst) {
  7666. assert(params->ith == 0);
  7667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7668. return;
  7669. }
  7670. assert(src0->nb[0] == sizeof(float));
  7671. GGML_TENSOR_UNARY_OP_LOCALS;
  7672. assert(ne0 == 1);
  7673. assert(ne1 == ne01);
  7674. assert(ne2 == ne02);
  7675. assert(ne3 == ne03);
  7676. UNUSED(ne0);
  7677. UNUSED(ne1);
  7678. UNUSED(ne2);
  7679. UNUSED(ne3);
  7680. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7681. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7682. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7683. ggml_vec_sum_f32(ne00,
  7684. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7685. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7686. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7687. }
  7688. }
  7689. }
  7690. }
  7691. static void ggml_compute_forward_mean(
  7692. const struct ggml_compute_params * params,
  7693. const struct ggml_tensor * src0,
  7694. struct ggml_tensor * dst) {
  7695. switch (src0->type) {
  7696. case GGML_TYPE_F32:
  7697. {
  7698. ggml_compute_forward_mean_f32(params, src0, dst);
  7699. } break;
  7700. default:
  7701. {
  7702. GGML_ASSERT(false);
  7703. } break;
  7704. }
  7705. }
  7706. // ggml_compute_forward_argmax
  7707. static void ggml_compute_forward_argmax_f32(
  7708. const struct ggml_compute_params * params,
  7709. const struct ggml_tensor * src0,
  7710. struct ggml_tensor * dst) {
  7711. assert(params->ith == 0);
  7712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7713. return;
  7714. }
  7715. assert(src0->nb[0] == sizeof(float));
  7716. assert(dst->nb[0] == sizeof(float));
  7717. const int64_t ne00 = src0->ne[0];
  7718. const int64_t ne01 = src0->ne[1];
  7719. const size_t nb01 = src0->nb[1];
  7720. const size_t nb0 = dst->nb[0];
  7721. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7722. float * src = (float *) ((char *) src0->data + i1*nb01);
  7723. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7724. int v = 0;
  7725. ggml_vec_argmax_f32(ne00, &v, src);
  7726. dst_[0] = v;
  7727. }
  7728. }
  7729. static void ggml_compute_forward_argmax(
  7730. const struct ggml_compute_params * params,
  7731. const struct ggml_tensor * src0,
  7732. struct ggml_tensor * dst) {
  7733. switch (src0->type) {
  7734. case GGML_TYPE_F32:
  7735. {
  7736. ggml_compute_forward_argmax_f32(params, src0, dst);
  7737. } break;
  7738. default:
  7739. {
  7740. GGML_ASSERT(false);
  7741. } break;
  7742. }
  7743. }
  7744. // ggml_compute_forward_repeat
  7745. static void ggml_compute_forward_repeat_f32(
  7746. const struct ggml_compute_params * params,
  7747. const struct ggml_tensor * src0,
  7748. struct ggml_tensor * dst) {
  7749. GGML_ASSERT(params->ith == 0);
  7750. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7752. return;
  7753. }
  7754. GGML_TENSOR_UNARY_OP_LOCALS;
  7755. // guaranteed to be an integer due to the check in ggml_can_repeat
  7756. const int nr0 = (int)(ne0/ne00);
  7757. const int nr1 = (int)(ne1/ne01);
  7758. const int nr2 = (int)(ne2/ne02);
  7759. const int nr3 = (int)(ne3/ne03);
  7760. // TODO: support for transposed / permuted tensors
  7761. GGML_ASSERT(nb0 == sizeof(float));
  7762. GGML_ASSERT(nb00 == sizeof(float));
  7763. // TODO: maybe this is not optimal?
  7764. for (int i3 = 0; i3 < nr3; i3++) {
  7765. for (int k3 = 0; k3 < ne03; k3++) {
  7766. for (int i2 = 0; i2 < nr2; i2++) {
  7767. for (int k2 = 0; k2 < ne02; k2++) {
  7768. for (int i1 = 0; i1 < nr1; i1++) {
  7769. for (int k1 = 0; k1 < ne01; k1++) {
  7770. for (int i0 = 0; i0 < nr0; i0++) {
  7771. ggml_vec_cpy_f32(ne00,
  7772. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7773. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7774. }
  7775. }
  7776. }
  7777. }
  7778. }
  7779. }
  7780. }
  7781. }
  7782. static void ggml_compute_forward_repeat(
  7783. const struct ggml_compute_params * params,
  7784. const struct ggml_tensor * src0,
  7785. struct ggml_tensor * dst) {
  7786. switch (src0->type) {
  7787. case GGML_TYPE_F32:
  7788. {
  7789. ggml_compute_forward_repeat_f32(params, src0, dst);
  7790. } break;
  7791. default:
  7792. {
  7793. GGML_ASSERT(false);
  7794. } break;
  7795. }
  7796. }
  7797. // ggml_compute_forward_repeat_back
  7798. static void ggml_compute_forward_repeat_back_f32(
  7799. const struct ggml_compute_params * params,
  7800. const struct ggml_tensor * src0,
  7801. struct ggml_tensor * dst) {
  7802. GGML_ASSERT(params->ith == 0);
  7803. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7804. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7805. return;
  7806. }
  7807. GGML_TENSOR_UNARY_OP_LOCALS;
  7808. // guaranteed to be an integer due to the check in ggml_can_repeat
  7809. const int nr0 = (int)(ne00/ne0);
  7810. const int nr1 = (int)(ne01/ne1);
  7811. const int nr2 = (int)(ne02/ne2);
  7812. const int nr3 = (int)(ne03/ne3);
  7813. // TODO: support for transposed / permuted tensors
  7814. GGML_ASSERT(nb0 == sizeof(float));
  7815. GGML_ASSERT(nb00 == sizeof(float));
  7816. if (ggml_is_contiguous(dst)) {
  7817. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7818. } else {
  7819. for (int k3 = 0; k3 < ne3; k3++) {
  7820. for (int k2 = 0; k2 < ne2; k2++) {
  7821. for (int k1 = 0; k1 < ne1; k1++) {
  7822. ggml_vec_set_f32(ne0,
  7823. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7824. 0);
  7825. }
  7826. }
  7827. }
  7828. }
  7829. // TODO: maybe this is not optimal?
  7830. for (int i3 = 0; i3 < nr3; i3++) {
  7831. for (int k3 = 0; k3 < ne3; k3++) {
  7832. for (int i2 = 0; i2 < nr2; i2++) {
  7833. for (int k2 = 0; k2 < ne2; k2++) {
  7834. for (int i1 = 0; i1 < nr1; i1++) {
  7835. for (int k1 = 0; k1 < ne1; k1++) {
  7836. for (int i0 = 0; i0 < nr0; i0++) {
  7837. ggml_vec_acc_f32(ne0,
  7838. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7839. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7840. }
  7841. }
  7842. }
  7843. }
  7844. }
  7845. }
  7846. }
  7847. }
  7848. static void ggml_compute_forward_repeat_back(
  7849. const struct ggml_compute_params * params,
  7850. const struct ggml_tensor * src0,
  7851. struct ggml_tensor * dst) {
  7852. switch (src0->type) {
  7853. case GGML_TYPE_F32:
  7854. {
  7855. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7856. } break;
  7857. default:
  7858. {
  7859. GGML_ASSERT(false);
  7860. } break;
  7861. }
  7862. }
  7863. // ggml_compute_forward_abs
  7864. static void ggml_compute_forward_abs_f32(
  7865. const struct ggml_compute_params * params,
  7866. const struct ggml_tensor * src0,
  7867. struct ggml_tensor * dst) {
  7868. assert(params->ith == 0);
  7869. assert(ggml_are_same_shape(src0, dst));
  7870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7871. return;
  7872. }
  7873. const int n = ggml_nrows(src0);
  7874. const int nc = src0->ne[0];
  7875. assert(dst->nb[0] == sizeof(float));
  7876. assert(src0->nb[0] == sizeof(float));
  7877. for (int i = 0; i < n; i++) {
  7878. ggml_vec_abs_f32(nc,
  7879. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7880. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7881. }
  7882. }
  7883. static void ggml_compute_forward_abs(
  7884. const struct ggml_compute_params * params,
  7885. const struct ggml_tensor * src0,
  7886. struct ggml_tensor * dst) {
  7887. switch (src0->type) {
  7888. case GGML_TYPE_F32:
  7889. {
  7890. ggml_compute_forward_abs_f32(params, src0, dst);
  7891. } break;
  7892. default:
  7893. {
  7894. GGML_ASSERT(false);
  7895. } break;
  7896. }
  7897. }
  7898. // ggml_compute_forward_sgn
  7899. static void ggml_compute_forward_sgn_f32(
  7900. const struct ggml_compute_params * params,
  7901. const struct ggml_tensor * src0,
  7902. struct ggml_tensor * dst) {
  7903. assert(params->ith == 0);
  7904. assert(ggml_are_same_shape(src0, dst));
  7905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7906. return;
  7907. }
  7908. const int n = ggml_nrows(src0);
  7909. const int nc = src0->ne[0];
  7910. assert(dst->nb[0] == sizeof(float));
  7911. assert(src0->nb[0] == sizeof(float));
  7912. for (int i = 0; i < n; i++) {
  7913. ggml_vec_sgn_f32(nc,
  7914. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7915. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7916. }
  7917. }
  7918. static void ggml_compute_forward_sgn(
  7919. const struct ggml_compute_params * params,
  7920. const struct ggml_tensor * src0,
  7921. struct ggml_tensor * dst) {
  7922. switch (src0->type) {
  7923. case GGML_TYPE_F32:
  7924. {
  7925. ggml_compute_forward_sgn_f32(params, src0, dst);
  7926. } break;
  7927. default:
  7928. {
  7929. GGML_ASSERT(false);
  7930. } break;
  7931. }
  7932. }
  7933. // ggml_compute_forward_neg
  7934. static void ggml_compute_forward_neg_f32(
  7935. const struct ggml_compute_params * params,
  7936. const struct ggml_tensor * src0,
  7937. struct ggml_tensor * dst) {
  7938. assert(params->ith == 0);
  7939. assert(ggml_are_same_shape(src0, dst));
  7940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7941. return;
  7942. }
  7943. const int n = ggml_nrows(src0);
  7944. const int nc = src0->ne[0];
  7945. assert(dst->nb[0] == sizeof(float));
  7946. assert(src0->nb[0] == sizeof(float));
  7947. for (int i = 0; i < n; i++) {
  7948. ggml_vec_neg_f32(nc,
  7949. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7950. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7951. }
  7952. }
  7953. static void ggml_compute_forward_neg(
  7954. const struct ggml_compute_params * params,
  7955. const struct ggml_tensor * src0,
  7956. struct ggml_tensor * dst) {
  7957. switch (src0->type) {
  7958. case GGML_TYPE_F32:
  7959. {
  7960. ggml_compute_forward_neg_f32(params, src0, dst);
  7961. } break;
  7962. default:
  7963. {
  7964. GGML_ASSERT(false);
  7965. } break;
  7966. }
  7967. }
  7968. // ggml_compute_forward_step
  7969. static void ggml_compute_forward_step_f32(
  7970. const struct ggml_compute_params * params,
  7971. const struct ggml_tensor * src0,
  7972. struct ggml_tensor * dst) {
  7973. assert(params->ith == 0);
  7974. assert(ggml_are_same_shape(src0, dst));
  7975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7976. return;
  7977. }
  7978. const int n = ggml_nrows(src0);
  7979. const int nc = src0->ne[0];
  7980. assert(dst->nb[0] == sizeof(float));
  7981. assert(src0->nb[0] == sizeof(float));
  7982. for (int i = 0; i < n; i++) {
  7983. ggml_vec_step_f32(nc,
  7984. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7985. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7986. }
  7987. }
  7988. static void ggml_compute_forward_step(
  7989. const struct ggml_compute_params * params,
  7990. const struct ggml_tensor * src0,
  7991. struct ggml_tensor * dst) {
  7992. switch (src0->type) {
  7993. case GGML_TYPE_F32:
  7994. {
  7995. ggml_compute_forward_step_f32(params, src0, dst);
  7996. } break;
  7997. default:
  7998. {
  7999. GGML_ASSERT(false);
  8000. } break;
  8001. }
  8002. }
  8003. // ggml_compute_forward_tanh
  8004. static void ggml_compute_forward_tanh_f32(
  8005. const struct ggml_compute_params * params,
  8006. const struct ggml_tensor * src0,
  8007. struct ggml_tensor * dst) {
  8008. assert(params->ith == 0);
  8009. assert(ggml_are_same_shape(src0, dst));
  8010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8011. return;
  8012. }
  8013. const int n = ggml_nrows(src0);
  8014. const int nc = src0->ne[0];
  8015. assert(dst->nb[0] == sizeof(float));
  8016. assert(src0->nb[0] == sizeof(float));
  8017. for (int i = 0; i < n; i++) {
  8018. ggml_vec_tanh_f32(nc,
  8019. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8020. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8021. }
  8022. }
  8023. static void ggml_compute_forward_tanh(
  8024. const struct ggml_compute_params * params,
  8025. const struct ggml_tensor * src0,
  8026. struct ggml_tensor * dst) {
  8027. switch (src0->type) {
  8028. case GGML_TYPE_F32:
  8029. {
  8030. ggml_compute_forward_tanh_f32(params, src0, dst);
  8031. } break;
  8032. default:
  8033. {
  8034. GGML_ASSERT(false);
  8035. } break;
  8036. }
  8037. }
  8038. // ggml_compute_forward_elu
  8039. static void ggml_compute_forward_elu_f32(
  8040. const struct ggml_compute_params * params,
  8041. const struct ggml_tensor * src0,
  8042. struct ggml_tensor * dst) {
  8043. assert(params->ith == 0);
  8044. assert(ggml_are_same_shape(src0, dst));
  8045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8046. return;
  8047. }
  8048. const int n = ggml_nrows(src0);
  8049. const int nc = src0->ne[0];
  8050. assert(dst->nb[0] == sizeof(float));
  8051. assert(src0->nb[0] == sizeof(float));
  8052. for (int i = 0; i < n; i++) {
  8053. ggml_vec_elu_f32(nc,
  8054. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8055. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8056. }
  8057. }
  8058. static void ggml_compute_forward_elu(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * src0,
  8061. struct ggml_tensor * dst) {
  8062. switch (src0->type) {
  8063. case GGML_TYPE_F32:
  8064. {
  8065. ggml_compute_forward_elu_f32(params, src0, dst);
  8066. } break;
  8067. default:
  8068. {
  8069. GGML_ASSERT(false);
  8070. } break;
  8071. }
  8072. }
  8073. // ggml_compute_forward_relu
  8074. static void ggml_compute_forward_relu_f32(
  8075. const struct ggml_compute_params * params,
  8076. const struct ggml_tensor * src0,
  8077. struct ggml_tensor * dst) {
  8078. assert(params->ith == 0);
  8079. assert(ggml_are_same_shape(src0, dst));
  8080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8081. return;
  8082. }
  8083. const int n = ggml_nrows(src0);
  8084. const int nc = src0->ne[0];
  8085. assert(dst->nb[0] == sizeof(float));
  8086. assert(src0->nb[0] == sizeof(float));
  8087. for (int i = 0; i < n; i++) {
  8088. ggml_vec_relu_f32(nc,
  8089. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8090. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8091. }
  8092. }
  8093. static void ggml_compute_forward_relu(
  8094. const struct ggml_compute_params * params,
  8095. const struct ggml_tensor * src0,
  8096. struct ggml_tensor * dst) {
  8097. switch (src0->type) {
  8098. case GGML_TYPE_F32:
  8099. {
  8100. ggml_compute_forward_relu_f32(params, src0, dst);
  8101. } break;
  8102. default:
  8103. {
  8104. GGML_ASSERT(false);
  8105. } break;
  8106. }
  8107. }
  8108. // ggml_compute_forward_gelu
  8109. static void ggml_compute_forward_gelu_f32(
  8110. const struct ggml_compute_params * params,
  8111. const struct ggml_tensor * src0,
  8112. struct ggml_tensor * dst) {
  8113. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8114. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8115. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8116. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8117. return;
  8118. }
  8119. const int ith = params->ith;
  8120. const int nth = params->nth;
  8121. const int nc = src0->ne[0];
  8122. const int nr = ggml_nrows(src0);
  8123. // rows per thread
  8124. const int dr = (nr + nth - 1)/nth;
  8125. // row range for this thread
  8126. const int ir0 = dr*ith;
  8127. const int ir1 = MIN(ir0 + dr, nr);
  8128. for (int i1 = ir0; i1 < ir1; i1++) {
  8129. ggml_vec_gelu_f32(nc,
  8130. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8131. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8132. #ifndef NDEBUG
  8133. for (int k = 0; k < nc; k++) {
  8134. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8135. UNUSED(x);
  8136. assert(!isnan(x));
  8137. assert(!isinf(x));
  8138. }
  8139. #endif
  8140. }
  8141. }
  8142. static void ggml_compute_forward_gelu(
  8143. const struct ggml_compute_params * params,
  8144. const struct ggml_tensor * src0,
  8145. struct ggml_tensor * dst) {
  8146. switch (src0->type) {
  8147. case GGML_TYPE_F32:
  8148. {
  8149. ggml_compute_forward_gelu_f32(params, src0, dst);
  8150. } break;
  8151. default:
  8152. {
  8153. GGML_ASSERT(false);
  8154. } break;
  8155. }
  8156. }
  8157. // ggml_compute_forward_gelu_quick
  8158. static void ggml_compute_forward_gelu_quick_f32(
  8159. const struct ggml_compute_params * params,
  8160. const struct ggml_tensor * src0,
  8161. struct ggml_tensor * dst) {
  8162. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8163. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8164. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8165. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8166. return;
  8167. }
  8168. const int ith = params->ith;
  8169. const int nth = params->nth;
  8170. const int nc = src0->ne[0];
  8171. const int nr = ggml_nrows(src0);
  8172. // rows per thread
  8173. const int dr = (nr + nth - 1)/nth;
  8174. // row range for this thread
  8175. const int ir0 = dr*ith;
  8176. const int ir1 = MIN(ir0 + dr, nr);
  8177. for (int i1 = ir0; i1 < ir1; i1++) {
  8178. ggml_vec_gelu_quick_f32(nc,
  8179. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8180. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8181. #ifndef NDEBUG
  8182. for (int k = 0; k < nc; k++) {
  8183. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8184. UNUSED(x);
  8185. assert(!isnan(x));
  8186. assert(!isinf(x));
  8187. }
  8188. #endif
  8189. }
  8190. }
  8191. static void ggml_compute_forward_gelu_quick(
  8192. const struct ggml_compute_params * params,
  8193. const struct ggml_tensor * src0,
  8194. struct ggml_tensor * dst) {
  8195. switch (src0->type) {
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8199. } break;
  8200. default:
  8201. {
  8202. GGML_ASSERT(false);
  8203. } break;
  8204. }
  8205. }
  8206. // ggml_compute_forward_silu
  8207. static void ggml_compute_forward_silu_f32(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. struct ggml_tensor * dst) {
  8211. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8212. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8213. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8215. return;
  8216. }
  8217. const int ith = params->ith;
  8218. const int nth = params->nth;
  8219. const int nc = src0->ne[0];
  8220. const int nr = ggml_nrows(src0);
  8221. // rows per thread
  8222. const int dr = (nr + nth - 1)/nth;
  8223. // row range for this thread
  8224. const int ir0 = dr*ith;
  8225. const int ir1 = MIN(ir0 + dr, nr);
  8226. for (int i1 = ir0; i1 < ir1; i1++) {
  8227. ggml_vec_silu_f32(nc,
  8228. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8229. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8230. #ifndef NDEBUG
  8231. for (int k = 0; k < nc; k++) {
  8232. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8233. UNUSED(x);
  8234. assert(!isnan(x));
  8235. assert(!isinf(x));
  8236. }
  8237. #endif
  8238. }
  8239. }
  8240. static void ggml_compute_forward_silu(
  8241. const struct ggml_compute_params * params,
  8242. const struct ggml_tensor * src0,
  8243. struct ggml_tensor * dst) {
  8244. switch (src0->type) {
  8245. case GGML_TYPE_F32:
  8246. {
  8247. ggml_compute_forward_silu_f32(params, src0, dst);
  8248. } break;
  8249. default:
  8250. {
  8251. GGML_ASSERT(false);
  8252. } break;
  8253. }
  8254. }
  8255. // ggml_compute_forward_silu_back
  8256. static void ggml_compute_forward_silu_back_f32(
  8257. const struct ggml_compute_params * params,
  8258. const struct ggml_tensor * src0,
  8259. const struct ggml_tensor * grad,
  8260. struct ggml_tensor * dst) {
  8261. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8262. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8263. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8264. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8265. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8267. return;
  8268. }
  8269. const int ith = params->ith;
  8270. const int nth = params->nth;
  8271. const int nc = src0->ne[0];
  8272. const int nr = ggml_nrows(src0);
  8273. // rows per thread
  8274. const int dr = (nr + nth - 1)/nth;
  8275. // row range for this thread
  8276. const int ir0 = dr*ith;
  8277. const int ir1 = MIN(ir0 + dr, nr);
  8278. for (int i1 = ir0; i1 < ir1; i1++) {
  8279. ggml_vec_silu_backward_f32(nc,
  8280. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8281. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8282. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8283. #ifndef NDEBUG
  8284. for (int k = 0; k < nc; k++) {
  8285. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8286. UNUSED(x);
  8287. assert(!isnan(x));
  8288. assert(!isinf(x));
  8289. }
  8290. #endif
  8291. }
  8292. }
  8293. static void ggml_compute_forward_silu_back(
  8294. const struct ggml_compute_params * params,
  8295. const struct ggml_tensor * src0,
  8296. const struct ggml_tensor * grad,
  8297. struct ggml_tensor * dst) {
  8298. switch (src0->type) {
  8299. case GGML_TYPE_F32:
  8300. {
  8301. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8302. } break;
  8303. default:
  8304. {
  8305. GGML_ASSERT(false);
  8306. } break;
  8307. }
  8308. }
  8309. // ggml_compute_forward_norm
  8310. static void ggml_compute_forward_norm_f32(
  8311. const struct ggml_compute_params * params,
  8312. const struct ggml_tensor * src0,
  8313. struct ggml_tensor * dst) {
  8314. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8316. return;
  8317. }
  8318. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8319. const int ith = params->ith;
  8320. const int nth = params->nth;
  8321. GGML_TENSOR_UNARY_OP_LOCALS;
  8322. const float eps = 1e-5f; // TODO: make this a parameter
  8323. // TODO: optimize
  8324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8326. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8327. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8328. ggml_float sum = 0.0;
  8329. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8330. sum += (ggml_float)x[i00];
  8331. }
  8332. float mean = sum/ne00;
  8333. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8334. ggml_float sum2 = 0.0;
  8335. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8336. float v = x[i00] - mean;
  8337. y[i00] = v;
  8338. sum2 += (ggml_float)(v*v);
  8339. }
  8340. float variance = sum2/ne00;
  8341. const float scale = 1.0f/sqrtf(variance + eps);
  8342. ggml_vec_scale_f32(ne00, y, scale);
  8343. }
  8344. }
  8345. }
  8346. }
  8347. static void ggml_compute_forward_norm(
  8348. const struct ggml_compute_params * params,
  8349. const struct ggml_tensor * src0,
  8350. struct ggml_tensor * dst) {
  8351. switch (src0->type) {
  8352. case GGML_TYPE_F32:
  8353. {
  8354. ggml_compute_forward_norm_f32(params, src0, dst);
  8355. } break;
  8356. default:
  8357. {
  8358. GGML_ASSERT(false);
  8359. } break;
  8360. }
  8361. }
  8362. static void ggml_compute_forward_rms_norm_f32(
  8363. const struct ggml_compute_params * params,
  8364. const struct ggml_tensor * src0,
  8365. struct ggml_tensor * dst) {
  8366. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8367. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8368. return;
  8369. }
  8370. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8371. const int ith = params->ith;
  8372. const int nth = params->nth;
  8373. GGML_TENSOR_UNARY_OP_LOCALS;
  8374. float eps;
  8375. memcpy(&eps, dst->op_params, sizeof(float));
  8376. // TODO: optimize
  8377. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8379. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8380. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8381. ggml_float sum = 0.0;
  8382. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8383. sum += (ggml_float)(x[i00] * x[i00]);
  8384. }
  8385. const float mean = sum/ne00;
  8386. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8387. memcpy(y, x, ne00 * sizeof(float));
  8388. // for (int i00 = 0; i00 < ne00; i00++) {
  8389. // y[i00] = x[i00];
  8390. // }
  8391. const float scale = 1.0f/sqrtf(mean + eps);
  8392. ggml_vec_scale_f32(ne00, y, scale);
  8393. }
  8394. }
  8395. }
  8396. }
  8397. static void ggml_compute_forward_rms_norm(
  8398. const struct ggml_compute_params * params,
  8399. const struct ggml_tensor * src0,
  8400. struct ggml_tensor * dst) {
  8401. switch (src0->type) {
  8402. case GGML_TYPE_F32:
  8403. {
  8404. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8405. } break;
  8406. default:
  8407. {
  8408. GGML_ASSERT(false);
  8409. } break;
  8410. }
  8411. }
  8412. static void ggml_compute_forward_rms_norm_back_f32(
  8413. const struct ggml_compute_params * params,
  8414. const struct ggml_tensor * src0,
  8415. const struct ggml_tensor * src1,
  8416. struct ggml_tensor * dst) {
  8417. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8418. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8419. return;
  8420. }
  8421. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8422. const int ith = params->ith;
  8423. const int nth = params->nth;
  8424. GGML_TENSOR_BINARY_OP_LOCALS;
  8425. const float eps = 1e-6f; // TODO: make this a parameter
  8426. // TODO: optimize
  8427. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8428. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8429. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8430. // src1 is same shape as src0 => same indices
  8431. const int64_t i11 = i01;
  8432. const int64_t i12 = i02;
  8433. const int64_t i13 = i03;
  8434. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8435. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8436. ggml_float sum_xx = 0.0;
  8437. ggml_float sum_xdz = 0.0;
  8438. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8439. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8440. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8441. }
  8442. //const float mean = (float)(sum_xx)/ne00;
  8443. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8444. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8445. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8446. // we could cache rms from forward pass to improve performance.
  8447. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8448. //const float rms = sqrtf(mean_eps);
  8449. const float rrms = 1.0f / sqrtf(mean_eps);
  8450. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8451. {
  8452. // z = rms_norm(x)
  8453. //
  8454. // rms_norm(src0) =
  8455. // scale(
  8456. // src0,
  8457. // div(
  8458. // 1,
  8459. // sqrt(
  8460. // add(
  8461. // scale(
  8462. // sum(
  8463. // sqr(
  8464. // src0)),
  8465. // (1.0/N)),
  8466. // eps))));
  8467. // postorder:
  8468. // ## op args grad
  8469. // 00 param src0 grad[#00]
  8470. // 01 const 1
  8471. // 02 sqr (#00) grad[#02]
  8472. // 03 sum (#02) grad[#03]
  8473. // 04 const 1/N
  8474. // 05 scale (#03, #04) grad[#05]
  8475. // 06 const eps
  8476. // 07 add (#05, #06) grad[#07]
  8477. // 08 sqrt (#07) grad[#08]
  8478. // 09 div (#01,#08) grad[#09]
  8479. // 10 scale (#00,#09) grad[#10]
  8480. //
  8481. // backward pass, given grad[#10]
  8482. // #10: scale
  8483. // grad[#00] += scale(grad[#10],#09)
  8484. // grad[#09] += sum(mul(grad[#10],#00))
  8485. // #09: div
  8486. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8487. // #08: sqrt
  8488. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8489. // #07: add
  8490. // grad[#05] += grad[#07]
  8491. // #05: scale
  8492. // grad[#03] += scale(grad[#05],#04)
  8493. // #03: sum
  8494. // grad[#02] += repeat(grad[#03], #02)
  8495. // #02:
  8496. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8497. //
  8498. // substitute and simplify:
  8499. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8500. // grad[#02] = repeat(grad[#03], #02)
  8501. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8502. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8503. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8504. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8505. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8506. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8507. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8508. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8509. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8510. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8511. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8512. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8513. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8514. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8515. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8516. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8517. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8518. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8519. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8520. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8521. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8522. // a = b*c + d*e
  8523. // a = b*c*f/f + d*e*f/f
  8524. // a = (b*c*f + d*e*f)*(1/f)
  8525. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8526. // a = (b + d*e/c)*c
  8527. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8528. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8529. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8530. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8531. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8532. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8533. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8534. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8535. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8536. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8537. }
  8538. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8539. // post-order:
  8540. // dx := x
  8541. // dx := scale(dx,-mean_xdz/mean_eps)
  8542. // dx := add(dx, dz)
  8543. // dx := scale(dx, rrms)
  8544. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8545. ggml_vec_cpy_f32 (ne00, dx, x);
  8546. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8547. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8548. ggml_vec_acc_f32 (ne00, dx, dz);
  8549. ggml_vec_scale_f32(ne00, dx, rrms);
  8550. }
  8551. }
  8552. }
  8553. }
  8554. static void ggml_compute_forward_rms_norm_back(
  8555. const struct ggml_compute_params * params,
  8556. const struct ggml_tensor * src0,
  8557. const struct ggml_tensor * src1,
  8558. struct ggml_tensor * dst) {
  8559. switch (src0->type) {
  8560. case GGML_TYPE_F32:
  8561. {
  8562. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8563. } break;
  8564. default:
  8565. {
  8566. GGML_ASSERT(false);
  8567. } break;
  8568. }
  8569. }
  8570. // ggml_compute_forward_mul_mat
  8571. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8572. // helper function to determine if it is better to use BLAS or not
  8573. // for large matrices, BLAS is faster
  8574. static bool ggml_compute_forward_mul_mat_use_blas(
  8575. const struct ggml_tensor * src0,
  8576. const struct ggml_tensor * src1,
  8577. struct ggml_tensor * dst) {
  8578. //const int64_t ne00 = src0->ne[0];
  8579. //const int64_t ne01 = src0->ne[1];
  8580. const int64_t ne10 = src1->ne[0];
  8581. const int64_t ne0 = dst->ne[0];
  8582. const int64_t ne1 = dst->ne[1];
  8583. // TODO: find the optimal values for these
  8584. if (ggml_is_contiguous(src0) &&
  8585. ggml_is_contiguous(src1) &&
  8586. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8587. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8588. return true;
  8589. }
  8590. return false;
  8591. }
  8592. #endif
  8593. static void ggml_compute_forward_mul_mat(
  8594. const struct ggml_compute_params * params,
  8595. const struct ggml_tensor * src0,
  8596. const struct ggml_tensor * src1,
  8597. struct ggml_tensor * dst) {
  8598. int64_t t0 = ggml_perf_time_us();
  8599. UNUSED(t0);
  8600. GGML_TENSOR_BINARY_OP_LOCALS;
  8601. const int ith = params->ith;
  8602. const int nth = params->nth;
  8603. const enum ggml_type type = src0->type;
  8604. const bool src1_cont = ggml_is_contiguous(src1);
  8605. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8606. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8607. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8608. GGML_ASSERT(ne0 == ne01);
  8609. GGML_ASSERT(ne1 == ne11);
  8610. GGML_ASSERT(ne2 == ne12);
  8611. GGML_ASSERT(ne3 == ne13);
  8612. // we don't support permuted src0 or src1
  8613. GGML_ASSERT(nb00 == ggml_type_size(type));
  8614. GGML_ASSERT(nb10 == sizeof(float));
  8615. // dst cannot be transposed or permuted
  8616. GGML_ASSERT(nb0 == sizeof(float));
  8617. GGML_ASSERT(nb0 <= nb1);
  8618. GGML_ASSERT(nb1 <= nb2);
  8619. GGML_ASSERT(nb2 <= nb3);
  8620. // nb01 >= nb00 - src0 is not transposed
  8621. // compute by src0 rows
  8622. #if defined(GGML_USE_CLBLAST)
  8623. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8624. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8625. // ref: https://github.com/ggerganov/ggml/pull/224
  8626. GGML_ASSERT(ne02 == ne12);
  8627. GGML_ASSERT(ne03 == ne13);
  8628. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8629. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8630. }
  8631. return;
  8632. }
  8633. #endif
  8634. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8635. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8636. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  8637. // ref: https://github.com/ggerganov/ggml/pull/224
  8638. GGML_ASSERT(ne02 == ne12);
  8639. GGML_ASSERT(ne03 == ne13);
  8640. if (params->ith != 0) {
  8641. return;
  8642. }
  8643. if (params->type == GGML_TASK_INIT) {
  8644. return;
  8645. }
  8646. if (params->type == GGML_TASK_FINALIZE) {
  8647. return;
  8648. }
  8649. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8650. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8651. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8652. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8653. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8654. if (type != GGML_TYPE_F32) {
  8655. float * const wdata = params->wdata;
  8656. ggml_to_float_t const to_float = type_traits[type].to_float;
  8657. size_t id = 0;
  8658. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8659. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8660. id += ne00;
  8661. }
  8662. assert(id*sizeof(float) <= params->wsize);
  8663. x = wdata;
  8664. }
  8665. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8666. ne11, ne01, ne10,
  8667. 1.0f, y, ne10,
  8668. x, ne00,
  8669. 0.0f, d, ne01);
  8670. }
  8671. }
  8672. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8673. return;
  8674. }
  8675. #endif
  8676. if (params->type == GGML_TASK_INIT) {
  8677. if (src1->type != vec_dot_type) {
  8678. char * wdata = params->wdata;
  8679. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  8680. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8681. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8682. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8683. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8684. wdata += row_size;
  8685. }
  8686. }
  8687. }
  8688. }
  8689. return;
  8690. }
  8691. if (params->type == GGML_TASK_FINALIZE) {
  8692. return;
  8693. }
  8694. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8695. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  8696. const int64_t nr0 = ne01; // src0 rows
  8697. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  8698. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8699. // distribute the thread work across the inner or outer loop based on which one is larger
  8700. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8701. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8702. const int64_t ith0 = ith % nth0;
  8703. const int64_t ith1 = ith / nth0;
  8704. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8705. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8706. const int64_t ir010 = dr0*ith0;
  8707. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8708. const int64_t ir110 = dr1*ith1;
  8709. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8710. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8711. // threads with no work simply yield (not sure if it helps)
  8712. if (ir010 >= ir011 || ir110 >= ir111) {
  8713. sched_yield();
  8714. return;
  8715. }
  8716. assert(ne12 % ne02 == 0);
  8717. assert(ne13 % ne03 == 0);
  8718. // broadcast factors
  8719. const int64_t r2 = ne12/ne02;
  8720. const int64_t r3 = ne13/ne03;
  8721. // block-tiling attempt
  8722. const int64_t blck_0 = 16;
  8723. const int64_t blck_1 = 16;
  8724. // attempt to reduce false-sharing (does not seem to make a difference)
  8725. float tmp[16];
  8726. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8727. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8728. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8729. const int64_t i13 = (ir1/(ne12*ne11));
  8730. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  8731. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  8732. // broadcast src0 into src1
  8733. const int64_t i03 = i13/r3;
  8734. const int64_t i02 = i12/r2;
  8735. const int64_t i1 = i11;
  8736. const int64_t i2 = i12;
  8737. const int64_t i3 = i13;
  8738. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8739. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8740. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8741. // the original src1 data pointer, so we should index using the indices directly
  8742. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8743. const char * src1_col = (const char *) wdata +
  8744. (src1_cont || src1->type != vec_dot_type
  8745. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8746. : (i11*nb11 + i12*nb12 + i13*nb13));
  8747. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8748. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8749. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8750. //}
  8751. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8752. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8753. }
  8754. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8755. }
  8756. }
  8757. }
  8758. }
  8759. // ggml_compute_forward_out_prod
  8760. static void ggml_compute_forward_out_prod_f32(
  8761. const struct ggml_compute_params * params,
  8762. const struct ggml_tensor * src0,
  8763. const struct ggml_tensor * src1,
  8764. struct ggml_tensor * dst) {
  8765. int64_t t0 = ggml_perf_time_us();
  8766. UNUSED(t0);
  8767. GGML_TENSOR_BINARY_OP_LOCALS;
  8768. const int ith = params->ith;
  8769. const int nth = params->nth;
  8770. GGML_ASSERT(ne02 == ne12);
  8771. GGML_ASSERT(ne03 == ne13);
  8772. GGML_ASSERT(ne2 == ne12);
  8773. GGML_ASSERT(ne3 == ne13);
  8774. // we don't support permuted src0 or src1
  8775. GGML_ASSERT(nb00 == sizeof(float));
  8776. // dst cannot be transposed or permuted
  8777. GGML_ASSERT(nb0 == sizeof(float));
  8778. // GGML_ASSERT(nb0 <= nb1);
  8779. // GGML_ASSERT(nb1 <= nb2);
  8780. // GGML_ASSERT(nb2 <= nb3);
  8781. GGML_ASSERT(ne0 == ne00);
  8782. GGML_ASSERT(ne1 == ne10);
  8783. GGML_ASSERT(ne2 == ne02);
  8784. GGML_ASSERT(ne3 == ne03);
  8785. // nb01 >= nb00 - src0 is not transposed
  8786. // compute by src0 rows
  8787. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8788. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8789. if (params->type == GGML_TASK_INIT) {
  8790. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8791. return;
  8792. }
  8793. if (params->type == GGML_TASK_FINALIZE) {
  8794. return;
  8795. }
  8796. // parallelize by last three dimensions
  8797. // total rows in dst
  8798. const int64_t nr = ne1*ne2*ne3;
  8799. // rows per thread
  8800. const int64_t dr = (nr + nth - 1)/nth;
  8801. // row range for this thread
  8802. const int64_t ir0 = dr*ith;
  8803. const int64_t ir1 = MIN(ir0 + dr, nr);
  8804. // dst[:,:,:,:] = 0
  8805. // for i2,i3:
  8806. // for i1:
  8807. // for i01:
  8808. // for i0:
  8809. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8810. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8811. // dst indices
  8812. const int64_t i3 = ir/(ne2*ne1);
  8813. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8814. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8815. const int64_t i02 = i2;
  8816. const int64_t i03 = i3;
  8817. //const int64_t i10 = i1;
  8818. const int64_t i12 = i2;
  8819. const int64_t i13 = i3;
  8820. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8821. const int64_t i11 = i01;
  8822. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8823. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8824. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8825. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8826. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8827. // d[i0] += s0[i0] * s1[i1];
  8828. // }
  8829. }
  8830. }
  8831. //int64_t t1 = ggml_perf_time_us();
  8832. //static int64_t acc = 0;
  8833. //acc += t1 - t0;
  8834. //if (t1 - t0 > 10) {
  8835. // printf("\n");
  8836. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8837. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8838. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8839. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8840. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8841. //}
  8842. }
  8843. static void ggml_compute_forward_out_prod(
  8844. const struct ggml_compute_params * params,
  8845. const struct ggml_tensor * src0,
  8846. const struct ggml_tensor * src1,
  8847. struct ggml_tensor * dst) {
  8848. switch (src0->type) {
  8849. case GGML_TYPE_Q4_0:
  8850. case GGML_TYPE_Q4_1:
  8851. case GGML_TYPE_Q5_0:
  8852. case GGML_TYPE_Q5_1:
  8853. case GGML_TYPE_Q8_0:
  8854. case GGML_TYPE_Q8_1:
  8855. {
  8856. GGML_ASSERT(false); // todo
  8857. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8858. } break;
  8859. case GGML_TYPE_F16:
  8860. {
  8861. GGML_ASSERT(false); // todo
  8862. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8863. } break;
  8864. case GGML_TYPE_F32:
  8865. {
  8866. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8867. } break;
  8868. default:
  8869. {
  8870. GGML_ASSERT(false);
  8871. } break;
  8872. }
  8873. }
  8874. // ggml_compute_forward_scale
  8875. static void ggml_compute_forward_scale_f32(
  8876. const struct ggml_compute_params * params,
  8877. const struct ggml_tensor * src0,
  8878. const struct ggml_tensor * src1,
  8879. struct ggml_tensor * dst) {
  8880. GGML_ASSERT(ggml_is_contiguous(src0));
  8881. GGML_ASSERT(ggml_is_contiguous(dst));
  8882. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8883. GGML_ASSERT(ggml_is_scalar(src1));
  8884. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8885. return;
  8886. }
  8887. // scale factor
  8888. const float v = *(float *) src1->data;
  8889. const int ith = params->ith;
  8890. const int nth = params->nth;
  8891. const int nc = src0->ne[0];
  8892. const int nr = ggml_nrows(src0);
  8893. // rows per thread
  8894. const int dr = (nr + nth - 1)/nth;
  8895. // row range for this thread
  8896. const int ir0 = dr*ith;
  8897. const int ir1 = MIN(ir0 + dr, nr);
  8898. const size_t nb01 = src0->nb[1];
  8899. const size_t nb1 = dst->nb[1];
  8900. for (int i1 = ir0; i1 < ir1; i1++) {
  8901. if (dst->data != src0->data) {
  8902. // src0 is same shape as dst => same indices
  8903. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8904. }
  8905. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8906. }
  8907. }
  8908. static void ggml_compute_forward_scale(
  8909. const struct ggml_compute_params * params,
  8910. const struct ggml_tensor * src0,
  8911. const struct ggml_tensor * src1,
  8912. struct ggml_tensor * dst) {
  8913. switch (src0->type) {
  8914. case GGML_TYPE_F32:
  8915. {
  8916. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8917. } break;
  8918. default:
  8919. {
  8920. GGML_ASSERT(false);
  8921. } break;
  8922. }
  8923. }
  8924. // ggml_compute_forward_set
  8925. static void ggml_compute_forward_set_f32(
  8926. const struct ggml_compute_params * params,
  8927. const struct ggml_tensor * src0,
  8928. const struct ggml_tensor * src1,
  8929. struct ggml_tensor * dst) {
  8930. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8931. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8932. // view src0 and dst with these strides and data offset inbytes during set
  8933. // nb0 is implicitely element_size because src0 and dst are contiguous
  8934. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8935. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8936. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8937. size_t offset = ((int32_t *) dst->op_params)[3];
  8938. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8939. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8940. // memcpy needs to be synchronized across threads to avoid race conditions.
  8941. // => do it in INIT phase
  8942. memcpy(
  8943. ((char *) dst->data),
  8944. ((char *) src0->data),
  8945. ggml_nbytes(dst));
  8946. }
  8947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8948. return;
  8949. }
  8950. const int ith = params->ith;
  8951. const int nth = params->nth;
  8952. const int nr = ggml_nrows(src1);
  8953. const int nc = src1->ne[0];
  8954. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8955. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8956. // src0 and dst as viewed during set
  8957. const size_t nb0 = ggml_element_size(src0);
  8958. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8959. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8960. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8961. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8962. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8963. GGML_ASSERT(nb10 == sizeof(float));
  8964. // rows per thread
  8965. const int dr = (nr + nth - 1)/nth;
  8966. // row range for this thread
  8967. const int ir0 = dr*ith;
  8968. const int ir1 = MIN(ir0 + dr, nr);
  8969. for (int ir = ir0; ir < ir1; ++ir) {
  8970. // src0 and dst are viewed with shape of src1 and offset
  8971. // => same indices
  8972. const int i3 = ir/(ne12*ne11);
  8973. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8974. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8975. ggml_vec_cpy_f32(nc,
  8976. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8977. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8978. }
  8979. }
  8980. static void ggml_compute_forward_set(
  8981. const struct ggml_compute_params * params,
  8982. const struct ggml_tensor * src0,
  8983. const struct ggml_tensor * src1,
  8984. struct ggml_tensor * dst) {
  8985. switch (src0->type) {
  8986. case GGML_TYPE_F32:
  8987. {
  8988. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8989. } break;
  8990. case GGML_TYPE_F16:
  8991. case GGML_TYPE_Q4_0:
  8992. case GGML_TYPE_Q4_1:
  8993. case GGML_TYPE_Q5_0:
  8994. case GGML_TYPE_Q5_1:
  8995. case GGML_TYPE_Q8_0:
  8996. case GGML_TYPE_Q8_1:
  8997. case GGML_TYPE_Q2_K:
  8998. case GGML_TYPE_Q3_K:
  8999. case GGML_TYPE_Q4_K:
  9000. case GGML_TYPE_Q5_K:
  9001. case GGML_TYPE_Q6_K:
  9002. default:
  9003. {
  9004. GGML_ASSERT(false);
  9005. } break;
  9006. }
  9007. }
  9008. // ggml_compute_forward_cpy
  9009. static void ggml_compute_forward_cpy(
  9010. const struct ggml_compute_params * params,
  9011. const struct ggml_tensor * src0,
  9012. struct ggml_tensor * dst) {
  9013. ggml_compute_forward_dup(params, src0, dst);
  9014. }
  9015. // ggml_compute_forward_cont
  9016. static void ggml_compute_forward_cont(
  9017. const struct ggml_compute_params * params,
  9018. const struct ggml_tensor * src0,
  9019. struct ggml_tensor * dst) {
  9020. ggml_compute_forward_dup(params, src0, dst);
  9021. }
  9022. // ggml_compute_forward_reshape
  9023. static void ggml_compute_forward_reshape(
  9024. const struct ggml_compute_params * params,
  9025. const struct ggml_tensor * src0,
  9026. struct ggml_tensor * dst) {
  9027. // NOP
  9028. UNUSED(params);
  9029. UNUSED(src0);
  9030. UNUSED(dst);
  9031. }
  9032. // ggml_compute_forward_view
  9033. static void ggml_compute_forward_view(
  9034. const struct ggml_compute_params * params,
  9035. const struct ggml_tensor * src0) {
  9036. // NOP
  9037. UNUSED(params);
  9038. UNUSED(src0);
  9039. }
  9040. // ggml_compute_forward_permute
  9041. static void ggml_compute_forward_permute(
  9042. const struct ggml_compute_params * params,
  9043. const struct ggml_tensor * src0) {
  9044. // NOP
  9045. UNUSED(params);
  9046. UNUSED(src0);
  9047. }
  9048. // ggml_compute_forward_transpose
  9049. static void ggml_compute_forward_transpose(
  9050. const struct ggml_compute_params * params,
  9051. const struct ggml_tensor * src0) {
  9052. // NOP
  9053. UNUSED(params);
  9054. UNUSED(src0);
  9055. }
  9056. // ggml_compute_forward_get_rows
  9057. static void ggml_compute_forward_get_rows_q(
  9058. const struct ggml_compute_params * params,
  9059. const struct ggml_tensor * src0,
  9060. const struct ggml_tensor * src1,
  9061. struct ggml_tensor * dst) {
  9062. assert(params->ith == 0);
  9063. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9064. return;
  9065. }
  9066. const int nc = src0->ne[0];
  9067. const int nr = ggml_nelements(src1);
  9068. const enum ggml_type type = src0->type;
  9069. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9070. assert( dst->ne[0] == nc);
  9071. assert( dst->ne[1] == nr);
  9072. assert(src0->nb[0] == ggml_type_size(type));
  9073. for (int i = 0; i < nr; ++i) {
  9074. const int r = ((int32_t *) src1->data)[i];
  9075. dequantize_row_q(
  9076. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9077. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9078. }
  9079. }
  9080. static void ggml_compute_forward_get_rows_f16(
  9081. const struct ggml_compute_params * params,
  9082. const struct ggml_tensor * src0,
  9083. const struct ggml_tensor * src1,
  9084. struct ggml_tensor * dst) {
  9085. assert(params->ith == 0);
  9086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9087. return;
  9088. }
  9089. const int nc = src0->ne[0];
  9090. const int nr = ggml_nelements(src1);
  9091. assert( dst->ne[0] == nc);
  9092. assert( dst->ne[1] == nr);
  9093. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9094. for (int i = 0; i < nr; ++i) {
  9095. const int r = ((int32_t *) src1->data)[i];
  9096. for (int j = 0; j < nc; ++j) {
  9097. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9098. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9099. }
  9100. }
  9101. }
  9102. static void ggml_compute_forward_get_rows_f32(
  9103. const struct ggml_compute_params * params,
  9104. const struct ggml_tensor * src0,
  9105. const struct ggml_tensor * src1,
  9106. struct ggml_tensor * dst) {
  9107. assert(params->ith == 0);
  9108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9109. return;
  9110. }
  9111. const int nc = src0->ne[0];
  9112. const int nr = ggml_nelements(src1);
  9113. assert( dst->ne[0] == nc);
  9114. assert( dst->ne[1] == nr);
  9115. assert(src0->nb[0] == sizeof(float));
  9116. for (int i = 0; i < nr; ++i) {
  9117. const int r = ((int32_t *) src1->data)[i];
  9118. ggml_vec_cpy_f32(nc,
  9119. (float *) ((char *) dst->data + i*dst->nb[1]),
  9120. (float *) ((char *) src0->data + r*src0->nb[1]));
  9121. }
  9122. }
  9123. static void ggml_compute_forward_get_rows(
  9124. const struct ggml_compute_params * params,
  9125. const struct ggml_tensor * src0,
  9126. const struct ggml_tensor * src1,
  9127. struct ggml_tensor * dst) {
  9128. switch (src0->type) {
  9129. case GGML_TYPE_Q4_0:
  9130. case GGML_TYPE_Q4_1:
  9131. case GGML_TYPE_Q5_0:
  9132. case GGML_TYPE_Q5_1:
  9133. case GGML_TYPE_Q8_0:
  9134. case GGML_TYPE_Q8_1:
  9135. case GGML_TYPE_Q2_K:
  9136. case GGML_TYPE_Q3_K:
  9137. case GGML_TYPE_Q4_K:
  9138. case GGML_TYPE_Q5_K:
  9139. case GGML_TYPE_Q6_K:
  9140. {
  9141. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9142. } break;
  9143. case GGML_TYPE_F16:
  9144. {
  9145. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9146. } break;
  9147. case GGML_TYPE_F32:
  9148. {
  9149. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ASSERT(false);
  9154. } break;
  9155. }
  9156. //static bool first = true;
  9157. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9158. //if (first) {
  9159. // first = false;
  9160. //} else {
  9161. // for (int k = 0; k < dst->ne[1]; ++k) {
  9162. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9163. // for (int i = 0; i < 16; ++i) {
  9164. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9165. // }
  9166. // printf("\n");
  9167. // }
  9168. // printf("\n");
  9169. // }
  9170. // printf("\n");
  9171. // exit(0);
  9172. //}
  9173. }
  9174. // ggml_compute_forward_get_rows_back
  9175. static void ggml_compute_forward_get_rows_back_f32_f16(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * src0,
  9178. const struct ggml_tensor * src1,
  9179. const struct ggml_tensor * opt0,
  9180. struct ggml_tensor * dst) {
  9181. GGML_ASSERT(params->ith == 0);
  9182. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9183. GGML_ASSERT(ggml_is_contiguous(opt0));
  9184. GGML_ASSERT(ggml_is_contiguous(dst));
  9185. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9187. return;
  9188. }
  9189. const int nc = src0->ne[0];
  9190. const int nr = ggml_nelements(src1);
  9191. GGML_ASSERT( dst->ne[0] == nc);
  9192. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9193. for (int i = 0; i < nr; ++i) {
  9194. const int r = ((int32_t *) src1->data)[i];
  9195. for (int j = 0; j < nc; ++j) {
  9196. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9197. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9198. }
  9199. }
  9200. }
  9201. static void ggml_compute_forward_get_rows_back_f32(
  9202. const struct ggml_compute_params * params,
  9203. const struct ggml_tensor * src0,
  9204. const struct ggml_tensor * src1,
  9205. const struct ggml_tensor * opt0,
  9206. struct ggml_tensor * dst) {
  9207. GGML_ASSERT(params->ith == 0);
  9208. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9209. GGML_ASSERT(ggml_is_contiguous(opt0));
  9210. GGML_ASSERT(ggml_is_contiguous(dst));
  9211. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9212. if (params->type == GGML_TASK_INIT) {
  9213. memset(dst->data, 0, ggml_nbytes(dst));
  9214. }
  9215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9216. return;
  9217. }
  9218. const int nc = src0->ne[0];
  9219. const int nr = ggml_nelements(src1);
  9220. GGML_ASSERT( dst->ne[0] == nc);
  9221. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9222. for (int i = 0; i < nr; ++i) {
  9223. const int r = ((int32_t *) src1->data)[i];
  9224. ggml_vec_add_f32(nc,
  9225. (float *) ((char *) dst->data + r*dst->nb[1]),
  9226. (float *) ((char *) dst->data + r*dst->nb[1]),
  9227. (float *) ((char *) src0->data + i*src0->nb[1]));
  9228. }
  9229. }
  9230. static void ggml_compute_forward_get_rows_back(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. const struct ggml_tensor * src1,
  9234. const struct ggml_tensor * opt0,
  9235. struct ggml_tensor * dst) {
  9236. switch (src0->type) {
  9237. case GGML_TYPE_F16:
  9238. {
  9239. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9240. } break;
  9241. case GGML_TYPE_F32:
  9242. {
  9243. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9244. } break;
  9245. default:
  9246. {
  9247. GGML_ASSERT(false);
  9248. } break;
  9249. }
  9250. //static bool first = true;
  9251. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9252. //if (first) {
  9253. // first = false;
  9254. //} else {
  9255. // for (int k = 0; k < dst->ne[1]; ++k) {
  9256. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9257. // for (int i = 0; i < 16; ++i) {
  9258. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9259. // }
  9260. // printf("\n");
  9261. // }
  9262. // printf("\n");
  9263. // }
  9264. // printf("\n");
  9265. // exit(0);
  9266. //}
  9267. }
  9268. // ggml_compute_forward_diag
  9269. static void ggml_compute_forward_diag_f32(
  9270. const struct ggml_compute_params * params,
  9271. const struct ggml_tensor * src0,
  9272. struct ggml_tensor * dst) {
  9273. GGML_ASSERT(params->ith == 0);
  9274. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9275. return;
  9276. }
  9277. // TODO: handle transposed/permuted matrices
  9278. GGML_TENSOR_UNARY_OP_LOCALS;
  9279. GGML_ASSERT(ne00 == ne0);
  9280. GGML_ASSERT(ne00 == ne1);
  9281. GGML_ASSERT(ne01 == 1);
  9282. GGML_ASSERT(ne02 == ne2);
  9283. GGML_ASSERT(ne03 == ne3);
  9284. GGML_ASSERT(nb00 == sizeof(float));
  9285. GGML_ASSERT(nb0 == sizeof(float));
  9286. for (int i3 = 0; i3 < ne3; i3++) {
  9287. for (int i2 = 0; i2 < ne2; i2++) {
  9288. for (int i1 = 0; i1 < ne1; i1++) {
  9289. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9290. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9291. for (int i0 = 0; i0 < i1; i0++) {
  9292. d[i0] = 0;
  9293. }
  9294. d[i1] = s[i1];
  9295. for (int i0 = i1+1; i0 < ne0; i0++) {
  9296. d[i0] = 0;
  9297. }
  9298. }
  9299. }
  9300. }
  9301. }
  9302. static void ggml_compute_forward_diag(
  9303. const struct ggml_compute_params * params,
  9304. const struct ggml_tensor * src0,
  9305. struct ggml_tensor * dst) {
  9306. switch (src0->type) {
  9307. case GGML_TYPE_F32:
  9308. {
  9309. ggml_compute_forward_diag_f32(params, src0, dst);
  9310. } break;
  9311. default:
  9312. {
  9313. GGML_ASSERT(false);
  9314. } break;
  9315. }
  9316. }
  9317. // ggml_compute_forward_diag_mask_inf
  9318. static void ggml_compute_forward_diag_mask_f32(
  9319. const struct ggml_compute_params * params,
  9320. const struct ggml_tensor * src0,
  9321. struct ggml_tensor * dst,
  9322. const float value) {
  9323. const int ith = params->ith;
  9324. const int nth = params->nth;
  9325. const int n_past = ((int32_t *) dst->op_params)[0];
  9326. const bool inplace = (bool)((int32_t *) dst->op_params)[1];
  9327. GGML_ASSERT(n_past >= 0);
  9328. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9329. // memcpy needs to be synchronized across threads to avoid race conditions.
  9330. // => do it in INIT phase
  9331. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9332. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9333. memcpy(
  9334. ((char *) dst->data),
  9335. ((char *) src0->data),
  9336. ggml_nbytes(dst));
  9337. }
  9338. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9339. return;
  9340. }
  9341. // TODO: handle transposed/permuted matrices
  9342. const int n = ggml_nrows(src0);
  9343. const int nc = src0->ne[0];
  9344. const int nr = src0->ne[1];
  9345. const int nz = n/nr;
  9346. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9347. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9348. for (int k = 0; k < nz; k++) {
  9349. for (int j = ith; j < nr; j += nth) {
  9350. for (int i = n_past; i < nc; i++) {
  9351. if (i > n_past + j) {
  9352. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9353. }
  9354. }
  9355. }
  9356. }
  9357. }
  9358. static void ggml_compute_forward_diag_mask_inf(
  9359. const struct ggml_compute_params * params,
  9360. const struct ggml_tensor * src0,
  9361. struct ggml_tensor * dst) {
  9362. switch (src0->type) {
  9363. case GGML_TYPE_F32:
  9364. {
  9365. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9366. } break;
  9367. default:
  9368. {
  9369. GGML_ASSERT(false);
  9370. } break;
  9371. }
  9372. }
  9373. static void ggml_compute_forward_diag_mask_zero(
  9374. const struct ggml_compute_params * params,
  9375. const struct ggml_tensor * src0,
  9376. struct ggml_tensor * dst) {
  9377. switch (src0->type) {
  9378. case GGML_TYPE_F32:
  9379. {
  9380. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9381. } break;
  9382. default:
  9383. {
  9384. GGML_ASSERT(false);
  9385. } break;
  9386. }
  9387. }
  9388. // ggml_compute_forward_soft_max
  9389. static void ggml_compute_forward_soft_max_f32(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * src0,
  9392. struct ggml_tensor * dst) {
  9393. GGML_ASSERT(ggml_is_contiguous(src0));
  9394. GGML_ASSERT(ggml_is_contiguous(dst));
  9395. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9396. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9397. return;
  9398. }
  9399. // TODO: handle transposed/permuted matrices
  9400. const int ith = params->ith;
  9401. const int nth = params->nth;
  9402. const int nc = src0->ne[0];
  9403. const int nr = ggml_nrows(src0);
  9404. // rows per thread
  9405. const int dr = (nr + nth - 1)/nth;
  9406. // row range for this thread
  9407. const int ir0 = dr*ith;
  9408. const int ir1 = MIN(ir0 + dr, nr);
  9409. for (int i1 = ir0; i1 < ir1; i1++) {
  9410. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9411. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9412. #ifndef NDEBUG
  9413. for (int i = 0; i < nc; ++i) {
  9414. //printf("p[%d] = %f\n", i, p[i]);
  9415. assert(!isnan(sp[i]));
  9416. }
  9417. #endif
  9418. float max = -INFINITY;
  9419. ggml_vec_max_f32(nc, &max, sp);
  9420. ggml_float sum = 0.0;
  9421. uint16_t scvt;
  9422. for (int i = 0; i < nc; i++) {
  9423. if (sp[i] == -INFINITY) {
  9424. dp[i] = 0.0f;
  9425. } else {
  9426. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9427. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9428. memcpy(&scvt, &s, sizeof(scvt));
  9429. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9430. sum += (ggml_float)val;
  9431. dp[i] = val;
  9432. }
  9433. }
  9434. assert(sum > 0.0);
  9435. sum = 1.0/sum;
  9436. ggml_vec_scale_f32(nc, dp, sum);
  9437. #ifndef NDEBUG
  9438. for (int i = 0; i < nc; ++i) {
  9439. assert(!isnan(dp[i]));
  9440. assert(!isinf(dp[i]));
  9441. }
  9442. #endif
  9443. }
  9444. }
  9445. static void ggml_compute_forward_soft_max(
  9446. const struct ggml_compute_params * params,
  9447. const struct ggml_tensor * src0,
  9448. struct ggml_tensor * dst) {
  9449. switch (src0->type) {
  9450. case GGML_TYPE_F32:
  9451. {
  9452. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9453. } break;
  9454. default:
  9455. {
  9456. GGML_ASSERT(false);
  9457. } break;
  9458. }
  9459. }
  9460. // ggml_compute_forward_soft_max_back
  9461. static void ggml_compute_forward_soft_max_back_f32(
  9462. const struct ggml_compute_params * params,
  9463. const struct ggml_tensor * src0,
  9464. const struct ggml_tensor * src1,
  9465. struct ggml_tensor * dst) {
  9466. GGML_ASSERT(ggml_is_contiguous(src0));
  9467. GGML_ASSERT(ggml_is_contiguous(src1));
  9468. GGML_ASSERT(ggml_is_contiguous(dst));
  9469. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9470. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9472. return;
  9473. }
  9474. // TODO: handle transposed/permuted matrices
  9475. const int ith = params->ith;
  9476. const int nth = params->nth;
  9477. const int nc = src0->ne[0];
  9478. const int nr = ggml_nrows(src0);
  9479. // rows per thread
  9480. const int dr = (nr + nth - 1)/nth;
  9481. // row range for this thread
  9482. const int ir0 = dr*ith;
  9483. const int ir1 = MIN(ir0 + dr, nr);
  9484. for (int i1 = ir0; i1 < ir1; i1++) {
  9485. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9486. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9487. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9488. #ifndef NDEBUG
  9489. for (int i = 0; i < nc; ++i) {
  9490. //printf("p[%d] = %f\n", i, p[i]);
  9491. assert(!isnan(dy[i]));
  9492. assert(!isnan(y[i]));
  9493. }
  9494. #endif
  9495. // Jii = yi - yi*yi
  9496. // Jij = -yi*yj
  9497. // J = diag(y)-y.T*y
  9498. // dx = J * dy
  9499. // dxk = sum_i(Jki * dyi)
  9500. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9501. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9502. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9503. // dxk = -yk * dot(y, dy) + yk*dyk
  9504. // dxk = yk * (- dot(y, dy) + dyk)
  9505. // dxk = yk * (dyk - dot(y, dy))
  9506. //
  9507. // post-order:
  9508. // dot_y_dy := dot(y, dy)
  9509. // dx := dy
  9510. // dx := dx - dot_y_dy
  9511. // dx := dx * y
  9512. // linear runtime, no additional memory
  9513. float dot_y_dy = 0;
  9514. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9515. ggml_vec_cpy_f32 (nc, dx, dy);
  9516. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9517. ggml_vec_mul_f32 (nc, dx, dx, y);
  9518. #ifndef NDEBUG
  9519. for (int i = 0; i < nc; ++i) {
  9520. assert(!isnan(dx[i]));
  9521. assert(!isinf(dx[i]));
  9522. }
  9523. #endif
  9524. }
  9525. }
  9526. static void ggml_compute_forward_soft_max_back(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * src0,
  9529. const struct ggml_tensor * src1,
  9530. struct ggml_tensor * dst) {
  9531. switch (src0->type) {
  9532. case GGML_TYPE_F32:
  9533. {
  9534. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9535. } break;
  9536. default:
  9537. {
  9538. GGML_ASSERT(false);
  9539. } break;
  9540. }
  9541. }
  9542. // ggml_compute_forward_alibi
  9543. static void ggml_compute_forward_alibi_f32(
  9544. const struct ggml_compute_params * params,
  9545. const struct ggml_tensor * src0,
  9546. struct ggml_tensor * dst) {
  9547. assert(params->ith == 0);
  9548. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9549. return;
  9550. }
  9551. const int n_past = ((int32_t *) dst->op_params)[0];
  9552. const int n_head = ((int32_t *) dst->op_params)[1];
  9553. float max_bias;
  9554. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9555. assert(n_past >= 0);
  9556. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9557. const int ne1 = src0->ne[1]; // seq_len_without_past
  9558. const int ne2 = src0->ne[2]; // n_head -> this is k
  9559. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9560. const int n = ggml_nrows(src0);
  9561. const int ne2_ne3 = n/ne1; // ne2*ne3
  9562. const int nb0 = src0->nb[0];
  9563. const int nb1 = src0->nb[1];
  9564. const int nb2 = src0->nb[2];
  9565. //const int nb3 = src0->nb[3];
  9566. GGML_ASSERT(nb0 == sizeof(float));
  9567. GGML_ASSERT(ne1 + n_past == ne0);
  9568. GGML_ASSERT(n_head == ne2);
  9569. // add alibi to src0 (KQ_scaled)
  9570. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9571. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9572. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9573. for (int i = 0; i < ne0; i++) {
  9574. for (int j = 0; j < ne1; j++) {
  9575. for (int k = 0; k < ne2_ne3; k++) {
  9576. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9577. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9578. // TODO: k*nb2 or k*nb3
  9579. float m_k;
  9580. if (k < n_heads_log2_floor) {
  9581. m_k = powf(m0, k + 1);
  9582. } else {
  9583. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9584. }
  9585. pdst[0] = i * m_k + src[0];
  9586. }
  9587. }
  9588. }
  9589. }
  9590. static void ggml_compute_forward_alibi_f16(
  9591. const struct ggml_compute_params * params,
  9592. const struct ggml_tensor * src0,
  9593. struct ggml_tensor * dst) {
  9594. assert(params->ith == 0);
  9595. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9596. return;
  9597. }
  9598. const int n_past = ((int32_t *) dst->op_params)[0];
  9599. const int n_head = ((int32_t *) dst->op_params)[1];
  9600. float max_bias;
  9601. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9602. assert(n_past >= 0);
  9603. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9604. const int ne1 = src0->ne[1]; // seq_len_without_past
  9605. const int ne2 = src0->ne[2]; // n_head -> this is k
  9606. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9607. const int n = ggml_nrows(src0);
  9608. const int ne2_ne3 = n/ne1; // ne2*ne3
  9609. const int nb0 = src0->nb[0];
  9610. const int nb1 = src0->nb[1];
  9611. const int nb2 = src0->nb[2];
  9612. //const int nb3 = src0->nb[3];
  9613. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9614. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9615. GGML_ASSERT(n_head == ne2);
  9616. // add alibi to src0 (KQ_scaled)
  9617. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9618. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9619. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9620. for (int i = 0; i < ne0; i++) {
  9621. for (int j = 0; j < ne1; j++) {
  9622. for (int k = 0; k < ne2_ne3; k++) {
  9623. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9624. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9625. // TODO: k*nb2 or k*nb3
  9626. float m_k;
  9627. if (k < n_heads_log2_floor) {
  9628. m_k = powf(m0, k + 1);
  9629. } else {
  9630. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9631. }
  9632. // we return F32
  9633. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9634. }
  9635. }
  9636. }
  9637. }
  9638. static void ggml_compute_forward_alibi(
  9639. const struct ggml_compute_params * params,
  9640. const struct ggml_tensor * src0,
  9641. struct ggml_tensor * dst) {
  9642. switch (src0->type) {
  9643. case GGML_TYPE_F16:
  9644. {
  9645. ggml_compute_forward_alibi_f16(params, src0, dst);
  9646. } break;
  9647. case GGML_TYPE_F32:
  9648. {
  9649. ggml_compute_forward_alibi_f32(params, src0, dst);
  9650. } break;
  9651. case GGML_TYPE_Q4_0:
  9652. case GGML_TYPE_Q4_1:
  9653. case GGML_TYPE_Q5_0:
  9654. case GGML_TYPE_Q5_1:
  9655. case GGML_TYPE_Q8_0:
  9656. case GGML_TYPE_Q8_1:
  9657. case GGML_TYPE_Q2_K:
  9658. case GGML_TYPE_Q3_K:
  9659. case GGML_TYPE_Q4_K:
  9660. case GGML_TYPE_Q5_K:
  9661. case GGML_TYPE_Q6_K:
  9662. case GGML_TYPE_Q8_K:
  9663. case GGML_TYPE_I8:
  9664. case GGML_TYPE_I16:
  9665. case GGML_TYPE_I32:
  9666. case GGML_TYPE_COUNT:
  9667. {
  9668. GGML_ASSERT(false);
  9669. } break;
  9670. }
  9671. }
  9672. // ggml_compute_forward_clamp
  9673. static void ggml_compute_forward_clamp_f32(
  9674. const struct ggml_compute_params * params,
  9675. const struct ggml_tensor * src0,
  9676. struct ggml_tensor * dst) {
  9677. assert(params->ith == 0);
  9678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9679. return;
  9680. }
  9681. float min;
  9682. float max;
  9683. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9684. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9685. const int ith = params->ith;
  9686. const int nth = params->nth;
  9687. const int n = ggml_nrows(src0);
  9688. const int nc = src0->ne[0];
  9689. const size_t nb00 = src0->nb[0];
  9690. const size_t nb01 = src0->nb[1];
  9691. const size_t nb0 = dst->nb[0];
  9692. const size_t nb1 = dst->nb[1];
  9693. GGML_ASSERT( nb0 == sizeof(float));
  9694. GGML_ASSERT(nb00 == sizeof(float));
  9695. for (int j = ith; j < n; j += nth) {
  9696. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9697. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9698. for (int i = 0; i < nc; i++) {
  9699. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9700. }
  9701. }
  9702. }
  9703. static void ggml_compute_forward_clamp(
  9704. const struct ggml_compute_params * params,
  9705. const struct ggml_tensor * src0,
  9706. struct ggml_tensor * dst) {
  9707. switch (src0->type) {
  9708. case GGML_TYPE_F32:
  9709. {
  9710. ggml_compute_forward_clamp_f32(params, src0, dst);
  9711. } break;
  9712. case GGML_TYPE_F16:
  9713. case GGML_TYPE_Q4_0:
  9714. case GGML_TYPE_Q4_1:
  9715. case GGML_TYPE_Q5_0:
  9716. case GGML_TYPE_Q5_1:
  9717. case GGML_TYPE_Q8_0:
  9718. case GGML_TYPE_Q8_1:
  9719. case GGML_TYPE_Q2_K:
  9720. case GGML_TYPE_Q3_K:
  9721. case GGML_TYPE_Q4_K:
  9722. case GGML_TYPE_Q5_K:
  9723. case GGML_TYPE_Q6_K:
  9724. case GGML_TYPE_Q8_K:
  9725. case GGML_TYPE_I8:
  9726. case GGML_TYPE_I16:
  9727. case GGML_TYPE_I32:
  9728. case GGML_TYPE_COUNT:
  9729. {
  9730. GGML_ASSERT(false);
  9731. } break;
  9732. }
  9733. }
  9734. // ggml_compute_forward_rope
  9735. static void ggml_compute_forward_rope_f32(
  9736. const struct ggml_compute_params * params,
  9737. const struct ggml_tensor * src0,
  9738. struct ggml_tensor * dst) {
  9739. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9740. return;
  9741. }
  9742. float freq_base;
  9743. float freq_scale;
  9744. const int n_past = ((int32_t *) dst->op_params)[0];
  9745. const int n_dims = ((int32_t *) dst->op_params)[1];
  9746. const int mode = ((int32_t *) dst->op_params)[2];
  9747. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9748. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9749. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9750. assert(n_past >= 0);
  9751. GGML_TENSOR_UNARY_OP_LOCALS;
  9752. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9753. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9754. GGML_ASSERT(nb00 == sizeof(float));
  9755. const int ith = params->ith;
  9756. const int nth = params->nth;
  9757. const int nr = ggml_nrows(dst);
  9758. GGML_ASSERT(n_dims <= ne0);
  9759. GGML_ASSERT(n_dims % 2 == 0);
  9760. // rows per thread
  9761. const int dr = (nr + nth - 1)/nth;
  9762. // row range for this thread
  9763. const int ir0 = dr*ith;
  9764. const int ir1 = MIN(ir0 + dr, nr);
  9765. // row index used to determine which thread to use
  9766. int ir = 0;
  9767. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9768. const bool is_neox = mode & 2;
  9769. const bool is_glm = mode & 4;
  9770. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9771. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9772. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9773. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9774. if (ir++ < ir0) continue;
  9775. if (ir > ir1) break;
  9776. float theta = freq_scale * (float)p;
  9777. if (is_glm) {
  9778. theta = MIN(p, n_ctx - 2);
  9779. float block_theta = MAX(p - (n_ctx - 2), 0);
  9780. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9781. const float cos_theta = cosf(theta);
  9782. const float sin_theta = sinf(theta);
  9783. const float cos_block_theta = cosf(block_theta);
  9784. const float sin_block_theta = sinf(block_theta);
  9785. theta *= theta_scale;
  9786. block_theta *= theta_scale;
  9787. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9788. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9789. const float x0 = src[0];
  9790. const float x1 = src[n_dims/2];
  9791. const float x2 = src[n_dims];
  9792. const float x3 = src[n_dims/2*3];
  9793. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9794. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9795. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9796. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9797. }
  9798. } else if (!is_neox) {
  9799. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9800. const float cos_theta = cosf(theta);
  9801. const float sin_theta = sinf(theta);
  9802. theta *= theta_scale;
  9803. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9804. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9805. const float x0 = src[0];
  9806. const float x1 = src[1];
  9807. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9808. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9809. }
  9810. } else {
  9811. // TODO: this is probably wrong, but I can't figure it out ..
  9812. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9813. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9814. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9815. const float cos_theta = cosf(theta);
  9816. const float sin_theta = sinf(theta);
  9817. theta *= theta_scale;
  9818. const int64_t i0 = ib*n_dims + ic/2;
  9819. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9820. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9821. const float x0 = src[0];
  9822. const float x1 = src[n_dims/2];
  9823. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9824. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9825. }
  9826. }
  9827. }
  9828. }
  9829. }
  9830. }
  9831. }
  9832. static void ggml_compute_forward_rope_f16(
  9833. const struct ggml_compute_params * params,
  9834. const struct ggml_tensor * src0,
  9835. struct ggml_tensor * dst) {
  9836. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9837. return;
  9838. }
  9839. float freq_base;
  9840. float freq_scale;
  9841. const int n_past = ((int32_t *) dst->op_params)[0];
  9842. const int n_dims = ((int32_t *) dst->op_params)[1];
  9843. const int mode = ((int32_t *) dst->op_params)[2];
  9844. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9845. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  9846. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  9847. assert(n_past >= 0);
  9848. GGML_TENSOR_UNARY_OP_LOCALS;
  9849. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9850. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9851. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9852. const int ith = params->ith;
  9853. const int nth = params->nth;
  9854. const int nr = ggml_nrows(dst);
  9855. GGML_ASSERT(n_dims <= ne0);
  9856. GGML_ASSERT(n_dims % 2 == 0);
  9857. // rows per thread
  9858. const int dr = (nr + nth - 1)/nth;
  9859. // row range for this thread
  9860. const int ir0 = dr*ith;
  9861. const int ir1 = MIN(ir0 + dr, nr);
  9862. // row index used to determine which thread to use
  9863. int ir = 0;
  9864. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9865. const bool is_neox = mode & 2;
  9866. const bool is_glm = mode & 4;
  9867. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9868. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9869. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9870. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9871. if (ir++ < ir0) continue;
  9872. if (ir > ir1) break;
  9873. float theta = freq_scale * (float)p;
  9874. if (is_glm) {
  9875. theta = MIN(p, n_ctx - 2);
  9876. float block_theta = MAX(p - (n_ctx - 2), 0);
  9877. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9878. const float cos_theta = cosf(theta);
  9879. const float sin_theta = sinf(theta);
  9880. const float cos_block_theta = cosf(block_theta);
  9881. const float sin_block_theta = sinf(block_theta);
  9882. theta *= theta_scale;
  9883. block_theta *= theta_scale;
  9884. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9885. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9886. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9887. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9888. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9889. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9890. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9891. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9892. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9893. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9894. }
  9895. } if (!is_neox) {
  9896. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9897. const float cos_theta = cosf(theta);
  9898. const float sin_theta = sinf(theta);
  9899. theta *= theta_scale;
  9900. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9901. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9902. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9903. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9904. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9905. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9906. }
  9907. } else {
  9908. // TODO: this is probably wrong, but I can't figure it out ..
  9909. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9910. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9911. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9912. const float cos_theta = cosf(theta);
  9913. const float sin_theta = sinf(theta);
  9914. theta *= theta_scale;
  9915. const int64_t i0 = ib*n_dims + ic/2;
  9916. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9917. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9918. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9919. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9920. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9921. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9922. }
  9923. }
  9924. }
  9925. }
  9926. }
  9927. }
  9928. }
  9929. static void ggml_compute_forward_rope(
  9930. const struct ggml_compute_params * params,
  9931. const struct ggml_tensor * src0,
  9932. struct ggml_tensor * dst) {
  9933. switch (src0->type) {
  9934. case GGML_TYPE_F16:
  9935. {
  9936. ggml_compute_forward_rope_f16(params, src0, dst);
  9937. } break;
  9938. case GGML_TYPE_F32:
  9939. {
  9940. ggml_compute_forward_rope_f32(params, src0, dst);
  9941. } break;
  9942. default:
  9943. {
  9944. GGML_ASSERT(false);
  9945. } break;
  9946. }
  9947. }
  9948. // ggml_compute_forward_rope_back
  9949. static void ggml_compute_forward_rope_back_f32(
  9950. const struct ggml_compute_params * params,
  9951. const struct ggml_tensor * src0,
  9952. struct ggml_tensor * dst) {
  9953. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9954. return;
  9955. }
  9956. // y = rope(x, src1)
  9957. // dx = rope_back(dy, src1)
  9958. // src0 is dy, src1 contains options
  9959. const int n_past = ((int32_t *) dst->op_params)[0];
  9960. const int n_dims = ((int32_t *) dst->op_params)[1];
  9961. const int mode = ((int32_t *) dst->op_params)[2];
  9962. assert(n_past >= 0);
  9963. GGML_TENSOR_UNARY_OP_LOCALS;
  9964. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9965. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9966. assert(nb0 == sizeof(float));
  9967. const int ith = params->ith;
  9968. const int nth = params->nth;
  9969. const int nr = ggml_nrows(dst);
  9970. // rows per thread
  9971. const int dr = (nr + nth - 1)/nth;
  9972. // row range for this thread
  9973. const int ir0 = dr*ith;
  9974. const int ir1 = MIN(ir0 + dr, nr);
  9975. // row index used to determine which thread to use
  9976. int ir = 0;
  9977. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9978. const bool is_neox = mode & 2;
  9979. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9980. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9981. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9982. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9983. if (ir++ < ir0) continue;
  9984. if (ir > ir1) break;
  9985. float theta = (float)p;
  9986. if (!is_neox) {
  9987. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9988. const float cos_theta = cosf(theta);
  9989. const float sin_theta = sinf(theta);
  9990. theta *= theta_scale;
  9991. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9992. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9993. const float dy0 = dy[0];
  9994. const float dy1 = dy[1];
  9995. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9996. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9997. }
  9998. } else {
  9999. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10000. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10001. const float cos_theta = cosf(theta);
  10002. const float sin_theta = sinf(theta);
  10003. theta *= theta_scale;
  10004. const int64_t i0 = ib*n_dims + ic/2;
  10005. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10006. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10007. const float dy0 = dy[0];
  10008. const float dy1 = dy[n_dims/2];
  10009. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10010. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10011. }
  10012. }
  10013. }
  10014. }
  10015. }
  10016. }
  10017. }
  10018. static void ggml_compute_forward_rope_back_f16(
  10019. const struct ggml_compute_params * params,
  10020. const struct ggml_tensor * src0,
  10021. struct ggml_tensor * dst) {
  10022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10023. return;
  10024. }
  10025. // y = rope(x, src1)
  10026. // dx = rope_back(dy, src1)
  10027. // src0 is dy, src1 contains options
  10028. const int n_past = ((int32_t *) dst->op_params)[0];
  10029. const int n_dims = ((int32_t *) dst->op_params)[1];
  10030. const int mode = ((int32_t *) dst->op_params)[2];
  10031. assert(n_past >= 0);
  10032. GGML_TENSOR_UNARY_OP_LOCALS;
  10033. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10034. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10035. assert(nb0 == sizeof(ggml_fp16_t));
  10036. const int ith = params->ith;
  10037. const int nth = params->nth;
  10038. const int nr = ggml_nrows(dst);
  10039. // rows per thread
  10040. const int dr = (nr + nth - 1)/nth;
  10041. // row range for this thread
  10042. const int ir0 = dr*ith;
  10043. const int ir1 = MIN(ir0 + dr, nr);
  10044. // row index used to determine which thread to use
  10045. int ir = 0;
  10046. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10047. const bool is_neox = mode & 2;
  10048. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10049. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10050. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10051. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10052. if (ir++ < ir0) continue;
  10053. if (ir > ir1) break;
  10054. float theta = (float)p;
  10055. if (!is_neox) {
  10056. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10057. const float cos_theta = cosf(theta);
  10058. const float sin_theta = sinf(theta);
  10059. theta *= theta_scale;
  10060. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10061. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10062. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10063. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10064. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10065. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10066. }
  10067. } else {
  10068. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10069. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10070. const float cos_theta = cosf(theta);
  10071. const float sin_theta = sinf(theta);
  10072. theta *= theta_scale;
  10073. const int64_t i0 = ib*n_dims + ic/2;
  10074. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10075. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10076. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10077. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10078. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10079. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10080. }
  10081. }
  10082. }
  10083. }
  10084. }
  10085. }
  10086. }
  10087. static void ggml_compute_forward_rope_back(
  10088. const struct ggml_compute_params * params,
  10089. const struct ggml_tensor * src0,
  10090. struct ggml_tensor * dst) {
  10091. switch (src0->type) {
  10092. case GGML_TYPE_F16:
  10093. {
  10094. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10095. } break;
  10096. case GGML_TYPE_F32:
  10097. {
  10098. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10099. } break;
  10100. default:
  10101. {
  10102. GGML_ASSERT(false);
  10103. } break;
  10104. }
  10105. }
  10106. // ggml_compute_forward_conv_1d
  10107. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10108. const struct ggml_compute_params * params,
  10109. const struct ggml_tensor * src0,
  10110. const struct ggml_tensor * src1,
  10111. struct ggml_tensor * dst) {
  10112. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10113. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10114. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10115. int64_t t0 = ggml_perf_time_us();
  10116. UNUSED(t0);
  10117. GGML_TENSOR_BINARY_OP_LOCALS;
  10118. const int ith = params->ith;
  10119. const int nth = params->nth;
  10120. const int nk = ne00;
  10121. const int nh = nk/2;
  10122. const int ew0 = ggml_up32(ne01);
  10123. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10124. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10125. GGML_ASSERT(nb10 == sizeof(float));
  10126. if (params->type == GGML_TASK_INIT) {
  10127. // TODO: fix this memset (wsize is overestimated)
  10128. memset(params->wdata, 0, params->wsize);
  10129. // prepare kernel data (src0)
  10130. {
  10131. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10132. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10133. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10134. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10135. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10136. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10137. dst_data[i00*ew0 + i01] = src[i00];
  10138. }
  10139. }
  10140. }
  10141. }
  10142. // prepare source data (src1)
  10143. {
  10144. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10145. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10146. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10147. ggml_fp16_t * dst_data = wdata;
  10148. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10149. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10150. }
  10151. }
  10152. }
  10153. return;
  10154. }
  10155. if (params->type == GGML_TASK_FINALIZE) {
  10156. return;
  10157. }
  10158. // total rows in dst
  10159. const int nr = ne02;
  10160. // rows per thread
  10161. const int dr = (nr + nth - 1)/nth;
  10162. // row range for this thread
  10163. const int ir0 = dr*ith;
  10164. const int ir1 = MIN(ir0 + dr, nr);
  10165. for (int i1 = ir0; i1 < ir1; i1++) {
  10166. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10167. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10168. dst_data[i0] = 0;
  10169. for (int k = -nh; k <= nh; k++) {
  10170. float v = 0.0f;
  10171. ggml_vec_dot_f16(ew0, &v,
  10172. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10173. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10174. dst_data[i0] += v;
  10175. }
  10176. }
  10177. }
  10178. }
  10179. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10180. const struct ggml_compute_params * params,
  10181. const struct ggml_tensor * src0,
  10182. const struct ggml_tensor * src1,
  10183. struct ggml_tensor * dst) {
  10184. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10185. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10186. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10187. int64_t t0 = ggml_perf_time_us();
  10188. UNUSED(t0);
  10189. GGML_TENSOR_BINARY_OP_LOCALS;
  10190. const int ith = params->ith;
  10191. const int nth = params->nth;
  10192. const int nk = ne00;
  10193. const int nh = nk/2;
  10194. const int ew0 = ggml_up32(ne01);
  10195. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10196. GGML_ASSERT(nb00 == sizeof(float));
  10197. GGML_ASSERT(nb10 == sizeof(float));
  10198. if (params->type == GGML_TASK_INIT) {
  10199. // TODO: fix this memset (wsize is overestimated)
  10200. memset(params->wdata, 0, params->wsize);
  10201. // prepare kernel data (src0)
  10202. {
  10203. float * const wdata = (float *) params->wdata + 0;
  10204. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10205. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10206. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10207. float * dst_data = wdata + i02*ew0*ne00;
  10208. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10209. dst_data[i00*ew0 + i01] = src[i00];
  10210. }
  10211. }
  10212. }
  10213. }
  10214. // prepare source data (src1)
  10215. {
  10216. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10217. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10218. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10219. float * dst_data = wdata;
  10220. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10221. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10222. }
  10223. }
  10224. }
  10225. return;
  10226. }
  10227. if (params->type == GGML_TASK_FINALIZE) {
  10228. return;
  10229. }
  10230. // total rows in dst
  10231. const int nr = ne02;
  10232. // rows per thread
  10233. const int dr = (nr + nth - 1)/nth;
  10234. // row range for this thread
  10235. const int ir0 = dr*ith;
  10236. const int ir1 = MIN(ir0 + dr, nr);
  10237. for (int i1 = ir0; i1 < ir1; i1++) {
  10238. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10239. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10240. dst_data[i0] = 0;
  10241. for (int k = -nh; k <= nh; k++) {
  10242. float v = 0.0f;
  10243. ggml_vec_dot_f32(ew0, &v,
  10244. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10245. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10246. dst_data[i0] += v;
  10247. }
  10248. }
  10249. }
  10250. }
  10251. static void ggml_compute_forward_conv_1d_s1_ph(
  10252. const struct ggml_compute_params * params,
  10253. const struct ggml_tensor * src0,
  10254. const struct ggml_tensor * src1,
  10255. struct ggml_tensor * dst) {
  10256. switch (src0->type) {
  10257. case GGML_TYPE_F16:
  10258. {
  10259. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10260. } break;
  10261. case GGML_TYPE_F32:
  10262. {
  10263. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10264. } break;
  10265. default:
  10266. {
  10267. GGML_ASSERT(false);
  10268. } break;
  10269. }
  10270. }
  10271. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10272. const struct ggml_compute_params * params,
  10273. const struct ggml_tensor * src0,
  10274. const struct ggml_tensor * src1,
  10275. struct ggml_tensor * dst) {
  10276. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10277. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10278. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10279. int64_t t0 = ggml_perf_time_us();
  10280. UNUSED(t0);
  10281. GGML_TENSOR_BINARY_OP_LOCALS;
  10282. const int ith = params->ith;
  10283. const int nth = params->nth;
  10284. const int nk = ne00;
  10285. const int nh = nk/2;
  10286. const int ew0 = ggml_up32(ne01);
  10287. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10288. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10289. GGML_ASSERT(nb10 == sizeof(float));
  10290. if (params->type == GGML_TASK_INIT) {
  10291. // TODO: fix this memset (wsize is overestimated)
  10292. memset(params->wdata, 0, params->wsize);
  10293. // prepare kernel data (src0)
  10294. {
  10295. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10296. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10297. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10298. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10299. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10300. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10301. dst_data[i00*ew0 + i01] = src[i00];
  10302. }
  10303. }
  10304. }
  10305. }
  10306. // prepare source data (src1)
  10307. {
  10308. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10309. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10310. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10311. ggml_fp16_t * dst_data = wdata;
  10312. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10313. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10314. }
  10315. }
  10316. }
  10317. return;
  10318. }
  10319. if (params->type == GGML_TASK_FINALIZE) {
  10320. return;
  10321. }
  10322. // total rows in dst
  10323. const int nr = ne02;
  10324. // rows per thread
  10325. const int dr = (nr + nth - 1)/nth;
  10326. // row range for this thread
  10327. const int ir0 = dr*ith;
  10328. const int ir1 = MIN(ir0 + dr, nr);
  10329. for (int i1 = ir0; i1 < ir1; i1++) {
  10330. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10331. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10332. dst_data[i0/2] = 0;
  10333. for (int k = -nh; k <= nh; k++) {
  10334. float v = 0.0f;
  10335. ggml_vec_dot_f16(ew0, &v,
  10336. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10337. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10338. dst_data[i0/2] += v;
  10339. }
  10340. }
  10341. }
  10342. }
  10343. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10344. const struct ggml_compute_params * params,
  10345. const struct ggml_tensor * src0,
  10346. const struct ggml_tensor * src1,
  10347. struct ggml_tensor * dst) {
  10348. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10349. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10350. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10351. int64_t t0 = ggml_perf_time_us();
  10352. UNUSED(t0);
  10353. GGML_TENSOR_BINARY_OP_LOCALS;
  10354. const int ith = params->ith;
  10355. const int nth = params->nth;
  10356. const int nk = ne00;
  10357. const int nh = nk/2;
  10358. const int ew0 = ggml_up32(ne01);
  10359. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10360. GGML_ASSERT(nb00 == sizeof(float));
  10361. GGML_ASSERT(nb10 == sizeof(float));
  10362. if (params->type == GGML_TASK_INIT) {
  10363. // TODO: fix this memset (wsize is overestimated)
  10364. memset(params->wdata, 0, params->wsize);
  10365. // prepare kernel data (src0)
  10366. {
  10367. float * const wdata = (float *) params->wdata + 0;
  10368. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10369. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10370. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10371. float * dst_data = wdata + i02*ew0*ne00;
  10372. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10373. dst_data[i00*ew0 + i01] = src[i00];
  10374. }
  10375. }
  10376. }
  10377. }
  10378. // prepare source data (src1)
  10379. {
  10380. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10381. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10382. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10383. float * dst_data = wdata;
  10384. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10385. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10386. }
  10387. }
  10388. }
  10389. return;
  10390. }
  10391. if (params->type == GGML_TASK_FINALIZE) {
  10392. return;
  10393. }
  10394. // total rows in dst
  10395. const int nr = ne02;
  10396. // rows per thread
  10397. const int dr = (nr + nth - 1)/nth;
  10398. // row range for this thread
  10399. const int ir0 = dr*ith;
  10400. const int ir1 = MIN(ir0 + dr, nr);
  10401. for (int i1 = ir0; i1 < ir1; i1++) {
  10402. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10403. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10404. dst_data[i0/2] = 0;
  10405. for (int k = -nh; k <= nh; k++) {
  10406. float v = 0.0f;
  10407. ggml_vec_dot_f32(ew0, &v,
  10408. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10409. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10410. dst_data[i0/2] += v;
  10411. }
  10412. }
  10413. }
  10414. }
  10415. static void ggml_compute_forward_conv_1d_s2_ph(
  10416. const struct ggml_compute_params * params,
  10417. const struct ggml_tensor * src0,
  10418. const struct ggml_tensor * src1,
  10419. struct ggml_tensor * dst) {
  10420. switch (src0->type) {
  10421. case GGML_TYPE_F16:
  10422. {
  10423. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10424. } break;
  10425. case GGML_TYPE_F32:
  10426. {
  10427. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10428. } break;
  10429. default:
  10430. {
  10431. GGML_ASSERT(false);
  10432. } break;
  10433. }
  10434. }
  10435. // ggml_compute_forward_conv_1d
  10436. static void ggml_compute_forward_conv_1d(
  10437. const struct ggml_compute_params * params,
  10438. const struct ggml_tensor * src0,
  10439. const struct ggml_tensor * src1,
  10440. struct ggml_tensor * dst) {
  10441. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10442. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10443. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10444. GGML_ASSERT(d0 == 1); // dilation not supported
  10445. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10446. if (s0 == 1) {
  10447. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10448. } else if (s0 == 2) {
  10449. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10450. } else {
  10451. GGML_ASSERT(false); // only stride 1 and 2 supported
  10452. };
  10453. }
  10454. // ggml_compute_forward_conv_2d
  10455. static void ggml_compute_forward_conv_2d_f16_f32(
  10456. const struct ggml_compute_params * params,
  10457. const struct ggml_tensor * src0,
  10458. const struct ggml_tensor * src1,
  10459. struct ggml_tensor * dst) {
  10460. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10461. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10462. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10463. int64_t t0 = ggml_perf_time_us();
  10464. UNUSED(t0);
  10465. GGML_TENSOR_BINARY_OP_LOCALS;
  10466. const int ith = params->ith;
  10467. const int nth = params->nth;
  10468. const int nk0 = ne00;
  10469. const int nk1 = ne01;
  10470. // size of the convolution row - the kernel size unrolled across all channels
  10471. const int ew0 = nk0*nk1*ne02;
  10472. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10473. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10474. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10475. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10476. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10477. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10478. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10479. GGML_ASSERT(nb10 == sizeof(float));
  10480. if (params->type == GGML_TASK_INIT) {
  10481. memset(params->wdata, 0, params->wsize);
  10482. // prepare source data (src1)
  10483. {
  10484. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10485. for (int i12 = 0; i12 < ne12; i12++) {
  10486. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10487. ggml_fp16_t * dst_data = wdata;
  10488. for (int i1 = 0; i1 < ne1; i1++) {
  10489. for (int i0 = 0; i0 < ne0; i0++) {
  10490. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10491. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10492. const int idx0 = i0*s0 + ik0*d0 - p0;
  10493. const int idx1 = i1*s1 + ik1*d1 - p1;
  10494. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10495. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10496. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10497. }
  10498. }
  10499. }
  10500. }
  10501. }
  10502. }
  10503. }
  10504. return;
  10505. }
  10506. if (params->type == GGML_TASK_FINALIZE) {
  10507. return;
  10508. }
  10509. // total patches in dst
  10510. const int np = ne2;
  10511. // patches per thread
  10512. const int dp = (np + nth - 1)/nth;
  10513. // patch range for this thread
  10514. const int ip0 = dp*ith;
  10515. const int ip1 = MIN(ip0 + dp, np);
  10516. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10517. for (int i3 = 0; i3 < ne3; i3++) {
  10518. for (int i2 = ip0; i2 < ip1; i2++) {
  10519. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  10520. for (int i1 = 0; i1 < ne1; ++i1) {
  10521. for (int i0 = 0; i0 < ne0; ++i0) {
  10522. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10523. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10524. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  10525. }
  10526. }
  10527. }
  10528. }
  10529. }
  10530. static void ggml_compute_forward_conv_2d(
  10531. const struct ggml_compute_params * params,
  10532. const struct ggml_tensor * src0,
  10533. const struct ggml_tensor * src1,
  10534. struct ggml_tensor * dst) {
  10535. switch (src0->type) {
  10536. case GGML_TYPE_F16:
  10537. {
  10538. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  10539. } break;
  10540. case GGML_TYPE_F32:
  10541. {
  10542. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  10543. GGML_ASSERT(false);
  10544. } break;
  10545. default:
  10546. {
  10547. GGML_ASSERT(false);
  10548. } break;
  10549. }
  10550. }
  10551. // ggml_compute_forward_pool_1d_sk_p0
  10552. static void ggml_compute_forward_pool_1d_sk_p0(
  10553. const struct ggml_compute_params * params,
  10554. const enum ggml_op_pool op,
  10555. const struct ggml_tensor * src,
  10556. const int k,
  10557. struct ggml_tensor * dst) {
  10558. assert(src->type == GGML_TYPE_F32);
  10559. assert(params->ith == 0);
  10560. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10561. return;
  10562. }
  10563. const char * cdata = (const char *)src->data;
  10564. const char * const data_end = cdata + ggml_nbytes(src);
  10565. float * drow = (float *)dst->data;
  10566. const int64_t rs = dst->ne[0];
  10567. while (cdata < data_end) {
  10568. const float * const srow = (const float *)cdata;
  10569. int j = 0;
  10570. for (int64_t i = 0; i < rs; ++i) {
  10571. switch (op) {
  10572. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10573. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10574. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10575. }
  10576. for (int ki = 0; ki < k; ++ki) {
  10577. switch (op) {
  10578. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10579. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10580. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10581. }
  10582. ++j;
  10583. }
  10584. switch (op) {
  10585. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10586. case GGML_OP_POOL_MAX: break;
  10587. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10588. }
  10589. }
  10590. cdata += src->nb[1];
  10591. drow += rs;
  10592. }
  10593. }
  10594. // ggml_compute_forward_pool_1d
  10595. static void ggml_compute_forward_pool_1d(
  10596. const struct ggml_compute_params * params,
  10597. const struct ggml_tensor * src0,
  10598. struct ggml_tensor * dst) {
  10599. const int32_t * opts = (const int32_t *)dst->op_params;
  10600. enum ggml_op_pool op = opts[0];
  10601. const int k0 = opts[1];
  10602. const int s0 = opts[2];
  10603. const int p0 = opts[3];
  10604. GGML_ASSERT(p0 == 0); // padding not supported
  10605. GGML_ASSERT(k0 == s0); // only s = k supported
  10606. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  10607. }
  10608. // ggml_compute_forward_pool_2d_sk_p0
  10609. static void ggml_compute_forward_pool_2d_sk_p0(
  10610. const struct ggml_compute_params * params,
  10611. const enum ggml_op_pool op,
  10612. const struct ggml_tensor * src,
  10613. const int k0,
  10614. const int k1,
  10615. struct ggml_tensor * dst) {
  10616. assert(src->type == GGML_TYPE_F32);
  10617. assert(params->ith == 0);
  10618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10619. return;
  10620. }
  10621. const char * cdata = (const char*)src->data;
  10622. const char * const data_end = cdata + ggml_nbytes(src);
  10623. const int64_t px = dst->ne[0];
  10624. const int64_t py = dst->ne[1];
  10625. const int64_t pa = px * py;
  10626. float * dplane = (float *)dst->data;
  10627. const int ka = k0 * k1;
  10628. while (cdata < data_end) {
  10629. for (int oy = 0; oy < py; ++oy) {
  10630. float * const drow = dplane + oy * px;
  10631. for (int ox = 0; ox < px; ++ox) {
  10632. float * const out = drow + ox;
  10633. switch (op) {
  10634. case GGML_OP_POOL_AVG: *out = 0; break;
  10635. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10636. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10637. }
  10638. const int ix = ox * k0;
  10639. const int iy = oy * k1;
  10640. for (int ky = 0; ky < k1; ++ky) {
  10641. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10642. for (int kx = 0; kx < k0; ++kx) {
  10643. int j = ix + kx;
  10644. switch (op) {
  10645. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10646. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10647. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10648. }
  10649. }
  10650. }
  10651. switch (op) {
  10652. case GGML_OP_POOL_AVG: *out /= ka; break;
  10653. case GGML_OP_POOL_MAX: break;
  10654. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10655. }
  10656. }
  10657. }
  10658. cdata += src->nb[2];
  10659. dplane += pa;
  10660. }
  10661. }
  10662. // ggml_compute_forward_pool_2d
  10663. static void ggml_compute_forward_pool_2d(
  10664. const struct ggml_compute_params * params,
  10665. const struct ggml_tensor * src0,
  10666. struct ggml_tensor * dst) {
  10667. const int32_t * opts = (const int32_t *)dst->op_params;
  10668. enum ggml_op_pool op = opts[0];
  10669. const int k0 = opts[1];
  10670. const int k1 = opts[2];
  10671. const int s0 = opts[3];
  10672. const int s1 = opts[4];
  10673. const int p0 = opts[5];
  10674. const int p1 = opts[6];
  10675. GGML_ASSERT(p0 == 0);
  10676. GGML_ASSERT(p1 == 0); // padding not supported
  10677. GGML_ASSERT(k0 == s0);
  10678. GGML_ASSERT(k1 == s1); // only s = k supported
  10679. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  10680. }
  10681. // ggml_compute_forward_flash_attn
  10682. static void ggml_compute_forward_flash_attn_f32(
  10683. const struct ggml_compute_params * params,
  10684. const struct ggml_tensor * q,
  10685. const struct ggml_tensor * k,
  10686. const struct ggml_tensor * v,
  10687. const bool masked,
  10688. struct ggml_tensor * dst) {
  10689. int64_t t0 = ggml_perf_time_us();
  10690. UNUSED(t0);
  10691. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10692. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10693. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10694. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10695. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10696. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10697. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10698. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10699. const int ith = params->ith;
  10700. const int nth = params->nth;
  10701. const int64_t D = neq0;
  10702. const int64_t N = neq1;
  10703. const int64_t P = nek1 - N;
  10704. const int64_t M = P + N;
  10705. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10706. GGML_ASSERT(ne0 == D);
  10707. GGML_ASSERT(ne1 == N);
  10708. GGML_ASSERT(P >= 0);
  10709. GGML_ASSERT(nbq0 == sizeof(float));
  10710. GGML_ASSERT(nbk0 == sizeof(float));
  10711. GGML_ASSERT(nbv0 == sizeof(float));
  10712. GGML_ASSERT(neq0 == D);
  10713. GGML_ASSERT(nek0 == D);
  10714. GGML_ASSERT(nev1 == D);
  10715. GGML_ASSERT(neq1 == N);
  10716. GGML_ASSERT(nek1 == N + P);
  10717. GGML_ASSERT(nev1 == D);
  10718. // dst cannot be transposed or permuted
  10719. GGML_ASSERT(nb0 == sizeof(float));
  10720. GGML_ASSERT(nb0 <= nb1);
  10721. GGML_ASSERT(nb1 <= nb2);
  10722. GGML_ASSERT(nb2 <= nb3);
  10723. if (params->type == GGML_TASK_INIT) {
  10724. return;
  10725. }
  10726. if (params->type == GGML_TASK_FINALIZE) {
  10727. return;
  10728. }
  10729. // parallelize by q rows using ggml_vec_dot_f32
  10730. // total rows in q
  10731. const int nr = neq1*neq2*neq3;
  10732. // rows per thread
  10733. const int dr = (nr + nth - 1)/nth;
  10734. // row range for this thread
  10735. const int ir0 = dr*ith;
  10736. const int ir1 = MIN(ir0 + dr, nr);
  10737. const float scale = 1.0f/sqrtf(D);
  10738. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10739. for (int ir = ir0; ir < ir1; ++ir) {
  10740. // q indices
  10741. const int iq3 = ir/(neq2*neq1);
  10742. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10743. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10744. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10745. for (int i = M; i < Mup; ++i) {
  10746. S[i] = -INFINITY;
  10747. }
  10748. for (int64_t ic = 0; ic < nek1; ++ic) {
  10749. // k indices
  10750. const int ik3 = iq3;
  10751. const int ik2 = iq2;
  10752. const int ik1 = ic;
  10753. // S indices
  10754. const int i1 = ik1;
  10755. ggml_vec_dot_f32(neq0,
  10756. S + i1,
  10757. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10758. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10759. }
  10760. // scale
  10761. ggml_vec_scale_f32(nek1, S, scale);
  10762. if (masked) {
  10763. for (int64_t i = P; i < M; i++) {
  10764. if (i > P + iq1) {
  10765. S[i] = -INFINITY;
  10766. }
  10767. }
  10768. }
  10769. // softmax
  10770. {
  10771. float max = -INFINITY;
  10772. ggml_vec_max_f32(M, &max, S);
  10773. ggml_float sum = 0.0;
  10774. {
  10775. #ifdef GGML_SOFT_MAX_ACCELERATE
  10776. max = -max;
  10777. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10778. vvexpf(S, S, &Mup);
  10779. ggml_vec_sum_f32(Mup, &sum, S);
  10780. #else
  10781. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10782. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10783. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10784. float * SS = S + i;
  10785. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10786. if (SS[j] == -INFINITY) {
  10787. SS[j] = 0.0f;
  10788. } else {
  10789. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10790. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10791. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10792. sump[j] += (ggml_float)val;
  10793. SS[j] = val;
  10794. }
  10795. }
  10796. }
  10797. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10798. sum += sump[i];
  10799. }
  10800. #endif
  10801. }
  10802. assert(sum > 0.0);
  10803. sum = 1.0/sum;
  10804. ggml_vec_scale_f32(M, S, sum);
  10805. #ifndef NDEBUG
  10806. for (int i = 0; i < M; ++i) {
  10807. assert(!isnan(S[i]));
  10808. assert(!isinf(S[i]));
  10809. }
  10810. #endif
  10811. }
  10812. for (int64_t ic = 0; ic < nev1; ++ic) {
  10813. // dst indices
  10814. const int i1 = iq1;
  10815. const int i2 = iq2;
  10816. const int i3 = iq3;
  10817. ggml_vec_dot_f32(nek1,
  10818. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10819. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10820. S);
  10821. }
  10822. }
  10823. }
  10824. static void ggml_compute_forward_flash_attn_f16(
  10825. const struct ggml_compute_params * params,
  10826. const struct ggml_tensor * q,
  10827. const struct ggml_tensor * k,
  10828. const struct ggml_tensor * v,
  10829. const bool masked,
  10830. struct ggml_tensor * dst) {
  10831. int64_t t0 = ggml_perf_time_us();
  10832. UNUSED(t0);
  10833. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10834. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10835. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10836. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10837. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10838. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10839. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10840. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10841. const int ith = params->ith;
  10842. const int nth = params->nth;
  10843. const int64_t D = neq0;
  10844. const int64_t N = neq1;
  10845. const int64_t P = nek1 - N;
  10846. const int64_t M = P + N;
  10847. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10848. GGML_ASSERT(ne0 == D);
  10849. GGML_ASSERT(ne1 == N);
  10850. GGML_ASSERT(P >= 0);
  10851. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10852. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10853. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10854. GGML_ASSERT(neq0 == D);
  10855. GGML_ASSERT(nek0 == D);
  10856. GGML_ASSERT(nev1 == D);
  10857. GGML_ASSERT(neq1 == N);
  10858. GGML_ASSERT(nek1 == N + P);
  10859. GGML_ASSERT(nev1 == D);
  10860. // dst cannot be transposed or permuted
  10861. GGML_ASSERT(nb0 == sizeof(float));
  10862. GGML_ASSERT(nb0 <= nb1);
  10863. GGML_ASSERT(nb1 <= nb2);
  10864. GGML_ASSERT(nb2 <= nb3);
  10865. if (params->type == GGML_TASK_INIT) {
  10866. return;
  10867. }
  10868. if (params->type == GGML_TASK_FINALIZE) {
  10869. return;
  10870. }
  10871. // parallelize by q rows using ggml_vec_dot_f32
  10872. // total rows in q
  10873. const int nr = neq1*neq2*neq3;
  10874. // rows per thread
  10875. const int dr = (nr + nth - 1)/nth;
  10876. // row range for this thread
  10877. const int ir0 = dr*ith;
  10878. const int ir1 = MIN(ir0 + dr, nr);
  10879. const float scale = 1.0f/sqrtf(D);
  10880. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10881. for (int ir = ir0; ir < ir1; ++ir) {
  10882. // q indices
  10883. const int iq3 = ir/(neq2*neq1);
  10884. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10885. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10886. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10887. for (int i = M; i < Mup; ++i) {
  10888. S[i] = -INFINITY;
  10889. }
  10890. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10891. for (int64_t ic = 0; ic < nek1; ++ic) {
  10892. // k indices
  10893. const int ik3 = iq3;
  10894. const int ik2 = iq2;
  10895. const int ik1 = ic;
  10896. // S indices
  10897. const int i1 = ik1;
  10898. ggml_vec_dot_f16(neq0,
  10899. S + i1,
  10900. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10901. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10902. }
  10903. } else {
  10904. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10905. // k indices
  10906. const int ik3 = iq3;
  10907. const int ik2 = iq2;
  10908. const int ik1 = ic;
  10909. // S indices
  10910. const int i1 = ik1;
  10911. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10912. S + i1,
  10913. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10914. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10915. }
  10916. }
  10917. // scale
  10918. ggml_vec_scale_f32(nek1, S, scale);
  10919. if (masked) {
  10920. for (int64_t i = P; i < M; i++) {
  10921. if (i > P + iq1) {
  10922. S[i] = -INFINITY;
  10923. }
  10924. }
  10925. }
  10926. // softmax
  10927. {
  10928. float max = -INFINITY;
  10929. ggml_vec_max_f32(M, &max, S);
  10930. ggml_float sum = 0.0;
  10931. {
  10932. #ifdef GGML_SOFT_MAX_ACCELERATE
  10933. max = -max;
  10934. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10935. vvexpf(S, S, &Mup);
  10936. ggml_vec_sum_f32(Mup, &sum, S);
  10937. #else
  10938. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10939. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10940. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10941. float * SS = S + i;
  10942. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10943. if (SS[j] == -INFINITY) {
  10944. SS[j] = 0.0f;
  10945. } else {
  10946. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10947. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10948. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10949. sump[j] += (ggml_float)val;
  10950. SS[j] = val;
  10951. }
  10952. }
  10953. }
  10954. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10955. sum += sump[i];
  10956. }
  10957. #endif
  10958. }
  10959. assert(sum > 0.0);
  10960. sum = 1.0/sum;
  10961. ggml_vec_scale_f32(M, S, sum);
  10962. #ifndef NDEBUG
  10963. for (int i = 0; i < M; ++i) {
  10964. assert(!isnan(S[i]));
  10965. assert(!isinf(S[i]));
  10966. }
  10967. #endif
  10968. }
  10969. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10970. for (int64_t i = 0; i < M; i++) {
  10971. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10972. }
  10973. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10974. for (int64_t ic = 0; ic < nev1; ++ic) {
  10975. // dst indices
  10976. const int i1 = iq1;
  10977. const int i2 = iq2;
  10978. const int i3 = iq3;
  10979. ggml_vec_dot_f16(nek1,
  10980. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10981. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10982. S16);
  10983. }
  10984. } else {
  10985. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10986. // dst indices
  10987. const int i1 = iq1;
  10988. const int i2 = iq2;
  10989. const int i3 = iq3;
  10990. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10991. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10992. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10993. S16);
  10994. }
  10995. }
  10996. }
  10997. }
  10998. static void ggml_compute_forward_flash_attn(
  10999. const struct ggml_compute_params * params,
  11000. const struct ggml_tensor * q,
  11001. const struct ggml_tensor * k,
  11002. const struct ggml_tensor * v,
  11003. const bool masked,
  11004. struct ggml_tensor * dst) {
  11005. switch (q->type) {
  11006. case GGML_TYPE_F16:
  11007. {
  11008. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11009. } break;
  11010. case GGML_TYPE_F32:
  11011. {
  11012. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11013. } break;
  11014. default:
  11015. {
  11016. GGML_ASSERT(false);
  11017. } break;
  11018. }
  11019. }
  11020. // ggml_compute_forward_flash_ff
  11021. static void ggml_compute_forward_flash_ff_f16(
  11022. const struct ggml_compute_params * params,
  11023. const struct ggml_tensor * a, // F16
  11024. const struct ggml_tensor * b0, // F16 fc_w
  11025. const struct ggml_tensor * b1, // F32 fc_b
  11026. const struct ggml_tensor * c0, // F16 proj_w
  11027. const struct ggml_tensor * c1, // F32 proj_b
  11028. struct ggml_tensor * dst) {
  11029. int64_t t0 = ggml_perf_time_us();
  11030. UNUSED(t0);
  11031. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11032. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11033. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11034. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11035. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11036. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11037. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11038. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11039. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11040. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11041. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11042. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11043. const int ith = params->ith;
  11044. const int nth = params->nth;
  11045. const int64_t D = nea0;
  11046. //const int64_t N = nea1;
  11047. const int64_t M = neb01;
  11048. GGML_ASSERT(ne0 == nea0);
  11049. GGML_ASSERT(ne1 == nea1);
  11050. GGML_ASSERT(ne2 == nea2);
  11051. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11052. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11053. GGML_ASSERT(nbb10 == sizeof(float));
  11054. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11055. GGML_ASSERT(nbc10 == sizeof(float));
  11056. GGML_ASSERT(neb00 == D);
  11057. GGML_ASSERT(neb01 == M);
  11058. GGML_ASSERT(neb10 == M);
  11059. GGML_ASSERT(neb11 == 1);
  11060. GGML_ASSERT(nec00 == M);
  11061. GGML_ASSERT(nec01 == D);
  11062. GGML_ASSERT(nec10 == D);
  11063. GGML_ASSERT(nec11 == 1);
  11064. // dst cannot be transposed or permuted
  11065. GGML_ASSERT(nb0 == sizeof(float));
  11066. GGML_ASSERT(nb0 <= nb1);
  11067. GGML_ASSERT(nb1 <= nb2);
  11068. GGML_ASSERT(nb2 <= nb3);
  11069. if (params->type == GGML_TASK_INIT) {
  11070. return;
  11071. }
  11072. if (params->type == GGML_TASK_FINALIZE) {
  11073. return;
  11074. }
  11075. // parallelize by a rows using ggml_vec_dot_f32
  11076. // total rows in a
  11077. const int nr = nea1*nea2*nea3;
  11078. // rows per thread
  11079. const int dr = (nr + nth - 1)/nth;
  11080. // row range for this thread
  11081. const int ir0 = dr*ith;
  11082. const int ir1 = MIN(ir0 + dr, nr);
  11083. for (int ir = ir0; ir < ir1; ++ir) {
  11084. // a indices
  11085. const int ia3 = ir/(nea2*nea1);
  11086. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11087. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11088. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11089. for (int64_t ic = 0; ic < neb01; ++ic) {
  11090. // b0 indices
  11091. const int ib03 = ia3;
  11092. const int ib02 = ia2;
  11093. const int ib01 = ic;
  11094. // S indices
  11095. const int i1 = ib01;
  11096. ggml_vec_dot_f16(nea0,
  11097. S + i1,
  11098. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11099. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11100. }
  11101. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11102. //ggml_vec_gelu_f32(neb01, S, S);
  11103. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11104. for (int64_t i = 0; i < M; i++) {
  11105. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11106. }
  11107. ggml_vec_gelu_f16(neb01, S16, S16);
  11108. {
  11109. // dst indices
  11110. const int i1 = ia1;
  11111. const int i2 = ia2;
  11112. const int i3 = ia3;
  11113. for (int64_t ic = 0; ic < nec01; ++ic) {
  11114. ggml_vec_dot_f16(neb01,
  11115. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11116. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11117. S16);
  11118. }
  11119. ggml_vec_add_f32(nec01,
  11120. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11121. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11122. (float *) c1->data);
  11123. }
  11124. }
  11125. }
  11126. static void ggml_compute_forward_flash_ff(
  11127. const struct ggml_compute_params * params,
  11128. const struct ggml_tensor * a,
  11129. const struct ggml_tensor * b0,
  11130. const struct ggml_tensor * b1,
  11131. const struct ggml_tensor * c0,
  11132. const struct ggml_tensor * c1,
  11133. struct ggml_tensor * dst) {
  11134. switch (b0->type) {
  11135. case GGML_TYPE_F16:
  11136. {
  11137. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11138. } break;
  11139. case GGML_TYPE_F32:
  11140. {
  11141. GGML_ASSERT(false); // TODO
  11142. } break;
  11143. default:
  11144. {
  11145. GGML_ASSERT(false);
  11146. } break;
  11147. }
  11148. }
  11149. // ggml_compute_forward_flash_attn_back
  11150. static void ggml_compute_forward_flash_attn_back_f32(
  11151. const struct ggml_compute_params * params,
  11152. const struct ggml_tensor * q,
  11153. const struct ggml_tensor * k,
  11154. const struct ggml_tensor * v,
  11155. const struct ggml_tensor * d,
  11156. const bool masked,
  11157. struct ggml_tensor * dst) {
  11158. int64_t t0 = ggml_perf_time_us();
  11159. UNUSED(t0);
  11160. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11161. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11162. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11163. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11164. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11165. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11166. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11167. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11168. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11169. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11170. const int ith = params->ith;
  11171. const int nth = params->nth;
  11172. const int64_t D = neq0;
  11173. const int64_t N = neq1;
  11174. const int64_t P = nek1 - N;
  11175. const int64_t M = P + N;
  11176. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11177. const int mxDM = MAX(D, Mup);
  11178. // GGML_ASSERT(ne0 == D);
  11179. // GGML_ASSERT(ne1 == N);
  11180. GGML_ASSERT(P >= 0);
  11181. GGML_ASSERT(nbq0 == sizeof(float));
  11182. GGML_ASSERT(nbk0 == sizeof(float));
  11183. GGML_ASSERT(nbv0 == sizeof(float));
  11184. GGML_ASSERT(neq0 == D);
  11185. GGML_ASSERT(nek0 == D);
  11186. GGML_ASSERT(nev1 == D);
  11187. GGML_ASSERT(ned0 == D);
  11188. GGML_ASSERT(neq1 == N);
  11189. GGML_ASSERT(nek1 == N + P);
  11190. GGML_ASSERT(nev1 == D);
  11191. GGML_ASSERT(ned1 == N);
  11192. // dst cannot be transposed or permuted
  11193. GGML_ASSERT(nb0 == sizeof(float));
  11194. GGML_ASSERT(nb0 <= nb1);
  11195. GGML_ASSERT(nb1 <= nb2);
  11196. GGML_ASSERT(nb2 <= nb3);
  11197. if (params->type == GGML_TASK_INIT) {
  11198. if (ith == 0) {
  11199. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11200. }
  11201. return;
  11202. }
  11203. if (params->type == GGML_TASK_FINALIZE) {
  11204. return;
  11205. }
  11206. // parallelize by q rows using ggml_vec_dot_f32
  11207. // total rows in q
  11208. const int nr = neq2*neq3;
  11209. // rows per thread
  11210. const int dr = (nr + nth - 1)/nth;
  11211. // row range for this thread
  11212. const int ir0 = dr*ith;
  11213. const int ir1 = MIN(ir0 + dr, nr);
  11214. const float scale = 1.0f/sqrtf(D);
  11215. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11216. for (int ir = ir0; ir < ir1; ++ir) {
  11217. // q indices
  11218. const int iq3 = ir/(neq2);
  11219. const int iq2 = ir - iq3*neq2;
  11220. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11221. // not sure about CACHE_LINE_SIZE_F32..
  11222. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11223. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11224. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11225. for (int i = M; i < Mup; ++i) {
  11226. S[i] = -INFINITY;
  11227. }
  11228. for (int64_t ic = 0; ic < nek1; ++ic) {
  11229. // k indices
  11230. const int ik3 = iq3;
  11231. const int ik2 = iq2;
  11232. const int ik1 = ic;
  11233. // S indices
  11234. const int i1 = ik1;
  11235. ggml_vec_dot_f32(neq0,
  11236. S + i1,
  11237. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11238. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11239. }
  11240. // scale
  11241. ggml_vec_scale_f32(nek1, S, scale);
  11242. if (masked) {
  11243. for (int64_t i = P; i < M; i++) {
  11244. if (i > P + iq1) {
  11245. S[i] = -INFINITY;
  11246. }
  11247. }
  11248. }
  11249. // softmax
  11250. {
  11251. float max = -INFINITY;
  11252. ggml_vec_max_f32(M, &max, S);
  11253. ggml_float sum = 0.0;
  11254. {
  11255. #ifdef GGML_SOFT_MAX_ACCELERATE
  11256. max = -max;
  11257. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11258. vvexpf(SM, SM, &Mup);
  11259. ggml_vec_sum_f32(Mup, &sum, SM);
  11260. #else
  11261. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11262. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11263. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11264. float * SR = S + i;
  11265. float * SW = SM + i;
  11266. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11267. if (SR[j] == -INFINITY) {
  11268. SW[j] = 0.0f;
  11269. } else {
  11270. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11271. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11272. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11273. sump[j] += (ggml_float)val;
  11274. SW[j] = val;
  11275. }
  11276. }
  11277. }
  11278. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11279. sum += sump[i];
  11280. }
  11281. #endif
  11282. }
  11283. assert(sum > 0.0);
  11284. sum = 1.0/sum;
  11285. ggml_vec_scale_f32(M, SM, sum);
  11286. }
  11287. // step-by-step explanation
  11288. {
  11289. // forward-process shape grads from backward process
  11290. // parallel_for iq2,iq3:
  11291. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11292. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11293. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11294. // for iq1:
  11295. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11296. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11297. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11298. // S0 = -Inf [D,1,1,1]
  11299. // ~S1[i] = dot(kcur[:D,i], qcur)
  11300. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11301. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11302. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11303. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11304. // ~S5[i] = dot(vcur[:,i], S4)
  11305. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11306. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11307. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11308. // dst backward-/ grad[dst] = d
  11309. //
  11310. // output gradients with their dependencies:
  11311. //
  11312. // grad[kcur] = grad[S1].T @ qcur
  11313. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11314. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11315. // grad[S4] = grad[S5] @ vcur
  11316. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11317. // grad[qcur] = grad[S1] @ kcur
  11318. // grad[vcur] = grad[S5].T @ S4
  11319. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11320. //
  11321. // in post-order:
  11322. //
  11323. // S1 = qcur @ kcur.T
  11324. // S2 = S1 * scale
  11325. // S3 = diag_mask_inf(S2, P)
  11326. // S4 = softmax(S3)
  11327. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11328. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11329. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11330. // grad[qcur] = grad[S1] @ kcur
  11331. // grad[kcur] = grad[S1].T @ qcur
  11332. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11333. //
  11334. // using less variables (SM=S4):
  11335. //
  11336. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11337. // SM = softmax(S)
  11338. // S = d[:D,iq1,iq2,iq3] @ vcur
  11339. // dot_SM_gradSM = dot(SM, S)
  11340. // S = SM * (S - dot(SM, S))
  11341. // S = diag_mask_zero(S, P) * scale
  11342. //
  11343. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11344. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11345. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11346. }
  11347. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11348. // S = d[:D,iq1,iq2,iq3] @ vcur
  11349. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11350. ggml_vec_set_f32(M, S, 0);
  11351. for (int64_t ic = 0; ic < D; ++ic) {
  11352. // dst indices
  11353. const int i1 = iq1;
  11354. const int i2 = iq2;
  11355. const int i3 = iq3;
  11356. ggml_vec_mad_f32(M,
  11357. S,
  11358. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11359. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11360. }
  11361. // S = SM * (S - dot(SM, S))
  11362. float dot_SM_gradSM = 0;
  11363. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11364. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11365. ggml_vec_mul_f32 (M, S, S, SM);
  11366. // S = diag_mask_zero(S, P) * scale
  11367. if (masked) {
  11368. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11369. // S[i] = 0;
  11370. // }
  11371. for (int64_t i = P; i < M; i++) {
  11372. if (i > P + iq1) {
  11373. S[i] = 0;
  11374. }
  11375. }
  11376. }
  11377. ggml_vec_scale_f32(M, S, scale);
  11378. void * grad_q = (char *) dst->data;
  11379. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11380. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11381. const size_t nbgq1 = nb0*neq0;
  11382. const size_t nbgq2 = nb0*neq0*neq1;
  11383. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11384. const size_t nbgk1 = nb0*nek0;
  11385. const size_t nbgk2 = nb0*nek0*nek1;
  11386. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11387. const size_t nbgv1 = nb0*nev0;
  11388. const size_t nbgv2 = nb0*nev0*nev1;
  11389. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11390. // S shape [M,1]
  11391. // SM shape [M,1]
  11392. // kcur shape [D,M]
  11393. // qcur shape [D,1]
  11394. // vcur shape [M,D]
  11395. //
  11396. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11397. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11398. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11399. //
  11400. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11401. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11402. for (int64_t ic = 0; ic < M; ++ic) {
  11403. // dst indices
  11404. const int i1 = iq1;
  11405. const int i2 = iq2;
  11406. const int i3 = iq3;
  11407. ggml_vec_mad_f32(D,
  11408. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11409. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11410. S[ic]);
  11411. }
  11412. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11413. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11414. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11415. for (int64_t ic = 0; ic < M; ++ic) {
  11416. // dst indices
  11417. const int i1 = iq1;
  11418. const int i2 = iq2;
  11419. const int i3 = iq3;
  11420. // ggml_vec_set_f32(D,
  11421. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11422. // 0);
  11423. ggml_vec_mad_f32(D,
  11424. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11425. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11426. S[ic]);
  11427. }
  11428. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11429. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11430. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11431. for (int64_t ic = 0; ic < D; ++ic) {
  11432. // dst indices
  11433. const int i1 = iq1;
  11434. const int i2 = iq2;
  11435. const int i3 = iq3;
  11436. // ggml_vec_set_f32(M,
  11437. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11438. // 0);
  11439. ggml_vec_mad_f32(M,
  11440. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11441. SM,
  11442. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11443. }
  11444. }
  11445. }
  11446. }
  11447. static void ggml_compute_forward_flash_attn_back(
  11448. const struct ggml_compute_params * params,
  11449. const struct ggml_tensor * q,
  11450. const struct ggml_tensor * k,
  11451. const struct ggml_tensor * v,
  11452. const struct ggml_tensor * d,
  11453. const bool masked,
  11454. struct ggml_tensor * dst) {
  11455. switch (q->type) {
  11456. case GGML_TYPE_F32:
  11457. {
  11458. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11459. } break;
  11460. default:
  11461. {
  11462. GGML_ASSERT(false);
  11463. } break;
  11464. }
  11465. }
  11466. // ggml_compute_forward_win_part
  11467. static void ggml_compute_forward_win_part_f32(
  11468. const struct ggml_compute_params * params,
  11469. const struct ggml_tensor * src0,
  11470. struct ggml_tensor * dst) {
  11471. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11472. return;
  11473. }
  11474. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11475. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11476. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11477. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11478. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11479. assert(ne00 == ne0);
  11480. assert(ne3 == nep0*nep1);
  11481. // TODO: optimize / multi-thread
  11482. for (int py = 0; py < nep1; ++py) {
  11483. for (int px = 0; px < nep0; ++px) {
  11484. const int64_t i3 = py*nep0 + px;
  11485. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11486. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11487. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11488. const int64_t i02 = py*w + i2;
  11489. const int64_t i01 = px*w + i1;
  11490. const int64_t i00 = i0;
  11491. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11492. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11493. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11494. ((float *) dst->data)[i] = 0.0f;
  11495. } else {
  11496. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11497. }
  11498. }
  11499. }
  11500. }
  11501. }
  11502. }
  11503. }
  11504. static void ggml_compute_forward_win_part(
  11505. const struct ggml_compute_params * params,
  11506. const struct ggml_tensor * src0,
  11507. struct ggml_tensor * dst) {
  11508. switch (src0->type) {
  11509. case GGML_TYPE_F32:
  11510. {
  11511. ggml_compute_forward_win_part_f32(params, src0, dst);
  11512. } break;
  11513. default:
  11514. {
  11515. GGML_ASSERT(false);
  11516. } break;
  11517. }
  11518. }
  11519. // ggml_compute_forward_win_unpart
  11520. static void ggml_compute_forward_win_unpart_f32(
  11521. const struct ggml_compute_params * params,
  11522. const struct ggml_tensor * src0,
  11523. struct ggml_tensor * dst) {
  11524. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11525. return;
  11526. }
  11527. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11528. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11529. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11530. // padding
  11531. const int px = (w - ne1%w)%w;
  11532. //const int py = (w - ne2%w)%w;
  11533. const int npx = (px + ne1)/w;
  11534. //const int npy = (py + ne2)/w;
  11535. assert(ne0 == ne00);
  11536. // TODO: optimize / multi-thread
  11537. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11538. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11539. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11540. const int ip2 = i2/w;
  11541. const int ip1 = i1/w;
  11542. const int64_t i02 = i2%w;
  11543. const int64_t i01 = i1%w;
  11544. const int64_t i00 = i0;
  11545. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11546. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11547. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11548. }
  11549. }
  11550. }
  11551. }
  11552. static void ggml_compute_forward_win_unpart(
  11553. const struct ggml_compute_params * params,
  11554. const struct ggml_tensor * src0,
  11555. struct ggml_tensor * dst) {
  11556. switch (src0->type) {
  11557. case GGML_TYPE_F32:
  11558. {
  11559. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11560. } break;
  11561. default:
  11562. {
  11563. GGML_ASSERT(false);
  11564. } break;
  11565. }
  11566. }
  11567. //gmml_compute_forward_unary
  11568. static void ggml_compute_forward_unary(
  11569. const struct ggml_compute_params * params,
  11570. const struct ggml_tensor * src0,
  11571. struct ggml_tensor * dst) {
  11572. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11573. switch (op) {
  11574. case GGML_UNARY_OP_ABS:
  11575. {
  11576. ggml_compute_forward_abs(params, src0, dst);
  11577. } break;
  11578. case GGML_UNARY_OP_SGN:
  11579. {
  11580. ggml_compute_forward_sgn(params, src0, dst);
  11581. } break;
  11582. case GGML_UNARY_OP_NEG:
  11583. {
  11584. ggml_compute_forward_neg(params, src0, dst);
  11585. } break;
  11586. case GGML_UNARY_OP_STEP:
  11587. {
  11588. ggml_compute_forward_step(params, src0, dst);
  11589. } break;
  11590. case GGML_UNARY_OP_TANH:
  11591. {
  11592. ggml_compute_forward_tanh(params, src0, dst);
  11593. } break;
  11594. case GGML_UNARY_OP_ELU:
  11595. {
  11596. ggml_compute_forward_elu(params, src0, dst);
  11597. } break;
  11598. case GGML_UNARY_OP_RELU:
  11599. {
  11600. ggml_compute_forward_relu(params, src0, dst);
  11601. } break;
  11602. case GGML_UNARY_OP_GELU:
  11603. {
  11604. ggml_compute_forward_gelu(params, src0, dst);
  11605. } break;
  11606. case GGML_UNARY_OP_GELU_QUICK:
  11607. {
  11608. ggml_compute_forward_gelu_quick(params, src0, dst);
  11609. } break;
  11610. case GGML_UNARY_OP_SILU:
  11611. {
  11612. ggml_compute_forward_silu(params, src0, dst);
  11613. } break;
  11614. default:
  11615. {
  11616. GGML_ASSERT(false);
  11617. } break;
  11618. }
  11619. }
  11620. // ggml_compute_forward_map_unary
  11621. static void ggml_compute_forward_map_unary_f32(
  11622. const struct ggml_compute_params * params,
  11623. const struct ggml_tensor * src0,
  11624. struct ggml_tensor * dst,
  11625. const ggml_unary_op_f32_t fun) {
  11626. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11627. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11628. return;
  11629. }
  11630. const int n = ggml_nrows(src0);
  11631. const int nc = src0->ne[0];
  11632. assert( dst->nb[0] == sizeof(float));
  11633. assert(src0->nb[0] == sizeof(float));
  11634. for (int i = 0; i < n; i++) {
  11635. fun(nc,
  11636. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11637. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11638. }
  11639. }
  11640. static void ggml_compute_forward_map_unary(
  11641. const struct ggml_compute_params * params,
  11642. const struct ggml_tensor * src0,
  11643. struct ggml_tensor * dst,
  11644. const ggml_unary_op_f32_t fun) {
  11645. switch (src0->type) {
  11646. case GGML_TYPE_F32:
  11647. {
  11648. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11649. } break;
  11650. default:
  11651. {
  11652. GGML_ASSERT(false);
  11653. } break;
  11654. }
  11655. }
  11656. // ggml_compute_forward_map_binary
  11657. static void ggml_compute_forward_map_binary_f32(
  11658. const struct ggml_compute_params * params,
  11659. const struct ggml_tensor * src0,
  11660. const struct ggml_tensor * src1,
  11661. struct ggml_tensor * dst,
  11662. const ggml_binary_op_f32_t fun) {
  11663. assert(params->ith == 0);
  11664. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11665. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11666. return;
  11667. }
  11668. const int n = ggml_nrows(src0);
  11669. const int nc = src0->ne[0];
  11670. assert( dst->nb[0] == sizeof(float));
  11671. assert(src0->nb[0] == sizeof(float));
  11672. assert(src1->nb[0] == sizeof(float));
  11673. for (int i = 0; i < n; i++) {
  11674. fun(nc,
  11675. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11676. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11677. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11678. }
  11679. }
  11680. static void ggml_compute_forward_map_binary(
  11681. const struct ggml_compute_params * params,
  11682. const struct ggml_tensor * src0,
  11683. const struct ggml_tensor * src1,
  11684. struct ggml_tensor * dst,
  11685. const ggml_binary_op_f32_t fun) {
  11686. switch (src0->type) {
  11687. case GGML_TYPE_F32:
  11688. {
  11689. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11690. } break;
  11691. default:
  11692. {
  11693. GGML_ASSERT(false);
  11694. } break;
  11695. }
  11696. }
  11697. // ggml_compute_forward_map_custom1
  11698. static void ggml_compute_forward_map_custom1_f32(
  11699. const struct ggml_compute_params * params,
  11700. const struct ggml_tensor * a,
  11701. struct ggml_tensor * dst,
  11702. const ggml_custom1_op_f32_t fun) {
  11703. assert(params->ith == 0);
  11704. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11705. return;
  11706. }
  11707. fun(dst, a);
  11708. }
  11709. // ggml_compute_forward_map_custom2
  11710. static void ggml_compute_forward_map_custom2_f32(
  11711. const struct ggml_compute_params * params,
  11712. const struct ggml_tensor * a,
  11713. const struct ggml_tensor * b,
  11714. struct ggml_tensor * dst,
  11715. const ggml_custom2_op_f32_t fun) {
  11716. assert(params->ith == 0);
  11717. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11718. return;
  11719. }
  11720. fun(dst, a, b);
  11721. }
  11722. // ggml_compute_forward_map_custom3
  11723. static void ggml_compute_forward_map_custom3_f32(
  11724. const struct ggml_compute_params * params,
  11725. const struct ggml_tensor * a,
  11726. const struct ggml_tensor * b,
  11727. const struct ggml_tensor * c,
  11728. struct ggml_tensor * dst,
  11729. const ggml_custom3_op_f32_t fun) {
  11730. assert(params->ith == 0);
  11731. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11732. return;
  11733. }
  11734. fun(dst, a, b, c);
  11735. }
  11736. // ggml_compute_forward_map_custom1
  11737. static void ggml_compute_forward_map_custom1(
  11738. const struct ggml_compute_params * params,
  11739. const struct ggml_tensor * a,
  11740. struct ggml_tensor * dst) {
  11741. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11742. return;
  11743. }
  11744. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11745. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11746. }
  11747. // ggml_compute_forward_map_custom2
  11748. static void ggml_compute_forward_map_custom2(
  11749. const struct ggml_compute_params * params,
  11750. const struct ggml_tensor * a,
  11751. const struct ggml_tensor * b,
  11752. struct ggml_tensor * dst) {
  11753. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11754. return;
  11755. }
  11756. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11757. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11758. }
  11759. // ggml_compute_forward_map_custom3
  11760. static void ggml_compute_forward_map_custom3(
  11761. const struct ggml_compute_params * params,
  11762. const struct ggml_tensor * a,
  11763. const struct ggml_tensor * b,
  11764. const struct ggml_tensor * c,
  11765. struct ggml_tensor * dst) {
  11766. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11767. return;
  11768. }
  11769. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11770. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11771. }
  11772. // ggml_compute_forward_cross_entropy_loss
  11773. static void ggml_compute_forward_cross_entropy_loss_f32(
  11774. const struct ggml_compute_params * params,
  11775. const struct ggml_tensor * src0,
  11776. const struct ggml_tensor * src1,
  11777. struct ggml_tensor * dst) {
  11778. GGML_ASSERT(ggml_is_contiguous(src0));
  11779. GGML_ASSERT(ggml_is_contiguous(src1));
  11780. GGML_ASSERT(ggml_is_scalar(dst));
  11781. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11782. const int ith = params->ith;
  11783. const int nth = params->nth;
  11784. float * sums = (float *) params->wdata;
  11785. // TODO: handle transposed/permuted matrices
  11786. const int nc = src0->ne[0];
  11787. const int nr = ggml_nrows(src0);
  11788. if (params->type == GGML_TASK_INIT) {
  11789. if (ith == 0) {
  11790. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11791. }
  11792. return;
  11793. }
  11794. if (params->type == GGML_TASK_FINALIZE) {
  11795. if (ith == 0) {
  11796. float * dp = (float *) dst->data;
  11797. ggml_vec_sum_f32(nth, dp, sums);
  11798. dp[0] *= -1.0f;
  11799. }
  11800. return;
  11801. }
  11802. const double eps = 1e-9;
  11803. // rows per thread
  11804. const int dr = (nr + nth - 1)/nth;
  11805. // row range for this thread
  11806. const int ir0 = dr*ith;
  11807. const int ir1 = MIN(ir0 + dr, nr);
  11808. for (int i1 = ir0; i1 < ir1; i1++) {
  11809. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11810. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11811. float * st = (float *) params->wdata + nth + ith*nc;
  11812. #ifndef NDEBUG
  11813. for (int i = 0; i < nc; ++i) {
  11814. //printf("p[%d] = %f\n", i, p[i]);
  11815. assert(!isnan(s0[i]));
  11816. assert(!isnan(s1[i]));
  11817. }
  11818. #endif
  11819. // soft_max
  11820. ggml_float sum = 0.0;
  11821. {
  11822. float max = -INFINITY;
  11823. ggml_vec_max_f32(nc, &max, s0);
  11824. uint16_t scvt;
  11825. for (int i = 0; i < nc; i++) {
  11826. if (s0[i] == -INFINITY) {
  11827. st[i] = 0.0f;
  11828. } else {
  11829. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11830. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11831. memcpy(&scvt, &s, sizeof(scvt));
  11832. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11833. sum += (ggml_float)val;
  11834. st[i] = val;
  11835. }
  11836. }
  11837. assert(sum > 0.0);
  11838. // sum = 1.0/sum;
  11839. }
  11840. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11841. sum = (1.0 - eps) / sum;
  11842. ggml_vec_scale_f32(nc, st, sum);
  11843. ggml_vec_add1_f32(nc, st, st, eps);
  11844. ggml_vec_log_f32(nc, st, st);
  11845. ggml_vec_mul_f32(nc, st, st, s1);
  11846. ggml_vec_sum_f32(nc, sums + ith, st);
  11847. #ifndef NDEBUG
  11848. for (int i = 0; i < nc; ++i) {
  11849. assert(!isnan(st[i]));
  11850. assert(!isinf(st[i]));
  11851. }
  11852. #endif
  11853. }
  11854. }
  11855. static void ggml_compute_forward_cross_entropy_loss(
  11856. const struct ggml_compute_params * params,
  11857. const struct ggml_tensor * src0,
  11858. const struct ggml_tensor * src1,
  11859. struct ggml_tensor * dst) {
  11860. switch (src0->type) {
  11861. case GGML_TYPE_F32:
  11862. {
  11863. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11864. } break;
  11865. default:
  11866. {
  11867. GGML_ASSERT(false);
  11868. } break;
  11869. }
  11870. }
  11871. // ggml_compute_forward_cross_entropy_loss_back
  11872. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11873. const struct ggml_compute_params * params,
  11874. const struct ggml_tensor * src0,
  11875. const struct ggml_tensor * src1,
  11876. const struct ggml_tensor * opt0,
  11877. struct ggml_tensor * dst) {
  11878. GGML_ASSERT(ggml_is_contiguous(dst));
  11879. GGML_ASSERT(ggml_is_contiguous(src0));
  11880. GGML_ASSERT(ggml_is_contiguous(src1));
  11881. GGML_ASSERT(ggml_is_contiguous(opt0));
  11882. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11883. const int64_t ith = params->ith;
  11884. const int64_t nth = params->nth;
  11885. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11886. return;
  11887. }
  11888. const float eps = 1e-9f;
  11889. // TODO: handle transposed/permuted matrices
  11890. const int64_t nc = src0->ne[0];
  11891. const int64_t nr = ggml_nrows(src0);
  11892. // rows per thread
  11893. const int64_t dr = (nr + nth - 1)/nth;
  11894. // row range for this thread
  11895. const int64_t ir0 = dr*ith;
  11896. const int64_t ir1 = MIN(ir0 + dr, nr);
  11897. float * d = (float *) opt0->data;
  11898. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11899. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11900. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11901. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11902. float * sm = (float *) params->wdata + ith*nc;
  11903. #ifndef NDEBUG
  11904. for (int i = 0; i < nc; ++i) {
  11905. //printf("p[%d] = %f\n", i, p[i]);
  11906. assert(!isnan(s0[i]));
  11907. assert(!isnan(s1[i]));
  11908. }
  11909. #endif
  11910. // step by step explanation:
  11911. {
  11912. //float * sums = (float *) params->wdata;
  11913. // forward pass with annotated gradients from backward pass
  11914. // (built by going in reverse operation order, adding to gradients of current operation args)
  11915. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11916. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11917. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11918. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11919. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11920. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11921. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11922. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11923. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11924. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11925. // postorder:
  11926. // grad[st1] := softmax(s0)
  11927. // grad[st1] := grad[st1]*(1.0 - eps)
  11928. // grad[st1] := grad[st1] + eps
  11929. // grad[st1] := s1 / grad[st1]
  11930. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11931. // src0 gradients by going through softmax_back
  11932. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11933. // from softmax_back:
  11934. // dxk = yk * (dyk - dot(y, dy))
  11935. // dot_y_dy := dot(y, dy)
  11936. // dx := dy
  11937. // dx := dx - dot_y_dy
  11938. // dx := dx * y
  11939. // postorder:
  11940. // dot_st1_dst1 := dot(st1, grad[st1])
  11941. // grad[s0] := grad[st1]
  11942. // grad[s0] := grad[s0] - dot_st1_dst1
  11943. // grad[s0] := grad[s0] * st1
  11944. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11945. // sm := softmax(s0)
  11946. // grad[s0] := sm*(1.0 - eps)
  11947. // grad[s0] := grad[s0] + eps
  11948. // grad[s0] := s1 / grad[s0]
  11949. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11950. // dot_st1_dst1 := dot(sm, grad[s0])
  11951. // grad[s0] := grad[s0] - dot_st1_dst1
  11952. // grad[s0] := grad[s0] * sm
  11953. }
  11954. // soft_max
  11955. ggml_float sum = 0.0;
  11956. {
  11957. float max = -INFINITY;
  11958. ggml_vec_max_f32(nc, &max, s0);
  11959. uint16_t scvt;
  11960. for (int i = 0; i < nc; i++) {
  11961. if (s0[i] == -INFINITY) {
  11962. sm[i] = 0.0f;
  11963. } else {
  11964. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11965. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11966. memcpy(&scvt, &s, sizeof(scvt));
  11967. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11968. sum += (ggml_float)val;
  11969. sm[i] = val;
  11970. }
  11971. }
  11972. assert(sum > 0.0);
  11973. sum = 1.0/sum;
  11974. }
  11975. float dot_st1_dst1 = 0;
  11976. ggml_vec_scale_f32(nc, sm, sum);
  11977. ggml_vec_cpy_f32 (nc, ds0, sm);
  11978. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11979. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11980. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11981. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11982. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11983. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11984. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11985. #ifndef NDEBUG
  11986. for (int i = 0; i < nc; ++i) {
  11987. assert(!isnan(sm[i]));
  11988. assert(!isinf(sm[i]));
  11989. assert(!isnan(ds0[i]));
  11990. assert(!isinf(ds0[i]));
  11991. }
  11992. #endif
  11993. }
  11994. }
  11995. static void ggml_compute_forward_cross_entropy_loss_back(
  11996. const struct ggml_compute_params * params,
  11997. const struct ggml_tensor * src0,
  11998. const struct ggml_tensor * src1,
  11999. const struct ggml_tensor * opt0,
  12000. struct ggml_tensor * dst) {
  12001. switch (src0->type) {
  12002. case GGML_TYPE_F32:
  12003. {
  12004. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12005. } break;
  12006. default:
  12007. {
  12008. GGML_ASSERT(false);
  12009. } break;
  12010. }
  12011. }
  12012. /////////////////////////////////
  12013. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12014. GGML_ASSERT(params);
  12015. #ifdef GGML_USE_CUBLAS
  12016. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12017. if (skip_cpu) {
  12018. return;
  12019. }
  12020. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12021. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12022. #endif // GGML_USE_CUBLAS
  12023. switch (tensor->op) {
  12024. case GGML_OP_DUP:
  12025. {
  12026. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12027. } break;
  12028. case GGML_OP_ADD:
  12029. {
  12030. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12031. } break;
  12032. case GGML_OP_ADD1:
  12033. {
  12034. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12035. } break;
  12036. case GGML_OP_ACC:
  12037. {
  12038. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12039. } break;
  12040. case GGML_OP_SUB:
  12041. {
  12042. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12043. } break;
  12044. case GGML_OP_MUL:
  12045. {
  12046. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12047. } break;
  12048. case GGML_OP_DIV:
  12049. {
  12050. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12051. } break;
  12052. case GGML_OP_SQR:
  12053. {
  12054. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12055. } break;
  12056. case GGML_OP_SQRT:
  12057. {
  12058. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12059. } break;
  12060. case GGML_OP_LOG:
  12061. {
  12062. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12063. } break;
  12064. case GGML_OP_SUM:
  12065. {
  12066. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12067. } break;
  12068. case GGML_OP_SUM_ROWS:
  12069. {
  12070. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12071. } break;
  12072. case GGML_OP_MEAN:
  12073. {
  12074. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12075. } break;
  12076. case GGML_OP_ARGMAX:
  12077. {
  12078. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12079. } break;
  12080. case GGML_OP_REPEAT:
  12081. {
  12082. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12083. } break;
  12084. case GGML_OP_REPEAT_BACK:
  12085. {
  12086. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12087. } break;
  12088. case GGML_OP_SILU_BACK:
  12089. {
  12090. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12091. } break;
  12092. case GGML_OP_NORM:
  12093. {
  12094. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12095. } break;
  12096. case GGML_OP_RMS_NORM:
  12097. {
  12098. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12099. } break;
  12100. case GGML_OP_RMS_NORM_BACK:
  12101. {
  12102. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12103. } break;
  12104. case GGML_OP_MUL_MAT:
  12105. {
  12106. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12107. } break;
  12108. case GGML_OP_OUT_PROD:
  12109. {
  12110. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12111. } break;
  12112. case GGML_OP_SCALE:
  12113. {
  12114. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12115. } break;
  12116. case GGML_OP_SET:
  12117. {
  12118. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12119. } break;
  12120. case GGML_OP_CPY:
  12121. {
  12122. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12123. } break;
  12124. case GGML_OP_CONT:
  12125. {
  12126. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12127. } break;
  12128. case GGML_OP_RESHAPE:
  12129. {
  12130. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12131. } break;
  12132. case GGML_OP_VIEW:
  12133. {
  12134. ggml_compute_forward_view(params, tensor->src[0]);
  12135. } break;
  12136. case GGML_OP_PERMUTE:
  12137. {
  12138. ggml_compute_forward_permute(params, tensor->src[0]);
  12139. } break;
  12140. case GGML_OP_TRANSPOSE:
  12141. {
  12142. ggml_compute_forward_transpose(params, tensor->src[0]);
  12143. } break;
  12144. case GGML_OP_GET_ROWS:
  12145. {
  12146. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12147. } break;
  12148. case GGML_OP_GET_ROWS_BACK:
  12149. {
  12150. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12151. } break;
  12152. case GGML_OP_DIAG:
  12153. {
  12154. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12155. } break;
  12156. case GGML_OP_DIAG_MASK_INF:
  12157. {
  12158. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12159. } break;
  12160. case GGML_OP_DIAG_MASK_ZERO:
  12161. {
  12162. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12163. } break;
  12164. case GGML_OP_SOFT_MAX:
  12165. {
  12166. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12167. } break;
  12168. case GGML_OP_SOFT_MAX_BACK:
  12169. {
  12170. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12171. } break;
  12172. case GGML_OP_ROPE:
  12173. {
  12174. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12175. } break;
  12176. case GGML_OP_ROPE_BACK:
  12177. {
  12178. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12179. } break;
  12180. case GGML_OP_ALIBI:
  12181. {
  12182. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12183. } break;
  12184. case GGML_OP_CLAMP:
  12185. {
  12186. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12187. } break;
  12188. case GGML_OP_CONV_1D:
  12189. {
  12190. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12191. } break;
  12192. case GGML_OP_CONV_2D:
  12193. {
  12194. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12195. } break;
  12196. case GGML_OP_POOL_1D:
  12197. {
  12198. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12199. } break;
  12200. case GGML_OP_POOL_2D:
  12201. {
  12202. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12203. } break;
  12204. case GGML_OP_FLASH_ATTN:
  12205. {
  12206. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12207. GGML_ASSERT(t == 0 || t == 1);
  12208. const bool masked = t != 0;
  12209. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12210. } break;
  12211. case GGML_OP_FLASH_FF:
  12212. {
  12213. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12214. } break;
  12215. case GGML_OP_FLASH_ATTN_BACK:
  12216. {
  12217. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12218. GGML_ASSERT(t == 0 || t == 1);
  12219. bool masked = t != 0;
  12220. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12221. } break;
  12222. case GGML_OP_WIN_PART:
  12223. {
  12224. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12225. } break;
  12226. case GGML_OP_WIN_UNPART:
  12227. {
  12228. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12229. } break;
  12230. case GGML_OP_UNARY:
  12231. {
  12232. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12233. } break;
  12234. case GGML_OP_MAP_UNARY:
  12235. {
  12236. ggml_unary_op_f32_t fun;
  12237. memcpy(&fun, tensor->op_params, sizeof(fun));
  12238. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12239. }
  12240. break;
  12241. case GGML_OP_MAP_BINARY:
  12242. {
  12243. ggml_binary_op_f32_t fun;
  12244. memcpy(&fun, tensor->op_params, sizeof(fun));
  12245. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12246. }
  12247. break;
  12248. case GGML_OP_MAP_CUSTOM1_F32:
  12249. {
  12250. ggml_custom1_op_f32_t fun;
  12251. memcpy(&fun, tensor->op_params, sizeof(fun));
  12252. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12253. }
  12254. break;
  12255. case GGML_OP_MAP_CUSTOM2_F32:
  12256. {
  12257. ggml_custom2_op_f32_t fun;
  12258. memcpy(&fun, tensor->op_params, sizeof(fun));
  12259. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12260. }
  12261. break;
  12262. case GGML_OP_MAP_CUSTOM3_F32:
  12263. {
  12264. ggml_custom3_op_f32_t fun;
  12265. memcpy(&fun, tensor->op_params, sizeof(fun));
  12266. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12267. }
  12268. break;
  12269. case GGML_OP_MAP_CUSTOM1:
  12270. {
  12271. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12272. }
  12273. break;
  12274. case GGML_OP_MAP_CUSTOM2:
  12275. {
  12276. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12277. }
  12278. break;
  12279. case GGML_OP_MAP_CUSTOM3:
  12280. {
  12281. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12282. }
  12283. break;
  12284. case GGML_OP_CROSS_ENTROPY_LOSS:
  12285. {
  12286. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12287. }
  12288. break;
  12289. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12290. {
  12291. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12292. }
  12293. break;
  12294. case GGML_OP_NONE:
  12295. {
  12296. // nop
  12297. } break;
  12298. case GGML_OP_COUNT:
  12299. {
  12300. GGML_ASSERT(false);
  12301. } break;
  12302. }
  12303. }
  12304. ////////////////////////////////////////////////////////////////////////////////
  12305. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12306. struct ggml_tensor * src0 = tensor->src[0];
  12307. struct ggml_tensor * src1 = tensor->src[1];
  12308. switch (tensor->op) {
  12309. case GGML_OP_DUP:
  12310. {
  12311. if (src0->grad) {
  12312. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12313. }
  12314. } break;
  12315. case GGML_OP_ADD:
  12316. {
  12317. if (src0->grad) {
  12318. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12319. }
  12320. if (src1->grad) {
  12321. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12322. }
  12323. } break;
  12324. case GGML_OP_ADD1:
  12325. {
  12326. if (src0->grad) {
  12327. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12328. }
  12329. if (src1->grad) {
  12330. src1->grad = ggml_add_impl(ctx,
  12331. src1->grad,
  12332. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12333. inplace);
  12334. }
  12335. } break;
  12336. case GGML_OP_ACC:
  12337. {
  12338. if (src0->grad) {
  12339. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12340. }
  12341. if (src1->grad) {
  12342. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12343. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12344. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12345. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12346. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12347. tensor->grad,
  12348. src1->grad->ne[0],
  12349. src1->grad->ne[1],
  12350. src1->grad->ne[2],
  12351. src1->grad->ne[3],
  12352. nb1, nb2, nb3, offset);
  12353. src1->grad =
  12354. ggml_add_impl(ctx,
  12355. src1->grad,
  12356. ggml_reshape(ctx,
  12357. ggml_cont(ctx, tensor_grad_view),
  12358. src1->grad),
  12359. inplace);
  12360. }
  12361. } break;
  12362. case GGML_OP_SUB:
  12363. {
  12364. if (src0->grad) {
  12365. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12366. }
  12367. if (src1->grad) {
  12368. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12369. }
  12370. } break;
  12371. case GGML_OP_MUL:
  12372. {
  12373. if (src0->grad) {
  12374. src0->grad =
  12375. ggml_add_impl(ctx,
  12376. src0->grad,
  12377. ggml_mul(ctx, src1, tensor->grad),
  12378. inplace);
  12379. }
  12380. if (src1->grad) {
  12381. src1->grad =
  12382. ggml_add_impl(ctx,
  12383. src1->grad,
  12384. ggml_mul(ctx, src0, tensor->grad),
  12385. inplace);
  12386. }
  12387. } break;
  12388. case GGML_OP_DIV:
  12389. {
  12390. if (src0->grad) {
  12391. src0->grad =
  12392. ggml_add_impl(ctx,
  12393. src0->grad,
  12394. ggml_div(ctx, tensor->grad, src1),
  12395. inplace);
  12396. }
  12397. if (src1->grad) {
  12398. src1->grad =
  12399. ggml_sub_impl(ctx,
  12400. src1->grad,
  12401. ggml_mul(ctx,
  12402. tensor->grad,
  12403. ggml_div(ctx, tensor, src1)),
  12404. inplace);
  12405. }
  12406. } break;
  12407. case GGML_OP_SQR:
  12408. {
  12409. if (src0->grad) {
  12410. src0->grad =
  12411. ggml_add_impl(ctx,
  12412. src0->grad,
  12413. ggml_scale(ctx,
  12414. ggml_mul(ctx, src0, tensor->grad),
  12415. ggml_new_f32(ctx, 2.0f)),
  12416. inplace);
  12417. }
  12418. } break;
  12419. case GGML_OP_SQRT:
  12420. {
  12421. if (src0->grad) {
  12422. src0->grad =
  12423. ggml_add_impl(ctx,
  12424. src0->grad,
  12425. ggml_scale(ctx,
  12426. ggml_div(ctx,
  12427. tensor->grad,
  12428. tensor),
  12429. ggml_new_f32(ctx, 0.5f)),
  12430. inplace);
  12431. }
  12432. } break;
  12433. case GGML_OP_LOG:
  12434. {
  12435. if (src0->grad) {
  12436. src0->grad =
  12437. ggml_add_impl(ctx,
  12438. src0->grad,
  12439. ggml_div(ctx,
  12440. tensor->grad,
  12441. src0),
  12442. inplace);
  12443. }
  12444. } break;
  12445. case GGML_OP_SUM:
  12446. {
  12447. if (src0->grad) {
  12448. src0->grad =
  12449. ggml_add1_impl(ctx,
  12450. src0->grad,
  12451. tensor->grad,
  12452. inplace);
  12453. }
  12454. } break;
  12455. case GGML_OP_SUM_ROWS:
  12456. {
  12457. if (src0->grad) {
  12458. src0->grad =
  12459. ggml_add_impl(ctx,
  12460. src0->grad,
  12461. ggml_repeat(ctx,
  12462. tensor->grad,
  12463. src0->grad),
  12464. inplace);
  12465. }
  12466. } break;
  12467. case GGML_OP_MEAN:
  12468. case GGML_OP_ARGMAX:
  12469. {
  12470. GGML_ASSERT(false); // TODO: implement
  12471. } break;
  12472. case GGML_OP_REPEAT:
  12473. {
  12474. // necessary for llama
  12475. if (src0->grad) {
  12476. src0->grad = ggml_add_impl(ctx,
  12477. src0->grad,
  12478. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12479. inplace);
  12480. }
  12481. } break;
  12482. case GGML_OP_REPEAT_BACK:
  12483. {
  12484. if (src0->grad) {
  12485. // TODO: test this
  12486. src0->grad = ggml_add_impl(ctx,
  12487. src0->grad,
  12488. ggml_repeat(ctx, tensor->grad, src0->grad),
  12489. inplace);
  12490. }
  12491. } break;
  12492. case GGML_OP_SILU_BACK:
  12493. {
  12494. GGML_ASSERT(false); // TODO: not implemented
  12495. } break;
  12496. case GGML_OP_NORM:
  12497. {
  12498. GGML_ASSERT(false); // TODO: not implemented
  12499. } break;
  12500. case GGML_OP_RMS_NORM:
  12501. {
  12502. // necessary for llama
  12503. if (src0->grad) {
  12504. src0->grad = ggml_add_impl(ctx,
  12505. src0->grad,
  12506. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12507. inplace);
  12508. }
  12509. } break;
  12510. case GGML_OP_RMS_NORM_BACK:
  12511. {
  12512. GGML_ASSERT(false); // TODO: not implemented
  12513. } break;
  12514. case GGML_OP_MUL_MAT:
  12515. {
  12516. // https://cs231n.github.io/optimization-2/#staged
  12517. // # forward pass
  12518. // s0 = np.random.randn(5, 10)
  12519. // s1 = np.random.randn(10, 3)
  12520. // t = s0.dot(s1)
  12521. // # now suppose we had the gradient on t from above in the circuit
  12522. // dt = np.random.randn(*t.shape) # same shape as t
  12523. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12524. // ds1 = t.T.dot(dt)
  12525. // tensor.shape [m,p]
  12526. // src0.shape [n,m]
  12527. // src1.shape [n,p]
  12528. // necessary for llama
  12529. if (src0->grad) {
  12530. src0->grad =
  12531. ggml_add_impl(ctx,
  12532. src0->grad,
  12533. ggml_out_prod(ctx, // [n,m]
  12534. src1, // [n,p]
  12535. tensor->grad), // [m,p]
  12536. inplace);
  12537. }
  12538. if (src1->grad) {
  12539. src1->grad =
  12540. ggml_add_impl(ctx,
  12541. src1->grad,
  12542. // ggml_mul_mat(ctx, // [n,p]
  12543. // ggml_cont(ctx, // [m,n]
  12544. // ggml_transpose(ctx, src0)), // [m,n]
  12545. // tensor->grad), // [m,p]
  12546. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12547. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12548. // // and then use ggml_out_prod
  12549. ggml_out_prod(ctx, // [n,p]
  12550. src0, // [n,m]
  12551. ggml_transpose(ctx, // [p,m]
  12552. tensor->grad)), // [m,p]
  12553. inplace);
  12554. }
  12555. } break;
  12556. case GGML_OP_OUT_PROD:
  12557. {
  12558. GGML_ASSERT(false); // TODO: not implemented
  12559. } break;
  12560. case GGML_OP_SCALE:
  12561. {
  12562. // necessary for llama
  12563. if (src0->grad) {
  12564. src0->grad =
  12565. ggml_add_impl(ctx,
  12566. src0->grad,
  12567. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12568. inplace);
  12569. }
  12570. if (src1->grad) {
  12571. src1->grad =
  12572. ggml_add_impl(ctx,
  12573. src1->grad,
  12574. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12575. inplace);
  12576. }
  12577. } break;
  12578. case GGML_OP_SET:
  12579. {
  12580. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12581. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12582. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12583. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12584. struct ggml_tensor * tensor_grad_view = NULL;
  12585. if (src0->grad || src1->grad) {
  12586. GGML_ASSERT(src0->type == tensor->type);
  12587. GGML_ASSERT(tensor->grad->type == tensor->type);
  12588. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12589. tensor_grad_view = ggml_view_4d(ctx,
  12590. tensor->grad,
  12591. src1->grad->ne[0],
  12592. src1->grad->ne[1],
  12593. src1->grad->ne[2],
  12594. src1->grad->ne[3],
  12595. nb1, nb2, nb3, offset);
  12596. }
  12597. if (src0->grad) {
  12598. src0->grad = ggml_add_impl(ctx,
  12599. src0->grad,
  12600. ggml_acc_impl(ctx,
  12601. tensor->grad,
  12602. ggml_neg(ctx, tensor_grad_view),
  12603. nb1, nb2, nb3, offset, false),
  12604. inplace);
  12605. }
  12606. if (src1->grad) {
  12607. src1->grad =
  12608. ggml_add_impl(ctx,
  12609. src1->grad,
  12610. ggml_reshape(ctx,
  12611. ggml_cont(ctx, tensor_grad_view),
  12612. src1->grad),
  12613. inplace);
  12614. }
  12615. } break;
  12616. case GGML_OP_CPY:
  12617. {
  12618. // necessary for llama
  12619. // cpy overwrites value of src1 by src0 and returns view(src1)
  12620. // the overwriting is mathematically equivalent to:
  12621. // tensor = src0 * 1 + src1 * 0
  12622. if (src0->grad) {
  12623. // dsrc0 = dtensor * 1
  12624. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12625. }
  12626. if (src1->grad) {
  12627. // dsrc1 = dtensor * 0 -> noop
  12628. }
  12629. } break;
  12630. case GGML_OP_CONT:
  12631. {
  12632. // same as cpy
  12633. if (src0->grad) {
  12634. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12635. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12636. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12637. }
  12638. } break;
  12639. case GGML_OP_RESHAPE:
  12640. {
  12641. // necessary for llama
  12642. if (src0->grad) {
  12643. src0->grad =
  12644. ggml_add_impl(ctx, src0->grad,
  12645. ggml_reshape(ctx, tensor->grad, src0->grad),
  12646. inplace);
  12647. }
  12648. } break;
  12649. case GGML_OP_VIEW:
  12650. {
  12651. // necessary for llama
  12652. if (src0->grad) {
  12653. size_t offset;
  12654. memcpy(&offset, tensor->op_params, sizeof(offset));
  12655. size_t nb1 = tensor->nb[1];
  12656. size_t nb2 = tensor->nb[2];
  12657. size_t nb3 = tensor->nb[3];
  12658. if (src0->type != src0->grad->type) {
  12659. // gradient is typically F32, but src0 could be other type
  12660. size_t ng = ggml_element_size(src0->grad);
  12661. size_t n0 = ggml_element_size(src0);
  12662. GGML_ASSERT(offset % n0 == 0);
  12663. GGML_ASSERT(nb1 % n0 == 0);
  12664. GGML_ASSERT(nb2 % n0 == 0);
  12665. GGML_ASSERT(nb3 % n0 == 0);
  12666. offset = (offset / n0) * ng;
  12667. nb1 = (nb1 / n0) * ng;
  12668. nb2 = (nb2 / n0) * ng;
  12669. nb3 = (nb3 / n0) * ng;
  12670. }
  12671. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12672. }
  12673. } break;
  12674. case GGML_OP_PERMUTE:
  12675. {
  12676. // necessary for llama
  12677. if (src0->grad) {
  12678. int32_t * axes = (int32_t *) tensor->op_params;
  12679. int axis0 = axes[0] & 0x3;
  12680. int axis1 = axes[1] & 0x3;
  12681. int axis2 = axes[2] & 0x3;
  12682. int axis3 = axes[3] & 0x3;
  12683. int axes_backward[4] = {0,0,0,0};
  12684. axes_backward[axis0] = 0;
  12685. axes_backward[axis1] = 1;
  12686. axes_backward[axis2] = 2;
  12687. axes_backward[axis3] = 3;
  12688. src0->grad =
  12689. ggml_add_impl(ctx, src0->grad,
  12690. ggml_permute(ctx,
  12691. tensor->grad,
  12692. axes_backward[0],
  12693. axes_backward[1],
  12694. axes_backward[2],
  12695. axes_backward[3]),
  12696. inplace);
  12697. }
  12698. } break;
  12699. case GGML_OP_TRANSPOSE:
  12700. {
  12701. // necessary for llama
  12702. if (src0->grad) {
  12703. src0->grad =
  12704. ggml_add_impl(ctx, src0->grad,
  12705. ggml_transpose(ctx, tensor->grad),
  12706. inplace);
  12707. }
  12708. } break;
  12709. case GGML_OP_GET_ROWS:
  12710. {
  12711. // necessary for llama (only for tokenizer)
  12712. if (src0->grad) {
  12713. src0->grad =
  12714. ggml_add_impl(ctx, src0->grad,
  12715. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12716. inplace);
  12717. }
  12718. if (src1->grad) {
  12719. // noop
  12720. }
  12721. } break;
  12722. case GGML_OP_GET_ROWS_BACK:
  12723. {
  12724. GGML_ASSERT(false); // TODO: not implemented
  12725. } break;
  12726. case GGML_OP_DIAG:
  12727. {
  12728. GGML_ASSERT(false); // TODO: not implemented
  12729. } break;
  12730. case GGML_OP_DIAG_MASK_INF:
  12731. {
  12732. // necessary for llama
  12733. if (src0->grad) {
  12734. const int n_past = ((int32_t *) tensor->op_params)[0];
  12735. src0->grad =
  12736. ggml_add_impl(ctx, src0->grad,
  12737. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12738. inplace);
  12739. }
  12740. } break;
  12741. case GGML_OP_DIAG_MASK_ZERO:
  12742. {
  12743. // necessary for llama
  12744. if (src0->grad) {
  12745. const int n_past = ((int32_t *) tensor->op_params)[0];
  12746. src0->grad =
  12747. ggml_add_impl(ctx, src0->grad,
  12748. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12749. inplace);
  12750. }
  12751. } break;
  12752. case GGML_OP_SOFT_MAX:
  12753. {
  12754. // necessary for llama
  12755. if (src0->grad) {
  12756. src0->grad =
  12757. ggml_add_impl(ctx, src0->grad,
  12758. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12759. inplace);
  12760. }
  12761. } break;
  12762. case GGML_OP_SOFT_MAX_BACK:
  12763. {
  12764. GGML_ASSERT(false); // TODO: not implemented
  12765. } break;
  12766. case GGML_OP_ROPE:
  12767. {
  12768. // necessary for llama
  12769. if (src0->grad) {
  12770. const int n_past = ((int32_t *) tensor->op_params)[0];
  12771. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12772. const int mode = ((int32_t *) tensor->op_params)[2];
  12773. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12774. src0->grad = ggml_add_impl(ctx,
  12775. src0->grad,
  12776. ggml_rope_back(ctx,
  12777. tensor->grad,
  12778. n_past,
  12779. n_dims,
  12780. mode,
  12781. n_ctx),
  12782. inplace);
  12783. }
  12784. } break;
  12785. case GGML_OP_ROPE_BACK:
  12786. {
  12787. if (src0->grad) {
  12788. const int n_past = ((int32_t *) tensor->op_params)[0];
  12789. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12790. const int mode = ((int32_t *) tensor->op_params)[2];
  12791. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12792. src0->grad = ggml_add_impl(ctx,
  12793. src0->grad,
  12794. ggml_rope(ctx,
  12795. tensor->grad,
  12796. n_past,
  12797. n_dims,
  12798. mode,
  12799. n_ctx),
  12800. inplace);
  12801. }
  12802. } break;
  12803. case GGML_OP_ALIBI:
  12804. {
  12805. GGML_ASSERT(false); // TODO: not implemented
  12806. } break;
  12807. case GGML_OP_CLAMP:
  12808. {
  12809. GGML_ASSERT(false); // TODO: not implemented
  12810. } break;
  12811. case GGML_OP_CONV_1D:
  12812. {
  12813. GGML_ASSERT(false); // TODO: not implemented
  12814. } break;
  12815. case GGML_OP_CONV_2D:
  12816. {
  12817. GGML_ASSERT(false); // TODO: not implemented
  12818. } break;
  12819. case GGML_OP_POOL_1D:
  12820. {
  12821. GGML_ASSERT(false); // TODO: not implemented
  12822. } break;
  12823. case GGML_OP_POOL_2D:
  12824. {
  12825. GGML_ASSERT(false); // TODO: not implemented
  12826. } break;
  12827. case GGML_OP_FLASH_ATTN:
  12828. {
  12829. struct ggml_tensor * flash_grad = NULL;
  12830. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12831. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12832. GGML_ASSERT(t == 0 || t == 1);
  12833. bool masked = t != 0;
  12834. flash_grad =
  12835. ggml_flash_attn_back(ctx,
  12836. src0,
  12837. src1,
  12838. tensor->src[2],
  12839. tensor->grad,
  12840. masked);
  12841. }
  12842. if (src0->grad) {
  12843. struct ggml_tensor * grad_q = NULL;
  12844. const size_t nb0 = flash_grad->nb[0];
  12845. const size_t offset = 0;
  12846. switch(src0->n_dims) {
  12847. case 2:
  12848. {
  12849. grad_q = ggml_view_2d(ctx,
  12850. flash_grad,
  12851. src0->ne[0],
  12852. src0->ne[1],
  12853. nb0*src0->ne[0],
  12854. offset);
  12855. } break;
  12856. case 3:
  12857. {
  12858. grad_q = ggml_view_3d(ctx,
  12859. flash_grad,
  12860. src0->ne[0],
  12861. src0->ne[1],
  12862. src0->ne[2],
  12863. nb0*src0->ne[0],
  12864. nb0*src0->ne[0]*src0->ne[1],
  12865. offset);
  12866. } break;
  12867. case 4:
  12868. {
  12869. grad_q = ggml_view_4d(ctx,
  12870. flash_grad,
  12871. src0->ne[0],
  12872. src0->ne[1],
  12873. src0->ne[2],
  12874. src0->ne[3],
  12875. nb0*src0->ne[0],
  12876. nb0*src0->ne[0]*src0->ne[1],
  12877. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12878. offset);
  12879. } break;
  12880. }
  12881. src0->grad = ggml_add_impl(ctx,
  12882. src0->grad,
  12883. grad_q,
  12884. inplace);
  12885. }
  12886. if (src1->grad) {
  12887. struct ggml_tensor * grad_k = NULL;
  12888. const size_t nb0 = flash_grad->nb[0];
  12889. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12890. switch(src1->n_dims) {
  12891. case 2:
  12892. {
  12893. grad_k = ggml_view_2d(ctx,
  12894. flash_grad,
  12895. src1->ne[0],
  12896. src1->ne[1],
  12897. nb0*src1->ne[0],
  12898. offset);
  12899. } break;
  12900. case 3:
  12901. {
  12902. grad_k = ggml_view_3d(ctx,
  12903. flash_grad,
  12904. src1->ne[0],
  12905. src1->ne[1],
  12906. src1->ne[2],
  12907. nb0*src1->ne[0],
  12908. nb0*src1->ne[0]*src1->ne[1],
  12909. offset);
  12910. } break;
  12911. case 4:
  12912. {
  12913. grad_k = ggml_view_4d(ctx,
  12914. flash_grad,
  12915. src1->ne[0],
  12916. src1->ne[1],
  12917. src1->ne[2],
  12918. src1->ne[3],
  12919. nb0*src1->ne[0],
  12920. nb0*src1->ne[0]*src1->ne[1],
  12921. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12922. offset);
  12923. } break;
  12924. }
  12925. src1->grad = ggml_add_impl(ctx,
  12926. src1->grad,
  12927. grad_k,
  12928. inplace);
  12929. }
  12930. struct ggml_tensor * opt0 = tensor->src[2];
  12931. if (opt0->grad) {
  12932. struct ggml_tensor * grad_v = NULL;
  12933. const size_t nb0 = flash_grad->nb[0];
  12934. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12935. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12936. switch(opt0->n_dims) {
  12937. case 2:
  12938. {
  12939. grad_v = ggml_view_2d(ctx,
  12940. flash_grad,
  12941. opt0->ne[0],
  12942. opt0->ne[1],
  12943. nb0*opt0->ne[0],
  12944. offset);
  12945. } break;
  12946. case 3:
  12947. {
  12948. grad_v = ggml_view_3d(ctx,
  12949. flash_grad,
  12950. opt0->ne[0],
  12951. opt0->ne[1],
  12952. opt0->ne[2],
  12953. nb0*opt0->ne[0],
  12954. nb0*opt0->ne[0]*opt0->ne[1],
  12955. offset);
  12956. } break;
  12957. case 4:
  12958. {
  12959. grad_v = ggml_view_4d(ctx,
  12960. flash_grad,
  12961. opt0->ne[0],
  12962. opt0->ne[1],
  12963. opt0->ne[2],
  12964. opt0->ne[3],
  12965. nb0*opt0->ne[0],
  12966. nb0*opt0->ne[0]*opt0->ne[1],
  12967. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12968. offset);
  12969. } break;
  12970. }
  12971. opt0->grad = ggml_add_impl(ctx,
  12972. opt0->grad,
  12973. grad_v,
  12974. inplace);
  12975. }
  12976. } break;
  12977. case GGML_OP_FLASH_FF:
  12978. {
  12979. GGML_ASSERT(false); // not supported
  12980. } break;
  12981. case GGML_OP_FLASH_ATTN_BACK:
  12982. {
  12983. GGML_ASSERT(false); // not supported
  12984. } break;
  12985. case GGML_OP_WIN_PART:
  12986. case GGML_OP_WIN_UNPART:
  12987. case GGML_OP_UNARY:
  12988. {
  12989. switch (ggml_get_unary_op(tensor)) {
  12990. case GGML_UNARY_OP_ABS:
  12991. {
  12992. if (src0->grad) {
  12993. src0->grad =
  12994. ggml_add_impl(ctx,
  12995. src0->grad,
  12996. ggml_mul(ctx,
  12997. ggml_sgn(ctx, src0),
  12998. tensor->grad),
  12999. inplace);
  13000. }
  13001. } break;
  13002. case GGML_UNARY_OP_SGN:
  13003. {
  13004. if (src0->grad) {
  13005. // noop
  13006. }
  13007. } break;
  13008. case GGML_UNARY_OP_NEG:
  13009. {
  13010. if (src0->grad) {
  13011. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13012. }
  13013. } break;
  13014. case GGML_UNARY_OP_STEP:
  13015. {
  13016. if (src0->grad) {
  13017. // noop
  13018. }
  13019. } break;
  13020. case GGML_UNARY_OP_TANH:
  13021. {
  13022. GGML_ASSERT(false); // TODO: not implemented
  13023. } break;
  13024. case GGML_UNARY_OP_ELU:
  13025. {
  13026. GGML_ASSERT(false); // TODO: not implemented
  13027. } break;
  13028. case GGML_UNARY_OP_RELU:
  13029. {
  13030. if (src0->grad) {
  13031. src0->grad = ggml_add_impl(ctx,
  13032. src0->grad,
  13033. ggml_mul(ctx,
  13034. ggml_step(ctx, src0),
  13035. tensor->grad),
  13036. inplace);
  13037. }
  13038. } break;
  13039. case GGML_UNARY_OP_GELU:
  13040. {
  13041. GGML_ASSERT(false); // TODO: not implemented
  13042. } break;
  13043. case GGML_UNARY_OP_GELU_QUICK:
  13044. {
  13045. GGML_ASSERT(false); // TODO: not implemented
  13046. } break;
  13047. case GGML_UNARY_OP_SILU:
  13048. {
  13049. // necessary for llama
  13050. if (src0->grad) {
  13051. src0->grad = ggml_add_impl(ctx,
  13052. src0->grad,
  13053. ggml_silu_back(ctx, src0, tensor->grad),
  13054. inplace);
  13055. }
  13056. } break;
  13057. default:
  13058. GGML_ASSERT(false);
  13059. }
  13060. } break;
  13061. case GGML_OP_MAP_UNARY:
  13062. case GGML_OP_MAP_BINARY:
  13063. case GGML_OP_MAP_CUSTOM1_F32:
  13064. case GGML_OP_MAP_CUSTOM2_F32:
  13065. case GGML_OP_MAP_CUSTOM3_F32:
  13066. case GGML_OP_MAP_CUSTOM1:
  13067. case GGML_OP_MAP_CUSTOM2:
  13068. case GGML_OP_MAP_CUSTOM3:
  13069. {
  13070. GGML_ASSERT(false); // not supported
  13071. } break;
  13072. case GGML_OP_CROSS_ENTROPY_LOSS:
  13073. {
  13074. if (src0->grad) {
  13075. src0->grad = ggml_add_impl(ctx,
  13076. src0->grad,
  13077. ggml_cross_entropy_loss_back(ctx,
  13078. src0,
  13079. src1,
  13080. tensor->grad),
  13081. inplace);
  13082. }
  13083. } break;
  13084. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13085. {
  13086. GGML_ASSERT(false); // not supported
  13087. } break;
  13088. case GGML_OP_NONE:
  13089. {
  13090. // nop
  13091. } break;
  13092. case GGML_OP_COUNT:
  13093. {
  13094. GGML_ASSERT(false);
  13095. } break;
  13096. }
  13097. }
  13098. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13099. static size_t hash(void * p) {
  13100. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13101. }
  13102. static bool hash_insert(void * hash_table[], void * p) {
  13103. size_t h = hash(p);
  13104. // linear probing
  13105. size_t i = h;
  13106. while (hash_table[i] != NULL && hash_table[i] != p) {
  13107. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13108. if (i == h) {
  13109. // hash table is full
  13110. GGML_ASSERT(false);
  13111. }
  13112. }
  13113. if (hash_table[i] == p) {
  13114. return true;
  13115. }
  13116. // insert
  13117. hash_table[i] = p;
  13118. return false;
  13119. }
  13120. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13121. if (node->grad == NULL) {
  13122. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13123. // it can also happen during forward pass, if the user performs computations with constants
  13124. if (node->op != GGML_OP_NONE) {
  13125. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13126. }
  13127. }
  13128. // check if already visited
  13129. if (hash_insert(cgraph->visited_hash_table, node)) {
  13130. return;
  13131. }
  13132. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13133. if (node->src[i]) {
  13134. ggml_visit_parents(cgraph, node->src[i]);
  13135. }
  13136. }
  13137. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13138. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13139. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13140. if (strlen(node->name) == 0) {
  13141. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13142. }
  13143. cgraph->leafs[cgraph->n_leafs] = node;
  13144. cgraph->n_leafs++;
  13145. } else {
  13146. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13147. if (strlen(node->name) == 0) {
  13148. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13149. }
  13150. cgraph->nodes[cgraph->n_nodes] = node;
  13151. cgraph->grads[cgraph->n_nodes] = node->grad;
  13152. cgraph->n_nodes++;
  13153. }
  13154. }
  13155. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13156. if (!expand) {
  13157. cgraph->n_nodes = 0;
  13158. cgraph->n_leafs = 0;
  13159. }
  13160. const int n0 = cgraph->n_nodes;
  13161. UNUSED(n0);
  13162. ggml_visit_parents(cgraph, tensor);
  13163. const int n_new = cgraph->n_nodes - n0;
  13164. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13165. if (n_new > 0) {
  13166. // the last added node should always be starting point
  13167. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13168. }
  13169. }
  13170. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13171. ggml_build_forward_impl(cgraph, tensor, true);
  13172. }
  13173. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13174. struct ggml_cgraph result = {
  13175. /*.n_nodes =*/ 0,
  13176. /*.n_leafs =*/ 0,
  13177. /*.nodes =*/ { NULL },
  13178. /*.grads =*/ { NULL },
  13179. /*.leafs =*/ { NULL },
  13180. /*.hash_table =*/ { NULL },
  13181. /*.perf_runs =*/ 0,
  13182. /*.perf_cycles =*/ 0,
  13183. /*.perf_time_us =*/ 0,
  13184. };
  13185. ggml_build_forward_impl(&result, tensor, false);
  13186. return result;
  13187. }
  13188. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13189. struct ggml_cgraph result = *gf;
  13190. GGML_ASSERT(gf->n_nodes > 0);
  13191. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13192. if (keep) {
  13193. for (int i = 0; i < gf->n_nodes; i++) {
  13194. struct ggml_tensor * node = gf->nodes[i];
  13195. if (node->grad) {
  13196. node->grad = ggml_dup_tensor(ctx, node);
  13197. gf->grads[i] = node->grad;
  13198. }
  13199. }
  13200. }
  13201. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13202. struct ggml_tensor * node = gf->nodes[i];
  13203. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13204. if (node->grad) {
  13205. ggml_compute_backward(ctx, node, keep);
  13206. }
  13207. }
  13208. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13209. struct ggml_tensor * node = gf->nodes[i];
  13210. if (node->is_param) {
  13211. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13212. ggml_build_forward_expand(&result, node->grad);
  13213. }
  13214. }
  13215. return result;
  13216. }
  13217. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13218. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13219. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13220. *cgraph = (struct ggml_cgraph) {
  13221. /*.n_nodes =*/ 0,
  13222. /*.n_leafs =*/ 0,
  13223. /*.nodes =*/ { NULL },
  13224. /*.grads =*/ { NULL },
  13225. /*.leafs =*/ { NULL },
  13226. /*.hash_table =*/ { NULL },
  13227. /*.perf_runs =*/ 0,
  13228. /*.perf_cycles =*/ 0,
  13229. /*.perf_time_us =*/ 0,
  13230. };
  13231. return cgraph;
  13232. }
  13233. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  13234. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  13235. ggml_build_forward_impl(cgraph, tensor, false);
  13236. return cgraph;
  13237. }
  13238. size_t ggml_graph_overhead(void) {
  13239. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  13240. }
  13241. //
  13242. // thread data
  13243. //
  13244. // synchronization is done via busy loops
  13245. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13246. //
  13247. #ifdef __APPLE__
  13248. //#include <os/lock.h>
  13249. //
  13250. //typedef os_unfair_lock ggml_lock_t;
  13251. //
  13252. //#define ggml_lock_init(x) UNUSED(x)
  13253. //#define ggml_lock_destroy(x) UNUSED(x)
  13254. //#define ggml_lock_lock os_unfair_lock_lock
  13255. //#define ggml_lock_unlock os_unfair_lock_unlock
  13256. //
  13257. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13258. typedef int ggml_lock_t;
  13259. #define ggml_lock_init(x) UNUSED(x)
  13260. #define ggml_lock_destroy(x) UNUSED(x)
  13261. #define ggml_lock_lock(x) UNUSED(x)
  13262. #define ggml_lock_unlock(x) UNUSED(x)
  13263. #define GGML_LOCK_INITIALIZER 0
  13264. typedef pthread_t ggml_thread_t;
  13265. #define ggml_thread_create pthread_create
  13266. #define ggml_thread_join pthread_join
  13267. #else
  13268. //typedef pthread_spinlock_t ggml_lock_t;
  13269. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13270. //#define ggml_lock_destroy pthread_spin_destroy
  13271. //#define ggml_lock_lock pthread_spin_lock
  13272. //#define ggml_lock_unlock pthread_spin_unlock
  13273. typedef int ggml_lock_t;
  13274. #define ggml_lock_init(x) UNUSED(x)
  13275. #define ggml_lock_destroy(x) UNUSED(x)
  13276. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13277. #define ggml_lock_lock(x) _mm_pause()
  13278. #else
  13279. #define ggml_lock_lock(x) UNUSED(x)
  13280. #endif
  13281. #define ggml_lock_unlock(x) UNUSED(x)
  13282. #define GGML_LOCK_INITIALIZER 0
  13283. typedef pthread_t ggml_thread_t;
  13284. #define ggml_thread_create pthread_create
  13285. #define ggml_thread_join pthread_join
  13286. #endif
  13287. // Android's libc implementation "bionic" does not support setting affinity
  13288. #if defined(__linux__) && !defined(__BIONIC__)
  13289. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13290. if (!ggml_is_numa()) {
  13291. return;
  13292. }
  13293. // run thread on node_num thread_n / (threads per node)
  13294. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13295. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13296. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13297. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13298. CPU_ZERO_S(setsize, cpus);
  13299. for (size_t i = 0; i < node->n_cpus; ++i) {
  13300. CPU_SET_S(node->cpus[i], setsize, cpus);
  13301. }
  13302. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13303. if (rv) {
  13304. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13305. strerror(rv));
  13306. }
  13307. CPU_FREE(cpus);
  13308. }
  13309. static void clear_numa_thread_affinity(void) {
  13310. if (!ggml_is_numa()) {
  13311. return;
  13312. }
  13313. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13314. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13315. CPU_ZERO_S(setsize, cpus);
  13316. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13317. CPU_SET_S(i, setsize, cpus);
  13318. }
  13319. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13320. if (rv) {
  13321. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13322. strerror(rv));
  13323. }
  13324. CPU_FREE(cpus);
  13325. }
  13326. #else
  13327. // TODO: Windows etc.
  13328. // (the linux implementation may also work on BSD, someone should test)
  13329. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13330. static void clear_numa_thread_affinity(void) {}
  13331. #endif
  13332. struct ggml_compute_state_shared {
  13333. const struct ggml_cgraph * cgraph;
  13334. const struct ggml_cplan * cplan;
  13335. int64_t perf_node_start_cycles;
  13336. int64_t perf_node_start_time_us;
  13337. const int n_threads;
  13338. // synchronization primitives
  13339. atomic_int n_active; // num active threads
  13340. atomic_int node_n; // active graph node
  13341. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13342. void * abort_callback_data;
  13343. };
  13344. struct ggml_compute_state {
  13345. ggml_thread_t thrd;
  13346. int ith;
  13347. struct ggml_compute_state_shared * shared;
  13348. };
  13349. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13350. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13351. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13352. node->perf_runs++;
  13353. node->perf_cycles += cycles_cur;
  13354. node->perf_time_us += time_us_cur;
  13355. }
  13356. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13357. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13358. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13359. const struct ggml_cplan * cplan = state->shared->cplan;
  13360. const int * n_tasks_arr = cplan->n_tasks;
  13361. const int n_threads = state->shared->n_threads;
  13362. set_numa_thread_affinity(state->ith, n_threads);
  13363. int node_n = -1;
  13364. while (true) {
  13365. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13366. state->shared->node_n += 1;
  13367. return (thread_ret_t) GGML_EXIT_ABORTED;
  13368. }
  13369. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13370. // all other threads are finished and spinning
  13371. // do finalize and init here so we don't have synchronize again
  13372. struct ggml_compute_params params = {
  13373. /*.type =*/ GGML_TASK_FINALIZE,
  13374. /*.ith =*/ 0,
  13375. /*.nth =*/ 0,
  13376. /*.wsize =*/ cplan->work_size,
  13377. /*.wdata =*/ cplan->work_data,
  13378. };
  13379. if (node_n != -1) {
  13380. /* FINALIZE */
  13381. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13382. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13383. params.nth = n_tasks_arr[node_n];
  13384. ggml_compute_forward(&params, node);
  13385. }
  13386. ggml_graph_compute_perf_stats_node(node, state->shared);
  13387. }
  13388. // distribute new work or execute it direct if 1T
  13389. while (++node_n < cgraph->n_nodes) {
  13390. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13391. struct ggml_tensor * node = cgraph->nodes[node_n];
  13392. const int n_tasks = n_tasks_arr[node_n];
  13393. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13394. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13395. params.nth = n_tasks;
  13396. /* INIT */
  13397. if (GGML_OP_HAS_INIT[node->op]) {
  13398. params.type = GGML_TASK_INIT;
  13399. ggml_compute_forward(&params, node);
  13400. }
  13401. if (n_tasks == 1) {
  13402. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13403. // they do something more efficient than spinning (?)
  13404. params.type = GGML_TASK_COMPUTE;
  13405. ggml_compute_forward(&params, node);
  13406. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13407. params.type = GGML_TASK_FINALIZE;
  13408. ggml_compute_forward(&params, node);
  13409. }
  13410. ggml_graph_compute_perf_stats_node(node, state->shared);
  13411. } else {
  13412. break;
  13413. }
  13414. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13415. break;
  13416. }
  13417. }
  13418. atomic_store(&state->shared->n_active, n_threads);
  13419. atomic_store(&state->shared->node_n, node_n);
  13420. } else {
  13421. // wait for other threads to finish
  13422. const int last = node_n;
  13423. do {
  13424. //sched_yield();
  13425. node_n = atomic_load(&state->shared->node_n);
  13426. } while (node_n == last);
  13427. }
  13428. // check if we should stop
  13429. if (node_n >= cgraph->n_nodes) break;
  13430. /* COMPUTE */
  13431. struct ggml_tensor * node = cgraph->nodes[node_n];
  13432. const int n_tasks = n_tasks_arr[node_n];
  13433. struct ggml_compute_params params = {
  13434. /*.type =*/ GGML_TASK_COMPUTE,
  13435. /*.ith =*/ state->ith,
  13436. /*.nth =*/ n_tasks,
  13437. /*.wsize =*/ cplan->work_size,
  13438. /*.wdata =*/ cplan->work_data,
  13439. };
  13440. if (state->ith < n_tasks) {
  13441. ggml_compute_forward(&params, node);
  13442. }
  13443. }
  13444. return GGML_EXIT_SUCCESS;
  13445. }
  13446. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13447. if (n_threads <= 0) {
  13448. n_threads = GGML_DEFAULT_N_THREADS;
  13449. }
  13450. size_t work_size = 0;
  13451. struct ggml_cplan cplan;
  13452. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13453. // thread scheduling for the different operations + work buffer size estimation
  13454. for (int i = 0; i < cgraph->n_nodes; i++) {
  13455. int n_tasks = 1;
  13456. struct ggml_tensor * node = cgraph->nodes[i];
  13457. switch (node->op) {
  13458. case GGML_OP_CPY:
  13459. case GGML_OP_DUP:
  13460. {
  13461. n_tasks = n_threads;
  13462. size_t cur = 0;
  13463. if (ggml_is_quantized(node->type)) {
  13464. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13465. }
  13466. work_size = MAX(work_size, cur);
  13467. } break;
  13468. case GGML_OP_ADD:
  13469. case GGML_OP_ADD1:
  13470. {
  13471. n_tasks = n_threads;
  13472. size_t cur = 0;
  13473. if (ggml_is_quantized(node->src[0]->type)) {
  13474. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13475. }
  13476. work_size = MAX(work_size, cur);
  13477. } break;
  13478. case GGML_OP_ACC:
  13479. {
  13480. n_tasks = n_threads;
  13481. size_t cur = 0;
  13482. if (ggml_is_quantized(node->src[0]->type)) {
  13483. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13484. }
  13485. work_size = MAX(work_size, cur);
  13486. } break;
  13487. case GGML_OP_SUB:
  13488. case GGML_OP_DIV:
  13489. case GGML_OP_SQR:
  13490. case GGML_OP_SQRT:
  13491. case GGML_OP_LOG:
  13492. case GGML_OP_SUM:
  13493. case GGML_OP_SUM_ROWS:
  13494. case GGML_OP_MEAN:
  13495. case GGML_OP_ARGMAX:
  13496. case GGML_OP_REPEAT:
  13497. case GGML_OP_REPEAT_BACK:
  13498. {
  13499. n_tasks = 1;
  13500. } break;
  13501. case GGML_OP_UNARY:
  13502. {
  13503. switch (ggml_get_unary_op(node)) {
  13504. case GGML_UNARY_OP_ABS:
  13505. case GGML_UNARY_OP_SGN:
  13506. case GGML_UNARY_OP_NEG:
  13507. case GGML_UNARY_OP_STEP:
  13508. case GGML_UNARY_OP_TANH:
  13509. case GGML_UNARY_OP_ELU:
  13510. case GGML_UNARY_OP_RELU:
  13511. {
  13512. n_tasks = 1;
  13513. } break;
  13514. case GGML_UNARY_OP_GELU:
  13515. case GGML_UNARY_OP_GELU_QUICK:
  13516. case GGML_UNARY_OP_SILU:
  13517. {
  13518. n_tasks = n_threads;
  13519. } break;
  13520. }
  13521. } break;
  13522. case GGML_OP_SILU_BACK:
  13523. case GGML_OP_MUL:
  13524. case GGML_OP_NORM:
  13525. case GGML_OP_RMS_NORM:
  13526. case GGML_OP_RMS_NORM_BACK:
  13527. {
  13528. n_tasks = n_threads;
  13529. } break;
  13530. case GGML_OP_MUL_MAT:
  13531. case GGML_OP_OUT_PROD:
  13532. {
  13533. n_tasks = n_threads;
  13534. // TODO: use different scheduling for different matrix sizes
  13535. //const int nr0 = ggml_nrows(node->src[0]);
  13536. //const int nr1 = ggml_nrows(node->src[1]);
  13537. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13538. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13539. size_t cur = 0;
  13540. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13541. #if defined(GGML_USE_CUBLAS)
  13542. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13543. n_tasks = 1; // TODO: this actually is doing nothing
  13544. // the threads are still spinning
  13545. } else
  13546. #elif defined(GGML_USE_CLBLAST)
  13547. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13548. n_tasks = 1; // TODO: this actually is doing nothing
  13549. // the threads are still spinning
  13550. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13551. } else
  13552. #endif
  13553. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13554. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13555. n_tasks = 1; // TODO: this actually is doing nothing
  13556. // the threads are still spinning
  13557. if (node->src[0]->type != GGML_TYPE_F32) {
  13558. // here we need memory just for single 2D matrix from src0
  13559. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13560. }
  13561. } else
  13562. #endif
  13563. if (node->src[1]->type != vec_dot_type) {
  13564. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13565. } else {
  13566. cur = 0;
  13567. }
  13568. work_size = MAX(work_size, cur);
  13569. } break;
  13570. case GGML_OP_SCALE:
  13571. {
  13572. n_tasks = 1;
  13573. } break;
  13574. case GGML_OP_SET:
  13575. case GGML_OP_CONT:
  13576. case GGML_OP_RESHAPE:
  13577. case GGML_OP_VIEW:
  13578. case GGML_OP_PERMUTE:
  13579. case GGML_OP_TRANSPOSE:
  13580. case GGML_OP_GET_ROWS:
  13581. case GGML_OP_GET_ROWS_BACK:
  13582. case GGML_OP_DIAG:
  13583. {
  13584. n_tasks = 1;
  13585. } break;
  13586. case GGML_OP_DIAG_MASK_ZERO:
  13587. case GGML_OP_DIAG_MASK_INF:
  13588. case GGML_OP_SOFT_MAX:
  13589. case GGML_OP_SOFT_MAX_BACK:
  13590. case GGML_OP_ROPE:
  13591. case GGML_OP_ROPE_BACK:
  13592. {
  13593. n_tasks = n_threads;
  13594. } break;
  13595. case GGML_OP_ALIBI:
  13596. {
  13597. n_tasks = 1; //TODO
  13598. } break;
  13599. case GGML_OP_CLAMP:
  13600. {
  13601. n_tasks = 1; //TODO
  13602. } break;
  13603. case GGML_OP_CONV_1D:
  13604. {
  13605. n_tasks = n_threads;
  13606. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13607. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13608. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13609. size_t cur = 0;
  13610. const int nk = node->src[0]->ne[0];
  13611. if (node->src[0]->type == GGML_TYPE_F16 &&
  13612. node->src[1]->type == GGML_TYPE_F32) {
  13613. cur = sizeof(ggml_fp16_t)*(
  13614. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13615. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13616. );
  13617. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13618. node->src[1]->type == GGML_TYPE_F32) {
  13619. cur = sizeof(float)*(
  13620. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13621. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13622. );
  13623. } else {
  13624. GGML_ASSERT(false);
  13625. }
  13626. work_size = MAX(work_size, cur);
  13627. } break;
  13628. case GGML_OP_CONV_2D:
  13629. {
  13630. n_tasks = n_threads;
  13631. const int64_t ne00 = node->src[0]->ne[0]; // W
  13632. const int64_t ne01 = node->src[0]->ne[1]; // H
  13633. const int64_t ne02 = node->src[0]->ne[2]; // C
  13634. const int64_t ne03 = node->src[0]->ne[3]; // N
  13635. const int64_t ne10 = node->src[1]->ne[0]; // W
  13636. const int64_t ne11 = node->src[1]->ne[1]; // H
  13637. const int64_t ne12 = node->src[1]->ne[2]; // C
  13638. const int64_t ne0 = node->ne[0];
  13639. const int64_t ne1 = node->ne[1];
  13640. const int64_t ne2 = node->ne[2];
  13641. const int64_t nk = ne00*ne01;
  13642. const int64_t ew0 = nk * ne02;
  13643. UNUSED(ne03);
  13644. UNUSED(ne2);
  13645. size_t cur = 0;
  13646. if (node->src[0]->type == GGML_TYPE_F16 &&
  13647. node->src[1]->type == GGML_TYPE_F32) {
  13648. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  13649. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13650. node->src[1]->type == GGML_TYPE_F32) {
  13651. cur = sizeof(float)* (ne10*ne11*ne12);
  13652. } else {
  13653. GGML_ASSERT(false);
  13654. }
  13655. work_size = MAX(work_size, cur);
  13656. } break;
  13657. case GGML_OP_POOL_1D:
  13658. case GGML_OP_POOL_2D:
  13659. {
  13660. n_tasks = 1;
  13661. } break;
  13662. case GGML_OP_FLASH_ATTN:
  13663. {
  13664. n_tasks = n_threads;
  13665. size_t cur = 0;
  13666. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13667. if (node->src[1]->type == GGML_TYPE_F32) {
  13668. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13669. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13670. }
  13671. if (node->src[1]->type == GGML_TYPE_F16) {
  13672. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13673. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13674. }
  13675. work_size = MAX(work_size, cur);
  13676. } break;
  13677. case GGML_OP_FLASH_FF:
  13678. {
  13679. n_tasks = n_threads;
  13680. size_t cur = 0;
  13681. if (node->src[1]->type == GGML_TYPE_F32) {
  13682. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13683. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13684. }
  13685. if (node->src[1]->type == GGML_TYPE_F16) {
  13686. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13687. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13688. }
  13689. work_size = MAX(work_size, cur);
  13690. } break;
  13691. case GGML_OP_FLASH_ATTN_BACK:
  13692. {
  13693. n_tasks = n_threads;
  13694. size_t cur = 0;
  13695. const int64_t D = node->src[0]->ne[0];
  13696. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13697. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13698. if (node->src[1]->type == GGML_TYPE_F32) {
  13699. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13700. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13701. }
  13702. if (node->src[1]->type == GGML_TYPE_F16) {
  13703. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13704. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13705. }
  13706. work_size = MAX(work_size, cur);
  13707. } break;
  13708. case GGML_OP_WIN_PART:
  13709. case GGML_OP_WIN_UNPART:
  13710. case GGML_OP_MAP_UNARY:
  13711. case GGML_OP_MAP_BINARY:
  13712. case GGML_OP_MAP_CUSTOM1_F32:
  13713. case GGML_OP_MAP_CUSTOM2_F32:
  13714. case GGML_OP_MAP_CUSTOM3_F32:
  13715. {
  13716. n_tasks = 1;
  13717. } break;
  13718. case GGML_OP_MAP_CUSTOM1:
  13719. {
  13720. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13721. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13722. n_tasks = n_threads;
  13723. } else {
  13724. n_tasks = MIN(p->n_tasks, n_threads);
  13725. }
  13726. } break;
  13727. case GGML_OP_MAP_CUSTOM2:
  13728. {
  13729. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13730. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13731. n_tasks = n_threads;
  13732. } else {
  13733. n_tasks = MIN(p->n_tasks, n_threads);
  13734. }
  13735. } break;
  13736. case GGML_OP_MAP_CUSTOM3:
  13737. {
  13738. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13739. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13740. n_tasks = n_threads;
  13741. } else {
  13742. n_tasks = MIN(p->n_tasks, n_threads);
  13743. }
  13744. } break;
  13745. case GGML_OP_CROSS_ENTROPY_LOSS:
  13746. {
  13747. n_tasks = n_threads;
  13748. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13749. work_size = MAX(work_size, cur);
  13750. } break;
  13751. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13752. {
  13753. n_tasks = n_threads;
  13754. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13755. work_size = MAX(work_size, cur);
  13756. } break;
  13757. case GGML_OP_NONE:
  13758. {
  13759. n_tasks = 1;
  13760. } break;
  13761. case GGML_OP_COUNT:
  13762. {
  13763. GGML_ASSERT(false);
  13764. } break;
  13765. }
  13766. cplan.n_tasks[i] = n_tasks;
  13767. }
  13768. if (work_size > 0) {
  13769. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13770. }
  13771. cplan.n_threads = n_threads;
  13772. cplan.work_size = work_size;
  13773. cplan.work_data = NULL;
  13774. return cplan;
  13775. }
  13776. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13777. {
  13778. GGML_ASSERT(cplan);
  13779. GGML_ASSERT(cplan->n_threads > 0);
  13780. if (cplan->work_size > 0) {
  13781. GGML_ASSERT(cplan->work_data);
  13782. }
  13783. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13784. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13785. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13786. }
  13787. }
  13788. }
  13789. const int n_threads = cplan->n_threads;
  13790. struct ggml_compute_state_shared state_shared = {
  13791. /*.cgraph =*/ cgraph,
  13792. /*.cgraph_plan =*/ cplan,
  13793. /*.perf_node_start_cycles =*/ 0,
  13794. /*.perf_node_start_time_us =*/ 0,
  13795. /*.n_threads =*/ n_threads,
  13796. /*.n_active =*/ n_threads,
  13797. /*.node_n =*/ -1,
  13798. /*.abort_callback =*/ NULL,
  13799. /*.abort_callback_data =*/ NULL,
  13800. };
  13801. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13802. // create thread pool
  13803. if (n_threads > 1) {
  13804. for (int j = 1; j < n_threads; ++j) {
  13805. workers[j] = (struct ggml_compute_state) {
  13806. .thrd = 0,
  13807. .ith = j,
  13808. .shared = &state_shared,
  13809. };
  13810. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13811. GGML_ASSERT(rc == 0);
  13812. }
  13813. }
  13814. workers[0].ith = 0;
  13815. workers[0].shared = &state_shared;
  13816. const int64_t perf_start_cycles = ggml_perf_cycles();
  13817. const int64_t perf_start_time_us = ggml_perf_time_us();
  13818. // this is a work thread too
  13819. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13820. // don't leave affinity set on the main thread
  13821. clear_numa_thread_affinity();
  13822. // join or kill thread pool
  13823. if (n_threads > 1) {
  13824. for (int j = 1; j < n_threads; j++) {
  13825. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13826. GGML_ASSERT(rc == 0);
  13827. }
  13828. }
  13829. // performance stats (graph)
  13830. {
  13831. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13832. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13833. cgraph->perf_runs++;
  13834. cgraph->perf_cycles += perf_cycles_cur;
  13835. cgraph->perf_time_us += perf_time_us_cur;
  13836. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13837. __func__, cgraph->perf_runs,
  13838. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13839. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13840. (double) perf_time_us_cur / 1000.0,
  13841. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13842. }
  13843. return compute_status;
  13844. }
  13845. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13846. for (int i = 0; i < cgraph->n_nodes; i++) {
  13847. struct ggml_tensor * grad = cgraph->grads[i];
  13848. if (grad) {
  13849. ggml_set_zero(grad);
  13850. }
  13851. }
  13852. }
  13853. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13854. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13855. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13856. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13857. ggml_graph_compute(cgraph, &cplan);
  13858. }
  13859. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13860. for (int i = 0; i < cgraph->n_leafs; i++) {
  13861. struct ggml_tensor * leaf = cgraph->leafs[i];
  13862. if (strcmp(leaf->name, name) == 0) {
  13863. return leaf;
  13864. }
  13865. }
  13866. for (int i = 0; i < cgraph->n_nodes; i++) {
  13867. struct ggml_tensor * node = cgraph->nodes[i];
  13868. if (strcmp(node->name, name) == 0) {
  13869. return node;
  13870. }
  13871. }
  13872. return NULL;
  13873. }
  13874. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13875. const int64_t * ne = tensor->ne;
  13876. const size_t * nb = tensor->nb;
  13877. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13878. ggml_type_name(tensor->type),
  13879. ggml_op_name (tensor->op),
  13880. tensor->n_dims,
  13881. ne[0], ne[1], ne[2], ne[3],
  13882. nb[0], nb[1], nb[2], nb[3],
  13883. tensor->data,
  13884. tensor->name);
  13885. }
  13886. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13887. const int64_t * ne = tensor->ne;
  13888. const size_t * nb = tensor->nb;
  13889. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13890. arg,
  13891. ggml_type_name(tensor->type),
  13892. ggml_op_name (tensor->op),
  13893. tensor->n_dims,
  13894. ne[0], ne[1], ne[2], ne[3],
  13895. nb[0], nb[1], nb[2], nb[3],
  13896. tensor->data,
  13897. tensor->name);
  13898. }
  13899. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13900. uint64_t size_eval = 0;
  13901. // compute size of intermediate results
  13902. // TODO: does not take into account scratch buffers !!!!
  13903. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13904. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13905. }
  13906. // print
  13907. {
  13908. FILE * fout = stdout;
  13909. fprintf(fout, "\n");
  13910. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13911. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13912. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13913. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13914. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13915. // header
  13916. fprintf(fout, "\n");
  13917. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13918. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13919. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13920. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13921. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13922. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13923. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13924. }
  13925. // header
  13926. fprintf(fout, "\n");
  13927. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13928. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13929. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13930. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13931. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13932. if (cgraph->nodes[i]->src[j]) {
  13933. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13934. }
  13935. }
  13936. fprintf(fout, "\n");
  13937. }
  13938. fprintf(fout, "\n");
  13939. }
  13940. // write binary data
  13941. {
  13942. FILE * fout = fopen(fname, "wb");
  13943. if (!fout) {
  13944. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13945. return;
  13946. }
  13947. // header
  13948. {
  13949. const uint32_t magic = GGML_FILE_MAGIC;
  13950. const uint32_t version = GGML_FILE_VERSION;
  13951. const uint32_t n_leafs = cgraph->n_leafs;
  13952. const uint32_t nodes = cgraph->n_nodes;
  13953. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13954. fwrite(&version, sizeof(uint32_t), 1, fout);
  13955. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13956. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13957. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13958. }
  13959. // leafs
  13960. {
  13961. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13962. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13963. const uint32_t type = tensor->type;
  13964. const uint32_t op = tensor->op;
  13965. const uint32_t n_dims = tensor->n_dims;
  13966. fwrite(&type, sizeof(uint32_t), 1, fout);
  13967. fwrite(&op, sizeof(uint32_t), 1, fout);
  13968. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13969. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13970. const uint64_t ne = tensor->ne[j];
  13971. const uint64_t nb = tensor->nb[j];
  13972. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13973. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13974. }
  13975. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13976. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13977. // dump the data
  13978. // TODO: pad this to 32 byte boundary
  13979. {
  13980. const size_t size = ggml_nbytes(tensor);
  13981. fwrite(tensor->data, sizeof(char), size, fout);
  13982. }
  13983. }
  13984. }
  13985. // nodes
  13986. {
  13987. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13988. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13989. const uint32_t type = tensor->type;
  13990. const uint32_t op = tensor->op;
  13991. const uint32_t n_dims = tensor->n_dims;
  13992. fwrite(&type, sizeof(uint32_t), 1, fout);
  13993. fwrite(&op, sizeof(uint32_t), 1, fout);
  13994. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13995. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13996. const uint64_t ne = tensor->ne[j];
  13997. const uint64_t nb = tensor->nb[j];
  13998. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13999. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14000. }
  14001. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14002. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14003. // output the op arguments
  14004. {
  14005. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14006. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14007. args[j] = tensor->src[j];
  14008. }
  14009. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14010. if (args[j]) {
  14011. int32_t idx = -1;
  14012. // check if leaf
  14013. {
  14014. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14015. if (args[j] == cgraph->leafs[k]) {
  14016. idx = k;
  14017. break;
  14018. }
  14019. }
  14020. }
  14021. // check if node
  14022. if (idx == -1) {
  14023. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14024. if (args[j] == cgraph->nodes[k]) {
  14025. idx = GGML_MAX_NODES + k;
  14026. break;
  14027. }
  14028. }
  14029. }
  14030. if (idx == -1) {
  14031. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14032. return;
  14033. }
  14034. fwrite(&idx, sizeof(int32_t), 1, fout);
  14035. } else {
  14036. const int32_t nul = -1;
  14037. fwrite(&nul, sizeof(int32_t), 1, fout);
  14038. }
  14039. }
  14040. }
  14041. }
  14042. }
  14043. fclose(fout);
  14044. }
  14045. }
  14046. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14047. assert(*ctx_data == NULL);
  14048. assert(*ctx_eval == NULL);
  14049. struct ggml_cgraph result = { 0 };
  14050. struct ggml_tensor * data = NULL;
  14051. // read file into data
  14052. {
  14053. FILE * fin = fopen(fname, "rb");
  14054. if (!fin) {
  14055. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14056. return result;
  14057. }
  14058. size_t fsize = 0;
  14059. fseek(fin, 0, SEEK_END);
  14060. fsize = ftell(fin);
  14061. fseek(fin, 0, SEEK_SET);
  14062. // create the data context
  14063. {
  14064. const size_t overhead = 1*ggml_tensor_overhead();
  14065. struct ggml_init_params params = {
  14066. .mem_size = fsize + overhead,
  14067. .mem_buffer = NULL,
  14068. .no_alloc = false,
  14069. };
  14070. *ctx_data = ggml_init(params);
  14071. if (!*ctx_data) {
  14072. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14073. fclose(fin);
  14074. return result;
  14075. }
  14076. }
  14077. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14078. {
  14079. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14080. if (ret != fsize) {
  14081. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14082. fclose(fin);
  14083. return result;
  14084. }
  14085. }
  14086. fclose(fin);
  14087. }
  14088. // populate result
  14089. {
  14090. char * ptr = (char *) data->data;
  14091. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14092. if (magic != GGML_FILE_MAGIC) {
  14093. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14094. return result;
  14095. }
  14096. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14097. if (version != GGML_FILE_VERSION) {
  14098. fprintf(stderr, "%s: invalid version number\n", __func__);
  14099. return result;
  14100. }
  14101. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14102. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14103. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14104. result.n_leafs = n_leafs;
  14105. result.n_nodes = n_nodes;
  14106. // create the data context
  14107. {
  14108. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14109. struct ggml_init_params params = {
  14110. .mem_size = size_eval + overhead,
  14111. .mem_buffer = NULL,
  14112. .no_alloc = true,
  14113. };
  14114. *ctx_eval = ggml_init(params);
  14115. if (!*ctx_eval) {
  14116. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14117. return result;
  14118. }
  14119. }
  14120. // leafs
  14121. {
  14122. uint32_t type;
  14123. uint32_t op;
  14124. uint32_t n_dims;
  14125. for (uint32_t i = 0; i < n_leafs; ++i) {
  14126. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14127. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14128. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14129. int64_t ne[GGML_MAX_DIMS];
  14130. size_t nb[GGML_MAX_DIMS];
  14131. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14132. uint64_t ne_cur;
  14133. uint64_t nb_cur;
  14134. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14135. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14136. ne[j] = ne_cur;
  14137. nb[j] = nb_cur;
  14138. }
  14139. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14140. tensor->op = (enum ggml_op) op;
  14141. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14142. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14143. tensor->data = (void *) ptr;
  14144. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14145. tensor->nb[j] = nb[j];
  14146. }
  14147. result.leafs[i] = tensor;
  14148. ptr += ggml_nbytes(tensor);
  14149. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14150. }
  14151. }
  14152. ggml_set_no_alloc(*ctx_eval, false);
  14153. // nodes
  14154. {
  14155. uint32_t type;
  14156. uint32_t op;
  14157. uint32_t n_dims;
  14158. for (uint32_t i = 0; i < n_nodes; ++i) {
  14159. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14160. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14161. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14162. enum ggml_op eop = (enum ggml_op) op;
  14163. int64_t ne[GGML_MAX_DIMS];
  14164. size_t nb[GGML_MAX_DIMS];
  14165. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14166. uint64_t ne_cur;
  14167. uint64_t nb_cur;
  14168. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14169. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14170. ne[j] = ne_cur;
  14171. nb[j] = nb_cur;
  14172. }
  14173. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14174. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14175. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14176. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14177. // parse args
  14178. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14179. const int32_t arg_idx = ptr_arg_idx[j];
  14180. if (arg_idx == -1) {
  14181. continue;
  14182. }
  14183. if (arg_idx < GGML_MAX_NODES) {
  14184. args[j] = result.leafs[arg_idx];
  14185. } else {
  14186. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14187. }
  14188. }
  14189. // create the tensor
  14190. // "view" operations are handled differently
  14191. // TODO: handle inplace ops - currently a copy is always made
  14192. struct ggml_tensor * tensor = NULL;
  14193. switch (eop) {
  14194. // TODO: implement other view ops
  14195. case GGML_OP_RESHAPE:
  14196. {
  14197. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14198. } break;
  14199. case GGML_OP_VIEW:
  14200. {
  14201. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14202. size_t offs;
  14203. memcpy(&offs, ptr_op_params, sizeof(offs));
  14204. tensor->data = ((char *) tensor->data) + offs;
  14205. } break;
  14206. case GGML_OP_TRANSPOSE:
  14207. {
  14208. tensor = ggml_transpose(*ctx_eval, args[0]);
  14209. } break;
  14210. case GGML_OP_PERMUTE:
  14211. {
  14212. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14213. } break;
  14214. default:
  14215. {
  14216. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14217. tensor->op = eop;
  14218. } break;
  14219. }
  14220. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14221. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14222. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14223. tensor->nb[j] = nb[j];
  14224. }
  14225. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14226. tensor->src[j] = args[j];
  14227. }
  14228. result.nodes[i] = tensor;
  14229. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14230. }
  14231. }
  14232. }
  14233. return result;
  14234. }
  14235. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14236. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14237. GGML_PRINT("=== GRAPH ===\n");
  14238. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14239. for (int i = 0; i < cgraph->n_nodes; i++) {
  14240. struct ggml_tensor * node = cgraph->nodes[i];
  14241. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14242. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14243. i,
  14244. node->ne[0], node->ne[1], node->ne[2],
  14245. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14246. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14247. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14248. (double) node->perf_time_us / 1000.0,
  14249. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14250. }
  14251. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14252. for (int i = 0; i < cgraph->n_leafs; i++) {
  14253. struct ggml_tensor * node = cgraph->leafs[i];
  14254. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14255. i,
  14256. node->ne[0], node->ne[1],
  14257. ggml_op_name(node->op));
  14258. }
  14259. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14260. if (perf_total_per_op_us[i] == 0) {
  14261. continue;
  14262. }
  14263. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14264. }
  14265. GGML_PRINT("========================================\n");
  14266. }
  14267. // check if node is part of the graph
  14268. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14269. if (cgraph == NULL) {
  14270. return true;
  14271. }
  14272. for (int i = 0; i < cgraph->n_nodes; i++) {
  14273. if (cgraph->nodes[i] == node) {
  14274. return true;
  14275. }
  14276. }
  14277. return false;
  14278. }
  14279. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14280. for (int i = 0; i < cgraph->n_nodes; i++) {
  14281. struct ggml_tensor * parent = cgraph->nodes[i];
  14282. if (parent->grad == node) {
  14283. return parent;
  14284. }
  14285. }
  14286. return NULL;
  14287. }
  14288. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14289. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14290. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14291. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14292. gparent0 ? (void *) gparent0 : (void *) parent,
  14293. gparent0 ? "g" : "x",
  14294. gparent ? (void *) gparent : (void *) node,
  14295. gparent ? "g" : "x",
  14296. gparent ? "empty" : "vee",
  14297. gparent ? "dashed" : "solid",
  14298. label);
  14299. }
  14300. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14301. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14302. (void *) parent, "x",
  14303. (void *) node, "x",
  14304. label);
  14305. }
  14306. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14307. char color[16];
  14308. FILE * fp = fopen(filename, "w");
  14309. GGML_ASSERT(fp);
  14310. fprintf(fp, "digraph G {\n");
  14311. fprintf(fp, " newrank = true;\n");
  14312. fprintf(fp, " rankdir = LR;\n");
  14313. for (int i = 0; i < gb->n_nodes; i++) {
  14314. struct ggml_tensor * node = gb->nodes[i];
  14315. if (ggml_graph_get_parent(gb, node) != NULL) {
  14316. continue;
  14317. }
  14318. if (node->is_param) {
  14319. snprintf(color, sizeof(color), "yellow");
  14320. } else if (node->grad) {
  14321. if (ggml_graph_find(gf, node)) {
  14322. snprintf(color, sizeof(color), "green");
  14323. } else {
  14324. snprintf(color, sizeof(color), "lightblue");
  14325. }
  14326. } else {
  14327. snprintf(color, sizeof(color), "white");
  14328. }
  14329. fprintf(fp, " \"%p\" [ "
  14330. "style = filled; fillcolor = %s; shape = record; "
  14331. "label=\"",
  14332. (void *) node, color);
  14333. if (strlen(node->name) > 0) {
  14334. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14335. } else {
  14336. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14337. }
  14338. if (node->n_dims == 2) {
  14339. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14340. } else {
  14341. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14342. }
  14343. if (node->grad) {
  14344. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14345. } else {
  14346. fprintf(fp, "\"; ]\n");
  14347. }
  14348. }
  14349. for (int i = 0; i < gb->n_leafs; i++) {
  14350. struct ggml_tensor * node = gb->leafs[i];
  14351. snprintf(color, sizeof(color), "pink");
  14352. fprintf(fp, " \"%p\" [ "
  14353. "style = filled; fillcolor = %s; shape = record; "
  14354. "label=\"<x>",
  14355. (void *) node, color);
  14356. if (strlen(node->name) > 0) {
  14357. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14358. } else {
  14359. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14360. }
  14361. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14362. if (ggml_nelements(node) < 5) {
  14363. fprintf(fp, " | (");
  14364. for (int j = 0; j < ggml_nelements(node); j++) {
  14365. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14366. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14367. }
  14368. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14369. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14370. }
  14371. else {
  14372. fprintf(fp, "#");
  14373. }
  14374. if (j < ggml_nelements(node) - 1) {
  14375. fprintf(fp, ", ");
  14376. }
  14377. }
  14378. fprintf(fp, ")");
  14379. }
  14380. fprintf(fp, "\"; ]\n");
  14381. }
  14382. for (int i = 0; i < gb->n_nodes; i++) {
  14383. struct ggml_tensor * node = gb->nodes[i];
  14384. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14385. if (node->src[j]) {
  14386. char label[16];
  14387. snprintf(label, sizeof(label), "src %d", j);
  14388. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14389. }
  14390. }
  14391. }
  14392. for (int i = 0; i < gb->n_leafs; i++) {
  14393. struct ggml_tensor * node = gb->leafs[i];
  14394. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14395. if (node->src[j]) {
  14396. char label[16];
  14397. snprintf(label, sizeof(label), "src %d", j);
  14398. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14399. }
  14400. }
  14401. }
  14402. fprintf(fp, "}\n");
  14403. fclose(fp);
  14404. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14405. }
  14406. ////////////////////////////////////////////////////////////////////////////////
  14407. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14408. int i = 0;
  14409. for (int p = 0; p < np; ++p) {
  14410. const int64_t ne = ggml_nelements(ps[p]) ;
  14411. // TODO: add function to set tensor from array
  14412. for (int64_t j = 0; j < ne; ++j) {
  14413. ggml_set_f32_1d(ps[p], j, x[i++]);
  14414. }
  14415. }
  14416. }
  14417. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14418. int i = 0;
  14419. for (int p = 0; p < np; ++p) {
  14420. const int64_t ne = ggml_nelements(ps[p]) ;
  14421. // TODO: add function to get all elements at once
  14422. for (int64_t j = 0; j < ne; ++j) {
  14423. x[i++] = ggml_get_f32_1d(ps[p], j);
  14424. }
  14425. }
  14426. }
  14427. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14428. int i = 0;
  14429. for (int p = 0; p < np; ++p) {
  14430. const int64_t ne = ggml_nelements(ps[p]) ;
  14431. // TODO: add function to get all elements at once
  14432. for (int64_t j = 0; j < ne; ++j) {
  14433. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14434. }
  14435. }
  14436. }
  14437. //
  14438. // ADAM
  14439. //
  14440. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14441. //
  14442. static enum ggml_opt_result ggml_opt_adam(
  14443. struct ggml_context * ctx,
  14444. struct ggml_opt_context * opt,
  14445. struct ggml_opt_params params,
  14446. struct ggml_tensor * f,
  14447. struct ggml_cgraph * gf,
  14448. struct ggml_cgraph * gb) {
  14449. GGML_ASSERT(ggml_is_scalar(f));
  14450. // these will store the parameters we want to optimize
  14451. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14452. int np = 0;
  14453. int nx = 0;
  14454. for (int i = 0; i < gf->n_nodes; ++i) {
  14455. if (gf->nodes[i]->is_param) {
  14456. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14457. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14458. ps[np++] = gf->nodes[i];
  14459. nx += ggml_nelements(gf->nodes[i]);
  14460. }
  14461. }
  14462. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14463. int iter = opt->iter;
  14464. ggml_opt_init(opt->ctx, opt, params, nx);
  14465. opt->iter = iter;
  14466. }
  14467. // constants
  14468. const float sched = params.adam.sched;
  14469. const float decay = params.adam.decay * sched;
  14470. const float alpha = params.adam.alpha * sched;
  14471. const float beta1 = params.adam.beta1;
  14472. const float beta2 = params.adam.beta2;
  14473. const float eps = params.adam.eps;
  14474. float * x = opt->adam.x->data; // view of the parameters
  14475. float * g1 = opt->adam.g1->data; // gradient
  14476. float * g2 = opt->adam.g2->data; // gradient squared
  14477. float * m = opt->adam.m->data; // first moment
  14478. float * v = opt->adam.v->data; // second moment
  14479. float * mh = opt->adam.mh->data; // first moment hat
  14480. float * vh = opt->adam.vh->data; // second moment hat
  14481. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14482. // update view
  14483. ggml_opt_get_params(np, ps, x);
  14484. // compute the function value
  14485. ggml_graph_reset (gf);
  14486. ggml_set_f32 (f->grad, 1.0f);
  14487. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14488. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14489. opt->adam.fx_best = opt->adam.fx_prev;
  14490. if (pf) {
  14491. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14492. }
  14493. // initialize
  14494. if (opt->just_initialized) {
  14495. opt->adam.n_no_improvement = 0;
  14496. opt->just_initialized = false;
  14497. }
  14498. float * fx_best = &opt->adam.fx_best;
  14499. float * fx_prev = &opt->adam.fx_prev;
  14500. int * n_no_improvement = &opt->adam.n_no_improvement;
  14501. int iter0 = opt->iter;
  14502. // run the optimizer
  14503. for (int t = 0; t < params.adam.n_iter; ++t) {
  14504. opt->iter = iter0 + t + 1;
  14505. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14506. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14507. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14508. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14509. for (int i = 0; i < np; ++i) {
  14510. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14511. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14512. }
  14513. const int64_t t_start_wall = ggml_time_us();
  14514. const int64_t t_start_cpu = ggml_cycles();
  14515. UNUSED(t_start_wall);
  14516. UNUSED(t_start_cpu);
  14517. {
  14518. // update the gradient
  14519. ggml_opt_get_grad(np, ps, g1);
  14520. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14521. ggml_vec_scale_f32(nx, m, beta1);
  14522. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14523. // g2 = g1^2
  14524. ggml_vec_sqr_f32 (nx, g2, g1);
  14525. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14526. ggml_vec_scale_f32(nx, v, beta2);
  14527. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14528. // m^hat = m_t / (1 - beta1^t)
  14529. // v^hat = v_t / (1 - beta2^t)
  14530. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14531. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14532. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14533. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14534. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14535. ggml_vec_cpy_f32 (nx, mh, m);
  14536. ggml_vec_cpy_f32 (nx, vh, v);
  14537. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14538. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14539. ggml_vec_sqrt_f32 (nx, vh, vh);
  14540. ggml_vec_acc1_f32 (nx, vh, eps);
  14541. ggml_vec_div_f32 (nx, mh, mh, vh);
  14542. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14543. ggml_vec_sub_f32 (nx, x, x, mh);
  14544. // update the parameters
  14545. ggml_opt_set_params(np, ps, x);
  14546. }
  14547. ggml_graph_reset (gf);
  14548. ggml_set_f32 (f->grad, 1.0f);
  14549. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14550. const float fx = ggml_get_f32_1d(f, 0);
  14551. // check convergence
  14552. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14553. GGML_PRINT_DEBUG("converged\n");
  14554. return GGML_OPT_OK;
  14555. }
  14556. // delta-based convergence test
  14557. if (pf != NULL) {
  14558. // need at least params.past iterations to start checking for convergence
  14559. if (params.past <= iter0 + t) {
  14560. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14561. if (fabsf(rate) < params.delta) {
  14562. return GGML_OPT_OK;
  14563. }
  14564. }
  14565. pf[(iter0 + t)%params.past] = fx;
  14566. }
  14567. // check for improvement
  14568. if (params.max_no_improvement > 0) {
  14569. if (fx_best[0] > fx) {
  14570. fx_best[0] = fx;
  14571. n_no_improvement[0] = 0;
  14572. } else {
  14573. ++n_no_improvement[0];
  14574. if (n_no_improvement[0] >= params.max_no_improvement) {
  14575. return GGML_OPT_OK;
  14576. }
  14577. }
  14578. }
  14579. fx_prev[0] = fx;
  14580. {
  14581. const int64_t t_end_cpu = ggml_cycles();
  14582. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14583. UNUSED(t_end_cpu);
  14584. const int64_t t_end_wall = ggml_time_us();
  14585. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14586. UNUSED(t_end_wall);
  14587. }
  14588. }
  14589. return GGML_OPT_DID_NOT_CONVERGE;
  14590. }
  14591. //
  14592. // L-BFGS
  14593. //
  14594. // the L-BFGS implementation below is based on the following implementation:
  14595. //
  14596. // https://github.com/chokkan/liblbfgs
  14597. //
  14598. struct ggml_lbfgs_iteration_data {
  14599. float alpha;
  14600. float ys;
  14601. float * s;
  14602. float * y;
  14603. };
  14604. static enum ggml_opt_result linesearch_backtracking(
  14605. struct ggml_context * ctx,
  14606. const struct ggml_opt_params * params,
  14607. int nx,
  14608. float * x,
  14609. float * fx,
  14610. float * g,
  14611. float * d,
  14612. float * step,
  14613. const float * xp,
  14614. struct ggml_tensor * f,
  14615. struct ggml_cgraph * gf,
  14616. struct ggml_cgraph * gb,
  14617. const int np,
  14618. struct ggml_tensor * ps[]) {
  14619. int count = 0;
  14620. float width = 0.0f;
  14621. float dg = 0.0f;
  14622. float finit = 0.0f;
  14623. float dginit = 0.0f;
  14624. float dgtest = 0.0f;
  14625. const float dec = 0.5f;
  14626. const float inc = 2.1f;
  14627. if (*step <= 0.f) {
  14628. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14629. }
  14630. // compute the initial gradient in the search direction
  14631. ggml_vec_dot_f32(nx, &dginit, g, d);
  14632. // make sure that d points to a descent direction
  14633. if (0 < dginit) {
  14634. return GGML_LINESEARCH_FAIL;
  14635. }
  14636. // initialize local variables
  14637. finit = *fx;
  14638. dgtest = params->lbfgs.ftol*dginit;
  14639. while (true) {
  14640. ggml_vec_cpy_f32(nx, x, xp);
  14641. ggml_vec_mad_f32(nx, x, d, *step);
  14642. // evaluate the function and gradient values
  14643. {
  14644. ggml_opt_set_params(np, ps, x);
  14645. ggml_graph_reset (gf);
  14646. ggml_set_f32 (f->grad, 1.0f);
  14647. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14648. ggml_opt_get_grad(np, ps, g);
  14649. *fx = ggml_get_f32_1d(f, 0);
  14650. }
  14651. ++count;
  14652. if (*fx > finit + (*step)*dgtest) {
  14653. width = dec;
  14654. } else {
  14655. // Armijo condition is satisfied
  14656. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14657. return count;
  14658. }
  14659. ggml_vec_dot_f32(nx, &dg, g, d);
  14660. // check the Wolfe condition
  14661. if (dg < params->lbfgs.wolfe * dginit) {
  14662. width = inc;
  14663. } else {
  14664. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14665. // regular Wolfe conditions
  14666. return count;
  14667. }
  14668. if(dg > -params->lbfgs.wolfe*dginit) {
  14669. width = dec;
  14670. } else {
  14671. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14672. return count;
  14673. }
  14674. return count;
  14675. }
  14676. }
  14677. if (*step < params->lbfgs.min_step) {
  14678. return GGML_LINESEARCH_MINIMUM_STEP;
  14679. }
  14680. if (*step > params->lbfgs.max_step) {
  14681. return GGML_LINESEARCH_MAXIMUM_STEP;
  14682. }
  14683. if (params->lbfgs.max_linesearch <= count) {
  14684. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14685. }
  14686. (*step) *= width;
  14687. }
  14688. return GGML_LINESEARCH_FAIL;
  14689. }
  14690. static enum ggml_opt_result ggml_opt_lbfgs(
  14691. struct ggml_context * ctx,
  14692. struct ggml_opt_context * opt,
  14693. struct ggml_opt_params params,
  14694. struct ggml_tensor * f,
  14695. struct ggml_cgraph * gf,
  14696. struct ggml_cgraph * gb) {
  14697. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14698. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14699. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14700. return GGML_OPT_INVALID_WOLFE;
  14701. }
  14702. }
  14703. const int m = params.lbfgs.m;
  14704. // these will store the parameters we want to optimize
  14705. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14706. int np = 0;
  14707. int nx = 0;
  14708. for (int i = 0; i < gf->n_nodes; ++i) {
  14709. if (gf->nodes[i]->is_param) {
  14710. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14711. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14712. ps[np++] = gf->nodes[i];
  14713. nx += ggml_nelements(gf->nodes[i]);
  14714. }
  14715. }
  14716. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14717. int iter = opt->iter;
  14718. ggml_opt_init(ctx, opt, params, nx);
  14719. opt->iter = iter;
  14720. }
  14721. float * x = opt->lbfgs.x->data; // current parameters
  14722. float * xp = opt->lbfgs.xp->data; // previous parameters
  14723. float * g = opt->lbfgs.g->data; // current gradient
  14724. float * gp = opt->lbfgs.gp->data; // previous gradient
  14725. float * d = opt->lbfgs.d->data; // search direction
  14726. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14727. float fx = 0.0f; // cost function value
  14728. float xnorm = 0.0f; // ||x||
  14729. float gnorm = 0.0f; // ||g||
  14730. // initialize x from the graph nodes
  14731. ggml_opt_get_params(np, ps, x);
  14732. // the L-BFGS memory
  14733. float * lm_alpha = opt->lbfgs.lmal->data;
  14734. float * lm_ys = opt->lbfgs.lmys->data;
  14735. float * lm_s = opt->lbfgs.lms->data;
  14736. float * lm_y = opt->lbfgs.lmy->data;
  14737. // evaluate the function value and its gradient
  14738. {
  14739. ggml_opt_set_params(np, ps, x);
  14740. ggml_graph_reset (gf);
  14741. ggml_set_f32 (f->grad, 1.0f);
  14742. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14743. ggml_opt_get_grad(np, ps, g);
  14744. fx = ggml_get_f32_1d(f, 0);
  14745. }
  14746. // search direction = -gradient
  14747. ggml_vec_neg_f32(nx, d, g);
  14748. // ||x||, ||g||
  14749. ggml_vec_norm_f32(nx, &xnorm, x);
  14750. ggml_vec_norm_f32(nx, &gnorm, g);
  14751. if (xnorm < 1.0f) {
  14752. xnorm = 1.0f;
  14753. }
  14754. // already optimized
  14755. if (gnorm/xnorm <= params.lbfgs.eps) {
  14756. return GGML_OPT_OK;
  14757. }
  14758. if (opt->just_initialized) {
  14759. if (pf) {
  14760. pf[0] = fx;
  14761. }
  14762. opt->lbfgs.fx_best = fx;
  14763. // initial step
  14764. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14765. opt->lbfgs.j = 0;
  14766. opt->lbfgs.k = 1;
  14767. opt->lbfgs.end = 0;
  14768. opt->lbfgs.n_no_improvement = 0;
  14769. opt->just_initialized = false;
  14770. }
  14771. float * fx_best = &opt->lbfgs.fx_best;
  14772. float * step = &opt->lbfgs.step;
  14773. int * j = &opt->lbfgs.j;
  14774. int * k = &opt->lbfgs.k;
  14775. int * end = &opt->lbfgs.end;
  14776. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14777. int ls = 0;
  14778. int bound = 0;
  14779. float ys = 0.0f;
  14780. float yy = 0.0f;
  14781. float beta = 0.0f;
  14782. int it = 0;
  14783. while (true) {
  14784. // store the current position and gradient vectors
  14785. ggml_vec_cpy_f32(nx, xp, x);
  14786. ggml_vec_cpy_f32(nx, gp, g);
  14787. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14788. if (ls < 0) {
  14789. // linesearch failed - go back to the previous point and return
  14790. ggml_vec_cpy_f32(nx, x, xp);
  14791. ggml_vec_cpy_f32(nx, g, gp);
  14792. return ls;
  14793. }
  14794. ggml_vec_norm_f32(nx, &xnorm, x);
  14795. ggml_vec_norm_f32(nx, &gnorm, g);
  14796. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14797. if (xnorm < 1.0f) {
  14798. xnorm = 1.0f;
  14799. }
  14800. if (gnorm/xnorm <= params.lbfgs.eps) {
  14801. // converged
  14802. return GGML_OPT_OK;
  14803. }
  14804. // delta-based convergence test
  14805. if (pf != NULL) {
  14806. // need at least params.past iterations to start checking for convergence
  14807. if (params.past <= k[0]) {
  14808. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14809. if (fabsf(rate) < params.delta) {
  14810. return GGML_OPT_OK;
  14811. }
  14812. }
  14813. pf[k[0]%params.past] = fx;
  14814. }
  14815. // check for improvement
  14816. if (params.max_no_improvement > 0) {
  14817. if (fx < fx_best[0]) {
  14818. fx_best[0] = fx;
  14819. n_no_improvement[0] = 0;
  14820. } else {
  14821. n_no_improvement[0]++;
  14822. if (n_no_improvement[0] >= params.max_no_improvement) {
  14823. return GGML_OPT_OK;
  14824. }
  14825. }
  14826. }
  14827. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14828. // reached the maximum number of iterations
  14829. return GGML_OPT_DID_NOT_CONVERGE;
  14830. }
  14831. // update vectors s and y:
  14832. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14833. // y_{k+1} = g_{k+1} - g_{k}.
  14834. //
  14835. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14836. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14837. // compute scalars ys and yy:
  14838. // ys = y^t \cdot s -> 1 / \rho.
  14839. // yy = y^t \cdot y.
  14840. //
  14841. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14842. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14843. lm_ys[end[0]] = ys;
  14844. // find new search direction
  14845. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14846. bound = (m <= k[0]) ? m : k[0];
  14847. k[0]++;
  14848. it++;
  14849. end[0] = (end[0] + 1)%m;
  14850. // initialize search direction with -g
  14851. ggml_vec_neg_f32(nx, d, g);
  14852. j[0] = end[0];
  14853. for (int i = 0; i < bound; ++i) {
  14854. j[0] = (j[0] + m - 1) % m;
  14855. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14856. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14857. lm_alpha[j[0]] /= lm_ys[j[0]];
  14858. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14859. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14860. }
  14861. ggml_vec_scale_f32(nx, d, ys/yy);
  14862. for (int i = 0; i < bound; ++i) {
  14863. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14864. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14865. beta /= lm_ys[j[0]];
  14866. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14867. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14868. j[0] = (j[0] + 1)%m;
  14869. }
  14870. step[0] = 1.0;
  14871. }
  14872. return GGML_OPT_DID_NOT_CONVERGE;
  14873. }
  14874. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14875. struct ggml_opt_params result;
  14876. switch (type) {
  14877. case GGML_OPT_ADAM:
  14878. {
  14879. result = (struct ggml_opt_params) {
  14880. .type = GGML_OPT_ADAM,
  14881. .n_threads = 1,
  14882. .past = 0,
  14883. .delta = 1e-5f,
  14884. .max_no_improvement = 100,
  14885. .print_forward_graph = true,
  14886. .print_backward_graph = true,
  14887. .adam = {
  14888. .n_iter = 10000,
  14889. .sched = 1.000f,
  14890. .decay = 0.001f,
  14891. .alpha = 0.001f,
  14892. .beta1 = 0.9f,
  14893. .beta2 = 0.999f,
  14894. .eps = 1e-8f,
  14895. .eps_f = 1e-5f,
  14896. .eps_g = 1e-3f,
  14897. },
  14898. };
  14899. } break;
  14900. case GGML_OPT_LBFGS:
  14901. {
  14902. result = (struct ggml_opt_params) {
  14903. .type = GGML_OPT_LBFGS,
  14904. .n_threads = 1,
  14905. .past = 0,
  14906. .delta = 1e-5f,
  14907. .max_no_improvement = 0,
  14908. .print_forward_graph = true,
  14909. .print_backward_graph = true,
  14910. .lbfgs = {
  14911. .m = 6,
  14912. .n_iter = 100,
  14913. .max_linesearch = 20,
  14914. .eps = 1e-5f,
  14915. .ftol = 1e-4f,
  14916. .wolfe = 0.9f,
  14917. .min_step = 1e-20f,
  14918. .max_step = 1e+20f,
  14919. .linesearch = GGML_LINESEARCH_DEFAULT,
  14920. },
  14921. };
  14922. } break;
  14923. }
  14924. return result;
  14925. }
  14926. GGML_API void ggml_opt_init(
  14927. struct ggml_context * ctx,
  14928. struct ggml_opt_context * opt,
  14929. struct ggml_opt_params params,
  14930. int64_t nx) {
  14931. opt->ctx = ctx;
  14932. opt->params = params;
  14933. opt->iter = 0;
  14934. opt->nx = nx;
  14935. opt->just_initialized = true;
  14936. switch (opt->params.type) {
  14937. case GGML_OPT_ADAM:
  14938. {
  14939. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14940. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14941. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14942. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14943. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14944. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14945. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14946. opt->adam.pf = params.past > 0
  14947. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14948. : NULL;
  14949. ggml_set_zero(opt->adam.x);
  14950. ggml_set_zero(opt->adam.g1);
  14951. ggml_set_zero(opt->adam.g2);
  14952. ggml_set_zero(opt->adam.m);
  14953. ggml_set_zero(opt->adam.v);
  14954. ggml_set_zero(opt->adam.mh);
  14955. ggml_set_zero(opt->adam.vh);
  14956. if (opt->adam.pf) {
  14957. ggml_set_zero(opt->adam.pf);
  14958. }
  14959. } break;
  14960. case GGML_OPT_LBFGS:
  14961. {
  14962. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14963. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14964. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14965. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14966. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14967. opt->lbfgs.pf = params.past > 0
  14968. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14969. : NULL;
  14970. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14971. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14972. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14973. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14974. ggml_set_zero(opt->lbfgs.x);
  14975. ggml_set_zero(opt->lbfgs.xp);
  14976. ggml_set_zero(opt->lbfgs.g);
  14977. ggml_set_zero(opt->lbfgs.gp);
  14978. ggml_set_zero(opt->lbfgs.d);
  14979. if (opt->lbfgs.pf) {
  14980. ggml_set_zero(opt->lbfgs.pf);
  14981. }
  14982. ggml_set_zero(opt->lbfgs.lmal);
  14983. ggml_set_zero(opt->lbfgs.lmys);
  14984. ggml_set_zero(opt->lbfgs.lms);
  14985. ggml_set_zero(opt->lbfgs.lmy);
  14986. } break;
  14987. }
  14988. }
  14989. enum ggml_opt_result ggml_opt(
  14990. struct ggml_context * ctx,
  14991. struct ggml_opt_params params,
  14992. struct ggml_tensor * f) {
  14993. bool free_ctx = false;
  14994. if (ctx == NULL) {
  14995. struct ggml_init_params params_ctx = {
  14996. .mem_size = 16*1024*1024,
  14997. .mem_buffer = NULL,
  14998. .no_alloc = false,
  14999. };
  15000. ctx = ggml_init(params_ctx);
  15001. if (ctx == NULL) {
  15002. return GGML_OPT_NO_CONTEXT;
  15003. }
  15004. free_ctx = true;
  15005. }
  15006. enum ggml_opt_result result = GGML_OPT_OK;
  15007. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15008. ggml_opt_init(ctx, opt, params, 0);
  15009. result = ggml_opt_resume(ctx, opt, f);
  15010. if (free_ctx) {
  15011. ggml_free(ctx);
  15012. }
  15013. return result;
  15014. }
  15015. enum ggml_opt_result ggml_opt_resume(
  15016. struct ggml_context * ctx,
  15017. struct ggml_opt_context * opt,
  15018. struct ggml_tensor * f) {
  15019. // build forward + backward compute graphs
  15020. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15021. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15022. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15023. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15024. *gf = ggml_build_forward (f);
  15025. *gb = ggml_build_backward(ctx, gf, true);
  15026. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15027. }
  15028. enum ggml_opt_result ggml_opt_resume_g(
  15029. struct ggml_context * ctx,
  15030. struct ggml_opt_context * opt,
  15031. struct ggml_tensor * f,
  15032. struct ggml_cgraph * gf,
  15033. struct ggml_cgraph * gb) {
  15034. // build forward + backward compute graphs
  15035. enum ggml_opt_result result = GGML_OPT_OK;
  15036. switch (opt->params.type) {
  15037. case GGML_OPT_ADAM:
  15038. {
  15039. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15040. } break;
  15041. case GGML_OPT_LBFGS:
  15042. {
  15043. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15044. } break;
  15045. }
  15046. if (opt->params.print_forward_graph) {
  15047. ggml_graph_print (gf);
  15048. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15049. }
  15050. if (opt->params.print_backward_graph) {
  15051. ggml_graph_print (gb);
  15052. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15053. }
  15054. return result;
  15055. }
  15056. ////////////////////////////////////////////////////////////////////////////////
  15057. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15058. assert(k % QK4_0 == 0);
  15059. const int nb = k / QK4_0;
  15060. for (int b = 0; b < n; b += k) {
  15061. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15062. quantize_row_q4_0_reference(src + b, y, k);
  15063. for (int i = 0; i < nb; i++) {
  15064. for (int j = 0; j < QK4_0; j += 2) {
  15065. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15066. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15067. hist[vi0]++;
  15068. hist[vi1]++;
  15069. }
  15070. }
  15071. }
  15072. return (n/QK4_0*sizeof(block_q4_0));
  15073. }
  15074. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15075. assert(k % QK4_1 == 0);
  15076. const int nb = k / QK4_1;
  15077. for (int b = 0; b < n; b += k) {
  15078. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15079. quantize_row_q4_1_reference(src + b, y, k);
  15080. for (int i = 0; i < nb; i++) {
  15081. for (int j = 0; j < QK4_1; j += 2) {
  15082. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15083. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15084. hist[vi0]++;
  15085. hist[vi1]++;
  15086. }
  15087. }
  15088. }
  15089. return (n/QK4_1*sizeof(block_q4_1));
  15090. }
  15091. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15092. assert(k % QK5_0 == 0);
  15093. const int nb = k / QK5_0;
  15094. for (int b = 0; b < n; b += k) {
  15095. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15096. quantize_row_q5_0_reference(src + b, y, k);
  15097. for (int i = 0; i < nb; i++) {
  15098. uint32_t qh;
  15099. memcpy(&qh, &y[i].qh, sizeof(qh));
  15100. for (int j = 0; j < QK5_0; j += 2) {
  15101. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15102. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15103. // cast to 16 bins
  15104. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15105. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15106. hist[vi0]++;
  15107. hist[vi1]++;
  15108. }
  15109. }
  15110. }
  15111. return (n/QK5_0*sizeof(block_q5_0));
  15112. }
  15113. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15114. assert(k % QK5_1 == 0);
  15115. const int nb = k / QK5_1;
  15116. for (int b = 0; b < n; b += k) {
  15117. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15118. quantize_row_q5_1_reference(src + b, y, k);
  15119. for (int i = 0; i < nb; i++) {
  15120. uint32_t qh;
  15121. memcpy(&qh, &y[i].qh, sizeof(qh));
  15122. for (int j = 0; j < QK5_1; j += 2) {
  15123. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15124. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15125. // cast to 16 bins
  15126. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15127. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15128. hist[vi0]++;
  15129. hist[vi1]++;
  15130. }
  15131. }
  15132. }
  15133. return (n/QK5_1*sizeof(block_q5_1));
  15134. }
  15135. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15136. assert(k % QK8_0 == 0);
  15137. const int nb = k / QK8_0;
  15138. for (int b = 0; b < n; b += k) {
  15139. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15140. quantize_row_q8_0_reference(src + b, y, k);
  15141. for (int i = 0; i < nb; i++) {
  15142. for (int j = 0; j < QK8_0; ++j) {
  15143. const int8_t vi = y[i].qs[j];
  15144. hist[vi/16 + 8]++;
  15145. }
  15146. }
  15147. }
  15148. return (n/QK8_0*sizeof(block_q8_0));
  15149. }
  15150. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15151. size_t result = 0;
  15152. switch (type) {
  15153. case GGML_TYPE_Q4_0:
  15154. {
  15155. GGML_ASSERT(start % QK4_0 == 0);
  15156. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15157. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15158. } break;
  15159. case GGML_TYPE_Q4_1:
  15160. {
  15161. GGML_ASSERT(start % QK4_1 == 0);
  15162. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15163. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15164. } break;
  15165. case GGML_TYPE_Q5_0:
  15166. {
  15167. GGML_ASSERT(start % QK5_0 == 0);
  15168. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15169. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15170. } break;
  15171. case GGML_TYPE_Q5_1:
  15172. {
  15173. GGML_ASSERT(start % QK5_1 == 0);
  15174. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15175. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15176. } break;
  15177. case GGML_TYPE_Q8_0:
  15178. {
  15179. GGML_ASSERT(start % QK8_0 == 0);
  15180. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15181. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15182. } break;
  15183. #ifdef GGML_USE_K_QUANTS
  15184. case GGML_TYPE_Q2_K:
  15185. {
  15186. GGML_ASSERT(start % QK_K == 0);
  15187. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15188. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15189. } break;
  15190. case GGML_TYPE_Q3_K:
  15191. {
  15192. GGML_ASSERT(start % QK_K == 0);
  15193. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15194. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15195. } break;
  15196. case GGML_TYPE_Q4_K:
  15197. {
  15198. GGML_ASSERT(start % QK_K == 0);
  15199. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15200. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15201. } break;
  15202. case GGML_TYPE_Q5_K:
  15203. {
  15204. GGML_ASSERT(start % QK_K == 0);
  15205. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15206. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15207. } break;
  15208. case GGML_TYPE_Q6_K:
  15209. {
  15210. GGML_ASSERT(start % QK_K == 0);
  15211. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15212. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15213. } break;
  15214. #endif
  15215. case GGML_TYPE_F16:
  15216. {
  15217. int elemsize = sizeof(ggml_fp16_t);
  15218. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15219. result = n * elemsize;
  15220. } break;
  15221. case GGML_TYPE_F32:
  15222. {
  15223. int elemsize = sizeof(float);
  15224. result = n * elemsize;
  15225. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15226. } break;
  15227. default:
  15228. assert(false);
  15229. }
  15230. return result;
  15231. }
  15232. ////////////////////////////////////////////////////////////////////////////////
  15233. int ggml_cpu_has_avx(void) {
  15234. #if defined(__AVX__)
  15235. return 1;
  15236. #else
  15237. return 0;
  15238. #endif
  15239. }
  15240. int ggml_cpu_has_avx2(void) {
  15241. #if defined(__AVX2__)
  15242. return 1;
  15243. #else
  15244. return 0;
  15245. #endif
  15246. }
  15247. int ggml_cpu_has_avx512(void) {
  15248. #if defined(__AVX512F__)
  15249. return 1;
  15250. #else
  15251. return 0;
  15252. #endif
  15253. }
  15254. int ggml_cpu_has_avx512_vbmi(void) {
  15255. #if defined(__AVX512VBMI__)
  15256. return 1;
  15257. #else
  15258. return 0;
  15259. #endif
  15260. }
  15261. int ggml_cpu_has_avx512_vnni(void) {
  15262. #if defined(__AVX512VNNI__)
  15263. return 1;
  15264. #else
  15265. return 0;
  15266. #endif
  15267. }
  15268. int ggml_cpu_has_fma(void) {
  15269. #if defined(__FMA__)
  15270. return 1;
  15271. #else
  15272. return 0;
  15273. #endif
  15274. }
  15275. int ggml_cpu_has_neon(void) {
  15276. #if defined(__ARM_NEON)
  15277. return 1;
  15278. #else
  15279. return 0;
  15280. #endif
  15281. }
  15282. int ggml_cpu_has_arm_fma(void) {
  15283. #if defined(__ARM_FEATURE_FMA)
  15284. return 1;
  15285. #else
  15286. return 0;
  15287. #endif
  15288. }
  15289. int ggml_cpu_has_f16c(void) {
  15290. #if defined(__F16C__)
  15291. return 1;
  15292. #else
  15293. return 0;
  15294. #endif
  15295. }
  15296. int ggml_cpu_has_fp16_va(void) {
  15297. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15298. return 1;
  15299. #else
  15300. return 0;
  15301. #endif
  15302. }
  15303. int ggml_cpu_has_wasm_simd(void) {
  15304. #if defined(__wasm_simd128__)
  15305. return 1;
  15306. #else
  15307. return 0;
  15308. #endif
  15309. }
  15310. int ggml_cpu_has_blas(void) {
  15311. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15312. return 1;
  15313. #else
  15314. return 0;
  15315. #endif
  15316. }
  15317. int ggml_cpu_has_cublas(void) {
  15318. #if defined(GGML_USE_CUBLAS)
  15319. return 1;
  15320. #else
  15321. return 0;
  15322. #endif
  15323. }
  15324. int ggml_cpu_has_clblast(void) {
  15325. #if defined(GGML_USE_CLBLAST)
  15326. return 1;
  15327. #else
  15328. return 0;
  15329. #endif
  15330. }
  15331. int ggml_cpu_has_gpublas(void) {
  15332. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15333. }
  15334. int ggml_cpu_has_sse3(void) {
  15335. #if defined(__SSE3__)
  15336. return 1;
  15337. #else
  15338. return 0;
  15339. #endif
  15340. }
  15341. int ggml_cpu_has_vsx(void) {
  15342. #if defined(__POWER9_VECTOR__)
  15343. return 1;
  15344. #else
  15345. return 0;
  15346. #endif
  15347. }
  15348. ////////////////////////////////////////////////////////////////////////////////