llama.cpp 633 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUDA
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #ifndef PATH_MAX
  50. #define PATH_MAX MAX_PATH
  51. #endif
  52. #include <io.h>
  53. #endif
  54. #include <algorithm>
  55. #include <array>
  56. #include <cassert>
  57. #include <cctype>
  58. #include <cfloat>
  59. #include <cinttypes>
  60. #include <climits>
  61. #include <cmath>
  62. #include <cstdarg>
  63. #include <cstddef>
  64. #include <cstdint>
  65. #include <cstdio>
  66. #include <cstring>
  67. #include <ctime>
  68. #include <forward_list>
  69. #include <fstream>
  70. #include <functional>
  71. #include <initializer_list>
  72. #include <locale>
  73. #include <map>
  74. #include <memory>
  75. #include <mutex>
  76. #include <numeric>
  77. #include <queue>
  78. #include <random>
  79. #include <regex>
  80. #include <set>
  81. #include <sstream>
  82. #include <thread>
  83. #include <type_traits>
  84. #include <unordered_map>
  85. #if defined(_MSC_VER)
  86. #pragma warning(disable: 4244 4267) // possible loss of data
  87. #endif
  88. #ifdef __GNUC__
  89. #ifdef __MINGW32__
  90. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  91. #else
  92. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  93. #endif
  94. #else
  95. #define LLAMA_ATTRIBUTE_FORMAT(...)
  96. #endif
  97. #define LLAMA_MAX_NODES 8192
  98. #define LLAMA_MAX_EXPERTS 8
  99. //
  100. // logging
  101. //
  102. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  103. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  104. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  105. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  106. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  107. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  108. //
  109. // helpers
  110. //
  111. static size_t utf8_len(char src) {
  112. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  113. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  114. return lookup[highbits];
  115. }
  116. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  117. std::string result;
  118. for (size_t pos = 0; ; pos += search.length()) {
  119. auto new_pos = s.find(search, pos);
  120. if (new_pos == std::string::npos) {
  121. result += s.substr(pos, s.size() - pos);
  122. break;
  123. }
  124. result += s.substr(pos, new_pos - pos) + replace;
  125. pos = new_pos;
  126. }
  127. s = std::move(result);
  128. }
  129. static bool is_float_close(float a, float b, float abs_tol) {
  130. // Check for non-negative tolerance
  131. if (abs_tol < 0.0) {
  132. throw std::invalid_argument("Tolerance must be non-negative");
  133. }
  134. // Exact equality check
  135. if (a == b) {
  136. return true;
  137. }
  138. // Check for infinities
  139. if (std::isinf(a) || std::isinf(b)) {
  140. return false;
  141. }
  142. // Regular comparison using the provided absolute tolerance
  143. return std::fabs(b - a) <= abs_tol;
  144. }
  145. static void zeros(std::ofstream & file, size_t n) {
  146. char zero = 0;
  147. for (size_t i = 0; i < n; ++i) {
  148. file.write(&zero, 1);
  149. }
  150. }
  151. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  152. static std::string format(const char * fmt, ...) {
  153. va_list ap;
  154. va_list ap2;
  155. va_start(ap, fmt);
  156. va_copy(ap2, ap);
  157. int size = vsnprintf(NULL, 0, fmt, ap);
  158. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  159. std::vector<char> buf(size + 1);
  160. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  161. GGML_ASSERT(size2 == size);
  162. va_end(ap2);
  163. va_end(ap);
  164. return std::string(buf.data(), size);
  165. }
  166. //
  167. // gguf constants (sync with gguf.py)
  168. //
  169. enum llm_arch {
  170. LLM_ARCH_LLAMA,
  171. LLM_ARCH_FALCON,
  172. LLM_ARCH_BAICHUAN,
  173. LLM_ARCH_GROK,
  174. LLM_ARCH_GPT2,
  175. LLM_ARCH_GPTJ,
  176. LLM_ARCH_GPTNEOX,
  177. LLM_ARCH_MPT,
  178. LLM_ARCH_STARCODER,
  179. LLM_ARCH_PERSIMMON,
  180. LLM_ARCH_REFACT,
  181. LLM_ARCH_BERT,
  182. LLM_ARCH_NOMIC_BERT,
  183. LLM_ARCH_BLOOM,
  184. LLM_ARCH_STABLELM,
  185. LLM_ARCH_QWEN,
  186. LLM_ARCH_QWEN2,
  187. LLM_ARCH_PHI2,
  188. LLM_ARCH_PLAMO,
  189. LLM_ARCH_CODESHELL,
  190. LLM_ARCH_ORION,
  191. LLM_ARCH_INTERNLM2,
  192. LLM_ARCH_MINICPM,
  193. LLM_ARCH_GEMMA,
  194. LLM_ARCH_STARCODER2,
  195. LLM_ARCH_MAMBA,
  196. LLM_ARCH_XVERSE,
  197. LLM_ARCH_COMMAND_R,
  198. LLM_ARCH_UNKNOWN,
  199. };
  200. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  201. { LLM_ARCH_LLAMA, "llama" },
  202. { LLM_ARCH_FALCON, "falcon" },
  203. { LLM_ARCH_GROK, "grok" },
  204. { LLM_ARCH_GPT2, "gpt2" },
  205. { LLM_ARCH_GPTJ, "gptj" },
  206. { LLM_ARCH_GPTNEOX, "gptneox" },
  207. { LLM_ARCH_MPT, "mpt" },
  208. { LLM_ARCH_BAICHUAN, "baichuan" },
  209. { LLM_ARCH_STARCODER, "starcoder" },
  210. { LLM_ARCH_PERSIMMON, "persimmon" },
  211. { LLM_ARCH_REFACT, "refact" },
  212. { LLM_ARCH_BERT, "bert" },
  213. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  214. { LLM_ARCH_BLOOM, "bloom" },
  215. { LLM_ARCH_STABLELM, "stablelm" },
  216. { LLM_ARCH_QWEN, "qwen" },
  217. { LLM_ARCH_QWEN2, "qwen2" },
  218. { LLM_ARCH_PHI2, "phi2" },
  219. { LLM_ARCH_PLAMO, "plamo" },
  220. { LLM_ARCH_CODESHELL, "codeshell" },
  221. { LLM_ARCH_ORION, "orion" },
  222. { LLM_ARCH_INTERNLM2, "internlm2" },
  223. { LLM_ARCH_MINICPM, "minicpm" },
  224. { LLM_ARCH_GEMMA, "gemma" },
  225. { LLM_ARCH_STARCODER2, "starcoder2" },
  226. { LLM_ARCH_MAMBA, "mamba" },
  227. { LLM_ARCH_XVERSE, "xverse" },
  228. { LLM_ARCH_COMMAND_R, "command-r" },
  229. { LLM_ARCH_UNKNOWN, "(unknown)" },
  230. };
  231. enum llm_kv {
  232. LLM_KV_GENERAL_ARCHITECTURE,
  233. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  234. LLM_KV_GENERAL_ALIGNMENT,
  235. LLM_KV_GENERAL_NAME,
  236. LLM_KV_GENERAL_AUTHOR,
  237. LLM_KV_GENERAL_URL,
  238. LLM_KV_GENERAL_DESCRIPTION,
  239. LLM_KV_GENERAL_LICENSE,
  240. LLM_KV_GENERAL_SOURCE_URL,
  241. LLM_KV_GENERAL_SOURCE_HF_REPO,
  242. LLM_KV_VOCAB_SIZE,
  243. LLM_KV_CONTEXT_LENGTH,
  244. LLM_KV_EMBEDDING_LENGTH,
  245. LLM_KV_BLOCK_COUNT,
  246. LLM_KV_FEED_FORWARD_LENGTH,
  247. LLM_KV_USE_PARALLEL_RESIDUAL,
  248. LLM_KV_TENSOR_DATA_LAYOUT,
  249. LLM_KV_EXPERT_COUNT,
  250. LLM_KV_EXPERT_USED_COUNT,
  251. LLM_KV_POOLING_TYPE,
  252. LLM_KV_LOGIT_SCALE,
  253. LLM_KV_ATTENTION_HEAD_COUNT,
  254. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  255. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  256. LLM_KV_ATTENTION_CLAMP_KQV,
  257. LLM_KV_ATTENTION_KEY_LENGTH,
  258. LLM_KV_ATTENTION_VALUE_LENGTH,
  259. LLM_KV_ATTENTION_LAYERNORM_EPS,
  260. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  261. LLM_KV_ATTENTION_CAUSAL,
  262. LLM_KV_ROPE_DIMENSION_COUNT,
  263. LLM_KV_ROPE_FREQ_BASE,
  264. LLM_KV_ROPE_SCALE_LINEAR,
  265. LLM_KV_ROPE_SCALING_TYPE,
  266. LLM_KV_ROPE_SCALING_FACTOR,
  267. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  268. LLM_KV_ROPE_SCALING_FINETUNED,
  269. LLM_KV_SPLIT_NO,
  270. LLM_KV_SPLIT_COUNT,
  271. LLM_KV_SPLIT_TENSORS_COUNT,
  272. LLM_KV_SSM_INNER_SIZE,
  273. LLM_KV_SSM_CONV_KERNEL,
  274. LLM_KV_SSM_STATE_SIZE,
  275. LLM_KV_SSM_TIME_STEP_RANK,
  276. LLM_KV_TOKENIZER_MODEL,
  277. LLM_KV_TOKENIZER_LIST,
  278. LLM_KV_TOKENIZER_TOKEN_TYPE,
  279. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  280. LLM_KV_TOKENIZER_SCORES,
  281. LLM_KV_TOKENIZER_MERGES,
  282. LLM_KV_TOKENIZER_BOS_ID,
  283. LLM_KV_TOKENIZER_EOS_ID,
  284. LLM_KV_TOKENIZER_UNK_ID,
  285. LLM_KV_TOKENIZER_SEP_ID,
  286. LLM_KV_TOKENIZER_PAD_ID,
  287. LLM_KV_TOKENIZER_ADD_BOS,
  288. LLM_KV_TOKENIZER_ADD_EOS,
  289. LLM_KV_TOKENIZER_ADD_PREFIX,
  290. LLM_KV_TOKENIZER_HF_JSON,
  291. LLM_KV_TOKENIZER_RWKV,
  292. };
  293. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  294. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  295. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  296. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  297. { LLM_KV_GENERAL_NAME, "general.name" },
  298. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  299. { LLM_KV_GENERAL_URL, "general.url" },
  300. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  301. { LLM_KV_GENERAL_LICENSE, "general.license" },
  302. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  303. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  304. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  305. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  306. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  307. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  308. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  309. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  310. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  311. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  312. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  313. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  314. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  315. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  316. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  317. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  318. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  319. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  320. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  321. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  322. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  323. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  324. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  325. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  326. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  327. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  328. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  329. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  330. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  331. { LLM_KV_SPLIT_NO, "split.no" },
  332. { LLM_KV_SPLIT_COUNT, "split.count" },
  333. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  334. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  335. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  336. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  337. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  338. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  339. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  340. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  341. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  342. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  343. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  344. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  345. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  346. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  347. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  348. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  349. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  350. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  351. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  352. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  353. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  354. };
  355. struct LLM_KV {
  356. LLM_KV(llm_arch arch) : arch(arch) {}
  357. llm_arch arch;
  358. std::string operator()(llm_kv kv) const {
  359. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  360. }
  361. };
  362. enum llm_tensor {
  363. LLM_TENSOR_TOKEN_EMBD,
  364. LLM_TENSOR_TOKEN_EMBD_NORM,
  365. LLM_TENSOR_TOKEN_TYPES,
  366. LLM_TENSOR_POS_EMBD,
  367. LLM_TENSOR_OUTPUT,
  368. LLM_TENSOR_OUTPUT_NORM,
  369. LLM_TENSOR_ROPE_FREQS,
  370. LLM_TENSOR_ATTN_Q,
  371. LLM_TENSOR_ATTN_K,
  372. LLM_TENSOR_ATTN_V,
  373. LLM_TENSOR_ATTN_QKV,
  374. LLM_TENSOR_ATTN_OUT,
  375. LLM_TENSOR_ATTN_NORM,
  376. LLM_TENSOR_ATTN_NORM_2,
  377. LLM_TENSOR_ATTN_OUT_NORM,
  378. LLM_TENSOR_ATTN_ROT_EMBD,
  379. LLM_TENSOR_FFN_GATE_INP,
  380. LLM_TENSOR_FFN_NORM,
  381. LLM_TENSOR_FFN_GATE,
  382. LLM_TENSOR_FFN_DOWN,
  383. LLM_TENSOR_FFN_UP,
  384. LLM_TENSOR_FFN_ACT,
  385. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  386. LLM_TENSOR_FFN_GATE_EXP,
  387. LLM_TENSOR_FFN_UP_EXP,
  388. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  389. LLM_TENSOR_FFN_GATE_EXPS,
  390. LLM_TENSOR_FFN_UP_EXPS,
  391. LLM_TENSOR_ATTN_Q_NORM,
  392. LLM_TENSOR_ATTN_K_NORM,
  393. LLM_TENSOR_LAYER_OUT_NORM,
  394. LLM_TENSOR_SSM_IN,
  395. LLM_TENSOR_SSM_CONV1D,
  396. LLM_TENSOR_SSM_X,
  397. LLM_TENSOR_SSM_DT,
  398. LLM_TENSOR_SSM_A,
  399. LLM_TENSOR_SSM_D,
  400. LLM_TENSOR_SSM_OUT,
  401. };
  402. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  403. {
  404. LLM_ARCH_LLAMA,
  405. {
  406. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  407. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  408. { LLM_TENSOR_OUTPUT, "output" },
  409. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  410. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  411. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  412. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  413. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  414. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  415. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  416. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  417. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  418. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  419. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  420. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  421. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  422. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  423. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  424. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  425. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  426. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  427. },
  428. },
  429. {
  430. LLM_ARCH_BAICHUAN,
  431. {
  432. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  433. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  434. { LLM_TENSOR_OUTPUT, "output" },
  435. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  436. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  437. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  438. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  439. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  440. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  441. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  442. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  443. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  444. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  445. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  446. },
  447. },
  448. {
  449. LLM_ARCH_FALCON,
  450. {
  451. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  452. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  453. { LLM_TENSOR_OUTPUT, "output" },
  454. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  455. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  456. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  457. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  458. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  459. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  460. },
  461. },
  462. {
  463. LLM_ARCH_GROK,
  464. {
  465. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  466. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  467. { LLM_TENSOR_OUTPUT, "output" },
  468. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  469. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  470. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  471. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  472. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  473. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  474. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  475. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  476. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  477. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  478. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  479. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  480. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  481. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  482. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  483. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  484. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  485. },
  486. },
  487. {
  488. LLM_ARCH_GPT2,
  489. {
  490. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  491. { LLM_TENSOR_POS_EMBD, "position_embd" },
  492. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  493. { LLM_TENSOR_OUTPUT, "output" },
  494. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  495. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  496. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  497. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  498. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  499. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  500. },
  501. },
  502. {
  503. LLM_ARCH_GPTJ,
  504. {
  505. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  506. },
  507. },
  508. {
  509. LLM_ARCH_GPTNEOX,
  510. {
  511. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  512. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  513. { LLM_TENSOR_OUTPUT, "output" },
  514. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  515. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  516. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  517. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  518. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  519. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  520. },
  521. },
  522. {
  523. LLM_ARCH_PERSIMMON,
  524. {
  525. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  526. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  527. { LLM_TENSOR_OUTPUT, "output"},
  528. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  529. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  530. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  531. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  532. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  533. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  534. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  535. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  536. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  537. },
  538. },
  539. {
  540. LLM_ARCH_MPT,
  541. {
  542. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  543. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  544. { LLM_TENSOR_OUTPUT, "output"},
  545. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  546. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  547. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  548. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  549. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  550. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  551. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  552. },
  553. },
  554. {
  555. LLM_ARCH_STARCODER,
  556. {
  557. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  558. { LLM_TENSOR_POS_EMBD, "position_embd" },
  559. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  560. { LLM_TENSOR_OUTPUT, "output" },
  561. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  562. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  563. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  564. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  565. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  566. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  567. },
  568. },
  569. {
  570. LLM_ARCH_REFACT,
  571. {
  572. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  573. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  574. { LLM_TENSOR_OUTPUT, "output" },
  575. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  576. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  577. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  578. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  579. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  580. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  581. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  582. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  583. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  584. },
  585. },
  586. {
  587. LLM_ARCH_BERT,
  588. {
  589. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  590. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  591. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  592. { LLM_TENSOR_POS_EMBD, "position_embd" },
  593. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  594. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  595. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  596. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  597. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  598. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  599. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  600. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  601. },
  602. },
  603. {
  604. LLM_ARCH_NOMIC_BERT,
  605. {
  606. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  607. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  608. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  609. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  610. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  611. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  612. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  613. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  614. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  615. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  616. },
  617. },
  618. {
  619. LLM_ARCH_BLOOM,
  620. {
  621. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  622. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  623. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  624. { LLM_TENSOR_OUTPUT, "output" },
  625. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  626. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  627. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  628. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  629. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  630. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  631. },
  632. },
  633. {
  634. LLM_ARCH_STABLELM,
  635. {
  636. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  637. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  638. { LLM_TENSOR_OUTPUT, "output" },
  639. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  640. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  641. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  642. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  643. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  644. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  645. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  646. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  647. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  648. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  649. },
  650. },
  651. {
  652. LLM_ARCH_QWEN,
  653. {
  654. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  655. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  656. { LLM_TENSOR_OUTPUT, "output" },
  657. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  658. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  659. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  660. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  661. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  662. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  663. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  664. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  665. },
  666. },
  667. {
  668. LLM_ARCH_QWEN2,
  669. {
  670. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  671. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  672. { LLM_TENSOR_OUTPUT, "output" },
  673. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  674. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  675. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  676. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  677. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  678. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  679. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  680. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  681. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  682. },
  683. },
  684. {
  685. LLM_ARCH_PHI2,
  686. {
  687. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  688. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  689. { LLM_TENSOR_OUTPUT, "output" },
  690. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  691. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  692. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  693. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  694. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  695. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  696. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  697. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  698. },
  699. },
  700. {
  701. LLM_ARCH_PLAMO,
  702. {
  703. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  704. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  705. { LLM_TENSOR_OUTPUT, "output" },
  706. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  707. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  708. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  709. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  710. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  711. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  712. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  713. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  714. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  715. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  716. },
  717. },
  718. {
  719. LLM_ARCH_CODESHELL,
  720. {
  721. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  722. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  723. { LLM_TENSOR_OUTPUT, "output" },
  724. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  725. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  726. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  727. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  728. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  729. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  730. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  731. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  732. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  733. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  734. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  735. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  736. },
  737. },
  738. {
  739. LLM_ARCH_ORION,
  740. {
  741. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  742. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  743. { LLM_TENSOR_OUTPUT, "output" },
  744. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  745. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  746. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  747. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  748. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  749. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  750. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  751. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  752. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  753. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  754. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  755. },
  756. },
  757. {
  758. LLM_ARCH_INTERNLM2,
  759. {
  760. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  761. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  762. { LLM_TENSOR_OUTPUT, "output" },
  763. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  764. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  765. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  766. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  767. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  768. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  769. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  770. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  771. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  772. },
  773. },
  774. {
  775. LLM_ARCH_MINICPM,
  776. {
  777. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  778. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  779. { LLM_TENSOR_OUTPUT, "output" },
  780. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  781. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  782. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  783. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  784. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  785. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  786. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  787. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  788. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  789. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  790. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  791. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  792. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  793. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  794. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  795. },
  796. },
  797. {
  798. LLM_ARCH_GEMMA,
  799. {
  800. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  801. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  802. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  803. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  804. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  805. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  806. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  807. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  808. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  809. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  810. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  811. },
  812. },
  813. {
  814. LLM_ARCH_STARCODER2,
  815. {
  816. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  817. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  818. { LLM_TENSOR_OUTPUT, "output" },
  819. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  820. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  821. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  822. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  823. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  824. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  825. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  826. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  827. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  828. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  829. },
  830. },
  831. {
  832. LLM_ARCH_MAMBA,
  833. {
  834. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  835. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  836. { LLM_TENSOR_OUTPUT, "output" },
  837. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  838. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  839. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  840. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  841. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  842. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  843. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  844. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  845. },
  846. },
  847. {
  848. LLM_ARCH_XVERSE,
  849. {
  850. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  851. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  852. { LLM_TENSOR_OUTPUT, "output" },
  853. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  854. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  855. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  856. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  857. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  858. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  859. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  860. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  861. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  862. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  863. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  864. },
  865. },
  866. {
  867. LLM_ARCH_COMMAND_R,
  868. {
  869. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  870. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  871. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  872. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  873. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  874. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  875. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  876. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  877. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  878. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  879. },
  880. },
  881. {
  882. LLM_ARCH_UNKNOWN,
  883. {
  884. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  885. },
  886. },
  887. };
  888. static llm_arch llm_arch_from_string(const std::string & name) {
  889. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  890. if (kv.second == name) {
  891. return kv.first;
  892. }
  893. }
  894. return LLM_ARCH_UNKNOWN;
  895. }
  896. // helper to handle gguf constants
  897. // usage:
  898. //
  899. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  900. //
  901. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  902. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  903. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  904. //
  905. struct LLM_TN {
  906. LLM_TN(llm_arch arch) : arch(arch) {}
  907. llm_arch arch;
  908. std::string operator()(llm_tensor tensor) const {
  909. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  910. return "__missing__";
  911. }
  912. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  913. }
  914. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  915. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  916. return "__missing__";
  917. }
  918. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  919. }
  920. std::string operator()(llm_tensor tensor, int bid) const {
  921. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  922. return "__missing__";
  923. }
  924. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  925. }
  926. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  927. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  928. return "__missing__";
  929. }
  930. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  931. }
  932. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  933. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  934. return "__missing__";
  935. }
  936. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  937. }
  938. };
  939. //
  940. // gguf helpers
  941. //
  942. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  943. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  944. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  945. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  946. };
  947. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  948. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  949. if (kv.second == name) {
  950. return (llama_rope_scaling_type) kv.first;
  951. }
  952. }
  953. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  954. }
  955. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  956. switch (type) {
  957. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  958. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  959. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  960. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  961. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  962. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  963. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  964. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  965. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  966. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  967. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  968. default: return format("unknown type %d", type);
  969. }
  970. }
  971. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  972. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  973. switch (type) {
  974. case GGUF_TYPE_STRING:
  975. return gguf_get_val_str(ctx_gguf, i);
  976. case GGUF_TYPE_ARRAY:
  977. {
  978. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  979. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  980. const void * data = gguf_get_arr_data(ctx_gguf, i);
  981. std::stringstream ss;
  982. ss << "[";
  983. for (int j = 0; j < arr_n; j++) {
  984. if (arr_type == GGUF_TYPE_STRING) {
  985. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  986. // escape quotes
  987. replace_all(val, "\\", "\\\\");
  988. replace_all(val, "\"", "\\\"");
  989. ss << '"' << val << '"';
  990. } else if (arr_type == GGUF_TYPE_ARRAY) {
  991. ss << "???";
  992. } else {
  993. ss << gguf_data_to_str(arr_type, data, j);
  994. }
  995. if (j < arr_n - 1) {
  996. ss << ", ";
  997. }
  998. }
  999. ss << "]";
  1000. return ss.str();
  1001. }
  1002. default:
  1003. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1004. }
  1005. }
  1006. //
  1007. // llama helpers
  1008. //
  1009. #if defined(_WIN32)
  1010. static std::string llama_format_win_err(DWORD err) {
  1011. LPSTR buf;
  1012. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1013. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1014. if (!size) {
  1015. return "FormatMessageA failed";
  1016. }
  1017. std::string ret(buf, size);
  1018. LocalFree(buf);
  1019. return ret;
  1020. }
  1021. #endif
  1022. template <typename T>
  1023. struct no_init {
  1024. T value;
  1025. no_init() { /* do nothing */ }
  1026. };
  1027. struct llama_file {
  1028. // use FILE * so we don't have to re-open the file to mmap
  1029. FILE * fp;
  1030. size_t size;
  1031. llama_file(const char * fname, const char * mode) {
  1032. fp = ggml_fopen(fname, mode);
  1033. if (fp == NULL) {
  1034. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1035. }
  1036. seek(0, SEEK_END);
  1037. size = tell();
  1038. seek(0, SEEK_SET);
  1039. }
  1040. size_t tell() const {
  1041. #ifdef _WIN32
  1042. __int64 ret = _ftelli64(fp);
  1043. #else
  1044. long ret = std::ftell(fp);
  1045. #endif
  1046. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1047. return (size_t) ret;
  1048. }
  1049. void seek(size_t offset, int whence) const {
  1050. #ifdef _WIN32
  1051. int ret = _fseeki64(fp, (__int64) offset, whence);
  1052. #else
  1053. int ret = std::fseek(fp, (long) offset, whence);
  1054. #endif
  1055. GGML_ASSERT(ret == 0); // same
  1056. }
  1057. void read_raw(void * ptr, size_t len) const {
  1058. if (len == 0) {
  1059. return;
  1060. }
  1061. errno = 0;
  1062. std::size_t ret = std::fread(ptr, len, 1, fp);
  1063. if (ferror(fp)) {
  1064. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1065. }
  1066. if (ret != 1) {
  1067. throw std::runtime_error("unexpectedly reached end of file");
  1068. }
  1069. }
  1070. uint32_t read_u32() const {
  1071. uint32_t ret;
  1072. read_raw(&ret, sizeof(ret));
  1073. return ret;
  1074. }
  1075. void write_raw(const void * ptr, size_t len) const {
  1076. if (len == 0) {
  1077. return;
  1078. }
  1079. errno = 0;
  1080. size_t ret = std::fwrite(ptr, len, 1, fp);
  1081. if (ret != 1) {
  1082. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1083. }
  1084. }
  1085. void write_u32(std::uint32_t val) const {
  1086. write_raw(&val, sizeof(val));
  1087. }
  1088. ~llama_file() {
  1089. if (fp) {
  1090. std::fclose(fp);
  1091. }
  1092. }
  1093. };
  1094. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1095. struct llama_mmap {
  1096. void * addr;
  1097. size_t size;
  1098. llama_mmap(const llama_mmap &) = delete;
  1099. #ifdef _POSIX_MAPPED_FILES
  1100. static constexpr bool SUPPORTED = true;
  1101. // list of mapped fragments (first_offset, last_offset)
  1102. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1103. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1104. size = file->size;
  1105. int fd = fileno(file->fp);
  1106. int flags = MAP_SHARED;
  1107. // prefetch/readahead impairs performance on NUMA systems
  1108. if (numa) { prefetch = 0; }
  1109. #ifdef __linux__
  1110. // advise the kernel to read the file sequentially (increases readahead)
  1111. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1112. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1113. strerror(errno));
  1114. }
  1115. if (prefetch) { flags |= MAP_POPULATE; }
  1116. #endif
  1117. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1118. if (addr == MAP_FAILED) { // NOLINT
  1119. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1120. }
  1121. if (prefetch > 0) {
  1122. // advise the kernel to preload the mapped memory
  1123. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1124. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1125. strerror(errno));
  1126. }
  1127. }
  1128. if (numa) {
  1129. // advise the kernel not to use readahead
  1130. // (because the next page might not belong on the same node)
  1131. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1132. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1133. strerror(errno));
  1134. }
  1135. }
  1136. // initialize list of mapped_fragments
  1137. mapped_fragments.emplace_back(0, file->size);
  1138. }
  1139. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1140. // align first to the next page
  1141. size_t offset_in_page = *first & (page_size - 1);
  1142. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1143. *first += offset_to_page;
  1144. // align last to the previous page
  1145. *last = *last & ~(page_size - 1);
  1146. if (*last <= *first) {
  1147. *last = *first;
  1148. }
  1149. }
  1150. // partially unmap the file in the range [first, last)
  1151. void unmap_fragment(size_t first, size_t last) {
  1152. // note: this function must not be called multiple times with overlapping ranges
  1153. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1154. int page_size = sysconf(_SC_PAGESIZE);
  1155. align_range(&first, &last, page_size);
  1156. size_t len = last - first;
  1157. if (len == 0) {
  1158. return;
  1159. }
  1160. GGML_ASSERT(first % page_size == 0);
  1161. GGML_ASSERT(last % page_size == 0);
  1162. GGML_ASSERT(last > first);
  1163. void * next_page_start = (uint8_t *) addr + first;
  1164. // unmap the range
  1165. if (munmap(next_page_start, len)) {
  1166. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1167. }
  1168. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1169. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1170. for (const auto & frag : mapped_fragments) {
  1171. if (frag.first < first && frag.second > last) {
  1172. // the range is in the middle of the fragment, split it
  1173. new_mapped_fragments.emplace_back(frag.first, first);
  1174. new_mapped_fragments.emplace_back(last, frag.second);
  1175. } else if (frag.first < first && frag.second > first) {
  1176. // the range starts in the middle of the fragment
  1177. new_mapped_fragments.emplace_back(frag.first, first);
  1178. } else if (frag.first < last && frag.second > last) {
  1179. // the range ends in the middle of the fragment
  1180. new_mapped_fragments.emplace_back(last, frag.second);
  1181. } else if (frag.first >= first && frag.second <= last) {
  1182. // the range covers the entire fragment
  1183. } else {
  1184. // the range is outside the fragment
  1185. new_mapped_fragments.push_back(frag);
  1186. }
  1187. }
  1188. mapped_fragments = std::move(new_mapped_fragments);
  1189. }
  1190. ~llama_mmap() {
  1191. for (const auto & frag : mapped_fragments) {
  1192. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1193. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1194. }
  1195. }
  1196. }
  1197. #elif defined(_WIN32)
  1198. static constexpr bool SUPPORTED = true;
  1199. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1200. GGML_UNUSED(numa);
  1201. size = file->size;
  1202. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1203. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1204. if (hMapping == NULL) {
  1205. DWORD error = GetLastError();
  1206. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1207. }
  1208. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1209. DWORD error = GetLastError();
  1210. CloseHandle(hMapping);
  1211. if (addr == NULL) {
  1212. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1213. }
  1214. if (prefetch > 0) {
  1215. #if _WIN32_WINNT >= 0x602
  1216. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1217. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1218. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1219. // may fail on pre-Windows 8 systems
  1220. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1221. if (pPrefetchVirtualMemory) {
  1222. // advise the kernel to preload the mapped memory
  1223. WIN32_MEMORY_RANGE_ENTRY range;
  1224. range.VirtualAddress = addr;
  1225. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1226. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1227. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1228. llama_format_win_err(GetLastError()).c_str());
  1229. }
  1230. }
  1231. #else
  1232. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1233. #endif
  1234. }
  1235. }
  1236. void unmap_fragment(size_t first, size_t last) {
  1237. // not supported
  1238. GGML_UNUSED(first);
  1239. GGML_UNUSED(last);
  1240. }
  1241. ~llama_mmap() {
  1242. if (!UnmapViewOfFile(addr)) {
  1243. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1244. llama_format_win_err(GetLastError()).c_str());
  1245. }
  1246. }
  1247. #else
  1248. static constexpr bool SUPPORTED = false;
  1249. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1250. GGML_UNUSED(file);
  1251. GGML_UNUSED(prefetch);
  1252. GGML_UNUSED(numa);
  1253. throw std::runtime_error("mmap not supported");
  1254. }
  1255. void unmap_fragment(size_t first, size_t last) {
  1256. GGML_UNUSED(first);
  1257. GGML_UNUSED(last);
  1258. throw std::runtime_error("mmap not supported");
  1259. }
  1260. #endif
  1261. };
  1262. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1263. // Represents some region of memory being locked using mlock or VirtualLock;
  1264. // will automatically unlock on destruction.
  1265. struct llama_mlock {
  1266. void * addr = NULL;
  1267. size_t size = 0;
  1268. bool failed_already = false;
  1269. llama_mlock() {}
  1270. llama_mlock(const llama_mlock &) = delete;
  1271. ~llama_mlock() {
  1272. if (size) {
  1273. raw_unlock(addr, size);
  1274. }
  1275. }
  1276. void init(void * ptr) {
  1277. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1278. addr = ptr;
  1279. }
  1280. void grow_to(size_t target_size) {
  1281. GGML_ASSERT(addr);
  1282. if (failed_already) {
  1283. return;
  1284. }
  1285. size_t granularity = lock_granularity();
  1286. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1287. if (target_size > size) {
  1288. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1289. size = target_size;
  1290. } else {
  1291. failed_already = true;
  1292. }
  1293. }
  1294. }
  1295. #ifdef _POSIX_MEMLOCK_RANGE
  1296. static constexpr bool SUPPORTED = true;
  1297. static size_t lock_granularity() {
  1298. return (size_t) sysconf(_SC_PAGESIZE);
  1299. }
  1300. #ifdef __APPLE__
  1301. #define MLOCK_SUGGESTION \
  1302. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1303. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1304. #else
  1305. #define MLOCK_SUGGESTION \
  1306. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1307. #endif
  1308. bool raw_lock(const void * addr, size_t size) const {
  1309. if (!mlock(addr, size)) {
  1310. return true;
  1311. }
  1312. char* errmsg = std::strerror(errno);
  1313. bool suggest = (errno == ENOMEM);
  1314. // Check if the resource limit is fine after all
  1315. struct rlimit lock_limit;
  1316. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1317. suggest = false;
  1318. }
  1319. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1320. suggest = false;
  1321. }
  1322. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1323. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1324. return false;
  1325. }
  1326. #undef MLOCK_SUGGESTION
  1327. static void raw_unlock(void * addr, size_t size) {
  1328. if (munlock(addr, size)) {
  1329. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1330. }
  1331. }
  1332. #elif defined(_WIN32)
  1333. static constexpr bool SUPPORTED = true;
  1334. static size_t lock_granularity() {
  1335. SYSTEM_INFO si;
  1336. GetSystemInfo(&si);
  1337. return (size_t) si.dwPageSize;
  1338. }
  1339. bool raw_lock(void * ptr, size_t len) const {
  1340. for (int tries = 1; ; tries++) {
  1341. if (VirtualLock(ptr, len)) {
  1342. return true;
  1343. }
  1344. if (tries == 2) {
  1345. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1346. len, size, llama_format_win_err(GetLastError()).c_str());
  1347. return false;
  1348. }
  1349. // It failed but this was only the first try; increase the working
  1350. // set size and try again.
  1351. SIZE_T min_ws_size, max_ws_size;
  1352. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1353. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1354. llama_format_win_err(GetLastError()).c_str());
  1355. return false;
  1356. }
  1357. // Per MSDN: "The maximum number of pages that a process can lock
  1358. // is equal to the number of pages in its minimum working set minus
  1359. // a small overhead."
  1360. // Hopefully a megabyte is enough overhead:
  1361. size_t increment = len + 1048576;
  1362. // The minimum must be <= the maximum, so we need to increase both:
  1363. min_ws_size += increment;
  1364. max_ws_size += increment;
  1365. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1366. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1367. llama_format_win_err(GetLastError()).c_str());
  1368. return false;
  1369. }
  1370. }
  1371. }
  1372. static void raw_unlock(void * ptr, size_t len) {
  1373. if (!VirtualUnlock(ptr, len)) {
  1374. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1375. llama_format_win_err(GetLastError()).c_str());
  1376. }
  1377. }
  1378. #else
  1379. static constexpr bool SUPPORTED = false;
  1380. static size_t lock_granularity() {
  1381. return (size_t) 65536;
  1382. }
  1383. bool raw_lock(const void * addr, size_t len) const {
  1384. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1385. return false;
  1386. }
  1387. static void raw_unlock(const void * addr, size_t len) {}
  1388. #endif
  1389. };
  1390. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1391. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1392. std::vector<char> result(8, 0);
  1393. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1394. if (n_tokens < 0) {
  1395. result.resize(-n_tokens);
  1396. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1397. GGML_ASSERT(check == -n_tokens);
  1398. }
  1399. else {
  1400. result.resize(n_tokens);
  1401. }
  1402. return std::string(result.data(), result.size());
  1403. }
  1404. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1405. ggml_backend_buffer_type_t buft = nullptr;
  1406. #if defined(GGML_USE_CUDA)
  1407. // host buffers should only be used when data is expected to be copied to/from the GPU
  1408. if (host_buffer) {
  1409. buft = ggml_backend_cuda_host_buffer_type();
  1410. }
  1411. #elif defined(GGML_USE_SYCL)
  1412. if (host_buffer) {
  1413. buft = ggml_backend_sycl_host_buffer_type();
  1414. }
  1415. #elif defined(GGML_USE_CPU_HBM)
  1416. buft = ggml_backend_cpu_hbm_buffer_type();
  1417. #elif defined(GGML_USE_VULKAN)
  1418. if (host_buffer) {
  1419. buft = ggml_backend_vk_host_buffer_type();
  1420. }
  1421. #endif
  1422. if (buft == nullptr) {
  1423. buft = ggml_backend_cpu_buffer_type();
  1424. }
  1425. return buft;
  1426. GGML_UNUSED(host_buffer);
  1427. }
  1428. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1429. ggml_backend_buffer_type_t buft = nullptr;
  1430. #ifdef GGML_USE_METAL
  1431. buft = ggml_backend_metal_buffer_type();
  1432. #elif defined(GGML_USE_CUDA)
  1433. buft = ggml_backend_cuda_buffer_type(gpu);
  1434. #elif defined(GGML_USE_VULKAN)
  1435. buft = ggml_backend_vk_buffer_type(gpu);
  1436. #elif defined(GGML_USE_SYCL)
  1437. buft = ggml_backend_sycl_buffer_type(gpu);
  1438. #elif defined(GGML_USE_CLBLAST)
  1439. buft = ggml_backend_opencl_buffer_type();
  1440. #elif defined(GGML_USE_KOMPUTE)
  1441. buft = ggml_backend_kompute_buffer_type(gpu);
  1442. if (buft == nullptr) {
  1443. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1444. }
  1445. #endif
  1446. if (buft == nullptr) {
  1447. buft = llama_default_buffer_type_cpu(true);
  1448. }
  1449. return buft;
  1450. GGML_UNUSED(gpu);
  1451. }
  1452. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1453. ggml_backend_buffer_type_t buft = nullptr;
  1454. #ifdef GGML_USE_CUDA
  1455. if (ggml_backend_cuda_get_device_count() > 1) {
  1456. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1457. }
  1458. #endif
  1459. #ifdef GGML_USE_SYCL
  1460. if (ggml_backend_sycl_get_device_count() > 1) {
  1461. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  1462. }
  1463. #endif
  1464. if (buft == nullptr) {
  1465. buft = llama_default_buffer_type_offload(fallback_gpu);
  1466. }
  1467. return buft;
  1468. GGML_UNUSED(tensor_split);
  1469. }
  1470. static size_t llama_get_device_count() {
  1471. #if defined(GGML_USE_CUDA)
  1472. return ggml_backend_cuda_get_device_count();
  1473. #elif defined(GGML_USE_SYCL)
  1474. return ggml_backend_sycl_get_device_count();
  1475. #elif defined(GGML_USE_VULKAN)
  1476. return ggml_backend_vk_get_device_count();
  1477. #else
  1478. return 1;
  1479. #endif
  1480. }
  1481. static size_t llama_get_device_memory(int device) {
  1482. #if defined(GGML_USE_CUDA)
  1483. size_t total;
  1484. size_t free;
  1485. ggml_backend_cuda_get_device_memory(device, &total, &free);
  1486. return free;
  1487. #elif defined(GGML_USE_SYCL)
  1488. size_t total;
  1489. size_t free;
  1490. ggml_backend_sycl_get_device_memory(device, &total, &free);
  1491. return free;
  1492. #elif defined(GGML_USE_VULKAN)
  1493. size_t total;
  1494. size_t free;
  1495. ggml_backend_vk_get_device_memory(device, &total, &free);
  1496. return free;
  1497. #else
  1498. return 1;
  1499. GGML_UNUSED(device);
  1500. #endif
  1501. }
  1502. //
  1503. // globals
  1504. //
  1505. struct llama_state {
  1506. llama_state() {
  1507. #ifdef GGML_USE_METAL
  1508. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1509. #endif
  1510. }
  1511. // We save the log callback globally
  1512. ggml_log_callback log_callback = llama_log_callback_default;
  1513. void * log_callback_user_data = nullptr;
  1514. };
  1515. static llama_state g_state;
  1516. // available llama models
  1517. enum e_model {
  1518. MODEL_UNKNOWN,
  1519. MODEL_17M,
  1520. MODEL_22M,
  1521. MODEL_33M,
  1522. MODEL_109M,
  1523. MODEL_137M,
  1524. MODEL_335M,
  1525. MODEL_0_5B,
  1526. MODEL_1B,
  1527. MODEL_2B,
  1528. MODEL_3B,
  1529. MODEL_4B,
  1530. MODEL_7B,
  1531. MODEL_8B,
  1532. MODEL_13B,
  1533. MODEL_14B,
  1534. MODEL_15B,
  1535. MODEL_20B,
  1536. MODEL_30B,
  1537. MODEL_34B,
  1538. MODEL_35B,
  1539. MODEL_40B,
  1540. MODEL_65B,
  1541. MODEL_70B,
  1542. MODEL_314B,
  1543. MODEL_SMALL,
  1544. MODEL_MEDIUM,
  1545. MODEL_LARGE,
  1546. MODEL_XL,
  1547. };
  1548. static const size_t kiB = 1024;
  1549. static const size_t MiB = 1024*kiB;
  1550. static const size_t GiB = 1024*MiB;
  1551. struct llama_hparams {
  1552. bool vocab_only;
  1553. bool rope_finetuned;
  1554. uint32_t n_vocab;
  1555. uint32_t n_ctx_train; // context size the model was trained on
  1556. uint32_t n_embd;
  1557. uint32_t n_head;
  1558. uint32_t n_head_kv;
  1559. uint32_t n_layer;
  1560. uint32_t n_rot;
  1561. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1562. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1563. uint32_t n_ff;
  1564. uint32_t n_expert = 0;
  1565. uint32_t n_expert_used = 0;
  1566. uint32_t n_vocab_type = 0; // for BERT-style token types
  1567. float f_norm_eps;
  1568. float f_norm_rms_eps;
  1569. float rope_freq_base_train;
  1570. float rope_freq_scale_train;
  1571. uint32_t n_yarn_orig_ctx;
  1572. // for State Space Models
  1573. uint32_t ssm_d_conv = 0;
  1574. uint32_t ssm_d_inner = 0;
  1575. uint32_t ssm_d_state = 0;
  1576. uint32_t ssm_dt_rank = 0;
  1577. float f_clamp_kqv = 0.0f;
  1578. float f_max_alibi_bias = 0.0f;
  1579. float f_logit_scale = 0.0f;
  1580. bool causal_attn = true;
  1581. bool need_kq_pos = false;
  1582. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1583. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1584. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1585. bool operator!=(const llama_hparams & other) const {
  1586. if (this->vocab_only != other.vocab_only) return true;
  1587. if (this->n_vocab != other.n_vocab) return true;
  1588. if (this->n_ctx_train != other.n_ctx_train) return true;
  1589. if (this->n_embd != other.n_embd) return true;
  1590. if (this->n_head != other.n_head) return true;
  1591. if (this->n_head_kv != other.n_head_kv) return true;
  1592. if (this->n_layer != other.n_layer) return true;
  1593. if (this->n_rot != other.n_rot) return true;
  1594. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1595. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1596. if (this->n_ff != other.n_ff) return true;
  1597. if (this->n_expert != other.n_expert) return true;
  1598. if (this->n_expert_used != other.n_expert_used) return true;
  1599. if (this->rope_finetuned != other.rope_finetuned) return true;
  1600. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1601. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1602. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1603. if (this->ssm_d_state != other.ssm_d_state) return true;
  1604. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1605. const float EPSILON = 1e-9f;
  1606. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1607. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1608. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1609. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1610. return false;
  1611. }
  1612. uint32_t n_gqa() const {
  1613. if (n_head_kv == 0) {
  1614. return 0;
  1615. }
  1616. return n_head/n_head_kv;
  1617. }
  1618. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1619. return n_embd_head_k * n_head_kv;
  1620. }
  1621. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1622. return n_embd_head_v * n_head_kv;
  1623. }
  1624. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1625. // corresponds to Mamba's conv_states size
  1626. // TODO: maybe support other convolution strides than 1
  1627. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1628. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1629. }
  1630. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1631. // corresponds to Mamba's ssm_states size
  1632. return ssm_d_state * ssm_d_inner;
  1633. }
  1634. };
  1635. struct llama_cparams {
  1636. uint32_t n_ctx; // context size used during inference
  1637. uint32_t n_batch;
  1638. uint32_t n_ubatch;
  1639. uint32_t n_seq_max;
  1640. uint32_t n_threads; // number of threads to use for generation
  1641. uint32_t n_threads_batch; // number of threads to use for batch processing
  1642. float rope_freq_base;
  1643. float rope_freq_scale;
  1644. uint32_t n_yarn_orig_ctx;
  1645. // These hyperparameters are not exposed in GGUF, because all
  1646. // existing YaRN models use the same values for them.
  1647. float yarn_ext_factor;
  1648. float yarn_attn_factor;
  1649. float yarn_beta_fast;
  1650. float yarn_beta_slow;
  1651. float defrag_thold;
  1652. bool embeddings;
  1653. bool causal_attn;
  1654. bool offload_kqv;
  1655. enum llama_pooling_type pooling_type;
  1656. ggml_backend_sched_eval_callback cb_eval;
  1657. void * cb_eval_user_data;
  1658. };
  1659. struct llama_layer {
  1660. // normalization
  1661. struct ggml_tensor * attn_norm;
  1662. struct ggml_tensor * attn_norm_b;
  1663. struct ggml_tensor * attn_norm_2;
  1664. struct ggml_tensor * attn_norm_2_b;
  1665. struct ggml_tensor * attn_q_norm;
  1666. struct ggml_tensor * attn_q_norm_b;
  1667. struct ggml_tensor * attn_k_norm;
  1668. struct ggml_tensor * attn_k_norm_b;
  1669. struct ggml_tensor * attn_out_norm;
  1670. struct ggml_tensor * attn_out_norm_b;
  1671. // attention
  1672. struct ggml_tensor * wq;
  1673. struct ggml_tensor * wk;
  1674. struct ggml_tensor * wv;
  1675. struct ggml_tensor * wo;
  1676. struct ggml_tensor * wqkv;
  1677. // attention bias
  1678. struct ggml_tensor * bq;
  1679. struct ggml_tensor * bk;
  1680. struct ggml_tensor * bv;
  1681. struct ggml_tensor * bo;
  1682. struct ggml_tensor * bqkv;
  1683. // normalization
  1684. struct ggml_tensor * ffn_norm;
  1685. struct ggml_tensor * ffn_norm_b;
  1686. struct ggml_tensor * layer_out_norm;
  1687. struct ggml_tensor * layer_out_norm_b;
  1688. // ff
  1689. struct ggml_tensor * ffn_gate; // w1
  1690. struct ggml_tensor * ffn_down; // w2
  1691. struct ggml_tensor * ffn_up; // w3
  1692. // ff MoE
  1693. struct ggml_tensor * ffn_gate_inp;
  1694. struct ggml_tensor * ffn_gate_exps;
  1695. struct ggml_tensor * ffn_down_exps;
  1696. struct ggml_tensor * ffn_up_exps ;
  1697. // ff bias
  1698. struct ggml_tensor * ffn_down_b; // b2
  1699. struct ggml_tensor * ffn_up_b; // b3
  1700. struct ggml_tensor * ffn_act;
  1701. // mamba proj
  1702. struct ggml_tensor * ssm_in;
  1703. struct ggml_tensor * ssm_x;
  1704. struct ggml_tensor * ssm_dt;
  1705. struct ggml_tensor * ssm_out;
  1706. // mamba
  1707. struct ggml_tensor * ssm_conv1d;
  1708. struct ggml_tensor * ssm_a;
  1709. struct ggml_tensor * ssm_d;
  1710. // mamba bias
  1711. struct ggml_tensor * ssm_conv1d_b;
  1712. struct ggml_tensor * ssm_dt_b;
  1713. };
  1714. struct llama_kv_cell {
  1715. llama_pos pos = -1;
  1716. llama_pos delta = 0;
  1717. int32_t src = 0; // used by recurrent state models to copy states
  1718. std::set<llama_seq_id> seq_id;
  1719. bool has_seq_id(const llama_seq_id & id) const {
  1720. return seq_id.find(id) != seq_id.end();
  1721. }
  1722. bool is_empty() const {
  1723. return seq_id.empty();
  1724. }
  1725. bool is_same_seq(const llama_kv_cell & other) const {
  1726. return seq_id == other.seq_id;
  1727. }
  1728. };
  1729. // ring-buffer of cached KV data
  1730. struct llama_kv_cache {
  1731. bool has_shift = false;
  1732. bool do_defrag = false;
  1733. bool do_copy = false;
  1734. // with recurrent state models, a cell can hold the state for more than one past token
  1735. bool recurrent = false;
  1736. // Note: The value of head isn't only used to optimize searching
  1737. // for a free KV slot. llama_decode_internal also uses it, so it
  1738. // cannot be freely changed after a slot has been allocated.
  1739. uint32_t head = 0;
  1740. uint32_t size = 0;
  1741. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1742. // computed before each graph build
  1743. uint32_t n = 0;
  1744. ggml_type type_k = GGML_TYPE_F16;
  1745. ggml_type type_v = GGML_TYPE_F16;
  1746. std::vector<llama_kv_cell> cells;
  1747. std::vector<struct ggml_tensor *> k_l; // per layer
  1748. std::vector<struct ggml_tensor *> v_l;
  1749. std::vector<struct ggml_context *> ctxs;
  1750. std::vector<ggml_backend_buffer_t> bufs;
  1751. size_t total_size() const {
  1752. size_t size = 0;
  1753. for (ggml_backend_buffer_t buf : bufs) {
  1754. size += ggml_backend_buffer_get_size(buf);
  1755. }
  1756. return size;
  1757. }
  1758. ~llama_kv_cache() {
  1759. for (struct ggml_context * ctx : ctxs) {
  1760. ggml_free(ctx);
  1761. }
  1762. for (ggml_backend_buffer_t buf : bufs) {
  1763. ggml_backend_buffer_free(buf);
  1764. }
  1765. }
  1766. };
  1767. struct llama_control_vector {
  1768. std::vector<struct ggml_tensor *> tensors; // per layer
  1769. std::vector<struct ggml_context *> ctxs;
  1770. std::vector<ggml_backend_buffer_t> bufs;
  1771. int32_t layer_start = -1;
  1772. int32_t layer_end = -1;
  1773. ggml_tensor * tensor_for(int il) const {
  1774. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1775. return nullptr;
  1776. }
  1777. return tensors[il];
  1778. }
  1779. ~llama_control_vector() {
  1780. for (struct ggml_context * ctx : ctxs) {
  1781. ggml_free(ctx);
  1782. }
  1783. for (ggml_backend_buffer_t buf : bufs) {
  1784. ggml_backend_buffer_free(buf);
  1785. }
  1786. }
  1787. };
  1788. struct llama_vocab {
  1789. using id = int32_t;
  1790. using token = std::string;
  1791. using ttype = llama_token_type;
  1792. struct token_data {
  1793. token text;
  1794. float score;
  1795. ttype type;
  1796. };
  1797. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1798. std::unordered_map<token, id> token_to_id;
  1799. std::vector<token_data> id_to_token;
  1800. std::unordered_map<token, id> special_tokens_cache;
  1801. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1802. // default LLaMA special tokens
  1803. id special_bos_id = 1;
  1804. id special_eos_id = 2;
  1805. id special_unk_id = 0;
  1806. id special_sep_id = -1;
  1807. id special_pad_id = -1;
  1808. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1809. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1810. id linefeed_id = 13;
  1811. id special_prefix_id = 32007;
  1812. id special_middle_id = 32009;
  1813. id special_suffix_id = 32008;
  1814. id special_eot_id = 32010;
  1815. bool add_space_prefix = true;
  1816. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1817. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1818. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1819. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1820. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1821. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1822. if (it == bpe_ranks.end()) {
  1823. return -1;
  1824. }
  1825. return it->second;
  1826. }
  1827. };
  1828. struct llama_model {
  1829. e_model type = MODEL_UNKNOWN;
  1830. llm_arch arch = LLM_ARCH_UNKNOWN;
  1831. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1832. std::string name = "n/a";
  1833. llama_hparams hparams = {};
  1834. llama_vocab vocab;
  1835. struct ggml_tensor * tok_embd;
  1836. struct ggml_tensor * type_embd;
  1837. struct ggml_tensor * pos_embd;
  1838. struct ggml_tensor * tok_norm;
  1839. struct ggml_tensor * tok_norm_b;
  1840. struct ggml_tensor * output_norm;
  1841. struct ggml_tensor * output_norm_b;
  1842. struct ggml_tensor * output;
  1843. struct ggml_tensor * output_b;
  1844. std::vector<llama_layer> layers;
  1845. llama_split_mode split_mode;
  1846. int main_gpu;
  1847. int n_gpu_layers;
  1848. // gguf metadata
  1849. std::unordered_map<std::string, std::string> gguf_kv;
  1850. // layer -> buffer type mapping
  1851. struct layer_buft {
  1852. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1853. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1854. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1855. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1856. ggml_backend_buffer_type_t buft; // everything else
  1857. };
  1858. layer_buft buft_input;
  1859. layer_buft buft_output;
  1860. std::vector<layer_buft> buft_layer;
  1861. // contexts where the model tensors metadata is stored
  1862. std::vector<struct ggml_context *> ctxs;
  1863. // the model memory buffers for the tensor data
  1864. std::vector<ggml_backend_buffer_t> bufs;
  1865. // model memory mapped files
  1866. llama_mmaps mappings;
  1867. // objects representing data potentially being locked in memory
  1868. llama_mlocks mlock_bufs;
  1869. llama_mlocks mlock_mmaps;
  1870. // for quantize-stats only
  1871. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1872. int64_t t_load_us = 0;
  1873. int64_t t_start_us = 0;
  1874. ~llama_model() {
  1875. for (struct ggml_context * ctx : ctxs) {
  1876. ggml_free(ctx);
  1877. }
  1878. for (ggml_backend_buffer_t buf : bufs) {
  1879. #ifdef GGML_USE_CUDA
  1880. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  1881. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  1882. }
  1883. #endif
  1884. ggml_backend_buffer_free(buf);
  1885. }
  1886. }
  1887. };
  1888. struct llama_context {
  1889. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1890. ~llama_context() {
  1891. ggml_backend_sched_free(sched);
  1892. for (ggml_backend_t backend : backends) {
  1893. ggml_backend_free(backend);
  1894. }
  1895. ggml_backend_buffer_free(buf_output);
  1896. }
  1897. llama_cparams cparams;
  1898. std::vector<ggml_backend_t> backends;
  1899. #ifdef GGML_USE_METAL
  1900. ggml_backend_t backend_metal = nullptr;
  1901. #endif
  1902. ggml_backend_t backend_cpu = nullptr;
  1903. const llama_model & model;
  1904. // key + value cache for the self attention
  1905. struct llama_kv_cache kv_self;
  1906. std::mt19937 rng;
  1907. bool has_evaluated_once = false;
  1908. int64_t t_start_us;
  1909. int64_t t_load_us;
  1910. int64_t t_sample_us = 0;
  1911. int64_t t_p_eval_us = 0;
  1912. int64_t t_eval_us = 0;
  1913. int64_t t_compute_start_us = 0;
  1914. int64_t n_queued_tokens = 0;
  1915. int32_t n_sample = 0; // number of tokens sampled
  1916. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1917. int32_t n_eval = 0; // number of eval calls
  1918. // host buffer for the model output (logits and embeddings)
  1919. ggml_backend_buffer_t buf_output = nullptr;
  1920. // decode output (2-dimensional array: [n_outputs][n_vocab])
  1921. size_t logits_size = 0; // capacity (of floats) for logits
  1922. float * logits = nullptr;
  1923. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  1924. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  1925. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch
  1926. bool logits_all = false;
  1927. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  1928. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  1929. size_t embd_size = 0; // capacity (of floats) for embeddings
  1930. float * embd = nullptr;
  1931. // sequence embeddings output (map of [n_embd] vectors)
  1932. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  1933. std::map<llama_seq_id, std::vector<float>> embd_seq;
  1934. // memory buffers used to evaluate the model
  1935. std::vector<uint8_t> buf_compute_meta;
  1936. ggml_backend_sched_t sched = nullptr;
  1937. ggml_abort_callback abort_callback = nullptr;
  1938. void * abort_callback_data = nullptr;
  1939. // input tensors
  1940. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  1941. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  1942. struct ggml_tensor * inp_pos; // I32 [n_batch]
  1943. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  1944. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  1945. struct ggml_tensor * inp_KQ_pos; // F32 [n_kv]
  1946. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  1947. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  1948. struct ggml_tensor * inp_cls; // I32 [n_batch]
  1949. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  1950. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  1951. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  1952. // control vectors
  1953. struct llama_control_vector cvec;
  1954. #ifdef GGML_USE_MPI
  1955. ggml_mpi_context * ctx_mpi = NULL;
  1956. #endif
  1957. };
  1958. //
  1959. // kv cache helpers
  1960. //
  1961. static bool llama_kv_cache_init(
  1962. struct llama_kv_cache & cache,
  1963. const llama_model & model,
  1964. ggml_type type_k,
  1965. ggml_type type_v,
  1966. uint32_t kv_size,
  1967. bool offload) {
  1968. const struct llama_hparams & hparams = model.hparams;
  1969. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  1970. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  1971. const int64_t n_layer = hparams.n_layer;
  1972. cache.has_shift = false;
  1973. // TODO: find a nicer way to add other recurrent model architectures
  1974. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  1975. // TODO: support mixed reccurent Transformer architectues
  1976. // NOTE: (!a || b) is a logical implication (a -> b)
  1977. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  1978. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  1979. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  1980. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  1981. cache.head = 0;
  1982. cache.size = kv_size;
  1983. cache.used = 0;
  1984. cache.type_k = type_k;
  1985. cache.type_v = type_v;
  1986. cache.cells.clear();
  1987. cache.cells.resize(kv_size);
  1988. if (cache.recurrent) {
  1989. // init state copy sources
  1990. for (uint32_t i = 0; i < cache.size; ++i) {
  1991. cache.cells[i].src = i;
  1992. }
  1993. }
  1994. #ifdef GGML_USE_CLBLAST
  1995. offload = false;
  1996. #endif
  1997. // count used buffer types
  1998. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  1999. if (offload) {
  2000. for (int64_t i = 0; i < n_layer; ++i) {
  2001. buft_layer_count[model.buft_layer[i].buft]++;
  2002. }
  2003. } else {
  2004. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2005. }
  2006. // create a context for each buffer type
  2007. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2008. for (auto & it : buft_layer_count) {
  2009. int n_layers = it.second;
  2010. struct ggml_init_params params = {
  2011. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2012. /*.mem_buffer =*/ NULL,
  2013. /*.no_alloc =*/ true,
  2014. };
  2015. ggml_context * ctx = ggml_init(params);
  2016. if (!ctx) {
  2017. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2018. return false;
  2019. }
  2020. ctx_map[it.first] = ctx;
  2021. cache.ctxs.push_back(ctx);
  2022. }
  2023. cache.k_l.reserve(n_layer);
  2024. cache.v_l.reserve(n_layer);
  2025. for (int i = 0; i < (int) n_layer; i++) {
  2026. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2027. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2028. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2029. ggml_format_name(k, "cache_k_l%d", i);
  2030. ggml_format_name(v, "cache_v_l%d", i);
  2031. cache.k_l.push_back(k);
  2032. cache.v_l.push_back(v);
  2033. }
  2034. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2035. for (auto it : ctx_map) {
  2036. ggml_backend_buffer_type_t buft = it.first;
  2037. ggml_context * ctx = it.second;
  2038. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2039. if (!buf) {
  2040. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2041. return false;
  2042. }
  2043. ggml_backend_buffer_clear(buf, 0);
  2044. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2045. cache.bufs.push_back(buf);
  2046. }
  2047. return true;
  2048. }
  2049. // find an empty slot of size "n_tokens" in the cache
  2050. // updates the cache head
  2051. // Note: On success, it's important that cache.head points
  2052. // to the first cell of the slot.
  2053. static bool llama_kv_cache_find_slot(
  2054. struct llama_kv_cache & cache,
  2055. const struct llama_batch & batch) {
  2056. const uint32_t n_ctx = cache.size;
  2057. const uint32_t n_tokens = batch.n_tokens;
  2058. if (cache.recurrent) {
  2059. // For recurrent state architectures (like Mamba),
  2060. // each KV cache cell can store the state for a whole sequence.
  2061. llama_seq_id min = cache.size - 1;
  2062. llama_seq_id max = 0;
  2063. for (uint32_t i = 0; i < n_tokens; ++i) {
  2064. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2065. llama_seq_id seq_id = batch.seq_id[i][j];
  2066. // make sure it's a valid seq_id
  2067. if ((uint32_t) seq_id < cache.size) {
  2068. if (seq_id > max) {
  2069. max = seq_id;
  2070. }
  2071. if (seq_id < min) {
  2072. min = seq_id;
  2073. }
  2074. // Assuming the tokens are in-order
  2075. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2076. // What should happen when the pos backtracks or skips a value?
  2077. // Clearing the state mid-batch would require special-casing which isn't done.
  2078. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2079. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2080. }
  2081. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2082. cache.used += 1;
  2083. }
  2084. cache.cells[seq_id].pos = batch.pos[i];
  2085. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2086. } else {
  2087. // too big seq_id
  2088. // TODO: would it be possible to resize the KV cache size instead?
  2089. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2090. return false;
  2091. }
  2092. }
  2093. }
  2094. // allow getting the range of used cells, from head to head + n
  2095. cache.head = min;
  2096. cache.n = max - min + 1;
  2097. // sanity check
  2098. return max >= min;
  2099. }
  2100. // otherwise, one cell per token.
  2101. if (n_tokens > n_ctx) {
  2102. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  2103. return false;
  2104. }
  2105. uint32_t n_tested = 0;
  2106. while (true) {
  2107. if (cache.head + n_tokens > n_ctx) {
  2108. n_tested += n_ctx - cache.head;
  2109. cache.head = 0;
  2110. continue;
  2111. }
  2112. bool found = true;
  2113. for (uint32_t i = 0; i < n_tokens; i++) {
  2114. if (cache.cells[cache.head + i].pos >= 0) {
  2115. found = false;
  2116. cache.head += i + 1;
  2117. n_tested += i + 1;
  2118. break;
  2119. }
  2120. }
  2121. if (found) {
  2122. break;
  2123. }
  2124. if (n_tested >= n_ctx) {
  2125. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2126. return false;
  2127. }
  2128. }
  2129. for (uint32_t i = 0; i < n_tokens; i++) {
  2130. cache.cells[cache.head + i].pos = batch.pos[i];
  2131. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2132. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2133. }
  2134. }
  2135. cache.used += n_tokens;
  2136. return true;
  2137. }
  2138. // find how many cells are currently in use
  2139. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2140. for (uint32_t i = cache.size; i > 0; --i) {
  2141. const llama_kv_cell & cell = cache.cells[i - 1];
  2142. if (cell.pos >= 0 && !cell.is_empty()) {
  2143. return i;
  2144. }
  2145. }
  2146. return 0;
  2147. }
  2148. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2149. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2150. cache.cells[i].pos = -1;
  2151. cache.cells[i].seq_id.clear();
  2152. }
  2153. cache.head = 0;
  2154. cache.used = 0;
  2155. }
  2156. static bool llama_kv_cache_seq_rm(
  2157. struct llama_kv_cache & cache,
  2158. llama_seq_id seq_id,
  2159. llama_pos p0,
  2160. llama_pos p1) {
  2161. uint32_t new_head = cache.size;
  2162. if (p0 < 0) p0 = 0;
  2163. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2164. // models like Mamba can't have a state partially erased
  2165. if (cache.recurrent) {
  2166. if (seq_id >= (int64_t) cache.size) {
  2167. // could be fatal
  2168. return false;
  2169. }
  2170. if (0 <= seq_id) {
  2171. // partial intersection is invalid
  2172. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2173. return false;
  2174. }
  2175. } else {
  2176. // seq_id is negative, then the range should include everything or nothing
  2177. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2178. return false;
  2179. }
  2180. }
  2181. }
  2182. for (uint32_t i = 0; i < cache.size; ++i) {
  2183. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2184. if (seq_id < 0) {
  2185. cache.cells[i].seq_id.clear();
  2186. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2187. cache.cells[i].seq_id.erase(seq_id);
  2188. } else {
  2189. continue;
  2190. }
  2191. if (cache.cells[i].is_empty()) {
  2192. // keep count of the number of used cells
  2193. if (cache.cells[i].pos >= 0) cache.used--;
  2194. cache.cells[i].pos = -1;
  2195. if (new_head == cache.size) new_head = i;
  2196. }
  2197. }
  2198. }
  2199. // If we freed up a slot, set head to it so searching can start there.
  2200. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2201. return true;
  2202. }
  2203. static void llama_kv_cache_seq_cp(
  2204. struct llama_kv_cache & cache,
  2205. llama_seq_id seq_id_src,
  2206. llama_seq_id seq_id_dst,
  2207. llama_pos p0,
  2208. llama_pos p1) {
  2209. if (p0 < 0) p0 = 0;
  2210. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2211. if (cache.recurrent) {
  2212. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2213. seq_id_src = cache.cells[seq_id_src].src;
  2214. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2215. // intent to "copy from"
  2216. // supports copy chains thanks to taking the source of the source
  2217. cache.cells[seq_id_dst].src = seq_id_src;
  2218. // preserve the "keep or clear" status of the copied sequence
  2219. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2220. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2221. } else {
  2222. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2223. }
  2224. cache.do_copy = true;
  2225. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2226. }
  2227. return;
  2228. }
  2229. // otherwise, this is the KV cache of a Transformer-like model
  2230. cache.head = 0;
  2231. for (uint32_t i = 0; i < cache.size; ++i) {
  2232. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2233. cache.cells[i].seq_id.insert(seq_id_dst);
  2234. }
  2235. }
  2236. }
  2237. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2238. uint32_t new_head = cache.size;
  2239. for (uint32_t i = 0; i < cache.size; ++i) {
  2240. if (!cache.cells[i].has_seq_id(seq_id)) {
  2241. if (cache.cells[i].pos >= 0) cache.used--;
  2242. cache.cells[i].pos = -1;
  2243. cache.cells[i].seq_id.clear();
  2244. if (new_head == cache.size) new_head = i;
  2245. } else {
  2246. cache.cells[i].seq_id.clear();
  2247. cache.cells[i].seq_id.insert(seq_id);
  2248. }
  2249. }
  2250. // If we freed up a slot, set head to it so searching can start there.
  2251. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2252. }
  2253. static void llama_kv_cache_seq_add(
  2254. struct llama_kv_cache & cache,
  2255. llama_seq_id seq_id,
  2256. llama_pos p0,
  2257. llama_pos p1,
  2258. llama_pos delta) {
  2259. uint32_t new_head = cache.size;
  2260. if (p0 < 0) p0 = 0;
  2261. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2262. if (cache.recurrent) {
  2263. // for Mamba-like models, only the pos needs to be shifted
  2264. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2265. llama_kv_cell & cell = cache.cells[seq_id];
  2266. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2267. cell.pos += delta;
  2268. }
  2269. }
  2270. return;
  2271. }
  2272. for (uint32_t i = 0; i < cache.size; ++i) {
  2273. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2274. cache.has_shift = true;
  2275. cache.cells[i].pos += delta;
  2276. cache.cells[i].delta += delta;
  2277. if (cache.cells[i].pos < 0) {
  2278. if (!cache.cells[i].is_empty()) {
  2279. cache.used--;
  2280. }
  2281. cache.cells[i].pos = -1;
  2282. cache.cells[i].seq_id.clear();
  2283. if (new_head == cache.size) {
  2284. new_head = i;
  2285. }
  2286. }
  2287. }
  2288. }
  2289. // If we freed up a slot, set head to it so searching can start there.
  2290. // Otherwise we just start the next search from the beginning.
  2291. cache.head = new_head != cache.size ? new_head : 0;
  2292. }
  2293. static void llama_kv_cache_seq_div(
  2294. struct llama_kv_cache & cache,
  2295. llama_seq_id seq_id,
  2296. llama_pos p0,
  2297. llama_pos p1,
  2298. int d) {
  2299. if (p0 < 0) p0 = 0;
  2300. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2301. if (cache.recurrent) {
  2302. // for Mamba-like models, only the pos needs to be changed
  2303. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2304. llama_kv_cell & cell = cache.cells[seq_id];
  2305. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2306. cell.pos /= d;
  2307. }
  2308. }
  2309. return;
  2310. }
  2311. for (uint32_t i = 0; i < cache.size; ++i) {
  2312. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2313. cache.has_shift = true;
  2314. {
  2315. llama_pos p_old = cache.cells[i].pos;
  2316. cache.cells[i].pos /= d;
  2317. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2318. }
  2319. }
  2320. }
  2321. }
  2322. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2323. llama_pos result = 0;
  2324. for (uint32_t i = 0; i < cache.size; ++i) {
  2325. if (cache.cells[i].has_seq_id(seq_id)) {
  2326. result = std::max(result, cache.cells[i].pos);
  2327. }
  2328. }
  2329. return result;
  2330. }
  2331. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2332. cache.do_defrag = true;
  2333. }
  2334. //
  2335. // model loading and saving
  2336. //
  2337. enum llama_fver {
  2338. GGUF_FILE_VERSION_V1 = 1,
  2339. GGUF_FILE_VERSION_V2 = 2,
  2340. GGUF_FILE_VERSION_V3 = 3,
  2341. };
  2342. static const char * llama_file_version_name(llama_fver version) {
  2343. switch (version) {
  2344. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2345. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2346. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2347. }
  2348. return "unknown";
  2349. }
  2350. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2351. char buf[256];
  2352. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2353. for (size_t i = 1; i < ne.size(); i++) {
  2354. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2355. }
  2356. return buf;
  2357. }
  2358. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2359. char buf[256];
  2360. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2361. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2362. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2363. }
  2364. return buf;
  2365. }
  2366. namespace GGUFMeta {
  2367. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2368. struct GKV_Base_Type {
  2369. static constexpr gguf_type gt = gt_;
  2370. static T getter(const gguf_context * ctx, const int kid) {
  2371. return gfun(ctx, kid);
  2372. }
  2373. };
  2374. template<typename T> struct GKV_Base;
  2375. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2376. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2377. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2378. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2379. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2380. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2381. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2382. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2383. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2384. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2385. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2386. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2387. template<> struct GKV_Base<std::string> {
  2388. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2389. static std::string getter(const gguf_context * ctx, const int kid) {
  2390. return gguf_get_val_str(ctx, kid);
  2391. }
  2392. };
  2393. struct ArrayInfo {
  2394. const gguf_type gt;
  2395. const size_t length;
  2396. const void * data;
  2397. };
  2398. template<> struct GKV_Base<ArrayInfo> {
  2399. public:
  2400. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2401. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2402. return ArrayInfo {
  2403. gguf_get_arr_type(ctx, k),
  2404. size_t(gguf_get_arr_n(ctx, k)),
  2405. gguf_get_arr_data(ctx, k),
  2406. };
  2407. }
  2408. };
  2409. template<typename T>
  2410. class GKV : public GKV_Base<T> {
  2411. GKV() = delete;
  2412. public:
  2413. static T get_kv(const gguf_context * ctx, const int k) {
  2414. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2415. if (kt != GKV::gt) {
  2416. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2417. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2418. }
  2419. return GKV::getter(ctx, k);
  2420. }
  2421. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2422. switch (ty) {
  2423. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2424. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2425. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2426. }
  2427. return "unknown";
  2428. }
  2429. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2430. if (!ovrd) { return false; }
  2431. if (ovrd->tag == expected_type) {
  2432. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2433. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2434. switch (ovrd->tag) {
  2435. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2436. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2437. } break;
  2438. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2439. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2440. } break;
  2441. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2442. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2443. } break;
  2444. default:
  2445. // Shouldn't be possible to end up here, but just in case...
  2446. throw std::runtime_error(
  2447. format("Unsupported attempt to override %s type for metadata key %s\n",
  2448. override_type_to_str(ovrd->tag), ovrd->key));
  2449. }
  2450. return true;
  2451. }
  2452. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2453. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2454. return false;
  2455. }
  2456. template<typename OT>
  2457. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2458. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2459. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2460. target = ovrd->bool_value;
  2461. return true;
  2462. }
  2463. return false;
  2464. }
  2465. template<typename OT>
  2466. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2467. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2468. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2469. target = ovrd->int_value;
  2470. return true;
  2471. }
  2472. return false;
  2473. }
  2474. template<typename OT>
  2475. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2476. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2477. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2478. target = ovrd->float_value;
  2479. return true;
  2480. }
  2481. return false;
  2482. }
  2483. template<typename OT>
  2484. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2485. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2486. (void)target;
  2487. (void)ovrd;
  2488. if (!ovrd) { return false; }
  2489. // Currently, we should never end up here so it would be a bug if we do.
  2490. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2491. ovrd ? ovrd->key : "NULL"));
  2492. }
  2493. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2494. if (try_override<T>(target, ovrd)) {
  2495. return true;
  2496. }
  2497. if (k < 0) { return false; }
  2498. target = get_kv(ctx, k);
  2499. return true;
  2500. }
  2501. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2502. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2503. }
  2504. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2505. return set(ctx, key.c_str(), target, ovrd);
  2506. }
  2507. };
  2508. }
  2509. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2510. struct llama_model_loader {
  2511. int n_kv = 0;
  2512. int n_tensors = 0;
  2513. int n_created = 0;
  2514. int64_t n_elements = 0;
  2515. size_t n_bytes = 0;
  2516. bool use_mmap = false;
  2517. llama_files files;
  2518. llama_ftype ftype;
  2519. llama_fver fver;
  2520. llama_mmaps mappings;
  2521. // Holds information on a model weight
  2522. struct llama_tensor_weight {
  2523. uint16_t idx; // source file index
  2524. size_t offs; // tensor data offset in the original file
  2525. ggml_tensor * tensor;
  2526. llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2527. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2528. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2529. }
  2530. };
  2531. std::vector<llama_tensor_weight> weights;
  2532. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2533. struct gguf_context * meta = NULL;
  2534. std::vector<ggml_context *> contexts;
  2535. std::string arch_name;
  2536. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2537. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) {
  2538. int trace = 0;
  2539. if (getenv("LLAMA_TRACE")) {
  2540. trace = atoi(getenv("LLAMA_TRACE"));
  2541. }
  2542. if (param_overrides_p != nullptr) {
  2543. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2544. kv_overrides.insert({std::string(p->key), *p});
  2545. }
  2546. }
  2547. struct ggml_context * ctx = NULL;
  2548. struct gguf_init_params params = {
  2549. /*.no_alloc = */ true,
  2550. /*.ctx = */ &ctx,
  2551. };
  2552. meta = gguf_init_from_file(fname.c_str(), params);
  2553. if (!meta) {
  2554. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2555. }
  2556. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2557. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2558. // Save tensors data offset of the main file.
  2559. // For subsidiary files, `meta` tensor data offset must not be used,
  2560. // so we build a unified tensors index for weights.
  2561. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2562. weights.emplace_back(0, cur->name, meta, cur);
  2563. }
  2564. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2565. contexts.emplace_back(ctx);
  2566. uint16_t n_split = 0;
  2567. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2568. // Load additional GGML contexts
  2569. if (n_split > 1) {
  2570. uint16_t idx = 0;
  2571. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2572. if (idx != 0) {
  2573. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2574. }
  2575. char split_prefix[PATH_MAX] = {0};
  2576. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2577. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2578. }
  2579. if (trace > 0) {
  2580. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2581. }
  2582. char split_path[PATH_MAX] = {0};
  2583. for (idx = 1; idx < n_split; idx++) {
  2584. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2585. struct gguf_init_params split_params = {
  2586. /*.no_alloc = */ true,
  2587. /*.ctx = */ &ctx,
  2588. };
  2589. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2590. if (!ctx_gguf) {
  2591. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2592. }
  2593. // Save tensors data offset info of the shard.
  2594. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2595. weights.emplace_back(idx, cur->name, ctx_gguf, cur);
  2596. }
  2597. files.emplace_back(new llama_file(split_path, "rb"));
  2598. contexts.emplace_back(ctx);
  2599. gguf_free(ctx_gguf);
  2600. }
  2601. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2602. // sanity check
  2603. {
  2604. const int n_tensors_loaded = (int) weights.size();
  2605. if (n_tensors != n_tensors_loaded) {
  2606. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2607. }
  2608. }
  2609. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2610. }
  2611. n_kv = gguf_get_n_kv(meta);
  2612. n_tensors = weights.size();
  2613. fver = (enum llama_fver) gguf_get_version(meta);
  2614. for (auto & w : weights) {
  2615. n_elements += ggml_nelements(w.tensor);
  2616. n_bytes += ggml_nbytes(w.tensor);
  2617. }
  2618. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2619. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2620. // determine file type based on the number of tensors for each quantization and print meta data
  2621. // TODO: make optional
  2622. {
  2623. std::map<enum ggml_type, uint32_t> n_type;
  2624. uint32_t n_type_max = 0;
  2625. enum ggml_type type_max = GGML_TYPE_F32;
  2626. for (int i = 0; i < n_tensors; i++) {
  2627. const ggml_tensor * tensor = weights.at(i).tensor;
  2628. enum ggml_type type = tensor->type;
  2629. n_type[type]++;
  2630. if (n_type_max < n_type[type]) {
  2631. n_type_max = n_type[type];
  2632. type_max = type;
  2633. }
  2634. if (trace > 0) {
  2635. const uint16_t sid = weights.at(i).idx;
  2636. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2637. }
  2638. }
  2639. switch (type_max) {
  2640. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2641. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2642. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2643. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2644. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2645. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2646. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2647. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2648. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2649. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2650. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2651. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2652. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2653. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2654. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2655. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2656. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2657. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2658. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2659. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2660. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2661. default:
  2662. {
  2663. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2664. ftype = LLAMA_FTYPE_ALL_F32;
  2665. } break;
  2666. }
  2667. // this is a way to mark that we have "guessed" the file type
  2668. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2669. {
  2670. const int kid = gguf_find_key(meta, "general.file_type");
  2671. if (kid >= 0) {
  2672. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2673. }
  2674. }
  2675. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2676. for (int i = 0; i < n_kv; i++) {
  2677. const char * name = gguf_get_key(meta, i);
  2678. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2679. const std::string type_name =
  2680. type == GGUF_TYPE_ARRAY
  2681. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2682. : gguf_type_name(type);
  2683. std::string value = gguf_kv_to_str(meta, i);
  2684. const size_t MAX_VALUE_LEN = 40;
  2685. if (value.size() > MAX_VALUE_LEN) {
  2686. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2687. }
  2688. replace_all(value, "\n", "\\n");
  2689. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2690. }
  2691. // print type counts
  2692. for (auto & kv : n_type) {
  2693. if (kv.second == 0) {
  2694. continue;
  2695. }
  2696. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2697. }
  2698. }
  2699. if (!llama_mmap::SUPPORTED) {
  2700. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2701. use_mmap = false;
  2702. }
  2703. this->use_mmap = use_mmap;
  2704. }
  2705. ~llama_model_loader() {
  2706. if (meta) {
  2707. gguf_free(meta);
  2708. }
  2709. for (auto * ctx : contexts) {
  2710. ggml_free(ctx);
  2711. }
  2712. }
  2713. template<typename T>
  2714. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2715. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2716. const int kid = gguf_find_key(meta, key.c_str());
  2717. if (kid < 0) {
  2718. if (required) {
  2719. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2720. }
  2721. return false;
  2722. }
  2723. struct GGUFMeta::ArrayInfo arr_info =
  2724. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  2725. result = arr_info.length;
  2726. return true;
  2727. }
  2728. template<typename T>
  2729. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2730. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2731. return get_arr_n(llm_kv(kid), result, required);
  2732. }
  2733. template<typename T>
  2734. bool get_key(const std::string & key, T & result, const bool required = true) {
  2735. auto it = kv_overrides.find(key);
  2736. const struct llama_model_kv_override * override =
  2737. it != kv_overrides.end() ? &it->second : nullptr;
  2738. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  2739. if (required && !found) {
  2740. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2741. }
  2742. return found;
  2743. }
  2744. template<typename T>
  2745. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2746. return get_key(llm_kv(kid), result, required);
  2747. }
  2748. std::string get_arch_name() const {
  2749. return arch_name;
  2750. }
  2751. enum llm_arch get_arch() const {
  2752. return llm_kv.arch;
  2753. }
  2754. const char * get_tensor_name(int i) const {
  2755. return weights.at(i).tensor->name;
  2756. }
  2757. const llama_tensor_weight * get_weight(const char * name) const {
  2758. for (const auto & weight : weights) {
  2759. if (strcmp(name, weight.tensor->name) == 0) {
  2760. return &weight;
  2761. }
  2762. }
  2763. return nullptr;
  2764. }
  2765. const llama_tensor_weight & require_weight(const char * name) const {
  2766. const llama_tensor_weight * weight = get_weight(name);
  2767. if (!weight) {
  2768. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2769. }
  2770. return *weight;
  2771. }
  2772. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2773. const auto * weight = get_weight(name);
  2774. if (!weight) {
  2775. return nullptr;
  2776. }
  2777. return weight->tensor;
  2778. }
  2779. struct ggml_tensor * require_tensor_meta(const char * name) const {
  2780. struct ggml_tensor * tensor = get_tensor_meta(name);
  2781. if (!tensor) {
  2782. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  2783. }
  2784. return tensor;
  2785. }
  2786. struct ggml_tensor * get_tensor_meta(int i) const {
  2787. return get_tensor_meta(get_tensor_name(i));
  2788. }
  2789. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) {
  2790. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  2791. ggml_set_name(tensor, ggml_get_name(cur));
  2792. n_created++;
  2793. return tensor;
  2794. }
  2795. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  2796. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  2797. if (cur == NULL) {
  2798. if (!required) {
  2799. return NULL;
  2800. }
  2801. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2802. }
  2803. {
  2804. bool is_ok = true;
  2805. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2806. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  2807. is_ok = false;
  2808. break;
  2809. }
  2810. }
  2811. if (!is_ok) {
  2812. throw std::runtime_error(
  2813. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2814. __func__, name.c_str(),
  2815. llama_format_tensor_shape(ne).c_str(),
  2816. llama_format_tensor_shape(cur).c_str()));
  2817. }
  2818. }
  2819. return cur;
  2820. }
  2821. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2822. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2823. if (cur == NULL) {
  2824. return NULL;
  2825. }
  2826. return create_tensor_for(ctx, cur);
  2827. }
  2828. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  2829. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  2830. if (cur == NULL) {
  2831. return NULL;
  2832. }
  2833. if (cur->type != base->type) {
  2834. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  2835. }
  2836. std::array<int64_t, GGML_MAX_DIMS> dims;
  2837. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  2838. dims[i] = i < ne.size() ? ne[i] : 1;
  2839. }
  2840. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  2841. dims[0], dims[1], dims[2], dims[3],
  2842. cur->nb[1], cur->nb[2], cur->nb[3],
  2843. offset);
  2844. ggml_set_name(tensor, name.c_str());
  2845. n_created++;
  2846. return tensor;
  2847. }
  2848. void done_getting_tensors() const {
  2849. if (n_created != n_tensors) {
  2850. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2851. }
  2852. }
  2853. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  2854. if (use_mmap) {
  2855. mappings.reserve(files.size());
  2856. mmaps_used.reserve(files.size());
  2857. for (const auto & file : files) {
  2858. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  2859. mmaps_used.emplace_back(mapping->size, 0);
  2860. if (mlock_mmaps) {
  2861. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  2862. mlock_mmap->init(mapping->addr);
  2863. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  2864. }
  2865. mappings.emplace_back(std::move(mapping));
  2866. }
  2867. }
  2868. // compute the total size of all tensors for progress reporting
  2869. for (auto & w : weights) {
  2870. size_data += ggml_nbytes(w.tensor);
  2871. }
  2872. }
  2873. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  2874. GGML_ASSERT(!mappings.empty());
  2875. const auto & mapping = mappings.at(idx);
  2876. *first = mapping->size;
  2877. *last = 0;
  2878. *addr = mapping->addr;
  2879. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2880. try {
  2881. const auto * weight = get_weight(ggml_get_name(tensor));
  2882. if (!weight) {
  2883. continue;
  2884. }
  2885. if (weight->idx != idx) {
  2886. continue;
  2887. }
  2888. *first = std::min(*first, weight->offs);
  2889. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  2890. } catch(...) {
  2891. // the tensor is not in the model
  2892. }
  2893. }
  2894. }
  2895. // for backwards compatibility, does not support ggml-backend
  2896. void load_data_for(struct ggml_tensor * cur) const {
  2897. const auto & w = require_weight(ggml_get_name(cur));
  2898. if (use_mmap) {
  2899. const auto & mapping = mappings.at(w.idx);
  2900. if (cur->data == nullptr) {
  2901. cur->data = (uint8_t *)mapping->addr + w.offs;
  2902. } else {
  2903. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  2904. }
  2905. } else {
  2906. GGML_ASSERT(cur->data != nullptr);
  2907. GGML_ASSERT(w.idx < files.size());
  2908. const auto & file = files.at(w.idx);
  2909. file->seek(w.offs, SEEK_SET);
  2910. file->read_raw(cur->data, ggml_nbytes(cur));
  2911. }
  2912. }
  2913. size_t size_done = 0;
  2914. size_t size_data = 0;
  2915. std::vector<std::pair<size_t, size_t>> mmaps_used;
  2916. // Returns false if cancelled by progress_callback
  2917. bool load_all_data(
  2918. struct ggml_context * ctx,
  2919. llama_buf_map & bufs_mmap,
  2920. llama_mlocks * lmlocks,
  2921. llama_progress_callback progress_callback,
  2922. void * progress_callback_user_data) {
  2923. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  2924. std::vector<no_init<uint8_t>> read_buf;
  2925. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  2926. const auto * weight = get_weight(ggml_get_name(cur));
  2927. if (weight == nullptr) {
  2928. // this can happen with split experts models
  2929. continue;
  2930. }
  2931. if (progress_callback) {
  2932. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  2933. return false;
  2934. }
  2935. }
  2936. size_t n_size = ggml_nbytes(cur);
  2937. if (use_mmap) {
  2938. const auto & mapping = mappings.at(weight->idx);
  2939. ggml_backend_buffer_t buf_mmap = nullptr;
  2940. if (bufs_mmap.count(weight->idx)) {
  2941. buf_mmap = bufs_mmap.at(weight->idx);
  2942. }
  2943. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  2944. if (buf_mmap && cur->data == nullptr) {
  2945. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs);
  2946. if (lmlocks) {
  2947. const auto & lmlock = lmlocks->at(weight->idx);
  2948. lmlock->grow_to(weight->offs + ggml_nbytes(cur));
  2949. }
  2950. auto & mmap_used = mmaps_used[weight->idx];
  2951. mmap_used.first = std::min(mmap_used.first, weight->offs);
  2952. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  2953. } else {
  2954. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size);
  2955. }
  2956. } else {
  2957. GGML_ASSERT(weight->idx < files.size());
  2958. const auto & file = files.at(weight->idx);
  2959. if (ggml_backend_buffer_is_host(cur->buffer)) {
  2960. file->seek(weight->offs, SEEK_SET);
  2961. file->read_raw(cur->data, ggml_nbytes(cur));
  2962. } else {
  2963. read_buf.resize(ggml_nbytes(cur));
  2964. file->seek(weight->offs, SEEK_SET);
  2965. file->read_raw(read_buf.data(), ggml_nbytes(cur));
  2966. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  2967. }
  2968. }
  2969. size_done += n_size;
  2970. }
  2971. // check if this is the last call and do final cleanup
  2972. if (size_done >= size_data) {
  2973. // unmap offloaded tensors and metadata
  2974. if (use_mmap) {
  2975. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  2976. const auto & mmap_used = mmaps_used.at(idx);
  2977. auto & mapping = mappings.at(idx);
  2978. mapping->unmap_fragment(0, mmap_used.first);
  2979. if (mmap_used.second != 0) {
  2980. mapping->unmap_fragment(mmap_used.second, mapping->size);
  2981. }
  2982. }
  2983. }
  2984. if (progress_callback) {
  2985. // Even though the model is done loading, we still honor
  2986. // cancellation since we need to free allocations.
  2987. return progress_callback(1.0f, progress_callback_user_data);
  2988. }
  2989. }
  2990. return true;
  2991. }
  2992. };
  2993. template<>
  2994. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  2995. uint32_t tmp;
  2996. const bool found = get_key(kid, tmp, required);
  2997. if (found) {
  2998. result = (enum llama_pooling_type) tmp;
  2999. } else {
  3000. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3001. }
  3002. return found;
  3003. }
  3004. //
  3005. // load LLaMA models
  3006. //
  3007. static const char * llama_model_arch_name(llm_arch arch) {
  3008. auto it = LLM_ARCH_NAMES.find(arch);
  3009. if (it == LLM_ARCH_NAMES.end()) {
  3010. return "unknown";
  3011. }
  3012. return it->second;
  3013. }
  3014. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3015. if (ftype & LLAMA_FTYPE_GUESSED) {
  3016. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3017. }
  3018. switch (ftype) {
  3019. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3020. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3021. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3022. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3023. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3024. return "Q4_1, some F16";
  3025. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3026. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3027. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3028. // K-quants
  3029. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3030. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3031. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3032. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3033. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3034. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3035. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3036. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3037. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3038. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3039. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3040. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3041. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3042. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3043. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3044. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3045. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3046. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3047. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3048. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3049. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3050. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3051. default: return "unknown, may not work";
  3052. }
  3053. }
  3054. static const char * llama_model_type_name(e_model type) {
  3055. switch (type) {
  3056. case MODEL_22M: return "22M";
  3057. case MODEL_33M: return "33M";
  3058. case MODEL_109M: return "109M";
  3059. case MODEL_137M: return "137M";
  3060. case MODEL_0_5B: return "0.5B";
  3061. case MODEL_1B: return "1B";
  3062. case MODEL_2B: return "2B";
  3063. case MODEL_3B: return "3B";
  3064. case MODEL_7B: return "7B";
  3065. case MODEL_8B: return "8B";
  3066. case MODEL_13B: return "13B";
  3067. case MODEL_14B: return "14B";
  3068. case MODEL_15B: return "15B";
  3069. case MODEL_20B: return "20B";
  3070. case MODEL_30B: return "30B";
  3071. case MODEL_34B: return "34B";
  3072. case MODEL_35B: return "35B";
  3073. case MODEL_40B: return "40B";
  3074. case MODEL_65B: return "65B";
  3075. case MODEL_70B: return "70B";
  3076. case MODEL_314B: return "314B";
  3077. case MODEL_SMALL: return "0.1B";
  3078. case MODEL_MEDIUM: return "0.4B";
  3079. case MODEL_LARGE: return "0.8B";
  3080. case MODEL_XL: return "1.5B";
  3081. default: return "?B";
  3082. }
  3083. }
  3084. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3085. switch (type) {
  3086. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3087. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3088. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3089. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3090. default: return "unknown";
  3091. }
  3092. }
  3093. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3094. model.arch = ml.get_arch();
  3095. if (model.arch == LLM_ARCH_UNKNOWN) {
  3096. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3097. }
  3098. }
  3099. static void llm_load_hparams(
  3100. llama_model_loader & ml,
  3101. llama_model & model) {
  3102. auto & hparams = model.hparams;
  3103. const gguf_context * ctx = ml.meta;
  3104. // get metadata as string
  3105. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3106. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3107. if (type == GGUF_TYPE_ARRAY) {
  3108. continue;
  3109. }
  3110. const char * name = gguf_get_key(ctx, i);
  3111. const std::string value = gguf_kv_to_str(ctx, i);
  3112. model.gguf_kv.emplace(name, value);
  3113. }
  3114. // get general kv
  3115. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3116. // get hparams kv
  3117. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3118. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3119. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3120. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3121. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3122. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3123. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3124. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3125. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3126. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3127. if (hparams.n_expert > 0) {
  3128. GGML_ASSERT(hparams.n_expert_used > 0);
  3129. } else {
  3130. GGML_ASSERT(hparams.n_expert_used == 0);
  3131. }
  3132. // n_head_kv is optional, default to n_head
  3133. hparams.n_head_kv = hparams.n_head;
  3134. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3135. bool rope_finetuned = false;
  3136. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3137. hparams.rope_finetuned = rope_finetuned;
  3138. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  3139. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  3140. // rope_freq_base (optional)
  3141. hparams.rope_freq_base_train = 10000.0f;
  3142. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3143. std::string rope_scaling("linear");
  3144. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3145. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3146. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3147. // rope_freq_scale (inverse of the kv) is optional
  3148. float ropescale = 0.0f;
  3149. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3150. // try the old key name
  3151. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3152. }
  3153. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3154. // sanity check for n_rot (optional)
  3155. {
  3156. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3157. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3158. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3159. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3160. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3161. }
  3162. }
  3163. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3164. // gpt-j n_rot = rotary_dim
  3165. }
  3166. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3167. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3168. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3169. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3170. // arch-specific KVs
  3171. switch (model.arch) {
  3172. case LLM_ARCH_LLAMA:
  3173. {
  3174. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3175. switch (hparams.n_layer) {
  3176. case 22: model.type = e_model::MODEL_1B; break;
  3177. case 26: model.type = e_model::MODEL_3B; break;
  3178. case 32: model.type = e_model::MODEL_7B; break;
  3179. case 40: model.type = e_model::MODEL_13B; break;
  3180. case 48: model.type = e_model::MODEL_34B; break;
  3181. case 60: model.type = e_model::MODEL_30B; break;
  3182. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3183. default: model.type = e_model::MODEL_UNKNOWN;
  3184. }
  3185. } break;
  3186. case LLM_ARCH_MINICPM:
  3187. {
  3188. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3189. switch (hparams.n_layer) {
  3190. case 40: model.type = e_model::MODEL_2B; break;
  3191. default: model.type = e_model::MODEL_UNKNOWN;
  3192. }
  3193. } break;
  3194. case LLM_ARCH_GROK:
  3195. {
  3196. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3197. switch (hparams.n_layer) {
  3198. case 64: model.type = e_model::MODEL_314B; break;
  3199. default: model.type = e_model::MODEL_UNKNOWN;
  3200. }
  3201. } break;
  3202. case LLM_ARCH_FALCON:
  3203. {
  3204. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3205. switch (hparams.n_layer) {
  3206. case 32: model.type = e_model::MODEL_7B; break;
  3207. case 60: model.type = e_model::MODEL_40B; break;
  3208. default: model.type = e_model::MODEL_UNKNOWN;
  3209. }
  3210. } break;
  3211. case LLM_ARCH_BAICHUAN:
  3212. {
  3213. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3214. switch (hparams.n_layer) {
  3215. case 32: model.type = e_model::MODEL_7B; break;
  3216. case 40: model.type = e_model::MODEL_13B; break;
  3217. default: model.type = e_model::MODEL_UNKNOWN;
  3218. }
  3219. if (model.type == e_model::MODEL_13B) {
  3220. // TODO: become GGUF KV parameter
  3221. hparams.f_max_alibi_bias = 8.0f;
  3222. }
  3223. } break;
  3224. case LLM_ARCH_STARCODER:
  3225. {
  3226. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3227. switch (hparams.n_layer) {
  3228. case 24: model.type = e_model::MODEL_1B; break;
  3229. case 36: model.type = e_model::MODEL_3B; break;
  3230. case 42: model.type = e_model::MODEL_7B; break;
  3231. case 40: model.type = e_model::MODEL_15B; break;
  3232. default: model.type = e_model::MODEL_UNKNOWN;
  3233. }
  3234. } break;
  3235. case LLM_ARCH_PERSIMMON:
  3236. {
  3237. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3238. switch (hparams.n_layer) {
  3239. case 36: model.type = e_model::MODEL_8B; break;
  3240. default: model.type = e_model::MODEL_UNKNOWN;
  3241. }
  3242. } break;
  3243. case LLM_ARCH_REFACT:
  3244. {
  3245. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3246. switch (hparams.n_layer) {
  3247. case 32: model.type = e_model::MODEL_1B; break;
  3248. default: model.type = e_model::MODEL_UNKNOWN;
  3249. }
  3250. // TODO: become GGUF KV parameter
  3251. hparams.f_max_alibi_bias = 8.0f;
  3252. } break;
  3253. case LLM_ARCH_BERT:
  3254. {
  3255. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3256. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3257. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3258. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3259. switch (hparams.n_layer) {
  3260. case 3:
  3261. model.type = e_model::MODEL_17M; break; // bge-micro
  3262. case 6:
  3263. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3264. case 12:
  3265. switch (hparams.n_embd) {
  3266. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3267. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3268. } break;
  3269. case 24:
  3270. model.type = e_model::MODEL_335M; break; // bge-large
  3271. }
  3272. } break;
  3273. case LLM_ARCH_NOMIC_BERT:
  3274. {
  3275. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3276. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3277. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3278. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3279. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3280. model.type = e_model::MODEL_137M;
  3281. }
  3282. } break;
  3283. case LLM_ARCH_BLOOM:
  3284. {
  3285. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3286. switch (hparams.n_layer) {
  3287. case 24: model.type = e_model::MODEL_1B; break;
  3288. case 30:
  3289. switch (hparams.n_embd) {
  3290. case 2560: model.type = e_model::MODEL_3B; break;
  3291. case 4096: model.type = e_model::MODEL_7B; break;
  3292. } break;
  3293. }
  3294. // TODO: become GGUF KV parameter
  3295. hparams.f_max_alibi_bias = 8.0f;
  3296. } break;
  3297. case LLM_ARCH_MPT:
  3298. {
  3299. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3300. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3301. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3302. switch (hparams.n_layer) {
  3303. case 32: model.type = e_model::MODEL_7B; break;
  3304. case 48: model.type = e_model::MODEL_30B; break;
  3305. default: model.type = e_model::MODEL_UNKNOWN;
  3306. }
  3307. } break;
  3308. case LLM_ARCH_STABLELM:
  3309. {
  3310. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3311. switch (hparams.n_layer) {
  3312. case 24: model.type = e_model::MODEL_1B; break;
  3313. case 32: model.type = e_model::MODEL_3B; break;
  3314. default: model.type = e_model::MODEL_UNKNOWN;
  3315. }
  3316. } break;
  3317. case LLM_ARCH_QWEN:
  3318. {
  3319. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3320. switch (hparams.n_layer) {
  3321. case 32: model.type = e_model::MODEL_7B; break;
  3322. case 40: model.type = e_model::MODEL_13B; break;
  3323. default: model.type = e_model::MODEL_UNKNOWN;
  3324. }
  3325. } break;
  3326. case LLM_ARCH_QWEN2:
  3327. {
  3328. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3329. switch (hparams.n_layer) {
  3330. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3331. case 32: model.type = e_model::MODEL_7B; break;
  3332. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3333. case 80: model.type = e_model::MODEL_70B; break;
  3334. default: model.type = e_model::MODEL_UNKNOWN;
  3335. }
  3336. } break;
  3337. case LLM_ARCH_PHI2:
  3338. {
  3339. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3340. switch (hparams.n_layer) {
  3341. case 24: model.type = e_model::MODEL_1B; break;
  3342. case 32: model.type = e_model::MODEL_3B; break;
  3343. default: model.type = e_model::MODEL_UNKNOWN;
  3344. }
  3345. } break;
  3346. case LLM_ARCH_PLAMO:
  3347. {
  3348. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3349. switch (hparams.n_layer) {
  3350. case 40: model.type = e_model::MODEL_13B; break;
  3351. default: model.type = e_model::MODEL_UNKNOWN;
  3352. }
  3353. } break;
  3354. case LLM_ARCH_GPT2:
  3355. {
  3356. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3357. switch (hparams.n_layer) {
  3358. case 12: model.type = e_model::MODEL_SMALL; break;
  3359. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3360. case 36: model.type = e_model::MODEL_LARGE; break;
  3361. case 48: model.type = e_model::MODEL_XL; break;
  3362. default: model.type = e_model::MODEL_UNKNOWN;
  3363. }
  3364. } break;
  3365. case LLM_ARCH_CODESHELL:
  3366. {
  3367. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3368. switch (hparams.n_layer) {
  3369. case 42: model.type = e_model::MODEL_SMALL; break;
  3370. default: model.type = e_model::MODEL_UNKNOWN;
  3371. }
  3372. } break;
  3373. case LLM_ARCH_ORION:
  3374. {
  3375. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3376. switch (hparams.n_layer) {
  3377. case 40: model.type = e_model::MODEL_14B; break;
  3378. default: model.type = e_model::MODEL_UNKNOWN;
  3379. }
  3380. } break;
  3381. case LLM_ARCH_INTERNLM2:
  3382. {
  3383. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3384. switch (hparams.n_layer) {
  3385. case 32: model.type = e_model::MODEL_7B; break;
  3386. case 48: model.type = e_model::MODEL_20B; break;
  3387. default: model.type = e_model::MODEL_UNKNOWN;
  3388. }
  3389. } break;
  3390. case LLM_ARCH_GEMMA:
  3391. {
  3392. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3393. switch (hparams.n_layer) {
  3394. case 18: model.type = e_model::MODEL_2B; break;
  3395. case 28: model.type = e_model::MODEL_7B; break;
  3396. default: model.type = e_model::MODEL_UNKNOWN;
  3397. }
  3398. } break;
  3399. case LLM_ARCH_STARCODER2:
  3400. {
  3401. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3402. switch (hparams.n_layer) {
  3403. case 30: model.type = e_model::MODEL_3B; break;
  3404. case 32: model.type = e_model::MODEL_7B; break;
  3405. case 40: model.type = e_model::MODEL_15B; break;
  3406. default: model.type = e_model::MODEL_UNKNOWN;
  3407. }
  3408. } break;
  3409. case LLM_ARCH_MAMBA:
  3410. {
  3411. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3412. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3413. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3414. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3415. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3416. switch (hparams.n_layer) {
  3417. case 24:
  3418. switch (hparams.n_embd) {
  3419. case 768: model.type = e_model::MODEL_SMALL; break;
  3420. default: model.type = e_model::MODEL_UNKNOWN;
  3421. } break;
  3422. case 48:
  3423. switch (hparams.n_embd) {
  3424. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3425. case 1536: model.type = e_model::MODEL_LARGE; break;
  3426. case 2048: model.type = e_model::MODEL_XL; break;
  3427. default: model.type = e_model::MODEL_UNKNOWN;
  3428. } break;
  3429. case 64:
  3430. switch (hparams.n_embd) {
  3431. case 2560: model.type = e_model::MODEL_3B; break;
  3432. default: model.type = e_model::MODEL_UNKNOWN;
  3433. } break;
  3434. default: model.type = e_model::MODEL_UNKNOWN;
  3435. }
  3436. } break;
  3437. case LLM_ARCH_XVERSE:
  3438. {
  3439. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3440. switch (hparams.n_layer) {
  3441. case 32: model.type = e_model::MODEL_7B; break;
  3442. case 40: model.type = e_model::MODEL_13B; break;
  3443. case 80: model.type = e_model::MODEL_65B; break;
  3444. default: model.type = e_model::MODEL_UNKNOWN;
  3445. }
  3446. } break;
  3447. case LLM_ARCH_COMMAND_R:
  3448. {
  3449. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3450. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3451. switch (hparams.n_layer) {
  3452. case 40: model.type = e_model::MODEL_35B; break;
  3453. default: model.type = e_model::MODEL_UNKNOWN;
  3454. }
  3455. } break;
  3456. default: (void)0;
  3457. }
  3458. model.ftype = ml.ftype;
  3459. if (hparams.f_max_alibi_bias > 0.0f) {
  3460. hparams.need_kq_pos = true;
  3461. }
  3462. hparams.rope_type = llama_rope_type(&model);
  3463. }
  3464. // TODO: This should probably be in llama.h
  3465. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  3466. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3467. static void llm_load_vocab(
  3468. llama_model_loader & ml,
  3469. llama_model & model) {
  3470. auto & vocab = model.vocab;
  3471. struct gguf_context * ctx = ml.meta;
  3472. const auto kv = LLM_KV(model.arch);
  3473. // determine vocab type
  3474. {
  3475. std::string tokenizer_name;
  3476. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  3477. if (tokenizer_name == "no_vocab") {
  3478. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3479. // default special tokens
  3480. vocab.special_bos_id = -1;
  3481. vocab.special_eos_id = -1;
  3482. vocab.special_unk_id = -1;
  3483. vocab.special_sep_id = -1;
  3484. vocab.special_pad_id = -1;
  3485. vocab.linefeed_id = -1;
  3486. return;
  3487. } else if (tokenizer_name == "llama") {
  3488. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3489. // default special tokens
  3490. vocab.special_bos_id = 1;
  3491. vocab.special_eos_id = 2;
  3492. vocab.special_unk_id = 0;
  3493. vocab.special_sep_id = -1;
  3494. vocab.special_pad_id = -1;
  3495. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  3496. if (add_space_prefix_keyidx != -1) {
  3497. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  3498. } // The default value of add_space_prefix is true.
  3499. } else if (tokenizer_name == "gpt2") {
  3500. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  3501. // read bpe merges and populate bpe ranks
  3502. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  3503. if (merges_keyidx == -1) {
  3504. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  3505. }
  3506. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  3507. for (int i = 0; i < n_merges; i++) {
  3508. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  3509. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3510. std::string first;
  3511. std::string second;
  3512. const size_t pos = word.find(' ', 1);
  3513. if (pos != std::string::npos) {
  3514. first = word.substr(0, pos);
  3515. second = word.substr(pos + 1);
  3516. }
  3517. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  3518. }
  3519. // default special tokens
  3520. vocab.special_bos_id = 11;
  3521. vocab.special_eos_id = 11;
  3522. vocab.special_unk_id = -1;
  3523. vocab.special_sep_id = -1;
  3524. vocab.special_pad_id = -1;
  3525. } else if (tokenizer_name == "bert") {
  3526. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  3527. // default special tokens
  3528. vocab.special_bos_id = 101;
  3529. vocab.special_eos_id = 102;
  3530. vocab.special_unk_id = 100;
  3531. vocab.special_sep_id = -1;
  3532. vocab.special_pad_id = -1;
  3533. vocab.add_space_prefix = false;
  3534. } else {
  3535. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  3536. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  3537. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3538. }
  3539. }
  3540. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  3541. if (token_idx == -1) {
  3542. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  3543. }
  3544. const float * scores = nullptr;
  3545. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  3546. if (score_idx != -1) {
  3547. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  3548. }
  3549. const int * toktypes = nullptr;
  3550. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  3551. if (toktype_idx != -1) {
  3552. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  3553. }
  3554. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  3555. vocab.id_to_token.resize(n_vocab);
  3556. for (uint32_t i = 0; i < n_vocab; i++) {
  3557. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  3558. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  3559. vocab.token_to_id[word] = i;
  3560. auto & token_data = vocab.id_to_token[i];
  3561. token_data.text = std::move(word);
  3562. token_data.score = scores ? scores[i] : 0.0f;
  3563. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  3564. }
  3565. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  3566. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  3567. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  3568. try {
  3569. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  3570. } catch (const std::exception & e) {
  3571. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  3572. vocab.linefeed_id = vocab.special_pad_id;
  3573. }
  3574. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  3575. vocab.linefeed_id = vocab.special_pad_id;
  3576. } else {
  3577. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  3578. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  3579. vocab.linefeed_id = ids[0];
  3580. }
  3581. // special tokens
  3582. {
  3583. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3584. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3585. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3586. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3587. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3588. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3589. };
  3590. for (const auto & it : special_token_types) {
  3591. const std::string & key = kv(std::get<0>(it));
  3592. int32_t & id = std::get<1>(it);
  3593. uint32_t new_id;
  3594. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3595. continue;
  3596. }
  3597. if (new_id >= vocab.id_to_token.size()) {
  3598. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3599. __func__, key.c_str(), new_id, id);
  3600. } else {
  3601. id = new_id;
  3602. }
  3603. }
  3604. // Handle add_bos_token and add_eos_token
  3605. {
  3606. bool temp = true;
  3607. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3608. vocab.special_add_bos = int(temp);
  3609. }
  3610. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3611. vocab.special_add_eos = int(temp);
  3612. }
  3613. }
  3614. }
  3615. // build special tokens cache
  3616. {
  3617. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3618. // and will always be correctly labeled in 'added_tokens.json' etc.
  3619. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3620. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3621. // are special tokens.
  3622. // From testing, this appears to correlate 1:1 with special tokens.
  3623. //
  3624. // Counting special tokens and verifying in only one direction
  3625. // is sufficient to detect difference in those two sets.
  3626. //
  3627. uint32_t special_tokens_count_by_type = 0;
  3628. uint32_t special_tokens_count_from_verification = 0;
  3629. bool special_tokens_definition_mismatch = false;
  3630. for (const auto & t : vocab.token_to_id) {
  3631. const auto & token = t.first;
  3632. const auto & id = t.second;
  3633. // Count all non-normal tokens in the vocab while iterating
  3634. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3635. special_tokens_count_by_type++;
  3636. }
  3637. // Skip single character tokens
  3638. if (token.length() > 1) {
  3639. bool is_tokenizable = false;
  3640. // Split token string representation in two, in all possible ways
  3641. // and check if both halves can be matched to a valid token
  3642. for (unsigned i = 1; i < token.length();) {
  3643. const auto left = token.substr(0, i);
  3644. const auto right = token.substr(i);
  3645. // check if we didnt partition in the middle of a utf sequence
  3646. auto utf = utf8_len(left.at(left.length() - 1));
  3647. if (utf == 1) {
  3648. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3649. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3650. is_tokenizable = true;
  3651. break;
  3652. }
  3653. i++;
  3654. } else {
  3655. // skip over the rest of multibyte utf sequence
  3656. i += utf - 1;
  3657. }
  3658. }
  3659. if (!is_tokenizable) {
  3660. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3661. // it's faster to re-filter them here, since there are way less candidates now
  3662. // Calculate a total "utf" length of a token string representation
  3663. size_t utf8_str_len = 0;
  3664. for (unsigned i = 0; i < token.length();) {
  3665. utf8_str_len++;
  3666. i += utf8_len(token.at(i));
  3667. }
  3668. // And skip the ones which are one character
  3669. if (utf8_str_len > 1) {
  3670. // At this point what we have left are special tokens only
  3671. vocab.special_tokens_cache[token] = id;
  3672. // Count manually found special tokens
  3673. special_tokens_count_from_verification++;
  3674. // If this manually found special token is not marked as such, flag a mismatch
  3675. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3676. special_tokens_definition_mismatch = true;
  3677. }
  3678. }
  3679. }
  3680. }
  3681. }
  3682. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3683. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3684. __func__,
  3685. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3686. special_tokens_count_by_type, vocab.id_to_token.size()
  3687. );
  3688. } else {
  3689. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3690. __func__,
  3691. special_tokens_count_from_verification, vocab.id_to_token.size()
  3692. );
  3693. }
  3694. }
  3695. }
  3696. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3697. const auto & hparams = model.hparams;
  3698. const auto & vocab = model.vocab;
  3699. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3700. // hparams
  3701. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3702. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3703. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3704. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3705. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3706. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3707. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3708. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3709. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3710. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3711. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3712. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3713. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3714. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3715. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3716. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3717. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3718. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3719. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3720. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3721. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  3722. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3723. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3724. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3725. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  3726. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3727. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3728. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3729. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3730. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3731. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3732. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3733. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  3734. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  3735. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  3736. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  3737. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3738. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3739. if (ml.n_elements >= 1e12) {
  3740. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3741. } else if (ml.n_elements >= 1e9) {
  3742. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3743. } else if (ml.n_elements >= 1e6) {
  3744. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3745. } else {
  3746. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3747. }
  3748. if (ml.n_bytes < GiB) {
  3749. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3750. } else {
  3751. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3752. }
  3753. // general kv
  3754. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3755. // special tokens
  3756. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3757. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3758. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3759. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3760. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3761. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3762. }
  3763. // Returns false if cancelled by progress_callback
  3764. static bool llm_load_tensors(
  3765. llama_model_loader & ml,
  3766. llama_model & model,
  3767. int n_gpu_layers,
  3768. enum llama_split_mode split_mode,
  3769. int main_gpu,
  3770. const float * tensor_split,
  3771. bool use_mlock,
  3772. llama_progress_callback progress_callback,
  3773. void * progress_callback_user_data) {
  3774. model.t_start_us = ggml_time_us();
  3775. auto & hparams = model.hparams;
  3776. model.split_mode = split_mode;
  3777. model.main_gpu = main_gpu;
  3778. model.n_gpu_layers = n_gpu_layers;
  3779. const int64_t n_layer = hparams.n_layer;
  3780. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3781. bool use_mmap_buffer = true;
  3782. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3783. model.buft_input = llama_default_buffer_type_cpu(true);
  3784. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  3785. model.buft_layer.resize(n_layer);
  3786. // assign cpu layers
  3787. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3788. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3789. }
  3790. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3791. // calculate the split points
  3792. int device_count = llama_get_device_count();
  3793. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3794. std::vector<float> splits(device_count);
  3795. if (all_zero) {
  3796. // default split, by free memory
  3797. for (int i = 0; i < device_count; ++i) {
  3798. splits[i] = llama_get_device_memory(i);
  3799. }
  3800. } else {
  3801. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3802. }
  3803. // sum and normalize the splits to get the split points
  3804. float split_sum = 0.0f;
  3805. for (int i = 0; i < device_count; ++i) {
  3806. split_sum += splits[i];
  3807. splits[i] = split_sum;
  3808. }
  3809. for (int i = 0; i < device_count; ++i) {
  3810. splits[i] /= split_sum;
  3811. }
  3812. // assign the repeating layers to the devices according to the splits
  3813. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3814. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3815. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  3816. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  3817. }
  3818. // assign the output layer
  3819. if (n_gpu_layers > n_layer) {
  3820. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  3821. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  3822. } else {
  3823. model.buft_output = llama_default_buffer_type_cpu(true);
  3824. }
  3825. } else {
  3826. ggml_backend_buffer_type_t split_buft;
  3827. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  3828. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  3829. } else {
  3830. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  3831. split_buft = llama_default_buffer_type_offload(main_gpu);
  3832. }
  3833. // assign the repeating layers
  3834. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3835. model.buft_layer[i] = {
  3836. split_buft,
  3837. llama_default_buffer_type_offload(main_gpu)
  3838. };
  3839. }
  3840. // assign the output layer
  3841. if (n_gpu_layers > n_layer) {
  3842. model.buft_output = {
  3843. split_buft,
  3844. llama_default_buffer_type_offload(main_gpu)
  3845. };
  3846. } else {
  3847. model.buft_output = llama_default_buffer_type_cpu(true);
  3848. }
  3849. }
  3850. // count used buffer types
  3851. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  3852. buft_layer_count[model.buft_input.buft]++;
  3853. buft_layer_count[model.buft_input.buft_matrix]++;
  3854. buft_layer_count[model.buft_output.buft]++;
  3855. buft_layer_count[model.buft_output.buft_matrix]++;
  3856. for (int64_t i = 0; i < n_layer; ++i) {
  3857. buft_layer_count[model.buft_layer[i].buft]++;
  3858. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  3859. }
  3860. // create one context per buffer type
  3861. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  3862. // for moe merged tensors
  3863. ctx_size += ggml_tensor_overhead()*hparams.n_expert*n_layer;
  3864. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  3865. for (auto & it : buft_layer_count) {
  3866. struct ggml_init_params params = {
  3867. /*.mem_size =*/ ctx_size,
  3868. /*.mem_buffer =*/ NULL,
  3869. /*.no_alloc =*/ true,
  3870. };
  3871. ggml_context * ctx = ggml_init(params);
  3872. if (!ctx) {
  3873. throw std::runtime_error(format("failed to create context"));
  3874. }
  3875. ctx_map[it.first] = ctx;
  3876. model.ctxs.push_back(ctx);
  3877. }
  3878. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  3879. // create tensors for the weights
  3880. {
  3881. const int64_t n_embd = hparams.n_embd;
  3882. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  3883. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  3884. const int64_t n_embd_gqa = n_embd_v_gqa;
  3885. const int64_t n_vocab = hparams.n_vocab;
  3886. const int64_t n_vocab_type = hparams.n_vocab_type;
  3887. const int64_t n_ff = hparams.n_ff;
  3888. const int64_t n_expert = hparams.n_expert;
  3889. if (n_expert > 0 && hparams.n_expert_used == 0) {
  3890. throw std::runtime_error("model has expert layers but no expert layers are used");
  3891. }
  3892. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  3893. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  3894. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  3895. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  3896. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  3897. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  3898. model.layers.resize(n_layer);
  3899. const auto tn = LLM_TN(model.arch);
  3900. switch (model.arch) {
  3901. case LLM_ARCH_LLAMA:
  3902. case LLM_ARCH_REFACT:
  3903. case LLM_ARCH_MINICPM:
  3904. {
  3905. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3906. // output
  3907. {
  3908. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3909. if (model.arch != LLM_ARCH_MINICPM){
  3910. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  3911. // if output is NULL, init from the input tok embed
  3912. if (model.output == NULL) {
  3913. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3914. ml.n_created--; // artificial tensor
  3915. ml.size_data += ggml_nbytes(model.output);
  3916. }
  3917. }
  3918. }
  3919. for (int i = 0; i < n_layer; ++i) {
  3920. ggml_context * ctx_layer = ctx_for_layer(i);
  3921. ggml_context * ctx_split = ctx_for_layer_split(i);
  3922. auto & layer = model.layers[i];
  3923. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3924. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3925. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3926. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3927. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3928. // optional bias tensors
  3929. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3930. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3931. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3932. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3933. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3934. if (n_expert == 0) {
  3935. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3936. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3937. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3938. } else {
  3939. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  3940. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  3941. if (layer.ffn_gate_exps) {
  3942. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  3943. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  3944. } else {
  3945. // merge split expert into a single tensor for compatibility with older models
  3946. // requires disabling mmap
  3947. use_mmap_buffer = false;
  3948. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  3949. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  3950. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  3951. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  3952. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  3953. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  3954. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  3955. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  3956. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  3957. for (uint32_t x = 0; x < n_expert; ++x) {
  3958. // the individual experts are loaded into a view of the merged tensor
  3959. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  3960. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  3961. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  3962. }
  3963. }
  3964. }
  3965. }
  3966. } break;
  3967. case LLM_ARCH_GROK:
  3968. {
  3969. if (n_expert == 0) {
  3970. throw std::runtime_error("Grok model cannot have zero experts");
  3971. }
  3972. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3973. // output
  3974. {
  3975. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3976. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  3977. // if output is NULL, init from the input tok embed
  3978. if (model.output == NULL) {
  3979. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3980. ml.n_created--; // artificial tensor
  3981. ml.size_data += ggml_nbytes(model.output);
  3982. }
  3983. }
  3984. for (int i = 0; i < n_layer; ++i) {
  3985. ggml_context * ctx_layer = ctx_for_layer(i);
  3986. ggml_context * ctx_split = ctx_for_layer_split(i);
  3987. auto & layer = model.layers[i];
  3988. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3989. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3990. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3991. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3992. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3993. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  3994. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3995. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  3996. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  3997. if (layer.ffn_gate_exps) {
  3998. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  3999. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4000. } else {
  4001. // merge split expert into a single tensor for compatibility with older models
  4002. // requires disabling mmap
  4003. use_mmap_buffer = false;
  4004. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4005. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4006. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4007. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4008. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4009. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4010. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4011. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4012. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4013. for (uint32_t x = 0; x < n_expert; ++x) {
  4014. // the individual experts are loaded into a view of the merged tensor
  4015. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4016. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4017. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4018. }
  4019. }
  4020. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4021. }
  4022. } break;
  4023. case LLM_ARCH_BAICHUAN:
  4024. {
  4025. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4026. {
  4027. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4028. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4029. }
  4030. for (int i = 0; i < n_layer; ++i) {
  4031. ggml_context * ctx_layer = ctx_for_layer(i);
  4032. ggml_context * ctx_split = ctx_for_layer_split(i);
  4033. auto & layer = model.layers[i];
  4034. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4035. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4036. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4037. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4038. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4039. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4040. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4041. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4042. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4043. }
  4044. } break;
  4045. case LLM_ARCH_FALCON:
  4046. {
  4047. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4048. // output
  4049. {
  4050. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4051. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4052. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4053. if (!model.output) {
  4054. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4055. ml.n_created--; // artificial tensor
  4056. ml.size_data += ggml_nbytes(model.output);
  4057. }
  4058. }
  4059. for (int i = 0; i < n_layer; ++i) {
  4060. ggml_context * ctx_layer = ctx_for_layer(i);
  4061. ggml_context * ctx_split = ctx_for_layer_split(i);
  4062. auto & layer = model.layers[i];
  4063. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4064. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4065. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false);
  4066. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false);
  4067. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4068. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4069. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4070. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4071. }
  4072. } break;
  4073. case LLM_ARCH_STARCODER:
  4074. {
  4075. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4076. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4077. // output
  4078. {
  4079. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4080. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4081. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4082. }
  4083. for (int i = 0; i < n_layer; ++i) {
  4084. ggml_context * ctx_layer = ctx_for_layer(i);
  4085. ggml_context * ctx_split = ctx_for_layer_split(i);
  4086. auto & layer = model.layers[i];
  4087. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4088. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4089. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4090. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4091. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4092. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4093. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4094. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4095. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4096. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4097. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4098. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4099. }
  4100. } break;
  4101. case LLM_ARCH_PERSIMMON:
  4102. {
  4103. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4104. {
  4105. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4106. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4107. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4108. }
  4109. for (int i = 0; i < n_layer; ++i) {
  4110. ggml_context * ctx_layer = ctx_for_layer(i);
  4111. ggml_context * ctx_split = ctx_for_layer_split(i);
  4112. auto & layer = model.layers[i];
  4113. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4114. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4115. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4116. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4117. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4118. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4119. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4120. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4121. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4122. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4123. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4124. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4125. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  4126. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  4127. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  4128. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  4129. }
  4130. } break;
  4131. case LLM_ARCH_BERT:
  4132. case LLM_ARCH_NOMIC_BERT:
  4133. {
  4134. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4135. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4136. if (model.arch == LLM_ARCH_BERT) {
  4137. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4138. }
  4139. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4140. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4141. for (int i = 0; i < n_layer; ++i) {
  4142. ggml_context * ctx_layer = ctx_for_layer(i);
  4143. ggml_context * ctx_split = ctx_for_layer_split(i);
  4144. auto & layer = model.layers[i];
  4145. if (model.arch == LLM_ARCH_BERT) {
  4146. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4147. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4148. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4149. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4150. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4151. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4152. } else {
  4153. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4154. }
  4155. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4156. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4157. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4158. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4159. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4160. if (model.arch == LLM_ARCH_BERT) {
  4161. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4162. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4163. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4164. } else {
  4165. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4166. }
  4167. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4168. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4169. }
  4170. } break;
  4171. case LLM_ARCH_BLOOM:
  4172. {
  4173. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4174. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4175. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4176. // output
  4177. {
  4178. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4179. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4180. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4181. }
  4182. for (int i = 0; i < n_layer; ++i) {
  4183. ggml_context * ctx_layer = ctx_for_layer(i);
  4184. ggml_context * ctx_split = ctx_for_layer_split(i);
  4185. auto & layer = model.layers[i];
  4186. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4187. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4188. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4189. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4190. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4191. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4192. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4193. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4194. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4195. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4196. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4197. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4198. }
  4199. } break;
  4200. case LLM_ARCH_MPT:
  4201. {
  4202. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4203. // output
  4204. {
  4205. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4206. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  4207. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4208. if (!model.output) {
  4209. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  4210. ml.n_created--; // artificial tensor
  4211. ml.size_data += ggml_nbytes(model.output);
  4212. }
  4213. }
  4214. for (int i = 0; i < n_layer; ++i) {
  4215. ggml_context * ctx_layer = ctx_for_layer(i);
  4216. ggml_context * ctx_split = ctx_for_layer_split(i);
  4217. auto & layer = model.layers[i];
  4218. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4219. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  4220. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4221. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4222. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4223. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  4224. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4225. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  4226. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4227. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  4228. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4229. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  4230. // AWQ ScaleActivation layer
  4231. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  4232. }
  4233. } break;
  4234. case LLM_ARCH_STABLELM:
  4235. {
  4236. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4237. // output
  4238. {
  4239. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4240. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4241. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4242. }
  4243. for (int i = 0; i < n_layer; ++i) {
  4244. ggml_context * ctx_layer = ctx_for_layer(i);
  4245. ggml_context * ctx_split = ctx_for_layer_split(i);
  4246. auto & layer = model.layers[i];
  4247. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4248. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4249. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4250. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4251. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4252. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4253. // optional bias tensors, present in Stable LM 2 1.6B
  4254. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  4255. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  4256. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  4257. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4258. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4259. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4260. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4261. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4262. }
  4263. } break;
  4264. case LLM_ARCH_QWEN:
  4265. {
  4266. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4267. // output
  4268. {
  4269. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4270. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4271. }
  4272. for (int i = 0; i < n_layer; ++i) {
  4273. ggml_context * ctx_layer = ctx_for_layer(i);
  4274. ggml_context * ctx_split = ctx_for_layer_split(i);
  4275. auto & layer = model.layers[i];
  4276. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4277. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4278. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4279. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4280. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4281. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4282. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4283. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4284. }
  4285. } break;
  4286. case LLM_ARCH_QWEN2:
  4287. {
  4288. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4289. // output
  4290. {
  4291. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4292. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4293. }
  4294. for (int i = 0; i < n_layer; ++i) {
  4295. ggml_context * ctx_layer = ctx_for_layer(i);
  4296. ggml_context * ctx_split = ctx_for_layer_split(i);
  4297. auto & layer = model.layers[i];
  4298. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4299. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4300. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4301. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4302. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4303. // optional bias tensors
  4304. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4305. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4306. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4307. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4308. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4309. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4310. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4311. }
  4312. } break;
  4313. case LLM_ARCH_PHI2:
  4314. {
  4315. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4316. // output
  4317. {
  4318. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4319. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4320. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4321. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  4322. }
  4323. for (int i = 0; i < n_layer; ++i) {
  4324. ggml_context * ctx_layer = ctx_for_layer(i);
  4325. ggml_context * ctx_split = ctx_for_layer_split(i);
  4326. auto & layer = model.layers[i];
  4327. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4328. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4329. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  4330. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  4331. if (layer.wqkv == nullptr) {
  4332. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4333. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4334. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4335. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4336. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4337. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4338. }
  4339. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4340. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4341. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4342. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4343. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4344. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4345. }
  4346. } break;
  4347. case LLM_ARCH_PLAMO:
  4348. {
  4349. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4350. // output
  4351. {
  4352. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4353. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4354. }
  4355. for (int i = 0; i < n_layer; ++i) {
  4356. ggml_context * ctx_layer = ctx_for_layer(i);
  4357. ggml_context * ctx_split = ctx_for_layer_split(i);
  4358. auto & layer = model.layers[i];
  4359. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4360. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4361. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4362. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4363. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4364. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4365. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4366. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4367. }
  4368. } break;
  4369. case LLM_ARCH_GPT2:
  4370. {
  4371. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4372. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4373. // output
  4374. {
  4375. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4376. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4377. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4378. }
  4379. for (int i = 0; i < n_layer; ++i) {
  4380. ggml_context * ctx_layer = ctx_for_layer(i);
  4381. ggml_context * ctx_split = ctx_for_layer_split(i);
  4382. auto & layer = model.layers[i];
  4383. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4384. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4385. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4386. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4387. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4388. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4389. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4390. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4391. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4392. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4393. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4394. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4395. }
  4396. } break;
  4397. case LLM_ARCH_CODESHELL:
  4398. {
  4399. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4400. // output
  4401. {
  4402. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4403. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4404. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4405. }
  4406. for (int i = 0; i < n_layer; ++i) {
  4407. ggml_context * ctx_layer = ctx_for_layer(i);
  4408. ggml_context * ctx_split = ctx_for_layer_split(i);
  4409. auto & layer = model.layers[i];
  4410. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4411. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4412. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4413. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4414. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4415. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4416. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4417. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4418. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4419. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4420. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4421. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4422. }
  4423. } break;
  4424. case LLM_ARCH_ORION:
  4425. {
  4426. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4427. {
  4428. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4429. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4430. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4431. }
  4432. for (int i = 0; i < n_layer; ++i) {
  4433. ggml_context * ctx_layer = ctx_for_layer(i);
  4434. ggml_context * ctx_split = ctx_for_layer_split(i);
  4435. auto & layer = model.layers[i];
  4436. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4437. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4438. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4439. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4440. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4441. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4442. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4443. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4444. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4445. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4446. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4447. }
  4448. } break;
  4449. case LLM_ARCH_INTERNLM2:
  4450. {
  4451. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4452. // output
  4453. {
  4454. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4455. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4456. }
  4457. for (int i = 0; i < n_layer; ++i) {
  4458. ggml_context * ctx_layer = ctx_for_layer(i);
  4459. ggml_context * ctx_split = ctx_for_layer_split(i);
  4460. auto & layer = model.layers[i];
  4461. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4462. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4463. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4464. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4465. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4466. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4467. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4468. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4469. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4470. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4471. }
  4472. } break;
  4473. case LLM_ARCH_GEMMA:
  4474. {
  4475. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4476. // output
  4477. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4478. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  4479. ml.n_created--; // artificial tensor
  4480. ml.size_data += ggml_nbytes(model.output);
  4481. const int64_t n_ff = hparams.n_ff;
  4482. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4483. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4484. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4485. for (uint32_t i = 0; i < n_layer; ++i) {
  4486. ggml_context * ctx_layer = ctx_for_layer(i);
  4487. ggml_context * ctx_split = ctx_for_layer_split(i);
  4488. auto & layer = model.layers[i];
  4489. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4490. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  4491. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  4492. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  4493. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  4494. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4495. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4496. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4497. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4498. }
  4499. } break;
  4500. case LLM_ARCH_STARCODER2:
  4501. {
  4502. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4503. // output
  4504. {
  4505. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4506. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4507. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4508. // if output is NULL, init from the input tok embed
  4509. if (model.output == NULL) {
  4510. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4511. ml.n_created--; // artificial tensor
  4512. ml.size_data += ggml_nbytes(model.output);
  4513. }
  4514. }
  4515. for (int i = 0; i < n_layer; ++i) {
  4516. ggml_context * ctx_layer = ctx_for_layer(i);
  4517. ggml_context * ctx_split = ctx_for_layer_split(i);
  4518. auto & layer = model.layers[i];
  4519. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4520. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4521. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4522. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4523. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4524. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4525. // optional bias tensors
  4526. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4527. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4528. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4529. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4530. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4531. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4532. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4533. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4534. // optional bias tensors
  4535. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4536. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  4537. }
  4538. } break;
  4539. case LLM_ARCH_MAMBA:
  4540. {
  4541. const int64_t d_conv = hparams.ssm_d_conv;
  4542. const int64_t d_inner = hparams.ssm_d_inner;
  4543. const int64_t d_state = hparams.ssm_d_state;
  4544. const int64_t dt_rank = hparams.ssm_dt_rank;
  4545. // only an expansion factor of 2 is supported for now
  4546. GGML_ASSERT(2 * n_embd == d_inner);
  4547. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4548. // output
  4549. {
  4550. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4551. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false);
  4552. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  4553. if (model.output == NULL) {
  4554. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4555. ml.n_created--; // artificial tensor
  4556. ml.size_data += ggml_nbytes(model.output);
  4557. }
  4558. }
  4559. for (int i = 0; i < n_layer; ++i) {
  4560. ggml_context * ctx_layer = ctx_for_layer(i);
  4561. ggml_context * ctx_split = ctx_for_layer_split(i);
  4562. auto & layer = model.layers[i];
  4563. // norm
  4564. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4565. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  4566. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  4567. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  4568. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  4569. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  4570. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  4571. // no "weight" suffix for these
  4572. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  4573. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  4574. // out_proj
  4575. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  4576. }
  4577. } break;
  4578. case LLM_ARCH_XVERSE:
  4579. {
  4580. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4581. {
  4582. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4583. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4584. }
  4585. for (int i = 0; i < n_layer; ++i) {
  4586. ggml_context * ctx_layer = ctx_for_layer(i);
  4587. ggml_context * ctx_split = ctx_for_layer_split(i);
  4588. auto & layer = model.layers[i];
  4589. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4590. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4591. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4592. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4593. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4594. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4595. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4596. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4597. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4598. }
  4599. } break;
  4600. case LLM_ARCH_COMMAND_R:
  4601. {
  4602. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4603. // output
  4604. {
  4605. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4606. // init output from the input tok embed
  4607. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4608. ml.n_created--; // artificial tensor
  4609. ml.size_data += ggml_nbytes(model.output);
  4610. }
  4611. for (int i = 0; i < n_layer; ++i) {
  4612. ggml_context * ctx_layer = ctx_for_layer(i);
  4613. ggml_context * ctx_split = ctx_for_layer_split(i);
  4614. auto & layer = model.layers[i];
  4615. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4616. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4617. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4618. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4619. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4620. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4621. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4622. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4623. }
  4624. } break;
  4625. default:
  4626. throw std::runtime_error("unknown architecture");
  4627. }
  4628. }
  4629. ml.done_getting_tensors();
  4630. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  4631. model.mappings.reserve(ml.mappings.size());
  4632. // create the backend buffers
  4633. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  4634. ctx_bufs.reserve(ctx_map.size());
  4635. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  4636. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  4637. model.bufs.reserve(n_max_backend_buffer);
  4638. for (auto & it : ctx_map) {
  4639. ggml_backend_buffer_type_t buft = it.first;
  4640. ggml_context * ctx = it.second;
  4641. llama_buf_map bufs;
  4642. bufs.reserve(n_max_backend_buffer);
  4643. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  4644. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  4645. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  4646. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  4647. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4648. void * addr = nullptr;
  4649. size_t first, last;
  4650. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4651. if (first >= last) {
  4652. continue;
  4653. }
  4654. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  4655. if (buf == nullptr) {
  4656. throw std::runtime_error("unable to allocate backend CPU buffer");
  4657. }
  4658. model.bufs.push_back(buf);
  4659. bufs.emplace(idx, buf);
  4660. #ifdef GGML_USE_CUDA
  4661. if (n_layer >= n_gpu_layers) {
  4662. ggml_backend_cuda_register_host_buffer(
  4663. ggml_backend_buffer_get_base(buf),
  4664. ggml_backend_buffer_get_size(buf));
  4665. }
  4666. #endif
  4667. }
  4668. }
  4669. #ifdef GGML_USE_METAL
  4670. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  4671. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4672. const size_t max_size = ggml_get_max_tensor_size(ctx);
  4673. void * addr = nullptr;
  4674. size_t first, last;
  4675. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  4676. if (first >= last) {
  4677. continue;
  4678. }
  4679. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  4680. if (buf == nullptr) {
  4681. throw std::runtime_error("unable to allocate backend metal buffer");
  4682. }
  4683. model.bufs.push_back(buf);
  4684. bufs.emplace(idx, buf);
  4685. }
  4686. }
  4687. #endif
  4688. else {
  4689. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  4690. if (buf == nullptr) {
  4691. throw std::runtime_error("unable to allocate backend buffer");
  4692. }
  4693. model.bufs.push_back(buf);
  4694. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  4695. model.mlock_bufs.emplace_back(new llama_mlock);
  4696. auto & mlock_buf = model.mlock_bufs.back();
  4697. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  4698. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  4699. }
  4700. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  4701. bufs.emplace(idx, buf);
  4702. }
  4703. }
  4704. if (bufs.empty()) {
  4705. throw std::runtime_error("failed to allocate buffer");
  4706. }
  4707. for (auto & buf : bufs) {
  4708. // indicate that this buffer contains weights
  4709. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  4710. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  4711. }
  4712. ctx_bufs.emplace_back(ctx, bufs);
  4713. }
  4714. if (llama_supports_gpu_offload()) {
  4715. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  4716. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  4717. if (n_gpu_layers > (int) hparams.n_layer) {
  4718. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  4719. }
  4720. const int max_backend_supported_layers = hparams.n_layer + 1;
  4721. const int max_offloadable_layers = hparams.n_layer + 1;
  4722. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  4723. }
  4724. // print memory requirements
  4725. for (ggml_backend_buffer_t buf : model.bufs) {
  4726. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  4727. }
  4728. // populate tensors_by_name
  4729. for (ggml_context * ctx : model.ctxs) {
  4730. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  4731. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  4732. }
  4733. }
  4734. // load tensor data
  4735. for (auto & it : ctx_bufs) {
  4736. ggml_context * ctx = it.first;
  4737. auto & bufs = it.second;
  4738. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  4739. return false;
  4740. }
  4741. }
  4742. if (use_mmap_buffer) {
  4743. for (auto & mapping : ml.mappings) {
  4744. model.mappings.emplace_back(std::move(mapping));
  4745. }
  4746. }
  4747. // loading time will be recalculate after the first eval, so
  4748. // we take page faults deferred by mmap() into consideration
  4749. model.t_load_us = ggml_time_us() - model.t_start_us;
  4750. return true;
  4751. }
  4752. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  4753. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  4754. try {
  4755. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  4756. model.hparams.vocab_only = params.vocab_only;
  4757. try {
  4758. llm_load_arch(ml, model);
  4759. } catch(const std::exception & e) {
  4760. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  4761. }
  4762. try {
  4763. llm_load_hparams(ml, model);
  4764. } catch(const std::exception & e) {
  4765. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  4766. }
  4767. try {
  4768. llm_load_vocab(ml, model);
  4769. } catch(const std::exception & e) {
  4770. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  4771. }
  4772. llm_load_print_meta(ml, model);
  4773. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  4774. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  4775. throw std::runtime_error("vocab size mismatch");
  4776. }
  4777. if (params.vocab_only) {
  4778. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  4779. return 0;
  4780. }
  4781. #ifdef GGML_USE_KOMPUTE
  4782. if (params.n_gpu_layers > 0 && (
  4783. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  4784. || !(
  4785. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  4786. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  4787. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  4788. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  4789. )
  4790. )) {
  4791. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  4792. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  4793. params.n_gpu_layers = 0;
  4794. }
  4795. #endif
  4796. #ifdef GGML_USE_SYCL
  4797. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  4798. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  4799. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  4800. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  4801. } else {
  4802. ggml_backend_sycl_set_mul_device_mode();
  4803. }
  4804. #endif
  4805. if (!llm_load_tensors(
  4806. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  4807. params.progress_callback, params.progress_callback_user_data
  4808. )) {
  4809. return -2;
  4810. }
  4811. } catch (const std::exception & err) {
  4812. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  4813. return -1;
  4814. }
  4815. return 0;
  4816. }
  4817. //
  4818. // llm_build
  4819. //
  4820. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  4821. enum llm_ffn_op_type {
  4822. LLM_FFN_SILU,
  4823. LLM_FFN_GELU,
  4824. LLM_FFN_RELU,
  4825. LLM_FFN_RELU_SQR,
  4826. };
  4827. enum llm_ffn_gate_type {
  4828. LLM_FFN_SEQ,
  4829. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  4830. };
  4831. enum llm_norm_type {
  4832. LLM_NORM,
  4833. LLM_NORM_RMS,
  4834. };
  4835. static struct ggml_tensor * llm_build_inp_embd(
  4836. struct ggml_context * ctx,
  4837. struct llama_context & lctx,
  4838. const llama_hparams & hparams,
  4839. const llama_batch & batch,
  4840. struct ggml_tensor * tok_embd,
  4841. const llm_build_cb & cb) {
  4842. const int64_t n_embd = hparams.n_embd;
  4843. struct ggml_tensor * inpL;
  4844. if (batch.token) {
  4845. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  4846. cb(lctx.inp_tokens, "inp_tokens", -1);
  4847. ggml_set_input(lctx.inp_tokens);
  4848. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  4849. } else {
  4850. #ifdef GGML_USE_MPI
  4851. GGML_ASSERT(false && "not implemented");
  4852. #endif
  4853. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  4854. inpL = lctx.inp_embd;
  4855. ggml_set_input(lctx.inp_embd);
  4856. }
  4857. cb(inpL, "inp_embd", -1);
  4858. return inpL;
  4859. }
  4860. static void llm_build_kv_store(
  4861. struct ggml_context * ctx,
  4862. const llama_hparams & hparams,
  4863. const llama_kv_cache & kv,
  4864. struct ggml_cgraph * graph,
  4865. struct ggml_tensor * k_cur,
  4866. struct ggml_tensor * v_cur,
  4867. int64_t n_ctx,
  4868. int32_t n_tokens,
  4869. int32_t kv_head,
  4870. const llm_build_cb & cb,
  4871. int64_t il) {
  4872. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4873. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4874. GGML_ASSERT(kv.size == n_ctx);
  4875. // compute the transposed [n_tokens, n_embd] V matrix
  4876. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  4877. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur);
  4878. cb(v_cur_t, "v_cur_t", il);
  4879. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  4880. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  4881. cb(k_cache_view, "k_cache_view", il);
  4882. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  4883. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  4884. (kv_head)*ggml_element_size(kv.v_l[il]));
  4885. cb(v_cache_view, "v_cache_view", il);
  4886. // important: storing RoPE-ed version of K in the KV cache!
  4887. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  4888. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  4889. }
  4890. static struct ggml_tensor * llm_build_norm(
  4891. struct ggml_context * ctx,
  4892. struct ggml_tensor * cur,
  4893. const llama_hparams & hparams,
  4894. struct ggml_tensor * mw,
  4895. struct ggml_tensor * mb,
  4896. llm_norm_type type,
  4897. const llm_build_cb & cb,
  4898. int il) {
  4899. switch (type) {
  4900. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  4901. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  4902. }
  4903. if (mw || mb) {
  4904. cb(cur, "norm", il);
  4905. }
  4906. if (mw) {
  4907. cur = ggml_mul(ctx, cur, mw);
  4908. if (mb) {
  4909. cb(cur, "norm_w", il);
  4910. }
  4911. }
  4912. if (mb) {
  4913. cur = ggml_add(ctx, cur, mb);
  4914. }
  4915. return cur;
  4916. }
  4917. static struct ggml_tensor * llm_build_ffn(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * cur,
  4920. struct ggml_tensor * up,
  4921. struct ggml_tensor * up_b,
  4922. struct ggml_tensor * gate,
  4923. struct ggml_tensor * gate_b,
  4924. struct ggml_tensor * down,
  4925. struct ggml_tensor * down_b,
  4926. struct ggml_tensor * act_scales,
  4927. llm_ffn_op_type type_op,
  4928. llm_ffn_gate_type type_gate,
  4929. const llm_build_cb & cb,
  4930. int il) {
  4931. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  4932. cb(tmp, "ffn_up", il);
  4933. if (up_b) {
  4934. tmp = ggml_add(ctx, tmp, up_b);
  4935. cb(tmp, "ffn_up_b", il);
  4936. }
  4937. if (gate) {
  4938. switch (type_gate) {
  4939. case LLM_FFN_SEQ:
  4940. {
  4941. cur = ggml_mul_mat(ctx, gate, tmp);
  4942. cb(cur, "ffn_gate", il);
  4943. } break;
  4944. case LLM_FFN_PAR:
  4945. {
  4946. cur = ggml_mul_mat(ctx, gate, cur);
  4947. cb(cur, "ffn_gate", il);
  4948. } break;
  4949. }
  4950. if (gate_b) {
  4951. cur = ggml_add(ctx, cur, gate_b);
  4952. cb(cur, "ffn_gate_b", il);
  4953. }
  4954. } else {
  4955. cur = tmp;
  4956. }
  4957. switch (type_op) {
  4958. case LLM_FFN_SILU:
  4959. {
  4960. cur = ggml_silu(ctx, cur);
  4961. cb(cur, "ffn_silu", il);
  4962. } break;
  4963. case LLM_FFN_GELU:
  4964. {
  4965. cur = ggml_gelu(ctx, cur);
  4966. cb(cur, "ffn_gelu", il);
  4967. if (act_scales != NULL) {
  4968. cur = ggml_div(ctx, cur, act_scales);
  4969. cb(cur, "ffn_act", il);
  4970. }
  4971. } break;
  4972. case LLM_FFN_RELU:
  4973. {
  4974. cur = ggml_relu(ctx, cur);
  4975. cb(cur, "ffn_relu", il);
  4976. } break;
  4977. case LLM_FFN_RELU_SQR:
  4978. {
  4979. cur = ggml_relu(ctx, cur);
  4980. cb(cur, "ffn_relu", il);
  4981. cur = ggml_sqr(ctx, cur);
  4982. cb(cur, "ffn_sqr(relu)", il);
  4983. } break;
  4984. }
  4985. if (type_gate == LLM_FFN_PAR) {
  4986. cur = ggml_mul(ctx, cur, tmp);
  4987. cb(cur, "ffn_gate_par", il);
  4988. }
  4989. cur = ggml_mul_mat(ctx, down, cur);
  4990. if (down_b) {
  4991. cb(cur, "ffn_down", il);
  4992. }
  4993. if (down_b) {
  4994. cur = ggml_add(ctx, cur, down_b);
  4995. }
  4996. return cur;
  4997. }
  4998. // if max_alibi_bias > 0 then apply ALiBi
  4999. static struct ggml_tensor * llm_build_kqv(
  5000. struct ggml_context * ctx,
  5001. const llama_model & model,
  5002. const llama_hparams & hparams,
  5003. const llama_kv_cache & kv,
  5004. struct ggml_cgraph * graph,
  5005. struct ggml_tensor * wo,
  5006. struct ggml_tensor * wo_b,
  5007. struct ggml_tensor * q_cur,
  5008. struct ggml_tensor * kq_mask,
  5009. struct ggml_tensor * kq_pos,
  5010. int64_t n_ctx,
  5011. int32_t n_tokens,
  5012. int32_t n_kv,
  5013. float kq_scale,
  5014. const llm_build_cb & cb,
  5015. int il) {
  5016. const int64_t n_head = hparams.n_head;
  5017. const int64_t n_head_kv = hparams.n_head_kv;
  5018. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5019. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5020. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5021. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5022. cb(q, "q", il);
  5023. struct ggml_tensor * k =
  5024. ggml_view_3d(ctx, kv.k_l[il],
  5025. n_embd_head_k, n_kv, n_head_kv,
  5026. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  5027. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  5028. 0);
  5029. cb(k, "k", il);
  5030. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  5031. cb(kq, "kq", il);
  5032. if (model.arch == LLM_ARCH_PHI2) {
  5033. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  5034. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  5035. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5036. }
  5037. if (model.arch == LLM_ARCH_GROK) {
  5038. // need to do the following:
  5039. // multiply by attn_output_multiplyer of 0.08838834764831845
  5040. // and then :
  5041. // kq = 30 * tanh(kq / 30)
  5042. // before the softmax below
  5043. //try from phi2
  5044. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  5045. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  5046. kq = ggml_scale(ctx, kq, 30);
  5047. }
  5048. #if defined(GGML_USE_KOMPUTE)
  5049. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute")
  5050. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  5051. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  5052. if (hparams.f_max_alibi_bias > 0.0f) {
  5053. kq = ggml_scale(ctx, kq, kq_scale);
  5054. cb(kq, "kq_scaled", il);
  5055. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  5056. cb(kq, "kq_scaled_alibi", il);
  5057. kq = ggml_add(ctx, kq, kq_mask);
  5058. cb(kq, "kq_masked", il);
  5059. kq = ggml_soft_max(ctx, kq);
  5060. cb(kq, "kq_soft_max", il);
  5061. } else
  5062. #endif
  5063. {
  5064. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  5065. cb(kq, "kq_soft_max_ext", il);
  5066. }
  5067. GGML_ASSERT(kv.size == n_ctx);
  5068. // split cached v into n_head heads
  5069. struct ggml_tensor * v =
  5070. ggml_view_3d(ctx, kv.v_l[il],
  5071. n_kv, n_embd_head_v, n_head_kv,
  5072. ggml_element_size(kv.v_l[il])*n_ctx,
  5073. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  5074. 0);
  5075. cb(v, "v", il);
  5076. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  5077. cb(kqv, "kqv", il);
  5078. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  5079. cb(kqv_merged, "kqv_merged", il);
  5080. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  5081. cb(cur, "kqv_merged_cont", il);
  5082. ggml_build_forward_expand(graph, cur);
  5083. cur = ggml_mul_mat(ctx, wo, cur);
  5084. if (wo_b) {
  5085. cb(cur, "kqv_wo", il);
  5086. }
  5087. if (wo_b) {
  5088. cur = ggml_add(ctx, cur, wo_b);
  5089. }
  5090. return cur;
  5091. }
  5092. static struct ggml_tensor * llm_build_kv(
  5093. struct ggml_context * ctx,
  5094. const llama_model & model,
  5095. const llama_hparams & hparams,
  5096. const llama_kv_cache & kv,
  5097. struct ggml_cgraph * graph,
  5098. struct ggml_tensor * wo,
  5099. struct ggml_tensor * wo_b,
  5100. struct ggml_tensor * k_cur,
  5101. struct ggml_tensor * v_cur,
  5102. struct ggml_tensor * q_cur,
  5103. struct ggml_tensor * kq_mask,
  5104. struct ggml_tensor * kq_pos,
  5105. int64_t n_ctx,
  5106. int32_t n_tokens,
  5107. int32_t kv_head,
  5108. int32_t n_kv,
  5109. float kq_scale,
  5110. const llm_build_cb & cb,
  5111. int il) {
  5112. // these nodes are added to the graph together so that they are not reordered
  5113. // by doing so, the number of splits in the graph is reduced
  5114. ggml_build_forward_expand(graph, q_cur);
  5115. ggml_build_forward_expand(graph, k_cur);
  5116. ggml_build_forward_expand(graph, v_cur);
  5117. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  5118. struct ggml_tensor * cur;
  5119. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  5120. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  5121. cb(cur, "kqv_out", il);
  5122. return cur;
  5123. }
  5124. struct llm_build_context {
  5125. const llama_model & model;
  5126. llama_context & lctx;
  5127. const llama_hparams & hparams;
  5128. const llama_cparams & cparams;
  5129. const llama_batch & batch;
  5130. const llama_kv_cache & kv_self;
  5131. const int64_t n_embd;
  5132. const int64_t n_layer;
  5133. const int64_t n_rot;
  5134. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  5135. const int64_t n_head;
  5136. const int64_t n_head_kv;
  5137. const int64_t n_embd_head_k;
  5138. const int64_t n_embd_k_gqa;
  5139. const int64_t n_embd_head_v;
  5140. const int64_t n_embd_v_gqa;
  5141. const int64_t n_expert;
  5142. const int64_t n_expert_used;
  5143. const float freq_base;
  5144. const float freq_scale;
  5145. const float ext_factor;
  5146. const float attn_factor;
  5147. const float beta_fast;
  5148. const float beta_slow;
  5149. const float norm_eps;
  5150. const float norm_rms_eps;
  5151. const int32_t n_tokens;
  5152. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  5153. const int32_t n_outputs;
  5154. const int32_t kv_head; // index of where we store new KV data in the cache
  5155. const int32_t n_orig_ctx;
  5156. const enum llama_pooling_type pooling_type;
  5157. const enum llama_rope_type rope_type;
  5158. const llm_build_cb & cb;
  5159. std::vector<uint8_t> & buf_compute_meta;
  5160. struct ggml_context * ctx0 = nullptr;
  5161. // TODO: consider making the entire interface noexcept
  5162. llm_build_context(
  5163. llama_context & lctx,
  5164. const llama_batch & batch,
  5165. const llm_build_cb & cb,
  5166. bool worst_case) :
  5167. model (lctx.model),
  5168. lctx (lctx),
  5169. hparams (model.hparams),
  5170. cparams (lctx.cparams),
  5171. batch (batch),
  5172. kv_self (lctx.kv_self),
  5173. n_embd (hparams.n_embd),
  5174. n_layer (hparams.n_layer),
  5175. n_rot (hparams.n_rot),
  5176. n_ctx (cparams.n_ctx),
  5177. n_head (hparams.n_head),
  5178. n_head_kv (hparams.n_head_kv),
  5179. n_embd_head_k (hparams.n_embd_head_k),
  5180. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  5181. n_embd_head_v (hparams.n_embd_head_v),
  5182. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  5183. n_expert (hparams.n_expert),
  5184. n_expert_used (hparams.n_expert_used),
  5185. freq_base (cparams.rope_freq_base),
  5186. freq_scale (cparams.rope_freq_scale),
  5187. ext_factor (cparams.yarn_ext_factor),
  5188. attn_factor (cparams.yarn_attn_factor),
  5189. beta_fast (cparams.yarn_beta_fast),
  5190. beta_slow (cparams.yarn_beta_slow),
  5191. norm_eps (hparams.f_norm_eps),
  5192. norm_rms_eps (hparams.f_norm_rms_eps),
  5193. n_tokens (batch.n_tokens),
  5194. n_kv (worst_case ? kv_self.size : kv_self.n),
  5195. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  5196. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  5197. n_orig_ctx (cparams.n_yarn_orig_ctx),
  5198. pooling_type (cparams.pooling_type),
  5199. rope_type (hparams.rope_type),
  5200. cb (cb),
  5201. buf_compute_meta (lctx.buf_compute_meta) {
  5202. // all initializations should be done in init()
  5203. }
  5204. void init() {
  5205. struct ggml_init_params params = {
  5206. /*.mem_size =*/ buf_compute_meta.size(),
  5207. /*.mem_buffer =*/ buf_compute_meta.data(),
  5208. /*.no_alloc =*/ true,
  5209. };
  5210. ctx0 = ggml_init(params);
  5211. lctx.inp_tokens = nullptr;
  5212. lctx.inp_embd = nullptr;
  5213. lctx.inp_pos = nullptr;
  5214. lctx.inp_out_ids = nullptr;
  5215. lctx.inp_KQ_mask = nullptr;
  5216. lctx.inp_KQ_pos = nullptr;
  5217. lctx.inp_K_shift = nullptr;
  5218. lctx.inp_mean = nullptr;
  5219. lctx.inp_cls = nullptr;
  5220. lctx.inp_s_copy = nullptr;
  5221. lctx.inp_s_mask = nullptr;
  5222. lctx.inp_s_seq = nullptr;
  5223. }
  5224. void free() {
  5225. if (ctx0) {
  5226. ggml_free(ctx0);
  5227. ctx0 = nullptr;
  5228. }
  5229. }
  5230. struct ggml_cgraph * build_k_shift() {
  5231. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5232. GGML_ASSERT(kv_self.size == n_ctx);
  5233. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  5234. cb(lctx.inp_K_shift, "K_shift", -1);
  5235. ggml_set_input(lctx.inp_K_shift);
  5236. for (int il = 0; il < n_layer; ++il) {
  5237. struct ggml_tensor * tmp =
  5238. // we rotate only the first n_rot dimensions
  5239. ggml_rope_custom_inplace(ctx0,
  5240. ggml_view_3d(ctx0, kv_self.k_l[il],
  5241. n_embd_head_k, n_head_kv, n_ctx,
  5242. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  5243. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5244. 0),
  5245. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5246. ext_factor, attn_factor, beta_fast, beta_slow);
  5247. cb(tmp, "K_shifted", il);
  5248. ggml_build_forward_expand(gf, tmp);
  5249. }
  5250. return gf;
  5251. }
  5252. struct ggml_cgraph * build_s_copy() {
  5253. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5254. GGML_ASSERT(kv_self.recurrent);
  5255. struct ggml_tensor * state_copy = build_inp_s_copy();
  5256. for (int il = 0; il < n_layer; ++il) {
  5257. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  5258. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  5259. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  5260. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  5261. // TODO: name the intermediate tensors with cb()
  5262. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  5263. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  5264. }
  5265. return gf;
  5266. }
  5267. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  5268. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5269. for (uint32_t i = 0; i < ids.size(); ++i) {
  5270. const uint32_t id = ids[i];
  5271. if (i == id || id == ids.size()) {
  5272. continue;
  5273. }
  5274. uint32_t nm = 1;
  5275. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  5276. nm++;
  5277. }
  5278. for (int il = 0; il < n_layer; ++il) {
  5279. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  5280. n_embd_k_gqa, nm,
  5281. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5282. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  5283. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  5284. n_embd_k_gqa, nm,
  5285. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  5286. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  5287. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  5288. nm, n_embd_v_gqa,
  5289. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5290. ggml_row_size(kv_self.v_l[il]->type, i));
  5291. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  5292. nm, n_embd_v_gqa,
  5293. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  5294. ggml_row_size(kv_self.v_l[il]->type, id));
  5295. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  5296. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  5297. }
  5298. i += nm - 1;
  5299. }
  5300. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  5301. return gf;
  5302. }
  5303. struct ggml_tensor * build_inp_pos() {
  5304. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5305. cb(lctx.inp_pos, "inp_pos", -1);
  5306. ggml_set_input(lctx.inp_pos);
  5307. return lctx.inp_pos;
  5308. }
  5309. struct ggml_tensor * build_inp_out_ids() {
  5310. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  5311. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  5312. ggml_set_input(lctx.inp_out_ids);
  5313. return lctx.inp_out_ids;
  5314. }
  5315. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  5316. if (causal) {
  5317. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens);
  5318. } else {
  5319. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5320. }
  5321. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  5322. ggml_set_input(lctx.inp_KQ_mask);
  5323. return lctx.inp_KQ_mask;
  5324. }
  5325. struct ggml_tensor * build_inp_KQ_pos() {
  5326. lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv);
  5327. cb(lctx.inp_KQ_pos, "KQ_pos", -1);
  5328. ggml_set_input(lctx.inp_KQ_pos);
  5329. return lctx.inp_KQ_pos;
  5330. }
  5331. struct ggml_tensor * build_inp_mean() {
  5332. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  5333. cb(lctx.inp_mean, "inp_mean", -1);
  5334. ggml_set_input(lctx.inp_mean);
  5335. return lctx.inp_mean;
  5336. }
  5337. struct ggml_tensor * build_inp_cls() {
  5338. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  5339. cb(lctx.inp_cls, "inp_cls", -1);
  5340. ggml_set_input(lctx.inp_cls);
  5341. return lctx.inp_cls;
  5342. }
  5343. struct ggml_tensor * build_inp_s_copy() {
  5344. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  5345. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  5346. ggml_set_input(lctx.inp_s_copy);
  5347. return lctx.inp_s_copy;
  5348. }
  5349. struct ggml_tensor * build_inp_s_mask() {
  5350. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  5351. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  5352. ggml_set_input(lctx.inp_s_mask);
  5353. return lctx.inp_s_mask;
  5354. }
  5355. struct ggml_tensor * build_inp_s_seq() {
  5356. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  5357. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  5358. ggml_set_input(lctx.inp_s_seq);
  5359. return lctx.inp_s_seq;
  5360. }
  5361. struct ggml_cgraph * build_llama() {
  5362. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5363. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5364. int32_t n_tokens = this->n_tokens;
  5365. const int64_t n_embd_head = hparams.n_embd_head_v;
  5366. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5367. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5368. struct ggml_tensor * cur;
  5369. struct ggml_tensor * inpL;
  5370. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5371. // inp_pos - contains the positions
  5372. struct ggml_tensor * inp_pos = build_inp_pos();
  5373. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5374. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5375. for (int il = 0; il < n_layer; ++il) {
  5376. struct ggml_tensor * inpSA = inpL;
  5377. // norm
  5378. cur = llm_build_norm(ctx0, inpL, hparams,
  5379. model.layers[il].attn_norm, NULL,
  5380. LLM_NORM_RMS, cb, il);
  5381. cb(cur, "attn_norm", il);
  5382. // self-attention
  5383. {
  5384. // compute Q and K and RoPE them
  5385. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5386. cb(Qcur, "Qcur", il);
  5387. if (model.layers[il].bq) {
  5388. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5389. cb(Qcur, "Qcur", il);
  5390. }
  5391. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5392. cb(Kcur, "Kcur", il);
  5393. if (model.layers[il].bk) {
  5394. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5395. cb(Kcur, "Kcur", il);
  5396. }
  5397. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5398. cb(Vcur, "Vcur", il);
  5399. if (model.layers[il].bv) {
  5400. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5401. cb(Vcur, "Vcur", il);
  5402. }
  5403. Qcur = ggml_rope_custom(
  5404. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5405. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5406. ext_factor, attn_factor, beta_fast, beta_slow
  5407. );
  5408. cb(Qcur, "Qcur", il);
  5409. Kcur = ggml_rope_custom(
  5410. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5411. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5412. ext_factor, attn_factor, beta_fast, beta_slow
  5413. );
  5414. cb(Kcur, "Kcur", il);
  5415. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5416. model.layers[il].wo, model.layers[il].bo,
  5417. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5418. }
  5419. if (il == n_layer - 1) {
  5420. // skip computing output for unused tokens
  5421. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5422. n_tokens = n_outputs;
  5423. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5424. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5425. }
  5426. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5427. cb(ffn_inp, "ffn_inp", il);
  5428. // feed-forward network
  5429. if (model.layers[il].ffn_gate_inp == nullptr) {
  5430. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5431. model.layers[il].ffn_norm, NULL,
  5432. LLM_NORM_RMS, cb, il);
  5433. cb(cur, "ffn_norm", il);
  5434. cur = llm_build_ffn(ctx0, cur,
  5435. model.layers[il].ffn_up, NULL,
  5436. model.layers[il].ffn_gate, NULL,
  5437. model.layers[il].ffn_down, NULL,
  5438. NULL,
  5439. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5440. cb(cur, "ffn_out", il);
  5441. } else {
  5442. // MoE branch
  5443. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5444. model.layers[il].ffn_norm, NULL,
  5445. LLM_NORM_RMS, cb, il);
  5446. cb(cur, "ffn_norm", il);
  5447. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  5448. cb(logits, "ffn_moe_logits", il);
  5449. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  5450. cb(probs, "ffn_moe_probs", il);
  5451. // select experts
  5452. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  5453. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5454. ggml_tensor * weights = ggml_get_rows(ctx0,
  5455. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  5456. cb(weights, "ffn_moe_weights", il);
  5457. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  5458. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  5459. cb(weights_sum, "ffn_moe_weights_sum", il);
  5460. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  5461. cb(weights, "ffn_moe_weights_norm", il);
  5462. // compute expert outputs
  5463. ggml_tensor * moe_out = nullptr;
  5464. for (int i = 0; i < n_expert_used; ++i) {
  5465. ggml_tensor * cur_expert;
  5466. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
  5467. cb(cur_up, "ffn_moe_up", il);
  5468. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
  5469. cb(cur_gate, "ffn_moe_gate", il);
  5470. cur_gate = ggml_silu(ctx0, cur_gate);
  5471. cb(cur_gate, "ffn_moe_silu", il);
  5472. cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
  5473. cb(cur_expert, "ffn_moe_gate_par", il);
  5474. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  5475. cb(cur_expert, "ffn_moe_down", il);
  5476. cur_expert = ggml_mul(ctx0, cur_expert,
  5477. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  5478. cb(cur_expert, "ffn_moe_weighted", il);
  5479. if (i == 0) {
  5480. moe_out = cur_expert;
  5481. } else {
  5482. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  5483. cb(moe_out, "ffn_moe_out", il);
  5484. }
  5485. }
  5486. cur = moe_out;
  5487. }
  5488. cur = ggml_add(ctx0, cur, ffn_inp);
  5489. cb(cur, "ffn_out", il);
  5490. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5491. if (layer_dir != nullptr) {
  5492. cur = ggml_add(ctx0, cur, layer_dir);
  5493. }
  5494. cb(cur, "l_out", il);
  5495. // input for next layer
  5496. inpL = cur;
  5497. }
  5498. cur = inpL;
  5499. cur = llm_build_norm(ctx0, cur, hparams,
  5500. model.output_norm, NULL,
  5501. LLM_NORM_RMS, cb, -1);
  5502. cb(cur, "result_norm", -1);
  5503. // lm_head
  5504. cur = ggml_mul_mat(ctx0, model.output, cur);
  5505. cb(cur, "result_output", -1);
  5506. ggml_build_forward_expand(gf, cur);
  5507. return gf;
  5508. }
  5509. struct ggml_cgraph * build_baichuan() {
  5510. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5511. const int64_t n_embd_head = hparams.n_embd_head_v;
  5512. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5513. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5514. struct ggml_tensor * cur;
  5515. struct ggml_tensor * inpL;
  5516. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5517. // inp_pos - contains the positions
  5518. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  5519. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5520. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5521. // positions of the tokens in the KV cache
  5522. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5523. for (int il = 0; il < n_layer; ++il) {
  5524. struct ggml_tensor * inpSA = inpL;
  5525. cur = llm_build_norm(ctx0, inpL, hparams,
  5526. model.layers[il].attn_norm, NULL,
  5527. LLM_NORM_RMS, cb, il);
  5528. cb(cur, "attn_norm", il);
  5529. // self-attention
  5530. {
  5531. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5532. cb(Qcur, "Qcur", il);
  5533. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5534. cb(Kcur, "Kcur", il);
  5535. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5536. cb(Vcur, "Vcur", il);
  5537. switch (model.type) {
  5538. case MODEL_7B:
  5539. Qcur = ggml_rope_custom(
  5540. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5541. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5542. ext_factor, attn_factor, beta_fast, beta_slow
  5543. );
  5544. Kcur = ggml_rope_custom(
  5545. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5546. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5547. ext_factor, attn_factor, beta_fast, beta_slow
  5548. );
  5549. break;
  5550. case MODEL_13B:
  5551. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  5552. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  5553. break;
  5554. default:
  5555. GGML_ASSERT(false);
  5556. }
  5557. cb(Qcur, "Qcur", il);
  5558. cb(Kcur, "Kcur", il);
  5559. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5560. model.layers[il].wo, NULL,
  5561. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5562. }
  5563. if (il == n_layer - 1) {
  5564. // skip computing output for unused tokens
  5565. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5566. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5567. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5568. }
  5569. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5570. cb(ffn_inp, "ffn_inp", il);
  5571. // feed-forward network
  5572. {
  5573. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5574. model.layers[il].ffn_norm, NULL,
  5575. LLM_NORM_RMS, cb, il);
  5576. cb(cur, "ffn_norm", il);
  5577. cur = llm_build_ffn(ctx0, cur,
  5578. model.layers[il].ffn_up, NULL,
  5579. model.layers[il].ffn_gate, NULL,
  5580. model.layers[il].ffn_down, NULL,
  5581. NULL,
  5582. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5583. cb(cur, "ffn_out", il);
  5584. }
  5585. cur = ggml_add(ctx0, cur, ffn_inp);
  5586. cb(cur, "l_out", il);
  5587. // input for next layer
  5588. inpL = cur;
  5589. }
  5590. cur = inpL;
  5591. cur = llm_build_norm(ctx0, cur, hparams,
  5592. model.output_norm, NULL,
  5593. LLM_NORM_RMS, cb, -1);
  5594. cb(cur, "result_norm", -1);
  5595. // lm_head
  5596. cur = ggml_mul_mat(ctx0, model.output, cur);
  5597. cb(cur, "result_output", -1);
  5598. ggml_build_forward_expand(gf, cur);
  5599. return gf;
  5600. }
  5601. struct ggml_cgraph * build_xverse() {
  5602. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5603. const int64_t n_embd_head = hparams.n_embd_head_v;
  5604. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5605. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5606. struct ggml_tensor * cur;
  5607. struct ggml_tensor * inpL;
  5608. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5609. // inp_pos - contains the positions
  5610. struct ggml_tensor * inp_pos = build_inp_pos();
  5611. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5612. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5613. // positions of the tokens in the KV cache
  5614. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  5615. for (int il = 0; il < n_layer; ++il) {
  5616. struct ggml_tensor * inpSA = inpL;
  5617. cur = llm_build_norm(ctx0, inpL, hparams,
  5618. model.layers[il].attn_norm, NULL,
  5619. LLM_NORM_RMS, cb, il);
  5620. cb(cur, "attn_norm", il);
  5621. // self-attention
  5622. {
  5623. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5624. cb(Qcur, "Qcur", il);
  5625. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5626. cb(Kcur, "Kcur", il);
  5627. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5628. cb(Vcur, "Vcur", il);
  5629. Qcur = ggml_rope_custom(
  5630. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5631. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5632. ext_factor, attn_factor, beta_fast, beta_slow
  5633. );
  5634. cb(Qcur, "Qcur", il);
  5635. Kcur = ggml_rope_custom(
  5636. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5637. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5638. ext_factor, attn_factor, beta_fast, beta_slow
  5639. );
  5640. cb(Kcur, "Kcur", il);
  5641. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5642. model.layers[il].wo, NULL,
  5643. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5644. }
  5645. if (il == n_layer - 1) {
  5646. // skip computing output for unused tokens
  5647. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5648. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5649. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5650. }
  5651. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5652. cb(ffn_inp, "ffn_inp", il);
  5653. // feed-forward network
  5654. {
  5655. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5656. model.layers[il].ffn_norm, NULL,
  5657. LLM_NORM_RMS, cb, il);
  5658. cb(cur, "ffn_norm", il);
  5659. cur = llm_build_ffn(ctx0, cur,
  5660. model.layers[il].ffn_up, NULL,
  5661. model.layers[il].ffn_gate, NULL,
  5662. model.layers[il].ffn_down, NULL,
  5663. NULL,
  5664. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5665. cb(cur, "ffn_out", il);
  5666. }
  5667. cur = ggml_add(ctx0, cur, ffn_inp);
  5668. cb(cur, "l_out", il);
  5669. // input for next layer
  5670. inpL = cur;
  5671. }
  5672. cur = inpL;
  5673. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  5674. cb(cur, "result_norm", -1);
  5675. // lm_head
  5676. cur = ggml_mul_mat(ctx0, model.output, cur);
  5677. cb(cur, "result_output", -1);
  5678. ggml_build_forward_expand(gf, cur);
  5679. return gf;
  5680. }
  5681. struct ggml_cgraph * build_falcon() {
  5682. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5683. const int64_t n_embd_head = hparams.n_embd_head_v;
  5684. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5685. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5686. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5687. struct ggml_tensor * cur;
  5688. struct ggml_tensor * inpL;
  5689. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5690. // inp_pos - contains the positions
  5691. struct ggml_tensor * inp_pos = build_inp_pos();
  5692. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5693. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5694. for (int il = 0; il < n_layer; ++il) {
  5695. struct ggml_tensor * attn_norm;
  5696. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5697. model.layers[il].attn_norm,
  5698. model.layers[il].attn_norm_b,
  5699. LLM_NORM, cb, il);
  5700. cb(attn_norm, "attn_norm", il);
  5701. // self-attention
  5702. {
  5703. if (model.layers[il].attn_norm_2) {
  5704. // Falcon-40B
  5705. cur = llm_build_norm(ctx0, inpL, hparams,
  5706. model.layers[il].attn_norm_2,
  5707. model.layers[il].attn_norm_2_b,
  5708. LLM_NORM, cb, il);
  5709. cb(cur, "attn_norm_2", il);
  5710. } else {
  5711. cur = attn_norm;
  5712. }
  5713. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5714. cb(cur, "wqkv", il);
  5715. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5716. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5717. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5718. cb(Qcur, "Qcur", il);
  5719. cb(Kcur, "Kcur", il);
  5720. cb(Vcur, "Vcur", il);
  5721. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5722. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5723. // using mode = 2 for neox mode
  5724. Qcur = ggml_rope_custom(
  5725. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5726. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5727. );
  5728. cb(Qcur, "Qcur", il);
  5729. Kcur = ggml_rope_custom(
  5730. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5731. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5732. );
  5733. cb(Kcur, "Kcur", il);
  5734. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5735. model.layers[il].wo, NULL,
  5736. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5737. }
  5738. if (il == n_layer - 1) {
  5739. // skip computing output for unused tokens
  5740. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5741. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5742. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5743. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  5744. }
  5745. struct ggml_tensor * ffn_inp = cur;
  5746. // feed forward
  5747. {
  5748. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  5749. model.layers[il].ffn_up, NULL,
  5750. NULL, NULL,
  5751. model.layers[il].ffn_down, NULL,
  5752. NULL,
  5753. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5754. cb(cur, "ffn_out", il);
  5755. }
  5756. cur = ggml_add(ctx0, cur, ffn_inp);
  5757. cb(cur, "l_out", il);
  5758. cur = ggml_add(ctx0, cur, inpL);
  5759. cb(cur, "l_out", il);
  5760. // input for next layer
  5761. inpL = cur;
  5762. }
  5763. cur = inpL;
  5764. // norm
  5765. cur = llm_build_norm(ctx0, cur, hparams,
  5766. model.output_norm,
  5767. model.output_norm_b,
  5768. LLM_NORM, cb, -1);
  5769. cb(cur, "result_norm", -1);
  5770. cur = ggml_mul_mat(ctx0, model.output, cur);
  5771. cb(cur, "result_output", -1);
  5772. ggml_build_forward_expand(gf, cur);
  5773. return gf;
  5774. }
  5775. struct ggml_cgraph * build_grok() {
  5776. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5777. // mutable variable, needed during the last layer of the computation to skip unused tokens
  5778. int32_t n_tokens = this->n_tokens;
  5779. const int64_t n_embd_head = hparams.n_embd_head_v;
  5780. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5781. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5782. struct ggml_tensor * cur;
  5783. struct ggml_tensor * inpL;
  5784. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5785. // multiply by embedding_multiplier_scale of 78.38367176906169
  5786. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  5787. // inp_pos - contains the positions
  5788. struct ggml_tensor * inp_pos = build_inp_pos();
  5789. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5790. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5791. for (int il = 0; il < n_layer; ++il) {
  5792. struct ggml_tensor * inpSA = inpL;
  5793. // norm
  5794. cur = llm_build_norm(ctx0, inpL, hparams,
  5795. model.layers[il].attn_norm, NULL,
  5796. LLM_NORM_RMS, cb, il);
  5797. cb(cur, "attn_norm", il);
  5798. // self-attention
  5799. {
  5800. // compute Q and K and RoPE them
  5801. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5802. cb(Qcur, "Qcur", il);
  5803. if (model.layers[il].bq) {
  5804. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5805. cb(Qcur, "Qcur", il);
  5806. }
  5807. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5808. cb(Kcur, "Kcur", il);
  5809. if (model.layers[il].bk) {
  5810. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5811. cb(Kcur, "Kcur", il);
  5812. }
  5813. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5814. cb(Vcur, "Vcur", il);
  5815. if (model.layers[il].bv) {
  5816. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5817. cb(Vcur, "Vcur", il);
  5818. }
  5819. Qcur = ggml_rope_custom(
  5820. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5821. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5822. ext_factor, attn_factor, beta_fast, beta_slow
  5823. );
  5824. cb(Qcur, "Qcur", il);
  5825. Kcur = ggml_rope_custom(
  5826. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5827. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5828. ext_factor, attn_factor, beta_fast, beta_slow
  5829. );
  5830. cb(Kcur, "Kcur", il);
  5831. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5832. model.layers[il].wo, model.layers[il].bo,
  5833. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  5834. }
  5835. if (il == n_layer - 1) {
  5836. // skip computing output for unused tokens
  5837. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5838. n_tokens = n_outputs;
  5839. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5840. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  5841. }
  5842. // Grok
  5843. // if attn_out_norm is present then apply it before adding the input
  5844. if (model.layers[il].attn_out_norm) {
  5845. cur = llm_build_norm(ctx0, cur, hparams,
  5846. model.layers[il].attn_out_norm, NULL,
  5847. LLM_NORM_RMS, cb, il);
  5848. cb(cur, "attn_out_norm", il);
  5849. }
  5850. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5851. cb(ffn_inp, "ffn_inp", il);
  5852. // feed-forward network
  5853. // MoE branch
  5854. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5855. model.layers[il].ffn_norm, NULL,
  5856. LLM_NORM_RMS, cb, il);
  5857. cb(cur, "ffn_norm", il);
  5858. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  5859. cb(logits, "ffn_moe_logits", il);
  5860. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  5861. cb(probs, "ffn_moe_probs", il);
  5862. // select experts
  5863. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  5864. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5865. ggml_tensor * weights = ggml_get_rows(ctx0,
  5866. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  5867. cb(weights, "ffn_moe_weights", il);
  5868. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  5869. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  5870. cb(weights_sum, "ffn_moe_weights_sum", il);
  5871. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  5872. cb(weights, "ffn_moe_weights_norm", il);
  5873. // compute expert outputs
  5874. ggml_tensor * moe_out = nullptr;
  5875. for (int i = 0; i < n_expert_used; ++i) {
  5876. ggml_tensor * cur_expert;
  5877. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exps, selected_experts, i, cur);
  5878. cb(cur_up, "ffn_moe_up", il);
  5879. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exps, selected_experts, i, cur);
  5880. cb(cur_gate, "ffn_moe_gate", il);
  5881. //GeLU
  5882. cur_gate = ggml_gelu(ctx0, cur_gate);
  5883. cb(cur_gate, "ffn_moe_gelu", il);
  5884. cur_expert = ggml_mul(ctx0, cur_up, cur_gate);
  5885. cb(cur_expert, "ffn_moe_gate_par", il);
  5886. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exps, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  5887. cb(cur_expert, "ffn_moe_down", il);
  5888. cur_expert = ggml_mul(ctx0, cur_expert,
  5889. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  5890. cb(cur_expert, "ffn_moe_weighted", il);
  5891. if (i == 0) {
  5892. moe_out = cur_expert;
  5893. } else {
  5894. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  5895. cb(moe_out, "ffn_moe_out", il);
  5896. }
  5897. }
  5898. cur = moe_out;
  5899. // Grok
  5900. // if layer_out_norm is present then apply it before adding the input
  5901. // Idea: maybe ffn_out_norm is a better name
  5902. if (model.layers[il].layer_out_norm) {
  5903. cur = llm_build_norm(ctx0, cur, hparams,
  5904. model.layers[il].layer_out_norm, NULL,
  5905. LLM_NORM_RMS, cb, il);
  5906. cb(cur, "layer_out_norm", il);
  5907. }
  5908. cur = ggml_add(ctx0, cur, ffn_inp);
  5909. cb(cur, "ffn_out", il);
  5910. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  5911. if (layer_dir != nullptr) {
  5912. cur = ggml_add(ctx0, cur, layer_dir);
  5913. }
  5914. cb(cur, "l_out", il);
  5915. // input for next layer
  5916. inpL = cur;
  5917. }
  5918. cur = inpL;
  5919. cur = llm_build_norm(ctx0, cur, hparams,
  5920. model.output_norm, NULL,
  5921. LLM_NORM_RMS, cb, -1);
  5922. cb(cur, "result_norm", -1);
  5923. // lm_head
  5924. cur = ggml_mul_mat(ctx0, model.output, cur);
  5925. // Grok
  5926. // multiply logits by output_multiplier_scale of 0.5773502691896257
  5927. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  5928. cb(cur, "result_output", -1);
  5929. ggml_build_forward_expand(gf, cur);
  5930. return gf;
  5931. }
  5932. struct ggml_cgraph * build_starcoder() {
  5933. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5934. const int64_t n_embd_head = hparams.n_embd_head_v;
  5935. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5936. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5937. struct ggml_tensor * cur;
  5938. struct ggml_tensor * inpL;
  5939. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  5940. // inp_pos - contains the positions
  5941. struct ggml_tensor * inp_pos = build_inp_pos();
  5942. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5943. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  5944. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5945. cb(pos, "pos_embd", -1);
  5946. inpL = ggml_add(ctx0, inpL, pos);
  5947. cb(inpL, "inpL", -1);
  5948. for (int il = 0; il < n_layer; ++il) {
  5949. cur = llm_build_norm(ctx0, inpL, hparams,
  5950. model.layers[il].attn_norm,
  5951. model.layers[il].attn_norm_b,
  5952. LLM_NORM, cb, il);
  5953. cb(cur, "attn_norm", il);
  5954. // self-attention
  5955. {
  5956. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5957. cb(cur, "wqkv", il);
  5958. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5959. cb(cur, "bqkv", il);
  5960. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5961. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5962. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5963. cb(Qcur, "Qcur", il);
  5964. cb(Kcur, "Kcur", il);
  5965. cb(Vcur, "Vcur", il);
  5966. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5967. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5968. model.layers[il].wo, model.layers[il].bo,
  5969. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5970. }
  5971. if (il == n_layer - 1) {
  5972. // skip computing output for unused tokens
  5973. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  5974. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  5975. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  5976. }
  5977. // add the input
  5978. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5979. cb(ffn_inp, "ffn_inp", il);
  5980. // FF
  5981. {
  5982. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5983. model.layers[il].ffn_norm,
  5984. model.layers[il].ffn_norm_b,
  5985. LLM_NORM, cb, il);
  5986. cb(cur, "ffn_norm", il);
  5987. cur = llm_build_ffn(ctx0, cur,
  5988. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5989. NULL, NULL,
  5990. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5991. NULL,
  5992. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5993. cb(cur, "ffn_out", il);
  5994. }
  5995. inpL = ggml_add(ctx0, cur, ffn_inp);
  5996. cb(inpL, "l_out", il);
  5997. }
  5998. cur = llm_build_norm(ctx0, inpL, hparams,
  5999. model.output_norm,
  6000. model.output_norm_b,
  6001. LLM_NORM, cb, -1);
  6002. cb(cur, "result_norm", -1);
  6003. cur = ggml_mul_mat(ctx0, model.output, cur);
  6004. cb(cur, "result_output", -1);
  6005. ggml_build_forward_expand(gf, cur);
  6006. return gf;
  6007. }
  6008. struct ggml_cgraph * build_persimmon() {
  6009. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6010. const int64_t n_embd_head = hparams.n_embd_head_v;
  6011. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6012. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  6013. struct ggml_tensor * cur;
  6014. struct ggml_tensor * inpL;
  6015. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6016. // inp_pos - contains the positions
  6017. struct ggml_tensor * inp_pos = build_inp_pos();
  6018. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6019. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6020. for (int il = 0; il < n_layer; ++il) {
  6021. struct ggml_tensor * residual = inpL;
  6022. cur = llm_build_norm(ctx0, inpL, hparams,
  6023. model.layers[il].attn_norm,
  6024. model.layers[il].attn_norm_b,
  6025. LLM_NORM, cb, il);
  6026. cb(cur, "attn_norm", il);
  6027. // self attention
  6028. {
  6029. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6030. cb(cur, "wqkv", il);
  6031. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6032. cb(cur, "bqkv", il);
  6033. // split qkv
  6034. GGML_ASSERT(n_head_kv == n_head);
  6035. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  6036. cb(tmpqkv, "tmpqkv", il);
  6037. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  6038. cb(tmpqkv_perm, "tmpqkv", il);
  6039. struct ggml_tensor * tmpq = ggml_view_3d(
  6040. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6041. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6042. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6043. 0
  6044. );
  6045. cb(tmpq, "tmpq", il);
  6046. struct ggml_tensor * tmpk = ggml_view_3d(
  6047. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6048. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6049. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6050. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  6051. );
  6052. cb(tmpk, "tmpk", il);
  6053. // Q/K Layernorm
  6054. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  6055. model.layers[il].attn_q_norm,
  6056. model.layers[il].attn_q_norm_b,
  6057. LLM_NORM, cb, il);
  6058. cb(tmpq, "tmpq", il);
  6059. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  6060. model.layers[il].attn_k_norm,
  6061. model.layers[il].attn_k_norm_b,
  6062. LLM_NORM, cb, il);
  6063. cb(tmpk, "tmpk", il);
  6064. // RoPE the first n_rot of q/k, pass the other half, and concat.
  6065. struct ggml_tensor * qrot = ggml_view_3d(
  6066. ctx0, tmpq, n_rot, n_head, n_tokens,
  6067. ggml_element_size(tmpq) * n_embd_head,
  6068. ggml_element_size(tmpq) * n_embd_head * n_head,
  6069. 0
  6070. );
  6071. cb(qrot, "qrot", il);
  6072. struct ggml_tensor * krot = ggml_view_3d(
  6073. ctx0, tmpk, n_rot, n_head, n_tokens,
  6074. ggml_element_size(tmpk) * n_embd_head,
  6075. ggml_element_size(tmpk) * n_embd_head * n_head,
  6076. 0
  6077. );
  6078. cb(krot, "krot", il);
  6079. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  6080. struct ggml_tensor * qpass = ggml_view_3d(
  6081. ctx0, tmpq, n_rot, n_head, n_tokens,
  6082. ggml_element_size(tmpq) * n_embd_head,
  6083. ggml_element_size(tmpq) * n_embd_head * n_head,
  6084. ggml_element_size(tmpq) * n_rot
  6085. );
  6086. cb(qpass, "qpass", il);
  6087. struct ggml_tensor * kpass = ggml_view_3d(
  6088. ctx0, tmpk, n_rot, n_head, n_tokens,
  6089. ggml_element_size(tmpk) * n_embd_head,
  6090. ggml_element_size(tmpk) * n_embd_head * n_head,
  6091. ggml_element_size(tmpk) * n_rot
  6092. );
  6093. cb(kpass, "kpass", il);
  6094. struct ggml_tensor * qrotated = ggml_rope_custom(
  6095. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6096. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6097. );
  6098. cb(qrotated, "qrotated", il);
  6099. struct ggml_tensor * krotated = ggml_rope_custom(
  6100. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6101. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6102. );
  6103. cb(krotated, "krotated", il);
  6104. // ggml currently only supports concatenation on dim=2
  6105. // so we need to permute qrot, qpass, concat, then permute back.
  6106. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  6107. cb(qrotated, "qrotated", il);
  6108. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  6109. cb(krotated, "krotated", il);
  6110. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  6111. cb(qpass, "qpass", il);
  6112. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  6113. cb(kpass, "kpass", il);
  6114. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  6115. cb(Qcur, "Qcur", il);
  6116. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  6117. cb(Kcur, "Kcur", il);
  6118. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  6119. cb(Q, "Q", il);
  6120. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  6121. cb(Kcur, "Kcur", il);
  6122. struct ggml_tensor * Vcur = ggml_view_3d(
  6123. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  6124. ggml_element_size(tmpqkv_perm) * n_embd_head,
  6125. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  6126. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  6127. );
  6128. cb(Vcur, "Vcur", il);
  6129. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6130. model.layers[il].wo, model.layers[il].bo,
  6131. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6132. }
  6133. if (il == n_layer - 1) {
  6134. // skip computing output for unused tokens
  6135. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6136. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6137. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  6138. }
  6139. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  6140. cb(ffn_inp, "ffn_inp", il);
  6141. // feed-forward network
  6142. {
  6143. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6144. model.layers[il].ffn_norm,
  6145. model.layers[il].ffn_norm_b,
  6146. LLM_NORM, cb, il);
  6147. cb(cur, "ffn_norm", il);
  6148. cur = llm_build_ffn(ctx0, cur,
  6149. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6150. NULL, NULL,
  6151. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6152. NULL,
  6153. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  6154. cb(cur, "ffn_out", il);
  6155. }
  6156. cur = ggml_add(ctx0, cur, ffn_inp);
  6157. cb(cur, "l_out", il);
  6158. inpL = cur;
  6159. }
  6160. cur = inpL;
  6161. cur = llm_build_norm(ctx0, cur, hparams,
  6162. model.output_norm,
  6163. model.output_norm_b,
  6164. LLM_NORM, cb, -1);
  6165. cb(cur, "result_norm", -1);
  6166. cur = ggml_mul_mat(ctx0, model.output, cur);
  6167. cb(cur, "result_output", -1);
  6168. ggml_build_forward_expand(gf, cur);
  6169. return gf;
  6170. }
  6171. struct ggml_cgraph * build_refact() {
  6172. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6173. const int64_t n_embd_head = hparams.n_embd_head_v;
  6174. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6175. struct ggml_tensor * cur;
  6176. struct ggml_tensor * inpL;
  6177. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6178. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6179. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6180. // positions of the tokens in the KV cache
  6181. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6182. for (int il = 0; il < n_layer; ++il) {
  6183. struct ggml_tensor * inpSA = inpL;
  6184. cur = llm_build_norm(ctx0, inpL, hparams,
  6185. model.layers[il].attn_norm, NULL,
  6186. LLM_NORM_RMS, cb, il);
  6187. cb(cur, "attn_norm", il);
  6188. // self-attention
  6189. {
  6190. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6191. cb(Qcur, "Qcur", il);
  6192. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6193. cb(Kcur, "Kcur", il);
  6194. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6195. cb(Vcur, "Vcur", il);
  6196. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6197. cb(Kcur, "Kcur", il);
  6198. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6199. cb(Qcur, "Qcur", il);
  6200. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6201. model.layers[il].wo, NULL,
  6202. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6203. }
  6204. if (il == n_layer - 1) {
  6205. // skip computing output for unused tokens
  6206. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6207. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6208. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6209. }
  6210. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6211. cb(ffn_inp, "ffn_inp", il);
  6212. // feed-forward network
  6213. {
  6214. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6215. model.layers[il].ffn_norm, NULL,
  6216. LLM_NORM_RMS, cb, il);
  6217. cb(cur, "ffn_norm", il);
  6218. cur = llm_build_ffn(ctx0, cur,
  6219. model.layers[il].ffn_up, NULL,
  6220. model.layers[il].ffn_gate, NULL,
  6221. model.layers[il].ffn_down, NULL,
  6222. NULL,
  6223. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6224. cb(cur, "ffn_out", il);
  6225. }
  6226. cur = ggml_add(ctx0, cur, ffn_inp);
  6227. cb(cur, "l_out", il);
  6228. // input for next layer
  6229. inpL = cur;
  6230. }
  6231. cur = inpL;
  6232. cur = llm_build_norm(ctx0, cur, hparams,
  6233. model.output_norm, NULL,
  6234. LLM_NORM_RMS, cb, -1);
  6235. cb(cur, "result_norm", -1);
  6236. // lm_head
  6237. cur = ggml_mul_mat(ctx0, model.output, cur);
  6238. cb(cur, "result_output", -1);
  6239. ggml_build_forward_expand(gf, cur);
  6240. return gf;
  6241. }
  6242. struct ggml_cgraph * build_bert() {
  6243. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6244. const int64_t n_embd_head = hparams.n_embd_head_v;
  6245. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6246. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6247. struct ggml_tensor * cur;
  6248. struct ggml_tensor * inpL;
  6249. struct ggml_tensor * inp_pos = build_inp_pos();
  6250. struct ggml_tensor * inp_mean = build_inp_mean();
  6251. struct ggml_tensor * inp_cls = build_inp_cls();
  6252. // construct input embeddings (token, type, position)
  6253. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6254. // token types are hardcoded to zero ("Sentence A")
  6255. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  6256. inpL = ggml_add(ctx0, inpL, type_row0);
  6257. if (model.arch == LLM_ARCH_BERT) {
  6258. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  6259. }
  6260. cb(inpL, "inp_embd", -1);
  6261. // embed layer norm
  6262. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  6263. cb(inpL, "inp_norm", -1);
  6264. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6265. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  6266. // iterate layers
  6267. for (int il = 0; il < n_layer; ++il) {
  6268. struct ggml_tensor * cur = inpL;
  6269. struct ggml_tensor * Qcur;
  6270. struct ggml_tensor * Kcur;
  6271. struct ggml_tensor * Vcur;
  6272. // self-attention
  6273. if (model.arch == LLM_ARCH_BERT) {
  6274. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  6275. cb(Qcur, "Qcur", il);
  6276. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  6277. cb(Kcur, "Kcur", il);
  6278. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  6279. cb(Vcur, "Vcur", il);
  6280. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6281. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6282. } else {
  6283. // compute Q and K and RoPE them
  6284. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6285. cb(cur, "wqkv", il);
  6286. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6287. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6288. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6289. cb(Qcur, "Qcur", il);
  6290. cb(Kcur, "Kcur", il);
  6291. cb(Vcur, "Vcur", il);
  6292. Qcur = ggml_rope_custom(
  6293. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6294. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6295. ext_factor, attn_factor, beta_fast, beta_slow
  6296. );
  6297. cb(Qcur, "Qcur", il);
  6298. Kcur = ggml_rope_custom(
  6299. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6300. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6301. ext_factor, attn_factor, beta_fast, beta_slow
  6302. );
  6303. cb(Kcur, "Kcur", il);
  6304. }
  6305. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  6306. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  6307. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  6308. cb(kq, "kq", il);
  6309. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  6310. cb(kq, "kq_soft_max_ext", il);
  6311. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  6312. cb(v, "v", il);
  6313. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  6314. cb(kqv, "kqv", il);
  6315. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  6316. cb(kqv_merged, "kqv_merged", il);
  6317. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  6318. cb(cur, "kqv_merged_cont", il);
  6319. ggml_build_forward_expand(gf, cur);
  6320. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  6321. if (model.layers[il].bo) {
  6322. cb(cur, "kqv_wo", il);
  6323. }
  6324. if (model.layers[il].bo) {
  6325. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  6326. }
  6327. cb(cur, "kqv_out", il);
  6328. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  6329. // skip computing output for unused tokens
  6330. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6331. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6332. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6333. }
  6334. // re-add the layer input
  6335. cur = ggml_add(ctx0, cur, inpL);
  6336. // attention layer norm
  6337. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  6338. struct ggml_tensor * ffn_inp = cur;
  6339. cb(ffn_inp, "ffn_inp", il);
  6340. // feed-forward network
  6341. if (model.arch == LLM_ARCH_BERT) {
  6342. cur = llm_build_ffn(ctx0, cur,
  6343. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6344. NULL, NULL,
  6345. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6346. NULL,
  6347. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6348. } else {
  6349. cur = llm_build_ffn(ctx0, cur,
  6350. model.layers[il].ffn_up, NULL,
  6351. model.layers[il].ffn_gate, NULL,
  6352. model.layers[il].ffn_down, NULL,
  6353. NULL,
  6354. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6355. }
  6356. cb(cur, "ffn_out", il);
  6357. // attentions bypass the intermediate layer
  6358. cur = ggml_add(ctx0, cur, ffn_inp);
  6359. // output layer norm
  6360. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  6361. // input for next layer
  6362. inpL = cur;
  6363. }
  6364. // final output
  6365. cur = inpL;
  6366. cb(cur, "result_embd", -1);
  6367. // pooling layer
  6368. switch (pooling_type) {
  6369. case LLAMA_POOLING_TYPE_NONE:
  6370. {
  6371. // nop
  6372. } break;
  6373. case LLAMA_POOLING_TYPE_MEAN:
  6374. {
  6375. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  6376. cb(cur, "result_embd_pooled", -1);
  6377. } break;
  6378. case LLAMA_POOLING_TYPE_CLS:
  6379. {
  6380. cur = ggml_get_rows(ctx0, cur, inp_cls);
  6381. cb(cur, "result_embd_pooled", -1);
  6382. } break;
  6383. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  6384. {
  6385. GGML_ASSERT(false && "Invalid pooling type");
  6386. } break;
  6387. }
  6388. ggml_build_forward_expand(gf, cur);
  6389. return gf;
  6390. }
  6391. struct ggml_cgraph * build_bloom() {
  6392. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6393. const int64_t n_embd_head = hparams.n_embd_head_v;
  6394. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6395. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6396. struct ggml_tensor * cur;
  6397. struct ggml_tensor * inpL;
  6398. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6399. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6400. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6401. // positions of the tokens in the KV cache
  6402. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6403. inpL = llm_build_norm(ctx0, inpL, hparams,
  6404. model.tok_norm,
  6405. model.tok_norm_b,
  6406. LLM_NORM, cb, -1);
  6407. cb(inpL, "inp_norm", -1);
  6408. for (int il = 0; il < n_layer; ++il) {
  6409. cur = llm_build_norm(ctx0, inpL, hparams,
  6410. model.layers[il].attn_norm,
  6411. model.layers[il].attn_norm_b,
  6412. LLM_NORM, cb, il);
  6413. cb(cur, "attn_norm", il);
  6414. // self-attention
  6415. {
  6416. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6417. cb(cur, "wqkv", il);
  6418. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6419. cb(cur, "bqkv", il);
  6420. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6421. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6422. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6423. cb(Qcur, "Qcur", il);
  6424. cb(Kcur, "Kcur", il);
  6425. cb(Vcur, "Vcur", il);
  6426. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6427. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6428. model.layers[il].wo, model.layers[il].bo,
  6429. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6430. }
  6431. if (il == n_layer - 1) {
  6432. // skip computing output for unused tokens
  6433. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6434. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6435. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6436. }
  6437. // Add the input
  6438. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6439. cb(ffn_inp, "ffn_inp", il);
  6440. // FF
  6441. {
  6442. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6443. model.layers[il].ffn_norm,
  6444. model.layers[il].ffn_norm_b,
  6445. LLM_NORM, cb, il);
  6446. cb(cur, "ffn_norm", il);
  6447. cur = llm_build_ffn(ctx0, cur,
  6448. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6449. NULL, NULL,
  6450. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6451. NULL,
  6452. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6453. cb(cur, "ffn_out", il);
  6454. }
  6455. inpL = ggml_add(ctx0, cur, ffn_inp);
  6456. cb(inpL, "l_out", il);
  6457. }
  6458. cur = llm_build_norm(ctx0, inpL, hparams,
  6459. model.output_norm,
  6460. model.output_norm_b,
  6461. LLM_NORM, cb, -1);
  6462. cb(cur, "result_norm", -1);
  6463. cur = ggml_mul_mat(ctx0, model.output, cur);
  6464. cb(cur, "result_output", -1);
  6465. ggml_build_forward_expand(gf, cur);
  6466. return gf;
  6467. }
  6468. struct ggml_cgraph * build_mpt() {
  6469. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6470. const int64_t n_embd_head = hparams.n_embd_head_v;
  6471. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6472. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6473. struct ggml_tensor * cur;
  6474. struct ggml_tensor * inpL;
  6475. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6476. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6477. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6478. // positions of the tokens in the KV cache
  6479. struct ggml_tensor * KQ_pos = build_inp_KQ_pos();
  6480. for (int il = 0; il < n_layer; ++il) {
  6481. struct ggml_tensor * attn_norm;
  6482. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6483. model.layers[il].attn_norm,
  6484. model.layers[il].attn_norm_b,
  6485. LLM_NORM, cb, il);
  6486. cb(attn_norm, "attn_norm", il);
  6487. // self-attention
  6488. {
  6489. cur = attn_norm;
  6490. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6491. cb(cur, "wqkv", il);
  6492. if (model.layers[il].bqkv){
  6493. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6494. cb(cur, "bqkv", il);
  6495. }
  6496. if (hparams.f_clamp_kqv > 0.0f) {
  6497. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6498. cb(cur, "wqkv_clamped", il);
  6499. }
  6500. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6501. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6502. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6503. cb(Qcur, "Qcur", il);
  6504. cb(Kcur, "Kcur", il);
  6505. cb(Vcur, "Vcur", il);
  6506. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6507. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6508. model.layers[il].wo, model.layers[il].bo,
  6509. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6510. }
  6511. if (il == n_layer - 1) {
  6512. // skip computing output for unused tokens
  6513. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6514. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6515. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6516. }
  6517. // Add the input
  6518. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  6519. cb(ffn_inp, "ffn_inp", il);
  6520. // feed forward
  6521. {
  6522. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6523. model.layers[il].ffn_norm,
  6524. model.layers[il].ffn_norm_b,
  6525. LLM_NORM, cb, il);
  6526. cb(cur, "ffn_norm", il);
  6527. cur = llm_build_ffn(ctx0, cur,
  6528. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6529. NULL, NULL,
  6530. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6531. model.layers[il].ffn_act,
  6532. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6533. cb(cur, "ffn_out", il);
  6534. }
  6535. cur = ggml_add(ctx0, cur, ffn_inp);
  6536. cb(cur, "l_out", il);
  6537. // input for next layer
  6538. inpL = cur;
  6539. }
  6540. cur = inpL;
  6541. cur = llm_build_norm(ctx0, cur, hparams,
  6542. model.output_norm,
  6543. model.output_norm_b,
  6544. LLM_NORM, cb, -1);
  6545. cb(cur, "result_norm", -1);
  6546. cur = ggml_mul_mat(ctx0, model.output, cur);
  6547. cb(cur, "result_output", -1);
  6548. ggml_build_forward_expand(gf, cur);
  6549. return gf;
  6550. }
  6551. struct ggml_cgraph * build_stablelm() {
  6552. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6553. const int64_t n_embd_head = hparams.n_embd_head_v;
  6554. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6555. struct ggml_tensor * cur;
  6556. struct ggml_tensor * inpL;
  6557. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6558. // inp_pos - contains the positions
  6559. struct ggml_tensor * inp_pos = build_inp_pos();
  6560. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6561. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6562. for (int il = 0; il < n_layer; ++il) {
  6563. struct ggml_tensor * inpSA = inpL;
  6564. // norm
  6565. cur = llm_build_norm(ctx0, inpL, hparams,
  6566. model.layers[il].attn_norm,
  6567. model.layers[il].attn_norm_b,
  6568. LLM_NORM, cb, il);
  6569. cb(cur, "attn_norm", il);
  6570. // self-attention
  6571. {
  6572. // compute Q and K and RoPE them
  6573. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6574. cb(Qcur, "Qcur", il);
  6575. if (model.layers[il].bq) {
  6576. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6577. cb(Qcur, "Qcur", il);
  6578. }
  6579. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6580. cb(Kcur, "Kcur", il);
  6581. if (model.layers[il].bk) {
  6582. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6583. cb(Kcur, "Kcur", il);
  6584. }
  6585. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6586. cb(Vcur, "Vcur", il);
  6587. if (model.layers[il].bv) {
  6588. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6589. cb(Vcur, "Vcur", il);
  6590. }
  6591. Qcur = ggml_rope_custom(
  6592. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6593. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6594. ext_factor, attn_factor, beta_fast, beta_slow
  6595. );
  6596. cb(Qcur, "Qcur", il);
  6597. Kcur = ggml_rope_custom(
  6598. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6599. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6600. ext_factor, attn_factor, beta_fast, beta_slow
  6601. );
  6602. cb(Kcur, "Kcur", il);
  6603. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6604. model.layers[il].wo, NULL,
  6605. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6606. }
  6607. if (il == n_layer - 1) {
  6608. // skip computing output for unused tokens
  6609. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6610. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6611. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6612. }
  6613. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6614. cb(ffn_inp, "ffn_inp", il);
  6615. // feed-forward network
  6616. {
  6617. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6618. model.layers[il].ffn_norm,
  6619. model.layers[il].ffn_norm_b,
  6620. LLM_NORM, cb, il);
  6621. cb(cur, "ffn_norm", il);
  6622. cur = llm_build_ffn(ctx0, cur,
  6623. model.layers[il].ffn_up, NULL,
  6624. model.layers[il].ffn_gate, NULL,
  6625. model.layers[il].ffn_down, NULL,
  6626. NULL,
  6627. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6628. cb(cur, "ffn_out", il);
  6629. }
  6630. cur = ggml_add(ctx0, cur, ffn_inp);
  6631. cb(cur, "l_out", il);
  6632. // input for next layer
  6633. inpL = cur;
  6634. }
  6635. cur = inpL;
  6636. cur = llm_build_norm(ctx0, cur, hparams,
  6637. model.output_norm,
  6638. model.output_norm_b,
  6639. LLM_NORM, cb, -1);
  6640. cb(cur, "result_norm", -1);
  6641. // lm_head
  6642. cur = ggml_mul_mat(ctx0, model.output, cur);
  6643. cb(cur, "result_output", -1);
  6644. ggml_build_forward_expand(gf, cur);
  6645. return gf;
  6646. }
  6647. struct ggml_cgraph * build_qwen() {
  6648. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6649. const int64_t n_embd_head = hparams.n_embd_head_v;
  6650. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6651. struct ggml_tensor * cur;
  6652. struct ggml_tensor * inpL;
  6653. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6654. // inp_pos - contains the positions
  6655. struct ggml_tensor * inp_pos = build_inp_pos();
  6656. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6657. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6658. for (int il = 0; il < n_layer; ++il) {
  6659. struct ggml_tensor * inpSA = inpL;
  6660. cur = llm_build_norm(ctx0, inpL, hparams,
  6661. model.layers[il].attn_norm, NULL,
  6662. LLM_NORM_RMS, cb, il);
  6663. cb(cur, "attn_norm", il);
  6664. // self-attention
  6665. {
  6666. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6667. cb(cur, "wqkv", il);
  6668. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6669. cb(cur, "bqkv", il);
  6670. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6671. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6672. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  6673. cb(Qcur, "Qcur", il);
  6674. cb(Kcur, "Kcur", il);
  6675. cb(Vcur, "Vcur", il);
  6676. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6677. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6678. // using mode = 2 for neox mode
  6679. Qcur = ggml_rope_custom(
  6680. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6681. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6682. );
  6683. cb(Qcur, "Qcur", il);
  6684. Kcur = ggml_rope_custom(
  6685. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6686. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6687. );
  6688. cb(Kcur, "Kcur", il);
  6689. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6690. model.layers[il].wo, NULL,
  6691. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6692. }
  6693. if (il == n_layer - 1) {
  6694. // skip computing output for unused tokens
  6695. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6696. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6697. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6698. }
  6699. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6700. cb(ffn_inp, "ffn_inp", il);
  6701. // feed-forward forward
  6702. {
  6703. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6704. model.layers[il].ffn_norm, NULL,
  6705. LLM_NORM_RMS, cb, il);
  6706. cb(cur, "ffn_norm", il);
  6707. cur = llm_build_ffn(ctx0, cur,
  6708. model.layers[il].ffn_up, NULL,
  6709. model.layers[il].ffn_gate, NULL,
  6710. model.layers[il].ffn_down, NULL,
  6711. NULL,
  6712. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6713. cb(cur, "ffn_out", il);
  6714. }
  6715. cur = ggml_add(ctx0, cur, ffn_inp);
  6716. cb(cur, "l_out", il);
  6717. // input for next layer
  6718. inpL = cur;
  6719. }
  6720. cur = inpL;
  6721. cur = llm_build_norm(ctx0, cur, hparams,
  6722. model.output_norm, NULL,
  6723. LLM_NORM_RMS, cb, -1);
  6724. cb(cur, "result_norm", -1);
  6725. // lm_head
  6726. cur = ggml_mul_mat(ctx0, model.output, cur);
  6727. cb(cur, "result_output", -1);
  6728. ggml_build_forward_expand(gf, cur);
  6729. return gf;
  6730. }
  6731. struct ggml_cgraph * build_qwen2() {
  6732. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6733. const int64_t n_embd_head = hparams.n_embd_head_v;
  6734. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6735. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6736. struct ggml_tensor * cur;
  6737. struct ggml_tensor * inpL;
  6738. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6739. // inp_pos - contains the positions
  6740. struct ggml_tensor * inp_pos = build_inp_pos();
  6741. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6742. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6743. for (int il = 0; il < n_layer; ++il) {
  6744. struct ggml_tensor * inpSA = inpL;
  6745. // norm
  6746. cur = llm_build_norm(ctx0, inpL, hparams,
  6747. model.layers[il].attn_norm, NULL,
  6748. LLM_NORM_RMS, cb, il);
  6749. cb(cur, "attn_norm", il);
  6750. // self-attention
  6751. {
  6752. // compute Q and K and RoPE them
  6753. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6754. cb(Qcur, "Qcur", il);
  6755. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6756. cb(Qcur, "Qcur", il);
  6757. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6758. cb(Kcur, "Kcur", il);
  6759. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6760. cb(Kcur, "Kcur", il);
  6761. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6762. cb(Vcur, "Vcur", il);
  6763. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6764. cb(Vcur, "Vcur", il);
  6765. // these nodes are added to the graph together so that they are not reordered
  6766. // by doing so, the number of splits in the graph is reduced
  6767. ggml_build_forward_expand(gf, Qcur);
  6768. ggml_build_forward_expand(gf, Kcur);
  6769. ggml_build_forward_expand(gf, Vcur);
  6770. Qcur = ggml_rope_custom(
  6771. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6772. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6773. ext_factor, attn_factor, beta_fast, beta_slow
  6774. );
  6775. cb(Qcur, "Qcur", il);
  6776. Kcur = ggml_rope_custom(
  6777. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6778. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6779. ext_factor, attn_factor, beta_fast, beta_slow
  6780. );
  6781. cb(Kcur, "Kcur", il);
  6782. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6783. model.layers[il].wo, model.layers[il].bo,
  6784. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6785. }
  6786. if (il == n_layer - 1) {
  6787. // skip computing output for unused tokens
  6788. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6789. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6790. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6791. }
  6792. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6793. cb(ffn_inp, "ffn_inp", il);
  6794. // feed-forward network
  6795. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6796. model.layers[il].ffn_norm, NULL,
  6797. LLM_NORM_RMS, cb, il);
  6798. cb(cur, "ffn_norm", il);
  6799. cur = llm_build_ffn(ctx0, cur,
  6800. model.layers[il].ffn_up, NULL,
  6801. model.layers[il].ffn_gate, NULL,
  6802. model.layers[il].ffn_down, NULL,
  6803. NULL,
  6804. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6805. cb(cur, "ffn_out", il);
  6806. cur = ggml_add(ctx0, cur, ffn_inp);
  6807. cb(cur, "l_out", il);
  6808. // input for next layer
  6809. inpL = cur;
  6810. }
  6811. cur = inpL;
  6812. cur = llm_build_norm(ctx0, cur, hparams,
  6813. model.output_norm, NULL,
  6814. LLM_NORM_RMS, cb, -1);
  6815. cb(cur, "result_norm", -1);
  6816. // lm_head
  6817. cur = ggml_mul_mat(ctx0, model.output, cur);
  6818. cb(cur, "result_output", -1);
  6819. ggml_build_forward_expand(gf, cur);
  6820. return gf;
  6821. }
  6822. struct ggml_cgraph * build_phi2() {
  6823. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6824. const int64_t n_embd_head = hparams.n_embd_head_v;
  6825. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6826. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6827. struct ggml_tensor * cur;
  6828. struct ggml_tensor * attn_norm_output;
  6829. struct ggml_tensor * ffn_output;
  6830. struct ggml_tensor * inpL;
  6831. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6832. // inp_pos - contains the positions
  6833. struct ggml_tensor * inp_pos = build_inp_pos();
  6834. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6835. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6836. for (int il = 0; il < n_layer; ++il) {
  6837. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  6838. model.layers[il].attn_norm,
  6839. model.layers[il].attn_norm_b,
  6840. LLM_NORM, cb, il);
  6841. cb(attn_norm_output, "attn_norm", il);
  6842. // self-attention
  6843. {
  6844. struct ggml_tensor * Qcur = nullptr;
  6845. struct ggml_tensor * Kcur = nullptr;
  6846. struct ggml_tensor * Vcur = nullptr;
  6847. if (model.layers[il].wqkv) {
  6848. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  6849. cb(cur, "wqkv", il);
  6850. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6851. cb(cur, "bqkv", il);
  6852. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6853. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6854. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6855. } else {
  6856. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  6857. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  6858. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  6859. }
  6860. cb(Qcur, "Qcur", il);
  6861. cb(Kcur, "Kcur", il);
  6862. cb(Vcur, "Vcur", il);
  6863. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6864. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6865. Qcur = ggml_rope_custom(
  6866. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6867. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6868. );
  6869. cb(Qcur, "Qcur", il);
  6870. // with phi2, we scale the Q to avoid precision issues
  6871. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  6872. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  6873. cb(Qcur, "Qcur", il);
  6874. Kcur = ggml_rope_custom(
  6875. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  6876. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6877. );
  6878. cb(Kcur, "Kcur", il);
  6879. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6880. model.layers[il].wo, model.layers[il].bo,
  6881. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6882. }
  6883. if (il == n_layer - 1) {
  6884. // skip computing output for unused tokens
  6885. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6886. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6887. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6888. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  6889. }
  6890. // FF
  6891. {
  6892. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  6893. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6894. NULL, NULL,
  6895. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6896. NULL,
  6897. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6898. cb(ffn_output, "ffn_out", il);
  6899. }
  6900. cur = ggml_add(ctx0, cur, ffn_output);
  6901. cb(cur, "l_out", il);
  6902. cur = ggml_add(ctx0, cur, inpL);
  6903. cb(cur, "l_out", il);
  6904. inpL = cur;
  6905. }
  6906. cur = llm_build_norm(ctx0, inpL, hparams,
  6907. model.output_norm,
  6908. model.output_norm_b,
  6909. LLM_NORM, cb, -1);
  6910. cb(cur, "result_norm", -1);
  6911. cur = ggml_mul_mat(ctx0, model.output, cur);
  6912. cb(cur, "result_output_no_bias", -1);
  6913. cur = ggml_add(ctx0, cur, model.output_b);
  6914. cb(cur, "result_output", -1);
  6915. ggml_build_forward_expand(gf, cur);
  6916. return gf;
  6917. }
  6918. struct ggml_cgraph * build_plamo() {
  6919. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  6920. const int64_t n_embd_head = hparams.n_embd_head_v;
  6921. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6922. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6923. struct ggml_tensor * cur;
  6924. struct ggml_tensor * inpL;
  6925. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6926. // inp_pos - contains the positions
  6927. struct ggml_tensor * inp_pos = build_inp_pos();
  6928. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6929. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6930. for (int il = 0; il < n_layer; ++il) {
  6931. // norm
  6932. cur = llm_build_norm(ctx0, inpL, hparams,
  6933. model.layers[il].attn_norm, NULL,
  6934. LLM_NORM_RMS, cb, il);
  6935. cb(cur, "attn_norm", il);
  6936. struct ggml_tensor * attention_norm = cur;
  6937. // self-attention
  6938. {
  6939. // compute Q and K and RoPE them
  6940. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6941. cb(Qcur, "Qcur", il);
  6942. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6943. cb(Kcur, "Kcur", il);
  6944. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6945. cb(Vcur, "Vcur", il);
  6946. Qcur = ggml_rope_custom(
  6947. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  6948. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6949. ext_factor, attn_factor, beta_fast, beta_slow);
  6950. cb(Qcur, "Qcur", il);
  6951. Kcur = ggml_rope_custom(
  6952. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  6953. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6954. ext_factor, attn_factor, beta_fast, beta_slow);
  6955. cb(Kcur, "Kcur", il);
  6956. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6957. model.layers[il].wo, NULL,
  6958. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6959. }
  6960. struct ggml_tensor * sa_out = cur;
  6961. cur = attention_norm;
  6962. if (il == n_layer - 1) {
  6963. // skip computing output for unused tokens
  6964. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6965. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6966. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  6967. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6968. }
  6969. // feed-forward network
  6970. {
  6971. cur = llm_build_ffn(ctx0, cur,
  6972. model.layers[il].ffn_up, NULL,
  6973. model.layers[il].ffn_gate, NULL,
  6974. model.layers[il].ffn_down, NULL,
  6975. NULL,
  6976. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6977. cb(cur, "ffn_out", il);
  6978. }
  6979. cur = ggml_add(ctx0, cur, sa_out);
  6980. cb(cur, "l_out", il);
  6981. cur = ggml_add(ctx0, cur, inpL);
  6982. cb(cur, "l_out", il);
  6983. // input for next layer
  6984. inpL = cur;
  6985. }
  6986. cur = inpL;
  6987. cur = llm_build_norm(ctx0, cur, hparams,
  6988. model.output_norm, NULL,
  6989. LLM_NORM_RMS, cb, -1);
  6990. cb(cur, "result_norm", -1);
  6991. // lm_head
  6992. cur = ggml_mul_mat(ctx0, model.output, cur);
  6993. cb(cur, "result_output", -1);
  6994. ggml_build_forward_expand(gf, cur);
  6995. return gf;
  6996. }
  6997. struct ggml_cgraph * build_gpt2() {
  6998. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6999. const int64_t n_embd_head = hparams.n_embd_head_v;
  7000. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7001. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7002. struct ggml_tensor * cur;
  7003. struct ggml_tensor * pos;
  7004. struct ggml_tensor * inpL;
  7005. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7006. // inp_pos - contains the positions
  7007. struct ggml_tensor * inp_pos = build_inp_pos();
  7008. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7009. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7010. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7011. cb(pos, "pos_embd", -1);
  7012. inpL = ggml_add(ctx0, inpL, pos);
  7013. cb(inpL, "inpL", -1);
  7014. for (int il = 0; il < n_layer; ++il) {
  7015. cur = llm_build_norm(ctx0, inpL, hparams,
  7016. model.layers[il].attn_norm,
  7017. model.layers[il].attn_norm_b,
  7018. LLM_NORM, cb, il);
  7019. cb(cur, "attn_norm", il);
  7020. // self-attention
  7021. {
  7022. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7023. cb(cur, "wqkv", il);
  7024. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7025. cb(cur, "bqkv", il);
  7026. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7027. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7028. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7029. cb(Qcur, "Qcur", il);
  7030. cb(Kcur, "Kcur", il);
  7031. cb(Vcur, "Vcur", il);
  7032. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7033. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7034. model.layers[il].wo, model.layers[il].bo,
  7035. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7036. }
  7037. if (il == n_layer - 1) {
  7038. // skip computing output for unused tokens
  7039. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7040. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7041. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7042. }
  7043. // add the input
  7044. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7045. cb(ffn_inp, "ffn_inp", il);
  7046. // FF
  7047. {
  7048. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7049. model.layers[il].ffn_norm,
  7050. model.layers[il].ffn_norm_b,
  7051. LLM_NORM, cb, il);
  7052. cb(cur, "ffn_norm", il);
  7053. cur = llm_build_ffn(ctx0, cur,
  7054. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7055. NULL, NULL,
  7056. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7057. NULL,
  7058. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7059. cb(cur, "ffn_out", il);
  7060. }
  7061. inpL = ggml_add(ctx0, cur, ffn_inp);
  7062. cb(inpL, "l_out", il);
  7063. }
  7064. cur = llm_build_norm(ctx0, inpL, hparams,
  7065. model.output_norm,
  7066. model.output_norm_b,
  7067. LLM_NORM, cb, -1);
  7068. cb(cur, "result_norm", -1);
  7069. cur = ggml_mul_mat(ctx0, model.output, cur);
  7070. cb(cur, "result_output", -1);
  7071. ggml_build_forward_expand(gf, cur);
  7072. return gf;
  7073. }
  7074. struct ggml_cgraph * build_codeshell() {
  7075. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7076. const int64_t n_embd_head = hparams.n_embd_head_v;
  7077. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7078. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7079. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7080. struct ggml_tensor * cur;
  7081. struct ggml_tensor * inpL;
  7082. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7083. // inp_pos - contains the positions
  7084. struct ggml_tensor * inp_pos = build_inp_pos();
  7085. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7086. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7087. for (int il = 0; il < n_layer; ++il) {
  7088. cur = llm_build_norm(ctx0, inpL, hparams,
  7089. model.layers[il].attn_norm,
  7090. model.layers[il].attn_norm_b,
  7091. LLM_NORM, cb, il);
  7092. cb(cur, "attn_norm", il);
  7093. // self-attention
  7094. {
  7095. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7096. cb(cur, "wqkv", il);
  7097. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7098. cb(cur, "bqkv", il);
  7099. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7100. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7101. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7102. cb(tmpq, "tmpq", il);
  7103. cb(tmpk, "tmpk", il);
  7104. cb(Vcur, "Vcur", il);
  7105. struct ggml_tensor * Qcur = ggml_rope_custom(
  7106. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  7107. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7108. ext_factor, attn_factor, beta_fast, beta_slow
  7109. );
  7110. cb(Qcur, "Qcur", il);
  7111. struct ggml_tensor * Kcur = ggml_rope_custom(
  7112. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7113. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7114. ext_factor, attn_factor, beta_fast, beta_slow
  7115. );
  7116. cb(Kcur, "Kcur", il);
  7117. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7118. model.layers[il].wo, model.layers[il].bo,
  7119. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7120. }
  7121. if (il == n_layer - 1) {
  7122. // skip computing output for unused tokens
  7123. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7124. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7125. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7126. }
  7127. // add the input
  7128. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7129. cb(ffn_inp, "ffn_inp", il);
  7130. // FF
  7131. {
  7132. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7133. model.layers[il].ffn_norm,
  7134. model.layers[il].ffn_norm_b,
  7135. LLM_NORM, cb, il);
  7136. cb(cur, "ffn_norm", il);
  7137. cur = llm_build_ffn(ctx0, cur,
  7138. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7139. NULL, NULL,
  7140. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7141. NULL,
  7142. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7143. cb(cur, "ffn_out", il);
  7144. }
  7145. inpL = ggml_add(ctx0, cur, ffn_inp);
  7146. cb(inpL, "l_out", il);
  7147. }
  7148. cur = llm_build_norm(ctx0, inpL, hparams,
  7149. model.output_norm,
  7150. model.output_norm_b,
  7151. LLM_NORM, cb, -1);
  7152. cb(cur, "result_norm", -1);
  7153. cur = ggml_mul_mat(ctx0, model.output, cur);
  7154. cb(cur, "result_output", -1);
  7155. ggml_build_forward_expand(gf, cur);
  7156. return gf;
  7157. }
  7158. struct ggml_cgraph * build_orion() {
  7159. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7160. const int64_t n_embd_head = hparams.n_embd_head_v;
  7161. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7162. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7163. struct ggml_tensor * cur;
  7164. struct ggml_tensor * inpL;
  7165. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7166. // inp_pos - contains the positions
  7167. struct ggml_tensor * inp_pos = build_inp_pos();
  7168. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7169. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7170. for (int il = 0; il < n_layer; ++il) {
  7171. struct ggml_tensor * inpSA = inpL;
  7172. // norm
  7173. cur = llm_build_norm(ctx0, inpL, hparams,
  7174. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7175. LLM_NORM, cb, il);
  7176. cb(cur, "attn_norm", il);
  7177. // self-attention
  7178. {
  7179. // compute Q and K and RoPE them
  7180. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7181. cb(Qcur, "Qcur", il);
  7182. // if (model.layers[il].bq) {
  7183. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7184. // cb(Qcur, "Qcur", il);
  7185. // }
  7186. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7187. cb(Kcur, "Kcur", il);
  7188. // if (model.layers[il].bk) {
  7189. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7190. // cb(Kcur, "Kcur", il);
  7191. // }
  7192. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7193. cb(Vcur, "Vcur", il);
  7194. // if (model.layers[il].bv) {
  7195. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7196. // cb(Vcur, "Vcur", il);
  7197. // }
  7198. Qcur = ggml_rope_custom(
  7199. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7200. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7201. ext_factor, attn_factor, beta_fast, beta_slow
  7202. );
  7203. cb(Qcur, "Qcur", il);
  7204. Kcur = ggml_rope_custom(
  7205. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7206. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7207. ext_factor, attn_factor, beta_fast, beta_slow
  7208. );
  7209. cb(Kcur, "Kcur", il);
  7210. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7211. model.layers[il].wo, NULL,
  7212. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7213. }
  7214. if (il == n_layer - 1) {
  7215. // skip computing output for unused tokens
  7216. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7217. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7218. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7219. }
  7220. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7221. cb(ffn_inp, "ffn_inp", il);
  7222. // feed-forward network
  7223. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7224. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7225. LLM_NORM, cb, il);
  7226. cb(cur, "ffn_norm", il);
  7227. cur = llm_build_ffn(ctx0, cur,
  7228. model.layers[il].ffn_up, NULL,
  7229. model.layers[il].ffn_gate, NULL,
  7230. model.layers[il].ffn_down, NULL,
  7231. NULL,
  7232. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7233. cb(cur, "ffn_out", il);
  7234. cur = ggml_add(ctx0, cur, ffn_inp);
  7235. cb(cur, "l_out", il);
  7236. // input for next layer
  7237. inpL = cur;
  7238. }
  7239. cur = inpL;
  7240. cur = llm_build_norm(ctx0, cur, hparams,
  7241. model.output_norm, model.output_norm_b,
  7242. LLM_NORM, cb, -1);
  7243. cb(cur, "result_norm", -1);
  7244. // lm_head
  7245. cur = ggml_mul_mat(ctx0, model.output, cur);
  7246. cb(cur, "result_output", -1);
  7247. ggml_build_forward_expand(gf, cur);
  7248. return gf;
  7249. }
  7250. struct ggml_cgraph * build_internlm2() {
  7251. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7252. const int64_t n_embd_head = hparams.n_embd_head_v;
  7253. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7254. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7255. struct ggml_tensor * cur;
  7256. struct ggml_tensor * inpL;
  7257. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7258. // inp_pos - contains the positions
  7259. struct ggml_tensor * inp_pos = build_inp_pos();
  7260. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7261. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7262. for (int il = 0; il < n_layer; ++il) {
  7263. struct ggml_tensor * inpSA = inpL;
  7264. // norm
  7265. cur = llm_build_norm(ctx0, inpL, hparams,
  7266. model.layers[il].attn_norm, NULL,
  7267. LLM_NORM_RMS, cb, il);
  7268. cb(cur, "attn_norm", il);
  7269. // self-attention
  7270. {
  7271. // compute Q and K and RoPE them
  7272. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7273. cb(Qcur, "Qcur", il);
  7274. if (model.layers[il].bq) {
  7275. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7276. cb(Qcur, "Qcur", il);
  7277. }
  7278. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7279. cb(Kcur, "Kcur", il);
  7280. if (model.layers[il].bk) {
  7281. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7282. cb(Kcur, "Kcur", il);
  7283. }
  7284. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7285. cb(Vcur, "Vcur", il);
  7286. if (model.layers[il].bv) {
  7287. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7288. cb(Vcur, "Vcur", il);
  7289. }
  7290. Qcur = ggml_rope_custom(
  7291. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7292. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7293. ext_factor, attn_factor, beta_fast, beta_slow
  7294. );
  7295. cb(Qcur, "Qcur", il);
  7296. Kcur = ggml_rope_custom(
  7297. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7298. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7299. ext_factor, attn_factor, beta_fast, beta_slow
  7300. );
  7301. cb(Kcur, "Kcur", il);
  7302. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7303. model.layers[il].wo, model.layers[il].bo,
  7304. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7305. }
  7306. if (il == n_layer - 1) {
  7307. // skip computing output for unused tokens
  7308. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7309. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7310. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7311. }
  7312. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7313. cb(ffn_inp, "ffn_inp", il);
  7314. // feed-forward network
  7315. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7316. model.layers[il].ffn_norm, NULL,
  7317. LLM_NORM_RMS, cb, il);
  7318. cb(cur, "ffn_norm", il);
  7319. cur = llm_build_ffn(ctx0, cur,
  7320. model.layers[il].ffn_up, NULL,
  7321. model.layers[il].ffn_gate, NULL,
  7322. model.layers[il].ffn_down, NULL,
  7323. NULL,
  7324. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7325. cb(cur, "ffn_out", il);
  7326. cur = ggml_add(ctx0, cur, ffn_inp);
  7327. cb(cur, "l_out", il);
  7328. // input for next layer
  7329. inpL = cur;
  7330. }
  7331. cur = inpL;
  7332. cur = llm_build_norm(ctx0, cur, hparams,
  7333. model.output_norm, NULL,
  7334. LLM_NORM_RMS, cb, -1);
  7335. cb(cur, "result_norm", -1);
  7336. // lm_head
  7337. cur = ggml_mul_mat(ctx0, model.output, cur);
  7338. cb(cur, "result_output", -1);
  7339. ggml_build_forward_expand(gf, cur);
  7340. return gf;
  7341. }
  7342. // ref: https://arxiv.org/abs/2203.03466
  7343. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  7344. // based on the original build_llama() function
  7345. struct ggml_cgraph * build_minicpm() {
  7346. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7347. const int64_t n_embd_head = hparams.n_embd_head_v;
  7348. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7349. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7350. const int64_t n_embd = hparams.n_embd;
  7351. //TODO: if the model varies, these parameters need to be read from the model
  7352. const int64_t n_embd_base = 256;
  7353. const float scale_embd = 12.0f;
  7354. const float scale_depth = 1.4f;
  7355. struct ggml_tensor * cur;
  7356. struct ggml_tensor * inpL;
  7357. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7358. // scale the input embeddings
  7359. inpL = ggml_scale(ctx0, inpL, scale_embd);
  7360. cb(inpL, "inp_scaled", -1);
  7361. // inp_pos - contains the positions
  7362. struct ggml_tensor * inp_pos = build_inp_pos();
  7363. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7364. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7365. for (int il = 0; il < n_layer; ++il) {
  7366. struct ggml_tensor * inpSA = inpL;
  7367. // norm
  7368. cur = llm_build_norm(ctx0, inpL, hparams,
  7369. model.layers[il].attn_norm, NULL,
  7370. LLM_NORM_RMS, cb, il);
  7371. cb(cur, "attn_norm", il);
  7372. // self-attention
  7373. {
  7374. // compute Q and K and RoPE them
  7375. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7376. cb(Qcur, "Qcur", il);
  7377. if (model.layers[il].bq) {
  7378. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7379. cb(Qcur, "Qcur", il);
  7380. }
  7381. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7382. cb(Kcur, "Kcur", il);
  7383. if (model.layers[il].bk) {
  7384. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7385. cb(Kcur, "Kcur", il);
  7386. }
  7387. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7388. cb(Vcur, "Vcur", il);
  7389. if (model.layers[il].bv) {
  7390. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7391. cb(Vcur, "Vcur", il);
  7392. }
  7393. Qcur = ggml_rope_custom(
  7394. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7395. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7396. ext_factor, attn_factor, beta_fast, beta_slow
  7397. );
  7398. cb(Qcur, "Qcur", il);
  7399. Kcur = ggml_rope_custom(
  7400. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7401. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7402. ext_factor, attn_factor, beta_fast, beta_slow
  7403. );
  7404. cb(Kcur, "Kcur", il);
  7405. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7406. model.layers[il].wo, model.layers[il].bo,
  7407. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7408. }
  7409. if (il == n_layer - 1) {
  7410. // skip computing output for unused tokens
  7411. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7412. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7413. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7414. }
  7415. // scale_res - scale the hidden states for residual connection
  7416. const float scale_res = scale_depth/sqrtf(float(n_layer));
  7417. cur = ggml_scale(ctx0, cur, scale_res);
  7418. cb(cur, "hidden_scaled", -1);
  7419. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7420. cb(ffn_inp, "ffn_inp", il);
  7421. // feed-forward network
  7422. {
  7423. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7424. model.layers[il].ffn_norm, NULL,
  7425. LLM_NORM_RMS, cb, il);
  7426. cb(cur, "ffn_norm", il);
  7427. cur = llm_build_ffn(ctx0, cur,
  7428. model.layers[il].ffn_up, NULL,
  7429. model.layers[il].ffn_gate, NULL,
  7430. model.layers[il].ffn_down, NULL,
  7431. NULL,
  7432. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7433. cb(cur, "ffn_out", il);
  7434. }
  7435. // scale the hidden states for residual connection
  7436. cur = ggml_scale(ctx0, cur, scale_res);
  7437. cb(cur, "hidden_scaled_ffn", -1);
  7438. cur = ggml_add(ctx0, cur, ffn_inp);
  7439. cb(cur, "l_out", il);
  7440. // input for next layer
  7441. inpL = cur;
  7442. }
  7443. cur = inpL;
  7444. cur = llm_build_norm(ctx0, cur, hparams,
  7445. model.output_norm, NULL,
  7446. LLM_NORM_RMS, cb, -1);
  7447. cb(cur, "result_norm", -1);
  7448. // lm_head scaling
  7449. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  7450. cur = ggml_scale(ctx0, cur, scale_lmhead);
  7451. cb(cur, "lmhead_scaling", -1);
  7452. // lm_head
  7453. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  7454. cb(cur, "result_output", -1);
  7455. ggml_build_forward_expand(gf, cur);
  7456. return gf;
  7457. }
  7458. struct ggml_cgraph * build_gemma() {
  7459. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7460. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  7461. struct ggml_tensor * cur;
  7462. struct ggml_tensor * inpL;
  7463. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7464. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  7465. cb(inpL, "inp_scaled", -1);
  7466. // inp_pos - contains the positions
  7467. struct ggml_tensor * inp_pos = build_inp_pos();
  7468. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7469. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7470. for (int il = 0; il < n_layer; ++il) {
  7471. // norm
  7472. cur = llm_build_norm(ctx0, inpL, hparams,
  7473. model.layers[il].attn_norm, NULL,
  7474. LLM_NORM_RMS, cb, il);
  7475. cb(cur, "attn_norm", il);
  7476. // self-attention
  7477. {
  7478. // compute Q and K and RoPE them
  7479. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7480. cb(Qcur, "Qcur", il);
  7481. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7482. cb(Kcur, "Kcur", il);
  7483. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7484. cb(Vcur, "Vcur", il);
  7485. Qcur = ggml_rope_custom(
  7486. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  7487. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7488. ext_factor, attn_factor, beta_fast, beta_slow);
  7489. cb(Qcur, "Qcur", il);
  7490. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  7491. cb(Qcur, "Qcur_scaled", il);
  7492. Kcur = ggml_rope_custom(
  7493. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  7494. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7495. ext_factor, attn_factor, beta_fast, beta_slow);
  7496. cb(Kcur, "Kcur", il);
  7497. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7498. model.layers[il].wo, NULL,
  7499. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7500. }
  7501. if (il == n_layer - 1) {
  7502. // skip computing output for unused tokens
  7503. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7504. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7505. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7506. }
  7507. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  7508. cb(sa_out, "sa_out", il);
  7509. cur = llm_build_norm(ctx0, sa_out, hparams,
  7510. model.layers[il].ffn_norm, NULL,
  7511. LLM_NORM_RMS, cb, il);
  7512. cb(cur, "ffn_norm", il);
  7513. // feed-forward network
  7514. {
  7515. cur = llm_build_ffn(ctx0, cur,
  7516. model.layers[il].ffn_up, NULL,
  7517. model.layers[il].ffn_gate, NULL,
  7518. model.layers[il].ffn_down, NULL,
  7519. NULL,
  7520. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7521. cb(cur, "ffn_out", il);
  7522. }
  7523. cur = ggml_add(ctx0, cur, sa_out);
  7524. cb(cur, "l_out", il);
  7525. // input for next layer
  7526. inpL = cur;
  7527. }
  7528. cur = inpL;
  7529. cur = llm_build_norm(ctx0, cur, hparams,
  7530. model.output_norm, NULL,
  7531. LLM_NORM_RMS, cb, -1);
  7532. cb(cur, "result_norm", -1);
  7533. // lm_head
  7534. cur = ggml_mul_mat(ctx0, model.output, cur);
  7535. cb(cur, "result_output", -1);
  7536. ggml_build_forward_expand(gf, cur);
  7537. return gf;
  7538. }
  7539. struct ggml_cgraph * build_starcoder2() {
  7540. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7541. const int64_t n_embd_head = hparams.n_embd_head_v;
  7542. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7543. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7544. struct ggml_tensor * cur;
  7545. struct ggml_tensor * inpL;
  7546. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7547. // inp_pos - contains the positions
  7548. struct ggml_tensor * inp_pos = build_inp_pos();
  7549. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7550. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7551. for (int il = 0; il < n_layer; ++il) {
  7552. struct ggml_tensor * inpSA = inpL;
  7553. // norm
  7554. cur = llm_build_norm(ctx0, inpL, hparams,
  7555. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  7556. LLM_NORM, cb, il);
  7557. cb(cur, "attn_norm", il);
  7558. // self-attention
  7559. {
  7560. // compute Q and K and RoPE them
  7561. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7562. cb(Qcur, "Qcur", il);
  7563. if (model.layers[il].bq) {
  7564. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7565. cb(Qcur, "Qcur", il);
  7566. }
  7567. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7568. cb(Kcur, "Kcur", il);
  7569. if (model.layers[il].bk) {
  7570. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7571. cb(Kcur, "Kcur", il);
  7572. }
  7573. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7574. cb(Vcur, "Vcur", il);
  7575. if (model.layers[il].bv) {
  7576. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7577. cb(Vcur, "Vcur", il);
  7578. }
  7579. Qcur = ggml_rope_custom(
  7580. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7581. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7582. ext_factor, attn_factor, beta_fast, beta_slow
  7583. );
  7584. cb(Qcur, "Qcur", il);
  7585. Kcur = ggml_rope_custom(
  7586. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7587. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7588. ext_factor, attn_factor, beta_fast, beta_slow
  7589. );
  7590. cb(Kcur, "Kcur", il);
  7591. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7592. model.layers[il].wo, model.layers[il].bo,
  7593. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7594. }
  7595. if (il == n_layer - 1) {
  7596. // skip computing output for unused tokens
  7597. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7598. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7599. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7600. }
  7601. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7602. cb(ffn_inp, "ffn_inp", il);
  7603. // feed-forward network
  7604. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7605. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  7606. LLM_NORM, cb, il);
  7607. cb(cur, "ffn_norm", il);
  7608. cur = llm_build_ffn(ctx0, cur,
  7609. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7610. NULL, NULL,
  7611. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7612. NULL,
  7613. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7614. cb(cur, "ffn_out", il);
  7615. cur = ggml_add(ctx0, cur, ffn_inp);
  7616. cb(cur, "l_out", il);
  7617. // input for next layer
  7618. inpL = cur;
  7619. }
  7620. cur = inpL;
  7621. cur = llm_build_norm(ctx0, cur, hparams,
  7622. model.output_norm, model.output_norm_b,
  7623. LLM_NORM, cb, -1);
  7624. cb(cur, "result_norm", -1);
  7625. // lm_head
  7626. cur = ggml_mul_mat(ctx0, model.output, cur);
  7627. cb(cur, "result_output", -1);
  7628. ggml_build_forward_expand(gf, cur);
  7629. return gf;
  7630. }
  7631. struct ggml_cgraph * build_mamba() {
  7632. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7633. const int64_t d_model = n_embd;
  7634. const int64_t d_conv = hparams.ssm_d_conv;
  7635. const int64_t d_inner = hparams.ssm_d_inner;
  7636. GGML_ASSERT(2 * d_model == d_inner);
  7637. const int64_t d_state = hparams.ssm_d_state;
  7638. const int64_t dt_rank = hparams.ssm_dt_rank;
  7639. struct ggml_tensor * cur;
  7640. struct ggml_tensor * inpL;
  7641. // {n_embd, n_tokens}
  7642. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7643. struct ggml_tensor * state_mask = build_inp_s_mask();
  7644. struct ggml_tensor * state_seq = build_inp_s_seq();
  7645. for (int il = 0; il < n_layer; ++il) {
  7646. // (ab)using the KV cache to store the states
  7647. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  7648. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  7649. // clear states of sequences which are starting at the beginning of this batch
  7650. {
  7651. conv_states = ggml_mul(ctx0,
  7652. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  7653. state_mask);
  7654. ssm_states = ggml_mul(ctx0,
  7655. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  7656. state_mask);
  7657. }
  7658. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  7659. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  7660. // norm
  7661. cur = llm_build_norm(ctx0, inpL, hparams,
  7662. model.layers[il].attn_norm, NULL,
  7663. LLM_NORM_RMS, cb, il);
  7664. cb(cur, "attn_norm", il);
  7665. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  7666. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  7667. // split the above in two
  7668. // => {d_inner, n_tokens}
  7669. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  7670. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  7671. // conv
  7672. {
  7673. // Custom operator which is needed only to ease simultaneous sequence processing.
  7674. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  7675. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  7676. // then element-wise multiply that with the conv1d weigth,
  7677. // then sum the elements of each row,
  7678. // (the last two steps are a dot product over rows (also doable with mul_mat))
  7679. // then permute away the ne[0] dimension,
  7680. // and then you're left with the resulting x tensor.
  7681. // The new conv_states is the last (d_conv - 1) columns
  7682. // of the last 3rd dimensional "layer" of the self-overlapping view.
  7683. // For simultaneous sequences, it's more complicated.
  7684. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  7685. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  7686. ggml_build_forward_expand(gf,
  7687. ggml_cpy(ctx0,
  7688. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  7689. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  7690. // extract x from x_conv
  7691. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  7692. // bias
  7693. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  7694. x = ggml_silu(ctx0, x);
  7695. }
  7696. // ssm
  7697. {
  7698. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  7699. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  7700. // split
  7701. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  7702. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  7703. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  7704. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  7705. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  7706. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  7707. // Custom operator to optimize the parallel associative scan
  7708. // as described in the Annex D of the Mamba paper.
  7709. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  7710. // because only a single tensor can be returned.
  7711. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  7712. // store last states (the second part of y_ssm_states)
  7713. ggml_build_forward_expand(gf,
  7714. ggml_cpy(ctx0,
  7715. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  7716. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  7717. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  7718. if (il == n_layer - 1) {
  7719. // skip computing output for unused tokens
  7720. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7721. x = ggml_get_rows(ctx0, x, inp_out_ids);
  7722. y = ggml_get_rows(ctx0, y, inp_out_ids);
  7723. z = ggml_get_rows(ctx0, z, inp_out_ids);
  7724. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7725. }
  7726. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  7727. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  7728. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  7729. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  7730. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  7731. }
  7732. // residual
  7733. cur = ggml_add(ctx0, cur, inpL);
  7734. cb(cur, "l_out", il);
  7735. // input for next layer
  7736. inpL = cur;
  7737. }
  7738. // final rmsnorm
  7739. cur = llm_build_norm(ctx0, inpL, hparams,
  7740. model.output_norm, NULL,
  7741. LLM_NORM_RMS, cb, -1);
  7742. cb(cur, "result_norm", -1);
  7743. // lm_head
  7744. cur = ggml_mul_mat(ctx0, model.output, cur);
  7745. cb(cur, "result_output", -1);
  7746. ggml_build_forward_expand(gf, cur);
  7747. return gf;
  7748. }
  7749. struct ggml_cgraph * build_command_r() {
  7750. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7751. const int64_t n_embd_head = hparams.n_embd_head_v;
  7752. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7753. const float f_logit_scale = hparams.f_logit_scale;
  7754. struct ggml_tensor * cur;
  7755. struct ggml_tensor * inpL;
  7756. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7757. // inp_pos - contains the positions
  7758. struct ggml_tensor * inp_pos = build_inp_pos();
  7759. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7760. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7761. for (int il = 0; il < n_layer; ++il) {
  7762. // norm
  7763. cur = llm_build_norm(ctx0, inpL, hparams,
  7764. model.layers[il].attn_norm, NULL,
  7765. LLM_NORM, cb, il);
  7766. cb(cur, "attn_norm", il);
  7767. struct ggml_tensor * ffn_inp = cur;
  7768. // self-attention
  7769. {
  7770. // compute Q and K and RoPE them
  7771. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7772. cb(Qcur, "Qcur", il);
  7773. if (model.layers[il].bq) {
  7774. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7775. cb(Qcur, "Qcur", il);
  7776. }
  7777. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7778. cb(Kcur, "Kcur", il);
  7779. if (model.layers[il].bk) {
  7780. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7781. cb(Kcur, "Kcur", il);
  7782. }
  7783. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7784. cb(Vcur, "Vcur", il);
  7785. if (model.layers[il].bv) {
  7786. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7787. cb(Vcur, "Vcur", il);
  7788. }
  7789. Qcur = ggml_rope_custom(
  7790. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  7791. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7792. ext_factor, attn_factor, beta_fast, beta_slow
  7793. );
  7794. cb(Qcur, "Qcur", il);
  7795. Kcur = ggml_rope_custom(
  7796. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  7797. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  7798. ext_factor, attn_factor, beta_fast, beta_slow
  7799. );
  7800. cb(Kcur, "Kcur", il);
  7801. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  7802. model.layers[il].wo, model.layers[il].bo,
  7803. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7804. }
  7805. if (il == n_layer - 1) {
  7806. // skip computing output for unused tokens
  7807. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7808. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7809. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7810. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  7811. }
  7812. struct ggml_tensor * attn_out = cur;
  7813. // feed-forward network
  7814. {
  7815. cur = llm_build_ffn(ctx0, ffn_inp,
  7816. model.layers[il].ffn_up, NULL,
  7817. model.layers[il].ffn_gate, NULL,
  7818. model.layers[il].ffn_down, NULL,
  7819. NULL,
  7820. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7821. cb(cur, "ffn_out", il);
  7822. }
  7823. // add together residual + FFN + self-attention
  7824. cur = ggml_add(ctx0, cur, inpL);
  7825. cur = ggml_add(ctx0, cur, attn_out);
  7826. cb(cur, "l_out", il);
  7827. // input for next layer
  7828. inpL = cur;
  7829. }
  7830. cur = inpL;
  7831. cur = llm_build_norm(ctx0, cur, hparams,
  7832. model.output_norm, NULL,
  7833. LLM_NORM, cb, -1);
  7834. cb(cur, "result_norm", -1);
  7835. // lm_head
  7836. cur = ggml_mul_mat(ctx0, model.output, cur);
  7837. if (f_logit_scale) {
  7838. cur = ggml_scale(ctx0, cur, f_logit_scale);
  7839. }
  7840. cb(cur, "result_output", -1);
  7841. ggml_build_forward_expand(gf, cur);
  7842. return gf;
  7843. }
  7844. };
  7845. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  7846. llama_batch dummy;
  7847. dummy.n_tokens = 0;
  7848. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7849. struct llm_build_context llm(lctx, dummy, cb, false);
  7850. llm.init();
  7851. struct ggml_cgraph * result = llm.build_defrag(ids);
  7852. llm.free();
  7853. return result;
  7854. }
  7855. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  7856. llama_batch dummy;
  7857. dummy.n_tokens = 0;
  7858. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7859. struct llm_build_context llm(lctx, dummy, cb, false);
  7860. llm.init();
  7861. struct ggml_cgraph * result = llm.build_k_shift();
  7862. llm.free();
  7863. return result;
  7864. }
  7865. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  7866. llama_batch dummy;
  7867. dummy.n_tokens = 0;
  7868. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  7869. struct llm_build_context llm(lctx, dummy, cb, false);
  7870. llm.init();
  7871. struct ggml_cgraph * result = llm.build_s_copy();
  7872. llm.free();
  7873. return result;
  7874. }
  7875. static struct ggml_cgraph * llama_build_graph(
  7876. llama_context & lctx,
  7877. const llama_batch & batch,
  7878. bool worst_case) {
  7879. const auto & model = lctx.model;
  7880. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  7881. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  7882. if (il >= 0) {
  7883. ggml_format_name(cur, "%s-%d", name, il);
  7884. } else {
  7885. ggml_set_name(cur, name);
  7886. }
  7887. if (!lctx.cparams.offload_kqv) {
  7888. if (strcmp(name, "kqv_merged_cont") == 0) {
  7889. // all nodes between the KV store and the attention output are run on the CPU
  7890. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  7891. }
  7892. }
  7893. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  7894. // FIXME: fix in ggml_backend_sched
  7895. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  7896. if (batch.n_tokens < 32 || full_offload) {
  7897. if (il != -1 && strcmp(name, "norm") == 0) {
  7898. for (auto * backend : lctx.backends) {
  7899. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  7900. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  7901. break;
  7902. }
  7903. }
  7904. }
  7905. }
  7906. };
  7907. struct ggml_cgraph * result = NULL;
  7908. struct llm_build_context llm(lctx, batch, cb, worst_case);
  7909. llm.init();
  7910. switch (model.arch) {
  7911. case LLM_ARCH_LLAMA:
  7912. {
  7913. result = llm.build_llama();
  7914. } break;
  7915. case LLM_ARCH_BAICHUAN:
  7916. {
  7917. result = llm.build_baichuan();
  7918. } break;
  7919. case LLM_ARCH_FALCON:
  7920. {
  7921. result = llm.build_falcon();
  7922. } break;
  7923. case LLM_ARCH_GROK:
  7924. {
  7925. result = llm.build_grok();
  7926. } break;
  7927. case LLM_ARCH_STARCODER:
  7928. {
  7929. result = llm.build_starcoder();
  7930. } break;
  7931. case LLM_ARCH_PERSIMMON:
  7932. {
  7933. result = llm.build_persimmon();
  7934. } break;
  7935. case LLM_ARCH_REFACT:
  7936. {
  7937. result = llm.build_refact();
  7938. } break;
  7939. case LLM_ARCH_BERT:
  7940. case LLM_ARCH_NOMIC_BERT:
  7941. {
  7942. result = llm.build_bert();
  7943. } break;
  7944. case LLM_ARCH_BLOOM:
  7945. {
  7946. result = llm.build_bloom();
  7947. } break;
  7948. case LLM_ARCH_MPT:
  7949. {
  7950. result = llm.build_mpt();
  7951. } break;
  7952. case LLM_ARCH_STABLELM:
  7953. {
  7954. result = llm.build_stablelm();
  7955. } break;
  7956. case LLM_ARCH_QWEN:
  7957. {
  7958. result = llm.build_qwen();
  7959. } break;
  7960. case LLM_ARCH_QWEN2:
  7961. {
  7962. result = llm.build_qwen2();
  7963. } break;
  7964. case LLM_ARCH_PHI2:
  7965. {
  7966. result = llm.build_phi2();
  7967. } break;
  7968. case LLM_ARCH_PLAMO:
  7969. {
  7970. result = llm.build_plamo();
  7971. } break;
  7972. case LLM_ARCH_GPT2:
  7973. {
  7974. result = llm.build_gpt2();
  7975. } break;
  7976. case LLM_ARCH_CODESHELL:
  7977. {
  7978. result = llm.build_codeshell();
  7979. } break;
  7980. case LLM_ARCH_ORION:
  7981. {
  7982. result = llm.build_orion();
  7983. } break;
  7984. case LLM_ARCH_INTERNLM2:
  7985. {
  7986. result = llm.build_internlm2();
  7987. } break;
  7988. case LLM_ARCH_MINICPM:
  7989. {
  7990. result = llm.build_minicpm();
  7991. } break;
  7992. case LLM_ARCH_GEMMA:
  7993. {
  7994. result = llm.build_gemma();
  7995. } break;
  7996. case LLM_ARCH_STARCODER2:
  7997. {
  7998. result = llm.build_starcoder2();
  7999. } break;
  8000. case LLM_ARCH_MAMBA:
  8001. {
  8002. result = llm.build_mamba();
  8003. } break;
  8004. case LLM_ARCH_XVERSE:
  8005. {
  8006. result = llm.build_xverse();
  8007. } break;
  8008. case LLM_ARCH_COMMAND_R:
  8009. {
  8010. result = llm.build_command_r();
  8011. } break;
  8012. default:
  8013. GGML_ASSERT(false);
  8014. }
  8015. llm.free();
  8016. return result;
  8017. }
  8018. static void llama_set_k_shift(llama_context & lctx) {
  8019. const int64_t kv_size = lctx.kv_self.size;
  8020. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  8021. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  8022. for (int i = 0; i < kv_size; ++i) {
  8023. data[i] = lctx.kv_self.cells[i].delta;
  8024. }
  8025. }
  8026. static void llama_set_s_copy(llama_context & lctx) {
  8027. const int64_t kv_size = lctx.kv_self.size;
  8028. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  8029. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  8030. for (int i = 0; i < kv_size; ++i) {
  8031. data[i] = lctx.kv_self.cells[i].src;
  8032. }
  8033. }
  8034. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  8035. //
  8036. // set input data
  8037. //
  8038. const auto & hparams = lctx.model.hparams;
  8039. const auto & cparams = lctx.cparams;
  8040. const auto & kv_self = lctx.kv_self;
  8041. if (batch.token) {
  8042. const int64_t n_tokens = batch.n_tokens;
  8043. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  8044. }
  8045. if (batch.embd) {
  8046. const int64_t n_embd = hparams.n_embd;
  8047. const int64_t n_tokens = batch.n_tokens;
  8048. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  8049. }
  8050. if (batch.pos && lctx.inp_pos) {
  8051. const int64_t n_tokens = batch.n_tokens;
  8052. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  8053. }
  8054. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  8055. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  8056. const int64_t n_tokens = batch.n_tokens;
  8057. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  8058. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  8059. if (lctx.n_outputs == n_tokens) {
  8060. for (int i = 0; i < n_tokens; ++i) {
  8061. data[i] = i;
  8062. }
  8063. } else if (batch.logits) {
  8064. int32_t n_outputs = 0;
  8065. for (int i = 0; i < n_tokens; ++i) {
  8066. if (batch.logits[i]) {
  8067. data[n_outputs++] = i;
  8068. }
  8069. }
  8070. // the graph needs to have been passed the correct number of outputs
  8071. GGML_ASSERT(lctx.n_outputs == n_outputs);
  8072. } else if (lctx.n_outputs == 1) {
  8073. // only keep last output
  8074. data[0] = n_tokens - 1;
  8075. } else {
  8076. GGML_ASSERT(lctx.n_outputs == 0);
  8077. }
  8078. }
  8079. GGML_ASSERT(
  8080. // (!a || b) is a logical implication (a -> b)
  8081. // !hparams.causal_attn -> !cparams.causal_attn
  8082. (hparams.causal_attn || !cparams.causal_attn) &&
  8083. "causal attention with embedding models is not supported"
  8084. );
  8085. if (lctx.inp_KQ_mask) {
  8086. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  8087. if (cparams.causal_attn) {
  8088. const int64_t n_kv = kv_self.n;
  8089. const int64_t n_tokens = batch.n_tokens;
  8090. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8091. float * data = (float *) lctx.inp_KQ_mask->data;
  8092. // For causal attention, use only the previous KV cells
  8093. // of the correct sequence for each token of the batch.
  8094. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  8095. for (int h = 0; h < 1; ++h) {
  8096. for (int j = 0; j < n_tokens; ++j) {
  8097. const llama_pos pos = batch.pos[j];
  8098. const llama_seq_id seq_id = batch.seq_id[j][0];
  8099. for (int i = 0; i < n_kv; ++i) {
  8100. float f;
  8101. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  8102. f = -INFINITY;
  8103. } else {
  8104. f = 0.0f;
  8105. }
  8106. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  8107. }
  8108. }
  8109. }
  8110. } else {
  8111. // when using kv cache, the mask needs to match the kv cache size
  8112. const int64_t n_tokens = batch.n_tokens;
  8113. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  8114. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  8115. float * data = (float *) lctx.inp_KQ_mask->data;
  8116. for (int h = 0; h < 1; ++h) {
  8117. for (int j = 0; j < n_tokens; ++j) {
  8118. const llama_seq_id seq_id = batch.seq_id[j][0];
  8119. for (int i = 0; i < n_tokens; ++i) {
  8120. float f = -INFINITY;
  8121. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  8122. if (batch.seq_id[i][s] == seq_id) {
  8123. f = 0.0f;
  8124. break;
  8125. }
  8126. }
  8127. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  8128. }
  8129. for (int i = n_tokens; i < n_stride; ++i) {
  8130. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  8131. }
  8132. }
  8133. }
  8134. }
  8135. }
  8136. if (hparams.need_kq_pos) {
  8137. const int64_t n_kv = kv_self.n;
  8138. GGML_ASSERT(lctx.inp_KQ_pos);
  8139. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  8140. float * data = (float *) lctx.inp_KQ_pos->data;
  8141. for (int i = 0; i < n_kv; ++i) {
  8142. data[i] = float(lctx.kv_self.cells[i].pos);
  8143. }
  8144. }
  8145. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  8146. const int64_t n_tokens = batch.n_tokens;
  8147. GGML_ASSERT(lctx.inp_mean);
  8148. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  8149. float * data = (float *) lctx.inp_mean->data;
  8150. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  8151. std::vector<uint64_t> sum(n_tokens, 0);
  8152. for (int i = 0; i < n_tokens; ++i) {
  8153. const llama_seq_id seq_id = batch.seq_id[i][0];
  8154. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  8155. sum[seq_id] += 1;
  8156. }
  8157. std::vector<float> div(n_tokens, 0.0f);
  8158. for (int i = 0; i < n_tokens; ++i) {
  8159. const uint64_t s = sum[i];
  8160. if (s > 0) {
  8161. div[i] = 1.0f/float(s);
  8162. }
  8163. }
  8164. for (int i = 0; i < n_tokens; ++i) {
  8165. const llama_seq_id seq_id = batch.seq_id[i][0];
  8166. data[seq_id*n_tokens + i] = div[seq_id];
  8167. }
  8168. }
  8169. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  8170. const int64_t n_tokens = batch.n_tokens;
  8171. GGML_ASSERT(lctx.inp_cls);
  8172. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  8173. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  8174. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  8175. for (int i = 0; i < n_tokens; ++i) {
  8176. const llama_seq_id seq_id = batch.seq_id[i][0];
  8177. const llama_pos pos = batch.pos[i];
  8178. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  8179. if (pos == 0) {
  8180. data[seq_id] = i;
  8181. }
  8182. }
  8183. }
  8184. if (kv_self.recurrent) {
  8185. const int64_t n_kv = kv_self.n;
  8186. if (lctx.inp_s_mask) {
  8187. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  8188. float * data = (float *) lctx.inp_s_mask->data;
  8189. // states which are not affected by the current batch are left untouched
  8190. for (int i = 0; i < n_kv; ++i) {
  8191. llama_seq_id seq_id = i + lctx.kv_self.head;
  8192. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  8193. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  8194. data[i] = (float) has_self_seq;
  8195. // ensure current sequences will be kept
  8196. if (!has_self_seq && kv_cell.pos >= 0) {
  8197. kv_cell.seq_id.insert(seq_id);
  8198. }
  8199. }
  8200. }
  8201. // For Mamba (and other recurrent architectures),
  8202. // update the correct state(s)/sequence(s) for each token of the batch.
  8203. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  8204. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  8205. if (lctx.inp_s_seq) {
  8206. const int64_t n_tokens = batch.n_tokens;
  8207. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  8208. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  8209. for (int j = 0; j < n_tokens; ++j) {
  8210. const int32_t n_seq = batch.n_seq_id[j];
  8211. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  8212. for (int i = 0; i < n_kv; ++i) {
  8213. if (i < n_seq) {
  8214. // for this type of model, the head is the minimum seq_id of the batch
  8215. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  8216. } else {
  8217. data[j*n_kv + i] = -1;
  8218. }
  8219. }
  8220. }
  8221. }
  8222. }
  8223. }
  8224. // Make sure enough space is available for outputs.
  8225. // Returns max number of outputs for which space was reserved.
  8226. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  8227. const auto & cparams = lctx.cparams;
  8228. const auto & hparams = lctx.model.hparams;
  8229. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  8230. const auto n_batch = cparams.n_batch;
  8231. const auto n_vocab = hparams.n_vocab;
  8232. const auto n_embd = hparams.n_embd;
  8233. // TODO: use a per-batch flag for logits presence instead
  8234. const bool has_logits = cparams.causal_attn;
  8235. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  8236. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  8237. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  8238. if (lctx.output_ids.empty()) {
  8239. // init, never resized afterwards
  8240. lctx.output_ids.resize(n_batch);
  8241. }
  8242. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  8243. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  8244. // alloc only when more than the current capacity is required
  8245. // TODO: also consider shrinking the buffer
  8246. if (!lctx.buf_output || prev_size < new_size) {
  8247. if (lctx.buf_output) {
  8248. #ifndef NDEBUG
  8249. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  8250. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  8251. #endif
  8252. ggml_backend_buffer_free(lctx.buf_output);
  8253. lctx.buf_output = nullptr;
  8254. lctx.logits = nullptr;
  8255. lctx.embd = nullptr;
  8256. }
  8257. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  8258. if (lctx.buf_output == nullptr) {
  8259. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  8260. return 0;
  8261. }
  8262. }
  8263. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  8264. lctx.logits = has_logits ? output_base : nullptr;
  8265. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  8266. lctx.output_size = n_outputs_max;
  8267. lctx.logits_size = logits_size;
  8268. lctx.embd_size = embd_size;
  8269. // set all ids as invalid (negative)
  8270. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  8271. ggml_backend_buffer_clear(lctx.buf_output, 0);
  8272. lctx.n_outputs = 0;
  8273. return n_outputs_max;
  8274. }
  8275. static void llama_graph_compute(
  8276. llama_context & lctx,
  8277. ggml_cgraph * gf,
  8278. int n_threads) {
  8279. #ifdef GGML_USE_MPI
  8280. const int64_t n_layer = lctx.model.hparams.n_layer;
  8281. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  8282. #endif
  8283. #ifdef GGML_USE_METAL
  8284. if (ggml_backend_is_metal(lctx.backend_metal)) {
  8285. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  8286. }
  8287. #endif
  8288. if (lctx.backend_cpu != nullptr) {
  8289. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  8290. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  8291. }
  8292. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  8293. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  8294. #ifdef GGML_USE_MPI
  8295. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  8296. #endif
  8297. }
  8298. // decode a batch of tokens by evaluating the transformer
  8299. //
  8300. // - lctx: llama context
  8301. // - batch: batch to evaluate
  8302. //
  8303. // return 0 on success
  8304. // return positive int on warning
  8305. // return negative int on error
  8306. //
  8307. static int llama_decode_internal(
  8308. llama_context & lctx,
  8309. llama_batch batch_all) { // TODO: rename back to batch
  8310. const uint32_t n_tokens_all = batch_all.n_tokens;
  8311. if (n_tokens_all == 0) {
  8312. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  8313. return -1;
  8314. }
  8315. const auto & model = lctx.model;
  8316. const auto & hparams = model.hparams;
  8317. const auto & cparams = lctx.cparams;
  8318. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  8319. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  8320. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  8321. if (lctx.t_compute_start_us == 0) {
  8322. lctx.t_compute_start_us = ggml_time_us();
  8323. }
  8324. lctx.n_queued_tokens += n_tokens_all;
  8325. #ifdef GGML_USE_MPI
  8326. // TODO: needs fix after #3228
  8327. GGML_ASSERT(false && "not implemented");
  8328. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  8329. #endif
  8330. auto & kv_self = lctx.kv_self;
  8331. const int64_t n_embd = hparams.n_embd;
  8332. const int64_t n_vocab = hparams.n_vocab;
  8333. uint32_t n_outputs = 0;
  8334. uint32_t n_outputs_prev = 0;
  8335. const auto n_ubatch = cparams.n_ubatch;
  8336. std::vector<llama_pos> pos;
  8337. std::vector<int32_t> n_seq_id;
  8338. std::vector<llama_seq_id *> seq_id_arr;
  8339. std::vector<std::vector<llama_seq_id>> seq_id;
  8340. // count outputs
  8341. if (batch_all.logits) {
  8342. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8343. n_outputs += batch_all.logits[i] != 0;
  8344. }
  8345. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  8346. n_outputs = n_tokens_all;
  8347. } else {
  8348. // keep last output only
  8349. n_outputs = 1;
  8350. }
  8351. // reserve output buffer
  8352. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  8353. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  8354. return -2;
  8355. };
  8356. // set output mappings
  8357. if (batch_all.logits) {
  8358. int32_t i_logits = 0;
  8359. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  8360. if (batch_all.logits[i]) {
  8361. lctx.output_ids[i] = i_logits++;
  8362. }
  8363. }
  8364. } else {
  8365. for (uint32_t i = 0; i < n_outputs; ++i) {
  8366. lctx.output_ids[i] = i;
  8367. }
  8368. }
  8369. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  8370. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  8371. llama_batch u_batch = {
  8372. /* .n_tokens = */ (int32_t) n_tokens,
  8373. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  8374. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  8375. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  8376. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  8377. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  8378. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  8379. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  8380. /* .all_pos_1 = */ batch_all.all_pos_1,
  8381. /* .all_seq_id = */ batch_all.all_seq_id,
  8382. };
  8383. // count the outputs in this u_batch
  8384. {
  8385. int32_t n_outputs_new = 0;
  8386. if (u_batch.logits) {
  8387. for (uint32_t i = 0; i < n_tokens; i++) {
  8388. n_outputs_new += u_batch.logits[i] != 0;
  8389. }
  8390. } else if (n_outputs == n_tokens_all) {
  8391. n_outputs_new = n_tokens;
  8392. } else {
  8393. // keep last output only
  8394. if (cur_token + n_tokens >= n_tokens_all) {
  8395. n_outputs_new = 1;
  8396. }
  8397. }
  8398. // needs to happen before the graph is built
  8399. lctx.n_outputs = n_outputs_new;
  8400. }
  8401. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  8402. GGML_ASSERT(n_threads > 0);
  8403. // helpers for smoother batch API transition
  8404. // after deprecating the llama_eval calls, these will be removed
  8405. if (u_batch.pos == nullptr) {
  8406. pos.resize(n_tokens);
  8407. for (uint32_t i = 0; i < n_tokens; i++) {
  8408. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  8409. }
  8410. u_batch.pos = pos.data();
  8411. }
  8412. if (u_batch.seq_id == nullptr) {
  8413. n_seq_id.resize(n_tokens);
  8414. seq_id.resize(n_tokens);
  8415. seq_id_arr.resize(n_tokens);
  8416. for (uint32_t i = 0; i < n_tokens; i++) {
  8417. n_seq_id[i] = 1;
  8418. seq_id[i].resize(1);
  8419. seq_id[i][0] = u_batch.all_seq_id;
  8420. seq_id_arr[i] = seq_id[i].data();
  8421. }
  8422. u_batch.n_seq_id = n_seq_id.data();
  8423. u_batch.seq_id = seq_id_arr.data();
  8424. }
  8425. // non-causal masks do not use the KV cache
  8426. if (hparams.causal_attn) {
  8427. llama_kv_cache_update(&lctx);
  8428. // if we have enough unused cells before the current head ->
  8429. // better to start searching from the beginning of the cache, hoping to fill it
  8430. if (kv_self.head > kv_self.used + 2*n_tokens) {
  8431. kv_self.head = 0;
  8432. }
  8433. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  8434. return 1;
  8435. }
  8436. if (!kv_self.recurrent) {
  8437. // a heuristic, to avoid attending the full cache if it is not yet utilized
  8438. // after enough generations, the benefit from this heuristic disappears
  8439. // if we start defragmenting the cache, the benefit from this will be more important
  8440. kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  8441. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  8442. }
  8443. }
  8444. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  8445. ggml_backend_sched_reset(lctx.sched);
  8446. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  8447. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  8448. // the output is always the last tensor in the graph
  8449. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  8450. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  8451. if (lctx.n_outputs == 0) {
  8452. // no output
  8453. res = nullptr;
  8454. embd = nullptr;
  8455. } else if (!hparams.causal_attn) {
  8456. res = nullptr; // do not extract logits for embedding models such as BERT
  8457. // token or sequence embeddings
  8458. embd = gf->nodes[gf->n_nodes - 1];
  8459. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  8460. } else if (cparams.embeddings) {
  8461. // the embeddings could be in the second to last tensor, or any of the previous tensors
  8462. int i_embd = gf->n_nodes - 2;
  8463. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  8464. i_embd = gf->n_nodes - i;
  8465. if (i_embd < 0) { break; }
  8466. embd = gf->nodes[i_embd];
  8467. }
  8468. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  8469. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  8470. if (!cparams.causal_attn) {
  8471. res = nullptr; // do not extract logits when not needed
  8472. // skip computing logits
  8473. // TODO: is this safe?
  8474. gf->n_nodes = i_embd + 1;
  8475. }
  8476. } else {
  8477. embd = nullptr; // do not extract embeddings when not needed
  8478. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  8479. }
  8480. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  8481. // for big prompts, if BLAS is enabled, it is better to use only one thread
  8482. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  8483. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  8484. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  8485. // with the BLAS calls. need a better solution
  8486. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  8487. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  8488. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  8489. n_threads = std::min(4, n_threads);
  8490. }
  8491. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8492. llama_set_inputs(lctx, u_batch);
  8493. llama_graph_compute(lctx, gf, n_threads);
  8494. // update the kv ring buffer
  8495. {
  8496. kv_self.head += n_tokens;
  8497. // Ensure kv cache head points to a valid index.
  8498. if (kv_self.head >= kv_self.size) {
  8499. kv_self.head = 0;
  8500. }
  8501. }
  8502. #ifdef GGML_PERF
  8503. // print timing information per ggml operation (for debugging purposes)
  8504. // requires GGML_PERF to be defined
  8505. ggml_graph_print(gf);
  8506. #endif
  8507. // plot the computation graph in dot format (for debugging purposes)
  8508. //if (n_past%100 == 0) {
  8509. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  8510. //}
  8511. // extract logits
  8512. if (res) {
  8513. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  8514. GGML_ASSERT(backend_res != nullptr);
  8515. GGML_ASSERT(lctx.logits != nullptr);
  8516. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  8517. const int32_t n_outputs_new = lctx.n_outputs;
  8518. if (n_outputs_new) {
  8519. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  8520. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  8521. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  8522. }
  8523. }
  8524. // extract embeddings
  8525. if (embd) {
  8526. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  8527. GGML_ASSERT(backend_embd != nullptr);
  8528. switch (cparams.pooling_type) {
  8529. case LLAMA_POOLING_TYPE_NONE:
  8530. {
  8531. // extract token embeddings
  8532. GGML_ASSERT(lctx.embd != nullptr);
  8533. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  8534. const int32_t n_outputs_new = lctx.n_outputs;
  8535. if (n_outputs_new) {
  8536. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  8537. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  8538. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  8539. }
  8540. } break;
  8541. case LLAMA_POOLING_TYPE_CLS:
  8542. case LLAMA_POOLING_TYPE_MEAN:
  8543. {
  8544. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  8545. // extract sequence embeddings
  8546. auto & embd_seq_out = lctx.embd_seq;
  8547. embd_seq_out.clear();
  8548. for (uint32_t i = 0; i < n_tokens; i++) {
  8549. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  8550. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  8551. continue;
  8552. }
  8553. embd_seq_out[seq_id].resize(n_embd);
  8554. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  8555. }
  8556. } break;
  8557. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  8558. {
  8559. GGML_ASSERT(false && "unknown pooling type");
  8560. } break;
  8561. }
  8562. }
  8563. n_outputs_prev += lctx.n_outputs;
  8564. }
  8565. // wait for the computation to finish (automatically done when obtaining the model output)
  8566. //llama_synchronize(&lctx);
  8567. // decide if we need to defrag the kv cache
  8568. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  8569. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  8570. // queue defragmentation for next llama_kv_cache_update
  8571. if (fragmentation > cparams.defrag_thold) {
  8572. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  8573. llama_kv_cache_defrag(kv_self);
  8574. }
  8575. }
  8576. return 0;
  8577. }
  8578. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  8579. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  8580. auto & kv_self = lctx.kv_self;
  8581. const auto & hparams = lctx.model.hparams;
  8582. const uint32_t n_layer = hparams.n_layer;
  8583. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  8584. const uint32_t n_used = kv_self.used;
  8585. assert(n_used <= n_kv);
  8586. //const int64_t t_start = ggml_time_us();
  8587. // number of cells moved
  8588. uint32_t n_moves = 0;
  8589. // each move requires 6*n_layer tensors (see build_defrag)
  8590. // - source view, destination view, copy operation
  8591. // - x2 for keys and values
  8592. const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  8593. // determine which KV cells to move where
  8594. //
  8595. // cell i moves to ids[i]
  8596. //
  8597. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  8598. //
  8599. std::vector<uint32_t> ids(n_kv, n_kv);
  8600. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  8601. const auto & cell0 = kv_self.cells[i0];
  8602. if (!cell0.is_empty()) {
  8603. ids[i0] = i0;
  8604. continue;
  8605. }
  8606. // found a hole - fill it with data from the end of the cache
  8607. uint32_t nh = 1;
  8608. // determine the size of the hole
  8609. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  8610. nh++;
  8611. }
  8612. uint32_t nf = 0;
  8613. uint32_t is = n_kv - 1;
  8614. // starting from the end, find nh non-empty cells
  8615. for (; is > i0; --is) {
  8616. const auto & cell1 = kv_self.cells[is];
  8617. if (cell1.is_empty() || ids[is] != n_kv) {
  8618. continue;
  8619. }
  8620. // non-empty cell which is not yet moved
  8621. nf++;
  8622. if (nf == nh) {
  8623. break;
  8624. }
  8625. }
  8626. // this can only happen if `n_used` is not accurate, which would be a bug
  8627. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  8628. nf = 0;
  8629. uint32_t i1 = is;
  8630. // are we moving a continuous block of memory?
  8631. bool cont = false;
  8632. // should we stop searching for the next move?
  8633. bool stop = false;
  8634. // go back and move the nf cells to the hole
  8635. for (; i1 < n_kv; ++i1) {
  8636. auto & cell1 = kv_self.cells[i1];
  8637. if (cell1.is_empty() || ids[i1] != n_kv) {
  8638. if (n_moves == max_moves) {
  8639. stop = true;
  8640. break;
  8641. }
  8642. cont = false;
  8643. continue;
  8644. }
  8645. // this cell goes to (i0 + nf)
  8646. ids[i1] = i0 + nf;
  8647. // move the cell meta data
  8648. kv_self.cells[i0 + nf] = cell1;
  8649. // clear the old cell and move the head there
  8650. cell1 = llama_kv_cell();
  8651. kv_self.head = n_used;
  8652. if (!cont) {
  8653. n_moves++;
  8654. cont = true;
  8655. }
  8656. nf++;
  8657. if (nf == nh) {
  8658. break;
  8659. }
  8660. }
  8661. if (stop || n_moves == max_moves) {
  8662. break;
  8663. }
  8664. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  8665. i0 += nh - 1;
  8666. }
  8667. if (n_moves == 0) {
  8668. return;
  8669. }
  8670. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  8671. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  8672. #if 0
  8673. // CPU defrag
  8674. //
  8675. // TODO: optimizations are possible:
  8676. // - multiple threads
  8677. // - avoid copying to the host memory when already there
  8678. //
  8679. // likely not worth the effort, as we have ggml_graph based defrag
  8680. //
  8681. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  8682. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  8683. const uint32_t kv_size = kv_self.size;
  8684. std::vector<uint8_t> buf_k;
  8685. std::vector<uint8_t> buf_v;
  8686. for (uint32_t il = 0; il < n_layer; ++il) {
  8687. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  8688. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  8689. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  8690. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  8691. buf_k.resize(k_size);
  8692. buf_v.resize(v_size);
  8693. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  8694. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  8695. // batch move [i, i+nm) to [id, id+nm)
  8696. // note: cells can move only to a lower index
  8697. for (uint32_t i = 0; i < n_kv; ++i) {
  8698. const uint32_t id = ids[i];
  8699. if (i == id || id == n_kv) {
  8700. continue;
  8701. }
  8702. uint32_t nm = 1;
  8703. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  8704. nm++;
  8705. }
  8706. // move keys
  8707. {
  8708. const int64_t os = i*k_size_row;
  8709. const int64_t od = id*k_size_row;
  8710. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  8711. }
  8712. // move values (note: they are transposed)
  8713. {
  8714. const int64_t os = i;
  8715. const int64_t od = id;
  8716. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  8717. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  8718. }
  8719. }
  8720. i += nm - 1;
  8721. }
  8722. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  8723. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  8724. }
  8725. #else
  8726. // ggml_graph defrag
  8727. ggml_backend_sched_reset(lctx.sched);
  8728. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  8729. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8730. #endif
  8731. //const int64_t t_end = ggml_time_us();
  8732. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  8733. }
  8734. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  8735. bool need_reserve = false;
  8736. // apply K-shift if needed
  8737. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  8738. {
  8739. ggml_backend_sched_reset(lctx.sched);
  8740. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  8741. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8742. llama_set_k_shift(lctx);
  8743. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8744. need_reserve = true;
  8745. }
  8746. {
  8747. auto & kv_self = lctx.kv_self;
  8748. kv_self.has_shift = false;
  8749. for (uint32_t i = 0; i < kv_self.size; ++i) {
  8750. kv_self.cells[i].delta = 0;
  8751. }
  8752. }
  8753. }
  8754. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  8755. {
  8756. ggml_backend_sched_reset(lctx.sched);
  8757. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  8758. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  8759. llama_set_s_copy(lctx);
  8760. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  8761. need_reserve = true;
  8762. }
  8763. {
  8764. auto & kv_self = lctx.kv_self;
  8765. kv_self.do_copy = false;
  8766. for (uint32_t i = 0; i < kv_self.size; ++i) {
  8767. kv_self.cells[i].src = i;
  8768. }
  8769. }
  8770. }
  8771. // defragment the KV cache if needed
  8772. if (lctx.kv_self.do_defrag) {
  8773. llama_kv_cache_defrag_internal(lctx);
  8774. need_reserve = true;
  8775. lctx.kv_self.do_defrag = false;
  8776. }
  8777. // reserve a worst case graph again
  8778. if (need_reserve) {
  8779. // TODO: extract to a function
  8780. // build worst-case graph
  8781. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  8782. int n_past = lctx.cparams.n_ctx - n_tokens;
  8783. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  8784. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  8785. // initialize scheduler with the worst-case graph
  8786. ggml_backend_sched_reset(lctx.sched);
  8787. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  8788. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  8789. }
  8790. }
  8791. }
  8792. //
  8793. // tokenizer
  8794. //
  8795. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  8796. return vocab.type;
  8797. }
  8798. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  8799. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8800. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  8801. }
  8802. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  8803. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8804. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  8805. }
  8806. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  8807. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8808. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  8809. }
  8810. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  8811. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8812. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  8813. }
  8814. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  8815. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  8816. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  8817. }
  8818. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  8819. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  8820. GGML_ASSERT(llama_is_byte_token(vocab, id));
  8821. const auto& token_data = vocab.id_to_token.at(id);
  8822. switch (llama_vocab_get_type(vocab)) {
  8823. case LLAMA_VOCAB_TYPE_SPM: {
  8824. auto buf = token_data.text.substr(3, 2);
  8825. return strtol(buf.c_str(), NULL, 16);
  8826. }
  8827. case LLAMA_VOCAB_TYPE_BPE: {
  8828. GGML_ASSERT(false);
  8829. return unicode_utf8_to_byte(token_data.text);
  8830. }
  8831. case LLAMA_VOCAB_TYPE_WPM: {
  8832. GGML_ASSERT(false);
  8833. }
  8834. default:
  8835. GGML_ASSERT(false);
  8836. }
  8837. }
  8838. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  8839. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  8840. static const char * hex = "0123456789ABCDEF";
  8841. switch (llama_vocab_get_type(vocab)) {
  8842. case LLAMA_VOCAB_TYPE_SPM: {
  8843. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  8844. auto token = vocab.token_to_id.find(buf);
  8845. if (token != vocab.token_to_id.end()) {
  8846. return (*token).second;
  8847. }
  8848. // Try to fall back to just the byte as a string
  8849. const char buf2[2] = { (char)ch, 0 };
  8850. return vocab.token_to_id.at(buf2);
  8851. }
  8852. case LLAMA_VOCAB_TYPE_WPM:
  8853. case LLAMA_VOCAB_TYPE_BPE: {
  8854. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  8855. }
  8856. default:
  8857. GGML_ASSERT(false);
  8858. }
  8859. }
  8860. static void llama_escape_whitespace(std::string & text) {
  8861. replace_all(text, " ", "\xe2\x96\x81");
  8862. }
  8863. static void llama_unescape_whitespace(std::string & word) {
  8864. replace_all(word, "\xe2\x96\x81", " ");
  8865. }
  8866. struct llm_symbol {
  8867. using index = int;
  8868. index prev;
  8869. index next;
  8870. const char * text;
  8871. size_t n;
  8872. };
  8873. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  8874. // SPM tokenizer
  8875. // original implementation:
  8876. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  8877. struct llm_bigram_spm {
  8878. struct comparator {
  8879. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  8880. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  8881. }
  8882. };
  8883. using queue_storage = std::vector<llm_bigram_spm>;
  8884. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  8885. llm_symbol::index left;
  8886. llm_symbol::index right;
  8887. float score;
  8888. size_t size;
  8889. };
  8890. struct llm_tokenizer_spm {
  8891. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  8892. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  8893. // split string into utf8 chars
  8894. int index = 0;
  8895. size_t offs = 0;
  8896. while (offs < text.size()) {
  8897. llm_symbol sym;
  8898. size_t len = utf8_len(text[offs]);
  8899. sym.text = text.c_str() + offs;
  8900. sym.n = std::min(len, text.size() - offs);
  8901. offs += sym.n;
  8902. sym.prev = index - 1;
  8903. sym.next = offs == text.size() ? -1 : index + 1;
  8904. index++;
  8905. symbols.emplace_back(sym);
  8906. }
  8907. // seed the work queue with all possible 2-character tokens.
  8908. for (size_t i = 1; i < symbols.size(); ++i) {
  8909. try_add_bigram(i - 1, i);
  8910. }
  8911. // keep substituting the highest frequency pairs for as long as we can.
  8912. while (!work_queue.empty()) {
  8913. auto bigram = work_queue.top();
  8914. work_queue.pop();
  8915. auto & left_sym = symbols[bigram.left];
  8916. auto & right_sym = symbols[bigram.right];
  8917. // if one of the symbols already got merged, skip it.
  8918. if (left_sym.n == 0 || right_sym.n == 0 ||
  8919. left_sym.n + right_sym.n != bigram.size) {
  8920. continue;
  8921. }
  8922. // merge the right sym into the left one
  8923. left_sym.n += right_sym.n;
  8924. right_sym.n = 0;
  8925. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  8926. // remove the right sym from the chain
  8927. left_sym.next = right_sym.next;
  8928. if (right_sym.next >= 0) {
  8929. symbols[right_sym.next].prev = bigram.left;
  8930. }
  8931. // find more substitutions
  8932. try_add_bigram(left_sym.prev, bigram.left);
  8933. try_add_bigram(bigram.left, left_sym.next);
  8934. }
  8935. for (int i = 0; i != -1; i = symbols[i].next) {
  8936. auto & symbol = symbols[i];
  8937. resegment(symbol, output);
  8938. }
  8939. }
  8940. private:
  8941. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  8942. auto text = std::string(symbol.text, symbol.n);
  8943. auto token = vocab.token_to_id.find(text);
  8944. // Do we need to support is_unused?
  8945. if (token != vocab.token_to_id.end()) {
  8946. output.push_back((*token).second);
  8947. return;
  8948. }
  8949. const auto p = rev_merge.find(text);
  8950. if (p == rev_merge.end()) {
  8951. // output any symbols that did not form tokens as bytes.
  8952. output.reserve(output.size() + symbol.n);
  8953. for (int j = 0; j < (int)symbol.n; ++j) {
  8954. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  8955. output.push_back(token_id);
  8956. }
  8957. return;
  8958. }
  8959. resegment(symbols[p->second.first], output);
  8960. resegment(symbols[p->second.second], output);
  8961. }
  8962. void try_add_bigram(int left, int right) {
  8963. if (left == -1 || right == -1) {
  8964. return;
  8965. }
  8966. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  8967. auto token = vocab.token_to_id.find(text);
  8968. if (token == vocab.token_to_id.end()) {
  8969. return;
  8970. }
  8971. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  8972. return;
  8973. }
  8974. const auto & tok_data = vocab.id_to_token[(*token).second];
  8975. llm_bigram_spm bigram;
  8976. bigram.left = left;
  8977. bigram.right = right;
  8978. bigram.score = tok_data.score;
  8979. bigram.size = text.size();
  8980. work_queue.push(bigram);
  8981. // Do we need to support is_unused?
  8982. rev_merge[text] = std::make_pair(left, right);
  8983. }
  8984. const llama_vocab & vocab;
  8985. std::vector<llm_symbol> symbols;
  8986. llm_bigram_spm::queue work_queue;
  8987. std::map<std::string, std::pair<int, int>> rev_merge;
  8988. };
  8989. // BPE tokenizer
  8990. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  8991. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  8992. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  8993. struct llm_bigram_bpe {
  8994. struct comparator {
  8995. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  8996. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  8997. }
  8998. };
  8999. using queue_storage = std::vector<llm_bigram_bpe>;
  9000. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  9001. llm_symbol::index left;
  9002. llm_symbol::index right;
  9003. std::string text;
  9004. int rank;
  9005. size_t size;
  9006. };
  9007. struct llm_tokenizer_bpe {
  9008. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  9009. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9010. int final_prev_index = -1;
  9011. auto word_collection = bpe_gpt2_preprocess(text);
  9012. symbols_final.clear();
  9013. for (auto & word : word_collection) {
  9014. work_queue = llm_bigram_bpe::queue();
  9015. symbols.clear();
  9016. int index = 0;
  9017. size_t offset = 0;
  9018. while (offset < word.size()) {
  9019. llm_symbol sym;
  9020. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  9021. sym.text = word.c_str() + offset;
  9022. sym.n = char_len;
  9023. offset += sym.n;
  9024. sym.prev = index - 1;
  9025. sym.next = offset == word.size() ? -1 : index + 1;
  9026. index++;
  9027. symbols.emplace_back(sym);
  9028. }
  9029. for (size_t i = 1; i < symbols.size(); ++i) {
  9030. add_new_bigram(i - 1, i);
  9031. }
  9032. // build token(s)
  9033. while (!work_queue.empty()) {
  9034. auto bigram = work_queue.top();
  9035. work_queue.pop();
  9036. auto & left_symbol = symbols[bigram.left];
  9037. auto & right_symbol = symbols[bigram.right];
  9038. if (left_symbol.n == 0 || right_symbol.n == 0) {
  9039. continue;
  9040. }
  9041. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  9042. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  9043. if (left_token + right_token != bigram.text) {
  9044. continue; // Skip this bigram if it's outdated
  9045. }
  9046. // merge the right sym into the left one
  9047. left_symbol.n += right_symbol.n;
  9048. right_symbol.n = 0;
  9049. // remove the right sym from the chain
  9050. left_symbol.next = right_symbol.next;
  9051. if (right_symbol.next >= 0) {
  9052. symbols[right_symbol.next].prev = bigram.left;
  9053. }
  9054. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  9055. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  9056. }
  9057. // add the fnished tokens to the final list keeping correct order for next and prev
  9058. for (auto & sym : symbols) {
  9059. if (sym.n > 0) {
  9060. sym.prev = final_prev_index;
  9061. sym.next = -1;
  9062. if (final_prev_index != -1) {
  9063. symbols_final[final_prev_index].next = symbols_final.size();
  9064. }
  9065. symbols_final.emplace_back(sym);
  9066. final_prev_index = symbols_final.size() - 1;
  9067. }
  9068. }
  9069. }
  9070. symbols = symbols_final;
  9071. if (!symbols.empty()) {
  9072. for (int i = 0; i != -1; i = symbols[i].next) {
  9073. auto & symbol = symbols[i];
  9074. if (symbol.n == 0) {
  9075. continue;
  9076. }
  9077. const std::string str = std::string(symbol.text, symbol.n);
  9078. const auto token = vocab.token_to_id.find(str);
  9079. if (token == vocab.token_to_id.end()) {
  9080. for (auto j = str.begin(); j != str.end(); ++j) {
  9081. std::string byte_str(1, *j);
  9082. auto token_multibyte = vocab.token_to_id.find(byte_str);
  9083. if (token_multibyte == vocab.token_to_id.end()) {
  9084. throw std::runtime_error("ERROR: byte not found in vocab");
  9085. }
  9086. output.push_back((*token_multibyte).second);
  9087. }
  9088. } else {
  9089. output.push_back((*token).second);
  9090. }
  9091. }
  9092. }
  9093. }
  9094. private:
  9095. void add_new_bigram(int left, int right) {
  9096. if (left == -1 || right == -1) {
  9097. return;
  9098. }
  9099. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  9100. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  9101. int rank_found = -1;
  9102. rank_found = vocab.find_bpe_rank(left_token, right_token);
  9103. if (rank_found < 0) {
  9104. return;
  9105. }
  9106. llm_bigram_bpe bigram;
  9107. bigram.left = left;
  9108. bigram.right = right;
  9109. bigram.text = left_token + right_token;
  9110. bigram.size = left_token.size() + right_token.size();
  9111. bigram.rank = rank_found;
  9112. work_queue.push(bigram);
  9113. }
  9114. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  9115. std::vector<std::string> bpe_words;
  9116. std::vector<std::string> bpe_encoded_words;
  9117. std::string token = "";
  9118. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  9119. bool collecting_numeric = false;
  9120. bool collecting_letter = false;
  9121. bool collecting_special = false;
  9122. bool collecting_whitespace_lookahead = false;
  9123. bool collecting = false;
  9124. std::vector<std::string> text_utf;
  9125. text_utf.reserve(text.size());
  9126. bpe_words.reserve(text.size());
  9127. bpe_encoded_words.reserve(text.size());
  9128. const auto cpts = unicode_cpts_from_utf8(text);
  9129. for (size_t i = 0; i < cpts.size(); ++i)
  9130. text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i]));
  9131. for (int i = 0; i < (int)text_utf.size(); i++) {
  9132. const std::string & utf_char = text_utf[i];
  9133. bool split_condition = false;
  9134. int bytes_remain = text_utf.size() - i;
  9135. // forward backward lookups
  9136. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  9137. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  9138. // handling contractions
  9139. if (!split_condition && bytes_remain >= 2) {
  9140. // 's|'t|'m|'d
  9141. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  9142. split_condition = true;
  9143. }
  9144. if (split_condition) {
  9145. if (token.size()) {
  9146. bpe_words.emplace_back(token); // push previous content as token
  9147. }
  9148. token = utf_char + utf_char_next;
  9149. bpe_words.emplace_back(token);
  9150. token = "";
  9151. i++;
  9152. continue;
  9153. }
  9154. }
  9155. if (!split_condition && bytes_remain >= 3) {
  9156. // 're|'ve|'ll
  9157. if (utf_char == "\'" && (
  9158. (utf_char_next == "r" && utf_char_next_next == "e") ||
  9159. (utf_char_next == "v" && utf_char_next_next == "e") ||
  9160. (utf_char_next == "l" && utf_char_next_next == "l"))
  9161. ) {
  9162. split_condition = true;
  9163. }
  9164. if (split_condition) {
  9165. // current token + next token can be defined
  9166. if (token.size()) {
  9167. bpe_words.emplace_back(token); // push previous content as token
  9168. }
  9169. token = utf_char + utf_char_next + utf_char_next_next;
  9170. bpe_words.emplace_back(token); // the contraction
  9171. token = "";
  9172. i += 2;
  9173. continue;
  9174. }
  9175. }
  9176. if (!split_condition && !collecting) {
  9177. if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  9178. collecting_letter = true;
  9179. collecting = true;
  9180. }
  9181. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9182. collecting_numeric = true;
  9183. collecting = true;
  9184. }
  9185. else if (
  9186. ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  9187. (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  9188. ) {
  9189. collecting_special = true;
  9190. collecting = true;
  9191. }
  9192. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  9193. collecting_whitespace_lookahead = true;
  9194. collecting = true;
  9195. }
  9196. else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  9197. split_condition = true;
  9198. }
  9199. }
  9200. else if (!split_condition && collecting) {
  9201. if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  9202. split_condition = true;
  9203. }
  9204. else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  9205. split_condition = true;
  9206. }
  9207. else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  9208. split_condition = true;
  9209. }
  9210. else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  9211. split_condition = true;
  9212. }
  9213. }
  9214. if (utf_char_next == "") {
  9215. split_condition = true; // final
  9216. token += utf_char;
  9217. }
  9218. if (split_condition) {
  9219. if (token.size()) {
  9220. bpe_words.emplace_back(token);
  9221. }
  9222. token = utf_char;
  9223. collecting = false;
  9224. collecting_letter = false;
  9225. collecting_numeric = false;
  9226. collecting_special = false;
  9227. collecting_whitespace_lookahead = false;
  9228. }
  9229. else {
  9230. token += utf_char;
  9231. }
  9232. }
  9233. for (std::string & word : bpe_words) {
  9234. std::string encoded_token = "";
  9235. for (char & c : word) {
  9236. encoded_token += unicode_byte_to_utf8(c);
  9237. }
  9238. bpe_encoded_words.emplace_back(encoded_token);
  9239. }
  9240. return bpe_encoded_words;
  9241. }
  9242. const llama_vocab & vocab;
  9243. std::vector<llm_symbol> symbols;
  9244. std::vector<llm_symbol> symbols_final;
  9245. llm_bigram_bpe::queue work_queue;
  9246. };
  9247. struct llm_tokenizer_wpm {
  9248. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  9249. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  9250. auto * token_map = &vocab.token_to_id;
  9251. // normalize and split by whitespace
  9252. std::vector<std::string> words = preprocess(text);
  9253. // bos token prepended already
  9254. // find the longest tokens that form the words
  9255. for (const std::string &word : words) {
  9256. // skip empty words
  9257. if (word.size() == 0) {
  9258. continue;
  9259. }
  9260. // prepend phantom space
  9261. std::string word1 = "\xe2\x96\x81" + word;
  9262. int n = word1.size();
  9263. // we're at the start of a new word
  9264. int i = 0;
  9265. bool match_any = false;
  9266. // move through character position in word
  9267. while (i < n) {
  9268. // loop through possible match length
  9269. bool match = false;
  9270. for (int j = n; j > i; j--) {
  9271. auto it = token_map->find(word1.substr(i, j - i));
  9272. if (it != token_map->end()) {
  9273. output.push_back(it->second);
  9274. match = true;
  9275. match_any = true;
  9276. i = j;
  9277. break;
  9278. }
  9279. }
  9280. // must be an unknown character
  9281. if (!match) {
  9282. i++;
  9283. }
  9284. }
  9285. // we didn't find any matches for this word
  9286. if (!match_any) {
  9287. output.push_back(vocab.special_unk_id);
  9288. }
  9289. }
  9290. // append eos token
  9291. output.push_back(vocab.special_eos_id);
  9292. }
  9293. std::vector<std::string> preprocess(const std::string & text) {
  9294. std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  9295. // strip accents, strip control, uniformize whitespace,
  9296. // to lowercase, pad chinese characters, pad punctuation
  9297. std::string new_str = "";
  9298. for (uint32_t code : cpts_nfd) {
  9299. int type = unicode_cpt_type(code);
  9300. if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) {
  9301. continue;
  9302. }
  9303. code = unicode_tolower(code);
  9304. if (type == CODEPOINT_TYPE_WHITESPACE) {
  9305. code = ' ';
  9306. }
  9307. std::string s = unicode_cpt_to_utf8(code);
  9308. if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) {
  9309. new_str += " ";
  9310. new_str += s;
  9311. new_str += " ";
  9312. } else {
  9313. new_str += s;
  9314. }
  9315. }
  9316. // split by whitespace
  9317. uint64_t l = 0;
  9318. uint64_t r = 0;
  9319. std::vector<std::string> words;
  9320. while (r < new_str.size()) {
  9321. // if is whitespace
  9322. if (isspace(new_str[r], std::locale::classic())) {
  9323. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  9324. l = r + 1;
  9325. r = l;
  9326. } else {
  9327. r += 1;
  9328. }
  9329. }
  9330. if (r > l) {
  9331. words.push_back(new_str.substr(l, (r - l)));
  9332. }
  9333. return words;
  9334. }
  9335. bool is_ascii_punct(uint32_t code) {
  9336. if (code > 0xFF) {
  9337. return false;
  9338. }
  9339. auto c = char(static_cast<unsigned char>(code));
  9340. return ispunct(c, std::locale::classic());
  9341. }
  9342. bool is_chinese_char(uint32_t cpt) {
  9343. if ((cpt >= 0x4E00 && cpt <= 0x9FFF) ||
  9344. (cpt >= 0x3400 && cpt <= 0x4DBF) ||
  9345. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  9346. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  9347. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  9348. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  9349. (cpt >= 0xF900 && cpt <= 0xFAFF) ||
  9350. (cpt >= 0x2F800 && cpt <= 0x2FA1F) ||
  9351. (cpt >= 0x3000 && cpt <= 0x303F) ||
  9352. (cpt >= 0xFF00 && cpt <= 0xFFEF)) {
  9353. return true; // NOLINT
  9354. }
  9355. return false;
  9356. }
  9357. const llama_vocab & vocab;
  9358. };
  9359. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  9360. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  9361. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  9362. } FRAGMENT_BUFFER_VARIANT_TYPE;
  9363. struct fragment_buffer_variant {
  9364. fragment_buffer_variant(llama_vocab::id _token)
  9365. :
  9366. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  9367. token(_token),
  9368. raw_text(_dummy),
  9369. offset(0),
  9370. length(0) {}
  9371. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  9372. :
  9373. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  9374. token((llama_vocab::id) - 1),
  9375. raw_text(_raw_text),
  9376. offset(_offset),
  9377. length(_length){
  9378. GGML_ASSERT(_offset >= 0);
  9379. GGML_ASSERT(_length >= 1);
  9380. GGML_ASSERT(offset + length <= raw_text.length());
  9381. }
  9382. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  9383. const llama_vocab::id token;
  9384. const std::string _dummy;
  9385. const std::string & raw_text;
  9386. const uint64_t offset;
  9387. const uint64_t length;
  9388. };
  9389. // #define PRETOKENIZERDEBUG
  9390. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  9391. // for each special token
  9392. for (const auto & st: vocab.special_tokens_cache) {
  9393. const auto & special_token = st.first;
  9394. const auto & special_id = st.second;
  9395. // for each text fragment
  9396. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  9397. while (it != buffer.end()) {
  9398. auto & fragment = (*it);
  9399. // if a fragment is text ( not yet processed )
  9400. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9401. auto * raw_text = &(fragment.raw_text);
  9402. auto raw_text_base_offset = fragment.offset;
  9403. auto raw_text_base_length = fragment.length;
  9404. // loop over the text
  9405. while (true) {
  9406. // find the first occurrence of a given special token in this fragment
  9407. // passing offset argument only limit the "search area" but match coordinates
  9408. // are still relative to the source full raw_text
  9409. auto match = raw_text->find(special_token, raw_text_base_offset);
  9410. // no occurrences found, stop processing this fragment for a given special token
  9411. if (match == std::string::npos) break;
  9412. // check if match is within bounds of offset <-> length
  9413. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  9414. #ifdef PRETOKENIZERDEBUG
  9415. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9416. #endif
  9417. auto source = std::distance(buffer.begin(), it);
  9418. // if match is further than base offset
  9419. // then we have some text to the left of it
  9420. if (match > raw_text_base_offset) {
  9421. // left
  9422. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  9423. const int64_t left_reminder_length = match - raw_text_base_offset;
  9424. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  9425. #ifdef PRETOKENIZERDEBUG
  9426. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  9427. #endif
  9428. it++;
  9429. }
  9430. // special token
  9431. buffer.emplace_after(it, special_id);
  9432. it++;
  9433. // right
  9434. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  9435. const int64_t right_reminder_offset = match + special_token.length();
  9436. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  9437. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  9438. #ifdef PRETOKENIZERDEBUG
  9439. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  9440. #endif
  9441. it++;
  9442. if (source == 0) {
  9443. buffer.erase_after(buffer.before_begin());
  9444. } else {
  9445. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9446. }
  9447. // repeat for the right side
  9448. raw_text_base_offset = right_reminder_offset;
  9449. raw_text_base_length = right_reminder_length;
  9450. #ifdef PRETOKENIZERDEBUG
  9451. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  9452. #endif
  9453. } else {
  9454. if (source == 0) {
  9455. buffer.erase_after(buffer.before_begin());
  9456. } else {
  9457. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  9458. }
  9459. break;
  9460. }
  9461. }
  9462. }
  9463. it++;
  9464. }
  9465. }
  9466. }
  9467. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  9468. std::vector<llama_vocab::id> output;
  9469. // OG tokenizer behavior:
  9470. //
  9471. // tokenizer.encode('', add_bos=True) returns [1]
  9472. // tokenizer.encode('', add_bos=False) returns []
  9473. if (bos && vocab.special_bos_id != -1) {
  9474. output.push_back(vocab.special_bos_id);
  9475. }
  9476. if (raw_text.empty()) {
  9477. return output;
  9478. }
  9479. std::forward_list<fragment_buffer_variant> fragment_buffer;
  9480. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  9481. if (special) tokenizer_st_partition(vocab, fragment_buffer);
  9482. switch (vocab.type) {
  9483. case LLAMA_VOCAB_TYPE_SPM:
  9484. {
  9485. for (const auto & fragment : fragment_buffer) {
  9486. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9487. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  9488. // TODO: It's likely possible to get rid of this string copy entirely
  9489. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  9490. // and passing 'add space prefix' as bool argument
  9491. //
  9492. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9493. if (&fragment == &fragment_buffer.front()) {
  9494. if (vocab.add_space_prefix) {
  9495. raw_text = " " + raw_text; // prefix with space if the first token is not special
  9496. }
  9497. }
  9498. #ifdef PRETOKENIZERDEBUG
  9499. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9500. #endif
  9501. llm_tokenizer_spm tokenizer(vocab);
  9502. llama_escape_whitespace(raw_text);
  9503. tokenizer.tokenize(raw_text, output);
  9504. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9505. output.push_back(fragment.token);
  9506. }
  9507. }
  9508. } break;
  9509. case LLAMA_VOCAB_TYPE_BPE:
  9510. {
  9511. for (const auto & fragment : fragment_buffer) {
  9512. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9513. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9514. #ifdef PRETOKENIZERDEBUG
  9515. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9516. #endif
  9517. llm_tokenizer_bpe tokenizer(vocab);
  9518. tokenizer.tokenize(raw_text, output);
  9519. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9520. output.push_back(fragment.token);
  9521. }
  9522. }
  9523. } break;
  9524. case LLAMA_VOCAB_TYPE_WPM:
  9525. {
  9526. for (const auto & fragment : fragment_buffer) {
  9527. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  9528. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  9529. #ifdef PRETOKENIZERDEBUG
  9530. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  9531. #endif
  9532. llm_tokenizer_wpm tokenizer(vocab);
  9533. tokenizer.tokenize(raw_text, output);
  9534. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  9535. output.push_back(fragment.token);
  9536. }
  9537. }
  9538. } break;
  9539. case LLAMA_VOCAB_TYPE_NONE:
  9540. GGML_ASSERT(false);
  9541. }
  9542. return output;
  9543. }
  9544. //
  9545. // grammar - internal
  9546. //
  9547. struct llama_partial_utf8 {
  9548. uint32_t value; // bit value so far (unshifted)
  9549. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  9550. };
  9551. struct llama_grammar {
  9552. const std::vector<std::vector<llama_grammar_element>> rules;
  9553. std::vector<std::vector<const llama_grammar_element *>> stacks;
  9554. // buffer for partially generated UTF-8 sequence from accepted tokens
  9555. llama_partial_utf8 partial_utf8;
  9556. };
  9557. struct llama_grammar_candidate {
  9558. size_t index;
  9559. const uint32_t * code_points;
  9560. llama_partial_utf8 partial_utf8;
  9561. };
  9562. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  9563. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  9564. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  9565. const std::string & src,
  9566. llama_partial_utf8 partial_start) {
  9567. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  9568. const char * pos = src.c_str();
  9569. std::vector<uint32_t> code_points;
  9570. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  9571. code_points.reserve(src.size() + 1);
  9572. uint32_t value = partial_start.value;
  9573. int n_remain = partial_start.n_remain;
  9574. // continue previous decode, if applicable
  9575. while (*pos != 0 && n_remain > 0) {
  9576. uint8_t next_byte = static_cast<uint8_t>(*pos);
  9577. if ((next_byte >> 6) != 2) {
  9578. // invalid sequence, abort
  9579. code_points.push_back(0);
  9580. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  9581. }
  9582. value = (value << 6) + (next_byte & 0x3F);
  9583. ++pos;
  9584. --n_remain;
  9585. }
  9586. if (partial_start.n_remain > 0 && n_remain == 0) {
  9587. code_points.push_back(value);
  9588. }
  9589. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  9590. while (*pos != 0) {
  9591. uint8_t first_byte = static_cast<uint8_t>(*pos);
  9592. uint8_t highbits = first_byte >> 4;
  9593. n_remain = lookup[highbits] - 1;
  9594. if (n_remain < 0) {
  9595. // invalid sequence, abort
  9596. code_points.clear();
  9597. code_points.push_back(0);
  9598. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  9599. }
  9600. uint8_t mask = (1 << (7 - n_remain)) - 1;
  9601. value = first_byte & mask;
  9602. ++pos;
  9603. while (*pos != 0 && n_remain > 0) {
  9604. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  9605. ++pos;
  9606. --n_remain;
  9607. }
  9608. if (n_remain == 0) {
  9609. code_points.push_back(value);
  9610. }
  9611. }
  9612. code_points.push_back(0);
  9613. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  9614. }
  9615. // returns true iff pos points to the end of one of the definitions of a rule
  9616. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  9617. switch (pos->type) {
  9618. case LLAMA_GRETYPE_END: return true; // NOLINT
  9619. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  9620. default: return false;
  9621. }
  9622. }
  9623. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  9624. // asserts that pos is pointing to a char range element
  9625. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  9626. const llama_grammar_element * pos,
  9627. const uint32_t chr) {
  9628. bool found = false;
  9629. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  9630. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  9631. do {
  9632. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  9633. // inclusive range, e.g. [a-z]
  9634. found = found || (pos->value <= chr && chr <= pos[1].value);
  9635. pos += 2;
  9636. } else {
  9637. // exact char match, e.g. [a] or "a"
  9638. found = found || pos->value == chr;
  9639. pos += 1;
  9640. }
  9641. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  9642. return std::make_pair(found == is_positive_char, pos);
  9643. }
  9644. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  9645. // range at pos (regular or inverse range)
  9646. // asserts that pos is pointing to a char range element
  9647. static bool llama_grammar_match_partial_char(
  9648. const llama_grammar_element * pos,
  9649. const llama_partial_utf8 partial_utf8) {
  9650. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  9651. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  9652. uint32_t partial_value = partial_utf8.value;
  9653. int n_remain = partial_utf8.n_remain;
  9654. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  9655. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  9656. return false;
  9657. }
  9658. // range of possible code points this partial UTF-8 sequence could complete to
  9659. uint32_t low = partial_value << (n_remain * 6);
  9660. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  9661. if (low == 0) {
  9662. if (n_remain == 2) {
  9663. low = 1 << 11;
  9664. } else if (n_remain == 3) {
  9665. low = 1 << 16;
  9666. }
  9667. }
  9668. do {
  9669. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  9670. // inclusive range, e.g. [a-z]
  9671. if (pos->value <= high && low <= pos[1].value) {
  9672. return is_positive_char;
  9673. }
  9674. pos += 2;
  9675. } else {
  9676. // exact char match, e.g. [a] or "a"
  9677. if (low <= pos->value && pos->value <= high) {
  9678. return is_positive_char;
  9679. }
  9680. pos += 1;
  9681. }
  9682. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  9683. return !is_positive_char;
  9684. }
  9685. // transforms a grammar pushdown stack into N possible stacks, all ending
  9686. // at a character range (terminal element)
  9687. static void llama_grammar_advance_stack(
  9688. const std::vector<std::vector<llama_grammar_element>> & rules,
  9689. const std::vector<const llama_grammar_element *> & stack,
  9690. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  9691. if (stack.empty()) {
  9692. new_stacks.emplace_back(stack);
  9693. return;
  9694. }
  9695. const llama_grammar_element * pos = stack.back();
  9696. switch (pos->type) {
  9697. case LLAMA_GRETYPE_RULE_REF: {
  9698. const size_t rule_id = static_cast<size_t>(pos->value);
  9699. const llama_grammar_element * subpos = rules[rule_id].data();
  9700. do {
  9701. // init new stack without the top (pos)
  9702. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  9703. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  9704. // if this rule ref is followed by another element, add that to stack
  9705. new_stack.push_back(pos + 1);
  9706. }
  9707. if (!llama_grammar_is_end_of_sequence(subpos)) {
  9708. // if alternate is nonempty, add to stack
  9709. new_stack.push_back(subpos);
  9710. }
  9711. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  9712. while (!llama_grammar_is_end_of_sequence(subpos)) {
  9713. // scan to end of alternate def
  9714. subpos++;
  9715. }
  9716. if (subpos->type == LLAMA_GRETYPE_ALT) {
  9717. // there's another alternate def of this rule to process
  9718. subpos++;
  9719. } else {
  9720. break;
  9721. }
  9722. } while (true);
  9723. break;
  9724. }
  9725. case LLAMA_GRETYPE_CHAR:
  9726. case LLAMA_GRETYPE_CHAR_NOT:
  9727. new_stacks.emplace_back(stack);
  9728. break;
  9729. default:
  9730. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  9731. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  9732. // those
  9733. GGML_ASSERT(false);
  9734. }
  9735. }
  9736. // takes a set of possible pushdown stacks on a grammar, which are required to
  9737. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  9738. // produces the N possible stacks if the given char is accepted at those
  9739. // positions
  9740. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  9741. const std::vector<std::vector<llama_grammar_element>> & rules,
  9742. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9743. const uint32_t chr) {
  9744. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  9745. for (const auto & stack : stacks) {
  9746. if (stack.empty()) {
  9747. continue;
  9748. }
  9749. auto match = llama_grammar_match_char(stack.back(), chr);
  9750. if (match.first) {
  9751. const llama_grammar_element * pos = match.second;
  9752. // update top of stack to next element, if any
  9753. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  9754. if (!llama_grammar_is_end_of_sequence(pos)) {
  9755. new_stack.push_back(pos);
  9756. }
  9757. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  9758. }
  9759. }
  9760. return new_stacks;
  9761. }
  9762. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  9763. const std::vector<std::vector<llama_grammar_element>> & rules,
  9764. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9765. const std::vector<llama_grammar_candidate> & candidates);
  9766. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  9767. const std::vector<std::vector<llama_grammar_element>> & rules,
  9768. const std::vector<const llama_grammar_element *> & stack,
  9769. const std::vector<llama_grammar_candidate> & candidates) {
  9770. std::vector<llama_grammar_candidate> rejects;
  9771. if (stack.empty()) {
  9772. for (const auto & tok : candidates) {
  9773. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  9774. rejects.push_back(tok);
  9775. }
  9776. }
  9777. return rejects;
  9778. }
  9779. const llama_grammar_element * stack_pos = stack.back();
  9780. std::vector<llama_grammar_candidate> next_candidates;
  9781. for (const auto & tok : candidates) {
  9782. if (*tok.code_points == 0) {
  9783. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  9784. // that cannot satisfy this position in grammar
  9785. if (tok.partial_utf8.n_remain != 0 &&
  9786. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  9787. rejects.push_back(tok);
  9788. }
  9789. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  9790. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  9791. } else {
  9792. rejects.push_back(tok);
  9793. }
  9794. }
  9795. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  9796. // update top of stack to next element, if any
  9797. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  9798. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  9799. stack_after.push_back(stack_pos_after);
  9800. }
  9801. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  9802. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  9803. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  9804. for (const auto & tok : next_rejects) {
  9805. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  9806. }
  9807. return rejects;
  9808. }
  9809. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  9810. const std::vector<std::vector<llama_grammar_element>> & rules,
  9811. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  9812. const std::vector<llama_grammar_candidate> & candidates) {
  9813. GGML_ASSERT(!stacks.empty()); // REVIEW
  9814. if (candidates.empty()) {
  9815. return std::vector<llama_grammar_candidate>();
  9816. }
  9817. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  9818. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  9819. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  9820. }
  9821. return rejects;
  9822. }
  9823. //
  9824. // grammar - external
  9825. //
  9826. struct llama_grammar * llama_grammar_init(
  9827. const llama_grammar_element ** rules,
  9828. size_t n_rules,
  9829. size_t start_rule_index) {
  9830. const llama_grammar_element * pos;
  9831. // copy rule definitions into vectors
  9832. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  9833. for (size_t i = 0; i < n_rules; i++) {
  9834. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  9835. vec_rules[i].push_back(*pos);
  9836. }
  9837. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  9838. }
  9839. // loop over alternates of start rule to build initial stacks
  9840. std::vector<std::vector<const llama_grammar_element *>> stacks;
  9841. pos = vec_rules[start_rule_index].data();
  9842. do {
  9843. std::vector<const llama_grammar_element *> stack;
  9844. if (!llama_grammar_is_end_of_sequence(pos)) {
  9845. // if alternate is nonempty, add to stack
  9846. stack.push_back(pos);
  9847. }
  9848. llama_grammar_advance_stack(vec_rules, stack, stacks);
  9849. while (!llama_grammar_is_end_of_sequence(pos)) {
  9850. // scan to end of alternate def
  9851. pos++;
  9852. }
  9853. if (pos->type == LLAMA_GRETYPE_ALT) {
  9854. // there's another alternate def of this rule to process
  9855. pos++;
  9856. } else {
  9857. break;
  9858. }
  9859. } while (true);
  9860. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  9861. }
  9862. void llama_grammar_free(struct llama_grammar * grammar) {
  9863. delete grammar;
  9864. }
  9865. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  9866. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  9867. // redirect elements in stacks to point to new rules
  9868. for (size_t is = 0; is < result->stacks.size(); is++) {
  9869. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  9870. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  9871. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  9872. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  9873. result->stacks[is][ie] = &result->rules[ir0][ir1];
  9874. }
  9875. }
  9876. }
  9877. }
  9878. }
  9879. return result;
  9880. }
  9881. //
  9882. // sampling
  9883. //
  9884. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  9885. if (seed == LLAMA_DEFAULT_SEED) {
  9886. seed = time(NULL);
  9887. }
  9888. ctx->rng.seed(seed);
  9889. }
  9890. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  9891. GGML_ASSERT(candidates->size > 0);
  9892. const int64_t t_start_sample_us = ggml_time_us();
  9893. // Sort the logits in descending order
  9894. if (!candidates->sorted) {
  9895. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  9896. return a.logit > b.logit;
  9897. });
  9898. candidates->sorted = true;
  9899. }
  9900. float max_l = candidates->data[0].logit;
  9901. float cum_sum = 0.0f;
  9902. for (size_t i = 0; i < candidates->size; ++i) {
  9903. float p = expf(candidates->data[i].logit - max_l);
  9904. candidates->data[i].p = p;
  9905. cum_sum += p;
  9906. }
  9907. for (size_t i = 0; i < candidates->size; ++i) {
  9908. candidates->data[i].p /= cum_sum;
  9909. }
  9910. if (ctx) {
  9911. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9912. }
  9913. }
  9914. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  9915. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  9916. // if (k >= (int32_t)candidates->size) {
  9917. // return;
  9918. // }
  9919. const int64_t t_start_sample_us = ggml_time_us();
  9920. if (k <= 0) {
  9921. k = candidates->size;
  9922. }
  9923. k = std::max(k, (int) min_keep);
  9924. k = std::min(k, (int) candidates->size);
  9925. // Sort scores in descending order
  9926. if (!candidates->sorted) {
  9927. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  9928. return a.logit > b.logit;
  9929. };
  9930. if (k <= 128) {
  9931. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  9932. } else {
  9933. constexpr int nbuckets = 128;
  9934. constexpr float bucket_low = -10.0f;
  9935. constexpr float bucket_high = 10.0f;
  9936. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  9937. constexpr float bucker_inter = -bucket_low * bucket_scale;
  9938. std::vector<int> bucket_idx(candidates->size);
  9939. std::vector<int> histo(nbuckets, 0);
  9940. for (int i = 0; i < (int)candidates->size; ++i) {
  9941. const float val = candidates->data[i].logit;
  9942. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  9943. ib = std::max(0, std::min(nbuckets-1, ib));
  9944. bucket_idx[i] = ib;
  9945. ++histo[ib];
  9946. }
  9947. int nhave = 0;
  9948. int ib = nbuckets - 1;
  9949. for ( ; ib >= 0; --ib) {
  9950. nhave += histo[ib];
  9951. if (nhave >= k) break;
  9952. }
  9953. std::vector<llama_token_data> tmp_tokens(nhave);
  9954. auto ptr = tmp_tokens.data();
  9955. std::vector<llama_token_data*> bucket_ptrs;
  9956. bucket_ptrs.reserve(nbuckets - ib);
  9957. for (int j = nbuckets - 1; j >= ib; --j) {
  9958. bucket_ptrs.push_back(ptr);
  9959. ptr += histo[j];
  9960. }
  9961. for (int i = 0; i < (int)candidates->size; ++i) {
  9962. int j = bucket_idx[i];
  9963. if (j >= ib) {
  9964. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  9965. }
  9966. }
  9967. ptr = tmp_tokens.data();
  9968. int ndone = 0;
  9969. for (int j = nbuckets-1; j > ib; --j) {
  9970. std::sort(ptr, ptr + histo[j], comp);
  9971. ptr += histo[j];
  9972. ndone += histo[j];
  9973. }
  9974. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  9975. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  9976. }
  9977. candidates->sorted = true;
  9978. }
  9979. candidates->size = k;
  9980. if (ctx) {
  9981. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  9982. }
  9983. }
  9984. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  9985. if (p >= 1.0f) {
  9986. return;
  9987. }
  9988. llama_sample_softmax(ctx, candidates);
  9989. const int64_t t_start_sample_us = ggml_time_us();
  9990. // Compute the cumulative probabilities
  9991. float cum_sum = 0.0f;
  9992. size_t last_idx = candidates->size;
  9993. for (size_t i = 0; i < candidates->size; ++i) {
  9994. cum_sum += candidates->data[i].p;
  9995. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  9996. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  9997. if (cum_sum >= p && i + 1 >= min_keep) {
  9998. last_idx = i + 1;
  9999. break;
  10000. }
  10001. }
  10002. // Resize the output vector to keep only the top-p tokens
  10003. candidates->size = last_idx;
  10004. if (ctx) {
  10005. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10006. }
  10007. }
  10008. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10009. if (p <= 0.0f || !candidates->size) {
  10010. return;
  10011. }
  10012. const int64_t t_start_sample_us = ggml_time_us();
  10013. bool min_p_applied = false;
  10014. // if the candidates aren't sorted, try the unsorted implementation first
  10015. if (!candidates->sorted) {
  10016. std::vector<llama_token_data> filtered_tokens;
  10017. float max_logit = -FLT_MAX;
  10018. for (size_t i = 0; i < candidates->size; ++i) {
  10019. max_logit = std::max(max_logit, candidates->data[i].logit);
  10020. }
  10021. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  10022. for (size_t i = 0; i < candidates->size; ++i) {
  10023. if (candidates->data[i].logit >= min_logit) {
  10024. filtered_tokens.push_back(candidates->data[i]);
  10025. }
  10026. }
  10027. // if we have enough values the operation was a success
  10028. if (filtered_tokens.size() >= min_keep) {
  10029. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  10030. candidates->size = filtered_tokens.size();
  10031. min_p_applied = true;
  10032. }
  10033. }
  10034. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  10035. if (!min_p_applied) {
  10036. // Sort the logits in descending order
  10037. if (!candidates->sorted) {
  10038. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10039. return a.logit > b.logit;
  10040. });
  10041. candidates->sorted = true;
  10042. }
  10043. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  10044. size_t i = 1; // first token always matches
  10045. for (; i < candidates->size; ++i) {
  10046. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  10047. break; // prob too small
  10048. }
  10049. }
  10050. // Resize the output vector to keep only the matching tokens
  10051. candidates->size = i;
  10052. }
  10053. if (ctx) {
  10054. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10055. }
  10056. }
  10057. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  10058. if (z >= 1.0f || candidates->size <= 2) {
  10059. return;
  10060. }
  10061. llama_sample_softmax(nullptr, candidates);
  10062. const int64_t t_start_sample_us = ggml_time_us();
  10063. // Compute the first and second derivatives
  10064. std::vector<float> first_derivatives(candidates->size - 1);
  10065. std::vector<float> second_derivatives(candidates->size - 2);
  10066. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  10067. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  10068. }
  10069. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10070. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  10071. }
  10072. // Calculate absolute value of second derivatives
  10073. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10074. second_derivatives[i] = std::abs(second_derivatives[i]);
  10075. }
  10076. // Normalize the second derivatives
  10077. {
  10078. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  10079. if (second_derivatives_sum > 1e-6f) {
  10080. for (float & value : second_derivatives) {
  10081. value /= second_derivatives_sum;
  10082. }
  10083. } else {
  10084. for (float & value : second_derivatives) {
  10085. value = 1.0f / second_derivatives.size();
  10086. }
  10087. }
  10088. }
  10089. float cum_sum = 0.0f;
  10090. size_t last_idx = candidates->size;
  10091. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  10092. cum_sum += second_derivatives[i];
  10093. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  10094. if (cum_sum > z && i >= min_keep) {
  10095. last_idx = i;
  10096. break;
  10097. }
  10098. }
  10099. // Resize the output vector to keep only the tokens above the tail location
  10100. candidates->size = last_idx;
  10101. if (ctx) {
  10102. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10103. }
  10104. }
  10105. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  10106. // Reference implementation:
  10107. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  10108. if (p >= 1.0f) {
  10109. return;
  10110. }
  10111. // Compute the softmax of logits and calculate entropy
  10112. llama_sample_softmax(nullptr, candidates);
  10113. const int64_t t_start_sample_us = ggml_time_us();
  10114. float entropy = 0.0f;
  10115. for (size_t i = 0; i < candidates->size; ++i) {
  10116. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  10117. }
  10118. // Compute the absolute difference between negative log probability and entropy for each candidate
  10119. std::vector<float> shifted_scores;
  10120. for (size_t i = 0; i < candidates->size; ++i) {
  10121. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  10122. shifted_scores.push_back(shifted_score);
  10123. }
  10124. // Sort tokens based on the shifted_scores and their corresponding indices
  10125. std::vector<size_t> indices(candidates->size);
  10126. std::iota(indices.begin(), indices.end(), 0);
  10127. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  10128. return shifted_scores[a] < shifted_scores[b];
  10129. });
  10130. // Compute the cumulative probabilities
  10131. float cum_sum = 0.0f;
  10132. size_t last_idx = indices.size();
  10133. for (size_t i = 0; i < indices.size(); ++i) {
  10134. size_t idx = indices[i];
  10135. cum_sum += candidates->data[idx].p;
  10136. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  10137. if (cum_sum > p && i >= min_keep - 1) {
  10138. last_idx = i + 1;
  10139. break;
  10140. }
  10141. }
  10142. // Resize the output vector to keep only the locally typical tokens
  10143. std::vector<llama_token_data> new_candidates;
  10144. for (size_t i = 0; i < last_idx; ++i) {
  10145. size_t idx = indices[i];
  10146. new_candidates.push_back(candidates->data[idx]);
  10147. }
  10148. // Replace the data in candidates with the new_candidates data
  10149. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  10150. candidates->size = new_candidates.size();
  10151. candidates->sorted = false;
  10152. if (ctx) {
  10153. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10154. }
  10155. }
  10156. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  10157. const int64_t t_start_sample_us = ggml_time_us();
  10158. // no need to do anything if there is only one (or zero) candidates
  10159. if(candidates_p->size <= 1) {
  10160. return;
  10161. }
  10162. // Calculate maximum possible entropy
  10163. float max_entropy = -logf(1.0f / candidates_p->size);
  10164. llama_sample_softmax(nullptr, candidates_p);
  10165. // Calculate entropy of the softmax probabilities
  10166. float entropy = 0.0f;
  10167. for (size_t i = 0; i < candidates_p->size; ++i) {
  10168. float prob = candidates_p->data[i].p;
  10169. if (prob > 0.0f) { // Ensure no log(0)
  10170. entropy -= prob * logf(prob);
  10171. }
  10172. }
  10173. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  10174. float normalized_entropy = entropy / max_entropy;
  10175. // Map the normalized entropy to the desired temperature range using the power function
  10176. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  10177. #ifdef DEBUG
  10178. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  10179. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  10180. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  10181. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  10182. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  10183. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  10184. #endif
  10185. // Apply the dynamically calculated temperature scaling
  10186. for (size_t i = 0; i < candidates_p->size; ++i) {
  10187. candidates_p->data[i].logit /= dyn_temp;
  10188. }
  10189. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  10190. double max_l_double = candidates_p->data[0].logit;
  10191. double cum_sum_double = 0.0;
  10192. for (size_t i = 0; i < candidates_p->size; ++i) {
  10193. double p = exp(candidates_p->data[i].logit - max_l_double);
  10194. candidates_p->data[i].p = p; // Store the scaled probability
  10195. cum_sum_double += p;
  10196. }
  10197. for (size_t i = 0; i < candidates_p->size; ++i) {
  10198. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  10199. }
  10200. #ifdef DEBUG
  10201. // Print the updated top 25 probabilities after temperature scaling
  10202. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  10203. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  10204. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  10205. }
  10206. #endif
  10207. if (ctx) {
  10208. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10209. }
  10210. }
  10211. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  10212. const int64_t t_start_sample_us = ggml_time_us();
  10213. for (size_t i = 0; i < candidates_p->size; ++i) {
  10214. candidates_p->data[i].logit /= temp;
  10215. }
  10216. if (ctx) {
  10217. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10218. }
  10219. }
  10220. void llama_sample_repetition_penalties(
  10221. struct llama_context * ctx,
  10222. llama_token_data_array * candidates,
  10223. const llama_token * last_tokens,
  10224. size_t penalty_last_n,
  10225. float penalty_repeat,
  10226. float penalty_freq,
  10227. float penalty_present) {
  10228. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  10229. return;
  10230. }
  10231. const int64_t t_start_sample_us = ggml_time_us();
  10232. // Create a frequency map to count occurrences of each token in last_tokens
  10233. std::unordered_map<llama_token, int> token_count;
  10234. for (size_t i = 0; i < penalty_last_n; ++i) {
  10235. token_count[last_tokens[i]]++;
  10236. }
  10237. // Apply frequency and presence penalties to the candidates
  10238. for (size_t i = 0; i < candidates->size; ++i) {
  10239. const auto token_iter = token_count.find(candidates->data[i].id);
  10240. if (token_iter == token_count.end()) {
  10241. continue;
  10242. }
  10243. const int count = token_iter->second;
  10244. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  10245. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  10246. if (candidates->data[i].logit <= 0) {
  10247. candidates->data[i].logit *= penalty_repeat;
  10248. } else {
  10249. candidates->data[i].logit /= penalty_repeat;
  10250. }
  10251. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  10252. }
  10253. candidates->sorted = false;
  10254. if (ctx) {
  10255. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10256. }
  10257. }
  10258. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  10259. GGML_ASSERT(ctx);
  10260. const int64_t t_start_sample_us = ggml_time_us();
  10261. bool allow_eos = false;
  10262. for (const auto & stack : grammar->stacks) {
  10263. if (stack.empty()) {
  10264. allow_eos = true;
  10265. break;
  10266. }
  10267. }
  10268. const llama_token eos = llama_token_eos(&ctx->model);
  10269. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  10270. candidates_decoded.reserve(candidates->size);
  10271. std::vector<llama_grammar_candidate> candidates_grammar;
  10272. candidates_grammar.reserve(candidates->size);
  10273. for (size_t i = 0; i < candidates->size; ++i) {
  10274. const llama_token id = candidates->data[i].id;
  10275. const std::string piece = llama_token_to_piece(ctx, id);
  10276. if (id == eos) {
  10277. if (!allow_eos) {
  10278. candidates->data[i].logit = -INFINITY;
  10279. }
  10280. } else if (piece.empty() || piece[0] == 0) {
  10281. candidates->data[i].logit = -INFINITY;
  10282. } else {
  10283. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  10284. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  10285. }
  10286. }
  10287. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  10288. for (const auto & reject : rejects) {
  10289. candidates->data[reject.index].logit = -INFINITY;
  10290. }
  10291. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10292. }
  10293. static void llama_log_softmax(float * array, size_t size) {
  10294. float max_l = *std::max_element(array, array + size);
  10295. float sum = 0.f;
  10296. for (size_t i = 0; i < size; ++i) {
  10297. float p = expf(array[i] - max_l);
  10298. sum += p;
  10299. array[i] = p;
  10300. }
  10301. for (size_t i = 0; i < size; ++i) {
  10302. array[i] = logf(array[i] / sum);
  10303. }
  10304. }
  10305. void llama_sample_apply_guidance(
  10306. struct llama_context * ctx,
  10307. float * logits,
  10308. float * logits_guidance,
  10309. float scale) {
  10310. GGML_ASSERT(ctx);
  10311. const auto t_start_sample_us = ggml_time_us();
  10312. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  10313. llama_log_softmax(logits, n_vocab);
  10314. llama_log_softmax(logits_guidance, n_vocab);
  10315. for (int i = 0; i < n_vocab; ++i) {
  10316. auto & l = logits[i];
  10317. const auto & g = logits_guidance[i];
  10318. l = scale * (l - g) + g;
  10319. }
  10320. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10321. }
  10322. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  10323. GGML_ASSERT(ctx);
  10324. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  10325. int64_t t_start_sample_us;
  10326. t_start_sample_us = ggml_time_us();
  10327. llama_sample_softmax(nullptr, candidates);
  10328. // Estimate s_hat using the most probable m tokens
  10329. float s_hat = 0.0;
  10330. float sum_ti_bi = 0.0;
  10331. float sum_ti_sq = 0.0;
  10332. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  10333. float t_i = logf(float(i + 2) / float(i + 1));
  10334. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  10335. sum_ti_bi += t_i * b_i;
  10336. sum_ti_sq += t_i * t_i;
  10337. }
  10338. s_hat = sum_ti_bi / sum_ti_sq;
  10339. // Compute k from the estimated s_hat and target surprise value
  10340. float epsilon_hat = s_hat - 1;
  10341. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  10342. // Sample the next word X using top-k sampling
  10343. llama_sample_top_k(nullptr, candidates, int(k), 1);
  10344. if (ctx) {
  10345. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10346. }
  10347. llama_token X = llama_sample_token(ctx, candidates);
  10348. t_start_sample_us = ggml_time_us();
  10349. // Compute error as the difference between observed surprise and target surprise value
  10350. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10351. return candidate.id == X;
  10352. }));
  10353. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10354. float e = observed_surprise - tau;
  10355. // Update mu using the learning rate and error
  10356. *mu = *mu - eta * e;
  10357. if (ctx) {
  10358. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10359. }
  10360. return X;
  10361. }
  10362. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  10363. int64_t t_start_sample_us;
  10364. t_start_sample_us = ggml_time_us();
  10365. llama_sample_softmax(ctx, candidates);
  10366. // Truncate the words with surprise values greater than mu
  10367. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10368. return -log2f(candidate.p) > *mu;
  10369. }));
  10370. if (candidates->size == 0) {
  10371. candidates->size = 1;
  10372. }
  10373. if (ctx) {
  10374. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10375. }
  10376. // Normalize the probabilities of the remaining words
  10377. llama_sample_softmax(ctx, candidates);
  10378. // Sample the next word X from the remaining words
  10379. llama_token X = llama_sample_token(ctx, candidates);
  10380. t_start_sample_us = ggml_time_us();
  10381. // Compute error as the difference between observed surprise and target surprise value
  10382. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  10383. return candidate.id == X;
  10384. }));
  10385. float observed_surprise = -log2f(candidates->data[X_idx].p);
  10386. float e = observed_surprise - tau;
  10387. // Update mu using the learning rate and error
  10388. *mu = *mu - eta * e;
  10389. if (ctx) {
  10390. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10391. }
  10392. return X;
  10393. }
  10394. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  10395. const int64_t t_start_sample_us = ggml_time_us();
  10396. // Find max element
  10397. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  10398. return a.logit < b.logit;
  10399. });
  10400. llama_token result = max_iter->id;
  10401. if (ctx) {
  10402. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10403. ctx->n_sample++;
  10404. }
  10405. return result;
  10406. }
  10407. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  10408. GGML_ASSERT(ctx);
  10409. const int64_t t_start_sample_us = ggml_time_us();
  10410. llama_sample_softmax(nullptr, candidates);
  10411. std::vector<float> probs;
  10412. probs.reserve(candidates->size);
  10413. for (size_t i = 0; i < candidates->size; ++i) {
  10414. probs.push_back(candidates->data[i].p);
  10415. }
  10416. std::discrete_distribution<> dist(probs.begin(), probs.end());
  10417. auto & rng = ctx->rng;
  10418. int idx = dist(rng);
  10419. llama_token result = candidates->data[idx].id;
  10420. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10421. ctx->n_sample++;
  10422. return result;
  10423. }
  10424. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  10425. const int64_t t_start_sample_us = ggml_time_us();
  10426. if (token == llama_token_eos(&ctx->model)) {
  10427. for (const auto & stack : grammar->stacks) {
  10428. if (stack.empty()) {
  10429. return;
  10430. }
  10431. }
  10432. GGML_ASSERT(false);
  10433. }
  10434. const std::string piece = llama_token_to_piece(ctx, token);
  10435. // Note terminating 0 in decoded string
  10436. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  10437. const auto & code_points = decoded.first;
  10438. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  10439. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  10440. }
  10441. grammar->partial_utf8 = decoded.second;
  10442. GGML_ASSERT(!grammar->stacks.empty());
  10443. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10444. }
  10445. //
  10446. // Beam search
  10447. //
  10448. struct llama_beam {
  10449. std::vector<llama_token> tokens;
  10450. float p; // Cumulative beam probability (renormalized relative to all beams)
  10451. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  10452. // Sort beams by probability. In case of ties, prefer beams at eob.
  10453. bool operator<(const llama_beam & rhs) const {
  10454. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  10455. }
  10456. // Shift off first n tokens and discard them.
  10457. void shift_tokens(const size_t n) {
  10458. if (n) {
  10459. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  10460. tokens.resize(tokens.size() - n);
  10461. }
  10462. }
  10463. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  10464. };
  10465. // A struct for calculating logit-related info.
  10466. struct llama_logit_info {
  10467. const float * const logits;
  10468. const int n_vocab;
  10469. const float max_l;
  10470. const float normalizer;
  10471. struct sum_exp {
  10472. float max_l;
  10473. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  10474. };
  10475. llama_logit_info(llama_context * ctx)
  10476. : logits(llama_get_logits(ctx))
  10477. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  10478. , max_l(*std::max_element(logits, logits + n_vocab))
  10479. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  10480. { }
  10481. llama_token_data get_token_data(const llama_token token_id) const {
  10482. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  10483. return {token_id, logits[token_id], p};
  10484. }
  10485. // Return top k token_data by logit.
  10486. std::vector<llama_token_data> top_k(size_t k) {
  10487. std::vector<llama_token_data> min_heap; // min-heap by logit
  10488. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  10489. min_heap.reserve(k_min);
  10490. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  10491. min_heap.push_back(get_token_data(token_id));
  10492. }
  10493. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  10494. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  10495. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  10496. if (min_heap.front().logit < logits[token_id]) {
  10497. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  10498. min_heap.back().id = token_id;
  10499. min_heap.back().logit = logits[token_id];
  10500. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  10501. }
  10502. }
  10503. return min_heap;
  10504. }
  10505. float probability_from_logit(float logit) const {
  10506. return normalizer * std::exp(logit - max_l);
  10507. }
  10508. };
  10509. struct llama_beam_search_data {
  10510. llama_context * ctx;
  10511. size_t n_beams;
  10512. int n_past;
  10513. int n_predict;
  10514. std::vector<llama_beam> beams;
  10515. std::vector<llama_beam> next_beams;
  10516. // Re-calculated on each loop iteration
  10517. size_t common_prefix_length;
  10518. // Used to communicate to/from callback on beams state.
  10519. std::vector<llama_beam_view> beam_views;
  10520. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  10521. : ctx(ctx)
  10522. , n_beams(n_beams)
  10523. , n_past(n_past)
  10524. , n_predict(n_predict)
  10525. , beam_views(n_beams) {
  10526. beams.reserve(n_beams);
  10527. next_beams.reserve(n_beams);
  10528. }
  10529. // Collapse beams to a single beam given by index.
  10530. void collapse_beams(const size_t beam_idx) {
  10531. if (0u < beam_idx) {
  10532. std::swap(beams[0], beams[beam_idx]);
  10533. }
  10534. beams.resize(1);
  10535. }
  10536. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  10537. // The repetitive patterns below reflect the 2 stages of heaps:
  10538. // * Gather elements until the vector is full, then call std::make_heap() on it.
  10539. // * If the heap is full and a new element is found that should be included, pop the
  10540. // least element to the back(), replace it with the new, then push it into the heap.
  10541. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  10542. // Min-heaps use a greater-than comparator.
  10543. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  10544. if (beam.eob) {
  10545. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  10546. if (next_beams.size() < n_beams) {
  10547. next_beams.push_back(std::move(beam));
  10548. if (next_beams.size() == n_beams) {
  10549. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  10550. }
  10551. } else if (next_beams.front().p < beam.p) {
  10552. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10553. next_beams.back() = std::move(beam);
  10554. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10555. }
  10556. } else {
  10557. // beam is not at end-of-sentence, so branch with next top_k tokens.
  10558. if (!beam.tokens.empty()) {
  10559. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  10560. }
  10561. llama_logit_info logit_info(ctx);
  10562. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  10563. size_t i=0;
  10564. if (next_beams.size() < n_beams) {
  10565. for (; next_beams.size() < n_beams ; ++i) {
  10566. llama_beam next_beam = beam;
  10567. next_beam.tokens.push_back(next_tokens[i].id);
  10568. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  10569. next_beams.push_back(std::move(next_beam));
  10570. }
  10571. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  10572. } else {
  10573. for (; next_beams.front().p == 0.0f ; ++i) {
  10574. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10575. next_beams.back() = beam;
  10576. next_beams.back().tokens.push_back(next_tokens[i].id);
  10577. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  10578. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10579. }
  10580. }
  10581. for (; i < n_beams ; ++i) {
  10582. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  10583. if (next_beams.front().p < next_p) {
  10584. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  10585. next_beams.back() = beam;
  10586. next_beams.back().tokens.push_back(next_tokens[i].id);
  10587. next_beams.back().p = next_p;
  10588. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  10589. }
  10590. }
  10591. }
  10592. }
  10593. // Find common_prefix_length based on beams.
  10594. // Requires beams is not empty.
  10595. size_t find_common_prefix_length() {
  10596. size_t common_prefix_length = beams[0].tokens.size();
  10597. for (size_t i = 1 ; i < beams.size() ; ++i) {
  10598. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  10599. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  10600. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  10601. common_prefix_length = j;
  10602. break;
  10603. }
  10604. }
  10605. }
  10606. return common_prefix_length;
  10607. }
  10608. // Construct beams_state to send back to caller via the callback function.
  10609. // Side effect: set common_prefix_length = find_common_prefix_length();
  10610. llama_beams_state get_beams_state(const bool last_call) {
  10611. for (size_t i = 0 ; i < beams.size() ; ++i) {
  10612. beam_views[i] = beams[i].view();
  10613. }
  10614. common_prefix_length = find_common_prefix_length();
  10615. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  10616. }
  10617. // Loop:
  10618. // * while i < n_predict, AND
  10619. // * any of the beams have not yet reached end-of-beam (eob), AND
  10620. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  10621. // (since all other beam probabilities can only decrease)
  10622. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  10623. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  10624. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  10625. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  10626. !beams[top_beam_index()].eob ; ++i) {
  10627. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  10628. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  10629. if (common_prefix_length) {
  10630. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  10631. n_past += common_prefix_length;
  10632. }
  10633. // Zero-out next_beam probabilities to place them last in following min-heap.
  10634. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  10635. for (llama_beam & beam : beams) {
  10636. beam.shift_tokens(common_prefix_length);
  10637. fill_next_beams_by_top_probabilities(beam);
  10638. }
  10639. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  10640. beams.swap(next_beams);
  10641. renormalize_beam_probabilities(beams);
  10642. }
  10643. collapse_beams(top_beam_index());
  10644. callback(callback_data, get_beams_state(true));
  10645. }
  10646. // As beams grow, the cumulative probabilities decrease.
  10647. // Renormalize them to avoid floating point underflow.
  10648. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  10649. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  10650. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  10651. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  10652. }
  10653. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  10654. size_t top_beam_index() {
  10655. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  10656. }
  10657. // Copy (p,eob) for each beam which may have been changed by the callback.
  10658. void update_beams_from_beam_views() {
  10659. for (size_t i = 0 ; i < beams.size() ; ++i) {
  10660. beams[i].p = beam_views[i].p;
  10661. beams[i].eob = beam_views[i].eob;
  10662. }
  10663. }
  10664. };
  10665. void llama_beam_search(llama_context * ctx,
  10666. llama_beam_search_callback_fn_t callback, void * callback_data,
  10667. size_t n_beams, int n_past, int n_predict) {
  10668. assert(ctx);
  10669. const int64_t t_start_sample_us = ggml_time_us();
  10670. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  10671. beam_search_data.loop(callback, callback_data);
  10672. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  10673. ctx->n_sample++;
  10674. }
  10675. //
  10676. // quantization
  10677. //
  10678. struct quantize_state_internal {
  10679. const llama_model & model;
  10680. const llama_model_quantize_params * params;
  10681. int n_attention_wv = 0;
  10682. int n_ffn_down = 0;
  10683. int n_ffn_gate = 0;
  10684. int n_ffn_up = 0;
  10685. int i_attention_wv = 0;
  10686. int i_ffn_down = 0;
  10687. int i_ffn_gate = 0;
  10688. int i_ffn_up = 0;
  10689. int n_k_quantized = 0;
  10690. int n_fallback = 0;
  10691. bool has_imatrix = false;
  10692. // used to figure out if a model shares tok_embd with the output weight
  10693. bool has_output = false;
  10694. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  10695. : model(model)
  10696. , params(params)
  10697. {}
  10698. };
  10699. static void llama_tensor_dequantize_internal(
  10700. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  10701. const size_t nelements, const int nthread
  10702. ) {
  10703. if (output.size() < nelements) {
  10704. output.resize(nelements);
  10705. }
  10706. float * f32_output = (float *) output.data();
  10707. ggml_type_traits_t qtype;
  10708. if (ggml_is_quantized(tensor->type)) {
  10709. qtype = ggml_internal_get_type_traits(tensor->type);
  10710. if (qtype.to_float == NULL) {
  10711. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  10712. }
  10713. } else if (tensor->type != GGML_TYPE_F16) {
  10714. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  10715. }
  10716. if (nthread < 2) {
  10717. if (tensor->type == GGML_TYPE_F16) {
  10718. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  10719. } else if (ggml_is_quantized(tensor->type)) {
  10720. qtype.to_float(tensor->data, f32_output, nelements);
  10721. } else {
  10722. GGML_ASSERT(false); // unreachable
  10723. }
  10724. return;
  10725. }
  10726. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  10727. size_t block_size_bytes = ggml_type_size(tensor->type);
  10728. GGML_ASSERT(nelements % block_size == 0);
  10729. size_t nblocks = nelements / block_size;
  10730. size_t blocks_per_thread = nblocks / nthread;
  10731. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  10732. size_t in_buff_offs = 0;
  10733. size_t out_buff_offs = 0;
  10734. for (int tnum = 0; tnum < nthread; tnum++) {
  10735. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  10736. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  10737. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  10738. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  10739. if (typ == GGML_TYPE_F16) {
  10740. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  10741. } else {
  10742. qtype.to_float(inbuf, outbuf, nels);
  10743. }
  10744. };
  10745. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  10746. in_buff_offs += thr_block_bytes;
  10747. out_buff_offs += thr_elems;
  10748. }
  10749. for (auto & w : workers) { w.join(); }
  10750. workers.clear();
  10751. }
  10752. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  10753. const std::string name = ggml_get_name(tensor);
  10754. // TODO: avoid hardcoded tensor names - use the TN_* constants
  10755. const llm_arch arch = qs.model.arch;
  10756. const auto tn = LLM_TN(arch);
  10757. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  10758. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  10759. };
  10760. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  10761. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  10762. if (n_expert > 1) {
  10763. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  10764. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  10765. // for getting the current layer as I initially thought, and we need to resort to parsing the
  10766. // tensor name.
  10767. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  10768. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  10769. }
  10770. if (i_layer < 0 || i_layer >= n_layer) {
  10771. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  10772. }
  10773. }
  10774. return std::make_pair(i_layer, n_layer);
  10775. };
  10776. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  10777. // with the quantization of the output tensor
  10778. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  10779. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  10780. new_type = qs.params->output_tensor_type;
  10781. } else {
  10782. int nx = tensor->ne[0];
  10783. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  10784. new_type = GGML_TYPE_Q8_0;
  10785. }
  10786. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  10787. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  10788. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10789. new_type = GGML_TYPE_Q5_K;
  10790. }
  10791. else if (new_type != GGML_TYPE_Q8_0) {
  10792. new_type = GGML_TYPE_Q6_K;
  10793. }
  10794. }
  10795. } else if (name == "token_embd.weight") {
  10796. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  10797. new_type = qs.params->token_embedding_type;
  10798. } else {
  10799. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  10800. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10801. new_type = GGML_TYPE_Q2_K;
  10802. }
  10803. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  10804. new_type = GGML_TYPE_IQ3_S;
  10805. }
  10806. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10807. new_type = GGML_TYPE_IQ3_S;
  10808. }
  10809. }
  10810. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  10811. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  10812. if (name.find("attn_v.weight") != std::string::npos) {
  10813. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  10814. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  10815. ++qs.i_attention_wv;
  10816. }
  10817. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  10818. new_type = GGML_TYPE_Q4_K;
  10819. }
  10820. else if (name.find("ffn_down") != std::string::npos) {
  10821. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  10822. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  10823. }
  10824. ++qs.i_ffn_down;
  10825. }
  10826. else if (name.find("attn_output.weight") != std::string::npos) {
  10827. if (qs.model.hparams.n_expert == 8) {
  10828. new_type = GGML_TYPE_Q5_K;
  10829. } else {
  10830. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  10831. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  10832. }
  10833. }
  10834. } else if (name.find("attn_v.weight") != std::string::npos) {
  10835. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  10836. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  10837. }
  10838. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  10839. new_type = GGML_TYPE_Q4_K;
  10840. }
  10841. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10842. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  10843. }
  10844. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  10845. new_type = GGML_TYPE_Q4_K;
  10846. }
  10847. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  10848. new_type = GGML_TYPE_Q4_K;
  10849. }
  10850. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  10851. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  10852. }
  10853. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  10854. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  10855. new_type = GGML_TYPE_Q5_K;
  10856. }
  10857. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  10858. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  10859. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  10860. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  10861. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  10862. if (qs.model.type == MODEL_70B) {
  10863. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  10864. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  10865. // nearly negligible increase in model size by quantizing this tensor with more bits:
  10866. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  10867. }
  10868. if (qs.model.hparams.n_expert == 8) {
  10869. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  10870. // TODO: explore better strategies
  10871. new_type = GGML_TYPE_Q8_0;
  10872. }
  10873. ++qs.i_attention_wv;
  10874. } else if (name.find("attn_k.weight") != std::string::npos) {
  10875. if (qs.model.hparams.n_expert == 8) {
  10876. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  10877. // TODO: explore better strategies
  10878. new_type = GGML_TYPE_Q8_0;
  10879. }
  10880. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  10881. new_type = GGML_TYPE_IQ3_XXS;
  10882. }
  10883. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10884. new_type = GGML_TYPE_IQ2_S;
  10885. }
  10886. } else if (name.find("attn_q.weight") != std::string::npos) {
  10887. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  10888. new_type = GGML_TYPE_IQ3_XXS;
  10889. }
  10890. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  10891. new_type = GGML_TYPE_IQ2_S;
  10892. }
  10893. } else if (name.find("ffn_down") != std::string::npos) {
  10894. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  10895. int i_layer = info.first, n_layer = info.second;
  10896. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  10897. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  10898. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  10899. }
  10900. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  10901. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  10902. }
  10903. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  10904. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  10905. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  10906. : GGML_TYPE_Q3_K;
  10907. }
  10908. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  10909. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  10910. new_type = GGML_TYPE_Q4_K;
  10911. }
  10912. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  10913. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  10914. }
  10915. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  10916. if (arch == LLM_ARCH_FALCON) {
  10917. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  10918. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  10919. } else {
  10920. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  10921. }
  10922. }
  10923. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  10924. new_type = GGML_TYPE_Q5_K;
  10925. }
  10926. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  10927. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  10928. new_type = GGML_TYPE_Q5_K;
  10929. }
  10930. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  10931. && qs.has_imatrix && i_layer < n_layer/8) {
  10932. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  10933. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  10934. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  10935. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  10936. }
  10937. ++qs.i_ffn_down;
  10938. } else if (name.find("attn_output.weight") != std::string::npos) {
  10939. if (arch != LLM_ARCH_FALCON) {
  10940. if (qs.model.hparams.n_expert == 8) {
  10941. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  10942. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  10943. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  10944. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  10945. new_type = GGML_TYPE_Q5_K;
  10946. }
  10947. } else {
  10948. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  10949. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  10950. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  10951. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  10952. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  10953. }
  10954. } else {
  10955. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  10956. }
  10957. }
  10958. else if (name.find("attn_qkv.weight") != std::string::npos) {
  10959. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  10960. new_type = GGML_TYPE_Q4_K;
  10961. }
  10962. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  10963. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  10964. }
  10965. else if (name.find("ffn_gate") != std::string::npos) {
  10966. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  10967. int i_layer = info.first, n_layer = info.second;
  10968. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  10969. new_type = GGML_TYPE_IQ3_XXS;
  10970. }
  10971. ++qs.i_ffn_gate;
  10972. }
  10973. else if (name.find("ffn_up") != std::string::npos) {
  10974. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  10975. int i_layer = info.first, n_layer = info.second;
  10976. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  10977. new_type = GGML_TYPE_IQ3_XXS;
  10978. }
  10979. ++qs.i_ffn_up;
  10980. }
  10981. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  10982. //}
  10983. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  10984. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  10985. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  10986. //}
  10987. // This can be used to reduce the size of the Q5_K_S model.
  10988. // The associated PPL increase is fully in line with the size reduction
  10989. //else {
  10990. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  10991. //}
  10992. bool convert_incompatible_tensor = false;
  10993. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  10994. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  10995. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  10996. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  10997. new_type == GGML_TYPE_IQ1_M) {
  10998. int nx = tensor->ne[0];
  10999. int ny = tensor->ne[1];
  11000. if (nx % QK_K != 0) {
  11001. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  11002. convert_incompatible_tensor = true;
  11003. } else {
  11004. ++qs.n_k_quantized;
  11005. }
  11006. }
  11007. if (convert_incompatible_tensor) {
  11008. switch (new_type) {
  11009. case GGML_TYPE_IQ2_XXS:
  11010. case GGML_TYPE_IQ2_XS:
  11011. case GGML_TYPE_IQ2_S:
  11012. case GGML_TYPE_IQ3_XXS:
  11013. case GGML_TYPE_IQ3_S:
  11014. case GGML_TYPE_IQ1_S:
  11015. case GGML_TYPE_IQ1_M:
  11016. case GGML_TYPE_Q2_K:
  11017. case GGML_TYPE_Q3_K:
  11018. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  11019. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  11020. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  11021. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  11022. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  11023. }
  11024. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  11025. ++qs.n_fallback;
  11026. }
  11027. return new_type;
  11028. }
  11029. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  11030. std::mutex mutex;
  11031. int counter = 0;
  11032. size_t new_size = 0;
  11033. if (nthread < 2) {
  11034. // single-thread
  11035. return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  11036. }
  11037. auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size,
  11038. nrows, n_per_row, imatrix]() {
  11039. const int nrows_per_chunk = chunk_size / n_per_row;
  11040. size_t local_size = 0;
  11041. while (true) {
  11042. std::unique_lock<std::mutex> lock(mutex);
  11043. int first_row = counter; counter += nrows_per_chunk;
  11044. if (first_row >= nrows) {
  11045. if (local_size > 0) {
  11046. new_size += local_size;
  11047. }
  11048. break;
  11049. }
  11050. lock.unlock();
  11051. const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  11052. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  11053. }
  11054. };
  11055. for (int it = 0; it < nthread - 1; ++it) {
  11056. workers.emplace_back(compute);
  11057. }
  11058. compute();
  11059. for (auto & w : workers) { w.join(); }
  11060. workers.clear();
  11061. return new_size;
  11062. }
  11063. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  11064. ggml_type default_type;
  11065. llama_ftype ftype = params->ftype;
  11066. switch (params->ftype) {
  11067. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  11068. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  11069. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  11070. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  11071. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  11072. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  11073. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  11074. // K-quants
  11075. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  11076. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  11077. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  11078. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  11079. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  11080. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  11081. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  11082. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  11083. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  11084. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  11085. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  11086. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  11087. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  11088. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  11089. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  11090. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  11091. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  11092. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  11093. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  11094. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  11095. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  11096. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  11097. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  11098. }
  11099. int nthread = params->nthread;
  11100. if (nthread <= 0) {
  11101. nthread = std::thread::hardware_concurrency();
  11102. }
  11103. // mmap consistently increases speed Linux, and also increases speed on Windows with
  11104. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  11105. #if defined(__linux__) || defined(_WIN32)
  11106. constexpr bool use_mmap = true;
  11107. #else
  11108. constexpr bool use_mmap = false;
  11109. #endif
  11110. llama_model_kv_override * kv_overrides = nullptr;
  11111. if (params->kv_overrides) {
  11112. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  11113. kv_overrides = v->data();
  11114. }
  11115. llama_model_loader ml(fname_inp, use_mmap, kv_overrides);
  11116. ml.init_mappings(false); // no prefetching
  11117. llama_model model;
  11118. llm_load_arch(ml, model);
  11119. llm_load_hparams(ml, model);
  11120. struct quantize_state_internal qs(model, params);
  11121. if (params->only_copy) {
  11122. ftype = model.ftype;
  11123. }
  11124. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  11125. if (params->imatrix) {
  11126. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  11127. if (imatrix_data) {
  11128. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  11129. qs.has_imatrix = true;
  11130. }
  11131. }
  11132. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  11133. struct gguf_context * ctx_out = gguf_init_empty();
  11134. // copy the KV pairs from the input file
  11135. gguf_set_kv (ctx_out, ml.meta);
  11136. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  11137. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  11138. if (params->kv_overrides) {
  11139. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  11140. for (auto & o : overrides) {
  11141. if (o.key[0] == 0) break;
  11142. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  11143. gguf_set_val_f32(ctx_out, o.key, o.float_value);
  11144. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  11145. gguf_set_val_i32(ctx_out, o.key, o.int_value);
  11146. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  11147. gguf_set_val_bool(ctx_out, o.key, o.bool_value);
  11148. } else {
  11149. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  11150. }
  11151. }
  11152. }
  11153. for (int i = 0; i < ml.n_tensors; ++i) {
  11154. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11155. const std::string name = ggml_get_name(meta);
  11156. // TODO: avoid hardcoded tensor names - use the TN_* constants
  11157. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  11158. ++qs.n_attention_wv;
  11159. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  11160. qs.has_output = true;
  11161. }
  11162. }
  11163. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  11164. // sanity checks
  11165. GGML_ASSERT(qs.n_attention_wv == (int)model.hparams.n_layer && "n_attention_wv != n_layer is unexpected");
  11166. size_t total_size_org = 0;
  11167. size_t total_size_new = 0;
  11168. std::vector<std::thread> workers;
  11169. workers.reserve(nthread);
  11170. int idx = 0;
  11171. std::vector<no_init<uint8_t>> read_data;
  11172. std::vector<no_init<uint8_t>> work;
  11173. std::vector<no_init<float>> f32_conv_buf;
  11174. // populate the original tensors so we get an initial meta data
  11175. for (int i = 0; i < ml.n_tensors; ++i) {
  11176. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  11177. gguf_add_tensor(ctx_out, meta);
  11178. }
  11179. std::ofstream fout(fname_out, std::ios::binary);
  11180. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  11181. const size_t meta_size = gguf_get_meta_size(ctx_out);
  11182. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  11183. // placeholder for the meta data
  11184. ::zeros(fout, meta_size);
  11185. const auto tn = LLM_TN(model.arch);
  11186. for (int i = 0; i < ml.n_tensors; ++i) {
  11187. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  11188. const std::string name = ggml_get_name(tensor);
  11189. if (!ml.use_mmap) {
  11190. if (read_data.size() < ggml_nbytes(tensor)) {
  11191. read_data.resize(ggml_nbytes(tensor));
  11192. }
  11193. tensor->data = read_data.data();
  11194. }
  11195. ml.load_data_for(tensor);
  11196. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  11197. ++idx, ml.n_tensors,
  11198. ggml_get_name(tensor),
  11199. llama_format_tensor_shape(tensor).c_str(),
  11200. ggml_type_name(tensor->type));
  11201. // This used to be a regex, but <regex> has an extreme cost to compile times.
  11202. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  11203. // quantize only 2D and 3D tensors (experts)
  11204. quantize &= (ggml_n_dims(tensor) >= 2);
  11205. quantize &= params->quantize_output_tensor || name != "output.weight";
  11206. quantize &= !params->only_copy;
  11207. // do not quantize expert gating tensors
  11208. // NOTE: can't use LLM_TN here because the layer number is not known
  11209. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  11210. // do not quantize positional embeddings and token types (BERT)
  11211. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  11212. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  11213. // do not quantize Mamba's small yet 2D weights
  11214. // NOTE: can't use LLM_TN here because the layer number is not known
  11215. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  11216. quantize &= name.find("ssm_x.weight") == std::string::npos;
  11217. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  11218. enum ggml_type new_type;
  11219. void * new_data;
  11220. size_t new_size;
  11221. if (quantize) {
  11222. new_type = default_type;
  11223. // get more optimal quantization type based on the tensor shape, layer, etc.
  11224. if (!params->pure && ggml_is_quantized(default_type)) {
  11225. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  11226. }
  11227. else if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  11228. new_type = params->token_embedding_type;
  11229. }
  11230. else if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  11231. new_type = params->output_tensor_type;
  11232. }
  11233. // If we've decided to quantize to the same type the tensor is already
  11234. // in then there's nothing to do.
  11235. quantize = tensor->type != new_type;
  11236. }
  11237. if (!quantize) {
  11238. new_type = tensor->type;
  11239. new_data = tensor->data;
  11240. new_size = ggml_nbytes(tensor);
  11241. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  11242. } else {
  11243. const size_t nelements = ggml_nelements(tensor);
  11244. const float * imatrix = nullptr;
  11245. if (imatrix_data) {
  11246. auto it = imatrix_data->find(tensor->name);
  11247. if (it == imatrix_data->end()) {
  11248. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  11249. } else {
  11250. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  11251. imatrix = it->second.data();
  11252. } else {
  11253. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  11254. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  11255. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  11256. // this is a significant error and it may be good idea to abort the process if this happens,
  11257. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  11258. // tok_embd should be ignored in this case, since it always causes this warning
  11259. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  11260. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  11261. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  11262. }
  11263. }
  11264. }
  11265. }
  11266. if ((new_type == GGML_TYPE_IQ2_XXS ||
  11267. new_type == GGML_TYPE_IQ2_XS ||
  11268. new_type == GGML_TYPE_IQ2_S ||
  11269. new_type == GGML_TYPE_IQ1_S ||
  11270. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  11271. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  11272. LLAMA_LOG_ERROR("\n\n============================================================\n");
  11273. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  11274. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  11275. LLAMA_LOG_ERROR("============================================================\n\n");
  11276. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  11277. }
  11278. float * f32_data;
  11279. if (tensor->type == GGML_TYPE_F32) {
  11280. f32_data = (float *) tensor->data;
  11281. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  11282. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  11283. } else {
  11284. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  11285. f32_data = (float *) f32_conv_buf.data();
  11286. }
  11287. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  11288. fflush(stdout);
  11289. if (work.size() < nelements * 4) {
  11290. work.resize(nelements * 4); // upper bound on size
  11291. }
  11292. new_data = work.data();
  11293. const int n_per_row = tensor->ne[0];
  11294. const int nrows = tensor->ne[1];
  11295. static const int min_chunk_size = 32 * 512;
  11296. const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  11297. const int nelements_matrix = tensor->ne[0] * tensor->ne[1];
  11298. const int nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  11299. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  11300. // quantize each expert separately since they have different importance matrices
  11301. new_size = 0;
  11302. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  11303. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  11304. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  11305. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  11306. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  11307. }
  11308. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  11309. }
  11310. total_size_org += ggml_nbytes(tensor);
  11311. total_size_new += new_size;
  11312. // update the gguf meta data as we go
  11313. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  11314. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  11315. // write tensor data + padding
  11316. fout.write((const char *) new_data, new_size);
  11317. zeros(fout, GGML_PAD(new_size, align) - new_size);
  11318. }
  11319. // go back to beginning of file and write the updated meta data
  11320. {
  11321. fout.seekp(0);
  11322. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  11323. gguf_get_meta_data(ctx_out, data.data());
  11324. fout.write((const char *) data.data(), data.size());
  11325. }
  11326. fout.close();
  11327. gguf_free(ctx_out);
  11328. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  11329. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  11330. if (qs.n_fallback > 0) {
  11331. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  11332. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  11333. }
  11334. }
  11335. static int llama_apply_lora_from_file_internal(
  11336. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  11337. ) {
  11338. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  11339. const int64_t t_start_lora_us = ggml_time_us();
  11340. llama_file fin(path_lora, "rb");
  11341. // verify magic and version
  11342. {
  11343. uint32_t magic = fin.read_u32();
  11344. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  11345. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  11346. return 1;
  11347. }
  11348. uint32_t format_version = fin.read_u32();
  11349. if (format_version != 1) {
  11350. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  11351. return 1;
  11352. }
  11353. }
  11354. int32_t lora_r = fin.read_u32();
  11355. int32_t lora_alpha = fin.read_u32();
  11356. float scaling = scale * (float)lora_alpha / (float)lora_r;
  11357. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  11358. // load base model
  11359. std::unique_ptr<llama_model_loader> ml;
  11360. if (path_base_model) {
  11361. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  11362. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  11363. ml->init_mappings(/*prefetch*/ false); // no prefetching
  11364. }
  11365. struct tensor_meta {
  11366. std::string name;
  11367. ggml_type type;
  11368. int32_t ne[2];
  11369. size_t offset;
  11370. };
  11371. std::map<std::string, tensor_meta> tensor_meta_map;
  11372. // load all tensor meta
  11373. while (true) {
  11374. if (fin.tell() == fin.size) {
  11375. // eof
  11376. break;
  11377. }
  11378. int32_t n_dims;
  11379. int32_t name_len;
  11380. int32_t ftype;
  11381. fin.read_raw(&n_dims, sizeof(n_dims));
  11382. fin.read_raw(&name_len, sizeof(name_len));
  11383. fin.read_raw(&ftype, sizeof(ftype));
  11384. if (n_dims != 1 && n_dims != 2) {
  11385. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  11386. return 1;
  11387. }
  11388. int32_t ne[2] = { 1, 1 };
  11389. for (int i = 0; i < n_dims; ++i) {
  11390. fin.read_raw(&ne[i], sizeof(ne[i]));
  11391. }
  11392. std::string name;
  11393. {
  11394. GGML_ASSERT(name_len < GGML_MAX_NAME);
  11395. char buf[GGML_MAX_NAME];
  11396. fin.read_raw(buf, name_len);
  11397. name = std::string(buf, name_len);
  11398. }
  11399. // check for lora suffix
  11400. std::string lora_suffix;
  11401. if (name.length() > 6) {
  11402. lora_suffix = name.substr(name.length() - 6);
  11403. }
  11404. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  11405. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  11406. return 1;
  11407. }
  11408. // tensor type
  11409. ggml_type wtype;
  11410. switch (ftype) {
  11411. case 0: wtype = GGML_TYPE_F32; break;
  11412. case 1: wtype = GGML_TYPE_F16; break;
  11413. default:
  11414. {
  11415. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  11416. __func__, ftype);
  11417. return 1;
  11418. }
  11419. }
  11420. // data offset
  11421. size_t offset = fin.tell();
  11422. offset = (offset + 31) & -32;
  11423. // skip tensor data
  11424. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  11425. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  11426. }
  11427. bool warned = false;
  11428. int n_tensors = 0;
  11429. // apply
  11430. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  11431. if (backend_cpu == nullptr) {
  11432. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  11433. return 1;
  11434. }
  11435. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  11436. std::vector<no_init<uint8_t>> read_buf;
  11437. for (const auto & it : model.tensors_by_name) {
  11438. const std::string & base_name = it.first;
  11439. ggml_tensor * model_t = it.second;
  11440. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  11441. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  11442. continue;
  11443. }
  11444. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  11445. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  11446. ggml_init_params lora_init_params = {
  11447. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  11448. /* .mem_buffer */ nullptr,
  11449. /* .no_alloc */ true,
  11450. };
  11451. ggml_context * lora_ctx = ggml_init(lora_init_params);
  11452. if (lora_ctx == nullptr) {
  11453. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  11454. ggml_backend_free(backend_cpu);
  11455. return 1;
  11456. }
  11457. // create tensors
  11458. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  11459. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  11460. ggml_set_name(loraA, metaA.name.c_str());
  11461. ggml_set_name(loraB, metaB.name.c_str());
  11462. ggml_tensor * base_t;
  11463. if (ml) {
  11464. if (!ml->get_tensor_meta(base_name.c_str())) {
  11465. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  11466. return 1;
  11467. }
  11468. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  11469. } else {
  11470. base_t = ggml_dup_tensor(lora_ctx, model_t);
  11471. }
  11472. ggml_set_name(base_t, base_name.c_str());
  11473. // allocate in backend buffer
  11474. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  11475. if (lora_buf == nullptr) {
  11476. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  11477. return 1;
  11478. }
  11479. // load tensor data
  11480. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  11481. read_buf.resize(ggml_nbytes(tensor));
  11482. fin.seek(tensor_meta.offset, SEEK_SET);
  11483. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  11484. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  11485. };
  11486. load_tensor(metaA, loraA);
  11487. load_tensor(metaB, loraB);
  11488. // load base model tensor data
  11489. if (ml) {
  11490. ml->load_data_for(base_t);
  11491. } else {
  11492. ggml_backend_tensor_copy(model_t, base_t);
  11493. }
  11494. if (ggml_is_quantized(base_t->type) && !warned) {
  11495. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  11496. "use a f16 or f32 base model with --lora-base\n", __func__);
  11497. warned = true;
  11498. }
  11499. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  11500. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  11501. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  11502. ggml_free(lora_ctx);
  11503. ggml_backend_buffer_free(lora_buf);
  11504. ggml_backend_free(backend_cpu);
  11505. return 1;
  11506. }
  11507. auto build_lora_graph = [&]() {
  11508. // w = w + BA*s
  11509. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  11510. ggml_set_name(BA, "BA");
  11511. if (scaling != 1.0f) {
  11512. BA = ggml_scale(lora_ctx, BA, scaling);
  11513. ggml_set_name(BA, "BA_scaled");
  11514. }
  11515. ggml_tensor * r;
  11516. r = ggml_add_inplace(lora_ctx, base_t, BA);
  11517. ggml_set_name(r, "r_add");
  11518. if (base_t->type != model_t->type) {
  11519. // convert the result to the model type
  11520. r = ggml_cast(lora_ctx, r, model_t->type);
  11521. ggml_set_name(r, "r_cast");
  11522. }
  11523. return r;
  11524. };
  11525. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  11526. ggml_tensor * r = build_lora_graph();
  11527. ggml_build_forward_expand(gf, r);
  11528. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  11529. if (graph_buf == nullptr) {
  11530. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  11531. ggml_free(lora_ctx);
  11532. ggml_backend_buffer_free(lora_buf);
  11533. ggml_backend_free(backend_cpu);
  11534. return 1;
  11535. }
  11536. ggml_backend_graph_compute(backend_cpu, gf);
  11537. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  11538. #if 0
  11539. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  11540. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  11541. // sched compute
  11542. ggml_build_forward_expand(gf, build_graph());
  11543. ggml_backend_sched_init_measure(sched, gf);
  11544. // create the graph again, since the previous one was destroyed by the measure
  11545. ggml_graph_clear(gf);
  11546. ggml_build_forward_expand(gf, build_graph());
  11547. ggml_backend_sched_graph_compute(sched, gf);
  11548. ggml_backend_sched_free(sched);
  11549. #endif
  11550. ggml_backend_buffer_free(lora_buf);
  11551. ggml_backend_buffer_free(graph_buf);
  11552. ggml_free(lora_ctx);
  11553. n_tensors++;
  11554. if (n_tensors % 4 == 0) {
  11555. LLAMA_LOG_INFO(".");
  11556. }
  11557. }
  11558. ggml_backend_free(backend_cpu);
  11559. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  11560. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  11561. return 0;
  11562. }
  11563. //
  11564. // interface implementation
  11565. //
  11566. struct llama_model_params llama_model_default_params() {
  11567. struct llama_model_params result = {
  11568. /*.n_gpu_layers =*/ 0,
  11569. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  11570. /*.main_gpu =*/ 0,
  11571. /*.tensor_split =*/ nullptr,
  11572. /*.progress_callback =*/ nullptr,
  11573. /*.progress_callback_user_data =*/ nullptr,
  11574. /*.kv_overrides =*/ nullptr,
  11575. /*.vocab_only =*/ false,
  11576. /*.use_mmap =*/ true,
  11577. /*.use_mlock =*/ false,
  11578. };
  11579. #ifdef GGML_USE_METAL
  11580. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  11581. result.n_gpu_layers = 999;
  11582. #endif
  11583. return result;
  11584. }
  11585. struct llama_context_params llama_context_default_params() {
  11586. struct llama_context_params result = {
  11587. /*.seed =*/ LLAMA_DEFAULT_SEED,
  11588. /*.n_ctx =*/ 512,
  11589. /*.n_batch =*/ 2048,
  11590. /*.n_ubatch =*/ 512,
  11591. /*.n_seq_max =*/ 1,
  11592. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  11593. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  11594. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  11595. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  11596. /*.rope_freq_base =*/ 0.0f,
  11597. /*.rope_freq_scale =*/ 0.0f,
  11598. /*.yarn_ext_factor =*/ -1.0f,
  11599. /*.yarn_attn_factor =*/ 1.0f,
  11600. /*.yarn_beta_fast =*/ 32.0f,
  11601. /*.yarn_beta_slow =*/ 1.0f,
  11602. /*.yarn_orig_ctx =*/ 0,
  11603. /*.defrag_thold =*/ -1.0f,
  11604. /*.cb_eval =*/ nullptr,
  11605. /*.cb_eval_user_data =*/ nullptr,
  11606. /*.type_k =*/ GGML_TYPE_F16,
  11607. /*.type_v =*/ GGML_TYPE_F16,
  11608. /*.logits_all =*/ false,
  11609. /*.embeddings =*/ false,
  11610. /*.offload_kqv =*/ true,
  11611. /*.abort_callback =*/ nullptr,
  11612. /*.abort_callback_data =*/ nullptr,
  11613. };
  11614. return result;
  11615. }
  11616. struct llama_model_quantize_params llama_model_quantize_default_params() {
  11617. struct llama_model_quantize_params result = {
  11618. /*.nthread =*/ 0,
  11619. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  11620. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  11621. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  11622. /*.allow_requantize =*/ false,
  11623. /*.quantize_output_tensor =*/ true,
  11624. /*.only_copy =*/ false,
  11625. /*.pure =*/ false,
  11626. /*.imatrix =*/ nullptr,
  11627. /*.kv_overrides =*/ nullptr,
  11628. };
  11629. return result;
  11630. }
  11631. size_t llama_max_devices(void) {
  11632. #if defined(GGML_USE_METAL)
  11633. return 1;
  11634. #elif defined(GGML_USE_CUDA)
  11635. return GGML_CUDA_MAX_DEVICES;
  11636. #elif defined(GGML_USE_SYCL)
  11637. return GGML_SYCL_MAX_DEVICES;
  11638. #elif defined(GGML_USE_VULKAN)
  11639. return GGML_VK_MAX_DEVICES;
  11640. #else
  11641. return 1;
  11642. #endif
  11643. }
  11644. bool llama_supports_mmap(void) {
  11645. return llama_mmap::SUPPORTED;
  11646. }
  11647. bool llama_supports_mlock(void) {
  11648. return llama_mlock::SUPPORTED;
  11649. }
  11650. bool llama_supports_gpu_offload(void) {
  11651. #if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  11652. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  11653. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  11654. return true;
  11655. #else
  11656. return false;
  11657. #endif
  11658. }
  11659. void llama_backend_init(void) {
  11660. ggml_time_init();
  11661. // needed to initialize f16 tables
  11662. {
  11663. struct ggml_init_params params = { 0, NULL, false };
  11664. struct ggml_context * ctx = ggml_init(params);
  11665. ggml_free(ctx);
  11666. }
  11667. #ifdef GGML_USE_MPI
  11668. ggml_mpi_backend_init();
  11669. #endif
  11670. }
  11671. void llama_numa_init(enum ggml_numa_strategy numa) {
  11672. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  11673. ggml_numa_init(numa);
  11674. }
  11675. }
  11676. void llama_backend_free(void) {
  11677. #ifdef GGML_USE_MPI
  11678. ggml_mpi_backend_free();
  11679. #endif
  11680. ggml_quantize_free();
  11681. }
  11682. int64_t llama_time_us(void) {
  11683. return ggml_time_us();
  11684. }
  11685. struct llama_model * llama_load_model_from_file(
  11686. const char * path_model,
  11687. struct llama_model_params params) {
  11688. ggml_time_init();
  11689. llama_model * model = new llama_model;
  11690. unsigned cur_percentage = 0;
  11691. if (params.progress_callback == NULL) {
  11692. params.progress_callback_user_data = &cur_percentage;
  11693. params.progress_callback = [](float progress, void * ctx) {
  11694. unsigned * cur_percentage_p = (unsigned *) ctx;
  11695. unsigned percentage = (unsigned) (100 * progress);
  11696. while (percentage > *cur_percentage_p) {
  11697. *cur_percentage_p = percentage;
  11698. LLAMA_LOG_INFO(".");
  11699. if (percentage >= 100) {
  11700. LLAMA_LOG_INFO("\n");
  11701. }
  11702. }
  11703. return true;
  11704. };
  11705. }
  11706. int status = llama_model_load(path_model, *model, params);
  11707. GGML_ASSERT(status <= 0);
  11708. if (status < 0) {
  11709. if (status == -1) {
  11710. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  11711. } else if (status == -2) {
  11712. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  11713. }
  11714. delete model;
  11715. return nullptr;
  11716. }
  11717. return model;
  11718. }
  11719. void llama_free_model(struct llama_model * model) {
  11720. delete model;
  11721. }
  11722. struct llama_context * llama_new_context_with_model(
  11723. struct llama_model * model,
  11724. struct llama_context_params params) {
  11725. if (!model) {
  11726. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  11727. return nullptr;
  11728. }
  11729. if (params.n_batch == 0 && params.n_ubatch == 0) {
  11730. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  11731. return nullptr;
  11732. }
  11733. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  11734. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  11735. return nullptr;
  11736. }
  11737. llama_context * ctx = new llama_context(*model);
  11738. const auto & hparams = model->hparams;
  11739. auto & cparams = ctx->cparams;
  11740. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  11741. cparams.n_threads = params.n_threads;
  11742. cparams.n_threads_batch = params.n_threads_batch;
  11743. cparams.yarn_ext_factor = params.yarn_ext_factor;
  11744. cparams.yarn_attn_factor = params.yarn_attn_factor;
  11745. cparams.yarn_beta_fast = params.yarn_beta_fast;
  11746. cparams.yarn_beta_slow = params.yarn_beta_slow;
  11747. cparams.defrag_thold = params.defrag_thold;
  11748. cparams.embeddings = params.embeddings;
  11749. cparams.offload_kqv = params.offload_kqv;
  11750. cparams.pooling_type = params.pooling_type;
  11751. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  11752. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  11753. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  11754. // this is necessary due to kv_self.n being padded later during inference
  11755. cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32);
  11756. // with causal attention, the batch size is limited by the context size
  11757. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  11758. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  11759. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  11760. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  11761. hparams.n_ctx_train;
  11762. cparams.cb_eval = params.cb_eval;
  11763. cparams.cb_eval_user_data = params.cb_eval_user_data;
  11764. auto rope_scaling_type = params.rope_scaling_type;
  11765. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  11766. rope_scaling_type = hparams.rope_scaling_type_train;
  11767. }
  11768. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  11769. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  11770. }
  11771. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  11772. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  11773. }
  11774. cparams.causal_attn = hparams.causal_attn;
  11775. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  11776. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  11777. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  11778. } else {
  11779. cparams.pooling_type = hparams.pooling_type;
  11780. }
  11781. }
  11782. if (params.seed == LLAMA_DEFAULT_SEED) {
  11783. params.seed = time(NULL);
  11784. }
  11785. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  11786. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  11787. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  11788. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  11789. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  11790. ctx->abort_callback = params.abort_callback;
  11791. ctx->abort_callback_data = params.abort_callback_data;
  11792. ctx->rng = std::mt19937(params.seed);
  11793. ctx->logits_all = params.logits_all;
  11794. uint32_t kv_size = cparams.n_ctx;
  11795. ggml_type type_k = params.type_k;
  11796. ggml_type type_v = params.type_v;
  11797. // Mamba only needs a constant number of KV cache cells per sequence
  11798. if (model->arch == LLM_ARCH_MAMBA) {
  11799. // Mamba needs at least as many KV cells as there are sequences kept at any time
  11800. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  11801. // it's probably best to keep as much precision as possible for the states
  11802. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  11803. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  11804. }
  11805. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  11806. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  11807. if (!hparams.vocab_only) {
  11808. // initialize backends
  11809. #ifdef GGML_USE_METAL
  11810. if (model->n_gpu_layers > 0) {
  11811. ctx->backend_metal = ggml_backend_metal_init();
  11812. if (ctx->backend_metal == nullptr) {
  11813. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  11814. llama_free(ctx);
  11815. return nullptr;
  11816. }
  11817. ctx->backends.push_back(ctx->backend_metal);
  11818. }
  11819. #elif defined(GGML_USE_CUDA)
  11820. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11821. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  11822. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  11823. if (backend == nullptr) {
  11824. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  11825. llama_free(ctx);
  11826. return nullptr;
  11827. }
  11828. ctx->backends.push_back(backend);
  11829. } else {
  11830. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  11831. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  11832. ggml_backend_t backend = ggml_backend_cuda_init(device);
  11833. if (backend == nullptr) {
  11834. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  11835. llama_free(ctx);
  11836. return nullptr;
  11837. }
  11838. ctx->backends.push_back(backend);
  11839. }
  11840. }
  11841. #elif defined(GGML_USE_VULKAN)
  11842. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11843. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  11844. llama_free(ctx);
  11845. return nullptr;
  11846. }
  11847. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  11848. ggml_backend_t backend = ggml_backend_vk_init(0);
  11849. if (backend == nullptr) {
  11850. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  11851. llama_free(ctx);
  11852. return nullptr;
  11853. }
  11854. ctx->backends.push_back(backend);
  11855. } else {
  11856. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  11857. ggml_backend_t backend = ggml_backend_vk_init(device);
  11858. if (backend == nullptr) {
  11859. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  11860. llama_free(ctx);
  11861. return nullptr;
  11862. }
  11863. ctx->backends.push_back(backend);
  11864. }
  11865. }
  11866. #elif defined(GGML_USE_SYCL)
  11867. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  11868. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  11869. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  11870. if (backend == nullptr) {
  11871. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  11872. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  11873. llama_free(ctx);
  11874. return nullptr;
  11875. }
  11876. ctx->backends.push_back(backend);
  11877. } else {
  11878. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  11879. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  11880. ggml_backend_t backend = ggml_backend_sycl_init(i);
  11881. if (backend == nullptr) {
  11882. int id_list[GGML_SYCL_MAX_DEVICES];
  11883. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  11884. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  11885. llama_free(ctx);
  11886. return nullptr;
  11887. }
  11888. ctx->backends.push_back(backend);
  11889. }
  11890. }
  11891. #elif defined(GGML_USE_KOMPUTE)
  11892. if (model->n_gpu_layers > 0) {
  11893. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  11894. if (backend == nullptr) {
  11895. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  11896. llama_free(ctx);
  11897. return nullptr;
  11898. }
  11899. ctx->backends.push_back(backend);
  11900. }
  11901. #endif
  11902. ctx->backend_cpu = ggml_backend_cpu_init();
  11903. if (ctx->backend_cpu == nullptr) {
  11904. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  11905. llama_free(ctx);
  11906. return nullptr;
  11907. }
  11908. ctx->backends.push_back(ctx->backend_cpu);
  11909. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) {
  11910. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  11911. llama_free(ctx);
  11912. return nullptr;
  11913. }
  11914. {
  11915. size_t memory_size_k = 0;
  11916. size_t memory_size_v = 0;
  11917. for (auto & k : ctx->kv_self.k_l) {
  11918. memory_size_k += ggml_nbytes(k);
  11919. }
  11920. for (auto & v : ctx->kv_self.v_l) {
  11921. memory_size_v += ggml_nbytes(v);
  11922. }
  11923. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  11924. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  11925. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  11926. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  11927. }
  11928. // graph outputs buffer
  11929. {
  11930. // resized during inference when a batch uses more outputs
  11931. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  11932. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  11933. llama_free(ctx);
  11934. return nullptr;
  11935. }
  11936. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  11937. ggml_backend_buffer_name(ctx->buf_output),
  11938. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  11939. }
  11940. // scheduler and compute buffers
  11941. {
  11942. // buffer types used for the compute buffer of each backend
  11943. std::vector<ggml_backend_buffer_type_t> backend_buft;
  11944. for (auto * backend : ctx->backends) {
  11945. if (ggml_backend_is_cpu(backend)) {
  11946. // use host buffers for the CPU backend compute buffer
  11947. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  11948. } else {
  11949. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  11950. }
  11951. }
  11952. // buffer used to store the computation graph and the tensor meta data
  11953. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  11954. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  11955. bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER;
  11956. #ifndef GGML_USE_CUDA
  11957. // pipeline parallelism requires support for async compute and events
  11958. // currently this is only implemented in the CUDA backend
  11959. pipeline_parallel = false;
  11960. #endif
  11961. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  11962. if (pipeline_parallel) {
  11963. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  11964. }
  11965. // build worst-case graph
  11966. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  11967. int n_past = cparams.n_ctx - n_tokens;
  11968. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  11969. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  11970. // initialize scheduler with the worst-case graph
  11971. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  11972. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  11973. llama_free(ctx);
  11974. return nullptr;
  11975. }
  11976. for (size_t i = 0; i < ctx->backends.size(); i++) {
  11977. ggml_backend_t backend = ctx->backends[i];
  11978. ggml_backend_buffer_type_t buft = backend_buft[i];
  11979. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  11980. if (size > 1) {
  11981. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  11982. ggml_backend_buft_name(buft),
  11983. size / 1024.0 / 1024.0);
  11984. }
  11985. }
  11986. // note: the number of splits during measure is higher than during inference due to the kv shift
  11987. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  11988. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  11989. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  11990. }
  11991. }
  11992. #ifdef GGML_USE_MPI
  11993. ctx->ctx_mpi = ggml_mpi_init();
  11994. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  11995. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  11996. // TODO: needs fix after #3228
  11997. GGML_ASSERT(false && "not implemented");
  11998. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  11999. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  12000. llama_backend_free();
  12001. exit(1);
  12002. }
  12003. #endif
  12004. return ctx;
  12005. }
  12006. void llama_free(struct llama_context * ctx) {
  12007. delete ctx;
  12008. }
  12009. const llama_model * llama_get_model(const struct llama_context * ctx) {
  12010. return &ctx->model;
  12011. }
  12012. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  12013. return ctx->cparams.n_ctx;
  12014. }
  12015. uint32_t llama_n_batch(const struct llama_context * ctx) {
  12016. return ctx->cparams.n_batch;
  12017. }
  12018. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  12019. return ctx->cparams.n_ubatch;
  12020. }
  12021. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  12022. return ctx->kv_self.size;
  12023. }
  12024. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  12025. return model->vocab.type;
  12026. }
  12027. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  12028. switch (model->arch) {
  12029. // these models do not use RoPE
  12030. case LLM_ARCH_GPT2:
  12031. case LLM_ARCH_GPTJ:
  12032. case LLM_ARCH_GPTNEOX:
  12033. case LLM_ARCH_MPT:
  12034. case LLM_ARCH_REFACT:
  12035. case LLM_ARCH_BLOOM:
  12036. case LLM_ARCH_MAMBA:
  12037. return LLAMA_ROPE_TYPE_NONE;
  12038. // use what we call a normal RoPE, operating on pairs of consecutive head values
  12039. case LLM_ARCH_LLAMA:
  12040. case LLM_ARCH_BAICHUAN:
  12041. case LLM_ARCH_STARCODER:
  12042. case LLM_ARCH_PLAMO:
  12043. case LLM_ARCH_CODESHELL:
  12044. case LLM_ARCH_ORION:
  12045. case LLM_ARCH_INTERNLM2:
  12046. case LLM_ARCH_MINICPM:
  12047. case LLM_ARCH_XVERSE:
  12048. case LLM_ARCH_COMMAND_R:
  12049. return LLAMA_ROPE_TYPE_NORM;
  12050. // the pairs of head values are offset by n_rot/2
  12051. case LLM_ARCH_FALCON:
  12052. case LLM_ARCH_GROK:
  12053. case LLM_ARCH_PERSIMMON:
  12054. case LLM_ARCH_BERT:
  12055. case LLM_ARCH_NOMIC_BERT:
  12056. case LLM_ARCH_STABLELM:
  12057. case LLM_ARCH_QWEN:
  12058. case LLM_ARCH_QWEN2:
  12059. case LLM_ARCH_PHI2:
  12060. case LLM_ARCH_GEMMA:
  12061. case LLM_ARCH_STARCODER2:
  12062. return LLAMA_ROPE_TYPE_NEOX;
  12063. // all model arches should be listed explicitly here
  12064. case LLM_ARCH_UNKNOWN:
  12065. GGML_ASSERT(false && "unknown architecture");
  12066. break;
  12067. }
  12068. return LLAMA_ROPE_TYPE_NONE;
  12069. }
  12070. int32_t llama_n_vocab(const struct llama_model * model) {
  12071. return model->hparams.n_vocab;
  12072. }
  12073. int32_t llama_n_ctx_train(const struct llama_model * model) {
  12074. return model->hparams.n_ctx_train;
  12075. }
  12076. int32_t llama_n_embd(const struct llama_model * model) {
  12077. return model->hparams.n_embd;
  12078. }
  12079. int32_t llama_n_layer(const struct llama_model * model) {
  12080. return model->hparams.n_layer;
  12081. }
  12082. float llama_rope_freq_scale_train(const struct llama_model * model) {
  12083. return model->hparams.rope_freq_scale_train;
  12084. }
  12085. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  12086. const auto & it = model->gguf_kv.find(key);
  12087. if (it == model->gguf_kv.end()) {
  12088. if (buf_size > 0) {
  12089. buf[0] = '\0';
  12090. }
  12091. return -1;
  12092. }
  12093. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12094. }
  12095. int32_t llama_model_meta_count(const struct llama_model * model) {
  12096. return (int)model->gguf_kv.size();
  12097. }
  12098. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  12099. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12100. if (buf_size > 0) {
  12101. buf[0] = '\0';
  12102. }
  12103. return -1;
  12104. }
  12105. auto it = model->gguf_kv.begin();
  12106. std::advance(it, i);
  12107. return snprintf(buf, buf_size, "%s", it->first.c_str());
  12108. }
  12109. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  12110. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  12111. if (buf_size > 0) {
  12112. buf[0] = '\0';
  12113. }
  12114. return -1;
  12115. }
  12116. auto it = model->gguf_kv.begin();
  12117. std::advance(it, i);
  12118. return snprintf(buf, buf_size, "%s", it->second.c_str());
  12119. }
  12120. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  12121. return snprintf(buf, buf_size, "%s %s %s",
  12122. llama_model_arch_name(model->arch),
  12123. llama_model_type_name(model->type),
  12124. llama_model_ftype_name(model->ftype).c_str());
  12125. }
  12126. uint64_t llama_model_size(const struct llama_model * model) {
  12127. uint64_t size = 0;
  12128. for (const auto & it : model->tensors_by_name) {
  12129. size += ggml_nbytes(it.second);
  12130. }
  12131. return size;
  12132. }
  12133. uint64_t llama_model_n_params(const struct llama_model * model) {
  12134. uint64_t nparams = 0;
  12135. for (const auto & it : model->tensors_by_name) {
  12136. nparams += ggml_nelements(it.second);
  12137. }
  12138. return nparams;
  12139. }
  12140. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  12141. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  12142. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  12143. return it.first == name;
  12144. });
  12145. if (it == model->tensors_by_name.end()) {
  12146. return nullptr;
  12147. }
  12148. return it->second;
  12149. }
  12150. uint32_t llama_model_quantize(
  12151. const char * fname_inp,
  12152. const char * fname_out,
  12153. const llama_model_quantize_params * params) {
  12154. try {
  12155. llama_model_quantize_internal(fname_inp, fname_out, params);
  12156. return 0;
  12157. } catch (const std::exception & err) {
  12158. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  12159. return 1;
  12160. }
  12161. }
  12162. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  12163. try {
  12164. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  12165. } catch (const std::exception & err) {
  12166. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  12167. return 1;
  12168. }
  12169. }
  12170. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  12171. GGML_ASSERT(cvec.tensors.empty());
  12172. GGML_ASSERT(cvec.ctxs.empty());
  12173. GGML_ASSERT(cvec.bufs.empty());
  12174. // count layer buffer types
  12175. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  12176. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  12177. buft_layer_count[model.buft_layer[i].buft]++;
  12178. }
  12179. // allocate contexts
  12180. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  12181. for (auto & it : buft_layer_count) {
  12182. int n_layers = it.second;
  12183. struct ggml_init_params params = {
  12184. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  12185. /*.mem_buffer =*/ NULL,
  12186. /*.no_alloc =*/ true,
  12187. };
  12188. ggml_context * ctx = ggml_init(params);
  12189. if (!ctx) {
  12190. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  12191. return 1;
  12192. }
  12193. ctx_map[it.first] = ctx;
  12194. }
  12195. // make tensors
  12196. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  12197. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12198. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  12199. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  12200. cvec.tensors.push_back(tensor);
  12201. }
  12202. // allocate tensors / buffers and zero
  12203. for (auto it : ctx_map) {
  12204. ggml_backend_buffer_type_t buft = it.first;
  12205. ggml_context * ctx = it.second;
  12206. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  12207. if (!buf) {
  12208. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  12209. return false;
  12210. }
  12211. ggml_backend_buffer_clear(buf, 0);
  12212. cvec.ctxs.push_back(ctx);
  12213. cvec.bufs.push_back(buf);
  12214. }
  12215. return true;
  12216. }
  12217. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  12218. const llama_model & model = lctx->model;
  12219. llama_control_vector & cvec = lctx->cvec;
  12220. if (data == nullptr) {
  12221. // disable the current control vector (but leave allocated for later)
  12222. cvec.layer_start = -1;
  12223. cvec.layer_end = -1;
  12224. return 0;
  12225. }
  12226. if (n_embd != (int) model.hparams.n_embd) {
  12227. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  12228. return 1;
  12229. }
  12230. if (cvec.tensors.empty()) {
  12231. if (!llama_control_vector_init(cvec, model)) {
  12232. return 1;
  12233. }
  12234. }
  12235. cvec.layer_start = il_start;
  12236. cvec.layer_end = il_end;
  12237. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  12238. assert(cvec.tensors[il] != nullptr);
  12239. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  12240. if (off + n_embd <= len) {
  12241. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  12242. }
  12243. }
  12244. return 0;
  12245. }
  12246. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  12247. struct llama_kv_cache_view result = {
  12248. /*.n_cells = */ 0,
  12249. /*.n_seq_max = */ n_seq_max,
  12250. /*.token_count = */ 0,
  12251. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  12252. /*.max_contiguous = */ 0,
  12253. /*.max_contiguous_idx = */ -1,
  12254. /*.cells = */ nullptr,
  12255. /*.cells_sequences = */ nullptr,
  12256. };
  12257. return result;
  12258. }
  12259. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  12260. if (view->cells != nullptr) {
  12261. free(view->cells);
  12262. view->cells = nullptr;
  12263. }
  12264. if (view->cells_sequences != nullptr) {
  12265. free(view->cells_sequences);
  12266. view->cells_sequences = nullptr;
  12267. }
  12268. }
  12269. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  12270. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  12271. view->n_cells = int32_t(ctx->kv_self.size);
  12272. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  12273. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  12274. view->cells = (struct llama_kv_cache_view_cell *)p;
  12275. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  12276. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  12277. view->cells_sequences = (llama_seq_id *)p;
  12278. }
  12279. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  12280. llama_kv_cache_view_cell * c_curr = view->cells;
  12281. llama_seq_id * cs_curr = view->cells_sequences;
  12282. int32_t used_cells = 0;
  12283. int32_t token_count = 0;
  12284. int32_t curr_contig_idx = -1;
  12285. uint32_t max_contig = 0;
  12286. int32_t max_contig_idx = -1;
  12287. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  12288. const size_t curr_size = kv_cells[i].seq_id.size();
  12289. token_count += curr_size;
  12290. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  12291. if (curr_size > 0) {
  12292. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  12293. max_contig = i - curr_contig_idx;
  12294. max_contig_idx = curr_contig_idx;
  12295. }
  12296. curr_contig_idx = -1;
  12297. } else if (curr_contig_idx < 0) {
  12298. curr_contig_idx = i;
  12299. }
  12300. int seq_idx = 0;
  12301. for (const llama_seq_id it : kv_cells[i].seq_id) {
  12302. if (seq_idx >= view->n_seq_max) {
  12303. break;
  12304. }
  12305. cs_curr[seq_idx] = it;
  12306. seq_idx++;
  12307. }
  12308. if (seq_idx != 0) {
  12309. used_cells++;
  12310. }
  12311. for (; seq_idx < view->n_seq_max; seq_idx++) {
  12312. cs_curr[seq_idx] = -1;
  12313. }
  12314. }
  12315. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  12316. max_contig_idx = curr_contig_idx;
  12317. max_contig = kv_cells.size() - curr_contig_idx;
  12318. }
  12319. view->max_contiguous = max_contig;
  12320. view->max_contiguous_idx = max_contig_idx;
  12321. view->token_count = token_count;
  12322. view->used_cells = used_cells;
  12323. if (uint32_t(used_cells) != ctx->kv_self.used) {
  12324. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  12325. __func__, ctx->kv_self.used, used_cells);
  12326. }
  12327. }
  12328. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  12329. int result = 0;
  12330. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  12331. result += ctx->kv_self.cells[i].seq_id.size();
  12332. }
  12333. return result;
  12334. }
  12335. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  12336. return ctx->kv_self.used;
  12337. }
  12338. void llama_kv_cache_clear(struct llama_context * ctx) {
  12339. llama_kv_cache_clear(ctx->kv_self);
  12340. }
  12341. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  12342. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  12343. }
  12344. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  12345. if (seq_id_src == seq_id_dst) {
  12346. return;
  12347. }
  12348. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  12349. }
  12350. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  12351. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  12352. }
  12353. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  12354. if (delta == 0) {
  12355. return;
  12356. }
  12357. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  12358. }
  12359. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  12360. if (d == 1) {
  12361. return;
  12362. }
  12363. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  12364. }
  12365. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  12366. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  12367. }
  12368. void llama_kv_cache_defrag(struct llama_context * ctx) {
  12369. llama_kv_cache_defrag(ctx->kv_self);
  12370. }
  12371. void llama_kv_cache_update(struct llama_context * ctx) {
  12372. llama_kv_cache_update_internal(*ctx);
  12373. }
  12374. // Returns the *maximum* size of the state
  12375. size_t llama_get_state_size(const struct llama_context * ctx) {
  12376. const auto & cparams = ctx->cparams;
  12377. const auto & hparams = ctx->model.hparams;
  12378. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  12379. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  12380. const size_t s_rng_size = sizeof(size_t);
  12381. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  12382. const size_t s_n_outputs = sizeof(size_t);
  12383. // assume worst case for outputs although only currently set ones are serialized
  12384. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  12385. const size_t s_logits_size = sizeof(size_t);
  12386. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  12387. const size_t s_embedding_size = sizeof(size_t);
  12388. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  12389. const size_t s_kv_buf_size = sizeof(size_t);
  12390. const size_t s_kv_head = sizeof(uint32_t);
  12391. const size_t s_kv_size = sizeof(uint32_t);
  12392. const size_t s_kv_used = sizeof(uint32_t);
  12393. const size_t s_kv = ctx->kv_self.total_size();
  12394. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  12395. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  12396. const size_t s_total = (
  12397. + s_rng_size
  12398. + s_rng
  12399. + s_n_outputs
  12400. + s_output_pos
  12401. + s_logits_size
  12402. + s_logits
  12403. + s_embedding_size
  12404. + s_embedding
  12405. + s_kv_buf_size
  12406. + s_kv_head
  12407. + s_kv_size
  12408. + s_kv_used
  12409. + s_kv
  12410. + s_kv_cells
  12411. );
  12412. return s_total;
  12413. }
  12414. // llama_context_data
  12415. struct llama_data_context {
  12416. virtual void write(const void * src, size_t size) = 0;
  12417. virtual size_t get_size_written() = 0;
  12418. virtual ~llama_data_context() = default;
  12419. };
  12420. struct llama_data_buffer_context : llama_data_context {
  12421. uint8_t * ptr;
  12422. size_t size_written = 0;
  12423. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  12424. void write(const void * src, size_t size) override {
  12425. memcpy(ptr, src, size);
  12426. ptr += size;
  12427. size_written += size;
  12428. }
  12429. size_t get_size_written() override {
  12430. return size_written;
  12431. }
  12432. };
  12433. struct llama_data_file_context : llama_data_context {
  12434. llama_file * file;
  12435. size_t size_written = 0;
  12436. llama_data_file_context(llama_file * f) : file(f) {}
  12437. void write(const void * src, size_t size) override {
  12438. file->write_raw(src, size);
  12439. size_written += size;
  12440. }
  12441. size_t get_size_written() override {
  12442. return size_written;
  12443. }
  12444. };
  12445. /** copy state data into either a buffer or file depending on the passed in context
  12446. *
  12447. * file context:
  12448. * llama_file file("/path", "wb");
  12449. * llama_data_file_context data_ctx(&file);
  12450. * llama_copy_state_data(ctx, &data_ctx);
  12451. *
  12452. * buffer context:
  12453. * std::vector<uint8_t> buf(max_size, 0);
  12454. * llama_data_buffer_context data_ctx(&buf.data());
  12455. * llama_copy_state_data(ctx, &data_ctx);
  12456. *
  12457. */
  12458. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  12459. // copy rng
  12460. {
  12461. std::ostringstream rng_ss;
  12462. rng_ss << ctx->rng;
  12463. const std::string & rng_str = rng_ss.str();
  12464. const size_t rng_size = rng_str.size();
  12465. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  12466. data_ctx->write(&rng_size, sizeof(rng_size));
  12467. data_ctx->write(rng_str.data(), rng_size);
  12468. }
  12469. // copy outputs
  12470. {
  12471. // Can't use ctx->n_outputs because it's not for the
  12472. // entire last batch when n_ubatch is smaller than n_batch
  12473. size_t n_outputs = 0;
  12474. // copy output ids
  12475. {
  12476. std::vector<int32_t> output_pos;
  12477. const size_t n_batch = ctx->cparams.n_batch;
  12478. const auto & output_ids = ctx->output_ids;
  12479. output_pos.resize(ctx->output_size);
  12480. // build a more compact representation of the output ids
  12481. for (size_t i = 0; i < n_batch; ++i) {
  12482. // map an output id to a position in the batch
  12483. int32_t pos = output_ids[i];
  12484. if (pos >= 0) {
  12485. if ((size_t) pos >= n_outputs) {
  12486. n_outputs = pos + 1;
  12487. }
  12488. GGML_ASSERT((size_t) pos < ctx->output_size);
  12489. output_pos[pos] = i;
  12490. }
  12491. }
  12492. data_ctx->write(&n_outputs, sizeof(n_outputs));
  12493. if (n_outputs) {
  12494. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  12495. }
  12496. }
  12497. // copy logits
  12498. {
  12499. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  12500. data_ctx->write(&logits_size, sizeof(logits_size));
  12501. if (logits_size) {
  12502. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  12503. }
  12504. }
  12505. // copy embeddings
  12506. {
  12507. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  12508. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  12509. if (embeddings_size) {
  12510. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  12511. }
  12512. }
  12513. }
  12514. // copy kv cache
  12515. {
  12516. const auto & kv_self = ctx->kv_self;
  12517. const auto & hparams = ctx->model.hparams;
  12518. const uint32_t n_layer = hparams.n_layer;
  12519. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  12520. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  12521. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  12522. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  12523. const uint32_t kv_size = kv_self.size;
  12524. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  12525. const uint32_t kv_used = kv_self.used;
  12526. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  12527. data_ctx->write(&kv_head, sizeof(kv_head));
  12528. data_ctx->write(&kv_size, sizeof(kv_size));
  12529. data_ctx->write(&kv_used, sizeof(kv_used));
  12530. if (kv_buf_size) {
  12531. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  12532. std::vector<uint8_t> tmp_buf;
  12533. for (int il = 0; il < (int) n_layer; ++il) {
  12534. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  12535. tmp_buf.resize(k_size);
  12536. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  12537. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12538. if (kv_self.recurrent) {
  12539. // v is contiguous for recurrent models
  12540. // TODO: use other tensors for state models than k and v
  12541. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  12542. tmp_buf.resize(v_size);
  12543. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  12544. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12545. continue;
  12546. }
  12547. // v is not contiguous, copy row by row
  12548. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  12549. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  12550. tmp_buf.resize(v_row_size);
  12551. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  12552. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  12553. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  12554. }
  12555. }
  12556. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  12557. }
  12558. for (uint32_t i = 0; i < kv_head; ++i) {
  12559. const auto & cell = kv_self.cells[i];
  12560. const llama_pos pos = cell.pos;
  12561. const size_t seq_id_size = cell.seq_id.size();
  12562. data_ctx->write(&pos, sizeof(pos));
  12563. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  12564. for (auto seq_id : cell.seq_id) {
  12565. data_ctx->write(&seq_id, sizeof(seq_id));
  12566. }
  12567. }
  12568. }
  12569. }
  12570. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  12571. llama_data_buffer_context data_ctx(dst);
  12572. llama_copy_state_data_internal(ctx, &data_ctx);
  12573. return data_ctx.get_size_written();
  12574. }
  12575. // Sets the state reading from the specified source address
  12576. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  12577. const uint8_t * inp = src;
  12578. // set rng
  12579. {
  12580. size_t rng_size;
  12581. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  12582. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  12583. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  12584. std::istringstream rng_ss(rng_str);
  12585. rng_ss >> ctx->rng;
  12586. GGML_ASSERT(!rng_ss.fail());
  12587. }
  12588. // set output ids
  12589. {
  12590. size_t n_outputs;
  12591. std::vector<int32_t> output_pos;
  12592. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  12593. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  12594. if (n_outputs) {
  12595. output_pos.resize(n_outputs);
  12596. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  12597. inp += n_outputs * sizeof(int32_t);
  12598. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  12599. int32_t id = output_pos[i];
  12600. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  12601. ctx->output_ids[id] = i;
  12602. }
  12603. }
  12604. }
  12605. // set logits
  12606. {
  12607. size_t logits_size;
  12608. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  12609. GGML_ASSERT(ctx->logits_size >= logits_size);
  12610. if (logits_size) {
  12611. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  12612. inp += logits_size * sizeof(float);
  12613. }
  12614. }
  12615. // set embeddings
  12616. {
  12617. size_t embeddings_size;
  12618. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  12619. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  12620. if (embeddings_size) {
  12621. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  12622. inp += embeddings_size * sizeof(float);
  12623. }
  12624. }
  12625. // set kv cache
  12626. {
  12627. const auto & kv_self = ctx->kv_self;
  12628. const auto & hparams = ctx->model.hparams;
  12629. const uint32_t n_layer = hparams.n_layer;
  12630. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  12631. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  12632. size_t kv_buf_size;
  12633. uint32_t kv_head;
  12634. uint32_t kv_size;
  12635. uint32_t kv_used;
  12636. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  12637. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  12638. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  12639. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  12640. if (kv_self.size != kv_size) {
  12641. // the KV cache needs to be big enough to load all the KV cells from the saved state
  12642. GGML_ASSERT(kv_self.size >= kv_head);
  12643. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  12644. __func__, kv_head, kv_size, kv_self.size);
  12645. }
  12646. if (kv_buf_size) {
  12647. const size_t pre_kv_buf_size = inp - src;
  12648. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  12649. for (int il = 0; il < (int) n_layer; ++il) {
  12650. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  12651. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  12652. inp += k_size;
  12653. if (kv_self.recurrent) {
  12654. // v is contiguous for recurrent models
  12655. // TODO: use other tensors for state models than k and v
  12656. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  12657. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  12658. inp += v_size;
  12659. continue;
  12660. }
  12661. // v is not contiguous, copy row by row
  12662. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  12663. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  12664. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  12665. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  12666. inp += v_row_size;
  12667. }
  12668. }
  12669. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  12670. }
  12671. llama_kv_cache_clear(ctx);
  12672. ctx->kv_self.head = kv_head;
  12673. ctx->kv_self.used = kv_used;
  12674. for (uint32_t i = 0; i < kv_head; ++i) {
  12675. llama_pos pos;
  12676. size_t seq_id_size;
  12677. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  12678. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  12679. ctx->kv_self.cells[i].pos = pos;
  12680. llama_seq_id seq_id;
  12681. for (size_t j = 0; j < seq_id_size; ++j) {
  12682. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  12683. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  12684. }
  12685. }
  12686. }
  12687. const size_t nread = inp - src;
  12688. const size_t max_size = llama_get_state_size(ctx);
  12689. GGML_ASSERT(nread <= max_size);
  12690. return nread;
  12691. }
  12692. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  12693. llama_file file(path_session, "rb");
  12694. // sanity checks
  12695. {
  12696. const uint32_t magic = file.read_u32();
  12697. const uint32_t version = file.read_u32();
  12698. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  12699. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  12700. return false;
  12701. }
  12702. llama_hparams session_hparams;
  12703. file.read_raw(&session_hparams, sizeof(llama_hparams));
  12704. if (session_hparams != ctx->model.hparams) {
  12705. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  12706. return false;
  12707. }
  12708. }
  12709. // load the prompt
  12710. {
  12711. const uint32_t n_token_count = file.read_u32();
  12712. if (n_token_count > n_token_capacity) {
  12713. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  12714. return false;
  12715. }
  12716. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  12717. *n_token_count_out = n_token_count;
  12718. }
  12719. // restore the context state
  12720. {
  12721. const size_t n_state_size_cur = file.size - file.tell();
  12722. const size_t n_state_size_max = llama_get_state_size(ctx);
  12723. if (n_state_size_cur > n_state_size_max) {
  12724. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  12725. return false;
  12726. }
  12727. std::vector<uint8_t> state_data(n_state_size_max);
  12728. file.read_raw(state_data.data(), n_state_size_cur);
  12729. llama_set_state_data(ctx, state_data.data());
  12730. }
  12731. return true;
  12732. }
  12733. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  12734. try {
  12735. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  12736. } catch (const std::exception & err) {
  12737. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  12738. return false;
  12739. }
  12740. }
  12741. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  12742. llama_file file(path_session, "wb");
  12743. file.write_u32(LLAMA_SESSION_MAGIC);
  12744. file.write_u32(LLAMA_SESSION_VERSION);
  12745. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  12746. // save the prompt
  12747. file.write_u32((uint32_t) n_token_count);
  12748. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  12749. // save the context state using stream saving
  12750. llama_data_file_context data_ctx(&file);
  12751. llama_copy_state_data_internal(ctx, &data_ctx);
  12752. return true;
  12753. }
  12754. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  12755. ctx->cparams.n_threads = n_threads;
  12756. ctx->cparams.n_threads_batch = n_threads_batch;
  12757. }
  12758. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  12759. ctx->abort_callback = abort_callback;
  12760. ctx->abort_callback_data = abort_callback_data;
  12761. }
  12762. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  12763. ctx->cparams.causal_attn = causal_attn;
  12764. }
  12765. struct llama_batch llama_batch_get_one(
  12766. llama_token * tokens,
  12767. int32_t n_tokens,
  12768. llama_pos pos_0,
  12769. llama_seq_id seq_id) {
  12770. return {
  12771. /*n_tokens =*/ n_tokens,
  12772. /*tokens =*/ tokens,
  12773. /*embd =*/ nullptr,
  12774. /*pos =*/ nullptr,
  12775. /*n_seq_id =*/ nullptr,
  12776. /*seq_id =*/ nullptr,
  12777. /*logits =*/ nullptr,
  12778. /*all_pos_0 =*/ pos_0,
  12779. /*all_pos_1 =*/ 1,
  12780. /*all_seq_id =*/ seq_id,
  12781. };
  12782. }
  12783. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  12784. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  12785. if (embd) {
  12786. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  12787. } else {
  12788. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  12789. }
  12790. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  12791. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  12792. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  12793. for (int i = 0; i < n_tokens_alloc; ++i) {
  12794. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  12795. }
  12796. batch.seq_id[n_tokens_alloc] = nullptr;
  12797. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  12798. return batch;
  12799. }
  12800. void llama_batch_free(struct llama_batch batch) {
  12801. if (batch.token) free(batch.token);
  12802. if (batch.embd) free(batch.embd);
  12803. if (batch.pos) free(batch.pos);
  12804. if (batch.n_seq_id) free(batch.n_seq_id);
  12805. if (batch.seq_id) {
  12806. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  12807. free(batch.seq_id[i]);
  12808. }
  12809. free(batch.seq_id);
  12810. }
  12811. if (batch.logits) free(batch.logits);
  12812. }
  12813. int32_t llama_decode(
  12814. struct llama_context * ctx,
  12815. struct llama_batch batch) {
  12816. const int ret = llama_decode_internal(*ctx, batch);
  12817. if (ret < 0) {
  12818. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  12819. }
  12820. return ret;
  12821. }
  12822. void llama_synchronize(struct llama_context * ctx) {
  12823. ggml_backend_sched_synchronize(ctx->sched);
  12824. // FIXME: if multiple single tokens are evaluated without a synchronization,
  12825. // the stats will be added to the prompt evaluation stats
  12826. // this should only happen when using batch size 1 to evaluate a batch
  12827. // add the evaluation to the stats
  12828. if (ctx->n_queued_tokens == 1) {
  12829. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  12830. ctx->n_eval++;
  12831. } else if (ctx->n_queued_tokens > 1) {
  12832. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  12833. ctx->n_p_eval += ctx->n_queued_tokens;
  12834. }
  12835. // get a more accurate load time, upon first eval
  12836. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  12837. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  12838. ctx->has_evaluated_once = true;
  12839. }
  12840. ctx->n_queued_tokens = 0;
  12841. ctx->t_compute_start_us = 0;
  12842. }
  12843. float * llama_get_logits(struct llama_context * ctx) {
  12844. llama_synchronize(ctx);
  12845. return ctx->logits;
  12846. }
  12847. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  12848. llama_synchronize(ctx);
  12849. try {
  12850. if (ctx->logits == nullptr) {
  12851. throw std::runtime_error("no logits");
  12852. }
  12853. if ((size_t) i >= ctx->output_ids.size()) {
  12854. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  12855. }
  12856. const int32_t j = ctx->output_ids[i];
  12857. if (j < 0) {
  12858. throw std::runtime_error(format("batch.logits[%d] != true", i));
  12859. }
  12860. if ((size_t) j >= ctx->output_size) {
  12861. // This should not happen
  12862. throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
  12863. }
  12864. return ctx->logits + j*ctx->model.hparams.n_vocab;
  12865. } catch (const std::exception & err) {
  12866. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  12867. #ifndef NDEBUG
  12868. GGML_ASSERT(false);
  12869. #endif
  12870. return nullptr;
  12871. }
  12872. }
  12873. float * llama_get_embeddings(struct llama_context * ctx) {
  12874. llama_synchronize(ctx);
  12875. return ctx->embd;
  12876. }
  12877. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  12878. llama_synchronize(ctx);
  12879. try {
  12880. if (ctx->embd == nullptr) {
  12881. throw std::runtime_error("no embeddings");
  12882. }
  12883. if ((size_t) i >= ctx->output_ids.size()) {
  12884. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  12885. }
  12886. const int32_t j = ctx->output_ids[i];
  12887. if (j < 0) {
  12888. throw std::runtime_error(format("batch.logits[%d] != true", i));
  12889. }
  12890. if ((size_t) j >= ctx->output_size) {
  12891. // This should not happen
  12892. throw std::runtime_error(format("corrupt output buffer (j=%d, output_size=%lu)", j, ctx->output_size));
  12893. }
  12894. return ctx->embd + j*ctx->model.hparams.n_embd;
  12895. } catch (const std::exception & err) {
  12896. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  12897. #ifndef NDEBUG
  12898. GGML_ASSERT(false);
  12899. #endif
  12900. return nullptr;
  12901. }
  12902. }
  12903. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  12904. llama_synchronize(ctx);
  12905. auto it = ctx->embd_seq.find(seq_id);
  12906. if (it == ctx->embd_seq.end()) {
  12907. return nullptr;
  12908. }
  12909. return it->second.data();
  12910. }
  12911. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  12912. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12913. return model->vocab.id_to_token[token].text.c_str();
  12914. }
  12915. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  12916. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12917. return model->vocab.id_to_token[token].score;
  12918. }
  12919. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  12920. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  12921. return model->vocab.id_to_token[token].type;
  12922. }
  12923. llama_token llama_token_bos(const struct llama_model * model) {
  12924. return model->vocab.special_bos_id;
  12925. }
  12926. llama_token llama_token_eos(const struct llama_model * model) {
  12927. return model->vocab.special_eos_id;
  12928. }
  12929. llama_token llama_token_nl(const struct llama_model * model) {
  12930. return model->vocab.linefeed_id;
  12931. }
  12932. int32_t llama_add_bos_token(const struct llama_model * model) {
  12933. return model->vocab.special_add_bos;
  12934. }
  12935. int32_t llama_add_eos_token(const struct llama_model * model) {
  12936. return model->vocab.special_add_eos;
  12937. }
  12938. llama_token llama_token_prefix(const struct llama_model * model) {
  12939. return model->vocab.special_prefix_id;
  12940. }
  12941. llama_token llama_token_middle(const struct llama_model * model) {
  12942. return model->vocab.special_middle_id;
  12943. }
  12944. llama_token llama_token_suffix(const struct llama_model * model) {
  12945. return model->vocab.special_suffix_id;
  12946. }
  12947. llama_token llama_token_eot(const struct llama_model * model) {
  12948. return model->vocab.special_eot_id;
  12949. }
  12950. int32_t llama_tokenize(
  12951. const struct llama_model * model,
  12952. const char * text,
  12953. int32_t text_len,
  12954. llama_token * tokens,
  12955. int32_t n_tokens_max,
  12956. bool add_bos,
  12957. bool special) {
  12958. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  12959. if (n_tokens_max < (int) res.size()) {
  12960. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  12961. return -((int) res.size());
  12962. }
  12963. for (size_t i = 0; i < res.size(); i++) {
  12964. tokens[i] = res[i];
  12965. }
  12966. return res.size();
  12967. }
  12968. static std::string llama_decode_text(const std::string & text) {
  12969. std::string decoded_text;
  12970. auto unicode_sequences = unicode_cpts_from_utf8(text);
  12971. for (auto & unicode_sequence : unicode_sequences) {
  12972. decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence));
  12973. }
  12974. return decoded_text;
  12975. }
  12976. // does not write null-terminator to buf
  12977. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  12978. if (0 <= token && token < llama_n_vocab(model)) {
  12979. switch (llama_vocab_get_type(model->vocab)) {
  12980. case LLAMA_VOCAB_TYPE_WPM:
  12981. case LLAMA_VOCAB_TYPE_SPM: {
  12982. // NOTE: we accept all unsupported token types,
  12983. // suppressing them like CONTROL tokens.
  12984. if (llama_is_normal_token(model->vocab, token)) {
  12985. std::string result = model->vocab.id_to_token[token].text;
  12986. llama_unescape_whitespace(result);
  12987. if (length < (int) result.length()) {
  12988. return -(int) result.length();
  12989. }
  12990. memcpy(buf, result.c_str(), result.length());
  12991. return result.length();
  12992. } else if (llama_is_user_defined_token(model->vocab, token)) {
  12993. std::string result = model->vocab.id_to_token[token].text;
  12994. if (length < (int) result.length()) {
  12995. return -(int) result.length();
  12996. }
  12997. memcpy(buf, result.c_str(), result.length());
  12998. return result.length();
  12999. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  13000. if (length < 3) {
  13001. return -3;
  13002. }
  13003. memcpy(buf, "\xe2\x96\x85", 3);
  13004. return 3;
  13005. } else if (llama_is_control_token(model->vocab, token)) {
  13006. ;
  13007. } else if (llama_is_byte_token(model->vocab, token)) {
  13008. if (length < 1) {
  13009. return -1;
  13010. }
  13011. buf[0] = llama_token_to_byte(model->vocab, token);
  13012. return 1;
  13013. }
  13014. break;
  13015. }
  13016. case LLAMA_VOCAB_TYPE_BPE: {
  13017. // NOTE: we accept all unsupported token types,
  13018. // suppressing them like CONTROL tokens.
  13019. if (llama_is_normal_token(model->vocab, token)) {
  13020. std::string result = model->vocab.id_to_token[token].text;
  13021. result = llama_decode_text(result);
  13022. if (length < (int) result.length()) {
  13023. return -(int) result.length();
  13024. }
  13025. memcpy(buf, result.c_str(), result.length());
  13026. return result.length();
  13027. } else if (llama_is_user_defined_token(model->vocab, token)) {
  13028. std::string result = model->vocab.id_to_token[token].text;
  13029. if (length < (int) result.length()) {
  13030. return -(int) result.length();
  13031. }
  13032. memcpy(buf, result.c_str(), result.length());
  13033. return result.length();
  13034. } else if (llama_is_control_token(model->vocab, token)) {
  13035. ;
  13036. }
  13037. break;
  13038. }
  13039. default:
  13040. GGML_ASSERT(false);
  13041. }
  13042. }
  13043. return 0;
  13044. }
  13045. // trim whitespace from the beginning and end of a string
  13046. static std::string trim(const std::string & str) {
  13047. size_t start = 0;
  13048. size_t end = str.size();
  13049. while (start < end && isspace(str[start])) {
  13050. start += 1;
  13051. }
  13052. while (end > start && isspace(str[end - 1])) {
  13053. end -= 1;
  13054. }
  13055. return str.substr(start, end - start);
  13056. }
  13057. // Simple version of "llama_apply_chat_template" that only works with strings
  13058. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  13059. static int32_t llama_chat_apply_template_internal(
  13060. const std::string & tmpl,
  13061. const std::vector<const llama_chat_message *> & chat,
  13062. std::string & dest, bool add_ass) {
  13063. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  13064. std::stringstream ss;
  13065. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  13066. // chatml template
  13067. for (auto message : chat) {
  13068. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  13069. }
  13070. if (add_ass) {
  13071. ss << "<|im_start|>assistant\n";
  13072. }
  13073. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  13074. // llama2 template and its variants
  13075. // [variant] support system message
  13076. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  13077. // [variant] space before + after response
  13078. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  13079. // [variant] add BOS inside history
  13080. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  13081. // [variant] trim spaces from the input message
  13082. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  13083. // construct the prompt
  13084. bool is_inside_turn = true; // skip BOS at the beginning
  13085. ss << "[INST] ";
  13086. for (auto message : chat) {
  13087. std::string content = strip_message ? trim(message->content) : message->content;
  13088. std::string role(message->role);
  13089. if (!is_inside_turn) {
  13090. is_inside_turn = true;
  13091. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  13092. }
  13093. if (role == "system") {
  13094. if (support_system_message) {
  13095. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  13096. } else {
  13097. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  13098. ss << content << "\n";
  13099. }
  13100. } else if (role == "user") {
  13101. ss << content << " [/INST]";
  13102. } else {
  13103. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  13104. is_inside_turn = false;
  13105. }
  13106. }
  13107. // llama2 templates seem to not care about "add_generation_prompt"
  13108. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  13109. // zephyr template
  13110. for (auto message : chat) {
  13111. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  13112. }
  13113. if (add_ass) {
  13114. ss << "<|assistant|>\n";
  13115. }
  13116. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  13117. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  13118. for (auto message : chat) {
  13119. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  13120. ss << bos << message->role << "\n" << message->content << "</s>\n";
  13121. }
  13122. if (add_ass) {
  13123. ss << "<s>assistant\n";
  13124. }
  13125. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  13126. // google/gemma-7b-it
  13127. std::string system_prompt = "";
  13128. for (auto message : chat) {
  13129. std::string role(message->role);
  13130. if (role == "system") {
  13131. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  13132. system_prompt = trim(message->content);
  13133. continue;
  13134. }
  13135. // in gemma, "assistant" is "model"
  13136. role = role == "assistant" ? "model" : message->role;
  13137. ss << "<start_of_turn>" << role << "\n";
  13138. if (!system_prompt.empty() && role != "model") {
  13139. ss << system_prompt << "\n\n";
  13140. system_prompt = "";
  13141. }
  13142. ss << trim(message->content) << "<end_of_turn>\n";
  13143. }
  13144. if (add_ass) {
  13145. ss << "<start_of_turn>model\n";
  13146. }
  13147. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  13148. // OrionStarAI/Orion-14B-Chat
  13149. std::string system_prompt = "";
  13150. for (auto message : chat) {
  13151. std::string role(message->role);
  13152. if (role == "system") {
  13153. // there is no system message support, we will merge it with user prompt
  13154. system_prompt = message->content;
  13155. continue;
  13156. } else if (role == "user") {
  13157. ss << "Human: ";
  13158. if (!system_prompt.empty()) {
  13159. ss << system_prompt << "\n\n";
  13160. system_prompt = "";
  13161. }
  13162. ss << message->content << "\n\nAssistant: </s>";
  13163. } else {
  13164. ss << message->content << "</s>";
  13165. }
  13166. }
  13167. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  13168. // openchat/openchat-3.5-0106,
  13169. for (auto message : chat) {
  13170. std::string role(message->role);
  13171. if (role == "system") {
  13172. ss << message->content << "<|end_of_turn|>";
  13173. } else {
  13174. role[0] = toupper(role[0]);
  13175. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  13176. }
  13177. }
  13178. if (add_ass) {
  13179. ss << "GPT4 Correct Assistant:";
  13180. }
  13181. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  13182. // eachadea/vicuna-13b-1.1 (and Orca variant)
  13183. for (auto message : chat) {
  13184. std::string role(message->role);
  13185. if (role == "system") {
  13186. // Orca-Vicuna variant uses a system prefix
  13187. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  13188. ss << "SYSTEM: " << message->content << "\n";
  13189. } else {
  13190. ss << message->content << "\n\n";
  13191. }
  13192. } else if (role == "user") {
  13193. ss << "USER: " << message->content << "\n";
  13194. } else if (role == "assistant") {
  13195. ss << "ASSISTANT: " << message->content << "</s>\n";
  13196. }
  13197. }
  13198. if (add_ass) {
  13199. ss << "ASSISTANT:";
  13200. }
  13201. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  13202. // deepseek-ai/deepseek-coder-33b-instruct
  13203. for (auto message : chat) {
  13204. std::string role(message->role);
  13205. if (role == "system") {
  13206. ss << message->content;
  13207. } else if (role == "user") {
  13208. ss << "### Instruction:\n" << message->content << "\n";
  13209. } else if (role == "assistant") {
  13210. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  13211. }
  13212. }
  13213. if (add_ass) {
  13214. ss << "### Response:\n";
  13215. }
  13216. } else {
  13217. // template not supported
  13218. return -1;
  13219. }
  13220. dest = ss.str();
  13221. return dest.size();
  13222. }
  13223. LLAMA_API int32_t llama_chat_apply_template(
  13224. const struct llama_model * model,
  13225. const char * tmpl,
  13226. const struct llama_chat_message * chat,
  13227. size_t n_msg,
  13228. bool add_ass,
  13229. char * buf,
  13230. int32_t length) {
  13231. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  13232. if (tmpl == nullptr) {
  13233. GGML_ASSERT(model != nullptr);
  13234. // load template from model
  13235. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  13236. std::string template_key = "tokenizer.chat_template";
  13237. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  13238. if (res < 0) {
  13239. // worst case: there is no information about template, we will use chatml by default
  13240. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  13241. } else {
  13242. curr_tmpl = std::string(model_template.data(), model_template.size());
  13243. }
  13244. }
  13245. // format the chat to string
  13246. std::vector<const llama_chat_message *> chat_vec;
  13247. chat_vec.resize(n_msg);
  13248. for (size_t i = 0; i < n_msg; i++) {
  13249. chat_vec[i] = &chat[i];
  13250. }
  13251. std::string formatted_chat;
  13252. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  13253. if (res < 0) {
  13254. return res;
  13255. }
  13256. if (buf && length > 0) {
  13257. strncpy(buf, formatted_chat.c_str(), length);
  13258. }
  13259. return res;
  13260. }
  13261. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  13262. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  13263. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  13264. return strlen(split_path);
  13265. }
  13266. return 0;
  13267. }
  13268. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  13269. std::string str_split_path(split_path);
  13270. char postfix[32];
  13271. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  13272. std::string str_postfix(postfix);
  13273. // check if dest ends with postfix
  13274. int size_prefix = str_split_path.size() - str_postfix.size();
  13275. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  13276. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  13277. return size_prefix;
  13278. }
  13279. return 0;
  13280. }
  13281. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  13282. struct llama_timings result = {
  13283. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  13284. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  13285. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  13286. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  13287. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  13288. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  13289. /*.n_sample =*/ std::max(1, ctx->n_sample),
  13290. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  13291. /*.n_eval =*/ std::max(1, ctx->n_eval),
  13292. };
  13293. return result;
  13294. }
  13295. void llama_print_timings(struct llama_context * ctx) {
  13296. const llama_timings timings = llama_get_timings(ctx);
  13297. LLAMA_LOG_INFO("\n");
  13298. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  13299. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  13300. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  13301. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  13302. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  13303. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  13304. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  13305. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  13306. }
  13307. void llama_reset_timings(struct llama_context * ctx) {
  13308. ctx->t_start_us = ggml_time_us();
  13309. ctx->t_sample_us = ctx->n_sample = 0;
  13310. ctx->t_eval_us = ctx->n_eval = 0;
  13311. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  13312. }
  13313. const char * llama_print_system_info(void) {
  13314. static std::string s;
  13315. s = "";
  13316. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  13317. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  13318. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  13319. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  13320. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  13321. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  13322. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  13323. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  13324. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  13325. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  13326. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  13327. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  13328. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  13329. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  13330. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  13331. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  13332. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  13333. return s.c_str();
  13334. }
  13335. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  13336. fprintf(stream, "\n");
  13337. fprintf(stream, "###########\n");
  13338. fprintf(stream, "# Timings #\n");
  13339. fprintf(stream, "###########\n");
  13340. fprintf(stream, "\n");
  13341. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  13342. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  13343. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  13344. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  13345. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  13346. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  13347. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  13348. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  13349. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  13350. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  13351. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  13352. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  13353. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  13354. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  13355. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  13356. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  13357. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  13358. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  13359. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  13360. }
  13361. // For internal test use
  13362. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  13363. struct llama_context * ctx
  13364. ) {
  13365. return ctx->model.tensors_by_name;
  13366. }
  13367. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  13368. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  13369. g_state.log_callback_user_data = user_data;
  13370. #ifdef GGML_USE_METAL
  13371. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  13372. #endif
  13373. }
  13374. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  13375. va_list args_copy;
  13376. va_copy(args_copy, args);
  13377. char buffer[128];
  13378. int len = vsnprintf(buffer, 128, format, args);
  13379. if (len < 128) {
  13380. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  13381. } else {
  13382. char* buffer2 = new char[len+1];
  13383. vsnprintf(buffer2, len+1, format, args_copy);
  13384. buffer2[len] = 0;
  13385. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  13386. delete[] buffer2;
  13387. }
  13388. va_end(args_copy);
  13389. }
  13390. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  13391. va_list args;
  13392. va_start(args, format);
  13393. llama_log_internal_v(level, format, args);
  13394. va_end(args);
  13395. }
  13396. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  13397. (void) level;
  13398. (void) user_data;
  13399. fputs(text, stderr);
  13400. fflush(stderr);
  13401. }