ggml.c 584 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED GGML_UNUSED
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. //
  188. // tensor access macros
  189. //
  190. #define GGML_TENSOR_UNARY_OP_LOCALS \
  191. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  192. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  193. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  194. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  195. #define GGML_TENSOR_BINARY_OP_LOCALS \
  196. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  197. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  198. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  199. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  200. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  201. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  202. #if defined(GGML_USE_ACCELERATE)
  203. #include <Accelerate/Accelerate.h>
  204. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  205. #include "ggml-opencl.h"
  206. #endif
  207. #elif defined(GGML_USE_OPENBLAS)
  208. #if defined(GGML_BLAS_USE_MKL)
  209. #include <mkl.h>
  210. #else
  211. #include <cblas.h>
  212. #endif
  213. #elif defined(GGML_USE_CUBLAS)
  214. #include "ggml-cuda.h"
  215. #elif defined(GGML_USE_CLBLAST)
  216. #include "ggml-opencl.h"
  217. #endif
  218. #undef MIN
  219. #undef MAX
  220. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  221. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  222. // floating point type used to accumulate sums
  223. typedef double ggml_float;
  224. // 16-bit float
  225. // on Arm, we use __fp16
  226. // on x86, we use uint16_t
  227. #ifdef __ARM_NEON
  228. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  229. //
  230. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  231. //
  232. #include <arm_neon.h>
  233. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  234. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  235. #define GGML_FP16_TO_FP32(x) ((float) (x))
  236. #define GGML_FP32_TO_FP16(x) (x)
  237. #else
  238. #ifdef __wasm_simd128__
  239. #include <wasm_simd128.h>
  240. #else
  241. #ifdef __POWER9_VECTOR__
  242. #include <altivec.h>
  243. #undef bool
  244. #define bool _Bool
  245. #else
  246. #if defined(_MSC_VER) || defined(__MINGW32__)
  247. #include <intrin.h>
  248. #else
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #ifdef __F16C__
  256. #ifdef _MSC_VER
  257. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  258. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  259. #else
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  262. #endif
  263. #elif defined(__POWER9_VECTOR__)
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  266. /* the inline asm below is about 12% faster than the lookup method */
  267. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  268. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  269. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  270. register float f;
  271. register double d;
  272. __asm__(
  273. "mtfprd %0,%2\n"
  274. "xscvhpdp %0,%0\n"
  275. "frsp %1,%0\n" :
  276. /* temp */ "=d"(d),
  277. /* out */ "=f"(f):
  278. /* in */ "r"(h));
  279. return f;
  280. }
  281. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  282. register double d;
  283. register ggml_fp16_t r;
  284. __asm__( /* xscvdphp can work on double or single precision */
  285. "xscvdphp %0,%2\n"
  286. "mffprd %1,%0\n" :
  287. /* temp */ "=d"(d),
  288. /* out */ "=r"(r):
  289. /* in */ "f"(f));
  290. return r;
  291. }
  292. #else
  293. // FP16 <-> FP32
  294. // ref: https://github.com/Maratyszcza/FP16
  295. static inline float fp32_from_bits(uint32_t w) {
  296. union {
  297. uint32_t as_bits;
  298. float as_value;
  299. } fp32;
  300. fp32.as_bits = w;
  301. return fp32.as_value;
  302. }
  303. static inline uint32_t fp32_to_bits(float f) {
  304. union {
  305. float as_value;
  306. uint32_t as_bits;
  307. } fp32;
  308. fp32.as_value = f;
  309. return fp32.as_bits;
  310. }
  311. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  312. const uint32_t w = (uint32_t) h << 16;
  313. const uint32_t sign = w & UINT32_C(0x80000000);
  314. const uint32_t two_w = w + w;
  315. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  316. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  317. const float exp_scale = 0x1.0p-112f;
  318. #else
  319. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  320. #endif
  321. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  322. const uint32_t magic_mask = UINT32_C(126) << 23;
  323. const float magic_bias = 0.5f;
  324. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  325. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  326. const uint32_t result = sign |
  327. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  328. return fp32_from_bits(result);
  329. }
  330. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  331. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  332. const float scale_to_inf = 0x1.0p+112f;
  333. const float scale_to_zero = 0x1.0p-110f;
  334. #else
  335. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  336. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  337. #endif
  338. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  339. const uint32_t w = fp32_to_bits(f);
  340. const uint32_t shl1_w = w + w;
  341. const uint32_t sign = w & UINT32_C(0x80000000);
  342. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  343. if (bias < UINT32_C(0x71000000)) {
  344. bias = UINT32_C(0x71000000);
  345. }
  346. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  347. const uint32_t bits = fp32_to_bits(base);
  348. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  349. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  350. const uint32_t nonsign = exp_bits + mantissa_bits;
  351. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  352. }
  353. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  354. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  355. #endif // __F16C__
  356. #endif // __ARM_NEON
  357. //
  358. // global data
  359. //
  360. // precomputed gelu table for f16 (128 KB)
  361. static ggml_fp16_t table_gelu_f16[1 << 16];
  362. // precomputed quick gelu table for f16 (128 KB)
  363. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  364. // precomputed silu table for f16 (128 KB)
  365. static ggml_fp16_t table_silu_f16[1 << 16];
  366. // precomputed exp table for f16 (128 KB)
  367. static ggml_fp16_t table_exp_f16[1 << 16];
  368. // precomputed f32 table for f16 (256 KB)
  369. static float table_f32_f16[1 << 16];
  370. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  371. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  372. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  373. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  374. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  375. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  376. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  377. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  378. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  379. // precomputed tables for expanding 8bits to 8 bytes:
  380. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  381. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  382. #endif
  383. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  384. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  385. // This is also true for POWER9.
  386. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  387. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  388. uint16_t s;
  389. memcpy(&s, &f, sizeof(uint16_t));
  390. return table_f32_f16[s];
  391. }
  392. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  393. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  394. #endif
  395. // note: do not use these inside ggml.c
  396. // these are meant to be used via the ggml.h API
  397. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  398. return (float) GGML_FP16_TO_FP32(x);
  399. }
  400. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  401. return GGML_FP32_TO_FP16(x);
  402. }
  403. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  404. for (int i = 0; i < n; i++) {
  405. y[i] = GGML_FP16_TO_FP32(x[i]);
  406. }
  407. }
  408. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  409. int i = 0;
  410. #if defined(__F16C__)
  411. for (; i + 7 < n; i += 8) {
  412. __m256 x_vec = _mm256_loadu_ps(x + i);
  413. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  414. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  415. }
  416. for(; i + 3 < n; i += 4) {
  417. __m128 x_vec = _mm_loadu_ps(x + i);
  418. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  419. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  420. }
  421. #endif
  422. for (; i < n; i++) {
  423. y[i] = GGML_FP32_TO_FP16(x[i]);
  424. }
  425. }
  426. //
  427. // timing
  428. //
  429. #if defined(_MSC_VER) || defined(__MINGW32__)
  430. static int64_t timer_freq, timer_start;
  431. void ggml_time_init(void) {
  432. LARGE_INTEGER t;
  433. QueryPerformanceFrequency(&t);
  434. timer_freq = t.QuadPart;
  435. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  436. // and the uptime is high enough.
  437. // We subtract the program start time to reduce the likelihood of that happening.
  438. QueryPerformanceCounter(&t);
  439. timer_start = t.QuadPart;
  440. }
  441. int64_t ggml_time_ms(void) {
  442. LARGE_INTEGER t;
  443. QueryPerformanceCounter(&t);
  444. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  445. }
  446. int64_t ggml_time_us(void) {
  447. LARGE_INTEGER t;
  448. QueryPerformanceCounter(&t);
  449. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  450. }
  451. #else
  452. void ggml_time_init(void) {}
  453. int64_t ggml_time_ms(void) {
  454. struct timespec ts;
  455. clock_gettime(CLOCK_MONOTONIC, &ts);
  456. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  457. }
  458. int64_t ggml_time_us(void) {
  459. struct timespec ts;
  460. clock_gettime(CLOCK_MONOTONIC, &ts);
  461. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  462. }
  463. #endif
  464. int64_t ggml_cycles(void) {
  465. return clock();
  466. }
  467. int64_t ggml_cycles_per_ms(void) {
  468. return CLOCKS_PER_SEC/1000;
  469. }
  470. #ifdef GGML_PERF
  471. #define ggml_perf_time_ms() ggml_time_ms()
  472. #define ggml_perf_time_us() ggml_time_us()
  473. #define ggml_perf_cycles() ggml_cycles()
  474. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  475. #else
  476. #define ggml_perf_time_ms() 0
  477. #define ggml_perf_time_us() 0
  478. #define ggml_perf_cycles() 0
  479. #define ggml_perf_cycles_per_ms() 0
  480. #endif
  481. //
  482. // cache line
  483. //
  484. #if defined(__cpp_lib_hardware_interference_size)
  485. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  486. #else
  487. #if defined(__POWER9_VECTOR__)
  488. #define CACHE_LINE_SIZE 128
  489. #else
  490. #define CACHE_LINE_SIZE 64
  491. #endif
  492. #endif
  493. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  494. //
  495. // quantization
  496. //
  497. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  498. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  499. // multiply int8_t, add results pairwise twice
  500. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  501. // Get absolute values of x vectors
  502. const __m128i ax = _mm_sign_epi8(x, x);
  503. // Sign the values of the y vectors
  504. const __m128i sy = _mm_sign_epi8(y, x);
  505. // Perform multiplication and create 16-bit values
  506. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  507. const __m128i ones = _mm_set1_epi16(1);
  508. return _mm_madd_epi16(ones, dot);
  509. }
  510. #if __AVX__ || __AVX2__ || __AVX512F__
  511. // horizontally add 8 floats
  512. static inline float hsum_float_8(const __m256 x) {
  513. __m128 res = _mm256_extractf128_ps(x, 1);
  514. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  515. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  516. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  517. return _mm_cvtss_f32(res);
  518. }
  519. // horizontally add 8 int32_t
  520. static inline int hsum_i32_8(const __m256i a) {
  521. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  522. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  523. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  524. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  525. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  526. }
  527. // horizontally add 4 int32_t
  528. static inline int hsum_i32_4(const __m128i a) {
  529. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  530. const __m128i sum64 = _mm_add_epi32(hi64, a);
  531. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  532. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  533. }
  534. #if defined(__AVX2__) || defined(__AVX512F__)
  535. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  536. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  537. uint32_t x32;
  538. memcpy(&x32, x, sizeof(uint32_t));
  539. const __m256i shuf_mask = _mm256_set_epi64x(
  540. 0x0303030303030303, 0x0202020202020202,
  541. 0x0101010101010101, 0x0000000000000000);
  542. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  543. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  544. bytes = _mm256_or_si256(bytes, bit_mask);
  545. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  546. }
  547. // Unpack 32 4-bit fields into 32 bytes
  548. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  549. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  550. {
  551. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  552. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  553. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  554. return _mm256_and_si256(lowMask, bytes);
  555. }
  556. // add int16_t pairwise and return as float vector
  557. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  558. const __m256i ones = _mm256_set1_epi16(1);
  559. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  560. return _mm256_cvtepi32_ps(summed_pairs);
  561. }
  562. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  563. #if __AVXVNNI__
  564. const __m256i zero = _mm256_setzero_si256();
  565. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  566. return _mm256_cvtepi32_ps(summed_pairs);
  567. #else
  568. // Perform multiplication and create 16-bit values
  569. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  570. return sum_i16_pairs_float(dot);
  571. #endif
  572. }
  573. // multiply int8_t, add results pairwise twice and return as float vector
  574. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  575. #if __AVXVNNIINT8__
  576. const __m256i zero = _mm256_setzero_si256();
  577. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  578. return _mm256_cvtepi32_ps(summed_pairs);
  579. #else
  580. // Get absolute values of x vectors
  581. const __m256i ax = _mm256_sign_epi8(x, x);
  582. // Sign the values of the y vectors
  583. const __m256i sy = _mm256_sign_epi8(y, x);
  584. return mul_sum_us8_pairs_float(ax, sy);
  585. #endif
  586. }
  587. static inline __m128i packNibbles( __m256i bytes )
  588. {
  589. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  590. #if __AVX512F__
  591. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  592. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  593. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  594. #else
  595. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  596. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  597. __m256i low = _mm256_and_si256( lowByte, bytes );
  598. high = _mm256_srli_epi16( high, 4 );
  599. bytes = _mm256_or_si256( low, high );
  600. // Compress uint16_t lanes into bytes
  601. __m128i r0 = _mm256_castsi256_si128( bytes );
  602. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  603. return _mm_packus_epi16( r0, r1 );
  604. #endif
  605. }
  606. #elif defined(__AVX__)
  607. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  608. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  609. uint32_t x32;
  610. memcpy(&x32, x, sizeof(uint32_t));
  611. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  612. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  613. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  614. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  615. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  616. bytesl = _mm_or_si128(bytesl, bit_mask);
  617. bytesh = _mm_or_si128(bytesh, bit_mask);
  618. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  619. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  620. return MM256_SET_M128I(bytesh, bytesl);
  621. }
  622. // Unpack 32 4-bit fields into 32 bytes
  623. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  624. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  625. {
  626. // Load 16 bytes from memory
  627. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  628. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  629. const __m128i lowMask = _mm_set1_epi8(0xF);
  630. tmpl = _mm_and_si128(lowMask, tmpl);
  631. tmph = _mm_and_si128(lowMask, tmph);
  632. return MM256_SET_M128I(tmph, tmpl);
  633. }
  634. // add int16_t pairwise and return as float vector
  635. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  636. const __m128i ones = _mm_set1_epi16(1);
  637. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  638. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  639. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  640. return _mm256_cvtepi32_ps(summed_pairs);
  641. }
  642. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  643. const __m128i axl = _mm256_castsi256_si128(ax);
  644. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  645. const __m128i syl = _mm256_castsi256_si128(sy);
  646. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  647. // Perform multiplication and create 16-bit values
  648. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  649. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  650. return sum_i16_pairs_float(doth, dotl);
  651. }
  652. // multiply int8_t, add results pairwise twice and return as float vector
  653. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  654. const __m128i xl = _mm256_castsi256_si128(x);
  655. const __m128i xh = _mm256_extractf128_si256(x, 1);
  656. const __m128i yl = _mm256_castsi256_si128(y);
  657. const __m128i yh = _mm256_extractf128_si256(y, 1);
  658. // Get absolute values of x vectors
  659. const __m128i axl = _mm_sign_epi8(xl, xl);
  660. const __m128i axh = _mm_sign_epi8(xh, xh);
  661. // Sign the values of the y vectors
  662. const __m128i syl = _mm_sign_epi8(yl, xl);
  663. const __m128i syh = _mm_sign_epi8(yh, xh);
  664. // Perform multiplication and create 16-bit values
  665. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  666. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  667. return sum_i16_pairs_float(doth, dotl);
  668. }
  669. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  670. {
  671. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  672. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  673. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  674. __m128i low = _mm_and_si128( lowByte, bytes1 );
  675. high = _mm_srli_epi16( high, 4 );
  676. bytes1 = _mm_or_si128( low, high );
  677. high = _mm_andnot_si128( lowByte, bytes2 );
  678. low = _mm_and_si128( lowByte, bytes2 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes2 = _mm_or_si128( low, high );
  681. return _mm_packus_epi16( bytes1, bytes2);
  682. }
  683. #endif
  684. #elif defined(__SSSE3__)
  685. // horizontally add 4x4 floats
  686. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  687. __m128 res_0 =_mm_hadd_ps(a, b);
  688. __m128 res_1 =_mm_hadd_ps(c, d);
  689. __m128 res =_mm_hadd_ps(res_0, res_1);
  690. res =_mm_hadd_ps(res, res);
  691. res =_mm_hadd_ps(res, res);
  692. return _mm_cvtss_f32(res);
  693. }
  694. #endif // __AVX__ || __AVX2__ || __AVX512F__
  695. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  696. #if defined(__ARM_NEON)
  697. #if !defined(__aarch64__)
  698. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  699. return
  700. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  701. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  702. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  703. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  704. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  705. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  706. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  707. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  708. }
  709. inline static int16_t vaddvq_s8(int8x16_t v) {
  710. return
  711. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  712. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  713. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  714. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  715. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  716. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  717. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  718. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  719. }
  720. inline static int32_t vaddvq_s16(int16x8_t v) {
  721. return
  722. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  723. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  724. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  725. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  726. }
  727. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  728. return
  729. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  730. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  731. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  732. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  733. }
  734. inline static int32_t vaddvq_s32(int32x4_t v) {
  735. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  736. }
  737. inline static float vaddvq_f32(float32x4_t v) {
  738. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  739. }
  740. inline static float vminvq_f32(float32x4_t v) {
  741. return
  742. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  743. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  744. }
  745. inline static float vmaxvq_f32(float32x4_t v) {
  746. return
  747. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  748. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  749. }
  750. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  751. int32x4_t res;
  752. res[0] = roundf(vgetq_lane_f32(v, 0));
  753. res[1] = roundf(vgetq_lane_f32(v, 1));
  754. res[2] = roundf(vgetq_lane_f32(v, 2));
  755. res[3] = roundf(vgetq_lane_f32(v, 3));
  756. return res;
  757. }
  758. #endif
  759. #endif
  760. #define QK4_0 32
  761. typedef struct {
  762. ggml_fp16_t d; // delta
  763. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  764. } block_q4_0;
  765. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  766. #define QK4_1 32
  767. typedef struct {
  768. ggml_fp16_t d; // delta
  769. ggml_fp16_t m; // min
  770. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  771. } block_q4_1;
  772. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  773. #define QK5_0 32
  774. typedef struct {
  775. ggml_fp16_t d; // delta
  776. uint8_t qh[4]; // 5-th bit of quants
  777. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  778. } block_q5_0;
  779. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  780. #define QK5_1 32
  781. typedef struct {
  782. ggml_fp16_t d; // delta
  783. ggml_fp16_t m; // min
  784. uint8_t qh[4]; // 5-th bit of quants
  785. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  786. } block_q5_1;
  787. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  788. #define QK8_0 32
  789. typedef struct {
  790. ggml_fp16_t d; // delta
  791. int8_t qs[QK8_0]; // quants
  792. } block_q8_0;
  793. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  794. #define QK8_1 32
  795. typedef struct {
  796. float d; // delta
  797. float s; // d * sum(qs[i])
  798. int8_t qs[QK8_1]; // quants
  799. } block_q8_1;
  800. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  801. // reference implementation for deterministic creation of model files
  802. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  803. static const int qk = QK4_0;
  804. assert(k % qk == 0);
  805. const int nb = k / qk;
  806. for (int i = 0; i < nb; i++) {
  807. float amax = 0.0f; // absolute max
  808. float max = 0.0f;
  809. for (int j = 0; j < qk; j++) {
  810. const float v = x[i*qk + j];
  811. if (amax < fabsf(v)) {
  812. amax = fabsf(v);
  813. max = v;
  814. }
  815. }
  816. const float d = max / -8;
  817. const float id = d ? 1.0f/d : 0.0f;
  818. y[i].d = GGML_FP32_TO_FP16(d);
  819. for (int j = 0; j < qk/2; ++j) {
  820. const float x0 = x[i*qk + 0 + j]*id;
  821. const float x1 = x[i*qk + qk/2 + j]*id;
  822. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  823. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  824. y[i].qs[j] = xi0;
  825. y[i].qs[j] |= xi1 << 4;
  826. }
  827. }
  828. }
  829. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  830. quantize_row_q4_0_reference(x, y, k);
  831. }
  832. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  833. const int qk = QK4_1;
  834. assert(k % qk == 0);
  835. const int nb = k / qk;
  836. for (int i = 0; i < nb; i++) {
  837. float min = FLT_MAX;
  838. float max = -FLT_MAX;
  839. for (int j = 0; j < qk; j++) {
  840. const float v = x[i*qk + j];
  841. if (v < min) min = v;
  842. if (v > max) max = v;
  843. }
  844. const float d = (max - min) / ((1 << 4) - 1);
  845. const float id = d ? 1.0f/d : 0.0f;
  846. y[i].d = GGML_FP32_TO_FP16(d);
  847. y[i].m = GGML_FP32_TO_FP16(min);
  848. for (int j = 0; j < qk/2; ++j) {
  849. const float x0 = (x[i*qk + 0 + j] - min)*id;
  850. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  851. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  852. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  853. y[i].qs[j] = xi0;
  854. y[i].qs[j] |= xi1 << 4;
  855. }
  856. }
  857. }
  858. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  859. quantize_row_q4_1_reference(x, y, k);
  860. }
  861. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  862. static const int qk = QK5_0;
  863. assert(k % qk == 0);
  864. const int nb = k / qk;
  865. for (int i = 0; i < nb; i++) {
  866. float amax = 0.0f; // absolute max
  867. float max = 0.0f;
  868. for (int j = 0; j < qk; j++) {
  869. const float v = x[i*qk + j];
  870. if (amax < fabsf(v)) {
  871. amax = fabsf(v);
  872. max = v;
  873. }
  874. }
  875. const float d = max / -16;
  876. const float id = d ? 1.0f/d : 0.0f;
  877. y[i].d = GGML_FP32_TO_FP16(d);
  878. uint32_t qh = 0;
  879. for (int j = 0; j < qk/2; ++j) {
  880. const float x0 = x[i*qk + 0 + j]*id;
  881. const float x1 = x[i*qk + qk/2 + j]*id;
  882. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  883. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  884. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  885. // get the 5-th bit and store it in qh at the right position
  886. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  887. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  888. }
  889. memcpy(&y[i].qh, &qh, sizeof(qh));
  890. }
  891. }
  892. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  893. quantize_row_q5_0_reference(x, y, k);
  894. }
  895. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  896. const int qk = QK5_1;
  897. assert(k % qk == 0);
  898. const int nb = k / qk;
  899. for (int i = 0; i < nb; i++) {
  900. float min = FLT_MAX;
  901. float max = -FLT_MAX;
  902. for (int j = 0; j < qk; j++) {
  903. const float v = x[i*qk + j];
  904. if (v < min) min = v;
  905. if (v > max) max = v;
  906. }
  907. const float d = (max - min) / ((1 << 5) - 1);
  908. const float id = d ? 1.0f/d : 0.0f;
  909. y[i].d = GGML_FP32_TO_FP16(d);
  910. y[i].m = GGML_FP32_TO_FP16(min);
  911. uint32_t qh = 0;
  912. for (int j = 0; j < qk/2; ++j) {
  913. const float x0 = (x[i*qk + 0 + j] - min)*id;
  914. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  915. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  916. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  917. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  918. // get the 5-th bit and store it in qh at the right position
  919. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  920. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  921. }
  922. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  923. }
  924. }
  925. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  926. quantize_row_q5_1_reference(x, y, k);
  927. }
  928. // reference implementation for deterministic creation of model files
  929. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  930. assert(k % QK8_0 == 0);
  931. const int nb = k / QK8_0;
  932. for (int i = 0; i < nb; i++) {
  933. float amax = 0.0f; // absolute max
  934. for (int j = 0; j < QK8_0; j++) {
  935. const float v = x[i*QK8_0 + j];
  936. amax = MAX(amax, fabsf(v));
  937. }
  938. const float d = amax / ((1 << 7) - 1);
  939. const float id = d ? 1.0f/d : 0.0f;
  940. y[i].d = GGML_FP32_TO_FP16(d);
  941. for (int j = 0; j < QK8_0; ++j) {
  942. const float x0 = x[i*QK8_0 + j]*id;
  943. y[i].qs[j] = roundf(x0);
  944. }
  945. }
  946. }
  947. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  948. assert(QK8_0 == 32);
  949. assert(k % QK8_0 == 0);
  950. const int nb = k / QK8_0;
  951. block_q8_0 * restrict y = vy;
  952. #if defined(__ARM_NEON)
  953. for (int i = 0; i < nb; i++) {
  954. float32x4_t srcv [8];
  955. float32x4_t asrcv[8];
  956. float32x4_t amaxv[8];
  957. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  958. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  959. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  960. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  961. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  962. const float amax = vmaxvq_f32(amaxv[0]);
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = GGML_FP32_TO_FP16(d);
  966. for (int j = 0; j < 8; j++) {
  967. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  968. const int32x4_t vi = vcvtnq_s32_f32(v);
  969. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  970. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  971. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  972. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  973. }
  974. }
  975. #elif defined(__wasm_simd128__)
  976. for (int i = 0; i < nb; i++) {
  977. v128_t srcv [8];
  978. v128_t asrcv[8];
  979. v128_t amaxv[8];
  980. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  981. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  982. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  983. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  984. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  985. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  986. wasm_f32x4_extract_lane(amaxv[0], 1)),
  987. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  988. wasm_f32x4_extract_lane(amaxv[0], 3)));
  989. const float d = amax / ((1 << 7) - 1);
  990. const float id = d ? 1.0f/d : 0.0f;
  991. y[i].d = GGML_FP32_TO_FP16(d);
  992. for (int j = 0; j < 8; j++) {
  993. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  994. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  995. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  996. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  997. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  998. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  999. }
  1000. }
  1001. #elif defined(__AVX2__) || defined(__AVX__)
  1002. for (int i = 0; i < nb; i++) {
  1003. // Load elements into 4 AVX vectors
  1004. __m256 v0 = _mm256_loadu_ps( x );
  1005. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1006. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1007. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1008. x += 32;
  1009. // Compute max(abs(e)) for the block
  1010. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1011. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1012. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1013. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1014. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1015. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1016. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1017. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1018. const float maxScalar = _mm_cvtss_f32( max4 );
  1019. // Quantize these floats
  1020. const float d = maxScalar / 127.f;
  1021. y[i].d = GGML_FP32_TO_FP16(d);
  1022. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1023. const __m256 mul = _mm256_set1_ps( id );
  1024. // Apply the multiplier
  1025. v0 = _mm256_mul_ps( v0, mul );
  1026. v1 = _mm256_mul_ps( v1, mul );
  1027. v2 = _mm256_mul_ps( v2, mul );
  1028. v3 = _mm256_mul_ps( v3, mul );
  1029. // Round to nearest integer
  1030. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1031. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1032. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1033. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1034. // Convert floats to integers
  1035. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1036. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1037. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1038. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1039. #if defined(__AVX2__)
  1040. // Convert int32 to int16
  1041. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1042. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1043. // Convert int16 to int8
  1044. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1045. // We got our precious signed bytes, but the order is now wrong
  1046. // These AVX2 pack instructions process 16-byte pieces independently
  1047. // The following instruction is fixing the order
  1048. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1049. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1050. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1051. #else
  1052. // Since we don't have in AVX some necessary functions,
  1053. // we split the registers in half and call AVX2 analogs from SSE
  1054. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1055. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1056. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1057. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1058. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1059. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1060. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1061. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1062. // Convert int32 to int16
  1063. ni0 = _mm_packs_epi32( ni0, ni1 );
  1064. ni2 = _mm_packs_epi32( ni2, ni3 );
  1065. ni4 = _mm_packs_epi32( ni4, ni5 );
  1066. ni6 = _mm_packs_epi32( ni6, ni7 );
  1067. // Convert int16 to int8
  1068. ni0 = _mm_packs_epi16( ni0, ni2 );
  1069. ni4 = _mm_packs_epi16( ni4, ni6 );
  1070. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1071. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1072. #endif
  1073. }
  1074. #else
  1075. // scalar
  1076. quantize_row_q8_0_reference(x, y, k);
  1077. #endif
  1078. }
  1079. // reference implementation for deterministic creation of model files
  1080. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1081. assert(QK8_1 == 32);
  1082. assert(k % QK8_1 == 0);
  1083. const int nb = k / QK8_1;
  1084. for (int i = 0; i < nb; i++) {
  1085. float amax = 0.0f; // absolute max
  1086. for (int j = 0; j < QK8_1; j++) {
  1087. const float v = x[i*QK8_1 + j];
  1088. amax = MAX(amax, fabsf(v));
  1089. }
  1090. const float d = amax / ((1 << 7) - 1);
  1091. const float id = d ? 1.0f/d : 0.0f;
  1092. y[i].d = d;
  1093. int sum = 0;
  1094. for (int j = 0; j < QK8_1/2; ++j) {
  1095. const float v0 = x[i*QK8_1 + j]*id;
  1096. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1097. y[i].qs[ j] = roundf(v0);
  1098. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1099. sum += y[i].qs[ j];
  1100. sum += y[i].qs[QK8_1/2 + j];
  1101. }
  1102. y[i].s = sum*d;
  1103. }
  1104. }
  1105. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1106. assert(k % QK8_1 == 0);
  1107. const int nb = k / QK8_1;
  1108. block_q8_1 * restrict y = vy;
  1109. #if defined(__ARM_NEON)
  1110. for (int i = 0; i < nb; i++) {
  1111. float32x4_t srcv [8];
  1112. float32x4_t asrcv[8];
  1113. float32x4_t amaxv[8];
  1114. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1115. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1116. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1117. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1118. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1119. const float amax = vmaxvq_f32(amaxv[0]);
  1120. const float d = amax / ((1 << 7) - 1);
  1121. const float id = d ? 1.0f/d : 0.0f;
  1122. y[i].d = d;
  1123. int32x4_t accv = vdupq_n_s32(0);
  1124. for (int j = 0; j < 8; j++) {
  1125. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1126. const int32x4_t vi = vcvtnq_s32_f32(v);
  1127. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1128. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1129. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1130. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1131. accv = vaddq_s32(accv, vi);
  1132. }
  1133. y[i].s = d * vaddvq_s32(accv);
  1134. }
  1135. #elif defined(__wasm_simd128__)
  1136. for (int i = 0; i < nb; i++) {
  1137. v128_t srcv [8];
  1138. v128_t asrcv[8];
  1139. v128_t amaxv[8];
  1140. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1141. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1142. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1143. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1144. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1145. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1146. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1147. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1148. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1149. const float d = amax / ((1 << 7) - 1);
  1150. const float id = d ? 1.0f/d : 0.0f;
  1151. y[i].d = d;
  1152. v128_t accv = wasm_i32x4_splat(0);
  1153. for (int j = 0; j < 8; j++) {
  1154. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1155. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1156. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1157. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1158. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1159. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1160. accv = wasm_i32x4_add(accv, vi);
  1161. }
  1162. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1163. wasm_i32x4_extract_lane(accv, 1) +
  1164. wasm_i32x4_extract_lane(accv, 2) +
  1165. wasm_i32x4_extract_lane(accv, 3));
  1166. }
  1167. #elif defined(__AVX2__) || defined(__AVX__)
  1168. for (int i = 0; i < nb; i++) {
  1169. // Load elements into 4 AVX vectors
  1170. __m256 v0 = _mm256_loadu_ps( x );
  1171. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1172. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1173. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1174. x += 32;
  1175. // Compute max(abs(e)) for the block
  1176. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1177. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1178. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1181. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1182. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1183. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1184. const float maxScalar = _mm_cvtss_f32( max4 );
  1185. // Quantize these floats
  1186. const float d = maxScalar / 127.f;
  1187. y[i].d = d;
  1188. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1189. const __m256 mul = _mm256_set1_ps( id );
  1190. // Apply the multiplier
  1191. v0 = _mm256_mul_ps( v0, mul );
  1192. v1 = _mm256_mul_ps( v1, mul );
  1193. v2 = _mm256_mul_ps( v2, mul );
  1194. v3 = _mm256_mul_ps( v3, mul );
  1195. // Round to nearest integer
  1196. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1197. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1198. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1199. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1200. // Convert floats to integers
  1201. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1202. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1203. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1204. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1205. #if defined(__AVX2__)
  1206. // Compute the sum of the quants and set y[i].s
  1207. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1208. // Convert int32 to int16
  1209. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1210. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1211. // Convert int16 to int8
  1212. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1213. // We got our precious signed bytes, but the order is now wrong
  1214. // These AVX2 pack instructions process 16-byte pieces independently
  1215. // The following instruction is fixing the order
  1216. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1217. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1218. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1219. #else
  1220. // Since we don't have in AVX some necessary functions,
  1221. // we split the registers in half and call AVX2 analogs from SSE
  1222. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1223. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1224. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1225. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1226. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1227. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1228. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1229. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1230. // Compute the sum of the quants and set y[i].s
  1231. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1232. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1233. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1234. // Convert int32 to int16
  1235. ni0 = _mm_packs_epi32( ni0, ni1 );
  1236. ni2 = _mm_packs_epi32( ni2, ni3 );
  1237. ni4 = _mm_packs_epi32( ni4, ni5 );
  1238. ni6 = _mm_packs_epi32( ni6, ni7 );
  1239. // Convert int16 to int8
  1240. ni0 = _mm_packs_epi16( ni0, ni2 );
  1241. ni4 = _mm_packs_epi16( ni4, ni6 );
  1242. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1244. #endif
  1245. }
  1246. #else
  1247. // scalar
  1248. quantize_row_q8_1_reference(x, y, k);
  1249. #endif
  1250. }
  1251. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1252. static const int qk = QK4_0;
  1253. assert(k % qk == 0);
  1254. const int nb = k / qk;
  1255. for (int i = 0; i < nb; i++) {
  1256. const float d = GGML_FP16_TO_FP32(x[i].d);
  1257. for (int j = 0; j < qk/2; ++j) {
  1258. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1259. const int x1 = (x[i].qs[j] >> 4) - 8;
  1260. y[i*qk + j + 0 ] = x0*d;
  1261. y[i*qk + j + qk/2] = x1*d;
  1262. }
  1263. }
  1264. }
  1265. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1266. static const int qk = QK4_1;
  1267. assert(k % qk == 0);
  1268. const int nb = k / qk;
  1269. for (int i = 0; i < nb; i++) {
  1270. const float d = GGML_FP16_TO_FP32(x[i].d);
  1271. const float m = GGML_FP16_TO_FP32(x[i].m);
  1272. for (int j = 0; j < qk/2; ++j) {
  1273. const int x0 = (x[i].qs[j] & 0x0F);
  1274. const int x1 = (x[i].qs[j] >> 4);
  1275. y[i*qk + j + 0 ] = x0*d + m;
  1276. y[i*qk + j + qk/2] = x1*d + m;
  1277. }
  1278. }
  1279. }
  1280. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1281. static const int qk = QK5_0;
  1282. assert(k % qk == 0);
  1283. const int nb = k / qk;
  1284. for (int i = 0; i < nb; i++) {
  1285. const float d = GGML_FP16_TO_FP32(x[i].d);
  1286. uint32_t qh;
  1287. memcpy(&qh, x[i].qh, sizeof(qh));
  1288. for (int j = 0; j < qk/2; ++j) {
  1289. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1290. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1291. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1292. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1293. y[i*qk + j + 0 ] = x0*d;
  1294. y[i*qk + j + qk/2] = x1*d;
  1295. }
  1296. }
  1297. }
  1298. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1299. static const int qk = QK5_1;
  1300. assert(k % qk == 0);
  1301. const int nb = k / qk;
  1302. for (int i = 0; i < nb; i++) {
  1303. const float d = GGML_FP16_TO_FP32(x[i].d);
  1304. const float m = GGML_FP16_TO_FP32(x[i].m);
  1305. uint32_t qh;
  1306. memcpy(&qh, x[i].qh, sizeof(qh));
  1307. for (int j = 0; j < qk/2; ++j) {
  1308. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1309. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1310. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1311. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1312. y[i*qk + j + 0 ] = x0*d + m;
  1313. y[i*qk + j + qk/2] = x1*d + m;
  1314. }
  1315. }
  1316. }
  1317. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1318. static const int qk = QK8_0;
  1319. assert(k % qk == 0);
  1320. const int nb = k / qk;
  1321. const block_q8_0 * restrict x = vx;
  1322. for (int i = 0; i < nb; i++) {
  1323. const float d = GGML_FP16_TO_FP32(x[i].d);
  1324. for (int j = 0; j < qk; ++j) {
  1325. y[i*qk + j] = x[i].qs[j]*d;
  1326. }
  1327. }
  1328. }
  1329. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1330. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1331. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1332. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1337. [GGML_TYPE_F32] = {
  1338. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1339. .vec_dot_type = GGML_TYPE_F32,
  1340. },
  1341. [GGML_TYPE_F16] = {
  1342. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1343. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1344. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1346. .vec_dot_type = GGML_TYPE_F16,
  1347. },
  1348. [GGML_TYPE_Q4_0] = {
  1349. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1350. .from_float = quantize_row_q4_0,
  1351. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1352. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1353. .vec_dot_type = GGML_TYPE_Q8_0,
  1354. },
  1355. [GGML_TYPE_Q4_1] = {
  1356. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1357. .from_float = quantize_row_q4_1,
  1358. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1359. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1360. .vec_dot_type = GGML_TYPE_Q8_1,
  1361. },
  1362. [GGML_TYPE_Q5_0] = {
  1363. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1364. .from_float = quantize_row_q5_0,
  1365. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1366. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1367. .vec_dot_type = GGML_TYPE_Q8_0,
  1368. },
  1369. [GGML_TYPE_Q5_1] = {
  1370. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1371. .from_float = quantize_row_q5_1,
  1372. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1373. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1374. .vec_dot_type = GGML_TYPE_Q8_1,
  1375. },
  1376. [GGML_TYPE_Q8_0] = {
  1377. .to_float = dequantize_row_q8_0,
  1378. .from_float = quantize_row_q8_0,
  1379. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1380. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1381. .vec_dot_type = GGML_TYPE_Q8_0,
  1382. },
  1383. [GGML_TYPE_Q8_1] = {
  1384. .from_float = quantize_row_q8_1,
  1385. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1386. .vec_dot_type = GGML_TYPE_Q8_1,
  1387. },
  1388. #ifdef GGML_USE_K_QUANTS
  1389. [GGML_TYPE_Q2_K] = {
  1390. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1391. .from_float = quantize_row_q2_K,
  1392. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1393. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1394. .vec_dot_type = GGML_TYPE_Q8_K,
  1395. },
  1396. [GGML_TYPE_Q3_K] = {
  1397. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1398. .from_float = quantize_row_q3_K,
  1399. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1400. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1401. .vec_dot_type = GGML_TYPE_Q8_K,
  1402. },
  1403. [GGML_TYPE_Q4_K] = {
  1404. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1405. .from_float = quantize_row_q4_K,
  1406. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1407. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1408. .vec_dot_type = GGML_TYPE_Q8_K,
  1409. },
  1410. [GGML_TYPE_Q5_K] = {
  1411. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1412. .from_float = quantize_row_q5_K,
  1413. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1414. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1415. .vec_dot_type = GGML_TYPE_Q8_K,
  1416. },
  1417. [GGML_TYPE_Q6_K] = {
  1418. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1419. .from_float = quantize_row_q6_K,
  1420. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1421. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1422. .vec_dot_type = GGML_TYPE_Q8_K,
  1423. },
  1424. [GGML_TYPE_Q8_K] = {
  1425. .from_float = quantize_row_q8_K,
  1426. }
  1427. #endif
  1428. };
  1429. // For internal test use
  1430. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1431. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1432. return type_traits[i];
  1433. }
  1434. //
  1435. // simd mappings
  1436. //
  1437. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1438. // we then implement the fundamental computation operations below using only these macros
  1439. // adding support for new architectures requires to define the corresponding SIMD macros
  1440. //
  1441. // GGML_F32_STEP / GGML_F16_STEP
  1442. // number of elements to process in a single step
  1443. //
  1444. // GGML_F32_EPR / GGML_F16_EPR
  1445. // number of elements to fit in a single register
  1446. //
  1447. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1448. #define GGML_SIMD
  1449. // F32 NEON
  1450. #define GGML_F32_STEP 16
  1451. #define GGML_F32_EPR 4
  1452. #define GGML_F32x4 float32x4_t
  1453. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1454. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1455. #define GGML_F32x4_LOAD vld1q_f32
  1456. #define GGML_F32x4_STORE vst1q_f32
  1457. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1458. #define GGML_F32x4_ADD vaddq_f32
  1459. #define GGML_F32x4_MUL vmulq_f32
  1460. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1461. #define GGML_F32x4_REDUCE(res, x) \
  1462. { \
  1463. int offset = GGML_F32_ARR >> 1; \
  1464. for (int i = 0; i < offset; ++i) { \
  1465. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1466. } \
  1467. offset >>= 1; \
  1468. for (int i = 0; i < offset; ++i) { \
  1469. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1470. } \
  1471. offset >>= 1; \
  1472. for (int i = 0; i < offset; ++i) { \
  1473. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1474. } \
  1475. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1476. }
  1477. #define GGML_F32_VEC GGML_F32x4
  1478. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1479. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1480. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1481. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1482. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1483. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1484. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1485. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1486. // F16 NEON
  1487. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1488. #define GGML_F16_STEP 32
  1489. #define GGML_F16_EPR 8
  1490. #define GGML_F16x8 float16x8_t
  1491. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1492. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1493. #define GGML_F16x8_LOAD vld1q_f16
  1494. #define GGML_F16x8_STORE vst1q_f16
  1495. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1496. #define GGML_F16x8_ADD vaddq_f16
  1497. #define GGML_F16x8_MUL vmulq_f16
  1498. #define GGML_F16x8_REDUCE(res, x) \
  1499. { \
  1500. int offset = GGML_F16_ARR >> 1; \
  1501. for (int i = 0; i < offset; ++i) { \
  1502. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1503. } \
  1504. offset >>= 1; \
  1505. for (int i = 0; i < offset; ++i) { \
  1506. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1507. } \
  1508. offset >>= 1; \
  1509. for (int i = 0; i < offset; ++i) { \
  1510. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1511. } \
  1512. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1513. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1514. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1515. }
  1516. #define GGML_F16_VEC GGML_F16x8
  1517. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1518. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1519. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1520. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1521. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1522. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1523. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1524. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1525. #else
  1526. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1527. // and take advantage of the vcvt_ functions to convert to/from FP16
  1528. #define GGML_F16_STEP 16
  1529. #define GGML_F16_EPR 4
  1530. #define GGML_F32Cx4 float32x4_t
  1531. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1532. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1533. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1534. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1535. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1536. #define GGML_F32Cx4_ADD vaddq_f32
  1537. #define GGML_F32Cx4_MUL vmulq_f32
  1538. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1539. #define GGML_F16_VEC GGML_F32Cx4
  1540. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1541. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1542. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1543. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1544. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1545. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1546. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1547. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1548. #endif
  1549. #elif defined(__AVX__)
  1550. #define GGML_SIMD
  1551. // F32 AVX
  1552. #define GGML_F32_STEP 32
  1553. #define GGML_F32_EPR 8
  1554. #define GGML_F32x8 __m256
  1555. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1556. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1557. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1558. #define GGML_F32x8_STORE _mm256_storeu_ps
  1559. #if defined(__FMA__)
  1560. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1561. #else
  1562. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1563. #endif
  1564. #define GGML_F32x8_ADD _mm256_add_ps
  1565. #define GGML_F32x8_MUL _mm256_mul_ps
  1566. #define GGML_F32x8_REDUCE(res, x) \
  1567. { \
  1568. int offset = GGML_F32_ARR >> 1; \
  1569. for (int i = 0; i < offset; ++i) { \
  1570. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1571. } \
  1572. offset >>= 1; \
  1573. for (int i = 0; i < offset; ++i) { \
  1574. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1575. } \
  1576. offset >>= 1; \
  1577. for (int i = 0; i < offset; ++i) { \
  1578. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1579. } \
  1580. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1581. _mm256_extractf128_ps(x[0], 1)); \
  1582. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1583. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1584. }
  1585. // TODO: is this optimal ?
  1586. #define GGML_F32_VEC GGML_F32x8
  1587. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1588. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1589. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1590. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1591. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1592. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1593. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1594. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1595. // F16 AVX
  1596. #define GGML_F16_STEP 32
  1597. #define GGML_F16_EPR 8
  1598. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1599. #define GGML_F32Cx8 __m256
  1600. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1601. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1602. #if defined(__F16C__)
  1603. // the _mm256_cvt intrinsics require F16C
  1604. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1605. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1606. #else
  1607. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1608. float tmp[8];
  1609. for (int i = 0; i < 8; i++) {
  1610. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1611. }
  1612. return _mm256_loadu_ps(tmp);
  1613. }
  1614. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1615. float arr[8];
  1616. _mm256_storeu_ps(arr, y);
  1617. for (int i = 0; i < 8; i++)
  1618. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1619. }
  1620. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1621. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1622. #endif
  1623. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1624. #define GGML_F32Cx8_ADD _mm256_add_ps
  1625. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1626. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1627. #define GGML_F16_VEC GGML_F32Cx8
  1628. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1629. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1630. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1631. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1632. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1633. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1634. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1635. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1636. #elif defined(__POWER9_VECTOR__)
  1637. #define GGML_SIMD
  1638. // F32 POWER9
  1639. #define GGML_F32_STEP 32
  1640. #define GGML_F32_EPR 4
  1641. #define GGML_F32x4 vector float
  1642. #define GGML_F32x4_ZERO 0.0f
  1643. #define GGML_F32x4_SET1 vec_splats
  1644. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1645. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1646. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1647. #define GGML_F32x4_ADD vec_add
  1648. #define GGML_F32x4_MUL vec_mul
  1649. #define GGML_F32x4_REDUCE(res, x) \
  1650. { \
  1651. int offset = GGML_F32_ARR >> 1; \
  1652. for (int i = 0; i < offset; ++i) { \
  1653. x[i] = vec_add(x[i], x[offset+i]); \
  1654. } \
  1655. offset >>= 1; \
  1656. for (int i = 0; i < offset; ++i) { \
  1657. x[i] = vec_add(x[i], x[offset+i]); \
  1658. } \
  1659. offset >>= 1; \
  1660. for (int i = 0; i < offset; ++i) { \
  1661. x[i] = vec_add(x[i], x[offset+i]); \
  1662. } \
  1663. res = vec_extract(x[0], 0) + \
  1664. vec_extract(x[0], 1) + \
  1665. vec_extract(x[0], 2) + \
  1666. vec_extract(x[0], 3); \
  1667. }
  1668. #define GGML_F32_VEC GGML_F32x4
  1669. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1670. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1671. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1672. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1673. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1674. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1675. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1676. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1677. // F16 POWER9
  1678. #define GGML_F16_STEP GGML_F32_STEP
  1679. #define GGML_F16_EPR GGML_F32_EPR
  1680. #define GGML_F16_VEC GGML_F32x4
  1681. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1682. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1683. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1684. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1685. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1686. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1687. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1688. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1689. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1690. #define GGML_F16_VEC_STORE(p, r, i) \
  1691. if (i & 0x1) \
  1692. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1693. r[i - GGML_ENDIAN_BYTE(0)]), \
  1694. 0, p - GGML_F16_EPR)
  1695. #elif defined(__wasm_simd128__)
  1696. #define GGML_SIMD
  1697. // F32 WASM
  1698. #define GGML_F32_STEP 16
  1699. #define GGML_F32_EPR 4
  1700. #define GGML_F32x4 v128_t
  1701. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1702. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1703. #define GGML_F32x4_LOAD wasm_v128_load
  1704. #define GGML_F32x4_STORE wasm_v128_store
  1705. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1706. #define GGML_F32x4_ADD wasm_f32x4_add
  1707. #define GGML_F32x4_MUL wasm_f32x4_mul
  1708. #define GGML_F32x4_REDUCE(res, x) \
  1709. { \
  1710. int offset = GGML_F32_ARR >> 1; \
  1711. for (int i = 0; i < offset; ++i) { \
  1712. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1713. } \
  1714. offset >>= 1; \
  1715. for (int i = 0; i < offset; ++i) { \
  1716. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1717. } \
  1718. offset >>= 1; \
  1719. for (int i = 0; i < offset; ++i) { \
  1720. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1721. } \
  1722. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1723. wasm_f32x4_extract_lane(x[0], 1) + \
  1724. wasm_f32x4_extract_lane(x[0], 2) + \
  1725. wasm_f32x4_extract_lane(x[0], 3); \
  1726. }
  1727. #define GGML_F32_VEC GGML_F32x4
  1728. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1729. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1730. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1731. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1732. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1733. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1734. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1735. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1736. // F16 WASM
  1737. #define GGML_F16_STEP 16
  1738. #define GGML_F16_EPR 4
  1739. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1740. float tmp[4];
  1741. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1742. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1743. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1744. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1745. return wasm_v128_load(tmp);
  1746. }
  1747. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1748. float tmp[4];
  1749. wasm_v128_store(tmp, x);
  1750. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1751. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1752. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1753. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1754. }
  1755. #define GGML_F16x4 v128_t
  1756. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1757. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1758. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1759. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1760. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1761. #define GGML_F16x4_ADD wasm_f32x4_add
  1762. #define GGML_F16x4_MUL wasm_f32x4_mul
  1763. #define GGML_F16x4_REDUCE(res, x) \
  1764. { \
  1765. int offset = GGML_F16_ARR >> 1; \
  1766. for (int i = 0; i < offset; ++i) { \
  1767. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1768. } \
  1769. offset >>= 1; \
  1770. for (int i = 0; i < offset; ++i) { \
  1771. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1772. } \
  1773. offset >>= 1; \
  1774. for (int i = 0; i < offset; ++i) { \
  1775. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1776. } \
  1777. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1778. wasm_f32x4_extract_lane(x[0], 1) + \
  1779. wasm_f32x4_extract_lane(x[0], 2) + \
  1780. wasm_f32x4_extract_lane(x[0], 3); \
  1781. }
  1782. #define GGML_F16_VEC GGML_F16x4
  1783. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1784. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1785. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1786. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1787. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1788. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1789. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1790. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1791. #elif defined(__SSE3__)
  1792. #define GGML_SIMD
  1793. // F32 SSE
  1794. #define GGML_F32_STEP 32
  1795. #define GGML_F32_EPR 4
  1796. #define GGML_F32x4 __m128
  1797. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1798. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1799. #define GGML_F32x4_LOAD _mm_loadu_ps
  1800. #define GGML_F32x4_STORE _mm_storeu_ps
  1801. #if defined(__FMA__)
  1802. // TODO: Does this work?
  1803. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1804. #else
  1805. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1806. #endif
  1807. #define GGML_F32x4_ADD _mm_add_ps
  1808. #define GGML_F32x4_MUL _mm_mul_ps
  1809. #define GGML_F32x4_REDUCE(res, x) \
  1810. { \
  1811. int offset = GGML_F32_ARR >> 1; \
  1812. for (int i = 0; i < offset; ++i) { \
  1813. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1814. } \
  1815. offset >>= 1; \
  1816. for (int i = 0; i < offset; ++i) { \
  1817. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1818. } \
  1819. offset >>= 1; \
  1820. for (int i = 0; i < offset; ++i) { \
  1821. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1822. } \
  1823. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1824. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1825. }
  1826. // TODO: is this optimal ?
  1827. #define GGML_F32_VEC GGML_F32x4
  1828. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1829. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1830. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1831. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1832. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1833. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1834. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1835. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1836. // F16 SSE
  1837. #define GGML_F16_STEP 32
  1838. #define GGML_F16_EPR 4
  1839. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1840. float tmp[4];
  1841. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1842. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1843. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1844. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1845. return _mm_loadu_ps(tmp);
  1846. }
  1847. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1848. float arr[4];
  1849. _mm_storeu_ps(arr, y);
  1850. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1851. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1852. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1853. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1854. }
  1855. #define GGML_F32Cx4 __m128
  1856. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1857. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1858. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1859. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1860. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1861. #define GGML_F32Cx4_ADD _mm_add_ps
  1862. #define GGML_F32Cx4_MUL _mm_mul_ps
  1863. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1864. #define GGML_F16_VEC GGML_F32Cx4
  1865. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1866. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1867. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1868. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1869. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1870. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1871. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1872. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1873. #endif
  1874. // GGML_F32_ARR / GGML_F16_ARR
  1875. // number of registers to use per step
  1876. #ifdef GGML_SIMD
  1877. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1878. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1879. #endif
  1880. //
  1881. // fundamental operations
  1882. //
  1883. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1884. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1885. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1886. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1887. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1888. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1889. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1890. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1891. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1892. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1893. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1894. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1895. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1896. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1897. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1898. #ifdef GGML_SIMD
  1899. float sumf = 0.0f;
  1900. const int np = (n & ~(GGML_F32_STEP - 1));
  1901. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1902. GGML_F32_VEC ax[GGML_F32_ARR];
  1903. GGML_F32_VEC ay[GGML_F32_ARR];
  1904. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1905. for (int j = 0; j < GGML_F32_ARR; j++) {
  1906. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1907. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1908. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1909. }
  1910. }
  1911. // reduce sum0..sum3 to sum0
  1912. GGML_F32_VEC_REDUCE(sumf, sum);
  1913. // leftovers
  1914. for (int i = np; i < n; ++i) {
  1915. sumf += x[i]*y[i];
  1916. }
  1917. #else
  1918. // scalar
  1919. ggml_float sumf = 0.0;
  1920. for (int i = 0; i < n; ++i) {
  1921. sumf += (ggml_float)(x[i]*y[i]);
  1922. }
  1923. #endif
  1924. *s = sumf;
  1925. }
  1926. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1927. ggml_float sumf = 0.0;
  1928. #if defined(GGML_SIMD)
  1929. const int np = (n & ~(GGML_F16_STEP - 1));
  1930. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1931. GGML_F16_VEC ax[GGML_F16_ARR];
  1932. GGML_F16_VEC ay[GGML_F16_ARR];
  1933. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1934. for (int j = 0; j < GGML_F16_ARR; j++) {
  1935. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1936. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1937. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1938. }
  1939. }
  1940. // reduce sum0..sum3 to sum0
  1941. GGML_F16_VEC_REDUCE(sumf, sum);
  1942. // leftovers
  1943. for (int i = np; i < n; ++i) {
  1944. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1945. }
  1946. #else
  1947. for (int i = 0; i < n; ++i) {
  1948. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1949. }
  1950. #endif
  1951. *s = sumf;
  1952. }
  1953. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1954. const int qk = QK8_0;
  1955. const int nb = n / qk;
  1956. assert(n % qk == 0);
  1957. assert(nb % 2 == 0);
  1958. const block_q4_0 * restrict x = vx;
  1959. const block_q8_0 * restrict y = vy;
  1960. #if defined(__ARM_NEON)
  1961. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1962. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1963. for (int i = 0; i < nb; i += 2) {
  1964. const block_q4_0 * restrict x0 = &x[i + 0];
  1965. const block_q4_0 * restrict x1 = &x[i + 1];
  1966. const block_q8_0 * restrict y0 = &y[i + 0];
  1967. const block_q8_0 * restrict y1 = &y[i + 1];
  1968. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1969. const int8x16_t s8b = vdupq_n_s8(0x8);
  1970. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1971. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1972. // 4-bit -> 8-bit
  1973. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1974. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1975. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1976. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1977. // sub 8
  1978. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1979. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1980. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1981. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1982. // load y
  1983. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1984. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1985. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1986. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1987. #if defined(__ARM_FEATURE_DOTPROD)
  1988. // dot product into int32x4_t
  1989. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1990. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1991. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1992. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1993. #else
  1994. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1995. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1996. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1997. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1998. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1999. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2000. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2001. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2002. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2003. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2004. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2005. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2006. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2007. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2008. #endif
  2009. }
  2010. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2011. #elif defined(__AVX2__)
  2012. // Initialize accumulator with zeros
  2013. __m256 acc = _mm256_setzero_ps();
  2014. // Main loop
  2015. for (int i = 0; i < nb; ++i) {
  2016. /* Compute combined scale for the block */
  2017. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2018. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2019. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2020. const __m256i off = _mm256_set1_epi8( 8 );
  2021. bx = _mm256_sub_epi8( bx, off );
  2022. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2023. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2024. /* Multiply q with scale and accumulate */
  2025. acc = _mm256_fmadd_ps( d, q, acc );
  2026. }
  2027. *s = hsum_float_8(acc);
  2028. #elif defined(__AVX__)
  2029. // Initialize accumulator with zeros
  2030. __m256 acc = _mm256_setzero_ps();
  2031. // Main loop
  2032. for (int i = 0; i < nb; ++i) {
  2033. // Compute combined scale for the block
  2034. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2035. const __m128i lowMask = _mm_set1_epi8(0xF);
  2036. const __m128i off = _mm_set1_epi8(8);
  2037. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2038. __m128i bx = _mm_and_si128(lowMask, tmp);
  2039. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2040. bx = _mm_sub_epi8(bx, off);
  2041. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2042. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2043. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2044. bx = _mm_sub_epi8(bx, off);
  2045. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2046. // Convert int32_t to float
  2047. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2048. // Apply the scale, and accumulate
  2049. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2050. }
  2051. *s = hsum_float_8(acc);
  2052. #elif defined(__SSSE3__)
  2053. // set constants
  2054. const __m128i lowMask = _mm_set1_epi8(0xF);
  2055. const __m128i off = _mm_set1_epi8(8);
  2056. // Initialize accumulator with zeros
  2057. __m128 acc_0 = _mm_setzero_ps();
  2058. __m128 acc_1 = _mm_setzero_ps();
  2059. __m128 acc_2 = _mm_setzero_ps();
  2060. __m128 acc_3 = _mm_setzero_ps();
  2061. // First round without accumulation
  2062. {
  2063. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2064. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2065. // Compute combined scale for the block 0 and 1
  2066. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2067. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2068. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2069. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2070. bx_0 = _mm_sub_epi8(bx_0, off);
  2071. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2072. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2073. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2074. bx_1 = _mm_sub_epi8(bx_1, off);
  2075. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2076. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2077. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2078. // Compute combined scale for the block 2 and 3
  2079. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2080. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2081. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2082. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2083. bx_2 = _mm_sub_epi8(bx_2, off);
  2084. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2085. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2086. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2087. bx_3 = _mm_sub_epi8(bx_3, off);
  2088. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2089. // Convert int32_t to float
  2090. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2091. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2092. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2093. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2094. // Apply the scale
  2095. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2096. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2097. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2098. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2099. }
  2100. // Main loop
  2101. for (int i = 2; i < nb; i+=2) {
  2102. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2103. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2104. // Compute combined scale for the block 0 and 1
  2105. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2106. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2107. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2108. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2109. bx_0 = _mm_sub_epi8(bx_0, off);
  2110. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2111. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2112. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2113. bx_1 = _mm_sub_epi8(bx_1, off);
  2114. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2115. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2116. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2117. // Compute combined scale for the block 2 and 3
  2118. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2119. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2120. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2121. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2122. bx_2 = _mm_sub_epi8(bx_2, off);
  2123. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2124. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2125. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2126. bx_3 = _mm_sub_epi8(bx_3, off);
  2127. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2128. // Convert int32_t to float
  2129. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2130. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2131. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2132. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2133. // Apply the scale
  2134. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2135. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2136. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2137. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2138. // Acummulate
  2139. acc_0 = _mm_add_ps(p0_d, acc_0);
  2140. acc_1 = _mm_add_ps(p1_d, acc_1);
  2141. acc_2 = _mm_add_ps(p2_d, acc_2);
  2142. acc_3 = _mm_add_ps(p3_d, acc_3);
  2143. }
  2144. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2145. #else
  2146. // scalar
  2147. float sumf = 0.0;
  2148. for (int i = 0; i < nb; i++) {
  2149. int sumi = 0;
  2150. for (int j = 0; j < qk/2; ++j) {
  2151. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2152. const int v1 = (x[i].qs[j] >> 4) - 8;
  2153. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2154. }
  2155. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2156. }
  2157. *s = sumf;
  2158. #endif
  2159. }
  2160. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2161. const int qk = QK8_1;
  2162. const int nb = n / qk;
  2163. assert(n % qk == 0);
  2164. assert(nb % 2 == 0);
  2165. const block_q4_1 * restrict x = vx;
  2166. const block_q8_1 * restrict y = vy;
  2167. // TODO: add WASM SIMD
  2168. #if defined(__ARM_NEON)
  2169. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2170. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2171. float summs = 0;
  2172. for (int i = 0; i < nb; i += 2) {
  2173. const block_q4_1 * restrict x0 = &x[i + 0];
  2174. const block_q4_1 * restrict x1 = &x[i + 1];
  2175. const block_q8_1 * restrict y0 = &y[i + 0];
  2176. const block_q8_1 * restrict y1 = &y[i + 1];
  2177. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2178. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2179. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2180. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2181. // 4-bit -> 8-bit
  2182. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2183. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2184. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2185. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2186. // load y
  2187. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2188. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2189. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2190. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2191. #if defined(__ARM_FEATURE_DOTPROD)
  2192. // dot product into int32x4_t
  2193. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2194. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2195. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2196. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2197. #else
  2198. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2199. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2200. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2201. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2202. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2203. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2204. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2205. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2206. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2207. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2208. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2209. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2210. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2211. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2212. #endif
  2213. }
  2214. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2215. #elif defined(__AVX2__) || defined(__AVX__)
  2216. // Initialize accumulator with zeros
  2217. __m256 acc = _mm256_setzero_ps();
  2218. float summs = 0;
  2219. // Main loop
  2220. for (int i = 0; i < nb; ++i) {
  2221. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2222. const float d1 = y[i].d;
  2223. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2224. const __m256 d0v = _mm256_set1_ps( d0 );
  2225. const __m256 d1v = _mm256_set1_ps( d1 );
  2226. // Compute combined scales
  2227. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2228. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2229. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2230. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2231. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2232. // Accumulate d0*d1*x*y
  2233. #if defined(__AVX2__)
  2234. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2235. #else
  2236. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2237. #endif
  2238. }
  2239. *s = hsum_float_8(acc) + summs;
  2240. #else
  2241. // scalar
  2242. float sumf = 0.0;
  2243. for (int i = 0; i < nb; i++) {
  2244. int sumi = 0;
  2245. for (int j = 0; j < qk/2; ++j) {
  2246. const int v0 = (x[i].qs[j] & 0x0F);
  2247. const int v1 = (x[i].qs[j] >> 4);
  2248. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2249. }
  2250. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2251. }
  2252. *s = sumf;
  2253. #endif
  2254. }
  2255. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2256. const int qk = QK8_0;
  2257. const int nb = n / qk;
  2258. assert(n % qk == 0);
  2259. assert(nb % 2 == 0);
  2260. assert(qk == QK5_0);
  2261. const block_q5_0 * restrict x = vx;
  2262. const block_q8_0 * restrict y = vy;
  2263. #if defined(__ARM_NEON)
  2264. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2265. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2266. uint32_t qh0;
  2267. uint32_t qh1;
  2268. uint64_t tmp0[4];
  2269. uint64_t tmp1[4];
  2270. for (int i = 0; i < nb; i += 2) {
  2271. const block_q5_0 * restrict x0 = &x[i];
  2272. const block_q5_0 * restrict x1 = &x[i + 1];
  2273. const block_q8_0 * restrict y0 = &y[i];
  2274. const block_q8_0 * restrict y1 = &y[i + 1];
  2275. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2276. // extract the 5th bit via lookup table ((!b) << 4)
  2277. memcpy(&qh0, x0->qh, sizeof(qh0));
  2278. memcpy(&qh1, x1->qh, sizeof(qh1));
  2279. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2280. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2281. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2282. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2283. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2284. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2285. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2286. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2287. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2288. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2289. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2290. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2291. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2292. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2293. // 4-bit -> 8-bit
  2294. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2295. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2296. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2297. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2298. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2299. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2300. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2301. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2302. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2303. // load y
  2304. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2305. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2306. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2307. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2308. #if defined(__ARM_FEATURE_DOTPROD)
  2309. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2310. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2311. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2312. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2313. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2314. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2315. #else
  2316. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2317. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2318. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2319. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2320. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2321. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2322. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2323. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2324. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2325. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2326. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2327. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2328. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2329. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2330. #endif
  2331. }
  2332. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2333. #elif defined(__wasm_simd128__)
  2334. v128_t sumv = wasm_f32x4_splat(0.0f);
  2335. uint32_t qh;
  2336. uint64_t tmp[4];
  2337. // TODO: check if unrolling this is better
  2338. for (int i = 0; i < nb; ++i) {
  2339. const block_q5_0 * restrict x0 = &x[i];
  2340. const block_q8_0 * restrict y0 = &y[i];
  2341. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2342. // extract the 5th bit
  2343. memcpy(&qh, x0->qh, sizeof(qh));
  2344. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2345. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2346. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2347. tmp[3] = table_b2b_1[(qh >> 24) ];
  2348. const v128_t qhl = wasm_v128_load(tmp + 0);
  2349. const v128_t qhh = wasm_v128_load(tmp + 2);
  2350. const v128_t v0 = wasm_v128_load(x0->qs);
  2351. // 4-bit -> 8-bit
  2352. const v128_t v0l = wasm_v128_and (v0, m4b);
  2353. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2354. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2355. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2356. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2357. // load y
  2358. const v128_t v1l = wasm_v128_load(y0->qs);
  2359. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2360. // int8x16 -> int16x8
  2361. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2362. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2363. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2364. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2365. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2366. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2367. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2368. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2369. // dot product
  2370. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2371. wasm_i32x4_add(
  2372. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2373. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2374. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2375. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2376. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2377. }
  2378. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2379. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2380. #elif defined(__AVX2__)
  2381. // Initialize accumulator with zeros
  2382. __m256 acc = _mm256_setzero_ps();
  2383. // Main loop
  2384. for (int i = 0; i < nb; i++) {
  2385. /* Compute combined scale for the block */
  2386. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2387. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2388. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2389. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2390. bx = _mm256_or_si256(bx, bxhi);
  2391. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2392. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2393. /* Multiply q with scale and accumulate */
  2394. acc = _mm256_fmadd_ps(d, q, acc);
  2395. }
  2396. *s = hsum_float_8(acc);
  2397. #elif defined(__AVX__)
  2398. // Initialize accumulator with zeros
  2399. __m256 acc = _mm256_setzero_ps();
  2400. __m128i mask = _mm_set1_epi8((char)0xF0);
  2401. // Main loop
  2402. for (int i = 0; i < nb; i++) {
  2403. /* Compute combined scale for the block */
  2404. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2405. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2406. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2407. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2408. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2409. bxhil = _mm_andnot_si128(bxhil, mask);
  2410. bxhih = _mm_andnot_si128(bxhih, mask);
  2411. __m128i bxl = _mm256_castsi256_si128(bx);
  2412. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2413. bxl = _mm_or_si128(bxl, bxhil);
  2414. bxh = _mm_or_si128(bxh, bxhih);
  2415. bx = MM256_SET_M128I(bxh, bxl);
  2416. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2417. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2418. /* Multiply q with scale and accumulate */
  2419. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2420. }
  2421. *s = hsum_float_8(acc);
  2422. #else
  2423. // scalar
  2424. float sumf = 0.0;
  2425. for (int i = 0; i < nb; i++) {
  2426. uint32_t qh;
  2427. memcpy(&qh, x[i].qh, sizeof(qh));
  2428. int sumi = 0;
  2429. for (int j = 0; j < qk/2; ++j) {
  2430. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2431. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2432. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2433. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2434. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2435. }
  2436. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2437. }
  2438. *s = sumf;
  2439. #endif
  2440. }
  2441. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2442. const int qk = QK8_1;
  2443. const int nb = n / qk;
  2444. assert(n % qk == 0);
  2445. assert(nb % 2 == 0);
  2446. assert(qk == QK5_1);
  2447. const block_q5_1 * restrict x = vx;
  2448. const block_q8_1 * restrict y = vy;
  2449. #if defined(__ARM_NEON)
  2450. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2451. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2452. float summs0 = 0.0f;
  2453. float summs1 = 0.0f;
  2454. uint32_t qh0;
  2455. uint32_t qh1;
  2456. uint64_t tmp0[4];
  2457. uint64_t tmp1[4];
  2458. for (int i = 0; i < nb; i += 2) {
  2459. const block_q5_1 * restrict x0 = &x[i];
  2460. const block_q5_1 * restrict x1 = &x[i + 1];
  2461. const block_q8_1 * restrict y0 = &y[i];
  2462. const block_q8_1 * restrict y1 = &y[i + 1];
  2463. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2464. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2465. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2466. // extract the 5th bit via lookup table ((b) << 4)
  2467. memcpy(&qh0, x0->qh, sizeof(qh0));
  2468. memcpy(&qh1, x1->qh, sizeof(qh1));
  2469. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2470. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2471. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2472. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2473. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2474. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2475. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2476. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2477. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2478. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2479. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2480. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2481. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2482. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2483. // 4-bit -> 8-bit
  2484. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2485. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2486. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2487. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2488. // add high bit
  2489. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2490. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2491. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2492. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2493. // load y
  2494. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2495. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2496. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2497. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2498. #if defined(__ARM_FEATURE_DOTPROD)
  2499. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2500. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2501. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2502. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2503. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2504. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2505. #else
  2506. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2507. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2508. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2509. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2510. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2511. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2512. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2513. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2514. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2515. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2516. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2517. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2518. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2519. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2520. #endif
  2521. }
  2522. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2523. #elif defined(__wasm_simd128__)
  2524. v128_t sumv = wasm_f32x4_splat(0.0f);
  2525. float summs = 0.0f;
  2526. uint32_t qh;
  2527. uint64_t tmp[4];
  2528. // TODO: check if unrolling this is better
  2529. for (int i = 0; i < nb; ++i) {
  2530. const block_q5_1 * restrict x0 = &x[i];
  2531. const block_q8_1 * restrict y0 = &y[i];
  2532. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2533. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2534. // extract the 5th bit
  2535. memcpy(&qh, x0->qh, sizeof(qh));
  2536. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2537. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2538. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2539. tmp[3] = table_b2b_0[(qh >> 24) ];
  2540. const v128_t qhl = wasm_v128_load(tmp + 0);
  2541. const v128_t qhh = wasm_v128_load(tmp + 2);
  2542. const v128_t v0 = wasm_v128_load(x0->qs);
  2543. // 4-bit -> 8-bit
  2544. const v128_t v0l = wasm_v128_and (v0, m4b);
  2545. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2546. // add high bit
  2547. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2548. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2549. // load y
  2550. const v128_t v1l = wasm_v128_load(y0->qs);
  2551. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2552. // int8x16 -> int16x8
  2553. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2554. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2555. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2556. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2557. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2558. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2559. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2560. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2561. // dot product
  2562. sumv = wasm_f32x4_add(sumv,
  2563. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2564. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2565. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2566. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2567. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2568. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2569. }
  2570. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2571. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2572. #elif defined(__AVX2__)
  2573. // Initialize accumulator with zeros
  2574. __m256 acc = _mm256_setzero_ps();
  2575. float summs = 0.0f;
  2576. // Main loop
  2577. for (int i = 0; i < nb; i++) {
  2578. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2579. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2580. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2581. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2582. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2583. bx = _mm256_or_si256(bx, bxhi);
  2584. const __m256 dy = _mm256_set1_ps(y[i].d);
  2585. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2586. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2587. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2588. }
  2589. *s = hsum_float_8(acc) + summs;
  2590. #elif defined(__AVX__)
  2591. // Initialize accumulator with zeros
  2592. __m256 acc = _mm256_setzero_ps();
  2593. __m128i mask = _mm_set1_epi8(0x10);
  2594. float summs = 0.0f;
  2595. // Main loop
  2596. for (int i = 0; i < nb; i++) {
  2597. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2598. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2599. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2600. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2601. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2602. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2603. bxhil = _mm_and_si128(bxhil, mask);
  2604. bxhih = _mm_and_si128(bxhih, mask);
  2605. __m128i bxl = _mm256_castsi256_si128(bx);
  2606. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2607. bxl = _mm_or_si128(bxl, bxhil);
  2608. bxh = _mm_or_si128(bxh, bxhih);
  2609. bx = MM256_SET_M128I(bxh, bxl);
  2610. const __m256 dy = _mm256_set1_ps(y[i].d);
  2611. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2612. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2613. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2614. }
  2615. *s = hsum_float_8(acc) + summs;
  2616. #else
  2617. // scalar
  2618. float sumf = 0.0;
  2619. for (int i = 0; i < nb; i++) {
  2620. uint32_t qh;
  2621. memcpy(&qh, x[i].qh, sizeof(qh));
  2622. int sumi = 0;
  2623. for (int j = 0; j < qk/2; ++j) {
  2624. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2625. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2626. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2627. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2628. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2629. }
  2630. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2631. }
  2632. *s = sumf;
  2633. #endif
  2634. }
  2635. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2636. const int qk = QK8_0;
  2637. const int nb = n / qk;
  2638. assert(n % qk == 0);
  2639. assert(nb % 2 == 0);
  2640. const block_q8_0 * restrict x = vx;
  2641. const block_q8_0 * restrict y = vy;
  2642. #if defined(__ARM_NEON)
  2643. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2644. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2645. for (int i = 0; i < nb; i += 2) {
  2646. const block_q8_0 * restrict x0 = &x[i + 0];
  2647. const block_q8_0 * restrict x1 = &x[i + 1];
  2648. const block_q8_0 * restrict y0 = &y[i + 0];
  2649. const block_q8_0 * restrict y1 = &y[i + 1];
  2650. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2651. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2652. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2653. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2654. // load y
  2655. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2656. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2657. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2658. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2659. #if defined(__ARM_FEATURE_DOTPROD)
  2660. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2661. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2662. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2663. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2664. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2665. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2666. #else
  2667. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2668. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2669. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2670. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2671. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2672. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2673. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2674. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2675. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2676. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2677. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2678. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2679. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2680. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2681. #endif
  2682. }
  2683. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2684. #elif defined(__AVX2__) || defined(__AVX__)
  2685. // Initialize accumulator with zeros
  2686. __m256 acc = _mm256_setzero_ps();
  2687. // Main loop
  2688. for (int i = 0; i < nb; ++i) {
  2689. // Compute combined scale for the block
  2690. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2691. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2692. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2693. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2694. // Multiply q with scale and accumulate
  2695. #if defined(__AVX2__)
  2696. acc = _mm256_fmadd_ps( d, q, acc );
  2697. #else
  2698. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2699. #endif
  2700. }
  2701. *s = hsum_float_8(acc);
  2702. #else
  2703. // scalar
  2704. float sumf = 0.0;
  2705. for (int i = 0; i < nb; i++) {
  2706. int sumi = 0;
  2707. for (int j = 0; j < qk; j++) {
  2708. sumi += x[i].qs[j]*y[i].qs[j];
  2709. }
  2710. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2711. }
  2712. *s = sumf;
  2713. #endif
  2714. }
  2715. // compute GGML_VEC_DOT_UNROLL dot products at once
  2716. // xs - x row stride in bytes
  2717. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2718. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2719. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2720. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2721. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2722. }
  2723. #if defined(GGML_SIMD)
  2724. const int np = (n & ~(GGML_F16_STEP - 1));
  2725. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2726. GGML_F16_VEC ax[GGML_F16_ARR];
  2727. GGML_F16_VEC ay[GGML_F16_ARR];
  2728. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2729. for (int j = 0; j < GGML_F16_ARR; j++) {
  2730. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2731. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2732. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2733. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2734. }
  2735. }
  2736. }
  2737. // reduce sum0..sum3 to sum0
  2738. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2739. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2740. }
  2741. // leftovers
  2742. for (int i = np; i < n; ++i) {
  2743. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2744. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2745. }
  2746. }
  2747. #else
  2748. for (int i = 0; i < n; ++i) {
  2749. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2750. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2751. }
  2752. }
  2753. #endif
  2754. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2755. s[i] = sumf[i];
  2756. }
  2757. }
  2758. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2759. #if defined(GGML_SIMD)
  2760. const int np = (n & ~(GGML_F32_STEP - 1));
  2761. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2762. GGML_F32_VEC ax[GGML_F32_ARR];
  2763. GGML_F32_VEC ay[GGML_F32_ARR];
  2764. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2765. for (int j = 0; j < GGML_F32_ARR; j++) {
  2766. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2767. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2768. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2769. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2770. }
  2771. }
  2772. // leftovers
  2773. for (int i = np; i < n; ++i) {
  2774. y[i] += x[i]*v;
  2775. }
  2776. #else
  2777. // scalar
  2778. for (int i = 0; i < n; ++i) {
  2779. y[i] += x[i]*v;
  2780. }
  2781. #endif
  2782. }
  2783. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2784. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2785. #if defined(GGML_SIMD)
  2786. const int np = (n & ~(GGML_F32_STEP - 1));
  2787. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2788. GGML_F32_VEC ay[GGML_F32_ARR];
  2789. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2790. for (int j = 0; j < GGML_F32_ARR; j++) {
  2791. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2792. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2793. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2794. }
  2795. }
  2796. // leftovers
  2797. for (int i = np; i < n; ++i) {
  2798. y[i] *= v;
  2799. }
  2800. #else
  2801. // scalar
  2802. for (int i = 0; i < n; ++i) {
  2803. y[i] *= v;
  2804. }
  2805. #endif
  2806. }
  2807. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2808. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2809. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2810. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2811. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2812. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2813. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2814. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2815. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2816. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2817. static const float GELU_COEF_A = 0.044715f;
  2818. static const float GELU_QUICK_COEF = -1.702f;
  2819. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2820. inline static float ggml_gelu_f32(float x) {
  2821. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2822. }
  2823. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2824. const uint16_t * i16 = (const uint16_t *) x;
  2825. for (int i = 0; i < n; ++i) {
  2826. y[i] = table_gelu_f16[i16[i]];
  2827. }
  2828. }
  2829. #ifdef GGML_GELU_FP16
  2830. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2831. uint16_t t;
  2832. for (int i = 0; i < n; ++i) {
  2833. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2834. memcpy(&t, &fp16, sizeof(uint16_t));
  2835. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2836. }
  2837. }
  2838. #else
  2839. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2840. for (int i = 0; i < n; ++i) {
  2841. y[i] = ggml_gelu_f32(x[i]);
  2842. }
  2843. }
  2844. #endif
  2845. inline static float ggml_gelu_quick_f32(float x) {
  2846. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2847. }
  2848. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2849. // const uint16_t * i16 = (const uint16_t *) x;
  2850. // for (int i = 0; i < n; ++i) {
  2851. // y[i] = table_gelu_quick_f16[i16[i]];
  2852. // }
  2853. //}
  2854. #ifdef GGML_GELU_QUICK_FP16
  2855. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2856. uint16_t t;
  2857. for (int i = 0; i < n; ++i) {
  2858. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2859. memcpy(&t, &fp16, sizeof(uint16_t));
  2860. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2861. }
  2862. }
  2863. #else
  2864. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2865. for (int i = 0; i < n; ++i) {
  2866. y[i] = ggml_gelu_quick_f32(x[i]);
  2867. }
  2868. }
  2869. #endif
  2870. // Sigmoid Linear Unit (SiLU) function
  2871. inline static float ggml_silu_f32(float x) {
  2872. return x/(1.0f + expf(-x));
  2873. }
  2874. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2875. // const uint16_t * i16 = (const uint16_t *) x;
  2876. // for (int i = 0; i < n; ++i) {
  2877. // y[i] = table_silu_f16[i16[i]];
  2878. // }
  2879. //}
  2880. #ifdef GGML_SILU_FP16
  2881. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2882. uint16_t t;
  2883. for (int i = 0; i < n; ++i) {
  2884. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2885. memcpy(&t, &fp16, sizeof(uint16_t));
  2886. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2887. }
  2888. }
  2889. #else
  2890. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2891. for (int i = 0; i < n; ++i) {
  2892. y[i] = ggml_silu_f32(x[i]);
  2893. }
  2894. }
  2895. #endif
  2896. inline static float ggml_silu_backward_f32(float x, float dy) {
  2897. const float s = 1.0f/(1.0f + expf(-x));
  2898. return dy*s*(1.0f + x*(1.0f - s));
  2899. }
  2900. #ifdef GGML_SILU_FP16
  2901. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2902. for (int i = 0; i < n; ++i) {
  2903. // we did not use x[i] to compute forward silu but its f16 equivalent
  2904. // take derivative at f16 of x[i]:
  2905. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2906. float usedx = GGML_FP16_TO_FP32(fp16);
  2907. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2908. }
  2909. }
  2910. #else
  2911. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2912. for (int i = 0; i < n; ++i) {
  2913. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2914. }
  2915. }
  2916. #endif
  2917. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2918. #ifndef GGML_USE_ACCELERATE
  2919. ggml_float sum = 0.0;
  2920. for (int i = 0; i < n; ++i) {
  2921. sum += (ggml_float)x[i];
  2922. }
  2923. *s = sum;
  2924. #else
  2925. vDSP_sve(x, 1, s, n);
  2926. #endif
  2927. }
  2928. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2929. ggml_float sum = 0.0;
  2930. for (int i = 0; i < n; ++i) {
  2931. sum += (ggml_float)x[i];
  2932. }
  2933. *s = sum;
  2934. }
  2935. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2936. #ifndef GGML_USE_ACCELERATE
  2937. float max = -INFINITY;
  2938. for (int i = 0; i < n; ++i) {
  2939. max = MAX(max, x[i]);
  2940. }
  2941. *s = max;
  2942. #else
  2943. vDSP_maxv(x, 1, s, n);
  2944. #endif
  2945. }
  2946. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2947. ggml_vec_norm_f32(n, s, x);
  2948. *s = 1.f/(*s);
  2949. }
  2950. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2951. float max = -INFINITY;
  2952. int idx = 0;
  2953. for (int i = 0; i < n; ++i) {
  2954. max = MAX(max, x[i]);
  2955. if (max == x[i]) { idx = i; }
  2956. }
  2957. *s = idx;
  2958. }
  2959. //
  2960. // data types
  2961. //
  2962. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2963. [GGML_TYPE_F32] = 1,
  2964. [GGML_TYPE_F16] = 1,
  2965. [GGML_TYPE_Q4_0] = QK4_0,
  2966. [GGML_TYPE_Q4_1] = QK4_1,
  2967. [GGML_TYPE_Q5_0] = QK5_0,
  2968. [GGML_TYPE_Q5_1] = QK5_1,
  2969. [GGML_TYPE_Q8_0] = QK8_0,
  2970. [GGML_TYPE_Q8_1] = QK8_1,
  2971. #ifdef GGML_USE_K_QUANTS
  2972. [GGML_TYPE_Q2_K] = QK_K,
  2973. [GGML_TYPE_Q3_K] = QK_K,
  2974. [GGML_TYPE_Q4_K] = QK_K,
  2975. [GGML_TYPE_Q5_K] = QK_K,
  2976. [GGML_TYPE_Q6_K] = QK_K,
  2977. [GGML_TYPE_Q8_K] = QK_K,
  2978. #endif
  2979. [GGML_TYPE_I8] = 1,
  2980. [GGML_TYPE_I16] = 1,
  2981. [GGML_TYPE_I32] = 1,
  2982. };
  2983. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2984. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2985. [GGML_TYPE_F32] = sizeof(float),
  2986. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2987. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2988. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2989. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2990. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2991. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2992. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2993. #ifdef GGML_USE_K_QUANTS
  2994. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2995. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2996. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2997. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2998. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2999. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3000. #endif
  3001. [GGML_TYPE_I8] = sizeof(int8_t),
  3002. [GGML_TYPE_I16] = sizeof(int16_t),
  3003. [GGML_TYPE_I32] = sizeof(int32_t),
  3004. };
  3005. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3006. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3007. [GGML_TYPE_F32] = "f32",
  3008. [GGML_TYPE_F16] = "f16",
  3009. [GGML_TYPE_Q4_0] = "q4_0",
  3010. [GGML_TYPE_Q4_1] = "q4_1",
  3011. [GGML_TYPE_Q5_0] = "q5_0",
  3012. [GGML_TYPE_Q5_1] = "q5_1",
  3013. [GGML_TYPE_Q8_0] = "q8_0",
  3014. [GGML_TYPE_Q8_1] = "q8_1",
  3015. [GGML_TYPE_Q2_K] = "q2_K",
  3016. [GGML_TYPE_Q3_K] = "q3_K",
  3017. [GGML_TYPE_Q4_K] = "q4_K",
  3018. [GGML_TYPE_Q5_K] = "q5_K",
  3019. [GGML_TYPE_Q6_K] = "q6_K",
  3020. [GGML_TYPE_Q8_K] = "q8_K",
  3021. [GGML_TYPE_I8] = "i8",
  3022. [GGML_TYPE_I16] = "i16",
  3023. [GGML_TYPE_I32] = "i32",
  3024. };
  3025. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3026. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3027. [GGML_TYPE_F32] = false,
  3028. [GGML_TYPE_F16] = false,
  3029. [GGML_TYPE_Q4_0] = true,
  3030. [GGML_TYPE_Q4_1] = true,
  3031. [GGML_TYPE_Q5_0] = true,
  3032. [GGML_TYPE_Q5_1] = true,
  3033. [GGML_TYPE_Q8_0] = true,
  3034. [GGML_TYPE_Q8_1] = true,
  3035. [GGML_TYPE_Q2_K] = true,
  3036. [GGML_TYPE_Q3_K] = true,
  3037. [GGML_TYPE_Q4_K] = true,
  3038. [GGML_TYPE_Q5_K] = true,
  3039. [GGML_TYPE_Q6_K] = true,
  3040. [GGML_TYPE_Q8_K] = true,
  3041. [GGML_TYPE_I8] = false,
  3042. [GGML_TYPE_I16] = false,
  3043. [GGML_TYPE_I32] = false,
  3044. };
  3045. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3046. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3047. "NONE",
  3048. "DUP",
  3049. "ADD",
  3050. "ADD1",
  3051. "ACC",
  3052. "SUB",
  3053. "MUL",
  3054. "DIV",
  3055. "SQR",
  3056. "SQRT",
  3057. "LOG",
  3058. "SUM",
  3059. "SUM_ROWS",
  3060. "MEAN",
  3061. "ARGMAX",
  3062. "REPEAT",
  3063. "REPEAT_BACK",
  3064. "ABS",
  3065. "SGN",
  3066. "NEG",
  3067. "STEP",
  3068. "TANH",
  3069. "ELU",
  3070. "RELU",
  3071. "GELU",
  3072. "GELU_QUICK",
  3073. "SILU",
  3074. "SILU_BACK",
  3075. "NORM",
  3076. "RMS_NORM",
  3077. "RMS_NORM_BACK",
  3078. "MUL_MAT",
  3079. "OUT_PROD",
  3080. "SCALE",
  3081. "SET",
  3082. "CPY",
  3083. "CONT",
  3084. "RESHAPE",
  3085. "VIEW",
  3086. "PERMUTE",
  3087. "TRANSPOSE",
  3088. "GET_ROWS",
  3089. "GET_ROWS_BACK",
  3090. "DIAG",
  3091. "DIAG_MASK_INF",
  3092. "DIAG_MASK_ZERO",
  3093. "SOFT_MAX",
  3094. "SOFT_MAX_BACK",
  3095. "ROPE",
  3096. "ROPE_BACK",
  3097. "ALIBI",
  3098. "CLAMP",
  3099. "CONV_1D",
  3100. "CONV_2D",
  3101. "FLASH_ATTN",
  3102. "FLASH_FF",
  3103. "FLASH_ATTN_BACK",
  3104. "WIN_PART",
  3105. "WIN_UNPART",
  3106. "MAP_UNARY",
  3107. "MAP_BINARY",
  3108. "MAP_CUSTOM1",
  3109. "MAP_CUSTOM2",
  3110. "MAP_CUSTOM3",
  3111. "CROSS_ENTROPY_LOSS",
  3112. "CROSS_ENTROPY_LOSS_BACK",
  3113. };
  3114. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3115. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3116. "none",
  3117. "x",
  3118. "x+y",
  3119. "x+y",
  3120. "view(x,nb,offset)+=y->x",
  3121. "x-y",
  3122. "x*y",
  3123. "x/y",
  3124. "x^2",
  3125. "√x",
  3126. "log(x)",
  3127. "Σx",
  3128. "Σx_k",
  3129. "Σx/n",
  3130. "argmax(x)",
  3131. "repeat(x)",
  3132. "repeat_back(x)",
  3133. "abs(x)",
  3134. "sgn(x)",
  3135. "-x",
  3136. "step(x)",
  3137. "tanh(x)",
  3138. "elu(x)",
  3139. "relu(x)",
  3140. "gelu(x)",
  3141. "gelu_quick(x)",
  3142. "silu(x)",
  3143. "silu_back(x)",
  3144. "norm(x)",
  3145. "rms_norm(x)",
  3146. "rms_norm_back(x)",
  3147. "X*Y",
  3148. "X*Y",
  3149. "x*v",
  3150. "y-\\>view(x)",
  3151. "x-\\>y",
  3152. "cont(x)",
  3153. "reshape(x)",
  3154. "view(x)",
  3155. "permute(x)",
  3156. "transpose(x)",
  3157. "get_rows(x)",
  3158. "get_rows_back(x)",
  3159. "diag(x)",
  3160. "diag_mask_inf(x)",
  3161. "diag_mask_zero(x)",
  3162. "soft_max(x)",
  3163. "soft_max_back(x)",
  3164. "rope(x)",
  3165. "rope_back(x)",
  3166. "alibi(x)",
  3167. "clamp(x)",
  3168. "conv_1d(x)",
  3169. "conv_2d(x)",
  3170. "flash_attn(x)",
  3171. "flash_ff(x)",
  3172. "flash_attn_back(x)",
  3173. "win_part(x)",
  3174. "win_unpart(x)",
  3175. "f(x)",
  3176. "f(x,y)",
  3177. "custom(x)",
  3178. "custom(x,y)",
  3179. "custom(x,y,z)",
  3180. "cross_entropy_loss(x,y)",
  3181. "cross_entropy_loss_back(x,y)",
  3182. };
  3183. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3184. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3185. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3186. // WARN:
  3187. // Mis-confguration can lead to problem that's hard to reason about:
  3188. // * At best it crash or talks nosense.
  3189. // * At worst it talks slightly difference but hard to perceive.
  3190. //
  3191. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3192. // Take care about compile options (e.g., GGML_USE_xxx).
  3193. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3194. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3195. static void ggml_setup_op_has_task_pass(void) {
  3196. { // INIT
  3197. bool * p = GGML_OP_HAS_INIT;
  3198. p[GGML_OP_ACC ] = true;
  3199. p[GGML_OP_MUL_MAT ] = true;
  3200. p[GGML_OP_OUT_PROD ] = true;
  3201. p[GGML_OP_SET ] = true;
  3202. p[GGML_OP_GET_ROWS_BACK ] = true;
  3203. p[GGML_OP_DIAG_MASK_INF ] = true;
  3204. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3205. p[GGML_OP_CONV_1D ] = true;
  3206. p[GGML_OP_CONV_2D ] = true;
  3207. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3208. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3209. }
  3210. { // FINALIZE
  3211. bool * p = GGML_OP_HAS_FINALIZE;
  3212. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3213. }
  3214. }
  3215. //
  3216. // ggml context
  3217. //
  3218. struct ggml_context {
  3219. size_t mem_size;
  3220. void * mem_buffer;
  3221. bool mem_buffer_owned;
  3222. bool no_alloc;
  3223. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3224. int n_objects;
  3225. struct ggml_object * objects_begin;
  3226. struct ggml_object * objects_end;
  3227. struct ggml_scratch scratch;
  3228. struct ggml_scratch scratch_save;
  3229. };
  3230. struct ggml_context_container {
  3231. bool used;
  3232. struct ggml_context context;
  3233. };
  3234. //
  3235. // NUMA support
  3236. //
  3237. #define GGML_NUMA_MAX_NODES 8
  3238. #define GGML_NUMA_MAX_CPUS 512
  3239. struct ggml_numa_node {
  3240. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3241. uint32_t n_cpus;
  3242. };
  3243. struct ggml_numa_nodes {
  3244. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3245. uint32_t n_nodes;
  3246. uint32_t total_cpus; // hardware threads on system
  3247. };
  3248. //
  3249. // ggml state
  3250. //
  3251. struct ggml_state {
  3252. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3253. struct ggml_numa_nodes numa;
  3254. };
  3255. // global state
  3256. static struct ggml_state g_state;
  3257. static atomic_int g_state_barrier = 0;
  3258. // barrier via spin lock
  3259. inline static void ggml_critical_section_start(void) {
  3260. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3261. while (processing > 0) {
  3262. // wait for other threads to finish
  3263. atomic_fetch_sub(&g_state_barrier, 1);
  3264. sched_yield(); // TODO: reconsider this
  3265. processing = atomic_fetch_add(&g_state_barrier, 1);
  3266. }
  3267. }
  3268. // TODO: make this somehow automatically executed
  3269. // some sort of "sentry" mechanism
  3270. inline static void ggml_critical_section_end(void) {
  3271. atomic_fetch_sub(&g_state_barrier, 1);
  3272. }
  3273. void ggml_numa_init(void) {
  3274. if (g_state.numa.n_nodes > 0) {
  3275. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3276. return;
  3277. }
  3278. #ifdef __linux__
  3279. struct stat st;
  3280. char path[256];
  3281. int rv;
  3282. // enumerate nodes
  3283. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3284. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3285. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3286. if (stat(path, &st) != 0) { break; }
  3287. ++g_state.numa.n_nodes;
  3288. }
  3289. // enumerate CPUs
  3290. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3291. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3292. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3293. if (stat(path, &st) != 0) { break; }
  3294. ++g_state.numa.total_cpus;
  3295. }
  3296. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3297. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3298. g_state.numa.n_nodes = 0;
  3299. return;
  3300. }
  3301. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3302. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3303. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3304. node->n_cpus = 0;
  3305. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3306. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3307. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3308. if (stat(path, &st) == 0) {
  3309. node->cpus[node->n_cpus++] = c;
  3310. GGML_PRINT_DEBUG(" %u", c);
  3311. }
  3312. }
  3313. GGML_PRINT_DEBUG("\n");
  3314. }
  3315. if (ggml_is_numa()) {
  3316. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3317. if (fptr != NULL) {
  3318. char buf[42];
  3319. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3320. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3321. }
  3322. fclose(fptr);
  3323. }
  3324. }
  3325. #else
  3326. // TODO
  3327. #endif
  3328. }
  3329. bool ggml_is_numa(void) {
  3330. return g_state.numa.n_nodes > 1;
  3331. }
  3332. ////////////////////////////////////////////////////////////////////////////////
  3333. void ggml_print_object(const struct ggml_object * obj) {
  3334. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3335. obj->offs, obj->size, (const void *) obj->next);
  3336. }
  3337. void ggml_print_objects(const struct ggml_context * ctx) {
  3338. struct ggml_object * obj = ctx->objects_begin;
  3339. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3340. while (obj != NULL) {
  3341. ggml_print_object(obj);
  3342. obj = obj->next;
  3343. }
  3344. GGML_PRINT("%s: --- end ---\n", __func__);
  3345. }
  3346. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3348. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3349. }
  3350. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3353. }
  3354. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. // this should handle cases where the tensor is not contiguous in memory
  3357. // probaby just:
  3358. //
  3359. // return tensor->ne[3]*tensor->nb[3]
  3360. //
  3361. // is enough, but just in case, adding the second part
  3362. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3363. }
  3364. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3365. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3366. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3367. }
  3368. int ggml_blck_size(enum ggml_type type) {
  3369. return GGML_BLCK_SIZE[type];
  3370. }
  3371. size_t ggml_type_size(enum ggml_type type) {
  3372. return GGML_TYPE_SIZE[type];
  3373. }
  3374. float ggml_type_sizef(enum ggml_type type) {
  3375. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3376. }
  3377. const char * ggml_type_name(enum ggml_type type) {
  3378. return GGML_TYPE_NAME[type];
  3379. }
  3380. const char * ggml_op_name(enum ggml_op op) {
  3381. return GGML_OP_NAME[op];
  3382. }
  3383. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3384. return GGML_TYPE_SIZE[tensor->type];
  3385. }
  3386. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3387. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3388. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3389. }
  3390. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3391. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3392. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3393. }
  3394. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3395. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3396. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3397. }
  3398. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3399. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3400. return
  3401. (t0->ne[0] == t1->ne[0]) &&
  3402. (t0->ne[2] == t1->ne[2]) &&
  3403. (t0->ne[3] == t1->ne[3]);
  3404. }
  3405. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3406. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3407. return
  3408. (t0->ne[1] == t1->ne[1]) &&
  3409. (t0->ne[2] == t1->ne[2]) &&
  3410. (t0->ne[3] == t1->ne[3]);
  3411. }
  3412. bool ggml_is_quantized(enum ggml_type type) {
  3413. return GGML_IS_QUANTIZED[type];
  3414. }
  3415. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3416. enum ggml_type wtype = GGML_TYPE_COUNT;
  3417. switch (ftype) {
  3418. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3419. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3420. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3421. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3422. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3423. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3424. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3425. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3426. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3427. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3428. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3429. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3430. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3431. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3432. }
  3433. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3434. return wtype;
  3435. }
  3436. size_t ggml_tensor_overhead(void) {
  3437. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3438. }
  3439. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3440. return tensor->nb[0] > tensor->nb[1];
  3441. }
  3442. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3443. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3444. return
  3445. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3446. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3447. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3448. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3449. }
  3450. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3451. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3452. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3453. }
  3454. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3455. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3456. return
  3457. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3458. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3459. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3460. }
  3461. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3462. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3463. return
  3464. (t0->ne[0] == t1->ne[0] ) &&
  3465. (t0->ne[1] == t1->ne[1] ) &&
  3466. (t0->ne[2] == t1->ne[2] ) &&
  3467. (t0->ne[3] == t1->ne[3] );
  3468. }
  3469. // check if t1 can be represented as a repeatition of t0
  3470. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3471. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3472. return
  3473. (t1->ne[0]%t0->ne[0] == 0) &&
  3474. (t1->ne[1]%t0->ne[1] == 0) &&
  3475. (t1->ne[2]%t0->ne[2] == 0) &&
  3476. (t1->ne[3]%t0->ne[3] == 0);
  3477. }
  3478. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3479. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3480. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3481. }
  3482. static inline int ggml_up32(int n) {
  3483. return (n + 31) & ~31;
  3484. }
  3485. //static inline int ggml_up64(int n) {
  3486. // return (n + 63) & ~63;
  3487. //}
  3488. static inline int ggml_up(int n, int m) {
  3489. // assert m is a power of 2
  3490. GGML_ASSERT((m & (m - 1)) == 0);
  3491. return (n + m - 1) & ~(m - 1);
  3492. }
  3493. // assert that pointer is aligned to GGML_MEM_ALIGN
  3494. #define ggml_assert_aligned(ptr) \
  3495. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3496. ////////////////////////////////////////////////////////////////////////////////
  3497. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3498. // make this function thread safe
  3499. ggml_critical_section_start();
  3500. static bool is_first_call = true;
  3501. if (is_first_call) {
  3502. // initialize time system (required on Windows)
  3503. ggml_time_init();
  3504. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3505. {
  3506. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3507. ggml_fp16_t ii;
  3508. for (int i = 0; i < (1 << 16); ++i) {
  3509. uint16_t ui = i;
  3510. memcpy(&ii, &ui, sizeof(ii));
  3511. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3512. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3513. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3514. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3515. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3516. }
  3517. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3518. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3519. }
  3520. // initialize g_state
  3521. {
  3522. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3523. g_state = (struct ggml_state) {
  3524. /*.contexts =*/ { { 0 } },
  3525. /*.numa =*/ {
  3526. .n_nodes = 0,
  3527. .total_cpus = 0,
  3528. },
  3529. };
  3530. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3531. g_state.contexts[i].used = false;
  3532. }
  3533. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3534. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3535. }
  3536. #if defined(GGML_USE_CUBLAS)
  3537. ggml_init_cublas();
  3538. #elif defined(GGML_USE_CLBLAST)
  3539. ggml_cl_init();
  3540. #endif
  3541. ggml_setup_op_has_task_pass();
  3542. is_first_call = false;
  3543. }
  3544. // find non-used context in g_state
  3545. struct ggml_context * ctx = NULL;
  3546. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3547. if (!g_state.contexts[i].used) {
  3548. g_state.contexts[i].used = true;
  3549. ctx = &g_state.contexts[i].context;
  3550. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3551. break;
  3552. }
  3553. }
  3554. if (ctx == NULL) {
  3555. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3556. ggml_critical_section_end();
  3557. return NULL;
  3558. }
  3559. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3560. *ctx = (struct ggml_context) {
  3561. /*.mem_size =*/ mem_size,
  3562. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3563. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3564. /*.no_alloc =*/ params.no_alloc,
  3565. /*.no_alloc_save =*/ params.no_alloc,
  3566. /*.n_objects =*/ 0,
  3567. /*.objects_begin =*/ NULL,
  3568. /*.objects_end =*/ NULL,
  3569. /*.scratch =*/ { 0, 0, NULL, },
  3570. /*.scratch_save =*/ { 0, 0, NULL, },
  3571. };
  3572. GGML_ASSERT(ctx->mem_buffer != NULL);
  3573. ggml_assert_aligned(ctx->mem_buffer);
  3574. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3575. ggml_critical_section_end();
  3576. return ctx;
  3577. }
  3578. void ggml_free(struct ggml_context * ctx) {
  3579. // make this function thread safe
  3580. ggml_critical_section_start();
  3581. bool found = false;
  3582. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3583. if (&g_state.contexts[i].context == ctx) {
  3584. g_state.contexts[i].used = false;
  3585. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3586. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3587. if (ctx->mem_buffer_owned) {
  3588. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3589. }
  3590. found = true;
  3591. break;
  3592. }
  3593. }
  3594. if (!found) {
  3595. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3596. }
  3597. ggml_critical_section_end();
  3598. }
  3599. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3600. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3601. }
  3602. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3603. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3604. ctx->scratch = scratch;
  3605. return result;
  3606. }
  3607. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3608. ctx->no_alloc = no_alloc;
  3609. }
  3610. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3611. return ctx->mem_buffer;
  3612. }
  3613. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3614. return ctx->mem_size;
  3615. }
  3616. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3617. size_t max_size = 0;
  3618. struct ggml_object * obj = ctx->objects_begin;
  3619. while (obj != NULL) {
  3620. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3621. const size_t size = ggml_nbytes(tensor);
  3622. if (max_size < size) {
  3623. max_size = size;
  3624. }
  3625. obj = obj->next;
  3626. }
  3627. return max_size;
  3628. }
  3629. // IMPORTANT:
  3630. // when creating "opt" tensors, always save and load the scratch buffer
  3631. // this is an error prone process, but it is necessary to support inplace
  3632. // operators when using scratch buffers
  3633. // TODO: implement a better way
  3634. void ggml_scratch_save(struct ggml_context * ctx) {
  3635. // this is needed to allow opt tensors to store their data
  3636. // TODO: again, need to find a better way
  3637. ctx->no_alloc_save = ctx->no_alloc;
  3638. ctx->no_alloc = false;
  3639. ctx->scratch_save = ctx->scratch;
  3640. ctx->scratch.data = NULL;
  3641. }
  3642. void ggml_scratch_load(struct ggml_context * ctx) {
  3643. ctx->no_alloc = ctx->no_alloc_save;
  3644. ctx->scratch = ctx->scratch_save;
  3645. }
  3646. ////////////////////////////////////////////////////////////////////////////////
  3647. struct ggml_tensor * ggml_new_tensor_impl(
  3648. struct ggml_context * ctx,
  3649. enum ggml_type type,
  3650. int n_dims,
  3651. const int64_t* ne,
  3652. void* data) {
  3653. // always insert objects at the end of the context's memory pool
  3654. struct ggml_object * obj_cur = ctx->objects_end;
  3655. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3656. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3657. const size_t cur_end = cur_offs + cur_size;
  3658. size_t size_needed = 0;
  3659. if (data == NULL && !ctx->no_alloc) {
  3660. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3661. for (int i = 1; i < n_dims; i++) {
  3662. size_needed *= ne[i];
  3663. }
  3664. // align to GGML_MEM_ALIGN
  3665. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3666. }
  3667. char * const mem_buffer = ctx->mem_buffer;
  3668. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3669. if (ctx->scratch.data == NULL || data != NULL) {
  3670. size_needed += GGML_TENSOR_SIZE;
  3671. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3672. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3673. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3674. assert(false);
  3675. return NULL;
  3676. }
  3677. *obj_new = (struct ggml_object) {
  3678. .offs = cur_end + GGML_OBJECT_SIZE,
  3679. .size = size_needed,
  3680. .next = NULL,
  3681. };
  3682. } else {
  3683. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3684. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3685. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3686. assert(false);
  3687. return NULL;
  3688. }
  3689. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3690. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3691. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3692. assert(false);
  3693. return NULL;
  3694. }
  3695. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3696. *obj_new = (struct ggml_object) {
  3697. .offs = cur_end + GGML_OBJECT_SIZE,
  3698. .size = GGML_TENSOR_SIZE,
  3699. .next = NULL,
  3700. };
  3701. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3702. ctx->scratch.offs += size_needed;
  3703. }
  3704. if (obj_cur != NULL) {
  3705. obj_cur->next = obj_new;
  3706. } else {
  3707. // this is the first object in this context
  3708. ctx->objects_begin = obj_new;
  3709. }
  3710. ctx->objects_end = obj_new;
  3711. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3712. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3713. ggml_assert_aligned(result);
  3714. *result = (struct ggml_tensor) {
  3715. /*.type =*/ type,
  3716. /*.backend =*/ GGML_BACKEND_CPU,
  3717. /*.n_dims =*/ n_dims,
  3718. /*.ne =*/ { 1, 1, 1, 1 },
  3719. /*.nb =*/ { 0, 0, 0, 0 },
  3720. /*.op =*/ GGML_OP_NONE,
  3721. /*.is_param =*/ false,
  3722. /*.grad =*/ NULL,
  3723. /*.src0 =*/ NULL,
  3724. /*.src1 =*/ NULL,
  3725. /*.opt =*/ { NULL },
  3726. /*.perf_runs =*/ 0,
  3727. /*.perf_cycles =*/ 0,
  3728. /*.perf_time_us =*/ 0,
  3729. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3730. /*.name =*/ { 0 },
  3731. /*.extra =*/ NULL,
  3732. /*.padding =*/ { 0 },
  3733. };
  3734. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3735. //ggml_assert_aligned(result->data);
  3736. for (int i = 0; i < n_dims; i++) {
  3737. result->ne[i] = ne[i];
  3738. }
  3739. result->nb[0] = GGML_TYPE_SIZE[type];
  3740. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3741. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3742. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3743. }
  3744. ctx->n_objects++;
  3745. return result;
  3746. }
  3747. struct ggml_tensor * ggml_new_tensor(
  3748. struct ggml_context * ctx,
  3749. enum ggml_type type,
  3750. int n_dims,
  3751. const int64_t * ne) {
  3752. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3753. }
  3754. struct ggml_tensor * ggml_new_tensor_1d(
  3755. struct ggml_context * ctx,
  3756. enum ggml_type type,
  3757. int64_t ne0) {
  3758. return ggml_new_tensor(ctx, type, 1, &ne0);
  3759. }
  3760. struct ggml_tensor * ggml_new_tensor_2d(
  3761. struct ggml_context * ctx,
  3762. enum ggml_type type,
  3763. int64_t ne0,
  3764. int64_t ne1) {
  3765. const int64_t ne[2] = { ne0, ne1 };
  3766. return ggml_new_tensor(ctx, type, 2, ne);
  3767. }
  3768. struct ggml_tensor * ggml_new_tensor_3d(
  3769. struct ggml_context * ctx,
  3770. enum ggml_type type,
  3771. int64_t ne0,
  3772. int64_t ne1,
  3773. int64_t ne2) {
  3774. const int64_t ne[3] = { ne0, ne1, ne2 };
  3775. return ggml_new_tensor(ctx, type, 3, ne);
  3776. }
  3777. struct ggml_tensor * ggml_new_tensor_4d(
  3778. struct ggml_context * ctx,
  3779. enum ggml_type type,
  3780. int64_t ne0,
  3781. int64_t ne1,
  3782. int64_t ne2,
  3783. int64_t ne3) {
  3784. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3785. return ggml_new_tensor(ctx, type, 4, ne);
  3786. }
  3787. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3788. ggml_scratch_save(ctx);
  3789. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3790. ggml_scratch_load(ctx);
  3791. ggml_set_i32(result, value);
  3792. return result;
  3793. }
  3794. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3795. ggml_scratch_save(ctx);
  3796. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3797. ggml_scratch_load(ctx);
  3798. ggml_set_f32(result, value);
  3799. return result;
  3800. }
  3801. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3802. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3803. }
  3804. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3805. memset(tensor->data, 0, ggml_nbytes(tensor));
  3806. return tensor;
  3807. }
  3808. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3809. const int n = ggml_nrows(tensor);
  3810. const int nc = tensor->ne[0];
  3811. const size_t n1 = tensor->nb[1];
  3812. char * const data = tensor->data;
  3813. switch (tensor->type) {
  3814. case GGML_TYPE_I8:
  3815. {
  3816. assert(tensor->nb[0] == sizeof(int8_t));
  3817. for (int i = 0; i < n; i++) {
  3818. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3819. }
  3820. } break;
  3821. case GGML_TYPE_I16:
  3822. {
  3823. assert(tensor->nb[0] == sizeof(int16_t));
  3824. for (int i = 0; i < n; i++) {
  3825. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3826. }
  3827. } break;
  3828. case GGML_TYPE_I32:
  3829. {
  3830. assert(tensor->nb[0] == sizeof(int32_t));
  3831. for (int i = 0; i < n; i++) {
  3832. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3833. }
  3834. } break;
  3835. case GGML_TYPE_F16:
  3836. {
  3837. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3838. for (int i = 0; i < n; i++) {
  3839. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3840. }
  3841. } break;
  3842. case GGML_TYPE_F32:
  3843. {
  3844. assert(tensor->nb[0] == sizeof(float));
  3845. for (int i = 0; i < n; i++) {
  3846. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3847. }
  3848. } break;
  3849. default:
  3850. {
  3851. GGML_ASSERT(false);
  3852. } break;
  3853. }
  3854. return tensor;
  3855. }
  3856. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3857. const int n = ggml_nrows(tensor);
  3858. const int nc = tensor->ne[0];
  3859. const size_t n1 = tensor->nb[1];
  3860. char * const data = tensor->data;
  3861. switch (tensor->type) {
  3862. case GGML_TYPE_I8:
  3863. {
  3864. assert(tensor->nb[0] == sizeof(int8_t));
  3865. for (int i = 0; i < n; i++) {
  3866. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3867. }
  3868. } break;
  3869. case GGML_TYPE_I16:
  3870. {
  3871. assert(tensor->nb[0] == sizeof(int16_t));
  3872. for (int i = 0; i < n; i++) {
  3873. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3874. }
  3875. } break;
  3876. case GGML_TYPE_I32:
  3877. {
  3878. assert(tensor->nb[0] == sizeof(int32_t));
  3879. for (int i = 0; i < n; i++) {
  3880. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3881. }
  3882. } break;
  3883. case GGML_TYPE_F16:
  3884. {
  3885. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3886. for (int i = 0; i < n; i++) {
  3887. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3888. }
  3889. } break;
  3890. case GGML_TYPE_F32:
  3891. {
  3892. assert(tensor->nb[0] == sizeof(float));
  3893. for (int i = 0; i < n; i++) {
  3894. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3895. }
  3896. } break;
  3897. default:
  3898. {
  3899. GGML_ASSERT(false);
  3900. } break;
  3901. }
  3902. return tensor;
  3903. }
  3904. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3905. switch (tensor->type) {
  3906. case GGML_TYPE_I8:
  3907. {
  3908. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3909. return ((int8_t *)(tensor->data))[i];
  3910. } break;
  3911. case GGML_TYPE_I16:
  3912. {
  3913. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3914. return ((int16_t *)(tensor->data))[i];
  3915. } break;
  3916. case GGML_TYPE_I32:
  3917. {
  3918. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3919. return ((int32_t *)(tensor->data))[i];
  3920. } break;
  3921. case GGML_TYPE_F16:
  3922. {
  3923. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3924. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3925. } break;
  3926. case GGML_TYPE_F32:
  3927. {
  3928. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3929. return ((float *)(tensor->data))[i];
  3930. } break;
  3931. default:
  3932. {
  3933. GGML_ASSERT(false);
  3934. } break;
  3935. }
  3936. return 0.0f;
  3937. }
  3938. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3939. switch (tensor->type) {
  3940. case GGML_TYPE_I8:
  3941. {
  3942. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3943. ((int8_t *)(tensor->data))[i] = value;
  3944. } break;
  3945. case GGML_TYPE_I16:
  3946. {
  3947. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3948. ((int16_t *)(tensor->data))[i] = value;
  3949. } break;
  3950. case GGML_TYPE_I32:
  3951. {
  3952. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3953. ((int32_t *)(tensor->data))[i] = value;
  3954. } break;
  3955. case GGML_TYPE_F16:
  3956. {
  3957. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3958. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3959. } break;
  3960. case GGML_TYPE_F32:
  3961. {
  3962. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3963. ((float *)(tensor->data))[i] = value;
  3964. } break;
  3965. default:
  3966. {
  3967. GGML_ASSERT(false);
  3968. } break;
  3969. }
  3970. }
  3971. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3972. switch (tensor->type) {
  3973. case GGML_TYPE_I8:
  3974. {
  3975. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3976. return ((int8_t *)(tensor->data))[i];
  3977. } break;
  3978. case GGML_TYPE_I16:
  3979. {
  3980. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3981. return ((int16_t *)(tensor->data))[i];
  3982. } break;
  3983. case GGML_TYPE_I32:
  3984. {
  3985. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3986. return ((int32_t *)(tensor->data))[i];
  3987. } break;
  3988. case GGML_TYPE_F16:
  3989. {
  3990. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3991. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3992. } break;
  3993. case GGML_TYPE_F32:
  3994. {
  3995. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3996. return ((float *)(tensor->data))[i];
  3997. } break;
  3998. default:
  3999. {
  4000. GGML_ASSERT(false);
  4001. } break;
  4002. }
  4003. return 0.0f;
  4004. }
  4005. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4006. switch (tensor->type) {
  4007. case GGML_TYPE_I8:
  4008. {
  4009. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4010. ((int8_t *)(tensor->data))[i] = value;
  4011. } break;
  4012. case GGML_TYPE_I16:
  4013. {
  4014. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4015. ((int16_t *)(tensor->data))[i] = value;
  4016. } break;
  4017. case GGML_TYPE_I32:
  4018. {
  4019. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4020. ((int32_t *)(tensor->data))[i] = value;
  4021. } break;
  4022. case GGML_TYPE_F16:
  4023. {
  4024. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4025. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4026. } break;
  4027. case GGML_TYPE_F32:
  4028. {
  4029. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4030. ((float *)(tensor->data))[i] = value;
  4031. } break;
  4032. default:
  4033. {
  4034. GGML_ASSERT(false);
  4035. } break;
  4036. }
  4037. }
  4038. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4039. return tensor->data;
  4040. }
  4041. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4042. assert(tensor->type == GGML_TYPE_F32);
  4043. return (float *)(tensor->data);
  4044. }
  4045. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4046. return tensor->name;
  4047. }
  4048. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4049. strncpy(tensor->name, name, sizeof(tensor->name));
  4050. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4051. return tensor;
  4052. }
  4053. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4054. va_list args;
  4055. va_start(args, fmt);
  4056. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4057. va_end(args);
  4058. return tensor;
  4059. }
  4060. struct ggml_tensor * ggml_view_tensor(
  4061. struct ggml_context * ctx,
  4062. const struct ggml_tensor * src) {
  4063. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4064. ggml_format_name(result, "%s (view)", src->name);
  4065. result->nb[0] = src->nb[0];
  4066. result->nb[1] = src->nb[1];
  4067. result->nb[2] = src->nb[2];
  4068. result->nb[3] = src->nb[3];
  4069. return result;
  4070. }
  4071. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4072. struct ggml_object * obj = ctx->objects_begin;
  4073. char * const mem_buffer = ctx->mem_buffer;
  4074. while (obj != NULL) {
  4075. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4076. if (strcmp(cur->name, name) == 0) {
  4077. return cur;
  4078. }
  4079. obj = obj->next;
  4080. }
  4081. return NULL;
  4082. }
  4083. ////////////////////////////////////////////////////////////////////////////////
  4084. // ggml_dup
  4085. struct ggml_tensor * ggml_dup_impl(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a,
  4088. bool inplace) {
  4089. bool is_node = false;
  4090. if (!inplace && (a->grad)) {
  4091. is_node = true;
  4092. }
  4093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4094. result->op = GGML_OP_DUP;
  4095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4096. result->src0 = a;
  4097. result->src1 = NULL;
  4098. return result;
  4099. }
  4100. struct ggml_tensor * ggml_dup(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a) {
  4103. return ggml_dup_impl(ctx, a, false);
  4104. }
  4105. struct ggml_tensor * ggml_dup_inplace(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a) {
  4108. return ggml_dup_impl(ctx, a, true);
  4109. }
  4110. // ggml_add
  4111. struct ggml_tensor * ggml_add_impl(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a,
  4114. struct ggml_tensor * b,
  4115. bool inplace) {
  4116. GGML_ASSERT(ggml_are_same_shape(a, b));
  4117. bool is_node = false;
  4118. if (a->grad || b->grad) {
  4119. is_node = true;
  4120. }
  4121. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4122. result->op = GGML_OP_ADD;
  4123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4124. result->src0 = a;
  4125. result->src1 = b;
  4126. return result;
  4127. }
  4128. struct ggml_tensor * ggml_add(
  4129. struct ggml_context * ctx,
  4130. struct ggml_tensor * a,
  4131. struct ggml_tensor * b) {
  4132. return ggml_add_impl(ctx, a, b, false);
  4133. }
  4134. struct ggml_tensor * ggml_add_inplace(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b) {
  4138. return ggml_add_impl(ctx, a, b, true);
  4139. }
  4140. // ggml_add1
  4141. struct ggml_tensor * ggml_add1_impl(
  4142. struct ggml_context * ctx,
  4143. struct ggml_tensor * a,
  4144. struct ggml_tensor * b,
  4145. bool inplace) {
  4146. GGML_ASSERT(ggml_is_scalar(b));
  4147. GGML_ASSERT(ggml_is_padded_1d(a));
  4148. bool is_node = false;
  4149. if (a->grad || b->grad) {
  4150. is_node = true;
  4151. }
  4152. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4153. result->op = GGML_OP_ADD1;
  4154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4155. result->src0 = a;
  4156. result->src1 = b;
  4157. return result;
  4158. }
  4159. struct ggml_tensor * ggml_add1(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a,
  4162. struct ggml_tensor * b) {
  4163. return ggml_add1_impl(ctx, a, b, false);
  4164. }
  4165. struct ggml_tensor * ggml_add1_inplace(
  4166. struct ggml_context * ctx,
  4167. struct ggml_tensor * a,
  4168. struct ggml_tensor * b) {
  4169. return ggml_add1_impl(ctx, a, b, true);
  4170. }
  4171. // ggml_acc
  4172. struct ggml_tensor * ggml_acc_impl(
  4173. struct ggml_context * ctx,
  4174. struct ggml_tensor * a,
  4175. struct ggml_tensor * b,
  4176. size_t nb1,
  4177. size_t nb2,
  4178. size_t nb3,
  4179. size_t offset,
  4180. bool inplace) {
  4181. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4182. GGML_ASSERT(ggml_is_contiguous(a));
  4183. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4184. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4185. bool is_node = false;
  4186. if (!inplace && (a->grad || b->grad)) {
  4187. is_node = true;
  4188. }
  4189. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4190. ggml_scratch_save(ctx);
  4191. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4192. ((int32_t *) c->data)[0] = nb1;
  4193. ((int32_t *) c->data)[1] = nb2;
  4194. ((int32_t *) c->data)[2] = nb3;
  4195. ((int32_t *) c->data)[3] = offset;
  4196. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4197. ggml_scratch_load(ctx);
  4198. result->op = GGML_OP_ACC;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = b;
  4202. result->opt[0] = c;
  4203. return result;
  4204. }
  4205. struct ggml_tensor * ggml_acc(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a,
  4208. struct ggml_tensor * b,
  4209. size_t nb1,
  4210. size_t nb2,
  4211. size_t nb3,
  4212. size_t offset) {
  4213. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4214. }
  4215. struct ggml_tensor * ggml_acc_inplace(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. struct ggml_tensor * b,
  4219. size_t nb1,
  4220. size_t nb2,
  4221. size_t nb3,
  4222. size_t offset) {
  4223. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4224. }
  4225. // ggml_sub
  4226. struct ggml_tensor * ggml_sub_impl(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. struct ggml_tensor * b,
  4230. bool inplace) {
  4231. GGML_ASSERT(ggml_are_same_shape(a, b));
  4232. bool is_node = false;
  4233. if (!inplace && (a->grad || b->grad)) {
  4234. is_node = true;
  4235. }
  4236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4237. result->op = GGML_OP_SUB;
  4238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4239. result->src0 = a;
  4240. result->src1 = b;
  4241. return result;
  4242. }
  4243. struct ggml_tensor * ggml_sub(
  4244. struct ggml_context * ctx,
  4245. struct ggml_tensor * a,
  4246. struct ggml_tensor * b) {
  4247. return ggml_sub_impl(ctx, a, b, false);
  4248. }
  4249. struct ggml_tensor * ggml_sub_inplace(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b) {
  4253. return ggml_sub_impl(ctx, a, b, true);
  4254. }
  4255. // ggml_mul
  4256. struct ggml_tensor * ggml_mul_impl(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b,
  4260. bool inplace) {
  4261. // TODO: support less-strict constraint
  4262. // GGML_ASSERT(ggml_can_repeat(b, a));
  4263. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4264. bool is_node = false;
  4265. if (!inplace && (a->grad || b->grad)) {
  4266. // TODO: support backward pass for broadcasting
  4267. GGML_ASSERT(ggml_are_same_shape(a, b));
  4268. is_node = true;
  4269. }
  4270. if (inplace) {
  4271. GGML_ASSERT(is_node == false);
  4272. }
  4273. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4274. result->op = GGML_OP_MUL;
  4275. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4276. result->src0 = a;
  4277. result->src1 = b;
  4278. return result;
  4279. }
  4280. struct ggml_tensor * ggml_mul(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a,
  4283. struct ggml_tensor * b) {
  4284. return ggml_mul_impl(ctx, a, b, false);
  4285. }
  4286. struct ggml_tensor * ggml_mul_inplace(
  4287. struct ggml_context * ctx,
  4288. struct ggml_tensor * a,
  4289. struct ggml_tensor * b) {
  4290. return ggml_mul_impl(ctx, a, b, true);
  4291. }
  4292. // ggml_div
  4293. struct ggml_tensor * ggml_div_impl(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. struct ggml_tensor * b,
  4297. bool inplace) {
  4298. GGML_ASSERT(ggml_are_same_shape(a, b));
  4299. bool is_node = false;
  4300. if (!inplace && (a->grad || b->grad)) {
  4301. is_node = true;
  4302. }
  4303. if (inplace) {
  4304. GGML_ASSERT(is_node == false);
  4305. }
  4306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4307. result->op = GGML_OP_DIV;
  4308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4309. result->src0 = a;
  4310. result->src1 = b;
  4311. return result;
  4312. }
  4313. struct ggml_tensor * ggml_div(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a,
  4316. struct ggml_tensor * b) {
  4317. return ggml_div_impl(ctx, a, b, false);
  4318. }
  4319. struct ggml_tensor * ggml_div_inplace(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a,
  4322. struct ggml_tensor * b) {
  4323. return ggml_div_impl(ctx, a, b, true);
  4324. }
  4325. // ggml_sqr
  4326. struct ggml_tensor * ggml_sqr_impl(
  4327. struct ggml_context * ctx,
  4328. struct ggml_tensor * a,
  4329. bool inplace) {
  4330. bool is_node = false;
  4331. if (!inplace && (a->grad)) {
  4332. is_node = true;
  4333. }
  4334. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4335. result->op = GGML_OP_SQR;
  4336. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4337. result->src0 = a;
  4338. result->src1 = NULL;
  4339. return result;
  4340. }
  4341. struct ggml_tensor * ggml_sqr(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a) {
  4344. return ggml_sqr_impl(ctx, a, false);
  4345. }
  4346. struct ggml_tensor * ggml_sqr_inplace(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a) {
  4349. return ggml_sqr_impl(ctx, a, true);
  4350. }
  4351. // ggml_sqrt
  4352. struct ggml_tensor * ggml_sqrt_impl(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. bool inplace) {
  4356. bool is_node = false;
  4357. if (!inplace && (a->grad)) {
  4358. is_node = true;
  4359. }
  4360. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4361. result->op = GGML_OP_SQRT;
  4362. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4363. result->src0 = a;
  4364. result->src1 = NULL;
  4365. return result;
  4366. }
  4367. struct ggml_tensor * ggml_sqrt(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a) {
  4370. return ggml_sqrt_impl(ctx, a, false);
  4371. }
  4372. struct ggml_tensor * ggml_sqrt_inplace(
  4373. struct ggml_context * ctx,
  4374. struct ggml_tensor * a) {
  4375. return ggml_sqrt_impl(ctx, a, true);
  4376. }
  4377. // ggml_log
  4378. struct ggml_tensor * ggml_log_impl(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a,
  4381. bool inplace) {
  4382. bool is_node = false;
  4383. if (!inplace && (a->grad)) {
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4387. result->op = GGML_OP_LOG;
  4388. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4389. result->src0 = a;
  4390. result->src1 = NULL;
  4391. return result;
  4392. }
  4393. struct ggml_tensor * ggml_log(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a) {
  4396. return ggml_log_impl(ctx, a, false);
  4397. }
  4398. struct ggml_tensor * ggml_log_inplace(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a) {
  4401. return ggml_log_impl(ctx, a, true);
  4402. }
  4403. // ggml_sum
  4404. struct ggml_tensor * ggml_sum(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a) {
  4407. bool is_node = false;
  4408. if (a->grad) {
  4409. is_node = true;
  4410. }
  4411. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4412. result->op = GGML_OP_SUM;
  4413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4414. result->src0 = a;
  4415. result->src1 = NULL;
  4416. return result;
  4417. }
  4418. // ggml_sum_rows
  4419. struct ggml_tensor * ggml_sum_rows(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a) {
  4422. bool is_node = false;
  4423. if (a->grad) {
  4424. is_node = true;
  4425. }
  4426. int64_t ne[4] = {1,1,1,1};
  4427. for (int i=1; i<a->n_dims; ++i) {
  4428. ne[i] = a->ne[i];
  4429. }
  4430. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4431. result->op = GGML_OP_SUM_ROWS;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = NULL;
  4435. return result;
  4436. }
  4437. // ggml_mean
  4438. struct ggml_tensor * ggml_mean(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a) {
  4441. bool is_node = false;
  4442. if (a->grad) {
  4443. GGML_ASSERT(false); // TODO: implement
  4444. is_node = true;
  4445. }
  4446. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4447. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4448. result->op = GGML_OP_MEAN;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src0 = a;
  4451. result->src1 = NULL;
  4452. return result;
  4453. }
  4454. // ggml_argmax
  4455. struct ggml_tensor * ggml_argmax(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a) {
  4458. GGML_ASSERT(ggml_is_matrix(a));
  4459. bool is_node = false;
  4460. if (a->grad) {
  4461. GGML_ASSERT(false);
  4462. is_node = true;
  4463. }
  4464. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4465. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4466. result->op = GGML_OP_ARGMAX;
  4467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4468. result->src0 = a;
  4469. result->src1 = NULL;
  4470. return result;
  4471. }
  4472. // ggml_repeat
  4473. struct ggml_tensor * ggml_repeat(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. GGML_ASSERT(ggml_can_repeat(a, b));
  4478. bool is_node = false;
  4479. if (a->grad) {
  4480. is_node = true;
  4481. }
  4482. if (ggml_are_same_shape(a, b) && !is_node) {
  4483. return a;
  4484. }
  4485. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4486. result->op = GGML_OP_REPEAT;
  4487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4488. result->src0 = a;
  4489. result->src1 = b;
  4490. return result;
  4491. }
  4492. // ggml_repeat_back
  4493. struct ggml_tensor * ggml_repeat_back(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. GGML_ASSERT(ggml_can_repeat(b, a));
  4498. bool is_node = false;
  4499. if (a->grad) {
  4500. is_node = true;
  4501. }
  4502. if (ggml_are_same_shape(a, b) && !is_node) {
  4503. return a;
  4504. }
  4505. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4506. result->op = GGML_OP_REPEAT_BACK;
  4507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4508. result->src0 = a;
  4509. result->src1 = b;
  4510. return result;
  4511. }
  4512. // ggml_abs
  4513. struct ggml_tensor * ggml_abs_impl(
  4514. struct ggml_context * ctx,
  4515. struct ggml_tensor * a,
  4516. bool inplace) {
  4517. bool is_node = false;
  4518. if (!inplace && (a->grad)) {
  4519. is_node = true;
  4520. }
  4521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4522. result->op = GGML_OP_ABS;
  4523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4524. result->src0 = a;
  4525. result->src1 = NULL;
  4526. return result;
  4527. }
  4528. struct ggml_tensor * ggml_abs(
  4529. struct ggml_context * ctx,
  4530. struct ggml_tensor * a) {
  4531. return ggml_abs_impl(ctx, a, false);
  4532. }
  4533. struct ggml_tensor * ggml_abs_inplace(
  4534. struct ggml_context * ctx,
  4535. struct ggml_tensor * a) {
  4536. return ggml_abs_impl(ctx, a, true);
  4537. }
  4538. // ggml_sgn
  4539. struct ggml_tensor * ggml_sgn_impl(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a,
  4542. bool inplace) {
  4543. bool is_node = false;
  4544. if (!inplace && (a->grad)) {
  4545. is_node = true;
  4546. }
  4547. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4548. result->op = GGML_OP_SGN;
  4549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4550. result->src0 = a;
  4551. result->src1 = NULL;
  4552. return result;
  4553. }
  4554. struct ggml_tensor * ggml_sgn(
  4555. struct ggml_context * ctx,
  4556. struct ggml_tensor * a) {
  4557. return ggml_sgn_impl(ctx, a, false);
  4558. }
  4559. struct ggml_tensor * ggml_sgn_inplace(
  4560. struct ggml_context * ctx,
  4561. struct ggml_tensor * a) {
  4562. return ggml_sgn_impl(ctx, a, true);
  4563. }
  4564. // ggml_neg
  4565. struct ggml_tensor * ggml_neg_impl(
  4566. struct ggml_context * ctx,
  4567. struct ggml_tensor * a,
  4568. bool inplace) {
  4569. bool is_node = false;
  4570. if (!inplace && (a->grad)) {
  4571. is_node = true;
  4572. }
  4573. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4574. result->op = GGML_OP_NEG;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src0 = a;
  4577. result->src1 = NULL;
  4578. return result;
  4579. }
  4580. struct ggml_tensor * ggml_neg(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a) {
  4583. return ggml_neg_impl(ctx, a, false);
  4584. }
  4585. struct ggml_tensor * ggml_neg_inplace(
  4586. struct ggml_context * ctx,
  4587. struct ggml_tensor * a) {
  4588. return ggml_neg_impl(ctx, a, true);
  4589. }
  4590. // ggml_step
  4591. struct ggml_tensor * ggml_step_impl(
  4592. struct ggml_context * ctx,
  4593. struct ggml_tensor * a,
  4594. bool inplace) {
  4595. bool is_node = false;
  4596. if (!inplace && (a->grad)) {
  4597. is_node = true;
  4598. }
  4599. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4600. result->op = GGML_OP_STEP;
  4601. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4602. result->src0 = a;
  4603. result->src1 = NULL;
  4604. return result;
  4605. }
  4606. struct ggml_tensor * ggml_step(
  4607. struct ggml_context * ctx,
  4608. struct ggml_tensor * a) {
  4609. return ggml_step_impl(ctx, a, false);
  4610. }
  4611. struct ggml_tensor * ggml_step_inplace(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a) {
  4614. return ggml_step_impl(ctx, a, true);
  4615. }
  4616. // ggml_tanh
  4617. struct ggml_tensor * ggml_tanh_impl(
  4618. struct ggml_context * ctx,
  4619. struct ggml_tensor * a,
  4620. bool inplace) {
  4621. bool is_node = false;
  4622. if (!inplace && (a->grad)) {
  4623. is_node = true;
  4624. }
  4625. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4626. result->op = GGML_OP_TANH;
  4627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4628. result->src0 = a;
  4629. result->src1 = NULL;
  4630. return result;
  4631. }
  4632. struct ggml_tensor * ggml_tanh(
  4633. struct ggml_context * ctx,
  4634. struct ggml_tensor * a) {
  4635. return ggml_tanh_impl(ctx, a, false);
  4636. }
  4637. struct ggml_tensor * ggml_tanh_inplace(
  4638. struct ggml_context * ctx,
  4639. struct ggml_tensor * a) {
  4640. return ggml_tanh_impl(ctx, a, true);
  4641. }
  4642. // ggml_elu
  4643. struct ggml_tensor * ggml_elu_impl(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. bool inplace) {
  4647. bool is_node = false;
  4648. if (!inplace && (a->grad)) {
  4649. is_node = true;
  4650. }
  4651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4652. result->op = GGML_OP_ELU;
  4653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4654. result->src0 = a;
  4655. result->src1 = NULL;
  4656. return result;
  4657. }
  4658. struct ggml_tensor * ggml_elu(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a) {
  4661. return ggml_elu_impl(ctx, a, false);
  4662. }
  4663. struct ggml_tensor * ggml_elu_inplace(
  4664. struct ggml_context * ctx,
  4665. struct ggml_tensor * a) {
  4666. return ggml_elu_impl(ctx, a, true);
  4667. }
  4668. // ggml_relu
  4669. struct ggml_tensor * ggml_relu_impl(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. bool inplace) {
  4673. bool is_node = false;
  4674. if (!inplace && (a->grad)) {
  4675. is_node = true;
  4676. }
  4677. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4678. result->op = GGML_OP_RELU;
  4679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4680. result->src0 = a;
  4681. result->src1 = NULL;
  4682. return result;
  4683. }
  4684. struct ggml_tensor * ggml_relu(
  4685. struct ggml_context * ctx,
  4686. struct ggml_tensor * a) {
  4687. return ggml_relu_impl(ctx, a, false);
  4688. }
  4689. struct ggml_tensor * ggml_relu_inplace(
  4690. struct ggml_context * ctx,
  4691. struct ggml_tensor * a) {
  4692. return ggml_relu_impl(ctx, a, true);
  4693. }
  4694. // ggml_gelu
  4695. struct ggml_tensor * ggml_gelu_impl(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. bool inplace) {
  4699. bool is_node = false;
  4700. if (!inplace && (a->grad)) {
  4701. is_node = true;
  4702. }
  4703. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4704. result->op = GGML_OP_GELU;
  4705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4706. result->src0 = a;
  4707. result->src1 = NULL;
  4708. return result;
  4709. }
  4710. struct ggml_tensor * ggml_gelu(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a) {
  4713. return ggml_gelu_impl(ctx, a, false);
  4714. }
  4715. struct ggml_tensor * ggml_gelu_inplace(
  4716. struct ggml_context * ctx,
  4717. struct ggml_tensor * a) {
  4718. return ggml_gelu_impl(ctx, a, true);
  4719. }
  4720. // ggml_gelu_quick
  4721. struct ggml_tensor * ggml_gelu_quick_impl(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. bool inplace) {
  4725. bool is_node = false;
  4726. if (!inplace && (a->grad)) {
  4727. is_node = true;
  4728. }
  4729. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4730. result->op = GGML_OP_GELU_QUICK;
  4731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4732. result->src0 = a;
  4733. result->src1 = NULL;
  4734. return result;
  4735. }
  4736. struct ggml_tensor * ggml_gelu_quick(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a) {
  4739. return ggml_gelu_quick_impl(ctx, a, false);
  4740. }
  4741. struct ggml_tensor * ggml_gelu_quick_inplace(
  4742. struct ggml_context * ctx,
  4743. struct ggml_tensor * a) {
  4744. return ggml_gelu_quick_impl(ctx, a, true);
  4745. }
  4746. // ggml_silu
  4747. struct ggml_tensor * ggml_silu_impl(
  4748. struct ggml_context * ctx,
  4749. struct ggml_tensor * a,
  4750. bool inplace) {
  4751. bool is_node = false;
  4752. if (!inplace && (a->grad)) {
  4753. is_node = true;
  4754. }
  4755. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4756. result->op = GGML_OP_SILU;
  4757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4758. result->src0 = a;
  4759. result->src1 = NULL;
  4760. return result;
  4761. }
  4762. struct ggml_tensor * ggml_silu(
  4763. struct ggml_context * ctx,
  4764. struct ggml_tensor * a) {
  4765. return ggml_silu_impl(ctx, a, false);
  4766. }
  4767. struct ggml_tensor * ggml_silu_inplace(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a) {
  4770. return ggml_silu_impl(ctx, a, true);
  4771. }
  4772. // ggml_silu_back
  4773. struct ggml_tensor * ggml_silu_back(
  4774. struct ggml_context * ctx,
  4775. struct ggml_tensor * a,
  4776. struct ggml_tensor * b) {
  4777. bool is_node = false;
  4778. if (a->grad || b->grad) {
  4779. // TODO: implement backward
  4780. is_node = true;
  4781. }
  4782. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4783. result->op = GGML_OP_SILU_BACK;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src0 = a;
  4786. result->src1 = b;
  4787. return result;
  4788. }
  4789. // ggml_norm
  4790. struct ggml_tensor * ggml_norm_impl(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a,
  4793. bool inplace) {
  4794. bool is_node = false;
  4795. if (!inplace && (a->grad)) {
  4796. GGML_ASSERT(false); // TODO: implement backward
  4797. is_node = true;
  4798. }
  4799. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. result->op = GGML_OP_NORM;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src0 = a;
  4803. result->src1 = NULL; // TODO: maybe store epsilon here?
  4804. return result;
  4805. }
  4806. struct ggml_tensor * ggml_norm(
  4807. struct ggml_context * ctx,
  4808. struct ggml_tensor * a) {
  4809. return ggml_norm_impl(ctx, a, false);
  4810. }
  4811. struct ggml_tensor * ggml_norm_inplace(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a) {
  4814. return ggml_norm_impl(ctx, a, true);
  4815. }
  4816. struct ggml_tensor * ggml_rms_norm_impl(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. bool inplace) {
  4820. bool is_node = false;
  4821. if (!inplace && (a->grad)) {
  4822. is_node = true;
  4823. }
  4824. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4825. result->op = GGML_OP_RMS_NORM;
  4826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4827. result->src0 = a;
  4828. result->src1 = NULL; // TODO: maybe store epsilon here?
  4829. return result;
  4830. }
  4831. struct ggml_tensor * ggml_rms_norm(
  4832. struct ggml_context * ctx,
  4833. struct ggml_tensor * a) {
  4834. return ggml_rms_norm_impl(ctx, a, false);
  4835. }
  4836. struct ggml_tensor * ggml_rms_norm_inplace(
  4837. struct ggml_context * ctx,
  4838. struct ggml_tensor * a) {
  4839. return ggml_rms_norm_impl(ctx, a, true);
  4840. }
  4841. struct ggml_tensor * ggml_rms_norm_back(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. struct ggml_tensor * b) {
  4845. bool is_node = false;
  4846. if (a->grad) {
  4847. // TODO: implement backward
  4848. is_node = true;
  4849. }
  4850. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4851. result->op = GGML_OP_RMS_NORM_BACK;
  4852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4853. result->src0 = a;
  4854. result->src1 = b;
  4855. return result;
  4856. }
  4857. // ggml_mul_mat
  4858. struct ggml_tensor * ggml_mul_mat(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b) {
  4862. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4863. GGML_ASSERT(!ggml_is_transposed(a));
  4864. bool is_node = false;
  4865. if (a->grad || b->grad) {
  4866. is_node = true;
  4867. }
  4868. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4869. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4870. result->op = GGML_OP_MUL_MAT;
  4871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4872. result->src0 = a;
  4873. result->src1 = b;
  4874. return result;
  4875. }
  4876. // ggml_out_prod
  4877. struct ggml_tensor * ggml_out_prod(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b) {
  4881. GGML_ASSERT(ggml_can_out_prod(a, b));
  4882. GGML_ASSERT(!ggml_is_transposed(a));
  4883. bool is_node = false;
  4884. if (a->grad || b->grad) {
  4885. is_node = true;
  4886. }
  4887. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4888. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4889. result->op = GGML_OP_OUT_PROD;
  4890. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4891. result->src0 = a;
  4892. result->src1 = b;
  4893. return result;
  4894. }
  4895. // ggml_scale
  4896. struct ggml_tensor * ggml_scale_impl(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * a,
  4899. struct ggml_tensor * b,
  4900. bool inplace) {
  4901. GGML_ASSERT(ggml_is_scalar(b));
  4902. GGML_ASSERT(ggml_is_padded_1d(a));
  4903. bool is_node = false;
  4904. if (a->grad || b->grad) {
  4905. is_node = true;
  4906. }
  4907. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4908. result->op = GGML_OP_SCALE;
  4909. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4910. result->src0 = a;
  4911. result->src1 = b;
  4912. return result;
  4913. }
  4914. struct ggml_tensor * ggml_scale(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. struct ggml_tensor * b) {
  4918. return ggml_scale_impl(ctx, a, b, false);
  4919. }
  4920. struct ggml_tensor * ggml_scale_inplace(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. struct ggml_tensor * b) {
  4924. return ggml_scale_impl(ctx, a, b, true);
  4925. }
  4926. // ggml_set
  4927. struct ggml_tensor * ggml_set_impl(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. struct ggml_tensor * b,
  4931. size_t nb1,
  4932. size_t nb2,
  4933. size_t nb3,
  4934. size_t offset,
  4935. bool inplace) {
  4936. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4937. bool is_node = false;
  4938. if (a->grad || b->grad) {
  4939. is_node = true;
  4940. }
  4941. // make a view of the destination
  4942. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4943. ggml_scratch_save(ctx);
  4944. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4945. (( int32_t * ) c->data)[0] = nb1;
  4946. (( int32_t * ) c->data)[1] = nb2;
  4947. (( int32_t * ) c->data)[2] = nb3;
  4948. (( int32_t * ) c->data)[3] = offset;
  4949. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4950. ggml_scratch_load(ctx);
  4951. result->op = GGML_OP_SET;
  4952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4953. result->src0 = a;
  4954. result->src1 = b;
  4955. result->opt[0] = c;
  4956. return result;
  4957. }
  4958. struct ggml_tensor * ggml_set(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. struct ggml_tensor * b,
  4962. size_t nb1,
  4963. size_t nb2,
  4964. size_t nb3,
  4965. size_t offset) {
  4966. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4967. }
  4968. struct ggml_tensor * ggml_set_inplace(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. size_t nb1,
  4973. size_t nb2,
  4974. size_t nb3,
  4975. size_t offset) {
  4976. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4977. }
  4978. struct ggml_tensor * ggml_set_1d(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. size_t offset) {
  4983. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4984. }
  4985. struct ggml_tensor * ggml_set_1d_inplace(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. struct ggml_tensor * b,
  4989. size_t offset) {
  4990. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4991. }
  4992. struct ggml_tensor * ggml_set_2d(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b,
  4996. size_t nb1,
  4997. size_t offset) {
  4998. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4999. }
  5000. struct ggml_tensor * ggml_set_2d_inplace(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * b,
  5004. size_t nb1,
  5005. size_t offset) {
  5006. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5007. }
  5008. // ggml_cpy
  5009. struct ggml_tensor * ggml_cpy_impl(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * b,
  5013. bool inplace) {
  5014. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5015. bool is_node = false;
  5016. if (!inplace && (a->grad || b->grad)) {
  5017. is_node = true;
  5018. }
  5019. // make a view of the destination
  5020. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5021. if (strlen(b->name) > 0) {
  5022. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5023. } else {
  5024. ggml_format_name(result, "%s (copy)", a->name);
  5025. }
  5026. result->op = GGML_OP_CPY;
  5027. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5028. result->src0 = a;
  5029. result->src1 = b;
  5030. return result;
  5031. }
  5032. struct ggml_tensor * ggml_cpy(
  5033. struct ggml_context * ctx,
  5034. struct ggml_tensor * a,
  5035. struct ggml_tensor * b) {
  5036. return ggml_cpy_impl(ctx, a, b, false);
  5037. }
  5038. struct ggml_tensor * ggml_cpy_inplace(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. struct ggml_tensor * b) {
  5042. return ggml_cpy_impl(ctx, a, b, true);
  5043. }
  5044. // ggml_cont
  5045. struct ggml_tensor * ggml_cont_impl(
  5046. struct ggml_context * ctx,
  5047. struct ggml_tensor * a,
  5048. bool inplace) {
  5049. bool is_node = false;
  5050. if (!inplace && a->grad) {
  5051. is_node = true;
  5052. }
  5053. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5054. ggml_format_name(result, "%s (cont)", a->name);
  5055. result->op = GGML_OP_CONT;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src0 = a;
  5058. result->src1 = NULL;
  5059. return result;
  5060. }
  5061. struct ggml_tensor * ggml_cont(
  5062. struct ggml_context * ctx,
  5063. struct ggml_tensor * a) {
  5064. return ggml_cont_impl(ctx, a, false);
  5065. }
  5066. struct ggml_tensor * ggml_cont_inplace(
  5067. struct ggml_context * ctx,
  5068. struct ggml_tensor * a) {
  5069. return ggml_cont_impl(ctx, a, true);
  5070. }
  5071. // ggml_reshape
  5072. struct ggml_tensor * ggml_reshape(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * a,
  5075. struct ggml_tensor * b) {
  5076. GGML_ASSERT(ggml_is_contiguous(a));
  5077. GGML_ASSERT(ggml_is_contiguous(b));
  5078. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5079. bool is_node = false;
  5080. if (a->grad) {
  5081. is_node = true;
  5082. }
  5083. if (b->grad) {
  5084. // gradient propagation is not supported
  5085. //GGML_ASSERT(false);
  5086. }
  5087. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5088. ggml_format_name(result, "%s (reshaped)", a->name);
  5089. result->op = GGML_OP_RESHAPE;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src0 = a;
  5092. result->src1 = NULL;
  5093. return result;
  5094. }
  5095. struct ggml_tensor * ggml_reshape_1d(
  5096. struct ggml_context * ctx,
  5097. struct ggml_tensor * a,
  5098. int64_t ne0) {
  5099. GGML_ASSERT(ggml_is_contiguous(a));
  5100. GGML_ASSERT(ggml_nelements(a) == ne0);
  5101. bool is_node = false;
  5102. if (a->grad) {
  5103. is_node = true;
  5104. }
  5105. const int64_t ne[1] = { ne0 };
  5106. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5107. ggml_format_name(result, "%s (reshaped)", a->name);
  5108. result->op = GGML_OP_RESHAPE;
  5109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5110. result->src0 = a;
  5111. result->src1 = NULL;
  5112. return result;
  5113. }
  5114. struct ggml_tensor * ggml_reshape_2d(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. int64_t ne0,
  5118. int64_t ne1) {
  5119. GGML_ASSERT(ggml_is_contiguous(a));
  5120. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5121. bool is_node = false;
  5122. if (a->grad) {
  5123. is_node = true;
  5124. }
  5125. const int64_t ne[2] = { ne0, ne1 };
  5126. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5127. ggml_format_name(result, "%s (reshaped)", a->name);
  5128. result->op = GGML_OP_RESHAPE;
  5129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5130. result->src0 = a;
  5131. result->src1 = NULL;
  5132. return result;
  5133. }
  5134. struct ggml_tensor * ggml_reshape_3d(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. int64_t ne0,
  5138. int64_t ne1,
  5139. int64_t ne2) {
  5140. GGML_ASSERT(ggml_is_contiguous(a));
  5141. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5142. bool is_node = false;
  5143. if (a->grad) {
  5144. is_node = true;
  5145. }
  5146. const int64_t ne[3] = { ne0, ne1, ne2 };
  5147. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5148. ggml_format_name(result, "%s (reshaped)", a->name);
  5149. result->op = GGML_OP_RESHAPE;
  5150. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5151. result->src0 = a;
  5152. result->src1 = NULL;
  5153. return result;
  5154. }
  5155. struct ggml_tensor * ggml_reshape_4d(
  5156. struct ggml_context * ctx,
  5157. struct ggml_tensor * a,
  5158. int64_t ne0,
  5159. int64_t ne1,
  5160. int64_t ne2,
  5161. int64_t ne3) {
  5162. GGML_ASSERT(ggml_is_contiguous(a));
  5163. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5164. bool is_node = false;
  5165. if (a->grad) {
  5166. is_node = true;
  5167. }
  5168. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5169. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5170. ggml_format_name(result, "%s (reshaped)", a->name);
  5171. result->op = GGML_OP_RESHAPE;
  5172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5173. result->src0 = a;
  5174. result->src1 = NULL;
  5175. return result;
  5176. }
  5177. // ggml_view_1d
  5178. struct ggml_tensor * ggml_view_1d(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. int64_t ne0,
  5182. size_t offset) {
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. is_node = true;
  5186. }
  5187. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5188. ggml_format_name(result, "%s (view)", a->name);
  5189. ggml_scratch_save(ctx);
  5190. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5191. ggml_set_name(offs, "offset");
  5192. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5193. ggml_scratch_load(ctx);
  5194. result->op = GGML_OP_VIEW;
  5195. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5196. result->src0 = a;
  5197. result->src1 = NULL;
  5198. result->opt[0] = offs;
  5199. return result;
  5200. }
  5201. // ggml_view_2d
  5202. struct ggml_tensor * ggml_view_2d(
  5203. struct ggml_context * ctx,
  5204. struct ggml_tensor * a,
  5205. int64_t ne0,
  5206. int64_t ne1,
  5207. size_t nb1,
  5208. size_t offset) {
  5209. bool is_node = false;
  5210. if (a->grad) {
  5211. is_node = true;
  5212. }
  5213. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5214. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5215. ggml_format_name(result, "%s (view)", a->name);
  5216. ggml_scratch_save(ctx);
  5217. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5218. ggml_set_name(offs, "offset");
  5219. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5220. ggml_scratch_load(ctx);
  5221. result->nb[1] = nb1;
  5222. result->nb[2] = result->nb[1]*ne1;
  5223. result->nb[3] = result->nb[2];
  5224. result->op = GGML_OP_VIEW;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src0 = a;
  5227. result->src1 = NULL;
  5228. result->opt[0] = offs;
  5229. return result;
  5230. }
  5231. // ggml_view_3d
  5232. struct ggml_tensor * ggml_view_3d(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. int64_t ne0,
  5236. int64_t ne1,
  5237. int64_t ne2,
  5238. size_t nb1,
  5239. size_t nb2,
  5240. size_t offset) {
  5241. bool is_node = false;
  5242. if (a->grad) {
  5243. is_node = true;
  5244. }
  5245. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5246. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5247. ggml_format_name(result, "%s (view)", a->name);
  5248. ggml_scratch_save(ctx);
  5249. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5250. ggml_set_name(offs, "offset");
  5251. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5252. ggml_scratch_load(ctx);
  5253. result->nb[1] = nb1;
  5254. result->nb[2] = nb2;
  5255. result->nb[3] = result->nb[2]*ne2;
  5256. result->op = GGML_OP_VIEW;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src0 = a;
  5259. result->src1 = NULL;
  5260. result->opt[0] = offs;
  5261. return result;
  5262. }
  5263. // ggml_view_4d
  5264. struct ggml_tensor * ggml_view_4d(
  5265. struct ggml_context * ctx,
  5266. struct ggml_tensor * a,
  5267. int64_t ne0,
  5268. int64_t ne1,
  5269. int64_t ne2,
  5270. int64_t ne3,
  5271. size_t nb1,
  5272. size_t nb2,
  5273. size_t nb3,
  5274. size_t offset) {
  5275. bool is_node = false;
  5276. if (a->grad) {
  5277. is_node = true;
  5278. }
  5279. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5280. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5281. ggml_format_name(result, "%s (view)", a->name);
  5282. ggml_scratch_save(ctx);
  5283. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5284. ggml_set_name(offs, "offset");
  5285. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5286. ggml_scratch_load(ctx);
  5287. result->nb[1] = nb1;
  5288. result->nb[2] = nb2;
  5289. result->nb[3] = nb3;
  5290. result->op = GGML_OP_VIEW;
  5291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5292. result->src0 = a;
  5293. result->src1 = NULL;
  5294. result->opt[0] = offs;
  5295. return result;
  5296. }
  5297. // ggml_permute
  5298. struct ggml_tensor * ggml_permute(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. int axis0,
  5302. int axis1,
  5303. int axis2,
  5304. int axis3) {
  5305. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5306. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5307. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5308. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5309. GGML_ASSERT(axis0 != axis1);
  5310. GGML_ASSERT(axis0 != axis2);
  5311. GGML_ASSERT(axis0 != axis3);
  5312. GGML_ASSERT(axis1 != axis2);
  5313. GGML_ASSERT(axis1 != axis3);
  5314. GGML_ASSERT(axis2 != axis3);
  5315. bool is_node = false;
  5316. if (a->grad) {
  5317. is_node = true;
  5318. }
  5319. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5320. ggml_format_name(result, "%s (permuted)", a->name);
  5321. int ne[GGML_MAX_DIMS];
  5322. int nb[GGML_MAX_DIMS];
  5323. ne[axis0] = a->ne[0];
  5324. ne[axis1] = a->ne[1];
  5325. ne[axis2] = a->ne[2];
  5326. ne[axis3] = a->ne[3];
  5327. nb[axis0] = a->nb[0];
  5328. nb[axis1] = a->nb[1];
  5329. nb[axis2] = a->nb[2];
  5330. nb[axis3] = a->nb[3];
  5331. result->ne[0] = ne[0];
  5332. result->ne[1] = ne[1];
  5333. result->ne[2] = ne[2];
  5334. result->ne[3] = ne[3];
  5335. result->nb[0] = nb[0];
  5336. result->nb[1] = nb[1];
  5337. result->nb[2] = nb[2];
  5338. result->nb[3] = nb[3];
  5339. result->op = GGML_OP_PERMUTE;
  5340. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5341. result->src0 = a;
  5342. result->src1 = NULL;
  5343. if (is_node) {
  5344. ggml_scratch_save(ctx);
  5345. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5346. ((int32_t *) b->data)[0] = axis0;
  5347. ((int32_t *) b->data)[1] = axis1;
  5348. ((int32_t *) b->data)[2] = axis2;
  5349. ((int32_t *) b->data)[3] = axis3;
  5350. ggml_scratch_load(ctx);
  5351. result->opt[0] = b;
  5352. }
  5353. return result;
  5354. }
  5355. // ggml_transpose
  5356. struct ggml_tensor * ggml_transpose(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a) {
  5359. bool is_node = false;
  5360. if (a->grad) {
  5361. is_node = true;
  5362. }
  5363. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5364. ggml_format_name(result, "%s (transposed)", a->name);
  5365. result->ne[0] = a->ne[1];
  5366. result->ne[1] = a->ne[0];
  5367. result->nb[0] = a->nb[1];
  5368. result->nb[1] = a->nb[0];
  5369. result->op = GGML_OP_TRANSPOSE;
  5370. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5371. result->src0 = a;
  5372. result->src1 = NULL;
  5373. return result;
  5374. }
  5375. // ggml_get_rows
  5376. struct ggml_tensor * ggml_get_rows(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b) {
  5380. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5381. bool is_node = false;
  5382. if (a->grad || b->grad) {
  5383. is_node = true;
  5384. }
  5385. // TODO: implement non F32 return
  5386. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5387. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5388. result->op = GGML_OP_GET_ROWS;
  5389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5390. result->src0 = a;
  5391. result->src1 = b;
  5392. return result;
  5393. }
  5394. // ggml_get_rows_back
  5395. struct ggml_tensor * ggml_get_rows_back(
  5396. struct ggml_context * ctx,
  5397. struct ggml_tensor * a,
  5398. struct ggml_tensor * b,
  5399. struct ggml_tensor * c) {
  5400. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5401. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5402. bool is_node = false;
  5403. if (a->grad || b->grad) {
  5404. is_node = true;
  5405. }
  5406. // TODO: implement non F32 return
  5407. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5408. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5409. result->op = GGML_OP_GET_ROWS_BACK;
  5410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5411. result->src0 = a;
  5412. result->src1 = b;
  5413. result->opt[0] = c;
  5414. return result;
  5415. }
  5416. // ggml_diag
  5417. struct ggml_tensor * ggml_diag(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a) {
  5420. GGML_ASSERT(a->ne[1] == 1);
  5421. bool is_node = false;
  5422. if (a->grad) {
  5423. is_node = true;
  5424. }
  5425. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5426. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5427. result->op = GGML_OP_DIAG;
  5428. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5429. result->src0 = a;
  5430. result->src1 = NULL;
  5431. return result;
  5432. }
  5433. // ggml_diag_mask_inf
  5434. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. int n_past,
  5438. bool inplace) {
  5439. bool is_node = false;
  5440. if (a->grad) {
  5441. is_node = true;
  5442. }
  5443. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5444. ggml_scratch_save(ctx);
  5445. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5446. ((int32_t *) b->data)[0] = n_past;
  5447. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5448. ggml_scratch_load(ctx);
  5449. result->op = GGML_OP_DIAG_MASK_INF;
  5450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5451. result->src0 = a;
  5452. result->src1 = b;
  5453. return result;
  5454. }
  5455. struct ggml_tensor * ggml_diag_mask_inf(
  5456. struct ggml_context * ctx,
  5457. struct ggml_tensor * a,
  5458. int n_past) {
  5459. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5460. }
  5461. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5462. struct ggml_context * ctx,
  5463. struct ggml_tensor * a,
  5464. int n_past) {
  5465. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5466. }
  5467. // ggml_diag_mask_zero
  5468. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5469. struct ggml_context * ctx,
  5470. struct ggml_tensor * a,
  5471. int n_past,
  5472. bool inplace) {
  5473. bool is_node = false;
  5474. if (a->grad) {
  5475. is_node = true;
  5476. }
  5477. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5478. ggml_scratch_save(ctx);
  5479. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5480. ggml_set_name(b, "n_past, inplace");
  5481. ((int32_t *) b->data)[0] = n_past;
  5482. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5483. ggml_scratch_load(ctx);
  5484. result->op = GGML_OP_DIAG_MASK_ZERO;
  5485. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5486. result->src0 = a;
  5487. result->src1 = b;
  5488. return result;
  5489. }
  5490. struct ggml_tensor * ggml_diag_mask_zero(
  5491. struct ggml_context * ctx,
  5492. struct ggml_tensor * a,
  5493. int n_past) {
  5494. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5495. }
  5496. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. int n_past) {
  5500. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5501. }
  5502. // ggml_soft_max
  5503. struct ggml_tensor * ggml_soft_max_impl(
  5504. struct ggml_context * ctx,
  5505. struct ggml_tensor * a,
  5506. bool inplace) {
  5507. bool is_node = false;
  5508. if (a->grad) {
  5509. is_node = true;
  5510. }
  5511. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5512. result->op = GGML_OP_SOFT_MAX;
  5513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5514. result->src0 = a;
  5515. result->src1 = NULL;
  5516. return result;
  5517. }
  5518. struct ggml_tensor * ggml_soft_max(
  5519. struct ggml_context * ctx,
  5520. struct ggml_tensor * a) {
  5521. return ggml_soft_max_impl(ctx, a, false);
  5522. }
  5523. struct ggml_tensor * ggml_soft_max_inplace(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a) {
  5526. return ggml_soft_max_impl(ctx, a, true);
  5527. }
  5528. // ggml_soft_max_back
  5529. struct ggml_tensor * ggml_soft_max_back_impl(
  5530. struct ggml_context * ctx,
  5531. struct ggml_tensor * a,
  5532. struct ggml_tensor * b,
  5533. bool inplace) {
  5534. bool is_node = false;
  5535. if (a->grad || b->grad) {
  5536. is_node = true; // TODO : implement backward pass
  5537. }
  5538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5539. result->op = GGML_OP_SOFT_MAX_BACK;
  5540. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5541. result->src0 = a;
  5542. result->src1 = b;
  5543. return result;
  5544. }
  5545. struct ggml_tensor * ggml_soft_max_back(
  5546. struct ggml_context * ctx,
  5547. struct ggml_tensor * a,
  5548. struct ggml_tensor * b) {
  5549. return ggml_soft_max_back_impl(ctx, a, b, false);
  5550. }
  5551. struct ggml_tensor * ggml_soft_max_back_inplace(
  5552. struct ggml_context * ctx,
  5553. struct ggml_tensor * a,
  5554. struct ggml_tensor * b) {
  5555. return ggml_soft_max_back_impl(ctx, a, b, true);
  5556. }
  5557. // ggml_rope
  5558. struct ggml_tensor * ggml_rope_impl(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. int n_past,
  5562. int n_dims,
  5563. int mode,
  5564. int n_ctx,
  5565. bool inplace) {
  5566. GGML_ASSERT(n_past >= 0);
  5567. bool is_node = false;
  5568. if (a->grad) {
  5569. is_node = true;
  5570. }
  5571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5572. ggml_scratch_save(ctx);
  5573. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5574. ((int32_t *) b->data)[0] = n_past;
  5575. ((int32_t *) b->data)[1] = n_dims;
  5576. ((int32_t *) b->data)[2] = mode;
  5577. ((int32_t *) b->data)[3] = n_ctx;
  5578. ggml_scratch_load(ctx);
  5579. result->op = GGML_OP_ROPE;
  5580. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5581. result->src0 = a;
  5582. result->src1 = b;
  5583. return result;
  5584. }
  5585. struct ggml_tensor * ggml_rope(
  5586. struct ggml_context * ctx,
  5587. struct ggml_tensor * a,
  5588. int n_past,
  5589. int n_dims,
  5590. int mode,
  5591. int n_ctx) {
  5592. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5593. }
  5594. struct ggml_tensor * ggml_rope_inplace(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. int n_past,
  5598. int n_dims,
  5599. int mode,
  5600. int n_ctx) {
  5601. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5602. }
  5603. // ggml_rope_back
  5604. struct ggml_tensor * ggml_rope_back(
  5605. struct ggml_context * ctx,
  5606. struct ggml_tensor * a,
  5607. int n_past,
  5608. int n_dims,
  5609. int mode) {
  5610. GGML_ASSERT(n_past >= 0);
  5611. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5612. bool is_node = false;
  5613. if (a->grad) {
  5614. is_node = false; // TODO: implement backward
  5615. }
  5616. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5617. ggml_scratch_save(ctx);
  5618. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5619. ggml_set_name(b, "n_past, n_dims, mode");
  5620. ((int32_t *) b->data)[0] = n_past;
  5621. ((int32_t *) b->data)[1] = n_dims;
  5622. ((int32_t *) b->data)[2] = mode;
  5623. ggml_scratch_load(ctx);
  5624. result->op = GGML_OP_ROPE_BACK;
  5625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5626. result->src0 = a;
  5627. result->src1 = b;
  5628. return result;
  5629. }
  5630. // ggml_alibi
  5631. struct ggml_tensor * ggml_alibi(
  5632. struct ggml_context * ctx,
  5633. struct ggml_tensor * a,
  5634. int n_past,
  5635. int n_head,
  5636. float bias_max) {
  5637. GGML_ASSERT(n_past >= 0);
  5638. bool is_node = false;
  5639. if (a->grad) {
  5640. GGML_ASSERT(false); // TODO: implement backward
  5641. is_node = true;
  5642. }
  5643. // TODO: when implement backward, fix this:
  5644. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5645. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5646. ggml_scratch_save(ctx);
  5647. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5648. ((int32_t *) b->data)[0] = n_past;
  5649. ((int32_t *) b->data)[1] = n_head;
  5650. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5651. (((float *) b->data)[2]) = bias_max;
  5652. ggml_scratch_load(ctx);
  5653. result->op = GGML_OP_ALIBI;
  5654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5655. result->src0 = a;
  5656. result->src1 = b;
  5657. return result;
  5658. }
  5659. // ggml_clamp
  5660. struct ggml_tensor * ggml_clamp(
  5661. struct ggml_context * ctx,
  5662. struct ggml_tensor * a,
  5663. float min,
  5664. float max) {
  5665. bool is_node = false;
  5666. if (a->grad) {
  5667. GGML_ASSERT(false); // TODO: implement backward
  5668. is_node = true;
  5669. }
  5670. // TODO: when implement backward, fix this:
  5671. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5672. ggml_scratch_save(ctx);
  5673. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5674. ((float *) b->data)[0] = min;
  5675. ((float *) b->data)[1] = max;
  5676. ggml_scratch_load(ctx);
  5677. result->op = GGML_OP_CLAMP;
  5678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5679. result->src0 = a;
  5680. result->src1 = b;
  5681. return result;
  5682. }
  5683. // ggml_conv_1d
  5684. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5685. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5686. }
  5687. GGML_API struct ggml_tensor * ggml_conv_1d(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. struct ggml_tensor * b,
  5691. int s0,
  5692. int p0,
  5693. int d0) {
  5694. GGML_ASSERT(ggml_is_matrix(b));
  5695. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5696. bool is_node = false;
  5697. if (a->grad || b->grad) {
  5698. GGML_ASSERT(false); // TODO: implement backward
  5699. is_node = true;
  5700. }
  5701. const int64_t ne[4] = {
  5702. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5703. a->ne[2], 1, 1,
  5704. };
  5705. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5706. ggml_scratch_save(ctx);
  5707. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5708. ((int32_t*)c->data)[0] = s0;
  5709. ((int32_t*)c->data)[1] = p0;
  5710. ((int32_t*)c->data)[2] = d0;
  5711. ggml_scratch_load(ctx);
  5712. result->op = GGML_OP_CONV_1D;
  5713. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5714. result->src0 = a;
  5715. result->src1 = b;
  5716. result->opt[0] = c;
  5717. return result;
  5718. }
  5719. // ggml_conv_2d
  5720. struct ggml_tensor* ggml_conv_2d(
  5721. struct ggml_context* ctx,
  5722. struct ggml_tensor * a,
  5723. struct ggml_tensor * b,
  5724. int s0,
  5725. int s1,
  5726. int p0,
  5727. int p1,
  5728. int d0,
  5729. int d1) {
  5730. GGML_ASSERT(b->ne[3] == 1);
  5731. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5732. bool is_node = false;
  5733. if (a->grad || b->grad) {
  5734. GGML_ASSERT(false); // TODO: implement backward
  5735. is_node = true;
  5736. }
  5737. const int64_t ne[4] = {
  5738. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5739. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5740. a->ne[3], 1,
  5741. };
  5742. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5743. ggml_scratch_save(ctx);
  5744. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5745. ((int32_t*)c->data)[0] = s0;
  5746. ((int32_t*)c->data)[1] = s1;
  5747. ((int32_t*)c->data)[2] = p0;
  5748. ((int32_t*)c->data)[3] = p1;
  5749. ((int32_t*)c->data)[4] = d0;
  5750. ((int32_t*)c->data)[5] = d1;
  5751. ggml_scratch_load(ctx);
  5752. result->op = GGML_OP_CONV_2D;
  5753. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5754. result->src0 = a;
  5755. result->src1 = b;
  5756. result->opt[0] = c;
  5757. return result;
  5758. }
  5759. // ggml_conv_1d_ph
  5760. struct ggml_tensor* ggml_conv_1d_ph(
  5761. struct ggml_context * ctx,
  5762. struct ggml_tensor * a,
  5763. struct ggml_tensor * b,
  5764. int s,
  5765. int d) {
  5766. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5767. }
  5768. // ggml_flash_attn
  5769. struct ggml_tensor * ggml_flash_attn(
  5770. struct ggml_context * ctx,
  5771. struct ggml_tensor * q,
  5772. struct ggml_tensor * k,
  5773. struct ggml_tensor * v,
  5774. bool masked) {
  5775. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5776. // TODO: check if vT can be multiplied by (k*qT)
  5777. bool is_node = false;
  5778. if (q->grad || k->grad || v->grad) {
  5779. is_node = true;
  5780. }
  5781. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5782. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5783. result->op = GGML_OP_FLASH_ATTN;
  5784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5785. result->src0 = q;
  5786. result->src1 = k;
  5787. result->opt[0] = v;
  5788. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5789. return result;
  5790. }
  5791. // ggml_flash_ff
  5792. struct ggml_tensor * ggml_flash_ff(
  5793. struct ggml_context * ctx,
  5794. struct ggml_tensor * a,
  5795. struct ggml_tensor * b0,
  5796. struct ggml_tensor * b1,
  5797. struct ggml_tensor * c0,
  5798. struct ggml_tensor * c1) {
  5799. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5800. // TODO: more checks
  5801. bool is_node = false;
  5802. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5803. is_node = true;
  5804. }
  5805. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5806. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5807. result->op = GGML_OP_FLASH_FF;
  5808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5809. result->src0 = a;
  5810. result->src1 = b0;
  5811. result->opt[0] = b1;
  5812. result->opt[1] = c0;
  5813. result->opt[2] = c1;
  5814. return result;
  5815. }
  5816. // ggml_flash_attn_back
  5817. struct ggml_tensor * ggml_flash_attn_back(
  5818. struct ggml_context * ctx,
  5819. struct ggml_tensor * q,
  5820. struct ggml_tensor * k,
  5821. struct ggml_tensor * v,
  5822. struct ggml_tensor * d,
  5823. bool masked) {
  5824. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5825. // TODO: check if vT can be multiplied by (k*qT)
  5826. // d shape [D,N,ne2,ne3]
  5827. // q shape [D,N,ne2,ne3]
  5828. // k shape [D,M,ne2,ne3]
  5829. // v shape [M,D,ne2,ne3]
  5830. const int64_t D = q->ne[0];
  5831. const int64_t N = q->ne[1];
  5832. const int64_t M = k->ne[1];
  5833. const int64_t ne2 = q->ne[2];
  5834. const int64_t ne3 = q->ne[3];
  5835. GGML_ASSERT(k->ne[0] == D);
  5836. GGML_ASSERT(v->ne[0] == M);
  5837. GGML_ASSERT(v->ne[1] == D);
  5838. GGML_ASSERT(d->ne[0] == D);
  5839. GGML_ASSERT(d->ne[1] == N);
  5840. GGML_ASSERT(k->ne[2] == ne2);
  5841. GGML_ASSERT(k->ne[3] == ne3);
  5842. GGML_ASSERT(v->ne[2] == ne2);
  5843. GGML_ASSERT(v->ne[3] == ne3);
  5844. GGML_ASSERT(d->ne[2] == ne2);
  5845. GGML_ASSERT(d->ne[3] == ne3);
  5846. bool is_node = false;
  5847. if (q->grad || k->grad || v->grad) {
  5848. // when using this operation (in backwards pass) these grads are set.
  5849. // we don't want to create (big) grad of our result, so is_node is false.
  5850. is_node = false;
  5851. }
  5852. // store gradients of q, k and v as continuous tensors concatenated in result.
  5853. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5854. // gradq->data = result->data
  5855. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5856. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5857. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5858. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5859. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5860. result->op = GGML_OP_FLASH_ATTN_BACK;
  5861. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5862. result->src0 = q;
  5863. result->src1 = k;
  5864. result->opt[0] = v;
  5865. result->opt[1] = d;
  5866. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5867. return result;
  5868. }
  5869. // ggml_win_part
  5870. struct ggml_tensor * ggml_win_part(
  5871. struct ggml_context * ctx,
  5872. struct ggml_tensor * a,
  5873. int w) {
  5874. GGML_ASSERT(a->ne[3] == 1);
  5875. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5876. bool is_node = false;
  5877. if (a->grad) {
  5878. GGML_ASSERT(false); // TODO: implement backward
  5879. is_node = true;
  5880. }
  5881. // padding
  5882. const int px = (w - a->ne[1]%w)%w;
  5883. const int py = (w - a->ne[2]%w)%w;
  5884. const int npx = (px + a->ne[1])/w;
  5885. const int npy = (py + a->ne[2])/w;
  5886. const int np = npx*npy;
  5887. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5888. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5889. ggml_scratch_save(ctx);
  5890. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5891. ((int32_t *) b->data)[0] = npx;
  5892. ((int32_t *) b->data)[1] = npy;
  5893. ((int32_t *) b->data)[2] = w;
  5894. ggml_scratch_load(ctx);
  5895. result->op = GGML_OP_WIN_PART;
  5896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5897. result->src0 = a;
  5898. result->src1 = NULL;
  5899. result->opt[0] = b;
  5900. return result;
  5901. }
  5902. // ggml_win_unpart
  5903. struct ggml_tensor * ggml_win_unpart(
  5904. struct ggml_context * ctx,
  5905. struct ggml_tensor * a,
  5906. int w0,
  5907. int h0,
  5908. int w) {
  5909. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5910. bool is_node = false;
  5911. if (a->grad) {
  5912. GGML_ASSERT(false); // TODO: implement backward
  5913. is_node = true;
  5914. }
  5915. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5916. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5917. ggml_scratch_save(ctx);
  5918. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5919. ((int32_t *) b->data)[0] = w;
  5920. ggml_scratch_load(ctx);
  5921. result->op = GGML_OP_WIN_UNPART;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src0 = a;
  5924. result->src1 = NULL;
  5925. result->opt[0] = b;
  5926. return result;
  5927. }
  5928. // ggml_map_unary
  5929. struct ggml_tensor * ggml_map_unary_impl_f32(
  5930. struct ggml_context * ctx,
  5931. struct ggml_tensor * a,
  5932. const ggml_unary_op_f32_t fun,
  5933. bool inplace) {
  5934. bool is_node = false;
  5935. if (!inplace && a->grad) {
  5936. is_node = true;
  5937. }
  5938. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5939. ggml_scratch_save(ctx);
  5940. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5941. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5942. ggml_scratch_load(ctx);
  5943. result->op = GGML_OP_MAP_UNARY;
  5944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5945. result->src0 = a;
  5946. result->opt[0] = addr_tensor;
  5947. return result;
  5948. }
  5949. struct ggml_tensor * ggml_map_unary_f32(
  5950. struct ggml_context * ctx,
  5951. struct ggml_tensor * a,
  5952. const ggml_unary_op_f32_t fun) {
  5953. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5954. }
  5955. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5956. struct ggml_context * ctx,
  5957. struct ggml_tensor * a,
  5958. const ggml_unary_op_f32_t fun) {
  5959. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5960. }
  5961. // ggml_map_binary
  5962. struct ggml_tensor * ggml_map_binary_impl_f32(
  5963. struct ggml_context * ctx,
  5964. struct ggml_tensor * a,
  5965. struct ggml_tensor * b,
  5966. const ggml_binary_op_f32_t fun,
  5967. bool inplace) {
  5968. GGML_ASSERT(ggml_are_same_shape(a, b));
  5969. bool is_node = false;
  5970. if (!inplace && (a->grad || b->grad)) {
  5971. is_node = true;
  5972. }
  5973. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5974. ggml_scratch_save(ctx);
  5975. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5976. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5977. ggml_scratch_load(ctx);
  5978. result->op = GGML_OP_MAP_BINARY;
  5979. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5980. result->src0 = a;
  5981. result->src1 = b;
  5982. result->opt[0] = addr_tensor;
  5983. return result;
  5984. }
  5985. struct ggml_tensor * ggml_map_binary_f32(
  5986. struct ggml_context * ctx,
  5987. struct ggml_tensor * a,
  5988. struct ggml_tensor * b,
  5989. const ggml_binary_op_f32_t fun) {
  5990. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5991. }
  5992. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5993. struct ggml_context * ctx,
  5994. struct ggml_tensor * a,
  5995. struct ggml_tensor * b,
  5996. const ggml_binary_op_f32_t fun) {
  5997. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5998. }
  5999. // ggml_map_custom1
  6000. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6001. struct ggml_context * ctx,
  6002. struct ggml_tensor * a,
  6003. const ggml_custom1_op_f32_t fun,
  6004. bool inplace) {
  6005. bool is_node = false;
  6006. if (!inplace && a->grad) {
  6007. is_node = true;
  6008. }
  6009. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6010. ggml_scratch_save(ctx);
  6011. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6012. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6013. ggml_scratch_load(ctx);
  6014. result->op = GGML_OP_MAP_CUSTOM1;
  6015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6016. result->src0 = a;
  6017. result->opt[0] = addr_tensor;
  6018. return result;
  6019. }
  6020. struct ggml_tensor * ggml_map_custom1_f32(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. const ggml_custom1_op_f32_t fun) {
  6024. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6025. }
  6026. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6027. struct ggml_context * ctx,
  6028. struct ggml_tensor * a,
  6029. const ggml_custom1_op_f32_t fun) {
  6030. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6031. }
  6032. // ggml_map_custom2
  6033. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * a,
  6036. struct ggml_tensor * b,
  6037. const ggml_custom2_op_f32_t fun,
  6038. bool inplace) {
  6039. bool is_node = false;
  6040. if (!inplace && (a->grad || b->grad)) {
  6041. is_node = true;
  6042. }
  6043. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6044. ggml_scratch_save(ctx);
  6045. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6046. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6047. ggml_scratch_load(ctx);
  6048. result->op = GGML_OP_MAP_CUSTOM2;
  6049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6050. result->src0 = a;
  6051. result->src1 = b;
  6052. result->opt[0] = addr_tensor;
  6053. return result;
  6054. }
  6055. struct ggml_tensor * ggml_map_custom2_f32(
  6056. struct ggml_context * ctx,
  6057. struct ggml_tensor * a,
  6058. struct ggml_tensor * b,
  6059. const ggml_custom2_op_f32_t fun) {
  6060. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6061. }
  6062. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6063. struct ggml_context * ctx,
  6064. struct ggml_tensor * a,
  6065. struct ggml_tensor * b,
  6066. const ggml_custom2_op_f32_t fun) {
  6067. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6068. }
  6069. // ggml_map_custom3
  6070. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6071. struct ggml_context * ctx,
  6072. struct ggml_tensor * a,
  6073. struct ggml_tensor * b,
  6074. struct ggml_tensor * c,
  6075. const ggml_custom3_op_f32_t fun,
  6076. bool inplace) {
  6077. bool is_node = false;
  6078. if (!inplace && (a->grad || b->grad || c->grad)) {
  6079. is_node = true;
  6080. }
  6081. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6082. ggml_scratch_save(ctx);
  6083. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6084. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6085. ggml_scratch_load(ctx);
  6086. result->op = GGML_OP_MAP_CUSTOM3;
  6087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6088. result->src0 = a;
  6089. result->src1 = b;
  6090. result->opt[0] = addr_tensor;
  6091. result->opt[1] = c;
  6092. return result;
  6093. }
  6094. struct ggml_tensor * ggml_map_custom3_f32(
  6095. struct ggml_context * ctx,
  6096. struct ggml_tensor * a,
  6097. struct ggml_tensor * b,
  6098. struct ggml_tensor * c,
  6099. const ggml_custom3_op_f32_t fun) {
  6100. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6101. }
  6102. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6103. struct ggml_context * ctx,
  6104. struct ggml_tensor * a,
  6105. struct ggml_tensor * b,
  6106. struct ggml_tensor * c,
  6107. const ggml_custom3_op_f32_t fun) {
  6108. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6109. }
  6110. // ggml_cross_entropy_loss
  6111. struct ggml_tensor * ggml_cross_entropy_loss(
  6112. struct ggml_context * ctx,
  6113. struct ggml_tensor * a,
  6114. struct ggml_tensor * b) {
  6115. GGML_ASSERT(ggml_are_same_shape(a, b));
  6116. bool is_node = false;
  6117. if (a->grad || b->grad) {
  6118. is_node = true;
  6119. }
  6120. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6121. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6122. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6123. result->src0 = a;
  6124. result->src1 = b;
  6125. return result;
  6126. }
  6127. // ggml_cross_entropy_loss_back
  6128. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6129. struct ggml_context * ctx,
  6130. struct ggml_tensor * a,
  6131. struct ggml_tensor * b,
  6132. struct ggml_tensor * c) {
  6133. GGML_ASSERT(ggml_are_same_shape(a, b));
  6134. GGML_ASSERT(ggml_is_scalar(c));
  6135. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6136. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6137. result->grad = NULL;
  6138. result->src0 = a;
  6139. result->src1 = b;
  6140. result->opt[0] = c;
  6141. return result;
  6142. }
  6143. ////////////////////////////////////////////////////////////////////////////////
  6144. void ggml_set_param(
  6145. struct ggml_context * ctx,
  6146. struct ggml_tensor * tensor) {
  6147. tensor->is_param = true;
  6148. GGML_ASSERT(tensor->grad == NULL);
  6149. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6150. }
  6151. // ggml_compute_forward_dup
  6152. static void ggml_compute_forward_dup_same_cont(
  6153. const struct ggml_compute_params * params,
  6154. const struct ggml_tensor * src0,
  6155. struct ggml_tensor * dst) {
  6156. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6157. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6158. GGML_ASSERT(src0->type == dst->type);
  6159. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6160. return;
  6161. }
  6162. const size_t nb00 = src0->nb[0];
  6163. const size_t nb0 = dst->nb[0];
  6164. const int ith = params->ith; // thread index
  6165. const int nth = params->nth; // number of threads
  6166. // parallelize by elements
  6167. const int ne = ggml_nelements(dst);
  6168. const int dr = (ne + nth - 1) / nth;
  6169. const int ie0 = dr * ith;
  6170. const int ie1 = MIN(ie0 + dr, ne);
  6171. if (ie0 < ie1) {
  6172. memcpy(
  6173. ((char *) dst->data + ie0*nb0),
  6174. ((char *) src0->data + ie0*nb00),
  6175. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6176. }
  6177. }
  6178. static void ggml_compute_forward_dup_f16(
  6179. const struct ggml_compute_params * params,
  6180. const struct ggml_tensor * src0,
  6181. struct ggml_tensor * dst) {
  6182. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6183. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6184. return;
  6185. }
  6186. GGML_TENSOR_UNARY_OP_LOCALS;
  6187. const int ith = params->ith; // thread index
  6188. const int nth = params->nth; // number of threads
  6189. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6190. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6191. return;
  6192. }
  6193. // parallelize by rows
  6194. const int nr = ne01;
  6195. // number of rows per thread
  6196. const int dr = (nr + nth - 1) / nth;
  6197. // row range for this thread
  6198. const int ir0 = dr * ith;
  6199. const int ir1 = MIN(ir0 + dr, nr);
  6200. if (src0->type == dst->type &&
  6201. ne00 == ne0 &&
  6202. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6203. // copy by rows
  6204. const size_t rs = ne00*nb00;
  6205. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6206. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6207. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6208. memcpy(
  6209. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6210. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6211. rs);
  6212. }
  6213. }
  6214. }
  6215. return;
  6216. }
  6217. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6218. if (ggml_is_contiguous(dst)) {
  6219. if (nb00 == sizeof(ggml_fp16_t)) {
  6220. if (dst->type == GGML_TYPE_F16) {
  6221. size_t id = 0;
  6222. const size_t rs = ne00 * nb00;
  6223. char * dst_ptr = (char *) dst->data;
  6224. for (int i03 = 0; i03 < ne03; i03++) {
  6225. for (int i02 = 0; i02 < ne02; i02++) {
  6226. id += rs * ir0;
  6227. for (int i01 = ir0; i01 < ir1; i01++) {
  6228. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6229. memcpy(dst_ptr + id, src0_ptr, rs);
  6230. id += rs;
  6231. }
  6232. id += rs * (ne01 - ir1);
  6233. }
  6234. }
  6235. } else if (dst->type == GGML_TYPE_F32) {
  6236. size_t id = 0;
  6237. float * dst_ptr = (float *) dst->data;
  6238. for (int i03 = 0; i03 < ne03; i03++) {
  6239. for (int i02 = 0; i02 < ne02; i02++) {
  6240. id += ne00 * ir0;
  6241. for (int i01 = ir0; i01 < ir1; i01++) {
  6242. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6243. for (int i00 = 0; i00 < ne00; i00++) {
  6244. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6245. id++;
  6246. }
  6247. }
  6248. id += ne00 * (ne01 - ir1);
  6249. }
  6250. }
  6251. } else if (type_traits[dst->type].from_float) {
  6252. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6253. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6254. size_t id = 0;
  6255. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6256. char * dst_ptr = (char *) dst->data;
  6257. for (int i03 = 0; i03 < ne03; i03++) {
  6258. for (int i02 = 0; i02 < ne02; i02++) {
  6259. id += rs * ir0;
  6260. for (int i01 = ir0; i01 < ir1; i01++) {
  6261. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6262. for (int i00 = 0; i00 < ne00; i00++) {
  6263. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6264. }
  6265. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6266. id += rs;
  6267. }
  6268. id += rs * (ne01 - ir1);
  6269. }
  6270. }
  6271. } else {
  6272. GGML_ASSERT(false); // TODO: implement
  6273. }
  6274. } else {
  6275. //printf("%s: this is not optimal - fix me\n", __func__);
  6276. if (dst->type == GGML_TYPE_F32) {
  6277. size_t id = 0;
  6278. float * dst_ptr = (float *) dst->data;
  6279. for (int i03 = 0; i03 < ne03; i03++) {
  6280. for (int i02 = 0; i02 < ne02; i02++) {
  6281. id += ne00 * ir0;
  6282. for (int i01 = ir0; i01 < ir1; i01++) {
  6283. for (int i00 = 0; i00 < ne00; i00++) {
  6284. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6285. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6286. id++;
  6287. }
  6288. }
  6289. id += ne00 * (ne01 - ir1);
  6290. }
  6291. }
  6292. } else if (dst->type == GGML_TYPE_F16) {
  6293. size_t id = 0;
  6294. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6295. for (int i03 = 0; i03 < ne03; i03++) {
  6296. for (int i02 = 0; i02 < ne02; i02++) {
  6297. id += ne00 * ir0;
  6298. for (int i01 = ir0; i01 < ir1; i01++) {
  6299. for (int i00 = 0; i00 < ne00; i00++) {
  6300. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6301. dst_ptr[id] = *src0_ptr;
  6302. id++;
  6303. }
  6304. }
  6305. id += ne00 * (ne01 - ir1);
  6306. }
  6307. }
  6308. } else {
  6309. GGML_ASSERT(false); // TODO: implement
  6310. }
  6311. }
  6312. return;
  6313. }
  6314. // dst counters
  6315. int64_t i10 = 0;
  6316. int64_t i11 = 0;
  6317. int64_t i12 = 0;
  6318. int64_t i13 = 0;
  6319. if (dst->type == GGML_TYPE_F16) {
  6320. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6321. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6322. i10 += ne00 * ir0;
  6323. while (i10 >= ne0) {
  6324. i10 -= ne0;
  6325. if (++i11 == ne1) {
  6326. i11 = 0;
  6327. if (++i12 == ne2) {
  6328. i12 = 0;
  6329. if (++i13 == ne3) {
  6330. i13 = 0;
  6331. }
  6332. }
  6333. }
  6334. }
  6335. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6336. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6337. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6338. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6339. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6340. if (++i10 == ne00) {
  6341. i10 = 0;
  6342. if (++i11 == ne01) {
  6343. i11 = 0;
  6344. if (++i12 == ne02) {
  6345. i12 = 0;
  6346. if (++i13 == ne03) {
  6347. i13 = 0;
  6348. }
  6349. }
  6350. }
  6351. }
  6352. }
  6353. }
  6354. i10 += ne00 * (ne01 - ir1);
  6355. while (i10 >= ne0) {
  6356. i10 -= ne0;
  6357. if (++i11 == ne1) {
  6358. i11 = 0;
  6359. if (++i12 == ne2) {
  6360. i12 = 0;
  6361. if (++i13 == ne3) {
  6362. i13 = 0;
  6363. }
  6364. }
  6365. }
  6366. }
  6367. }
  6368. }
  6369. } else if (dst->type == GGML_TYPE_F32) {
  6370. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6372. i10 += ne00 * ir0;
  6373. while (i10 >= ne0) {
  6374. i10 -= ne0;
  6375. if (++i11 == ne1) {
  6376. i11 = 0;
  6377. if (++i12 == ne2) {
  6378. i12 = 0;
  6379. if (++i13 == ne3) {
  6380. i13 = 0;
  6381. }
  6382. }
  6383. }
  6384. }
  6385. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6386. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6387. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6388. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6389. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6390. if (++i10 == ne0) {
  6391. i10 = 0;
  6392. if (++i11 == ne1) {
  6393. i11 = 0;
  6394. if (++i12 == ne2) {
  6395. i12 = 0;
  6396. if (++i13 == ne3) {
  6397. i13 = 0;
  6398. }
  6399. }
  6400. }
  6401. }
  6402. }
  6403. }
  6404. i10 += ne00 * (ne01 - ir1);
  6405. while (i10 >= ne0) {
  6406. i10 -= ne0;
  6407. if (++i11 == ne1) {
  6408. i11 = 0;
  6409. if (++i12 == ne2) {
  6410. i12 = 0;
  6411. if (++i13 == ne3) {
  6412. i13 = 0;
  6413. }
  6414. }
  6415. }
  6416. }
  6417. }
  6418. }
  6419. } else {
  6420. GGML_ASSERT(false); // TODO: implement
  6421. }
  6422. }
  6423. static void ggml_compute_forward_dup_f32(
  6424. const struct ggml_compute_params * params,
  6425. const struct ggml_tensor * src0,
  6426. struct ggml_tensor * dst) {
  6427. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6429. return;
  6430. }
  6431. GGML_TENSOR_UNARY_OP_LOCALS;
  6432. const int ith = params->ith; // thread index
  6433. const int nth = params->nth; // number of threads
  6434. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6435. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6436. return;
  6437. }
  6438. // parallelize by rows
  6439. const int nr = ne01;
  6440. // number of rows per thread
  6441. const int dr = (nr + nth - 1) / nth;
  6442. // row range for this thread
  6443. const int ir0 = dr * ith;
  6444. const int ir1 = MIN(ir0 + dr, nr);
  6445. if (src0->type == dst->type &&
  6446. ne00 == ne0 &&
  6447. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6448. // copy by rows
  6449. const size_t rs = ne00*nb00;
  6450. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6451. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6452. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6453. memcpy(
  6454. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6455. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6456. rs);
  6457. }
  6458. }
  6459. }
  6460. return;
  6461. }
  6462. if (ggml_is_contiguous(dst)) {
  6463. // TODO: simplify
  6464. if (nb00 == sizeof(float)) {
  6465. if (dst->type == GGML_TYPE_F32) {
  6466. size_t id = 0;
  6467. const size_t rs = ne00 * nb00;
  6468. char * dst_ptr = (char *) dst->data;
  6469. for (int i03 = 0; i03 < ne03; i03++) {
  6470. for (int i02 = 0; i02 < ne02; i02++) {
  6471. id += rs * ir0;
  6472. for (int i01 = ir0; i01 < ir1; i01++) {
  6473. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6474. memcpy(dst_ptr + id, src0_ptr, rs);
  6475. id += rs;
  6476. }
  6477. id += rs * (ne01 - ir1);
  6478. }
  6479. }
  6480. } else if (type_traits[dst->type].from_float) {
  6481. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6482. size_t id = 0;
  6483. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6484. char * dst_ptr = (char *) dst->data;
  6485. for (int i03 = 0; i03 < ne03; i03++) {
  6486. for (int i02 = 0; i02 < ne02; i02++) {
  6487. id += rs * ir0;
  6488. for (int i01 = ir0; i01 < ir1; i01++) {
  6489. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6490. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6491. id += rs;
  6492. }
  6493. id += rs * (ne01 - ir1);
  6494. }
  6495. }
  6496. } else {
  6497. GGML_ASSERT(false); // TODO: implement
  6498. }
  6499. } else {
  6500. //printf("%s: this is not optimal - fix me\n", __func__);
  6501. if (dst->type == GGML_TYPE_F32) {
  6502. size_t id = 0;
  6503. float * dst_ptr = (float *) dst->data;
  6504. for (int i03 = 0; i03 < ne03; i03++) {
  6505. for (int i02 = 0; i02 < ne02; i02++) {
  6506. id += ne00 * ir0;
  6507. for (int i01 = ir0; i01 < ir1; i01++) {
  6508. for (int i00 = 0; i00 < ne00; i00++) {
  6509. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6510. dst_ptr[id] = *src0_ptr;
  6511. id++;
  6512. }
  6513. }
  6514. id += ne00 * (ne01 - ir1);
  6515. }
  6516. }
  6517. } else if (dst->type == GGML_TYPE_F16) {
  6518. size_t id = 0;
  6519. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6520. for (int i03 = 0; i03 < ne03; i03++) {
  6521. for (int i02 = 0; i02 < ne02; i02++) {
  6522. id += ne00 * ir0;
  6523. for (int i01 = ir0; i01 < ir1; i01++) {
  6524. for (int i00 = 0; i00 < ne00; i00++) {
  6525. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6526. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6527. id++;
  6528. }
  6529. }
  6530. id += ne00 * (ne01 - ir1);
  6531. }
  6532. }
  6533. } else {
  6534. GGML_ASSERT(false); // TODO: implement
  6535. }
  6536. }
  6537. return;
  6538. }
  6539. // dst counters
  6540. int64_t i10 = 0;
  6541. int64_t i11 = 0;
  6542. int64_t i12 = 0;
  6543. int64_t i13 = 0;
  6544. if (dst->type == GGML_TYPE_F32) {
  6545. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6546. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6547. i10 += ne00 * ir0;
  6548. while (i10 >= ne0) {
  6549. i10 -= ne0;
  6550. if (++i11 == ne1) {
  6551. i11 = 0;
  6552. if (++i12 == ne2) {
  6553. i12 = 0;
  6554. if (++i13 == ne3) {
  6555. i13 = 0;
  6556. }
  6557. }
  6558. }
  6559. }
  6560. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6561. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6562. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6563. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6564. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6565. if (++i10 == ne0) {
  6566. i10 = 0;
  6567. if (++i11 == ne1) {
  6568. i11 = 0;
  6569. if (++i12 == ne2) {
  6570. i12 = 0;
  6571. if (++i13 == ne3) {
  6572. i13 = 0;
  6573. }
  6574. }
  6575. }
  6576. }
  6577. }
  6578. }
  6579. i10 += ne00 * (ne01 - ir1);
  6580. while (i10 >= ne0) {
  6581. i10 -= ne0;
  6582. if (++i11 == ne1) {
  6583. i11 = 0;
  6584. if (++i12 == ne2) {
  6585. i12 = 0;
  6586. if (++i13 == ne3) {
  6587. i13 = 0;
  6588. }
  6589. }
  6590. }
  6591. }
  6592. }
  6593. }
  6594. } else if (dst->type == GGML_TYPE_F16) {
  6595. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6596. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6597. i10 += ne00 * ir0;
  6598. while (i10 >= ne0) {
  6599. i10 -= ne0;
  6600. if (++i11 == ne1) {
  6601. i11 = 0;
  6602. if (++i12 == ne2) {
  6603. i12 = 0;
  6604. if (++i13 == ne3) {
  6605. i13 = 0;
  6606. }
  6607. }
  6608. }
  6609. }
  6610. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6611. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6612. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6613. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6614. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6615. if (++i10 == ne0) {
  6616. i10 = 0;
  6617. if (++i11 == ne1) {
  6618. i11 = 0;
  6619. if (++i12 == ne2) {
  6620. i12 = 0;
  6621. if (++i13 == ne3) {
  6622. i13 = 0;
  6623. }
  6624. }
  6625. }
  6626. }
  6627. }
  6628. }
  6629. i10 += ne00 * (ne01 - ir1);
  6630. while (i10 >= ne0) {
  6631. i10 -= ne0;
  6632. if (++i11 == ne1) {
  6633. i11 = 0;
  6634. if (++i12 == ne2) {
  6635. i12 = 0;
  6636. if (++i13 == ne3) {
  6637. i13 = 0;
  6638. }
  6639. }
  6640. }
  6641. }
  6642. }
  6643. }
  6644. } else {
  6645. GGML_ASSERT(false); // TODO: implement
  6646. }
  6647. }
  6648. static void ggml_compute_forward_dup(
  6649. const struct ggml_compute_params * params,
  6650. const struct ggml_tensor * src0,
  6651. struct ggml_tensor * dst) {
  6652. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6653. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6654. return;
  6655. }
  6656. switch (src0->type) {
  6657. case GGML_TYPE_F16:
  6658. {
  6659. ggml_compute_forward_dup_f16(params, src0, dst);
  6660. } break;
  6661. case GGML_TYPE_F32:
  6662. {
  6663. ggml_compute_forward_dup_f32(params, src0, dst);
  6664. } break;
  6665. default:
  6666. {
  6667. GGML_ASSERT(false);
  6668. } break;
  6669. }
  6670. }
  6671. // ggml_compute_forward_add
  6672. static void ggml_compute_forward_add_f32(
  6673. const struct ggml_compute_params * params,
  6674. const struct ggml_tensor * src0,
  6675. const struct ggml_tensor * src1,
  6676. struct ggml_tensor * dst) {
  6677. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6678. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6679. return;
  6680. }
  6681. const int ith = params->ith;
  6682. const int nth = params->nth;
  6683. const int nr = ggml_nrows(src0);
  6684. GGML_TENSOR_BINARY_OP_LOCALS;
  6685. GGML_ASSERT( nb0 == sizeof(float));
  6686. GGML_ASSERT(nb00 == sizeof(float));
  6687. // rows per thread
  6688. const int dr = (nr + nth - 1)/nth;
  6689. // row range for this thread
  6690. const int ir0 = dr*ith;
  6691. const int ir1 = MIN(ir0 + dr, nr);
  6692. if (nb10 == sizeof(float)) {
  6693. for (int ir = ir0; ir < ir1; ++ir) {
  6694. // src0, src1 and dst are same shape => same indices
  6695. const int i3 = ir/(ne2*ne1);
  6696. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6697. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6698. #ifdef GGML_USE_ACCELERATE
  6699. vDSP_vadd(
  6700. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6701. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6702. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6703. ne0);
  6704. #else
  6705. ggml_vec_add_f32(ne0,
  6706. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6707. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6708. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6709. #endif
  6710. // }
  6711. // }
  6712. }
  6713. } else {
  6714. // src1 is not contiguous
  6715. for (int ir = ir0; ir < ir1; ++ir) {
  6716. // src0, src1 and dst are same shape => same indices
  6717. const int i3 = ir/(ne2*ne1);
  6718. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6719. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6720. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6721. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6722. for (int i0 = 0; i0 < ne0; i0++) {
  6723. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6724. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6725. }
  6726. }
  6727. }
  6728. }
  6729. static void ggml_compute_forward_add_f16_f32(
  6730. const struct ggml_compute_params * params,
  6731. const struct ggml_tensor * src0,
  6732. const struct ggml_tensor * src1,
  6733. struct ggml_tensor * dst) {
  6734. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6735. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6736. return;
  6737. }
  6738. const int ith = params->ith;
  6739. const int nth = params->nth;
  6740. const int nr = ggml_nrows(src0);
  6741. GGML_TENSOR_BINARY_OP_LOCALS;
  6742. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6743. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6744. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6745. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6746. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6747. // rows per thread
  6748. const int dr = (nr + nth - 1)/nth;
  6749. // row range for this thread
  6750. const int ir0 = dr*ith;
  6751. const int ir1 = MIN(ir0 + dr, nr);
  6752. if (nb10 == sizeof(float)) {
  6753. for (int ir = ir0; ir < ir1; ++ir) {
  6754. // src0, src1 and dst are same shape => same indices
  6755. const int i3 = ir/(ne2*ne1);
  6756. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6757. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6758. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6759. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6760. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6761. for (int i = 0; i < ne0; i++) {
  6762. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6763. }
  6764. }
  6765. }
  6766. else {
  6767. // src1 is not contiguous
  6768. GGML_ASSERT(false);
  6769. }
  6770. }
  6771. static void ggml_compute_forward_add_f16_f16(
  6772. const struct ggml_compute_params * params,
  6773. const struct ggml_tensor * src0,
  6774. const struct ggml_tensor * src1,
  6775. struct ggml_tensor * dst) {
  6776. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6778. return;
  6779. }
  6780. const int ith = params->ith;
  6781. const int nth = params->nth;
  6782. const int nr = ggml_nrows(src0);
  6783. GGML_TENSOR_BINARY_OP_LOCALS;
  6784. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6785. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6786. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6787. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6788. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6789. // rows per thread
  6790. const int dr = (nr + nth - 1)/nth;
  6791. // row range for this thread
  6792. const int ir0 = dr*ith;
  6793. const int ir1 = MIN(ir0 + dr, nr);
  6794. if (nb10 == sizeof(ggml_fp16_t)) {
  6795. for (int ir = ir0; ir < ir1; ++ir) {
  6796. // src0, src1 and dst are same shape => same indices
  6797. const int i3 = ir/(ne2*ne1);
  6798. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6799. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6800. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6801. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6802. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6803. for (int i = 0; i < ne0; i++) {
  6804. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6805. }
  6806. }
  6807. }
  6808. else {
  6809. // src1 is not contiguous
  6810. GGML_ASSERT(false);
  6811. }
  6812. }
  6813. static void ggml_compute_forward_add_q_f32(
  6814. const struct ggml_compute_params * params,
  6815. const struct ggml_tensor * src0,
  6816. const struct ggml_tensor * src1,
  6817. struct ggml_tensor * dst) {
  6818. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6819. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6820. return;
  6821. }
  6822. const int nr = ggml_nrows(src0);
  6823. GGML_TENSOR_BINARY_OP_LOCALS;
  6824. const int ith = params->ith;
  6825. const int nth = params->nth;
  6826. const enum ggml_type type = src0->type;
  6827. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6828. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6829. // we don't support permuted src0 or src1
  6830. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6831. GGML_ASSERT(nb10 == sizeof(float));
  6832. // dst cannot be transposed or permuted
  6833. GGML_ASSERT(nb0 <= nb1);
  6834. GGML_ASSERT(nb1 <= nb2);
  6835. GGML_ASSERT(nb2 <= nb3);
  6836. GGML_ASSERT(ggml_is_quantized(src0->type));
  6837. GGML_ASSERT(dst->type == src0->type);
  6838. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6839. // rows per thread
  6840. const int dr = (nr + nth - 1)/nth;
  6841. // row range for this thread
  6842. const int ir0 = dr*ith;
  6843. const int ir1 = MIN(ir0 + dr, nr);
  6844. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6845. for (int ir = ir0; ir < ir1; ++ir) {
  6846. // src0 indices
  6847. const int i03 = ir/(ne02*ne01);
  6848. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6849. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6850. // src1 and dst are same shape as src0 => same indices
  6851. const int i13 = i03;
  6852. const int i12 = i02;
  6853. const int i11 = i01;
  6854. const int i3 = i03;
  6855. const int i2 = i02;
  6856. const int i1 = i01;
  6857. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6858. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6859. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6860. assert(ne00 % 32 == 0);
  6861. // unquantize row from src0 to temp buffer
  6862. dequantize_row_q(src0_row, wdata, ne00);
  6863. // add src1
  6864. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6865. // quantize row to dst
  6866. quantize_row_q(wdata, dst_row, ne00);
  6867. }
  6868. }
  6869. static void ggml_compute_forward_add(
  6870. const struct ggml_compute_params * params,
  6871. const struct ggml_tensor * src0,
  6872. const struct ggml_tensor * src1,
  6873. struct ggml_tensor * dst) {
  6874. switch (src0->type) {
  6875. case GGML_TYPE_F32:
  6876. {
  6877. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6878. } break;
  6879. case GGML_TYPE_F16:
  6880. {
  6881. if (src1->type == GGML_TYPE_F16) {
  6882. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6883. }
  6884. else if (src1->type == GGML_TYPE_F32) {
  6885. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6886. }
  6887. else {
  6888. GGML_ASSERT(false);
  6889. }
  6890. } break;
  6891. case GGML_TYPE_Q4_0:
  6892. case GGML_TYPE_Q4_1:
  6893. case GGML_TYPE_Q5_0:
  6894. case GGML_TYPE_Q5_1:
  6895. case GGML_TYPE_Q8_0:
  6896. case GGML_TYPE_Q2_K:
  6897. case GGML_TYPE_Q3_K:
  6898. case GGML_TYPE_Q4_K:
  6899. case GGML_TYPE_Q5_K:
  6900. case GGML_TYPE_Q6_K:
  6901. {
  6902. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6903. } break;
  6904. default:
  6905. {
  6906. GGML_ASSERT(false);
  6907. } break;
  6908. }
  6909. }
  6910. // ggml_compute_forward_add1
  6911. static void ggml_compute_forward_add1_f32(
  6912. const struct ggml_compute_params * params,
  6913. const struct ggml_tensor * src0,
  6914. const struct ggml_tensor * src1,
  6915. struct ggml_tensor * dst) {
  6916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6917. GGML_ASSERT(ggml_is_scalar(src1));
  6918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6919. return;
  6920. }
  6921. const int ith = params->ith;
  6922. const int nth = params->nth;
  6923. const int nr = ggml_nrows(src0);
  6924. GGML_TENSOR_UNARY_OP_LOCALS;
  6925. GGML_ASSERT( nb0 == sizeof(float));
  6926. GGML_ASSERT(nb00 == sizeof(float));
  6927. // rows per thread
  6928. const int dr = (nr + nth - 1)/nth;
  6929. // row range for this thread
  6930. const int ir0 = dr*ith;
  6931. const int ir1 = MIN(ir0 + dr, nr);
  6932. for (int ir = ir0; ir < ir1; ++ir) {
  6933. // src0 and dst are same shape => same indices
  6934. const int i3 = ir/(ne2*ne1);
  6935. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6936. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6937. #ifdef GGML_USE_ACCELERATE
  6938. UNUSED(ggml_vec_add1_f32);
  6939. vDSP_vadd(
  6940. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6941. (float *) ((char *) src1->data), 0,
  6942. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6943. ne0);
  6944. #else
  6945. ggml_vec_add1_f32(ne0,
  6946. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6947. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6948. *(float *) src1->data);
  6949. #endif
  6950. }
  6951. }
  6952. static void ggml_compute_forward_add1_f16_f32(
  6953. const struct ggml_compute_params * params,
  6954. const struct ggml_tensor * src0,
  6955. const struct ggml_tensor * src1,
  6956. struct ggml_tensor * dst) {
  6957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6958. GGML_ASSERT(ggml_is_scalar(src1));
  6959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6960. return;
  6961. }
  6962. // scalar to add
  6963. const float v = *(float *) src1->data;
  6964. const int ith = params->ith;
  6965. const int nth = params->nth;
  6966. const int nr = ggml_nrows(src0);
  6967. GGML_TENSOR_UNARY_OP_LOCALS;
  6968. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6969. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6970. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6971. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6972. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6973. // rows per thread
  6974. const int dr = (nr + nth - 1)/nth;
  6975. // row range for this thread
  6976. const int ir0 = dr*ith;
  6977. const int ir1 = MIN(ir0 + dr, nr);
  6978. for (int ir = ir0; ir < ir1; ++ir) {
  6979. // src0 and dst are same shape => same indices
  6980. const int i3 = ir/(ne2*ne1);
  6981. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6982. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6983. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6984. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6985. for (int i = 0; i < ne0; i++) {
  6986. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6987. }
  6988. }
  6989. }
  6990. static void ggml_compute_forward_add1_f16_f16(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. const struct ggml_tensor * src1,
  6994. struct ggml_tensor * dst) {
  6995. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6996. GGML_ASSERT(ggml_is_scalar(src1));
  6997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6998. return;
  6999. }
  7000. // scalar to add
  7001. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7002. const int ith = params->ith;
  7003. const int nth = params->nth;
  7004. const int nr = ggml_nrows(src0);
  7005. GGML_TENSOR_UNARY_OP_LOCALS;
  7006. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7007. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7008. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7009. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7010. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7011. // rows per thread
  7012. const int dr = (nr + nth - 1)/nth;
  7013. // row range for this thread
  7014. const int ir0 = dr*ith;
  7015. const int ir1 = MIN(ir0 + dr, nr);
  7016. for (int ir = ir0; ir < ir1; ++ir) {
  7017. // src0 and dst are same shape => same indices
  7018. const int i3 = ir/(ne2*ne1);
  7019. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7020. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7021. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7022. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7023. for (int i = 0; i < ne0; i++) {
  7024. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7025. }
  7026. }
  7027. }
  7028. static void ggml_compute_forward_add1_q_f32(
  7029. const struct ggml_compute_params * params,
  7030. const struct ggml_tensor * src0,
  7031. const struct ggml_tensor * src1,
  7032. struct ggml_tensor * dst) {
  7033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7034. GGML_ASSERT(ggml_is_scalar(src1));
  7035. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7036. return;
  7037. }
  7038. // scalar to add
  7039. const float v = *(float *) src1->data;
  7040. const int ith = params->ith;
  7041. const int nth = params->nth;
  7042. const int nr = ggml_nrows(src0);
  7043. GGML_TENSOR_UNARY_OP_LOCALS;
  7044. const enum ggml_type type = src0->type;
  7045. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7046. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7047. // we don't support permuted src0
  7048. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7049. // dst cannot be transposed or permuted
  7050. GGML_ASSERT(nb0 <= nb1);
  7051. GGML_ASSERT(nb1 <= nb2);
  7052. GGML_ASSERT(nb2 <= nb3);
  7053. GGML_ASSERT(ggml_is_quantized(src0->type));
  7054. GGML_ASSERT(dst->type == src0->type);
  7055. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7056. // rows per thread
  7057. const int dr = (nr + nth - 1)/nth;
  7058. // row range for this thread
  7059. const int ir0 = dr*ith;
  7060. const int ir1 = MIN(ir0 + dr, nr);
  7061. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7062. for (int ir = ir0; ir < ir1; ++ir) {
  7063. // src0 and dst are same shape => same indices
  7064. const int i3 = ir/(ne2*ne1);
  7065. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7066. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7067. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7068. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7069. assert(ne0 % 32 == 0);
  7070. // unquantize row from src0 to temp buffer
  7071. dequantize_row_q(src0_row, wdata, ne0);
  7072. // add src1
  7073. ggml_vec_acc1_f32(ne0, wdata, v);
  7074. // quantize row to dst
  7075. quantize_row_q(wdata, dst_row, ne0);
  7076. }
  7077. }
  7078. static void ggml_compute_forward_add1(
  7079. const struct ggml_compute_params * params,
  7080. const struct ggml_tensor * src0,
  7081. const struct ggml_tensor * src1,
  7082. struct ggml_tensor * dst) {
  7083. switch (src0->type) {
  7084. case GGML_TYPE_F32:
  7085. {
  7086. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7087. } break;
  7088. case GGML_TYPE_F16:
  7089. {
  7090. if (src1->type == GGML_TYPE_F16) {
  7091. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7092. }
  7093. else if (src1->type == GGML_TYPE_F32) {
  7094. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7095. }
  7096. else {
  7097. GGML_ASSERT(false);
  7098. }
  7099. } break;
  7100. case GGML_TYPE_Q4_0:
  7101. case GGML_TYPE_Q4_1:
  7102. case GGML_TYPE_Q5_0:
  7103. case GGML_TYPE_Q5_1:
  7104. case GGML_TYPE_Q8_0:
  7105. case GGML_TYPE_Q8_1:
  7106. case GGML_TYPE_Q2_K:
  7107. case GGML_TYPE_Q3_K:
  7108. case GGML_TYPE_Q4_K:
  7109. case GGML_TYPE_Q5_K:
  7110. case GGML_TYPE_Q6_K:
  7111. {
  7112. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7113. } break;
  7114. default:
  7115. {
  7116. GGML_ASSERT(false);
  7117. } break;
  7118. }
  7119. }
  7120. // ggml_compute_forward_acc
  7121. static void ggml_compute_forward_acc_f32(
  7122. const struct ggml_compute_params * params,
  7123. const struct ggml_tensor * src0,
  7124. const struct ggml_tensor * src1,
  7125. const struct ggml_tensor * opt0,
  7126. struct ggml_tensor * dst) {
  7127. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7128. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7129. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7130. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7131. // view src0 and dst with these strides and data offset inbytes during acc
  7132. // nb0 is implicitely element_size because src0 and dst are contiguous
  7133. size_t nb1 = ((int32_t *) opt0->data)[0];
  7134. size_t nb2 = ((int32_t *) opt0->data)[1];
  7135. size_t nb3 = ((int32_t *) opt0->data)[2];
  7136. size_t offset = ((int32_t *) opt0->data)[3];
  7137. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7138. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7139. // memcpy needs to be synchronized across threads to avoid race conditions.
  7140. // => do it in INIT phase
  7141. memcpy(
  7142. ((char *) dst->data),
  7143. ((char *) src0->data),
  7144. ggml_nbytes(dst));
  7145. }
  7146. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7147. return;
  7148. }
  7149. const int ith = params->ith;
  7150. const int nth = params->nth;
  7151. const int nr = ggml_nrows(src1);
  7152. const int nc = src1->ne[0];
  7153. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7154. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7155. // src0 and dst as viewed during acc
  7156. const size_t nb0 = ggml_element_size(src0);
  7157. const size_t nb00 = nb0;
  7158. const size_t nb01 = nb1;
  7159. const size_t nb02 = nb2;
  7160. const size_t nb03 = nb3;
  7161. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7162. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7163. GGML_ASSERT(nb10 == sizeof(float));
  7164. // rows per thread
  7165. const int dr = (nr + nth - 1)/nth;
  7166. // row range for this thread
  7167. const int ir0 = dr*ith;
  7168. const int ir1 = MIN(ir0 + dr, nr);
  7169. for (int ir = ir0; ir < ir1; ++ir) {
  7170. // src0 and dst are viewed with shape of src1 and offset
  7171. // => same indices
  7172. const int i3 = ir/(ne12*ne11);
  7173. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7174. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7175. #ifdef GGML_USE_ACCELERATE
  7176. vDSP_vadd(
  7177. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7178. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7179. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7180. #else
  7181. ggml_vec_add_f32(nc,
  7182. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7183. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7184. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7185. #endif
  7186. }
  7187. }
  7188. static void ggml_compute_forward_acc(
  7189. const struct ggml_compute_params * params,
  7190. const struct ggml_tensor * src0,
  7191. const struct ggml_tensor * src1,
  7192. const struct ggml_tensor * opt0,
  7193. struct ggml_tensor * dst) {
  7194. switch (src0->type) {
  7195. case GGML_TYPE_F32:
  7196. {
  7197. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7198. } break;
  7199. case GGML_TYPE_F16:
  7200. case GGML_TYPE_Q4_0:
  7201. case GGML_TYPE_Q4_1:
  7202. case GGML_TYPE_Q5_0:
  7203. case GGML_TYPE_Q5_1:
  7204. case GGML_TYPE_Q8_0:
  7205. case GGML_TYPE_Q8_1:
  7206. case GGML_TYPE_Q2_K:
  7207. case GGML_TYPE_Q3_K:
  7208. case GGML_TYPE_Q4_K:
  7209. case GGML_TYPE_Q5_K:
  7210. case GGML_TYPE_Q6_K:
  7211. default:
  7212. {
  7213. GGML_ASSERT(false);
  7214. } break;
  7215. }
  7216. }
  7217. // ggml_compute_forward_sub
  7218. static void ggml_compute_forward_sub_f32(
  7219. const struct ggml_compute_params * params,
  7220. const struct ggml_tensor * src0,
  7221. const struct ggml_tensor * src1,
  7222. struct ggml_tensor * dst) {
  7223. assert(params->ith == 0);
  7224. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7225. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7226. return;
  7227. }
  7228. const int nr = ggml_nrows(src0);
  7229. GGML_TENSOR_BINARY_OP_LOCALS;
  7230. GGML_ASSERT( nb0 == sizeof(float));
  7231. GGML_ASSERT(nb00 == sizeof(float));
  7232. if (nb10 == sizeof(float)) {
  7233. for (int ir = 0; ir < nr; ++ir) {
  7234. // src0, src1 and dst are same shape => same indices
  7235. const int i3 = ir/(ne2*ne1);
  7236. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7237. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7238. #ifdef GGML_USE_ACCELERATE
  7239. vDSP_vsub(
  7240. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7241. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7242. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7243. ne0);
  7244. #else
  7245. ggml_vec_sub_f32(ne0,
  7246. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7247. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7248. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7249. #endif
  7250. // }
  7251. // }
  7252. }
  7253. } else {
  7254. // src1 is not contiguous
  7255. for (int ir = 0; ir < nr; ++ir) {
  7256. // src0, src1 and dst are same shape => same indices
  7257. const int i3 = ir/(ne2*ne1);
  7258. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7259. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7260. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7261. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7262. for (int i0 = 0; i0 < ne0; i0++) {
  7263. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7264. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7265. }
  7266. }
  7267. }
  7268. }
  7269. static void ggml_compute_forward_sub(
  7270. const struct ggml_compute_params * params,
  7271. const struct ggml_tensor * src0,
  7272. const struct ggml_tensor * src1,
  7273. struct ggml_tensor * dst) {
  7274. switch (src0->type) {
  7275. case GGML_TYPE_F32:
  7276. {
  7277. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7278. } break;
  7279. default:
  7280. {
  7281. GGML_ASSERT(false);
  7282. } break;
  7283. }
  7284. }
  7285. // ggml_compute_forward_mul
  7286. static void ggml_compute_forward_mul_f32(
  7287. const struct ggml_compute_params * params,
  7288. const struct ggml_tensor * src0,
  7289. const struct ggml_tensor * src1,
  7290. struct ggml_tensor * dst) {
  7291. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7292. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7293. return;
  7294. }
  7295. const int ith = params->ith;
  7296. const int nth = params->nth;
  7297. #ifdef GGML_USE_CLBLAST
  7298. if (src1->backend == GGML_BACKEND_GPU) {
  7299. if (ith == 0) {
  7300. ggml_cl_mul(src0, src1, dst);
  7301. }
  7302. return;
  7303. }
  7304. #endif
  7305. const int64_t nr = ggml_nrows(src0);
  7306. GGML_TENSOR_BINARY_OP_LOCALS;
  7307. GGML_ASSERT( nb0 == sizeof(float));
  7308. GGML_ASSERT(nb00 == sizeof(float));
  7309. GGML_ASSERT(ne00 == ne10);
  7310. if (nb10 == sizeof(float)) {
  7311. for (int64_t ir = ith; ir < nr; ir += nth) {
  7312. // src0 and dst are same shape => same indices
  7313. const int64_t i03 = ir/(ne02*ne01);
  7314. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7315. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7316. const int64_t i13 = i03 % ne13;
  7317. const int64_t i12 = i02 % ne12;
  7318. const int64_t i11 = i01 % ne11;
  7319. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7320. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7321. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7322. #ifdef GGML_USE_ACCELERATE
  7323. UNUSED(ggml_vec_mul_f32);
  7324. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7325. #else
  7326. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7327. #endif
  7328. // }
  7329. // }
  7330. }
  7331. } else {
  7332. // src1 is not contiguous
  7333. for (int64_t ir = ith; ir < nr; ir += nth) {
  7334. // src0 and dst are same shape => same indices
  7335. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7336. const int64_t i03 = ir/(ne02*ne01);
  7337. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7338. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7339. const int64_t i13 = i03 % ne13;
  7340. const int64_t i12 = i02 % ne12;
  7341. const int64_t i11 = i01 % ne11;
  7342. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7343. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7344. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7345. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7346. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7347. }
  7348. }
  7349. }
  7350. }
  7351. static void ggml_compute_forward_mul(
  7352. const struct ggml_compute_params * params,
  7353. const struct ggml_tensor * src0,
  7354. const struct ggml_tensor * src1,
  7355. struct ggml_tensor * dst) {
  7356. switch (src0->type) {
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_div
  7368. static void ggml_compute_forward_div_f32(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. const struct ggml_tensor * src1,
  7372. struct ggml_tensor * dst) {
  7373. assert(params->ith == 0);
  7374. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7376. return;
  7377. }
  7378. const int nr = ggml_nrows(src0);
  7379. GGML_TENSOR_BINARY_OP_LOCALS;
  7380. GGML_ASSERT( nb0 == sizeof(float));
  7381. GGML_ASSERT(nb00 == sizeof(float));
  7382. if (nb10 == sizeof(float)) {
  7383. for (int ir = 0; ir < nr; ++ir) {
  7384. // src0, src1 and dst are same shape => same indices
  7385. const int i3 = ir/(ne2*ne1);
  7386. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7387. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7388. #ifdef GGML_USE_ACCELERATE
  7389. vDSP_vdiv(
  7390. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7391. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7392. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7393. ne0);
  7394. #else
  7395. ggml_vec_div_f32(ne0,
  7396. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7397. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7398. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7399. #endif
  7400. // }
  7401. // }
  7402. }
  7403. } else {
  7404. // src1 is not contiguous
  7405. for (int ir = 0; ir < nr; ++ir) {
  7406. // src0, src1 and dst are same shape => same indices
  7407. const int i3 = ir/(ne2*ne1);
  7408. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7409. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7410. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7411. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7412. for (int i0 = 0; i0 < ne0; i0++) {
  7413. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7414. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7415. }
  7416. }
  7417. }
  7418. }
  7419. static void ggml_compute_forward_div(
  7420. const struct ggml_compute_params * params,
  7421. const struct ggml_tensor * src0,
  7422. const struct ggml_tensor * src1,
  7423. struct ggml_tensor * dst) {
  7424. switch (src0->type) {
  7425. case GGML_TYPE_F32:
  7426. {
  7427. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7428. } break;
  7429. default:
  7430. {
  7431. GGML_ASSERT(false);
  7432. } break;
  7433. }
  7434. }
  7435. // ggml_compute_forward_sqr
  7436. static void ggml_compute_forward_sqr_f32(
  7437. const struct ggml_compute_params * params,
  7438. const struct ggml_tensor * src0,
  7439. struct ggml_tensor * dst) {
  7440. assert(params->ith == 0);
  7441. assert(ggml_are_same_shape(src0, dst));
  7442. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7443. return;
  7444. }
  7445. const int n = ggml_nrows(src0);
  7446. const int nc = src0->ne[0];
  7447. assert( dst->nb[0] == sizeof(float));
  7448. assert(src0->nb[0] == sizeof(float));
  7449. for (int i = 0; i < n; i++) {
  7450. ggml_vec_sqr_f32(nc,
  7451. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7452. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7453. }
  7454. }
  7455. static void ggml_compute_forward_sqr(
  7456. const struct ggml_compute_params * params,
  7457. const struct ggml_tensor * src0,
  7458. struct ggml_tensor * dst) {
  7459. switch (src0->type) {
  7460. case GGML_TYPE_F32:
  7461. {
  7462. ggml_compute_forward_sqr_f32(params, src0, dst);
  7463. } break;
  7464. default:
  7465. {
  7466. GGML_ASSERT(false);
  7467. } break;
  7468. }
  7469. }
  7470. // ggml_compute_forward_sqrt
  7471. static void ggml_compute_forward_sqrt_f32(
  7472. const struct ggml_compute_params * params,
  7473. const struct ggml_tensor * src0,
  7474. struct ggml_tensor * dst) {
  7475. assert(params->ith == 0);
  7476. assert(ggml_are_same_shape(src0, dst));
  7477. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7478. return;
  7479. }
  7480. const int n = ggml_nrows(src0);
  7481. const int nc = src0->ne[0];
  7482. assert( dst->nb[0] == sizeof(float));
  7483. assert(src0->nb[0] == sizeof(float));
  7484. for (int i = 0; i < n; i++) {
  7485. ggml_vec_sqrt_f32(nc,
  7486. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7487. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7488. }
  7489. }
  7490. static void ggml_compute_forward_sqrt(
  7491. const struct ggml_compute_params * params,
  7492. const struct ggml_tensor * src0,
  7493. struct ggml_tensor * dst) {
  7494. switch (src0->type) {
  7495. case GGML_TYPE_F32:
  7496. {
  7497. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7498. } break;
  7499. default:
  7500. {
  7501. GGML_ASSERT(false);
  7502. } break;
  7503. }
  7504. }
  7505. // ggml_compute_forward_log
  7506. static void ggml_compute_forward_log_f32(
  7507. const struct ggml_compute_params * params,
  7508. const struct ggml_tensor * src0,
  7509. struct ggml_tensor * dst) {
  7510. GGML_ASSERT(params->ith == 0);
  7511. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7512. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7513. return;
  7514. }
  7515. const int n = ggml_nrows(src0);
  7516. const int nc = src0->ne[0];
  7517. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7518. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7519. for (int i = 0; i < n; i++) {
  7520. ggml_vec_log_f32(nc,
  7521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7522. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7523. }
  7524. }
  7525. static void ggml_compute_forward_log(
  7526. const struct ggml_compute_params * params,
  7527. const struct ggml_tensor * src0,
  7528. struct ggml_tensor * dst) {
  7529. switch (src0->type) {
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_log_f32(params, src0, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_sum
  7541. static void ggml_compute_forward_sum_f32(
  7542. const struct ggml_compute_params * params,
  7543. const struct ggml_tensor * src0,
  7544. struct ggml_tensor * dst) {
  7545. assert(params->ith == 0);
  7546. assert(ggml_is_scalar(dst));
  7547. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7548. return;
  7549. }
  7550. assert(ggml_is_scalar(dst));
  7551. assert(src0->nb[0] == sizeof(float));
  7552. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7553. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7554. ggml_float sum = 0;
  7555. ggml_float row_sum = 0;
  7556. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7557. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7558. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7559. ggml_vec_sum_ggf(ne00,
  7560. &row_sum,
  7561. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7562. sum += row_sum;
  7563. }
  7564. }
  7565. }
  7566. ((float *) dst->data)[0] = sum;
  7567. }
  7568. static void ggml_compute_forward_sum(
  7569. const struct ggml_compute_params * params,
  7570. const struct ggml_tensor * src0,
  7571. struct ggml_tensor * dst) {
  7572. switch (src0->type) {
  7573. case GGML_TYPE_F32:
  7574. {
  7575. ggml_compute_forward_sum_f32(params, src0, dst);
  7576. } break;
  7577. default:
  7578. {
  7579. GGML_ASSERT(false);
  7580. } break;
  7581. }
  7582. }
  7583. // ggml_compute_forward_sum_rows
  7584. static void ggml_compute_forward_sum_rows_f32(
  7585. const struct ggml_compute_params * params,
  7586. const struct ggml_tensor * src0,
  7587. struct ggml_tensor * dst) {
  7588. GGML_ASSERT(params->ith == 0);
  7589. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7590. return;
  7591. }
  7592. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7593. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7594. GGML_TENSOR_UNARY_OP_LOCALS;
  7595. GGML_ASSERT(ne0 == 1);
  7596. GGML_ASSERT(ne1 == ne01);
  7597. GGML_ASSERT(ne2 == ne02);
  7598. GGML_ASSERT(ne3 == ne03);
  7599. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7600. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7601. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7602. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7603. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7604. float row_sum = 0;
  7605. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7606. dst_row[0] = row_sum;
  7607. }
  7608. }
  7609. }
  7610. }
  7611. static void ggml_compute_forward_sum_rows(
  7612. const struct ggml_compute_params * params,
  7613. const struct ggml_tensor * src0,
  7614. struct ggml_tensor * dst) {
  7615. switch (src0->type) {
  7616. case GGML_TYPE_F32:
  7617. {
  7618. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7619. } break;
  7620. default:
  7621. {
  7622. GGML_ASSERT(false);
  7623. } break;
  7624. }
  7625. }
  7626. // ggml_compute_forward_mean
  7627. static void ggml_compute_forward_mean_f32(
  7628. const struct ggml_compute_params * params,
  7629. const struct ggml_tensor * src0,
  7630. struct ggml_tensor * dst) {
  7631. assert(params->ith == 0);
  7632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7633. return;
  7634. }
  7635. assert(src0->nb[0] == sizeof(float));
  7636. GGML_TENSOR_UNARY_OP_LOCALS;
  7637. assert(ne0 == 1);
  7638. assert(ne1 == ne01);
  7639. assert(ne2 == ne02);
  7640. assert(ne3 == ne03);
  7641. UNUSED(ne0);
  7642. UNUSED(ne1);
  7643. UNUSED(ne2);
  7644. UNUSED(ne3);
  7645. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7646. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7647. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7648. ggml_vec_sum_f32(ne00,
  7649. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7650. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7651. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7652. }
  7653. }
  7654. }
  7655. }
  7656. static void ggml_compute_forward_mean(
  7657. const struct ggml_compute_params * params,
  7658. const struct ggml_tensor * src0,
  7659. struct ggml_tensor * dst) {
  7660. switch (src0->type) {
  7661. case GGML_TYPE_F32:
  7662. {
  7663. ggml_compute_forward_mean_f32(params, src0, dst);
  7664. } break;
  7665. default:
  7666. {
  7667. GGML_ASSERT(false);
  7668. } break;
  7669. }
  7670. }
  7671. // ggml_compute_forward_argmax
  7672. static void ggml_compute_forward_argmax_f32(
  7673. const struct ggml_compute_params * params,
  7674. const struct ggml_tensor * src0,
  7675. struct ggml_tensor * dst) {
  7676. assert(params->ith == 0);
  7677. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7678. return;
  7679. }
  7680. assert(src0->nb[0] == sizeof(float));
  7681. assert(dst->nb[0] == sizeof(float));
  7682. const int64_t ne00 = src0->ne[0];
  7683. const int64_t ne01 = src0->ne[1];
  7684. const size_t nb01 = src0->nb[1];
  7685. const size_t nb0 = dst->nb[0];
  7686. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7687. float * src = (float *) ((char *) src0->data + i1*nb01);
  7688. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7689. int v = 0;
  7690. ggml_vec_argmax_f32(ne00, &v, src);
  7691. dst_[0] = v;
  7692. }
  7693. }
  7694. static void ggml_compute_forward_argmax(
  7695. const struct ggml_compute_params * params,
  7696. const struct ggml_tensor * src0,
  7697. struct ggml_tensor * dst) {
  7698. switch (src0->type) {
  7699. case GGML_TYPE_F32:
  7700. {
  7701. ggml_compute_forward_argmax_f32(params, src0, dst);
  7702. } break;
  7703. default:
  7704. {
  7705. GGML_ASSERT(false);
  7706. } break;
  7707. }
  7708. }
  7709. // ggml_compute_forward_repeat
  7710. static void ggml_compute_forward_repeat_f32(
  7711. const struct ggml_compute_params * params,
  7712. const struct ggml_tensor * src0,
  7713. struct ggml_tensor * dst) {
  7714. GGML_ASSERT(params->ith == 0);
  7715. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7717. return;
  7718. }
  7719. GGML_TENSOR_UNARY_OP_LOCALS;
  7720. // guaranteed to be an integer due to the check in ggml_can_repeat
  7721. const int nr0 = (int)(ne0/ne00);
  7722. const int nr1 = (int)(ne1/ne01);
  7723. const int nr2 = (int)(ne2/ne02);
  7724. const int nr3 = (int)(ne3/ne03);
  7725. // TODO: support for transposed / permuted tensors
  7726. GGML_ASSERT(nb0 == sizeof(float));
  7727. GGML_ASSERT(nb00 == sizeof(float));
  7728. // TODO: maybe this is not optimal?
  7729. for (int i3 = 0; i3 < nr3; i3++) {
  7730. for (int k3 = 0; k3 < ne03; k3++) {
  7731. for (int i2 = 0; i2 < nr2; i2++) {
  7732. for (int k2 = 0; k2 < ne02; k2++) {
  7733. for (int i1 = 0; i1 < nr1; i1++) {
  7734. for (int k1 = 0; k1 < ne01; k1++) {
  7735. for (int i0 = 0; i0 < nr0; i0++) {
  7736. ggml_vec_cpy_f32(ne00,
  7737. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7738. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7739. }
  7740. }
  7741. }
  7742. }
  7743. }
  7744. }
  7745. }
  7746. }
  7747. static void ggml_compute_forward_repeat(
  7748. const struct ggml_compute_params * params,
  7749. const struct ggml_tensor * src0,
  7750. struct ggml_tensor * dst) {
  7751. switch (src0->type) {
  7752. case GGML_TYPE_F32:
  7753. {
  7754. ggml_compute_forward_repeat_f32(params, src0, dst);
  7755. } break;
  7756. default:
  7757. {
  7758. GGML_ASSERT(false);
  7759. } break;
  7760. }
  7761. }
  7762. // ggml_compute_forward_repeat_back
  7763. static void ggml_compute_forward_repeat_back_f32(
  7764. const struct ggml_compute_params * params,
  7765. const struct ggml_tensor * src0,
  7766. struct ggml_tensor * dst) {
  7767. GGML_ASSERT(params->ith == 0);
  7768. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7769. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7770. return;
  7771. }
  7772. GGML_TENSOR_UNARY_OP_LOCALS;
  7773. // guaranteed to be an integer due to the check in ggml_can_repeat
  7774. const int nr0 = (int)(ne00/ne0);
  7775. const int nr1 = (int)(ne01/ne1);
  7776. const int nr2 = (int)(ne02/ne2);
  7777. const int nr3 = (int)(ne03/ne3);
  7778. // TODO: support for transposed / permuted tensors
  7779. GGML_ASSERT(nb0 == sizeof(float));
  7780. GGML_ASSERT(nb00 == sizeof(float));
  7781. if (ggml_is_contiguous(dst)) {
  7782. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7783. } else {
  7784. for (int k3 = 0; k3 < ne3; k3++) {
  7785. for (int k2 = 0; k2 < ne2; k2++) {
  7786. for (int k1 = 0; k1 < ne1; k1++) {
  7787. ggml_vec_set_f32(ne0,
  7788. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7789. 0);
  7790. }
  7791. }
  7792. }
  7793. }
  7794. // TODO: maybe this is not optimal?
  7795. for (int i3 = 0; i3 < nr3; i3++) {
  7796. for (int k3 = 0; k3 < ne3; k3++) {
  7797. for (int i2 = 0; i2 < nr2; i2++) {
  7798. for (int k2 = 0; k2 < ne2; k2++) {
  7799. for (int i1 = 0; i1 < nr1; i1++) {
  7800. for (int k1 = 0; k1 < ne1; k1++) {
  7801. for (int i0 = 0; i0 < nr0; i0++) {
  7802. ggml_vec_acc_f32(ne0,
  7803. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7804. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7805. }
  7806. }
  7807. }
  7808. }
  7809. }
  7810. }
  7811. }
  7812. }
  7813. static void ggml_compute_forward_repeat_back(
  7814. const struct ggml_compute_params * params,
  7815. const struct ggml_tensor * src0,
  7816. struct ggml_tensor * dst) {
  7817. switch (src0->type) {
  7818. case GGML_TYPE_F32:
  7819. {
  7820. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7821. } break;
  7822. default:
  7823. {
  7824. GGML_ASSERT(false);
  7825. } break;
  7826. }
  7827. }
  7828. // ggml_compute_forward_abs
  7829. static void ggml_compute_forward_abs_f32(
  7830. const struct ggml_compute_params * params,
  7831. const struct ggml_tensor * src0,
  7832. struct ggml_tensor * dst) {
  7833. assert(params->ith == 0);
  7834. assert(ggml_are_same_shape(src0, dst));
  7835. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7836. return;
  7837. }
  7838. const int n = ggml_nrows(src0);
  7839. const int nc = src0->ne[0];
  7840. assert(dst->nb[0] == sizeof(float));
  7841. assert(src0->nb[0] == sizeof(float));
  7842. for (int i = 0; i < n; i++) {
  7843. ggml_vec_abs_f32(nc,
  7844. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7845. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7846. }
  7847. }
  7848. static void ggml_compute_forward_abs(
  7849. const struct ggml_compute_params * params,
  7850. const struct ggml_tensor * src0,
  7851. struct ggml_tensor * dst) {
  7852. switch (src0->type) {
  7853. case GGML_TYPE_F32:
  7854. {
  7855. ggml_compute_forward_abs_f32(params, src0, dst);
  7856. } break;
  7857. default:
  7858. {
  7859. GGML_ASSERT(false);
  7860. } break;
  7861. }
  7862. }
  7863. // ggml_compute_forward_sgn
  7864. static void ggml_compute_forward_sgn_f32(
  7865. const struct ggml_compute_params * params,
  7866. const struct ggml_tensor * src0,
  7867. struct ggml_tensor * dst) {
  7868. assert(params->ith == 0);
  7869. assert(ggml_are_same_shape(src0, dst));
  7870. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7871. return;
  7872. }
  7873. const int n = ggml_nrows(src0);
  7874. const int nc = src0->ne[0];
  7875. assert(dst->nb[0] == sizeof(float));
  7876. assert(src0->nb[0] == sizeof(float));
  7877. for (int i = 0; i < n; i++) {
  7878. ggml_vec_sgn_f32(nc,
  7879. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7880. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7881. }
  7882. }
  7883. static void ggml_compute_forward_sgn(
  7884. const struct ggml_compute_params * params,
  7885. const struct ggml_tensor * src0,
  7886. struct ggml_tensor * dst) {
  7887. switch (src0->type) {
  7888. case GGML_TYPE_F32:
  7889. {
  7890. ggml_compute_forward_sgn_f32(params, src0, dst);
  7891. } break;
  7892. default:
  7893. {
  7894. GGML_ASSERT(false);
  7895. } break;
  7896. }
  7897. }
  7898. // ggml_compute_forward_neg
  7899. static void ggml_compute_forward_neg_f32(
  7900. const struct ggml_compute_params * params,
  7901. const struct ggml_tensor * src0,
  7902. struct ggml_tensor * dst) {
  7903. assert(params->ith == 0);
  7904. assert(ggml_are_same_shape(src0, dst));
  7905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7906. return;
  7907. }
  7908. const int n = ggml_nrows(src0);
  7909. const int nc = src0->ne[0];
  7910. assert(dst->nb[0] == sizeof(float));
  7911. assert(src0->nb[0] == sizeof(float));
  7912. for (int i = 0; i < n; i++) {
  7913. ggml_vec_neg_f32(nc,
  7914. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7915. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7916. }
  7917. }
  7918. static void ggml_compute_forward_neg(
  7919. const struct ggml_compute_params * params,
  7920. const struct ggml_tensor * src0,
  7921. struct ggml_tensor * dst) {
  7922. switch (src0->type) {
  7923. case GGML_TYPE_F32:
  7924. {
  7925. ggml_compute_forward_neg_f32(params, src0, dst);
  7926. } break;
  7927. default:
  7928. {
  7929. GGML_ASSERT(false);
  7930. } break;
  7931. }
  7932. }
  7933. // ggml_compute_forward_step
  7934. static void ggml_compute_forward_step_f32(
  7935. const struct ggml_compute_params * params,
  7936. const struct ggml_tensor * src0,
  7937. struct ggml_tensor * dst) {
  7938. assert(params->ith == 0);
  7939. assert(ggml_are_same_shape(src0, dst));
  7940. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7941. return;
  7942. }
  7943. const int n = ggml_nrows(src0);
  7944. const int nc = src0->ne[0];
  7945. assert(dst->nb[0] == sizeof(float));
  7946. assert(src0->nb[0] == sizeof(float));
  7947. for (int i = 0; i < n; i++) {
  7948. ggml_vec_step_f32(nc,
  7949. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7950. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7951. }
  7952. }
  7953. static void ggml_compute_forward_step(
  7954. const struct ggml_compute_params * params,
  7955. const struct ggml_tensor * src0,
  7956. struct ggml_tensor * dst) {
  7957. switch (src0->type) {
  7958. case GGML_TYPE_F32:
  7959. {
  7960. ggml_compute_forward_step_f32(params, src0, dst);
  7961. } break;
  7962. default:
  7963. {
  7964. GGML_ASSERT(false);
  7965. } break;
  7966. }
  7967. }
  7968. // ggml_compute_forward_tanh
  7969. static void ggml_compute_forward_tanh_f32(
  7970. const struct ggml_compute_params * params,
  7971. const struct ggml_tensor * src0,
  7972. struct ggml_tensor * dst) {
  7973. assert(params->ith == 0);
  7974. assert(ggml_are_same_shape(src0, dst));
  7975. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7976. return;
  7977. }
  7978. const int n = ggml_nrows(src0);
  7979. const int nc = src0->ne[0];
  7980. assert(dst->nb[0] == sizeof(float));
  7981. assert(src0->nb[0] == sizeof(float));
  7982. for (int i = 0; i < n; i++) {
  7983. ggml_vec_tanh_f32(nc,
  7984. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7985. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7986. }
  7987. }
  7988. static void ggml_compute_forward_tanh(
  7989. const struct ggml_compute_params * params,
  7990. const struct ggml_tensor * src0,
  7991. struct ggml_tensor * dst) {
  7992. switch (src0->type) {
  7993. case GGML_TYPE_F32:
  7994. {
  7995. ggml_compute_forward_tanh_f32(params, src0, dst);
  7996. } break;
  7997. default:
  7998. {
  7999. GGML_ASSERT(false);
  8000. } break;
  8001. }
  8002. }
  8003. // ggml_compute_forward_elu
  8004. static void ggml_compute_forward_elu_f32(
  8005. const struct ggml_compute_params * params,
  8006. const struct ggml_tensor * src0,
  8007. struct ggml_tensor * dst) {
  8008. assert(params->ith == 0);
  8009. assert(ggml_are_same_shape(src0, dst));
  8010. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8011. return;
  8012. }
  8013. const int n = ggml_nrows(src0);
  8014. const int nc = src0->ne[0];
  8015. assert(dst->nb[0] == sizeof(float));
  8016. assert(src0->nb[0] == sizeof(float));
  8017. for (int i = 0; i < n; i++) {
  8018. ggml_vec_elu_f32(nc,
  8019. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8020. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8021. }
  8022. }
  8023. static void ggml_compute_forward_elu(
  8024. const struct ggml_compute_params * params,
  8025. const struct ggml_tensor * src0,
  8026. struct ggml_tensor * dst) {
  8027. switch (src0->type) {
  8028. case GGML_TYPE_F32:
  8029. {
  8030. ggml_compute_forward_elu_f32(params, src0, dst);
  8031. } break;
  8032. default:
  8033. {
  8034. GGML_ASSERT(false);
  8035. } break;
  8036. }
  8037. }
  8038. // ggml_compute_forward_relu
  8039. static void ggml_compute_forward_relu_f32(
  8040. const struct ggml_compute_params * params,
  8041. const struct ggml_tensor * src0,
  8042. struct ggml_tensor * dst) {
  8043. assert(params->ith == 0);
  8044. assert(ggml_are_same_shape(src0, dst));
  8045. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8046. return;
  8047. }
  8048. const int n = ggml_nrows(src0);
  8049. const int nc = src0->ne[0];
  8050. assert(dst->nb[0] == sizeof(float));
  8051. assert(src0->nb[0] == sizeof(float));
  8052. for (int i = 0; i < n; i++) {
  8053. ggml_vec_relu_f32(nc,
  8054. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8055. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8056. }
  8057. }
  8058. static void ggml_compute_forward_relu(
  8059. const struct ggml_compute_params * params,
  8060. const struct ggml_tensor * src0,
  8061. struct ggml_tensor * dst) {
  8062. switch (src0->type) {
  8063. case GGML_TYPE_F32:
  8064. {
  8065. ggml_compute_forward_relu_f32(params, src0, dst);
  8066. } break;
  8067. default:
  8068. {
  8069. GGML_ASSERT(false);
  8070. } break;
  8071. }
  8072. }
  8073. // ggml_compute_forward_gelu
  8074. static void ggml_compute_forward_gelu_f32(
  8075. const struct ggml_compute_params * params,
  8076. const struct ggml_tensor * src0,
  8077. struct ggml_tensor * dst) {
  8078. GGML_ASSERT(ggml_is_contiguous(src0));
  8079. GGML_ASSERT(ggml_is_contiguous(dst));
  8080. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8081. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8082. return;
  8083. }
  8084. const int ith = params->ith;
  8085. const int nth = params->nth;
  8086. const int nc = src0->ne[0];
  8087. const int nr = ggml_nrows(src0);
  8088. // rows per thread
  8089. const int dr = (nr + nth - 1)/nth;
  8090. // row range for this thread
  8091. const int ir0 = dr*ith;
  8092. const int ir1 = MIN(ir0 + dr, nr);
  8093. for (int i1 = ir0; i1 < ir1; i1++) {
  8094. ggml_vec_gelu_f32(nc,
  8095. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8096. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8097. #ifndef NDEBUG
  8098. for (int k = 0; k < nc; k++) {
  8099. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8100. UNUSED(x);
  8101. assert(!isnan(x));
  8102. assert(!isinf(x));
  8103. }
  8104. #endif
  8105. }
  8106. }
  8107. static void ggml_compute_forward_gelu(
  8108. const struct ggml_compute_params * params,
  8109. const struct ggml_tensor * src0,
  8110. struct ggml_tensor * dst) {
  8111. switch (src0->type) {
  8112. case GGML_TYPE_F32:
  8113. {
  8114. ggml_compute_forward_gelu_f32(params, src0, dst);
  8115. } break;
  8116. default:
  8117. {
  8118. GGML_ASSERT(false);
  8119. } break;
  8120. }
  8121. }
  8122. // ggml_compute_forward_gelu_quick
  8123. static void ggml_compute_forward_gelu_quick_f32(
  8124. const struct ggml_compute_params * params,
  8125. const struct ggml_tensor * src0,
  8126. struct ggml_tensor * dst) {
  8127. GGML_ASSERT(ggml_is_contiguous(src0));
  8128. GGML_ASSERT(ggml_is_contiguous(dst));
  8129. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8131. return;
  8132. }
  8133. const int ith = params->ith;
  8134. const int nth = params->nth;
  8135. const int nc = src0->ne[0];
  8136. const int nr = ggml_nrows(src0);
  8137. // rows per thread
  8138. const int dr = (nr + nth - 1)/nth;
  8139. // row range for this thread
  8140. const int ir0 = dr*ith;
  8141. const int ir1 = MIN(ir0 + dr, nr);
  8142. for (int i1 = ir0; i1 < ir1; i1++) {
  8143. ggml_vec_gelu_quick_f32(nc,
  8144. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8145. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8146. #ifndef NDEBUG
  8147. for (int k = 0; k < nc; k++) {
  8148. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8149. UNUSED(x);
  8150. assert(!isnan(x));
  8151. assert(!isinf(x));
  8152. }
  8153. #endif
  8154. }
  8155. }
  8156. static void ggml_compute_forward_gelu_quick(
  8157. const struct ggml_compute_params * params,
  8158. const struct ggml_tensor * src0,
  8159. struct ggml_tensor * dst) {
  8160. switch (src0->type) {
  8161. case GGML_TYPE_F32:
  8162. {
  8163. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8164. } break;
  8165. default:
  8166. {
  8167. GGML_ASSERT(false);
  8168. } break;
  8169. }
  8170. }
  8171. // ggml_compute_forward_silu
  8172. static void ggml_compute_forward_silu_f32(
  8173. const struct ggml_compute_params * params,
  8174. const struct ggml_tensor * src0,
  8175. struct ggml_tensor * dst) {
  8176. GGML_ASSERT(ggml_is_contiguous(src0));
  8177. GGML_ASSERT(ggml_is_contiguous(dst));
  8178. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8179. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8180. return;
  8181. }
  8182. const int ith = params->ith;
  8183. const int nth = params->nth;
  8184. const int nc = src0->ne[0];
  8185. const int nr = ggml_nrows(src0);
  8186. // rows per thread
  8187. const int dr = (nr + nth - 1)/nth;
  8188. // row range for this thread
  8189. const int ir0 = dr*ith;
  8190. const int ir1 = MIN(ir0 + dr, nr);
  8191. for (int i1 = ir0; i1 < ir1; i1++) {
  8192. ggml_vec_silu_f32(nc,
  8193. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8194. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8195. #ifndef NDEBUG
  8196. for (int k = 0; k < nc; k++) {
  8197. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8198. UNUSED(x);
  8199. assert(!isnan(x));
  8200. assert(!isinf(x));
  8201. }
  8202. #endif
  8203. }
  8204. }
  8205. static void ggml_compute_forward_silu(
  8206. const struct ggml_compute_params * params,
  8207. const struct ggml_tensor * src0,
  8208. struct ggml_tensor * dst) {
  8209. switch (src0->type) {
  8210. case GGML_TYPE_F32:
  8211. {
  8212. ggml_compute_forward_silu_f32(params, src0, dst);
  8213. } break;
  8214. default:
  8215. {
  8216. GGML_ASSERT(false);
  8217. } break;
  8218. }
  8219. }
  8220. // ggml_compute_forward_silu_back
  8221. static void ggml_compute_forward_silu_back_f32(
  8222. const struct ggml_compute_params * params,
  8223. const struct ggml_tensor * src0,
  8224. const struct ggml_tensor * grad,
  8225. struct ggml_tensor * dst) {
  8226. GGML_ASSERT(ggml_is_contiguous(grad));
  8227. GGML_ASSERT(ggml_is_contiguous(src0));
  8228. GGML_ASSERT(ggml_is_contiguous(dst));
  8229. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8230. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8231. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8232. return;
  8233. }
  8234. const int ith = params->ith;
  8235. const int nth = params->nth;
  8236. const int nc = src0->ne[0];
  8237. const int nr = ggml_nrows(src0);
  8238. // rows per thread
  8239. const int dr = (nr + nth - 1)/nth;
  8240. // row range for this thread
  8241. const int ir0 = dr*ith;
  8242. const int ir1 = MIN(ir0 + dr, nr);
  8243. for (int i1 = ir0; i1 < ir1; i1++) {
  8244. ggml_vec_silu_backward_f32(nc,
  8245. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8246. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8247. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8248. #ifndef NDEBUG
  8249. for (int k = 0; k < nc; k++) {
  8250. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8251. UNUSED(x);
  8252. assert(!isnan(x));
  8253. assert(!isinf(x));
  8254. }
  8255. #endif
  8256. }
  8257. }
  8258. static void ggml_compute_forward_silu_back(
  8259. const struct ggml_compute_params * params,
  8260. const struct ggml_tensor * src0,
  8261. const struct ggml_tensor * grad,
  8262. struct ggml_tensor * dst) {
  8263. switch (src0->type) {
  8264. case GGML_TYPE_F32:
  8265. {
  8266. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8267. } break;
  8268. default:
  8269. {
  8270. GGML_ASSERT(false);
  8271. } break;
  8272. }
  8273. }
  8274. // ggml_compute_forward_norm
  8275. static void ggml_compute_forward_norm_f32(
  8276. const struct ggml_compute_params * params,
  8277. const struct ggml_tensor * src0,
  8278. struct ggml_tensor * dst) {
  8279. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8281. return;
  8282. }
  8283. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8284. const int ith = params->ith;
  8285. const int nth = params->nth;
  8286. GGML_TENSOR_UNARY_OP_LOCALS;
  8287. const float eps = 1e-5f; // TODO: make this a parameter
  8288. // TODO: optimize
  8289. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8290. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8291. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8292. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8293. ggml_float sum = 0.0;
  8294. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8295. sum += (ggml_float)x[i00];
  8296. }
  8297. float mean = sum/ne00;
  8298. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8299. ggml_float sum2 = 0.0;
  8300. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8301. float v = x[i00] - mean;
  8302. y[i00] = v;
  8303. sum2 += (ggml_float)(v*v);
  8304. }
  8305. float variance = sum2/ne00;
  8306. const float scale = 1.0f/sqrtf(variance + eps);
  8307. ggml_vec_scale_f32(ne00, y, scale);
  8308. }
  8309. }
  8310. }
  8311. }
  8312. static void ggml_compute_forward_norm(
  8313. const struct ggml_compute_params * params,
  8314. const struct ggml_tensor * src0,
  8315. struct ggml_tensor * dst) {
  8316. switch (src0->type) {
  8317. case GGML_TYPE_F32:
  8318. {
  8319. ggml_compute_forward_norm_f32(params, src0, dst);
  8320. } break;
  8321. default:
  8322. {
  8323. GGML_ASSERT(false);
  8324. } break;
  8325. }
  8326. }
  8327. static void ggml_compute_forward_rms_norm_f32(
  8328. const struct ggml_compute_params * params,
  8329. const struct ggml_tensor * src0,
  8330. struct ggml_tensor * dst) {
  8331. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8332. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8333. return;
  8334. }
  8335. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8336. const int ith = params->ith;
  8337. const int nth = params->nth;
  8338. GGML_TENSOR_UNARY_OP_LOCALS;
  8339. const float eps = 1e-6f; // TODO: make this a parameter
  8340. // TODO: optimize
  8341. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8342. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8343. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8344. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8345. ggml_float sum = 0.0;
  8346. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8347. sum += (ggml_float)(x[i00] * x[i00]);
  8348. }
  8349. const float mean = sum/ne00;
  8350. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8351. memcpy(y, x, ne00 * sizeof(float));
  8352. // for (int i00 = 0; i00 < ne00; i00++) {
  8353. // y[i00] = x[i00];
  8354. // }
  8355. const float scale = 1.0f/sqrtf(mean + eps);
  8356. ggml_vec_scale_f32(ne00, y, scale);
  8357. }
  8358. }
  8359. }
  8360. }
  8361. static void ggml_compute_forward_rms_norm(
  8362. const struct ggml_compute_params * params,
  8363. const struct ggml_tensor * src0,
  8364. struct ggml_tensor * dst) {
  8365. switch (src0->type) {
  8366. case GGML_TYPE_F32:
  8367. {
  8368. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8369. } break;
  8370. default:
  8371. {
  8372. GGML_ASSERT(false);
  8373. } break;
  8374. }
  8375. }
  8376. static void ggml_compute_forward_rms_norm_back_f32(
  8377. const struct ggml_compute_params * params,
  8378. const struct ggml_tensor * src0,
  8379. const struct ggml_tensor * src1,
  8380. struct ggml_tensor * dst) {
  8381. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8382. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8383. return;
  8384. }
  8385. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8386. const int ith = params->ith;
  8387. const int nth = params->nth;
  8388. GGML_TENSOR_BINARY_OP_LOCALS;
  8389. const float eps = 1e-6f; // TODO: make this a parameter
  8390. // TODO: optimize
  8391. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8392. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8393. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8394. // src1 is same shape as src0 => same indices
  8395. const int64_t i11 = i01;
  8396. const int64_t i12 = i02;
  8397. const int64_t i13 = i03;
  8398. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8399. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8400. ggml_float sum_xx = 0.0;
  8401. ggml_float sum_xdz = 0.0;
  8402. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8403. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8404. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8405. }
  8406. //const float mean = (float)(sum_xx)/ne00;
  8407. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8408. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8409. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8410. // we could cache rms from forward pass to improve performance.
  8411. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8412. //const float rms = sqrtf(mean_eps);
  8413. const float rrms = 1.0f / sqrtf(mean_eps);
  8414. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8415. {
  8416. // z = rms_norm(x)
  8417. //
  8418. // rms_norm(src0) =
  8419. // scale(
  8420. // src0,
  8421. // div(
  8422. // 1,
  8423. // sqrt(
  8424. // add(
  8425. // scale(
  8426. // sum(
  8427. // sqr(
  8428. // src0)),
  8429. // (1.0/N)),
  8430. // eps))));
  8431. // postorder:
  8432. // ## op args grad
  8433. // 00 param src0 grad[#00]
  8434. // 01 const 1
  8435. // 02 sqr (#00) grad[#02]
  8436. // 03 sum (#02) grad[#03]
  8437. // 04 const 1/N
  8438. // 05 scale (#03, #04) grad[#05]
  8439. // 06 const eps
  8440. // 07 add (#05, #06) grad[#07]
  8441. // 08 sqrt (#07) grad[#08]
  8442. // 09 div (#01,#08) grad[#09]
  8443. // 10 scale (#00,#09) grad[#10]
  8444. //
  8445. // backward pass, given grad[#10]
  8446. // #10: scale
  8447. // grad[#00] += scale(grad[#10],#09)
  8448. // grad[#09] += sum(mul(grad[#10],#00))
  8449. // #09: div
  8450. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8451. // #08: sqrt
  8452. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8453. // #07: add
  8454. // grad[#05] += grad[#07]
  8455. // #05: scale
  8456. // grad[#03] += scale(grad[#05],#04)
  8457. // #03: sum
  8458. // grad[#02] += repeat(grad[#03], #02)
  8459. // #02:
  8460. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8461. //
  8462. // substitute and simplify:
  8463. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8464. // grad[#02] = repeat(grad[#03], #02)
  8465. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8466. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8467. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8468. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8469. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8470. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8471. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8472. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8473. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8474. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8475. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8476. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8477. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8478. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8479. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8480. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8481. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8482. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8483. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8484. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8485. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8486. // a = b*c + d*e
  8487. // a = b*c*f/f + d*e*f/f
  8488. // a = (b*c*f + d*e*f)*(1/f)
  8489. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8490. // a = (b + d*e/c)*c
  8491. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8492. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8493. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8494. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8495. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8496. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8497. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8498. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8499. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8500. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8501. }
  8502. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8503. // post-order:
  8504. // dx := x
  8505. // dx := scale(dx,-mean_xdz/mean_eps)
  8506. // dx := add(dx, dz)
  8507. // dx := scale(dx, rrms)
  8508. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8509. ggml_vec_cpy_f32 (ne00, dx, x);
  8510. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8511. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8512. ggml_vec_acc_f32 (ne00, dx, dz);
  8513. ggml_vec_scale_f32(ne00, dx, rrms);
  8514. }
  8515. }
  8516. }
  8517. }
  8518. static void ggml_compute_forward_rms_norm_back(
  8519. const struct ggml_compute_params * params,
  8520. const struct ggml_tensor * src0,
  8521. const struct ggml_tensor * src1,
  8522. struct ggml_tensor * dst) {
  8523. switch (src0->type) {
  8524. case GGML_TYPE_F32:
  8525. {
  8526. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8527. } break;
  8528. default:
  8529. {
  8530. GGML_ASSERT(false);
  8531. } break;
  8532. }
  8533. }
  8534. // ggml_compute_forward_mul_mat
  8535. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8536. // helper function to determine if it is better to use BLAS or not
  8537. // for large matrices, BLAS is faster
  8538. static bool ggml_compute_forward_mul_mat_use_blas(
  8539. const struct ggml_tensor * src0,
  8540. const struct ggml_tensor * src1,
  8541. struct ggml_tensor * dst) {
  8542. //const int64_t ne00 = src0->ne[0];
  8543. //const int64_t ne01 = src0->ne[1];
  8544. const int64_t ne10 = src1->ne[0];
  8545. const int64_t ne0 = dst->ne[0];
  8546. const int64_t ne1 = dst->ne[1];
  8547. // TODO: find the optimal values for these
  8548. if (ggml_is_contiguous(src0) &&
  8549. ggml_is_contiguous(src1) &&
  8550. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8551. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8552. return true;
  8553. }
  8554. return false;
  8555. }
  8556. #endif
  8557. static void ggml_compute_forward_mul_mat(
  8558. const struct ggml_compute_params * params,
  8559. const struct ggml_tensor * src0,
  8560. const struct ggml_tensor * src1,
  8561. struct ggml_tensor * dst) {
  8562. int64_t t0 = ggml_perf_time_us();
  8563. UNUSED(t0);
  8564. GGML_TENSOR_BINARY_OP_LOCALS;
  8565. const int ith = params->ith;
  8566. const int nth = params->nth;
  8567. GGML_ASSERT(ne02 == ne12);
  8568. GGML_ASSERT(ne03 == ne13);
  8569. GGML_ASSERT(ne2 == ne12);
  8570. GGML_ASSERT(ne3 == ne13);
  8571. const enum ggml_type type = src0->type;
  8572. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8573. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8574. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8575. // we don't support permuted src0 or src1
  8576. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8577. GGML_ASSERT(nb10 == sizeof(float));
  8578. // dst cannot be transposed or permuted
  8579. GGML_ASSERT(nb0 == sizeof(float));
  8580. GGML_ASSERT(nb0 <= nb1);
  8581. GGML_ASSERT(nb1 <= nb2);
  8582. GGML_ASSERT(nb2 <= nb3);
  8583. GGML_ASSERT(ne0 == ne01);
  8584. GGML_ASSERT(ne1 == ne11);
  8585. GGML_ASSERT(ne2 == ne02);
  8586. GGML_ASSERT(ne3 == ne03);
  8587. // nb01 >= nb00 - src0 is not transposed
  8588. // compute by src0 rows
  8589. #if defined(GGML_USE_CLBLAST)
  8590. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8591. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8592. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8593. }
  8594. return;
  8595. }
  8596. #endif
  8597. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8598. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8599. if (params->ith != 0) {
  8600. return;
  8601. }
  8602. if (params->type == GGML_TASK_INIT) {
  8603. return;
  8604. }
  8605. if (params->type == GGML_TASK_FINALIZE) {
  8606. return;
  8607. }
  8608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8610. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8611. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8612. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8613. if (type != GGML_TYPE_F32) {
  8614. float * const wdata = params->wdata;
  8615. ggml_to_float_t const to_float = type_traits[type].to_float;
  8616. size_t id = 0;
  8617. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8618. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8619. id += ne00;
  8620. }
  8621. assert(id*sizeof(float) <= params->wsize);
  8622. x = wdata;
  8623. }
  8624. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8625. ne11, ne01, ne10,
  8626. 1.0f, y, ne10,
  8627. x, ne00,
  8628. 0.0f, d, ne01);
  8629. }
  8630. }
  8631. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8632. return;
  8633. }
  8634. #endif
  8635. if (params->type == GGML_TASK_INIT) {
  8636. if (src1->type != vec_dot_type) {
  8637. char * wdata = params->wdata;
  8638. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8639. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8640. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8641. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8642. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8643. wdata += row_size;
  8644. }
  8645. }
  8646. }
  8647. }
  8648. return;
  8649. }
  8650. if (params->type == GGML_TASK_FINALIZE) {
  8651. return;
  8652. }
  8653. // parallelize by src0 rows using ggml_vec_dot_q
  8654. // total rows in src0
  8655. const int nr = ne01*ne02*ne03;
  8656. // rows per thread
  8657. const int dr = (nr + nth - 1)/nth;
  8658. // row range for this thread
  8659. const int ir0 = dr*ith;
  8660. const int ir1 = MIN(ir0 + dr, nr);
  8661. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8662. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8663. for (int ir = ir0; ir < ir1; ++ir) {
  8664. // src0 indices
  8665. const int i03 = ir/(ne02*ne01);
  8666. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8667. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8668. const int i13 = i03;
  8669. const int i12 = i02;
  8670. const int i0 = i01;
  8671. const int i2 = i02;
  8672. const int i3 = i03;
  8673. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8674. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8675. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8676. for (int64_t ic = 0; ic < ne11; ++ic) {
  8677. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8678. }
  8679. }
  8680. //int64_t t1 = ggml_time_us();
  8681. //static int64_t acc = 0;
  8682. //acc += t1 - t0;
  8683. //if (t1 - t0 > 10) {
  8684. // printf("\n");
  8685. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8686. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8687. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8688. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8689. //}
  8690. }
  8691. // ggml_compute_forward_out_prod
  8692. static void ggml_compute_forward_out_prod_f32(
  8693. const struct ggml_compute_params * params,
  8694. const struct ggml_tensor * src0,
  8695. const struct ggml_tensor * src1,
  8696. struct ggml_tensor * dst) {
  8697. int64_t t0 = ggml_perf_time_us();
  8698. UNUSED(t0);
  8699. GGML_TENSOR_BINARY_OP_LOCALS;
  8700. const int ith = params->ith;
  8701. const int nth = params->nth;
  8702. GGML_ASSERT(ne02 == ne12);
  8703. GGML_ASSERT(ne03 == ne13);
  8704. GGML_ASSERT(ne2 == ne12);
  8705. GGML_ASSERT(ne3 == ne13);
  8706. // we don't support permuted src0 or src1
  8707. GGML_ASSERT(nb00 == sizeof(float));
  8708. // dst cannot be transposed or permuted
  8709. GGML_ASSERT(nb0 == sizeof(float));
  8710. // GGML_ASSERT(nb0 <= nb1);
  8711. // GGML_ASSERT(nb1 <= nb2);
  8712. // GGML_ASSERT(nb2 <= nb3);
  8713. GGML_ASSERT(ne0 == ne00);
  8714. GGML_ASSERT(ne1 == ne10);
  8715. GGML_ASSERT(ne2 == ne02);
  8716. GGML_ASSERT(ne3 == ne03);
  8717. // nb01 >= nb00 - src0 is not transposed
  8718. // compute by src0 rows
  8719. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8720. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8721. if (params->type == GGML_TASK_INIT) {
  8722. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8723. return;
  8724. }
  8725. if (params->type == GGML_TASK_FINALIZE) {
  8726. return;
  8727. }
  8728. // parallelize by last three dimensions
  8729. // total rows in dst
  8730. const int64_t nr = ne1*ne2*ne3;
  8731. // rows per thread
  8732. const int64_t dr = (nr + nth - 1)/nth;
  8733. // row range for this thread
  8734. const int64_t ir0 = dr*ith;
  8735. const int64_t ir1 = MIN(ir0 + dr, nr);
  8736. // dst[:,:,:,:] = 0
  8737. // for i2,i3:
  8738. // for i1:
  8739. // for i01:
  8740. // for i0:
  8741. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8742. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8743. // dst indices
  8744. const int64_t i3 = ir/(ne2*ne1);
  8745. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8746. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8747. const int64_t i02 = i2;
  8748. const int64_t i03 = i3;
  8749. //const int64_t i10 = i1;
  8750. const int64_t i12 = i2;
  8751. const int64_t i13 = i3;
  8752. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8753. const int64_t i11 = i01;
  8754. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8755. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8756. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8757. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8758. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8759. // d[i0] += s0[i0] * s1[i1];
  8760. // }
  8761. }
  8762. }
  8763. //int64_t t1 = ggml_perf_time_us();
  8764. //static int64_t acc = 0;
  8765. //acc += t1 - t0;
  8766. //if (t1 - t0 > 10) {
  8767. // printf("\n");
  8768. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8769. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8770. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8771. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8772. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8773. //}
  8774. }
  8775. static void ggml_compute_forward_out_prod(
  8776. const struct ggml_compute_params * params,
  8777. const struct ggml_tensor * src0,
  8778. const struct ggml_tensor * src1,
  8779. struct ggml_tensor * dst) {
  8780. switch (src0->type) {
  8781. case GGML_TYPE_Q4_0:
  8782. case GGML_TYPE_Q4_1:
  8783. case GGML_TYPE_Q5_0:
  8784. case GGML_TYPE_Q5_1:
  8785. case GGML_TYPE_Q8_0:
  8786. case GGML_TYPE_Q8_1:
  8787. {
  8788. GGML_ASSERT(false); // todo
  8789. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8790. } break;
  8791. case GGML_TYPE_F16:
  8792. {
  8793. GGML_ASSERT(false); // todo
  8794. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8795. } break;
  8796. case GGML_TYPE_F32:
  8797. {
  8798. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8799. } break;
  8800. default:
  8801. {
  8802. GGML_ASSERT(false);
  8803. } break;
  8804. }
  8805. }
  8806. // ggml_compute_forward_scale
  8807. static void ggml_compute_forward_scale_f32(
  8808. const struct ggml_compute_params * params,
  8809. const struct ggml_tensor * src0,
  8810. const struct ggml_tensor * src1,
  8811. struct ggml_tensor * dst) {
  8812. GGML_ASSERT(ggml_is_contiguous(src0));
  8813. GGML_ASSERT(ggml_is_contiguous(dst));
  8814. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8815. GGML_ASSERT(ggml_is_scalar(src1));
  8816. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8817. return;
  8818. }
  8819. // scale factor
  8820. const float v = *(float *) src1->data;
  8821. const int ith = params->ith;
  8822. const int nth = params->nth;
  8823. const int nc = src0->ne[0];
  8824. const int nr = ggml_nrows(src0);
  8825. // rows per thread
  8826. const int dr = (nr + nth - 1)/nth;
  8827. // row range for this thread
  8828. const int ir0 = dr*ith;
  8829. const int ir1 = MIN(ir0 + dr, nr);
  8830. const size_t nb01 = src0->nb[1];
  8831. const size_t nb1 = dst->nb[1];
  8832. for (int i1 = ir0; i1 < ir1; i1++) {
  8833. if (dst->data != src0->data) {
  8834. // src0 is same shape as dst => same indices
  8835. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8836. }
  8837. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8838. }
  8839. }
  8840. static void ggml_compute_forward_scale(
  8841. const struct ggml_compute_params * params,
  8842. const struct ggml_tensor * src0,
  8843. const struct ggml_tensor * src1,
  8844. struct ggml_tensor * dst) {
  8845. switch (src0->type) {
  8846. case GGML_TYPE_F32:
  8847. {
  8848. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8849. } break;
  8850. default:
  8851. {
  8852. GGML_ASSERT(false);
  8853. } break;
  8854. }
  8855. }
  8856. // ggml_compute_forward_set
  8857. static void ggml_compute_forward_set_f32(
  8858. const struct ggml_compute_params * params,
  8859. const struct ggml_tensor * src0,
  8860. const struct ggml_tensor * src1,
  8861. const struct ggml_tensor * opt0,
  8862. struct ggml_tensor * dst) {
  8863. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8864. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8865. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8866. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8867. // view src0 and dst with these strides and data offset inbytes during set
  8868. // nb0 is implicitely element_size because src0 and dst are contiguous
  8869. size_t nb1 = ((int32_t *) opt0->data)[0];
  8870. size_t nb2 = ((int32_t *) opt0->data)[1];
  8871. size_t nb3 = ((int32_t *) opt0->data)[2];
  8872. size_t offset = ((int32_t *) opt0->data)[3];
  8873. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8874. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8875. // memcpy needs to be synchronized across threads to avoid race conditions.
  8876. // => do it in INIT phase
  8877. memcpy(
  8878. ((char *) dst->data),
  8879. ((char *) src0->data),
  8880. ggml_nbytes(dst));
  8881. }
  8882. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8883. return;
  8884. }
  8885. const int ith = params->ith;
  8886. const int nth = params->nth;
  8887. const int nr = ggml_nrows(src1);
  8888. const int nc = src1->ne[0];
  8889. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8890. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8891. // src0 and dst as viewed during set
  8892. const size_t nb0 = ggml_element_size(src0);
  8893. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8894. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8895. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8896. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8897. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8898. GGML_ASSERT(nb10 == sizeof(float));
  8899. // rows per thread
  8900. const int dr = (nr + nth - 1)/nth;
  8901. // row range for this thread
  8902. const int ir0 = dr*ith;
  8903. const int ir1 = MIN(ir0 + dr, nr);
  8904. for (int ir = ir0; ir < ir1; ++ir) {
  8905. // src0 and dst are viewed with shape of src1 and offset
  8906. // => same indices
  8907. const int i3 = ir/(ne12*ne11);
  8908. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8909. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8910. ggml_vec_cpy_f32(nc,
  8911. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8912. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8913. }
  8914. }
  8915. static void ggml_compute_forward_set(
  8916. const struct ggml_compute_params * params,
  8917. const struct ggml_tensor * src0,
  8918. const struct ggml_tensor * src1,
  8919. const struct ggml_tensor * opt0,
  8920. struct ggml_tensor * dst) {
  8921. switch (src0->type) {
  8922. case GGML_TYPE_F32:
  8923. {
  8924. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8925. } break;
  8926. case GGML_TYPE_F16:
  8927. case GGML_TYPE_Q4_0:
  8928. case GGML_TYPE_Q4_1:
  8929. case GGML_TYPE_Q5_0:
  8930. case GGML_TYPE_Q5_1:
  8931. case GGML_TYPE_Q8_0:
  8932. case GGML_TYPE_Q8_1:
  8933. case GGML_TYPE_Q2_K:
  8934. case GGML_TYPE_Q3_K:
  8935. case GGML_TYPE_Q4_K:
  8936. case GGML_TYPE_Q5_K:
  8937. case GGML_TYPE_Q6_K:
  8938. default:
  8939. {
  8940. GGML_ASSERT(false);
  8941. } break;
  8942. }
  8943. }
  8944. // ggml_compute_forward_cpy
  8945. static void ggml_compute_forward_cpy(
  8946. const struct ggml_compute_params * params,
  8947. const struct ggml_tensor * src0,
  8948. struct ggml_tensor * dst) {
  8949. ggml_compute_forward_dup(params, src0, dst);
  8950. }
  8951. // ggml_compute_forward_cont
  8952. static void ggml_compute_forward_cont(
  8953. const struct ggml_compute_params * params,
  8954. const struct ggml_tensor * src0,
  8955. struct ggml_tensor * dst) {
  8956. ggml_compute_forward_dup(params, src0, dst);
  8957. }
  8958. // ggml_compute_forward_reshape
  8959. static void ggml_compute_forward_reshape(
  8960. const struct ggml_compute_params * params,
  8961. const struct ggml_tensor * src0,
  8962. struct ggml_tensor * dst) {
  8963. // NOP
  8964. UNUSED(params);
  8965. UNUSED(src0);
  8966. UNUSED(dst);
  8967. }
  8968. // ggml_compute_forward_view
  8969. static void ggml_compute_forward_view(
  8970. const struct ggml_compute_params * params,
  8971. const struct ggml_tensor * src0) {
  8972. // NOP
  8973. UNUSED(params);
  8974. UNUSED(src0);
  8975. }
  8976. // ggml_compute_forward_permute
  8977. static void ggml_compute_forward_permute(
  8978. const struct ggml_compute_params * params,
  8979. const struct ggml_tensor * src0) {
  8980. // NOP
  8981. UNUSED(params);
  8982. UNUSED(src0);
  8983. }
  8984. // ggml_compute_forward_transpose
  8985. static void ggml_compute_forward_transpose(
  8986. const struct ggml_compute_params * params,
  8987. const struct ggml_tensor * src0) {
  8988. // NOP
  8989. UNUSED(params);
  8990. UNUSED(src0);
  8991. }
  8992. // ggml_compute_forward_get_rows
  8993. static void ggml_compute_forward_get_rows_q(
  8994. const struct ggml_compute_params * params,
  8995. const struct ggml_tensor * src0,
  8996. const struct ggml_tensor * src1,
  8997. struct ggml_tensor * dst) {
  8998. assert(params->ith == 0);
  8999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9000. return;
  9001. }
  9002. const int nc = src0->ne[0];
  9003. const int nr = ggml_nelements(src1);
  9004. const enum ggml_type type = src0->type;
  9005. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9006. assert( dst->ne[0] == nc);
  9007. assert( dst->ne[1] == nr);
  9008. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9009. for (int i = 0; i < nr; ++i) {
  9010. const int r = ((int32_t *) src1->data)[i];
  9011. dequantize_row_q(
  9012. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9013. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9014. }
  9015. }
  9016. static void ggml_compute_forward_get_rows_f16(
  9017. const struct ggml_compute_params * params,
  9018. const struct ggml_tensor * src0,
  9019. const struct ggml_tensor * src1,
  9020. struct ggml_tensor * dst) {
  9021. assert(params->ith == 0);
  9022. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9023. return;
  9024. }
  9025. const int nc = src0->ne[0];
  9026. const int nr = ggml_nelements(src1);
  9027. assert( dst->ne[0] == nc);
  9028. assert( dst->ne[1] == nr);
  9029. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9030. for (int i = 0; i < nr; ++i) {
  9031. const int r = ((int32_t *) src1->data)[i];
  9032. for (int j = 0; j < nc; ++j) {
  9033. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9034. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9035. }
  9036. }
  9037. }
  9038. static void ggml_compute_forward_get_rows_f32(
  9039. const struct ggml_compute_params * params,
  9040. const struct ggml_tensor * src0,
  9041. const struct ggml_tensor * src1,
  9042. struct ggml_tensor * dst) {
  9043. assert(params->ith == 0);
  9044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9045. return;
  9046. }
  9047. const int nc = src0->ne[0];
  9048. const int nr = ggml_nelements(src1);
  9049. assert( dst->ne[0] == nc);
  9050. assert( dst->ne[1] == nr);
  9051. assert(src0->nb[0] == sizeof(float));
  9052. for (int i = 0; i < nr; ++i) {
  9053. const int r = ((int32_t *) src1->data)[i];
  9054. ggml_vec_cpy_f32(nc,
  9055. (float *) ((char *) dst->data + i*dst->nb[1]),
  9056. (float *) ((char *) src0->data + r*src0->nb[1]));
  9057. }
  9058. }
  9059. static void ggml_compute_forward_get_rows(
  9060. const struct ggml_compute_params * params,
  9061. const struct ggml_tensor * src0,
  9062. const struct ggml_tensor * src1,
  9063. struct ggml_tensor * dst) {
  9064. switch (src0->type) {
  9065. case GGML_TYPE_Q4_0:
  9066. case GGML_TYPE_Q4_1:
  9067. case GGML_TYPE_Q5_0:
  9068. case GGML_TYPE_Q5_1:
  9069. case GGML_TYPE_Q8_0:
  9070. case GGML_TYPE_Q8_1:
  9071. case GGML_TYPE_Q2_K:
  9072. case GGML_TYPE_Q3_K:
  9073. case GGML_TYPE_Q4_K:
  9074. case GGML_TYPE_Q5_K:
  9075. case GGML_TYPE_Q6_K:
  9076. {
  9077. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9078. } break;
  9079. case GGML_TYPE_F16:
  9080. {
  9081. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9082. } break;
  9083. case GGML_TYPE_F32:
  9084. {
  9085. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9086. } break;
  9087. default:
  9088. {
  9089. GGML_ASSERT(false);
  9090. } break;
  9091. }
  9092. //static bool first = true;
  9093. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9094. //if (first) {
  9095. // first = false;
  9096. //} else {
  9097. // for (int k = 0; k < dst->ne[1]; ++k) {
  9098. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9099. // for (int i = 0; i < 16; ++i) {
  9100. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9101. // }
  9102. // printf("\n");
  9103. // }
  9104. // printf("\n");
  9105. // }
  9106. // printf("\n");
  9107. // exit(0);
  9108. //}
  9109. }
  9110. // ggml_compute_forward_get_rows_back
  9111. static void ggml_compute_forward_get_rows_back_f32_f16(
  9112. const struct ggml_compute_params * params,
  9113. const struct ggml_tensor * src0,
  9114. const struct ggml_tensor * src1,
  9115. const struct ggml_tensor * opt0,
  9116. struct ggml_tensor * dst) {
  9117. GGML_ASSERT(params->ith == 0);
  9118. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9119. GGML_ASSERT(ggml_is_contiguous(opt0));
  9120. GGML_ASSERT(ggml_is_contiguous(dst));
  9121. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9122. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9123. return;
  9124. }
  9125. const int nc = src0->ne[0];
  9126. const int nr = ggml_nelements(src1);
  9127. GGML_ASSERT( dst->ne[0] == nc);
  9128. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9129. for (int i = 0; i < nr; ++i) {
  9130. const int r = ((int32_t *) src1->data)[i];
  9131. for (int j = 0; j < nc; ++j) {
  9132. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9133. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9134. }
  9135. }
  9136. }
  9137. static void ggml_compute_forward_get_rows_back_f32(
  9138. const struct ggml_compute_params * params,
  9139. const struct ggml_tensor * src0,
  9140. const struct ggml_tensor * src1,
  9141. const struct ggml_tensor * opt0,
  9142. struct ggml_tensor * dst) {
  9143. GGML_ASSERT(params->ith == 0);
  9144. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9145. GGML_ASSERT(ggml_is_contiguous(opt0));
  9146. GGML_ASSERT(ggml_is_contiguous(dst));
  9147. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9148. if (params->type == GGML_TASK_INIT) {
  9149. memset(dst->data, 0, ggml_nbytes(dst));
  9150. }
  9151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9152. return;
  9153. }
  9154. const int nc = src0->ne[0];
  9155. const int nr = ggml_nelements(src1);
  9156. GGML_ASSERT( dst->ne[0] == nc);
  9157. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9158. for (int i = 0; i < nr; ++i) {
  9159. const int r = ((int32_t *) src1->data)[i];
  9160. ggml_vec_add_f32(nc,
  9161. (float *) ((char *) dst->data + r*dst->nb[1]),
  9162. (float *) ((char *) dst->data + r*dst->nb[1]),
  9163. (float *) ((char *) src0->data + i*src0->nb[1]));
  9164. }
  9165. }
  9166. static void ggml_compute_forward_get_rows_back(
  9167. const struct ggml_compute_params * params,
  9168. const struct ggml_tensor * src0,
  9169. const struct ggml_tensor * src1,
  9170. const struct ggml_tensor * opt0,
  9171. struct ggml_tensor * dst) {
  9172. switch (src0->type) {
  9173. case GGML_TYPE_F16:
  9174. {
  9175. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9176. } break;
  9177. case GGML_TYPE_F32:
  9178. {
  9179. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9180. } break;
  9181. default:
  9182. {
  9183. GGML_ASSERT(false);
  9184. } break;
  9185. }
  9186. //static bool first = true;
  9187. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9188. //if (first) {
  9189. // first = false;
  9190. //} else {
  9191. // for (int k = 0; k < dst->ne[1]; ++k) {
  9192. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9193. // for (int i = 0; i < 16; ++i) {
  9194. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9195. // }
  9196. // printf("\n");
  9197. // }
  9198. // printf("\n");
  9199. // }
  9200. // printf("\n");
  9201. // exit(0);
  9202. //}
  9203. }
  9204. // ggml_compute_forward_diag
  9205. static void ggml_compute_forward_diag_f32(
  9206. const struct ggml_compute_params * params,
  9207. const struct ggml_tensor * src0,
  9208. struct ggml_tensor * dst) {
  9209. GGML_ASSERT(params->ith == 0);
  9210. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9211. return;
  9212. }
  9213. // TODO: handle transposed/permuted matrices
  9214. GGML_TENSOR_UNARY_OP_LOCALS;
  9215. GGML_ASSERT(ne00 == ne0);
  9216. GGML_ASSERT(ne00 == ne1);
  9217. GGML_ASSERT(ne01 == 1);
  9218. GGML_ASSERT(ne02 == ne2);
  9219. GGML_ASSERT(ne03 == ne3);
  9220. GGML_ASSERT(nb00 == sizeof(float));
  9221. GGML_ASSERT(nb0 == sizeof(float));
  9222. for (int i3 = 0; i3 < ne3; i3++) {
  9223. for (int i2 = 0; i2 < ne2; i2++) {
  9224. for (int i1 = 0; i1 < ne1; i1++) {
  9225. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9226. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9227. for (int i0 = 0; i0 < i1; i0++) {
  9228. d[i0] = 0;
  9229. }
  9230. d[i1] = s[i1];
  9231. for (int i0 = i1+1; i0 < ne0; i0++) {
  9232. d[i0] = 0;
  9233. }
  9234. }
  9235. }
  9236. }
  9237. }
  9238. static void ggml_compute_forward_diag(
  9239. const struct ggml_compute_params * params,
  9240. const struct ggml_tensor * src0,
  9241. struct ggml_tensor * dst) {
  9242. switch (src0->type) {
  9243. case GGML_TYPE_F32:
  9244. {
  9245. ggml_compute_forward_diag_f32(params, src0, dst);
  9246. } break;
  9247. default:
  9248. {
  9249. GGML_ASSERT(false);
  9250. } break;
  9251. }
  9252. }
  9253. // ggml_compute_forward_diag_mask_inf
  9254. static void ggml_compute_forward_diag_mask_f32(
  9255. const struct ggml_compute_params * params,
  9256. const struct ggml_tensor * src0,
  9257. const struct ggml_tensor * src1,
  9258. struct ggml_tensor * dst,
  9259. const float value) {
  9260. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9261. GGML_ASSERT(ggml_nelements(src1) == 2);
  9262. const int ith = params->ith;
  9263. const int nth = params->nth;
  9264. const int n_past = ((int32_t *) src1->data)[0];
  9265. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9266. GGML_ASSERT(n_past >= 0);
  9267. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9268. // memcpy needs to be synchronized across threads to avoid race conditions.
  9269. // => do it in INIT phase
  9270. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9271. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9272. memcpy(
  9273. ((char *) dst->data),
  9274. ((char *) src0->data),
  9275. ggml_nbytes(dst));
  9276. }
  9277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9278. return;
  9279. }
  9280. // TODO: handle transposed/permuted matrices
  9281. const int n = ggml_nrows(src0);
  9282. const int nc = src0->ne[0];
  9283. const int nr = src0->ne[1];
  9284. const int nz = n/nr;
  9285. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9286. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9287. for (int k = 0; k < nz; k++) {
  9288. for (int j = ith; j < nr; j += nth) {
  9289. for (int i = n_past; i < nc; i++) {
  9290. if (i > n_past + j) {
  9291. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9292. }
  9293. }
  9294. }
  9295. }
  9296. }
  9297. static void ggml_compute_forward_diag_mask_inf(
  9298. const struct ggml_compute_params * params,
  9299. const struct ggml_tensor * src0,
  9300. const struct ggml_tensor * src1,
  9301. struct ggml_tensor * dst) {
  9302. switch (src0->type) {
  9303. case GGML_TYPE_F32:
  9304. {
  9305. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9306. } break;
  9307. default:
  9308. {
  9309. GGML_ASSERT(false);
  9310. } break;
  9311. }
  9312. }
  9313. static void ggml_compute_forward_diag_mask_zero(
  9314. const struct ggml_compute_params * params,
  9315. const struct ggml_tensor * src0,
  9316. const struct ggml_tensor * src1,
  9317. struct ggml_tensor * dst) {
  9318. switch (src0->type) {
  9319. case GGML_TYPE_F32:
  9320. {
  9321. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9322. } break;
  9323. default:
  9324. {
  9325. GGML_ASSERT(false);
  9326. } break;
  9327. }
  9328. }
  9329. // ggml_compute_forward_soft_max
  9330. static void ggml_compute_forward_soft_max_f32(
  9331. const struct ggml_compute_params * params,
  9332. const struct ggml_tensor * src0,
  9333. struct ggml_tensor * dst) {
  9334. GGML_ASSERT(ggml_is_contiguous(src0));
  9335. GGML_ASSERT(ggml_is_contiguous(dst));
  9336. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9338. return;
  9339. }
  9340. // TODO: handle transposed/permuted matrices
  9341. const int ith = params->ith;
  9342. const int nth = params->nth;
  9343. const int nc = src0->ne[0];
  9344. const int nr = ggml_nrows(src0);
  9345. // rows per thread
  9346. const int dr = (nr + nth - 1)/nth;
  9347. // row range for this thread
  9348. const int ir0 = dr*ith;
  9349. const int ir1 = MIN(ir0 + dr, nr);
  9350. for (int i1 = ir0; i1 < ir1; i1++) {
  9351. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9352. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9353. #ifndef NDEBUG
  9354. for (int i = 0; i < nc; ++i) {
  9355. //printf("p[%d] = %f\n", i, p[i]);
  9356. assert(!isnan(sp[i]));
  9357. }
  9358. #endif
  9359. float max = -INFINITY;
  9360. ggml_vec_max_f32(nc, &max, sp);
  9361. ggml_float sum = 0.0;
  9362. uint16_t scvt;
  9363. for (int i = 0; i < nc; i++) {
  9364. if (sp[i] == -INFINITY) {
  9365. dp[i] = 0.0f;
  9366. } else {
  9367. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9368. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9369. memcpy(&scvt, &s, sizeof(scvt));
  9370. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9371. sum += (ggml_float)val;
  9372. dp[i] = val;
  9373. }
  9374. }
  9375. assert(sum > 0.0);
  9376. sum = 1.0/sum;
  9377. ggml_vec_scale_f32(nc, dp, sum);
  9378. #ifndef NDEBUG
  9379. for (int i = 0; i < nc; ++i) {
  9380. assert(!isnan(dp[i]));
  9381. assert(!isinf(dp[i]));
  9382. }
  9383. #endif
  9384. }
  9385. }
  9386. static void ggml_compute_forward_soft_max(
  9387. const struct ggml_compute_params * params,
  9388. const struct ggml_tensor * src0,
  9389. struct ggml_tensor * dst) {
  9390. switch (src0->type) {
  9391. case GGML_TYPE_F32:
  9392. {
  9393. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9394. } break;
  9395. default:
  9396. {
  9397. GGML_ASSERT(false);
  9398. } break;
  9399. }
  9400. }
  9401. // ggml_compute_forward_soft_max_back
  9402. static void ggml_compute_forward_soft_max_back_f32(
  9403. const struct ggml_compute_params * params,
  9404. const struct ggml_tensor * src0,
  9405. const struct ggml_tensor * src1,
  9406. struct ggml_tensor * dst) {
  9407. GGML_ASSERT(ggml_is_contiguous(src0));
  9408. GGML_ASSERT(ggml_is_contiguous(src1));
  9409. GGML_ASSERT(ggml_is_contiguous(dst));
  9410. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9411. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9412. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9413. return;
  9414. }
  9415. // TODO: handle transposed/permuted matrices
  9416. const int ith = params->ith;
  9417. const int nth = params->nth;
  9418. const int nc = src0->ne[0];
  9419. const int nr = ggml_nrows(src0);
  9420. // rows per thread
  9421. const int dr = (nr + nth - 1)/nth;
  9422. // row range for this thread
  9423. const int ir0 = dr*ith;
  9424. const int ir1 = MIN(ir0 + dr, nr);
  9425. for (int i1 = ir0; i1 < ir1; i1++) {
  9426. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9427. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9428. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9429. #ifndef NDEBUG
  9430. for (int i = 0; i < nc; ++i) {
  9431. //printf("p[%d] = %f\n", i, p[i]);
  9432. assert(!isnan(dy[i]));
  9433. assert(!isnan(y[i]));
  9434. }
  9435. #endif
  9436. // Jii = yi - yi*yi
  9437. // Jij = -yi*yj
  9438. // J = diag(y)-y.T*y
  9439. // dx = J * dy
  9440. // dxk = sum_i(Jki * dyi)
  9441. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9442. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9443. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9444. // dxk = -yk * dot(y, dy) + yk*dyk
  9445. // dxk = yk * (- dot(y, dy) + dyk)
  9446. // dxk = yk * (dyk - dot(y, dy))
  9447. //
  9448. // post-order:
  9449. // dot_y_dy := dot(y, dy)
  9450. // dx := dy
  9451. // dx := dx - dot_y_dy
  9452. // dx := dx * y
  9453. // linear runtime, no additional memory
  9454. float dot_y_dy = 0;
  9455. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9456. ggml_vec_cpy_f32 (nc, dx, dy);
  9457. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9458. ggml_vec_mul_f32 (nc, dx, dx, y);
  9459. #ifndef NDEBUG
  9460. for (int i = 0; i < nc; ++i) {
  9461. assert(!isnan(dx[i]));
  9462. assert(!isinf(dx[i]));
  9463. }
  9464. #endif
  9465. }
  9466. }
  9467. static void ggml_compute_forward_soft_max_back(
  9468. const struct ggml_compute_params * params,
  9469. const struct ggml_tensor * src0,
  9470. const struct ggml_tensor * src1,
  9471. struct ggml_tensor * dst) {
  9472. switch (src0->type) {
  9473. case GGML_TYPE_F32:
  9474. {
  9475. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9476. } break;
  9477. default:
  9478. {
  9479. GGML_ASSERT(false);
  9480. } break;
  9481. }
  9482. }
  9483. // ggml_compute_forward_alibi
  9484. static void ggml_compute_forward_alibi_f32(
  9485. const struct ggml_compute_params * params,
  9486. const struct ggml_tensor * src0,
  9487. const struct ggml_tensor * src1,
  9488. struct ggml_tensor * dst) {
  9489. assert(params->ith == 0);
  9490. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9491. GGML_ASSERT(ggml_nelements(src1) == 3);
  9492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9493. return;
  9494. }
  9495. const int n_past = ((int32_t *) src1->data)[0];
  9496. const int n_head = ((int32_t *) src1->data)[1];
  9497. const float max_bias = ((float *) src1->data)[2];
  9498. assert(n_past >= 0);
  9499. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9500. const int ne1 = src0->ne[1]; // seq_len_without_past
  9501. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9502. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9503. const int n = ggml_nrows(src0);
  9504. const int ne2_ne3 = n/ne1; // ne2*ne3
  9505. const int nb0 = src0->nb[0];
  9506. const int nb1 = src0->nb[1];
  9507. const int nb2 = src0->nb[2];
  9508. //const int nb3 = src0->nb[3];
  9509. assert(nb0 == sizeof(float));
  9510. assert(ne1 + n_past == ne0); (void) n_past;
  9511. // add alibi to src0 (KQ_scaled)
  9512. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9513. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9514. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9515. for (int i = 0; i < ne0; i++) {
  9516. for (int j = 0; j < ne1; j++) {
  9517. for (int k = 0; k < ne2_ne3; k++) {
  9518. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9519. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9520. // TODO: k*nb2 or k*nb3
  9521. float m_k;
  9522. if (k < n_heads_log2_floor) {
  9523. m_k = powf(m0, k + 1);
  9524. } else {
  9525. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9526. }
  9527. pdst[0] = (i-ne0+1) * m_k + src[0];
  9528. }
  9529. }
  9530. }
  9531. }
  9532. static void ggml_compute_forward_alibi_f16(
  9533. const struct ggml_compute_params * params,
  9534. const struct ggml_tensor * src0,
  9535. const struct ggml_tensor * src1,
  9536. struct ggml_tensor * dst) {
  9537. assert(params->ith == 0);
  9538. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9539. GGML_ASSERT(ggml_nelements(src1) == 3);
  9540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9541. return;
  9542. }
  9543. const int n_past = ((int32_t *) src1->data)[0];
  9544. const int n_head = ((int32_t *) src1->data)[1];
  9545. const float max_bias = ((float *) src1->data)[2];
  9546. assert(n_past >= 0);
  9547. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9548. const int ne1 = src0->ne[1]; // seq_len_without_past
  9549. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9550. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9551. const int n = ggml_nrows(src0);
  9552. const int ne2_ne3 = n/ne1; // ne2*ne3
  9553. const int nb0 = src0->nb[0];
  9554. const int nb1 = src0->nb[1];
  9555. const int nb2 = src0->nb[2];
  9556. //const int nb3 = src0->nb[3];
  9557. assert(nb0 == sizeof(ggml_fp16_t));
  9558. assert(ne1 + n_past == ne0); (void) n_past;
  9559. // add alibi to src0 (KQ_scaled)
  9560. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9561. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9562. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9563. for (int i = 0; i < ne0; i++) {
  9564. for (int j = 0; j < ne1; j++) {
  9565. for (int k = 0; k < ne2_ne3; k++) {
  9566. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9567. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9568. // TODO: k*nb2 or k*nb3
  9569. float m_k;
  9570. if (k < n_heads_log2_floor) {
  9571. m_k = powf(m0, k + 1);
  9572. } else {
  9573. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9574. }
  9575. // we return F32
  9576. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9577. }
  9578. }
  9579. }
  9580. }
  9581. static void ggml_compute_forward_alibi(
  9582. const struct ggml_compute_params * params,
  9583. const struct ggml_tensor * src0,
  9584. const struct ggml_tensor * src1,
  9585. struct ggml_tensor * dst) {
  9586. switch (src0->type) {
  9587. case GGML_TYPE_F16:
  9588. {
  9589. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9590. } break;
  9591. case GGML_TYPE_F32:
  9592. {
  9593. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9594. } break;
  9595. case GGML_TYPE_Q4_0:
  9596. case GGML_TYPE_Q4_1:
  9597. case GGML_TYPE_Q5_0:
  9598. case GGML_TYPE_Q5_1:
  9599. case GGML_TYPE_Q8_0:
  9600. case GGML_TYPE_Q8_1:
  9601. case GGML_TYPE_Q2_K:
  9602. case GGML_TYPE_Q3_K:
  9603. case GGML_TYPE_Q4_K:
  9604. case GGML_TYPE_Q5_K:
  9605. case GGML_TYPE_Q6_K:
  9606. case GGML_TYPE_Q8_K:
  9607. case GGML_TYPE_I8:
  9608. case GGML_TYPE_I16:
  9609. case GGML_TYPE_I32:
  9610. case GGML_TYPE_COUNT:
  9611. {
  9612. GGML_ASSERT(false);
  9613. } break;
  9614. }
  9615. }
  9616. // ggml_compute_forward_clamp
  9617. static void ggml_compute_forward_clamp_f32(
  9618. const struct ggml_compute_params * params,
  9619. const struct ggml_tensor * src0,
  9620. const struct ggml_tensor * src1,
  9621. struct ggml_tensor * dst) {
  9622. assert(params->ith == 0);
  9623. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9624. GGML_ASSERT(ggml_nelements(src1) == 2);
  9625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9626. return;
  9627. }
  9628. const float min = ((float *) src1->data)[0];
  9629. const float max = ((float *) src1->data)[1];
  9630. const int ith = params->ith;
  9631. const int nth = params->nth;
  9632. const int n = ggml_nrows(src0);
  9633. const int nc = src0->ne[0];
  9634. const size_t nb00 = src0->nb[0];
  9635. const size_t nb01 = src0->nb[1];
  9636. const size_t nb0 = dst->nb[0];
  9637. const size_t nb1 = dst->nb[1];
  9638. GGML_ASSERT( nb0 == sizeof(float));
  9639. GGML_ASSERT(nb00 == sizeof(float));
  9640. for (int j = ith; j < n; j += nth) {
  9641. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9642. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9643. for (int i = 0; i < nc; i++) {
  9644. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9645. }
  9646. }
  9647. }
  9648. static void ggml_compute_forward_clamp(
  9649. const struct ggml_compute_params * params,
  9650. const struct ggml_tensor * src0,
  9651. const struct ggml_tensor * src1,
  9652. struct ggml_tensor * dst) {
  9653. switch (src0->type) {
  9654. case GGML_TYPE_F32:
  9655. {
  9656. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9657. } break;
  9658. case GGML_TYPE_F16:
  9659. case GGML_TYPE_Q4_0:
  9660. case GGML_TYPE_Q4_1:
  9661. case GGML_TYPE_Q5_0:
  9662. case GGML_TYPE_Q5_1:
  9663. case GGML_TYPE_Q8_0:
  9664. case GGML_TYPE_Q8_1:
  9665. case GGML_TYPE_Q2_K:
  9666. case GGML_TYPE_Q3_K:
  9667. case GGML_TYPE_Q4_K:
  9668. case GGML_TYPE_Q5_K:
  9669. case GGML_TYPE_Q6_K:
  9670. case GGML_TYPE_Q8_K:
  9671. case GGML_TYPE_I8:
  9672. case GGML_TYPE_I16:
  9673. case GGML_TYPE_I32:
  9674. case GGML_TYPE_COUNT:
  9675. {
  9676. GGML_ASSERT(false);
  9677. } break;
  9678. }
  9679. }
  9680. // ggml_compute_forward_rope
  9681. static void ggml_compute_forward_rope_f32(
  9682. const struct ggml_compute_params * params,
  9683. const struct ggml_tensor * src0,
  9684. const struct ggml_tensor * src1,
  9685. struct ggml_tensor * dst) {
  9686. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9687. GGML_ASSERT(ggml_nelements(src1) == 4);
  9688. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9689. return;
  9690. }
  9691. const int n_past = ((int32_t *) src1->data)[0];
  9692. const int n_dims = ((int32_t *) src1->data)[1];
  9693. const int mode = ((int32_t *) src1->data)[2];
  9694. const int n_ctx = ((int32_t *) src1->data)[3];
  9695. assert(n_past >= 0);
  9696. GGML_TENSOR_UNARY_OP_LOCALS;
  9697. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9698. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9699. GGML_ASSERT(nb00 == sizeof(float));
  9700. const int ith = params->ith;
  9701. const int nth = params->nth;
  9702. const int nr = ggml_nrows(dst);
  9703. GGML_ASSERT(n_dims <= ne0);
  9704. GGML_ASSERT(n_dims % 2 == 0);
  9705. // rows per thread
  9706. const int dr = (nr + nth - 1)/nth;
  9707. // row range for this thread
  9708. const int ir0 = dr*ith;
  9709. const int ir1 = MIN(ir0 + dr, nr);
  9710. // row index used to determine which thread to use
  9711. int ir = 0;
  9712. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9713. const bool is_neox = mode & 2;
  9714. const bool is_glm = mode & 4;
  9715. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9716. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9717. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9718. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9719. if (ir++ < ir0) continue;
  9720. if (ir > ir1) break;
  9721. float theta = (float)p;
  9722. if (is_glm) {
  9723. theta = MIN(p, n_ctx - 2);
  9724. float block_theta = MAX(p - (n_ctx - 2), 0);
  9725. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9726. const float cos_theta = cosf(theta);
  9727. const float sin_theta = sinf(theta);
  9728. const float cos_block_theta = cosf(block_theta);
  9729. const float sin_block_theta = sinf(block_theta);
  9730. theta *= theta_scale;
  9731. block_theta *= theta_scale;
  9732. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9733. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9734. const float x0 = src[0];
  9735. const float x1 = src[n_dims/2];
  9736. const float x2 = src[n_dims];
  9737. const float x3 = src[n_dims/2*3];
  9738. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9739. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9740. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9741. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9742. }
  9743. } else if (!is_neox) {
  9744. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9745. const float cos_theta = cosf(theta);
  9746. const float sin_theta = sinf(theta);
  9747. theta *= theta_scale;
  9748. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9749. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9750. const float x0 = src[0];
  9751. const float x1 = src[1];
  9752. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9753. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9754. }
  9755. } else {
  9756. // TODO: this is probably wrong, but I can't figure it out ..
  9757. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9758. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9759. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9760. const float cos_theta = cosf(theta);
  9761. const float sin_theta = sinf(theta);
  9762. theta *= theta_scale;
  9763. const int64_t i0 = ib*n_dims + ic/2;
  9764. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9765. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9766. const float x0 = src[0];
  9767. const float x1 = src[n_dims/2];
  9768. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9769. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9770. }
  9771. }
  9772. }
  9773. }
  9774. }
  9775. }
  9776. }
  9777. static void ggml_compute_forward_rope_f16(
  9778. const struct ggml_compute_params * params,
  9779. const struct ggml_tensor * src0,
  9780. const struct ggml_tensor * src1,
  9781. struct ggml_tensor * dst) {
  9782. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9783. GGML_ASSERT(ggml_nelements(src1) == 4);
  9784. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9785. return;
  9786. }
  9787. const int n_past = ((int32_t *) src1->data)[0];
  9788. const int n_dims = ((int32_t *) src1->data)[1];
  9789. const int mode = ((int32_t *) src1->data)[2];
  9790. const int n_ctx = ((int32_t *) src1->data)[3];
  9791. assert(n_past >= 0);
  9792. GGML_TENSOR_UNARY_OP_LOCALS;
  9793. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9794. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9795. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9796. const int ith = params->ith;
  9797. const int nth = params->nth;
  9798. const int nr = ggml_nrows(dst);
  9799. GGML_ASSERT(n_dims <= ne0);
  9800. GGML_ASSERT(n_dims % 2 == 0);
  9801. // rows per thread
  9802. const int dr = (nr + nth - 1)/nth;
  9803. // row range for this thread
  9804. const int ir0 = dr*ith;
  9805. const int ir1 = MIN(ir0 + dr, nr);
  9806. // row index used to determine which thread to use
  9807. int ir = 0;
  9808. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9809. const bool is_neox = mode & 2;
  9810. const bool is_glm = mode & 4;
  9811. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9812. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9813. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9814. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9815. if (ir++ < ir0) continue;
  9816. if (ir > ir1) break;
  9817. float theta = (float)p;
  9818. if (is_glm) {
  9819. theta = MIN(p, n_ctx - 2);
  9820. float block_theta = MAX(p - (n_ctx - 2), 0);
  9821. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9822. const float cos_theta = cosf(theta);
  9823. const float sin_theta = sinf(theta);
  9824. const float cos_block_theta = cosf(block_theta);
  9825. const float sin_block_theta = sinf(block_theta);
  9826. theta *= theta_scale;
  9827. block_theta *= theta_scale;
  9828. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9829. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9830. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9831. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9832. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9833. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9834. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9835. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9836. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9837. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9838. }
  9839. } if (!is_neox) {
  9840. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9841. const float cos_theta = cosf(theta);
  9842. const float sin_theta = sinf(theta);
  9843. theta *= theta_scale;
  9844. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9845. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9846. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9847. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9848. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9849. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9850. }
  9851. } else {
  9852. // TODO: this is probably wrong, but I can't figure it out ..
  9853. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9854. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9855. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9856. const float cos_theta = cosf(theta);
  9857. const float sin_theta = sinf(theta);
  9858. theta *= theta_scale;
  9859. const int64_t i0 = ib*n_dims + ic/2;
  9860. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9861. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9862. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9863. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9864. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9865. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9866. }
  9867. }
  9868. }
  9869. }
  9870. }
  9871. }
  9872. }
  9873. static void ggml_compute_forward_rope(
  9874. const struct ggml_compute_params * params,
  9875. const struct ggml_tensor * src0,
  9876. const struct ggml_tensor * src1,
  9877. struct ggml_tensor * dst) {
  9878. switch (src0->type) {
  9879. case GGML_TYPE_F16:
  9880. {
  9881. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9882. } break;
  9883. case GGML_TYPE_F32:
  9884. {
  9885. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9886. } break;
  9887. default:
  9888. {
  9889. GGML_ASSERT(false);
  9890. } break;
  9891. }
  9892. }
  9893. // ggml_compute_forward_rope_back
  9894. static void ggml_compute_forward_rope_back_f32(
  9895. const struct ggml_compute_params * params,
  9896. const struct ggml_tensor * src0,
  9897. const struct ggml_tensor * src1,
  9898. struct ggml_tensor * dst) {
  9899. assert(src1->type == GGML_TYPE_I32);
  9900. assert(ggml_nelements(src1) == 3);
  9901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9902. return;
  9903. }
  9904. // y = rope(x, src1)
  9905. // dx = rope_back(dy, src1)
  9906. // src0 is dy, src1 contains options
  9907. const int n_past = ((int32_t *) src1->data)[0];
  9908. const int n_dims = ((int32_t *) src1->data)[1];
  9909. const int mode = ((int32_t *) src1->data)[2];
  9910. assert(n_past >= 0);
  9911. GGML_TENSOR_UNARY_OP_LOCALS;
  9912. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9913. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9914. assert(nb0 == sizeof(float));
  9915. const int ith = params->ith;
  9916. const int nth = params->nth;
  9917. const int nr = ggml_nrows(dst);
  9918. // rows per thread
  9919. const int dr = (nr + nth - 1)/nth;
  9920. // row range for this thread
  9921. const int ir0 = dr*ith;
  9922. const int ir1 = MIN(ir0 + dr, nr);
  9923. // row index used to determine which thread to use
  9924. int ir = 0;
  9925. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9926. const bool is_neox = mode & 2;
  9927. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9928. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9929. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9930. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9931. if (ir++ < ir0) continue;
  9932. if (ir > ir1) break;
  9933. float theta = (float)p;
  9934. if (!is_neox) {
  9935. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9936. const float cos_theta = cosf(theta);
  9937. const float sin_theta = sinf(theta);
  9938. theta *= theta_scale;
  9939. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9940. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9941. const float dy0 = dy[0];
  9942. const float dy1 = dy[1];
  9943. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9944. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9945. }
  9946. } else {
  9947. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9948. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9949. const float cos_theta = cosf(theta);
  9950. const float sin_theta = sinf(theta);
  9951. theta *= theta_scale;
  9952. const int64_t i0 = ib*n_dims + ic/2;
  9953. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9954. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9955. const float dy0 = dy[0];
  9956. const float dy1 = dy[n_dims/2];
  9957. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9958. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9959. }
  9960. }
  9961. }
  9962. }
  9963. }
  9964. }
  9965. }
  9966. static void ggml_compute_forward_rope_back_f16(
  9967. const struct ggml_compute_params * params,
  9968. const struct ggml_tensor * src0,
  9969. const struct ggml_tensor * src1,
  9970. struct ggml_tensor * dst) {
  9971. assert(src1->type == GGML_TYPE_I32);
  9972. assert(ggml_nelements(src1) == 3);
  9973. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9974. return;
  9975. }
  9976. // y = rope(x, src1)
  9977. // dx = rope_back(dy, src1)
  9978. // src0 is dy, src1 contains options
  9979. const int n_past = ((int32_t *) src1->data)[0];
  9980. const int n_dims = ((int32_t *) src1->data)[1];
  9981. const int mode = ((int32_t *) src1->data)[2];
  9982. assert(n_past >= 0);
  9983. GGML_TENSOR_UNARY_OP_LOCALS;
  9984. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9985. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9986. assert(nb0 == sizeof(ggml_fp16_t));
  9987. const int ith = params->ith;
  9988. const int nth = params->nth;
  9989. const int nr = ggml_nrows(dst);
  9990. // rows per thread
  9991. const int dr = (nr + nth - 1)/nth;
  9992. // row range for this thread
  9993. const int ir0 = dr*ith;
  9994. const int ir1 = MIN(ir0 + dr, nr);
  9995. // row index used to determine which thread to use
  9996. int ir = 0;
  9997. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9998. const bool is_neox = mode & 2;
  9999. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10000. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10001. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10002. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10003. if (ir++ < ir0) continue;
  10004. if (ir > ir1) break;
  10005. float theta = (float)p;
  10006. if (!is_neox) {
  10007. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10008. const float cos_theta = cosf(theta);
  10009. const float sin_theta = sinf(theta);
  10010. theta *= theta_scale;
  10011. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10012. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10013. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10014. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10015. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10016. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10017. }
  10018. } else {
  10019. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10020. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10021. const float cos_theta = cosf(theta);
  10022. const float sin_theta = sinf(theta);
  10023. theta *= theta_scale;
  10024. const int64_t i0 = ib*n_dims + ic/2;
  10025. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10026. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10027. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10028. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10029. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10030. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10031. }
  10032. }
  10033. }
  10034. }
  10035. }
  10036. }
  10037. }
  10038. static void ggml_compute_forward_rope_back(
  10039. const struct ggml_compute_params * params,
  10040. const struct ggml_tensor * src0,
  10041. const struct ggml_tensor * src1,
  10042. struct ggml_tensor * dst) {
  10043. switch (src0->type) {
  10044. case GGML_TYPE_F16:
  10045. {
  10046. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10047. } break;
  10048. case GGML_TYPE_F32:
  10049. {
  10050. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10051. } break;
  10052. default:
  10053. {
  10054. GGML_ASSERT(false);
  10055. } break;
  10056. }
  10057. }
  10058. // ggml_compute_forward_conv_1d
  10059. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10060. const struct ggml_compute_params * params,
  10061. const struct ggml_tensor * src0,
  10062. const struct ggml_tensor * src1,
  10063. struct ggml_tensor * dst) {
  10064. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10065. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10066. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10067. int64_t t0 = ggml_perf_time_us();
  10068. UNUSED(t0);
  10069. GGML_TENSOR_BINARY_OP_LOCALS;
  10070. const int ith = params->ith;
  10071. const int nth = params->nth;
  10072. const int nk = ne00;
  10073. const int nh = nk/2;
  10074. const int ew0 = ggml_up32(ne01);
  10075. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10076. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10077. GGML_ASSERT(nb10 == sizeof(float));
  10078. if (params->type == GGML_TASK_INIT) {
  10079. // TODO: fix this memset (wsize is overestimated)
  10080. memset(params->wdata, 0, params->wsize);
  10081. // prepare kernel data (src0)
  10082. {
  10083. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10084. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10085. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10086. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10087. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10088. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10089. dst_data[i00*ew0 + i01] = src[i00];
  10090. }
  10091. }
  10092. }
  10093. }
  10094. // prepare source data (src1)
  10095. {
  10096. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10097. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10098. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10099. ggml_fp16_t * dst_data = wdata;
  10100. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10101. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10102. }
  10103. }
  10104. }
  10105. return;
  10106. }
  10107. if (params->type == GGML_TASK_FINALIZE) {
  10108. return;
  10109. }
  10110. // total rows in dst
  10111. const int nr = ne02;
  10112. // rows per thread
  10113. const int dr = (nr + nth - 1)/nth;
  10114. // row range for this thread
  10115. const int ir0 = dr*ith;
  10116. const int ir1 = MIN(ir0 + dr, nr);
  10117. for (int i1 = ir0; i1 < ir1; i1++) {
  10118. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10119. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10120. dst_data[i0] = 0;
  10121. for (int k = -nh; k <= nh; k++) {
  10122. float v = 0.0f;
  10123. ggml_vec_dot_f16(ew0, &v,
  10124. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10125. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10126. dst_data[i0] += v;
  10127. }
  10128. }
  10129. }
  10130. }
  10131. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10132. const struct ggml_compute_params * params,
  10133. const struct ggml_tensor * src0,
  10134. const struct ggml_tensor * src1,
  10135. struct ggml_tensor * dst) {
  10136. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10137. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10138. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10139. int64_t t0 = ggml_perf_time_us();
  10140. UNUSED(t0);
  10141. GGML_TENSOR_BINARY_OP_LOCALS;
  10142. const int ith = params->ith;
  10143. const int nth = params->nth;
  10144. const int nk = ne00;
  10145. const int nh = nk/2;
  10146. const int ew0 = ggml_up32(ne01);
  10147. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10148. GGML_ASSERT(nb00 == sizeof(float));
  10149. GGML_ASSERT(nb10 == sizeof(float));
  10150. if (params->type == GGML_TASK_INIT) {
  10151. // TODO: fix this memset (wsize is overestimated)
  10152. memset(params->wdata, 0, params->wsize);
  10153. // prepare kernel data (src0)
  10154. {
  10155. float * const wdata = (float *) params->wdata + 0;
  10156. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10157. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10158. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10159. float * dst_data = wdata + i02*ew0*ne00;
  10160. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10161. dst_data[i00*ew0 + i01] = src[i00];
  10162. }
  10163. }
  10164. }
  10165. }
  10166. // prepare source data (src1)
  10167. {
  10168. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10169. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10170. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10171. float * dst_data = wdata;
  10172. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10173. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10174. }
  10175. }
  10176. }
  10177. return;
  10178. }
  10179. if (params->type == GGML_TASK_FINALIZE) {
  10180. return;
  10181. }
  10182. // total rows in dst
  10183. const int nr = ne02;
  10184. // rows per thread
  10185. const int dr = (nr + nth - 1)/nth;
  10186. // row range for this thread
  10187. const int ir0 = dr*ith;
  10188. const int ir1 = MIN(ir0 + dr, nr);
  10189. for (int i1 = ir0; i1 < ir1; i1++) {
  10190. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10191. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10192. dst_data[i0] = 0;
  10193. for (int k = -nh; k <= nh; k++) {
  10194. float v = 0.0f;
  10195. ggml_vec_dot_f32(ew0, &v,
  10196. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10197. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10198. dst_data[i0] += v;
  10199. }
  10200. }
  10201. }
  10202. }
  10203. static void ggml_compute_forward_conv_1d_s1_ph(
  10204. const struct ggml_compute_params * params,
  10205. const struct ggml_tensor * src0,
  10206. const struct ggml_tensor * src1,
  10207. struct ggml_tensor * dst) {
  10208. switch (src0->type) {
  10209. case GGML_TYPE_F16:
  10210. {
  10211. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10212. } break;
  10213. case GGML_TYPE_F32:
  10214. {
  10215. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10216. } break;
  10217. default:
  10218. {
  10219. GGML_ASSERT(false);
  10220. } break;
  10221. }
  10222. }
  10223. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10224. const struct ggml_compute_params * params,
  10225. const struct ggml_tensor * src0,
  10226. const struct ggml_tensor * src1,
  10227. struct ggml_tensor * dst) {
  10228. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10229. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10230. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10231. int64_t t0 = ggml_perf_time_us();
  10232. UNUSED(t0);
  10233. GGML_TENSOR_BINARY_OP_LOCALS;
  10234. const int ith = params->ith;
  10235. const int nth = params->nth;
  10236. const int nk = ne00;
  10237. const int nh = nk/2;
  10238. const int ew0 = ggml_up32(ne01);
  10239. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10240. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10241. GGML_ASSERT(nb10 == sizeof(float));
  10242. if (params->type == GGML_TASK_INIT) {
  10243. // TODO: fix this memset (wsize is overestimated)
  10244. memset(params->wdata, 0, params->wsize);
  10245. // prepare kernel data (src0)
  10246. {
  10247. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10248. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10249. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10250. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10251. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10252. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10253. dst_data[i00*ew0 + i01] = src[i00];
  10254. }
  10255. }
  10256. }
  10257. }
  10258. // prepare source data (src1)
  10259. {
  10260. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10261. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10262. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10263. ggml_fp16_t * dst_data = wdata;
  10264. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10265. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10266. }
  10267. }
  10268. }
  10269. return;
  10270. }
  10271. if (params->type == GGML_TASK_FINALIZE) {
  10272. return;
  10273. }
  10274. // total rows in dst
  10275. const int nr = ne02;
  10276. // rows per thread
  10277. const int dr = (nr + nth - 1)/nth;
  10278. // row range for this thread
  10279. const int ir0 = dr*ith;
  10280. const int ir1 = MIN(ir0 + dr, nr);
  10281. for (int i1 = ir0; i1 < ir1; i1++) {
  10282. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10283. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10284. dst_data[i0/2] = 0;
  10285. for (int k = -nh; k <= nh; k++) {
  10286. float v = 0.0f;
  10287. ggml_vec_dot_f16(ew0, &v,
  10288. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10289. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10290. dst_data[i0/2] += v;
  10291. }
  10292. }
  10293. }
  10294. }
  10295. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10296. const struct ggml_compute_params * params,
  10297. const struct ggml_tensor * src0,
  10298. const struct ggml_tensor * src1,
  10299. struct ggml_tensor * dst) {
  10300. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10301. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10302. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10303. int64_t t0 = ggml_perf_time_us();
  10304. UNUSED(t0);
  10305. GGML_TENSOR_BINARY_OP_LOCALS;
  10306. const int ith = params->ith;
  10307. const int nth = params->nth;
  10308. const int nk = ne00;
  10309. const int nh = nk/2;
  10310. const int ew0 = ggml_up32(ne01);
  10311. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10312. GGML_ASSERT(nb00 == sizeof(float));
  10313. GGML_ASSERT(nb10 == sizeof(float));
  10314. if (params->type == GGML_TASK_INIT) {
  10315. // TODO: fix this memset (wsize is overestimated)
  10316. memset(params->wdata, 0, params->wsize);
  10317. // prepare kernel data (src0)
  10318. {
  10319. float * const wdata = (float *) params->wdata + 0;
  10320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10321. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10322. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10323. float * dst_data = wdata + i02*ew0*ne00;
  10324. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10325. dst_data[i00*ew0 + i01] = src[i00];
  10326. }
  10327. }
  10328. }
  10329. }
  10330. // prepare source data (src1)
  10331. {
  10332. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10333. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10334. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10335. float * dst_data = wdata;
  10336. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10337. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10338. }
  10339. }
  10340. }
  10341. return;
  10342. }
  10343. if (params->type == GGML_TASK_FINALIZE) {
  10344. return;
  10345. }
  10346. // total rows in dst
  10347. const int nr = ne02;
  10348. // rows per thread
  10349. const int dr = (nr + nth - 1)/nth;
  10350. // row range for this thread
  10351. const int ir0 = dr*ith;
  10352. const int ir1 = MIN(ir0 + dr, nr);
  10353. for (int i1 = ir0; i1 < ir1; i1++) {
  10354. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10355. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10356. dst_data[i0/2] = 0;
  10357. for (int k = -nh; k <= nh; k++) {
  10358. float v = 0.0f;
  10359. ggml_vec_dot_f32(ew0, &v,
  10360. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10361. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10362. dst_data[i0/2] += v;
  10363. }
  10364. }
  10365. }
  10366. }
  10367. static void ggml_compute_forward_conv_1d_s2_ph(
  10368. const struct ggml_compute_params * params,
  10369. const struct ggml_tensor * src0,
  10370. const struct ggml_tensor * src1,
  10371. struct ggml_tensor * dst) {
  10372. switch (src0->type) {
  10373. case GGML_TYPE_F16:
  10374. {
  10375. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10376. } break;
  10377. case GGML_TYPE_F32:
  10378. {
  10379. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10380. } break;
  10381. default:
  10382. {
  10383. GGML_ASSERT(false);
  10384. } break;
  10385. }
  10386. }
  10387. // ggml_compute_forward_conv_1d
  10388. static void ggml_compute_forward_conv_1d(
  10389. const struct ggml_compute_params * params,
  10390. const struct ggml_tensor * src0,
  10391. const struct ggml_tensor * src1,
  10392. const struct ggml_tensor * opt0,
  10393. struct ggml_tensor * dst) {
  10394. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10395. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10396. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10397. GGML_ASSERT(d0 == 1); // dilation not supported
  10398. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10399. if (s0 == 1) {
  10400. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10401. } else if (s0 == 2) {
  10402. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10403. } else {
  10404. GGML_ASSERT(false); // only stride 1 and 2 supported
  10405. };
  10406. }
  10407. // ggml_compute_forward_conv_2d_sk_p0
  10408. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10409. const struct ggml_compute_params * params,
  10410. const struct ggml_tensor * src0,
  10411. const struct ggml_tensor * src1,
  10412. struct ggml_tensor * dst) {
  10413. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10414. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10415. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10416. int64_t t0 = ggml_perf_time_us();
  10417. UNUSED(t0);
  10418. GGML_TENSOR_BINARY_OP_LOCALS;
  10419. const int ith = params->ith;
  10420. const int nth = params->nth;
  10421. const int nk0 = ne00;
  10422. const int nk1 = ne01;
  10423. // size of the convolution row - the kernel size unrolled across all channels
  10424. const int ew0 = nk0*nk1*ne02;
  10425. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10426. GGML_ASSERT(nb10 == sizeof(float));
  10427. if (params->type == GGML_TASK_INIT) {
  10428. // TODO: fix this memset (wsize is overestimated)
  10429. memset(params->wdata, 0, params->wsize);
  10430. // prepare source data (src1)
  10431. {
  10432. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10433. for (int i12 = 0; i12 < ne12; i12++) {
  10434. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10435. ggml_fp16_t * dst_data = wdata;
  10436. for (int i1 = 0; i1 < ne1; i1++) {
  10437. for (int i0 = 0; i0 < ne0; i0++) {
  10438. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10439. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10440. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10441. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10442. }
  10443. }
  10444. }
  10445. }
  10446. }
  10447. }
  10448. return;
  10449. }
  10450. if (params->type == GGML_TASK_FINALIZE) {
  10451. return;
  10452. }
  10453. // total patches in dst
  10454. const int np = ne2;
  10455. // patches per thread
  10456. const int dp = (np + nth - 1)/nth;
  10457. // patch range for this thread
  10458. const int ip0 = dp*ith;
  10459. const int ip1 = MIN(ip0 + dp, np);
  10460. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10461. for (int i2 = ip0; i2 < ip1; i2++) {
  10462. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10463. for (int i1 = 0; i1 < ne1; ++i1) {
  10464. for (int i0 = 0; i0 < ne0; ++i0) {
  10465. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10466. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10467. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10468. }
  10469. }
  10470. }
  10471. }
  10472. static void ggml_compute_forward_conv_2d_sk_p0(
  10473. const struct ggml_compute_params * params,
  10474. const struct ggml_tensor * src0,
  10475. const struct ggml_tensor * src1,
  10476. struct ggml_tensor * dst) {
  10477. switch (src0->type) {
  10478. case GGML_TYPE_F16:
  10479. {
  10480. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10481. } break;
  10482. case GGML_TYPE_F32:
  10483. {
  10484. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10485. GGML_ASSERT(false);
  10486. } break;
  10487. default:
  10488. {
  10489. GGML_ASSERT(false);
  10490. } break;
  10491. }
  10492. }
  10493. // ggml_compute_forward_conv_2d
  10494. static void ggml_compute_forward_conv_2d(
  10495. const struct ggml_compute_params* params,
  10496. const struct ggml_tensor* src0,
  10497. const struct ggml_tensor* src1,
  10498. const struct ggml_tensor* opt0,
  10499. struct ggml_tensor* dst) {
  10500. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10501. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10502. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10503. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10504. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10505. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10506. GGML_ASSERT(d0 == 1); // dilation not supported
  10507. GGML_ASSERT(d1 == 1);
  10508. GGML_ASSERT(p0 == 0); // padding not supported
  10509. GGML_ASSERT(p1 == 0);
  10510. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10511. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10512. }
  10513. else {
  10514. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10515. };
  10516. }
  10517. // ggml_compute_forward_flash_attn
  10518. static void ggml_compute_forward_flash_attn_f32(
  10519. const struct ggml_compute_params * params,
  10520. const struct ggml_tensor * q,
  10521. const struct ggml_tensor * k,
  10522. const struct ggml_tensor * v,
  10523. const bool masked,
  10524. struct ggml_tensor * dst) {
  10525. int64_t t0 = ggml_perf_time_us();
  10526. UNUSED(t0);
  10527. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10528. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10529. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10530. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10531. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10532. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10533. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10534. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10535. const int ith = params->ith;
  10536. const int nth = params->nth;
  10537. const int64_t D = neq0;
  10538. const int64_t N = neq1;
  10539. const int64_t P = nek1 - N;
  10540. const int64_t M = P + N;
  10541. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10542. GGML_ASSERT(ne0 == D);
  10543. GGML_ASSERT(ne1 == N);
  10544. GGML_ASSERT(P >= 0);
  10545. GGML_ASSERT(nbq0 == sizeof(float));
  10546. GGML_ASSERT(nbk0 == sizeof(float));
  10547. GGML_ASSERT(nbv0 == sizeof(float));
  10548. GGML_ASSERT(neq0 == D);
  10549. GGML_ASSERT(nek0 == D);
  10550. GGML_ASSERT(nev1 == D);
  10551. GGML_ASSERT(neq1 == N);
  10552. GGML_ASSERT(nek1 == N + P);
  10553. GGML_ASSERT(nev1 == D);
  10554. // dst cannot be transposed or permuted
  10555. GGML_ASSERT(nb0 == sizeof(float));
  10556. GGML_ASSERT(nb0 <= nb1);
  10557. GGML_ASSERT(nb1 <= nb2);
  10558. GGML_ASSERT(nb2 <= nb3);
  10559. if (params->type == GGML_TASK_INIT) {
  10560. return;
  10561. }
  10562. if (params->type == GGML_TASK_FINALIZE) {
  10563. return;
  10564. }
  10565. // parallelize by q rows using ggml_vec_dot_f32
  10566. // total rows in q
  10567. const int nr = neq1*neq2*neq3;
  10568. // rows per thread
  10569. const int dr = (nr + nth - 1)/nth;
  10570. // row range for this thread
  10571. const int ir0 = dr*ith;
  10572. const int ir1 = MIN(ir0 + dr, nr);
  10573. const float scale = 1.0f/sqrtf(D);
  10574. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10575. for (int ir = ir0; ir < ir1; ++ir) {
  10576. // q indices
  10577. const int iq3 = ir/(neq2*neq1);
  10578. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10579. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10580. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10581. for (int i = M; i < Mup; ++i) {
  10582. S[i] = -INFINITY;
  10583. }
  10584. for (int64_t ic = 0; ic < nek1; ++ic) {
  10585. // k indices
  10586. const int ik3 = iq3;
  10587. const int ik2 = iq2;
  10588. const int ik1 = ic;
  10589. // S indices
  10590. const int i1 = ik1;
  10591. ggml_vec_dot_f32(neq0,
  10592. S + i1,
  10593. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10594. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10595. }
  10596. // scale
  10597. ggml_vec_scale_f32(nek1, S, scale);
  10598. if (masked) {
  10599. for (int64_t i = P; i < M; i++) {
  10600. if (i > P + iq1) {
  10601. S[i] = -INFINITY;
  10602. }
  10603. }
  10604. }
  10605. // softmax
  10606. {
  10607. float max = -INFINITY;
  10608. ggml_vec_max_f32(M, &max, S);
  10609. ggml_float sum = 0.0;
  10610. {
  10611. #ifdef GGML_SOFT_MAX_ACCELERATE
  10612. max = -max;
  10613. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10614. vvexpf(S, S, &Mup);
  10615. ggml_vec_sum_f32(Mup, &sum, S);
  10616. #else
  10617. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10618. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10619. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10620. float * SS = S + i;
  10621. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10622. if (SS[j] == -INFINITY) {
  10623. SS[j] = 0.0f;
  10624. } else {
  10625. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10626. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10627. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10628. sump[j] += (ggml_float)val;
  10629. SS[j] = val;
  10630. }
  10631. }
  10632. }
  10633. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10634. sum += sump[i];
  10635. }
  10636. #endif
  10637. }
  10638. assert(sum > 0.0);
  10639. sum = 1.0/sum;
  10640. ggml_vec_scale_f32(M, S, sum);
  10641. #ifndef NDEBUG
  10642. for (int i = 0; i < M; ++i) {
  10643. assert(!isnan(S[i]));
  10644. assert(!isinf(S[i]));
  10645. }
  10646. #endif
  10647. }
  10648. for (int64_t ic = 0; ic < nev1; ++ic) {
  10649. // dst indices
  10650. const int i1 = iq1;
  10651. const int i2 = iq2;
  10652. const int i3 = iq3;
  10653. ggml_vec_dot_f32(nek1,
  10654. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10655. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10656. S);
  10657. }
  10658. }
  10659. }
  10660. static void ggml_compute_forward_flash_attn_f16(
  10661. const struct ggml_compute_params * params,
  10662. const struct ggml_tensor * q,
  10663. const struct ggml_tensor * k,
  10664. const struct ggml_tensor * v,
  10665. const bool masked,
  10666. struct ggml_tensor * dst) {
  10667. int64_t t0 = ggml_perf_time_us();
  10668. UNUSED(t0);
  10669. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10670. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10671. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10672. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10673. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10674. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10675. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10676. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10677. const int ith = params->ith;
  10678. const int nth = params->nth;
  10679. const int64_t D = neq0;
  10680. const int64_t N = neq1;
  10681. const int64_t P = nek1 - N;
  10682. const int64_t M = P + N;
  10683. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10684. GGML_ASSERT(ne0 == D);
  10685. GGML_ASSERT(ne1 == N);
  10686. GGML_ASSERT(P >= 0);
  10687. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10688. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10689. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10690. GGML_ASSERT(neq0 == D);
  10691. GGML_ASSERT(nek0 == D);
  10692. GGML_ASSERT(nev1 == D);
  10693. GGML_ASSERT(neq1 == N);
  10694. GGML_ASSERT(nek1 == N + P);
  10695. GGML_ASSERT(nev1 == D);
  10696. // dst cannot be transposed or permuted
  10697. GGML_ASSERT(nb0 == sizeof(float));
  10698. GGML_ASSERT(nb0 <= nb1);
  10699. GGML_ASSERT(nb1 <= nb2);
  10700. GGML_ASSERT(nb2 <= nb3);
  10701. if (params->type == GGML_TASK_INIT) {
  10702. return;
  10703. }
  10704. if (params->type == GGML_TASK_FINALIZE) {
  10705. return;
  10706. }
  10707. // parallelize by q rows using ggml_vec_dot_f32
  10708. // total rows in q
  10709. const int nr = neq1*neq2*neq3;
  10710. // rows per thread
  10711. const int dr = (nr + nth - 1)/nth;
  10712. // row range for this thread
  10713. const int ir0 = dr*ith;
  10714. const int ir1 = MIN(ir0 + dr, nr);
  10715. const float scale = 1.0f/sqrtf(D);
  10716. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10717. for (int ir = ir0; ir < ir1; ++ir) {
  10718. // q indices
  10719. const int iq3 = ir/(neq2*neq1);
  10720. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10721. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10722. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10723. for (int i = M; i < Mup; ++i) {
  10724. S[i] = -INFINITY;
  10725. }
  10726. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10727. for (int64_t ic = 0; ic < nek1; ++ic) {
  10728. // k indices
  10729. const int ik3 = iq3;
  10730. const int ik2 = iq2;
  10731. const int ik1 = ic;
  10732. // S indices
  10733. const int i1 = ik1;
  10734. ggml_vec_dot_f16(neq0,
  10735. S + i1,
  10736. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10737. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10738. }
  10739. } else {
  10740. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10741. // k indices
  10742. const int ik3 = iq3;
  10743. const int ik2 = iq2;
  10744. const int ik1 = ic;
  10745. // S indices
  10746. const int i1 = ik1;
  10747. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10748. S + i1,
  10749. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10750. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10751. }
  10752. }
  10753. // scale
  10754. ggml_vec_scale_f32(nek1, S, scale);
  10755. if (masked) {
  10756. for (int64_t i = P; i < M; i++) {
  10757. if (i > P + iq1) {
  10758. S[i] = -INFINITY;
  10759. }
  10760. }
  10761. }
  10762. // softmax
  10763. {
  10764. float max = -INFINITY;
  10765. ggml_vec_max_f32(M, &max, S);
  10766. ggml_float sum = 0.0;
  10767. {
  10768. #ifdef GGML_SOFT_MAX_ACCELERATE
  10769. max = -max;
  10770. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10771. vvexpf(S, S, &Mup);
  10772. ggml_vec_sum_f32(Mup, &sum, S);
  10773. #else
  10774. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10775. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10776. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10777. float * SS = S + i;
  10778. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10779. if (SS[j] == -INFINITY) {
  10780. SS[j] = 0.0f;
  10781. } else {
  10782. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10783. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10784. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10785. sump[j] += (ggml_float)val;
  10786. SS[j] = val;
  10787. }
  10788. }
  10789. }
  10790. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10791. sum += sump[i];
  10792. }
  10793. #endif
  10794. }
  10795. assert(sum > 0.0);
  10796. sum = 1.0/sum;
  10797. ggml_vec_scale_f32(M, S, sum);
  10798. #ifndef NDEBUG
  10799. for (int i = 0; i < M; ++i) {
  10800. assert(!isnan(S[i]));
  10801. assert(!isinf(S[i]));
  10802. }
  10803. #endif
  10804. }
  10805. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10806. for (int64_t i = 0; i < M; i++) {
  10807. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10808. }
  10809. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10810. for (int64_t ic = 0; ic < nev1; ++ic) {
  10811. // dst indices
  10812. const int i1 = iq1;
  10813. const int i2 = iq2;
  10814. const int i3 = iq3;
  10815. ggml_vec_dot_f16(nek1,
  10816. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10817. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10818. S16);
  10819. }
  10820. } else {
  10821. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10822. // dst indices
  10823. const int i1 = iq1;
  10824. const int i2 = iq2;
  10825. const int i3 = iq3;
  10826. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10827. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10828. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10829. S16);
  10830. }
  10831. }
  10832. }
  10833. }
  10834. static void ggml_compute_forward_flash_attn(
  10835. const struct ggml_compute_params * params,
  10836. const struct ggml_tensor * q,
  10837. const struct ggml_tensor * k,
  10838. const struct ggml_tensor * v,
  10839. const bool masked,
  10840. struct ggml_tensor * dst) {
  10841. switch (q->type) {
  10842. case GGML_TYPE_F16:
  10843. {
  10844. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10845. } break;
  10846. case GGML_TYPE_F32:
  10847. {
  10848. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10849. } break;
  10850. default:
  10851. {
  10852. GGML_ASSERT(false);
  10853. } break;
  10854. }
  10855. }
  10856. // ggml_compute_forward_flash_ff
  10857. static void ggml_compute_forward_flash_ff_f16(
  10858. const struct ggml_compute_params * params,
  10859. const struct ggml_tensor * a, // F16
  10860. const struct ggml_tensor * b0, // F16 fc_w
  10861. const struct ggml_tensor * b1, // F32 fc_b
  10862. const struct ggml_tensor * c0, // F16 proj_w
  10863. const struct ggml_tensor * c1, // F32 proj_b
  10864. struct ggml_tensor * dst) {
  10865. int64_t t0 = ggml_perf_time_us();
  10866. UNUSED(t0);
  10867. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10868. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10869. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10870. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10871. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10872. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10873. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10874. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10875. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10876. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10877. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10878. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10879. const int ith = params->ith;
  10880. const int nth = params->nth;
  10881. const int64_t D = nea0;
  10882. //const int64_t N = nea1;
  10883. const int64_t M = neb01;
  10884. GGML_ASSERT(ne0 == nea0);
  10885. GGML_ASSERT(ne1 == nea1);
  10886. GGML_ASSERT(ne2 == nea2);
  10887. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10888. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10889. GGML_ASSERT(nbb10 == sizeof(float));
  10890. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10891. GGML_ASSERT(nbc10 == sizeof(float));
  10892. GGML_ASSERT(neb00 == D);
  10893. GGML_ASSERT(neb01 == M);
  10894. GGML_ASSERT(neb10 == M);
  10895. GGML_ASSERT(neb11 == 1);
  10896. GGML_ASSERT(nec00 == M);
  10897. GGML_ASSERT(nec01 == D);
  10898. GGML_ASSERT(nec10 == D);
  10899. GGML_ASSERT(nec11 == 1);
  10900. // dst cannot be transposed or permuted
  10901. GGML_ASSERT(nb0 == sizeof(float));
  10902. GGML_ASSERT(nb0 <= nb1);
  10903. GGML_ASSERT(nb1 <= nb2);
  10904. GGML_ASSERT(nb2 <= nb3);
  10905. if (params->type == GGML_TASK_INIT) {
  10906. return;
  10907. }
  10908. if (params->type == GGML_TASK_FINALIZE) {
  10909. return;
  10910. }
  10911. // parallelize by a rows using ggml_vec_dot_f32
  10912. // total rows in a
  10913. const int nr = nea1*nea2*nea3;
  10914. // rows per thread
  10915. const int dr = (nr + nth - 1)/nth;
  10916. // row range for this thread
  10917. const int ir0 = dr*ith;
  10918. const int ir1 = MIN(ir0 + dr, nr);
  10919. for (int ir = ir0; ir < ir1; ++ir) {
  10920. // a indices
  10921. const int ia3 = ir/(nea2*nea1);
  10922. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10923. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10924. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10925. for (int64_t ic = 0; ic < neb01; ++ic) {
  10926. // b0 indices
  10927. const int ib03 = ia3;
  10928. const int ib02 = ia2;
  10929. const int ib01 = ic;
  10930. // S indices
  10931. const int i1 = ib01;
  10932. ggml_vec_dot_f16(nea0,
  10933. S + i1,
  10934. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10935. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10936. }
  10937. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10938. //ggml_vec_gelu_f32(neb01, S, S);
  10939. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10940. for (int64_t i = 0; i < M; i++) {
  10941. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10942. }
  10943. ggml_vec_gelu_f16(neb01, S16, S16);
  10944. {
  10945. // dst indices
  10946. const int i1 = ia1;
  10947. const int i2 = ia2;
  10948. const int i3 = ia3;
  10949. for (int64_t ic = 0; ic < nec01; ++ic) {
  10950. ggml_vec_dot_f16(neb01,
  10951. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10952. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10953. S16);
  10954. }
  10955. ggml_vec_add_f32(nec01,
  10956. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10957. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10958. (float *) c1->data);
  10959. }
  10960. }
  10961. }
  10962. static void ggml_compute_forward_flash_ff(
  10963. const struct ggml_compute_params * params,
  10964. const struct ggml_tensor * a,
  10965. const struct ggml_tensor * b0,
  10966. const struct ggml_tensor * b1,
  10967. const struct ggml_tensor * c0,
  10968. const struct ggml_tensor * c1,
  10969. struct ggml_tensor * dst) {
  10970. switch (b0->type) {
  10971. case GGML_TYPE_F16:
  10972. {
  10973. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10974. } break;
  10975. case GGML_TYPE_F32:
  10976. {
  10977. GGML_ASSERT(false); // TODO
  10978. } break;
  10979. default:
  10980. {
  10981. GGML_ASSERT(false);
  10982. } break;
  10983. }
  10984. }
  10985. // ggml_compute_forward_flash_attn_back
  10986. static void ggml_compute_forward_flash_attn_back_f32(
  10987. const struct ggml_compute_params * params,
  10988. const struct ggml_tensor * q,
  10989. const struct ggml_tensor * k,
  10990. const struct ggml_tensor * v,
  10991. const struct ggml_tensor * d,
  10992. const bool masked,
  10993. struct ggml_tensor * dst) {
  10994. int64_t t0 = ggml_perf_time_us();
  10995. UNUSED(t0);
  10996. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10997. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10998. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10999. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11000. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11001. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11002. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11003. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11004. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11005. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11006. const int ith = params->ith;
  11007. const int nth = params->nth;
  11008. const int64_t D = neq0;
  11009. const int64_t N = neq1;
  11010. const int64_t P = nek1 - N;
  11011. const int64_t M = P + N;
  11012. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11013. const int mxDM = MAX(D, Mup);
  11014. // GGML_ASSERT(ne0 == D);
  11015. // GGML_ASSERT(ne1 == N);
  11016. GGML_ASSERT(P >= 0);
  11017. GGML_ASSERT(nbq0 == sizeof(float));
  11018. GGML_ASSERT(nbk0 == sizeof(float));
  11019. GGML_ASSERT(nbv0 == sizeof(float));
  11020. GGML_ASSERT(neq0 == D);
  11021. GGML_ASSERT(nek0 == D);
  11022. GGML_ASSERT(nev1 == D);
  11023. GGML_ASSERT(ned0 == D);
  11024. GGML_ASSERT(neq1 == N);
  11025. GGML_ASSERT(nek1 == N + P);
  11026. GGML_ASSERT(nev1 == D);
  11027. GGML_ASSERT(ned1 == N);
  11028. // dst cannot be transposed or permuted
  11029. GGML_ASSERT(nb0 == sizeof(float));
  11030. GGML_ASSERT(nb0 <= nb1);
  11031. GGML_ASSERT(nb1 <= nb2);
  11032. GGML_ASSERT(nb2 <= nb3);
  11033. if (params->type == GGML_TASK_INIT) {
  11034. if (ith == 0) {
  11035. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11036. }
  11037. return;
  11038. }
  11039. if (params->type == GGML_TASK_FINALIZE) {
  11040. return;
  11041. }
  11042. // parallelize by q rows using ggml_vec_dot_f32
  11043. // total rows in q
  11044. const int nr = neq2*neq3;
  11045. // rows per thread
  11046. const int dr = (nr + nth - 1)/nth;
  11047. // row range for this thread
  11048. const int ir0 = dr*ith;
  11049. const int ir1 = MIN(ir0 + dr, nr);
  11050. const float scale = 1.0f/sqrtf(D);
  11051. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11052. for (int ir = ir0; ir < ir1; ++ir) {
  11053. // q indices
  11054. const int iq3 = ir/(neq2);
  11055. const int iq2 = ir - iq3*neq2;
  11056. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11057. // not sure about CACHE_LINE_SIZE_F32..
  11058. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11059. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11060. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11061. for (int i = M; i < Mup; ++i) {
  11062. S[i] = -INFINITY;
  11063. }
  11064. for (int64_t ic = 0; ic < nek1; ++ic) {
  11065. // k indices
  11066. const int ik3 = iq3;
  11067. const int ik2 = iq2;
  11068. const int ik1 = ic;
  11069. // S indices
  11070. const int i1 = ik1;
  11071. ggml_vec_dot_f32(neq0,
  11072. S + i1,
  11073. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11074. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11075. }
  11076. // scale
  11077. ggml_vec_scale_f32(nek1, S, scale);
  11078. if (masked) {
  11079. for (int64_t i = P; i < M; i++) {
  11080. if (i > P + iq1) {
  11081. S[i] = -INFINITY;
  11082. }
  11083. }
  11084. }
  11085. // softmax
  11086. {
  11087. float max = -INFINITY;
  11088. ggml_vec_max_f32(M, &max, S);
  11089. ggml_float sum = 0.0;
  11090. {
  11091. #ifdef GGML_SOFT_MAX_ACCELERATE
  11092. max = -max;
  11093. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11094. vvexpf(SM, SM, &Mup);
  11095. ggml_vec_sum_f32(Mup, &sum, SM);
  11096. #else
  11097. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11098. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11099. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11100. float * SR = S + i;
  11101. float * SW = SM + i;
  11102. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11103. if (SR[j] == -INFINITY) {
  11104. SW[j] = 0.0f;
  11105. } else {
  11106. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11107. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11108. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11109. sump[j] += (ggml_float)val;
  11110. SW[j] = val;
  11111. }
  11112. }
  11113. }
  11114. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11115. sum += sump[i];
  11116. }
  11117. #endif
  11118. }
  11119. assert(sum > 0.0);
  11120. sum = 1.0/sum;
  11121. ggml_vec_scale_f32(M, SM, sum);
  11122. }
  11123. // step-by-step explanation
  11124. {
  11125. // forward-process shape grads from backward process
  11126. // parallel_for iq2,iq3:
  11127. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11128. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11129. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11130. // for iq1:
  11131. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11132. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11133. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11134. // S0 = -Inf [D,1,1,1]
  11135. // ~S1[i] = dot(kcur[:D,i], qcur)
  11136. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11137. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11138. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11139. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11140. // ~S5[i] = dot(vcur[:,i], S4)
  11141. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11142. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11143. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11144. // dst backward-/ grad[dst] = d
  11145. //
  11146. // output gradients with their dependencies:
  11147. //
  11148. // grad[kcur] = grad[S1].T @ qcur
  11149. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11150. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11151. // grad[S4] = grad[S5] @ vcur
  11152. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11153. // grad[qcur] = grad[S1] @ kcur
  11154. // grad[vcur] = grad[S5].T @ S4
  11155. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11156. //
  11157. // in post-order:
  11158. //
  11159. // S1 = qcur @ kcur.T
  11160. // S2 = S1 * scale
  11161. // S3 = diag_mask_inf(S2, P)
  11162. // S4 = softmax(S3)
  11163. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11164. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11165. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11166. // grad[qcur] = grad[S1] @ kcur
  11167. // grad[kcur] = grad[S1].T @ qcur
  11168. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11169. //
  11170. // using less variables (SM=S4):
  11171. //
  11172. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11173. // SM = softmax(S)
  11174. // S = d[:D,iq1,iq2,iq3] @ vcur
  11175. // dot_SM_gradSM = dot(SM, S)
  11176. // S = SM * (S - dot(SM, S))
  11177. // S = diag_mask_zero(S, P) * scale
  11178. //
  11179. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11180. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11181. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11182. }
  11183. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11184. // S = d[:D,iq1,iq2,iq3] @ vcur
  11185. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11186. ggml_vec_set_f32(M, S, 0);
  11187. for (int64_t ic = 0; ic < D; ++ic) {
  11188. // dst indices
  11189. const int i1 = iq1;
  11190. const int i2 = iq2;
  11191. const int i3 = iq3;
  11192. ggml_vec_mad_f32(M,
  11193. S,
  11194. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11195. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11196. }
  11197. // S = SM * (S - dot(SM, S))
  11198. float dot_SM_gradSM = 0;
  11199. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11200. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11201. ggml_vec_mul_f32 (M, S, S, SM);
  11202. // S = diag_mask_zero(S, P) * scale
  11203. if (masked) {
  11204. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11205. // S[i] = 0;
  11206. // }
  11207. for (int64_t i = P; i < M; i++) {
  11208. if (i > P + iq1) {
  11209. S[i] = 0;
  11210. }
  11211. }
  11212. }
  11213. ggml_vec_scale_f32(M, S, scale);
  11214. void * grad_q = (char *) dst->data;
  11215. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11216. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11217. const size_t nbgq1 = nb0*neq0;
  11218. const size_t nbgq2 = nb0*neq0*neq1;
  11219. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11220. const size_t nbgk1 = nb0*nek0;
  11221. const size_t nbgk2 = nb0*nek0*nek1;
  11222. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11223. const size_t nbgv1 = nb0*nev0;
  11224. const size_t nbgv2 = nb0*nev0*nev1;
  11225. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11226. // S shape [M,1]
  11227. // SM shape [M,1]
  11228. // kcur shape [D,M]
  11229. // qcur shape [D,1]
  11230. // vcur shape [M,D]
  11231. //
  11232. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11233. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11234. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11235. //
  11236. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11237. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11238. for (int64_t ic = 0; ic < M; ++ic) {
  11239. // dst indices
  11240. const int i1 = iq1;
  11241. const int i2 = iq2;
  11242. const int i3 = iq3;
  11243. ggml_vec_mad_f32(D,
  11244. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11245. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11246. S[ic]);
  11247. }
  11248. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11249. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11250. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11251. for (int64_t ic = 0; ic < M; ++ic) {
  11252. // dst indices
  11253. const int i1 = iq1;
  11254. const int i2 = iq2;
  11255. const int i3 = iq3;
  11256. // ggml_vec_set_f32(D,
  11257. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11258. // 0);
  11259. ggml_vec_mad_f32(D,
  11260. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11261. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11262. S[ic]);
  11263. }
  11264. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11265. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11266. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11267. for (int64_t ic = 0; ic < D; ++ic) {
  11268. // dst indices
  11269. const int i1 = iq1;
  11270. const int i2 = iq2;
  11271. const int i3 = iq3;
  11272. // ggml_vec_set_f32(M,
  11273. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11274. // 0);
  11275. ggml_vec_mad_f32(M,
  11276. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11277. SM,
  11278. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11279. }
  11280. }
  11281. }
  11282. }
  11283. static void ggml_compute_forward_flash_attn_back(
  11284. const struct ggml_compute_params * params,
  11285. const struct ggml_tensor * q,
  11286. const struct ggml_tensor * k,
  11287. const struct ggml_tensor * v,
  11288. const struct ggml_tensor * d,
  11289. const bool masked,
  11290. struct ggml_tensor * dst) {
  11291. switch (q->type) {
  11292. case GGML_TYPE_F32:
  11293. {
  11294. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11295. } break;
  11296. default:
  11297. {
  11298. GGML_ASSERT(false);
  11299. } break;
  11300. }
  11301. }
  11302. // ggml_compute_forward_win_part
  11303. static void ggml_compute_forward_win_part_f32(
  11304. const struct ggml_compute_params * params,
  11305. const struct ggml_tensor * src0,
  11306. const struct ggml_tensor * opt0,
  11307. struct ggml_tensor * dst) {
  11308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11309. return;
  11310. }
  11311. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11312. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11313. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11314. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11315. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11316. assert(ne00 == ne0);
  11317. assert(ne3 == nep0*nep1);
  11318. // TODO: optimize / multi-thread
  11319. for (int py = 0; py < nep1; ++py) {
  11320. for (int px = 0; px < nep0; ++px) {
  11321. const int64_t i3 = py*nep0 + px;
  11322. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11323. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11324. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11325. const int64_t i02 = py*w + i2;
  11326. const int64_t i01 = px*w + i1;
  11327. const int64_t i00 = i0;
  11328. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11329. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11330. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11331. ((float *) dst->data)[i] = 0.0f;
  11332. } else {
  11333. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11334. }
  11335. }
  11336. }
  11337. }
  11338. }
  11339. }
  11340. }
  11341. static void ggml_compute_forward_win_part(
  11342. const struct ggml_compute_params * params,
  11343. const struct ggml_tensor * src0,
  11344. const struct ggml_tensor * opt0,
  11345. struct ggml_tensor * dst) {
  11346. switch (src0->type) {
  11347. case GGML_TYPE_F32:
  11348. {
  11349. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11350. } break;
  11351. default:
  11352. {
  11353. GGML_ASSERT(false);
  11354. } break;
  11355. }
  11356. }
  11357. // ggml_compute_forward_win_unpart
  11358. static void ggml_compute_forward_win_unpart_f32(
  11359. const struct ggml_compute_params * params,
  11360. const struct ggml_tensor * src0,
  11361. const struct ggml_tensor * opt0,
  11362. struct ggml_tensor * dst) {
  11363. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11364. return;
  11365. }
  11366. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11367. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11368. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11369. // padding
  11370. const int px = (w - ne1%w)%w;
  11371. //const int py = (w - ne2%w)%w;
  11372. const int npx = (px + ne1)/w;
  11373. //const int npy = (py + ne2)/w;
  11374. assert(ne0 == ne00);
  11375. // TODO: optimize / multi-thread
  11376. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11377. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11378. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11379. const int ip2 = i2/w;
  11380. const int ip1 = i1/w;
  11381. const int64_t i02 = i2%w;
  11382. const int64_t i01 = i1%w;
  11383. const int64_t i00 = i0;
  11384. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11385. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11386. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11387. }
  11388. }
  11389. }
  11390. }
  11391. static void ggml_compute_forward_win_unpart(
  11392. const struct ggml_compute_params * params,
  11393. const struct ggml_tensor * src0,
  11394. const struct ggml_tensor * opt0,
  11395. struct ggml_tensor * dst) {
  11396. switch (src0->type) {
  11397. case GGML_TYPE_F32:
  11398. {
  11399. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11400. } break;
  11401. default:
  11402. {
  11403. GGML_ASSERT(false);
  11404. } break;
  11405. }
  11406. }
  11407. // ggml_compute_forward_map_unary
  11408. static void ggml_compute_forward_map_unary_f32(
  11409. const struct ggml_compute_params * params,
  11410. const struct ggml_tensor * src0,
  11411. struct ggml_tensor * dst,
  11412. const ggml_unary_op_f32_t fun) {
  11413. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11414. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11415. return;
  11416. }
  11417. const int n = ggml_nrows(src0);
  11418. const int nc = src0->ne[0];
  11419. assert( dst->nb[0] == sizeof(float));
  11420. assert(src0->nb[0] == sizeof(float));
  11421. for (int i = 0; i < n; i++) {
  11422. fun(nc,
  11423. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11424. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11425. }
  11426. }
  11427. static void ggml_compute_forward_map_unary(
  11428. const struct ggml_compute_params * params,
  11429. const struct ggml_tensor * src0,
  11430. struct ggml_tensor * dst,
  11431. const ggml_unary_op_f32_t fun) {
  11432. switch (src0->type) {
  11433. case GGML_TYPE_F32:
  11434. {
  11435. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11436. } break;
  11437. default:
  11438. {
  11439. GGML_ASSERT(false);
  11440. } break;
  11441. }
  11442. }
  11443. // ggml_compute_forward_map_binary
  11444. static void ggml_compute_forward_map_binary_f32(
  11445. const struct ggml_compute_params * params,
  11446. const struct ggml_tensor * src0,
  11447. const struct ggml_tensor * src1,
  11448. struct ggml_tensor * dst,
  11449. const ggml_binary_op_f32_t fun) {
  11450. assert(params->ith == 0);
  11451. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11453. return;
  11454. }
  11455. const int n = ggml_nrows(src0);
  11456. const int nc = src0->ne[0];
  11457. assert( dst->nb[0] == sizeof(float));
  11458. assert(src0->nb[0] == sizeof(float));
  11459. assert(src1->nb[0] == sizeof(float));
  11460. for (int i = 0; i < n; i++) {
  11461. fun(nc,
  11462. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11463. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11464. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11465. }
  11466. }
  11467. static void ggml_compute_forward_map_binary(
  11468. const struct ggml_compute_params * params,
  11469. const struct ggml_tensor * src0,
  11470. const struct ggml_tensor * src1,
  11471. struct ggml_tensor * dst,
  11472. const ggml_binary_op_f32_t fun) {
  11473. switch (src0->type) {
  11474. case GGML_TYPE_F32:
  11475. {
  11476. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11477. } break;
  11478. default:
  11479. {
  11480. GGML_ASSERT(false);
  11481. } break;
  11482. }
  11483. }
  11484. // ggml_compute_forward_map_custom1
  11485. static void ggml_compute_forward_map_custom1_f32(
  11486. const struct ggml_compute_params * params,
  11487. const struct ggml_tensor * a,
  11488. struct ggml_tensor * dst,
  11489. const ggml_custom1_op_f32_t fun) {
  11490. assert(params->ith == 0);
  11491. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11492. return;
  11493. }
  11494. fun(dst, a);
  11495. }
  11496. static void ggml_compute_forward_map_custom1(
  11497. const struct ggml_compute_params * params,
  11498. const struct ggml_tensor * a,
  11499. struct ggml_tensor * dst,
  11500. const ggml_custom1_op_f32_t fun) {
  11501. switch (a->type) {
  11502. case GGML_TYPE_F32:
  11503. {
  11504. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11505. } break;
  11506. default:
  11507. {
  11508. GGML_ASSERT(false);
  11509. } break;
  11510. }
  11511. }
  11512. // ggml_compute_forward_map_custom2
  11513. static void ggml_compute_forward_map_custom2_f32(
  11514. const struct ggml_compute_params * params,
  11515. const struct ggml_tensor * a,
  11516. const struct ggml_tensor * b,
  11517. struct ggml_tensor * dst,
  11518. const ggml_custom2_op_f32_t fun) {
  11519. assert(params->ith == 0);
  11520. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11521. return;
  11522. }
  11523. fun(dst, a, b);
  11524. }
  11525. static void ggml_compute_forward_map_custom2(
  11526. const struct ggml_compute_params * params,
  11527. const struct ggml_tensor * a,
  11528. const struct ggml_tensor * b,
  11529. struct ggml_tensor * dst,
  11530. const ggml_custom2_op_f32_t fun) {
  11531. switch (a->type) {
  11532. case GGML_TYPE_F32:
  11533. {
  11534. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11535. } break;
  11536. default:
  11537. {
  11538. GGML_ASSERT(false);
  11539. } break;
  11540. }
  11541. }
  11542. // ggml_compute_forward_map_custom3
  11543. static void ggml_compute_forward_map_custom3_f32(
  11544. const struct ggml_compute_params * params,
  11545. const struct ggml_tensor * a,
  11546. const struct ggml_tensor * b,
  11547. const struct ggml_tensor * c,
  11548. struct ggml_tensor * dst,
  11549. const ggml_custom3_op_f32_t fun) {
  11550. assert(params->ith == 0);
  11551. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11552. return;
  11553. }
  11554. fun(dst, a, b, c);
  11555. }
  11556. static void ggml_compute_forward_map_custom3(
  11557. const struct ggml_compute_params * params,
  11558. const struct ggml_tensor * a,
  11559. const struct ggml_tensor * b,
  11560. const struct ggml_tensor * c,
  11561. struct ggml_tensor * dst,
  11562. const ggml_custom3_op_f32_t fun) {
  11563. switch (a->type) {
  11564. case GGML_TYPE_F32:
  11565. {
  11566. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11567. } break;
  11568. default:
  11569. {
  11570. GGML_ASSERT(false);
  11571. } break;
  11572. }
  11573. }
  11574. // ggml_compute_forward_cross_entropy_loss
  11575. static void ggml_compute_forward_cross_entropy_loss_f32(
  11576. const struct ggml_compute_params * params,
  11577. const struct ggml_tensor * src0,
  11578. const struct ggml_tensor * src1,
  11579. struct ggml_tensor * dst) {
  11580. GGML_ASSERT(ggml_is_contiguous(src0));
  11581. GGML_ASSERT(ggml_is_contiguous(src1));
  11582. GGML_ASSERT(ggml_is_scalar(dst));
  11583. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11584. const int ith = params->ith;
  11585. const int nth = params->nth;
  11586. float * sums = (float *) params->wdata;
  11587. // TODO: handle transposed/permuted matrices
  11588. const int nc = src0->ne[0];
  11589. const int nr = ggml_nrows(src0);
  11590. if (params->type == GGML_TASK_INIT) {
  11591. if (ith == 0) {
  11592. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11593. }
  11594. return;
  11595. }
  11596. if (params->type == GGML_TASK_FINALIZE) {
  11597. if (ith == 0) {
  11598. float * dp = (float *) dst->data;
  11599. ggml_vec_sum_f32(nth, dp, sums);
  11600. dp[0] *= -1.0f;
  11601. }
  11602. return;
  11603. }
  11604. const double eps = 1e-9;
  11605. // rows per thread
  11606. const int dr = (nr + nth - 1)/nth;
  11607. // row range for this thread
  11608. const int ir0 = dr*ith;
  11609. const int ir1 = MIN(ir0 + dr, nr);
  11610. for (int i1 = ir0; i1 < ir1; i1++) {
  11611. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11612. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11613. float * st = (float *) params->wdata + nth + ith*nc;
  11614. #ifndef NDEBUG
  11615. for (int i = 0; i < nc; ++i) {
  11616. //printf("p[%d] = %f\n", i, p[i]);
  11617. assert(!isnan(s0[i]));
  11618. assert(!isnan(s1[i]));
  11619. }
  11620. #endif
  11621. // soft_max
  11622. ggml_float sum = 0.0;
  11623. {
  11624. float max = -INFINITY;
  11625. ggml_vec_max_f32(nc, &max, s0);
  11626. uint16_t scvt;
  11627. for (int i = 0; i < nc; i++) {
  11628. if (s0[i] == -INFINITY) {
  11629. st[i] = 0.0f;
  11630. } else {
  11631. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11632. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11633. memcpy(&scvt, &s, sizeof(scvt));
  11634. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11635. sum += (ggml_float)val;
  11636. st[i] = val;
  11637. }
  11638. }
  11639. assert(sum > 0.0);
  11640. // sum = 1.0/sum;
  11641. }
  11642. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11643. sum = (1.0 - eps) / sum;
  11644. ggml_vec_scale_f32(nc, st, sum);
  11645. ggml_vec_add1_f32(nc, st, st, eps);
  11646. ggml_vec_log_f32(nc, st, st);
  11647. ggml_vec_mul_f32(nc, st, st, s1);
  11648. ggml_vec_sum_f32(nc, sums + ith, st);
  11649. #ifndef NDEBUG
  11650. for (int i = 0; i < nc; ++i) {
  11651. assert(!isnan(st[i]));
  11652. assert(!isinf(st[i]));
  11653. }
  11654. #endif
  11655. }
  11656. }
  11657. static void ggml_compute_forward_cross_entropy_loss(
  11658. const struct ggml_compute_params * params,
  11659. const struct ggml_tensor * src0,
  11660. const struct ggml_tensor * src1,
  11661. struct ggml_tensor * dst) {
  11662. switch (src0->type) {
  11663. case GGML_TYPE_F32:
  11664. {
  11665. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11666. } break;
  11667. default:
  11668. {
  11669. GGML_ASSERT(false);
  11670. } break;
  11671. }
  11672. }
  11673. // ggml_compute_forward_cross_entropy_loss_back
  11674. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11675. const struct ggml_compute_params * params,
  11676. const struct ggml_tensor * src0,
  11677. const struct ggml_tensor * src1,
  11678. const struct ggml_tensor * opt0,
  11679. struct ggml_tensor * dst) {
  11680. GGML_ASSERT(ggml_is_contiguous(dst));
  11681. GGML_ASSERT(ggml_is_contiguous(src0));
  11682. GGML_ASSERT(ggml_is_contiguous(src1));
  11683. GGML_ASSERT(ggml_is_contiguous(opt0));
  11684. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11685. const int64_t ith = params->ith;
  11686. const int64_t nth = params->nth;
  11687. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11688. return;
  11689. }
  11690. const float eps = 1e-9f;
  11691. // TODO: handle transposed/permuted matrices
  11692. const int64_t nc = src0->ne[0];
  11693. const int64_t nr = ggml_nrows(src0);
  11694. // rows per thread
  11695. const int64_t dr = (nr + nth - 1)/nth;
  11696. // row range for this thread
  11697. const int64_t ir0 = dr*ith;
  11698. const int64_t ir1 = MIN(ir0 + dr, nr);
  11699. float * d = (float *) opt0->data;
  11700. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11701. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11702. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11703. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11704. float * sm = (float *) params->wdata + ith*nc;
  11705. #ifndef NDEBUG
  11706. for (int i = 0; i < nc; ++i) {
  11707. //printf("p[%d] = %f\n", i, p[i]);
  11708. assert(!isnan(s0[i]));
  11709. assert(!isnan(s1[i]));
  11710. }
  11711. #endif
  11712. // step by step explanation:
  11713. {
  11714. //float * sums = (float *) params->wdata;
  11715. // forward pass with annotated gradients from backward pass
  11716. // (built by going in reverse operation order, adding to gradients of current operation args)
  11717. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11718. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11719. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11720. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11721. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11722. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11723. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11724. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11725. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11726. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11727. // postorder:
  11728. // grad[st1] := softmax(s0)
  11729. // grad[st1] := grad[st1]*(1.0 - eps)
  11730. // grad[st1] := grad[st1] + eps
  11731. // grad[st1] := s1 / grad[st1]
  11732. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11733. // src0 gradients by going through softmax_back
  11734. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11735. // from softmax_back:
  11736. // dxk = yk * (dyk - dot(y, dy))
  11737. // dot_y_dy := dot(y, dy)
  11738. // dx := dy
  11739. // dx := dx - dot_y_dy
  11740. // dx := dx * y
  11741. // postorder:
  11742. // dot_st1_dst1 := dot(st1, grad[st1])
  11743. // grad[s0] := grad[st1]
  11744. // grad[s0] := grad[s0] - dot_st1_dst1
  11745. // grad[s0] := grad[s0] * st1
  11746. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11747. // sm := softmax(s0)
  11748. // grad[s0] := sm*(1.0 - eps)
  11749. // grad[s0] := grad[s0] + eps
  11750. // grad[s0] := s1 / grad[s0]
  11751. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11752. // dot_st1_dst1 := dot(sm, grad[s0])
  11753. // grad[s0] := grad[s0] - dot_st1_dst1
  11754. // grad[s0] := grad[s0] * sm
  11755. }
  11756. // soft_max
  11757. ggml_float sum = 0.0;
  11758. {
  11759. float max = -INFINITY;
  11760. ggml_vec_max_f32(nc, &max, s0);
  11761. uint16_t scvt;
  11762. for (int i = 0; i < nc; i++) {
  11763. if (s0[i] == -INFINITY) {
  11764. sm[i] = 0.0f;
  11765. } else {
  11766. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11767. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11768. memcpy(&scvt, &s, sizeof(scvt));
  11769. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11770. sum += (ggml_float)val;
  11771. sm[i] = val;
  11772. }
  11773. }
  11774. assert(sum > 0.0);
  11775. sum = 1.0/sum;
  11776. }
  11777. float dot_st1_dst1 = 0;
  11778. ggml_vec_scale_f32(nc, sm, sum);
  11779. ggml_vec_cpy_f32 (nc, ds0, sm);
  11780. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11781. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11782. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11783. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11784. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11785. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11786. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11787. #ifndef NDEBUG
  11788. for (int i = 0; i < nc; ++i) {
  11789. assert(!isnan(sm[i]));
  11790. assert(!isinf(sm[i]));
  11791. assert(!isnan(ds0[i]));
  11792. assert(!isinf(ds0[i]));
  11793. }
  11794. #endif
  11795. }
  11796. }
  11797. static void ggml_compute_forward_cross_entropy_loss_back(
  11798. const struct ggml_compute_params * params,
  11799. const struct ggml_tensor * src0,
  11800. const struct ggml_tensor * src1,
  11801. const struct ggml_tensor * opt0,
  11802. struct ggml_tensor * dst) {
  11803. switch (src0->type) {
  11804. case GGML_TYPE_F32:
  11805. {
  11806. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11807. } break;
  11808. default:
  11809. {
  11810. GGML_ASSERT(false);
  11811. } break;
  11812. }
  11813. }
  11814. /////////////////////////////////
  11815. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11816. GGML_ASSERT(params);
  11817. #ifdef GGML_USE_CUBLAS
  11818. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11819. if (skip_cpu) {
  11820. return;
  11821. }
  11822. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  11823. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  11824. #endif // GGML_USE_CUBLAS
  11825. switch (tensor->op) {
  11826. case GGML_OP_DUP:
  11827. {
  11828. ggml_compute_forward_dup(params, tensor->src0, tensor);
  11829. } break;
  11830. case GGML_OP_ADD:
  11831. {
  11832. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  11833. } break;
  11834. case GGML_OP_ADD1:
  11835. {
  11836. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  11837. } break;
  11838. case GGML_OP_ACC:
  11839. {
  11840. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11841. } break;
  11842. case GGML_OP_SUB:
  11843. {
  11844. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  11845. } break;
  11846. case GGML_OP_MUL:
  11847. {
  11848. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  11849. } break;
  11850. case GGML_OP_DIV:
  11851. {
  11852. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  11853. } break;
  11854. case GGML_OP_SQR:
  11855. {
  11856. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  11857. } break;
  11858. case GGML_OP_SQRT:
  11859. {
  11860. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  11861. } break;
  11862. case GGML_OP_LOG:
  11863. {
  11864. ggml_compute_forward_log(params, tensor->src0, tensor);
  11865. } break;
  11866. case GGML_OP_SUM:
  11867. {
  11868. ggml_compute_forward_sum(params, tensor->src0, tensor);
  11869. } break;
  11870. case GGML_OP_SUM_ROWS:
  11871. {
  11872. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  11873. } break;
  11874. case GGML_OP_MEAN:
  11875. {
  11876. ggml_compute_forward_mean(params, tensor->src0, tensor);
  11877. } break;
  11878. case GGML_OP_ARGMAX:
  11879. {
  11880. ggml_compute_forward_argmax(params, tensor->src0, tensor);
  11881. } break;
  11882. case GGML_OP_REPEAT:
  11883. {
  11884. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  11885. } break;
  11886. case GGML_OP_REPEAT_BACK:
  11887. {
  11888. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  11889. } break;
  11890. case GGML_OP_ABS:
  11891. {
  11892. ggml_compute_forward_abs(params, tensor->src0, tensor);
  11893. } break;
  11894. case GGML_OP_SGN:
  11895. {
  11896. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  11897. } break;
  11898. case GGML_OP_NEG:
  11899. {
  11900. ggml_compute_forward_neg(params, tensor->src0, tensor);
  11901. } break;
  11902. case GGML_OP_STEP:
  11903. {
  11904. ggml_compute_forward_step(params, tensor->src0, tensor);
  11905. } break;
  11906. case GGML_OP_TANH:
  11907. {
  11908. ggml_compute_forward_tanh(params, tensor->src0, tensor);
  11909. } break;
  11910. case GGML_OP_ELU:
  11911. {
  11912. ggml_compute_forward_elu(params, tensor->src0, tensor);
  11913. } break;
  11914. case GGML_OP_RELU:
  11915. {
  11916. ggml_compute_forward_relu(params, tensor->src0, tensor);
  11917. } break;
  11918. case GGML_OP_GELU:
  11919. {
  11920. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  11921. } break;
  11922. case GGML_OP_GELU_QUICK:
  11923. {
  11924. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  11925. } break;
  11926. case GGML_OP_SILU:
  11927. {
  11928. ggml_compute_forward_silu(params, tensor->src0, tensor);
  11929. } break;
  11930. case GGML_OP_SILU_BACK:
  11931. {
  11932. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  11933. } break;
  11934. case GGML_OP_NORM:
  11935. {
  11936. ggml_compute_forward_norm(params, tensor->src0, tensor);
  11937. } break;
  11938. case GGML_OP_RMS_NORM:
  11939. {
  11940. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  11941. } break;
  11942. case GGML_OP_RMS_NORM_BACK:
  11943. {
  11944. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  11945. } break;
  11946. case GGML_OP_MUL_MAT:
  11947. {
  11948. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  11949. } break;
  11950. case GGML_OP_OUT_PROD:
  11951. {
  11952. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  11953. } break;
  11954. case GGML_OP_SCALE:
  11955. {
  11956. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  11957. } break;
  11958. case GGML_OP_SET:
  11959. {
  11960. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11961. } break;
  11962. case GGML_OP_CPY:
  11963. {
  11964. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  11965. } break;
  11966. case GGML_OP_CONT:
  11967. {
  11968. ggml_compute_forward_cont(params, tensor->src0, tensor);
  11969. } break;
  11970. case GGML_OP_RESHAPE:
  11971. {
  11972. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  11973. } break;
  11974. case GGML_OP_VIEW:
  11975. {
  11976. ggml_compute_forward_view(params, tensor->src0);
  11977. } break;
  11978. case GGML_OP_PERMUTE:
  11979. {
  11980. ggml_compute_forward_permute(params, tensor->src0);
  11981. } break;
  11982. case GGML_OP_TRANSPOSE:
  11983. {
  11984. ggml_compute_forward_transpose(params, tensor->src0);
  11985. } break;
  11986. case GGML_OP_GET_ROWS:
  11987. {
  11988. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  11989. } break;
  11990. case GGML_OP_GET_ROWS_BACK:
  11991. {
  11992. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  11993. } break;
  11994. case GGML_OP_DIAG:
  11995. {
  11996. ggml_compute_forward_diag(params, tensor->src0, tensor);
  11997. } break;
  11998. case GGML_OP_DIAG_MASK_INF:
  11999. {
  12000. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12001. } break;
  12002. case GGML_OP_DIAG_MASK_ZERO:
  12003. {
  12004. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12005. } break;
  12006. case GGML_OP_SOFT_MAX:
  12007. {
  12008. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12009. } break;
  12010. case GGML_OP_SOFT_MAX_BACK:
  12011. {
  12012. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12013. } break;
  12014. case GGML_OP_ROPE:
  12015. {
  12016. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12017. } break;
  12018. case GGML_OP_ROPE_BACK:
  12019. {
  12020. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12021. } break;
  12022. case GGML_OP_ALIBI:
  12023. {
  12024. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12025. } break;
  12026. case GGML_OP_CLAMP:
  12027. {
  12028. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12029. } break;
  12030. case GGML_OP_CONV_1D:
  12031. {
  12032. ggml_compute_forward_conv_1d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12033. } break;
  12034. case GGML_OP_CONV_2D:
  12035. {
  12036. ggml_compute_forward_conv_2d(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12037. } break;
  12038. case GGML_OP_FLASH_ATTN:
  12039. {
  12040. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12041. GGML_ASSERT(t == 0 || t == 1);
  12042. const bool masked = t != 0;
  12043. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12044. } break;
  12045. case GGML_OP_FLASH_FF:
  12046. {
  12047. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12048. } break;
  12049. case GGML_OP_FLASH_ATTN_BACK:
  12050. {
  12051. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12052. GGML_ASSERT(t == 0 || t == 1);
  12053. bool masked = t != 0;
  12054. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12055. } break;
  12056. case GGML_OP_WIN_PART:
  12057. {
  12058. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12059. } break;
  12060. case GGML_OP_WIN_UNPART:
  12061. {
  12062. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12063. } break;
  12064. case GGML_OP_MAP_UNARY:
  12065. {
  12066. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12067. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12068. }
  12069. break;
  12070. case GGML_OP_MAP_BINARY:
  12071. {
  12072. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12073. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12074. }
  12075. break;
  12076. case GGML_OP_MAP_CUSTOM1:
  12077. {
  12078. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12079. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12080. }
  12081. break;
  12082. case GGML_OP_MAP_CUSTOM2:
  12083. {
  12084. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12085. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12086. }
  12087. break;
  12088. case GGML_OP_MAP_CUSTOM3:
  12089. {
  12090. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12091. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12092. }
  12093. break;
  12094. case GGML_OP_CROSS_ENTROPY_LOSS:
  12095. {
  12096. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12097. }
  12098. break;
  12099. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12100. {
  12101. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12102. }
  12103. break;
  12104. case GGML_OP_NONE:
  12105. {
  12106. // nop
  12107. } break;
  12108. case GGML_OP_COUNT:
  12109. {
  12110. GGML_ASSERT(false);
  12111. } break;
  12112. }
  12113. }
  12114. ////////////////////////////////////////////////////////////////////////////////
  12115. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12116. struct ggml_tensor * src0 = tensor->src0;
  12117. struct ggml_tensor * src1 = tensor->src1;
  12118. switch (tensor->op) {
  12119. case GGML_OP_DUP:
  12120. {
  12121. if (src0->grad) {
  12122. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12123. }
  12124. } break;
  12125. case GGML_OP_ADD:
  12126. {
  12127. if (src0->grad) {
  12128. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12129. }
  12130. if (src1->grad) {
  12131. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12132. }
  12133. } break;
  12134. case GGML_OP_ADD1:
  12135. {
  12136. if (src0->grad) {
  12137. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12138. }
  12139. if (src1->grad) {
  12140. src1->grad = ggml_add_impl(ctx,
  12141. src1->grad,
  12142. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12143. inplace);
  12144. }
  12145. } break;
  12146. case GGML_OP_ACC:
  12147. {
  12148. if (src0->grad) {
  12149. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12150. }
  12151. if (src1->grad) {
  12152. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12153. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12154. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12155. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12156. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12157. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12158. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12159. tensor->grad,
  12160. src1->grad->ne[0],
  12161. src1->grad->ne[1],
  12162. src1->grad->ne[2],
  12163. src1->grad->ne[3],
  12164. nb1, nb2, nb3, offset);
  12165. src1->grad =
  12166. ggml_add_impl(ctx,
  12167. src1->grad,
  12168. ggml_reshape(ctx,
  12169. ggml_cont(ctx, tensor_grad_view),
  12170. src1->grad),
  12171. inplace);
  12172. }
  12173. } break;
  12174. case GGML_OP_SUB:
  12175. {
  12176. if (src0->grad) {
  12177. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12178. }
  12179. if (src1->grad) {
  12180. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12181. }
  12182. } break;
  12183. case GGML_OP_MUL:
  12184. {
  12185. if (src0->grad) {
  12186. src0->grad =
  12187. ggml_add_impl(ctx,
  12188. src0->grad,
  12189. ggml_mul(ctx, src1, tensor->grad),
  12190. inplace);
  12191. }
  12192. if (src1->grad) {
  12193. src1->grad =
  12194. ggml_add_impl(ctx,
  12195. src1->grad,
  12196. ggml_mul(ctx, src0, tensor->grad),
  12197. inplace);
  12198. }
  12199. } break;
  12200. case GGML_OP_DIV:
  12201. {
  12202. if (src0->grad) {
  12203. src0->grad =
  12204. ggml_add_impl(ctx,
  12205. src0->grad,
  12206. ggml_div(ctx, tensor->grad, src1),
  12207. inplace);
  12208. }
  12209. if (src1->grad) {
  12210. src1->grad =
  12211. ggml_sub_impl(ctx,
  12212. src1->grad,
  12213. ggml_mul(ctx,
  12214. tensor->grad,
  12215. ggml_div(ctx, tensor, src1)),
  12216. inplace);
  12217. }
  12218. } break;
  12219. case GGML_OP_SQR:
  12220. {
  12221. if (src0->grad) {
  12222. src0->grad =
  12223. ggml_add_impl(ctx,
  12224. src0->grad,
  12225. ggml_scale(ctx,
  12226. ggml_mul(ctx, src0, tensor->grad),
  12227. ggml_new_f32(ctx, 2.0f)),
  12228. inplace);
  12229. }
  12230. } break;
  12231. case GGML_OP_SQRT:
  12232. {
  12233. if (src0->grad) {
  12234. src0->grad =
  12235. ggml_add_impl(ctx,
  12236. src0->grad,
  12237. ggml_scale(ctx,
  12238. ggml_div(ctx,
  12239. tensor->grad,
  12240. tensor),
  12241. ggml_new_f32(ctx, 0.5f)),
  12242. inplace);
  12243. }
  12244. } break;
  12245. case GGML_OP_LOG:
  12246. {
  12247. if (src0->grad) {
  12248. src0->grad =
  12249. ggml_add_impl(ctx,
  12250. src0->grad,
  12251. ggml_div(ctx,
  12252. tensor->grad,
  12253. src0),
  12254. inplace);
  12255. }
  12256. } break;
  12257. case GGML_OP_SUM:
  12258. {
  12259. if (src0->grad) {
  12260. src0->grad =
  12261. ggml_add1_impl(ctx,
  12262. src0->grad,
  12263. tensor->grad,
  12264. inplace);
  12265. }
  12266. } break;
  12267. case GGML_OP_SUM_ROWS:
  12268. {
  12269. if (src0->grad) {
  12270. src0->grad =
  12271. ggml_add_impl(ctx,
  12272. src0->grad,
  12273. ggml_repeat(ctx,
  12274. tensor->grad,
  12275. src0->grad),
  12276. inplace);
  12277. }
  12278. } break;
  12279. case GGML_OP_MEAN:
  12280. case GGML_OP_ARGMAX:
  12281. {
  12282. GGML_ASSERT(false); // TODO: implement
  12283. } break;
  12284. case GGML_OP_REPEAT:
  12285. {
  12286. // necessary for llama
  12287. if (src0->grad) {
  12288. src0->grad = ggml_add_impl(ctx,
  12289. src0->grad,
  12290. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12291. inplace);
  12292. }
  12293. } break;
  12294. case GGML_OP_REPEAT_BACK:
  12295. {
  12296. if (src0->grad) {
  12297. // TODO: test this
  12298. src0->grad = ggml_add_impl(ctx,
  12299. src0->grad,
  12300. ggml_repeat(ctx, tensor->grad, src0->grad),
  12301. inplace);
  12302. }
  12303. } break;
  12304. case GGML_OP_ABS:
  12305. {
  12306. if (src0->grad) {
  12307. src0->grad =
  12308. ggml_add_impl(ctx,
  12309. src0->grad,
  12310. ggml_mul(ctx,
  12311. ggml_sgn(ctx, src0),
  12312. tensor->grad),
  12313. inplace);
  12314. }
  12315. } break;
  12316. case GGML_OP_SGN:
  12317. {
  12318. if (src0->grad) {
  12319. // noop
  12320. }
  12321. } break;
  12322. case GGML_OP_NEG:
  12323. {
  12324. if (src0->grad) {
  12325. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12326. }
  12327. } break;
  12328. case GGML_OP_STEP:
  12329. {
  12330. if (src0->grad) {
  12331. // noop
  12332. }
  12333. } break;
  12334. case GGML_OP_TANH:
  12335. {
  12336. GGML_ASSERT(false); // TODO: not implemented
  12337. } break;
  12338. case GGML_OP_ELU:
  12339. {
  12340. GGML_ASSERT(false); // TODO: not implemented
  12341. } break;
  12342. case GGML_OP_RELU:
  12343. {
  12344. if (src0->grad) {
  12345. src0->grad = ggml_sub_impl(ctx,
  12346. src0->grad,
  12347. ggml_mul(ctx,
  12348. ggml_step(ctx, src0),
  12349. tensor->grad),
  12350. inplace);
  12351. }
  12352. } break;
  12353. case GGML_OP_GELU:
  12354. {
  12355. GGML_ASSERT(false); // TODO: not implemented
  12356. } break;
  12357. case GGML_OP_GELU_QUICK:
  12358. {
  12359. GGML_ASSERT(false); // TODO: not implemented
  12360. } break;
  12361. case GGML_OP_SILU:
  12362. {
  12363. // necessary for llama
  12364. if (src0->grad) {
  12365. src0->grad = ggml_add_impl(ctx,
  12366. src0->grad,
  12367. ggml_silu_back(ctx, src0, tensor->grad),
  12368. inplace);
  12369. }
  12370. } break;
  12371. case GGML_OP_SILU_BACK:
  12372. {
  12373. GGML_ASSERT(false); // TODO: not implemented
  12374. } break;
  12375. case GGML_OP_NORM:
  12376. {
  12377. GGML_ASSERT(false); // TODO: not implemented
  12378. } break;
  12379. case GGML_OP_RMS_NORM:
  12380. {
  12381. // necessary for llama
  12382. if (src0->grad) {
  12383. src0->grad = ggml_add_impl(ctx,
  12384. src0->grad,
  12385. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12386. inplace);
  12387. }
  12388. } break;
  12389. case GGML_OP_RMS_NORM_BACK:
  12390. {
  12391. GGML_ASSERT(false); // TODO: not implemented
  12392. } break;
  12393. case GGML_OP_MUL_MAT:
  12394. {
  12395. // https://cs231n.github.io/optimization-2/#staged
  12396. // # forward pass
  12397. // s0 = np.random.randn(5, 10)
  12398. // s1 = np.random.randn(10, 3)
  12399. // t = s0.dot(s1)
  12400. // # now suppose we had the gradient on t from above in the circuit
  12401. // dt = np.random.randn(*t.shape) # same shape as t
  12402. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12403. // ds1 = t.T.dot(dt)
  12404. // tensor.shape [m,p]
  12405. // src0.shape [n,m]
  12406. // src1.shape [n,p]
  12407. // necessary for llama
  12408. if (src0->grad) {
  12409. src0->grad =
  12410. ggml_add_impl(ctx,
  12411. src0->grad,
  12412. ggml_out_prod(ctx, // [n,m]
  12413. src1, // [n,p]
  12414. tensor->grad), // [m,p]
  12415. inplace);
  12416. }
  12417. if (src1->grad) {
  12418. src1->grad =
  12419. ggml_add_impl(ctx,
  12420. src1->grad,
  12421. // ggml_mul_mat(ctx, // [n,p]
  12422. // ggml_cont(ctx, // [m,n]
  12423. // ggml_transpose(ctx, src0)), // [m,n]
  12424. // tensor->grad), // [m,p]
  12425. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12426. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12427. // // and then use ggml_out_prod
  12428. ggml_out_prod(ctx, // [n,p]
  12429. src0, // [n,m]
  12430. ggml_transpose(ctx, // [p,m]
  12431. tensor->grad)), // [m,p]
  12432. inplace);
  12433. }
  12434. } break;
  12435. case GGML_OP_OUT_PROD:
  12436. {
  12437. GGML_ASSERT(false); // TODO: not implemented
  12438. } break;
  12439. case GGML_OP_SCALE:
  12440. {
  12441. // necessary for llama
  12442. if (src0->grad) {
  12443. src0->grad =
  12444. ggml_add_impl(ctx,
  12445. src0->grad,
  12446. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12447. inplace);
  12448. }
  12449. if (src1->grad) {
  12450. src1->grad =
  12451. ggml_add_impl(ctx,
  12452. src1->grad,
  12453. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12454. inplace);
  12455. }
  12456. } break;
  12457. case GGML_OP_SET:
  12458. {
  12459. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12460. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12461. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12462. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12463. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12464. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12465. struct ggml_tensor * tensor_grad_view = NULL;
  12466. if (src0->grad || src1->grad) {
  12467. GGML_ASSERT(src0->type == tensor->type);
  12468. GGML_ASSERT(tensor->grad->type == tensor->type);
  12469. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12470. tensor_grad_view = ggml_view_4d(ctx,
  12471. tensor->grad,
  12472. src1->grad->ne[0],
  12473. src1->grad->ne[1],
  12474. src1->grad->ne[2],
  12475. src1->grad->ne[3],
  12476. nb1, nb2, nb3, offset);
  12477. }
  12478. if (src0->grad) {
  12479. src0->grad = ggml_add_impl(ctx,
  12480. src0->grad,
  12481. ggml_acc_impl(ctx,
  12482. tensor->grad,
  12483. ggml_neg(ctx, tensor_grad_view),
  12484. nb1, nb2, nb3, offset, false),
  12485. inplace);
  12486. }
  12487. if (src1->grad) {
  12488. src1->grad =
  12489. ggml_add_impl(ctx,
  12490. src1->grad,
  12491. ggml_reshape(ctx,
  12492. ggml_cont(ctx, tensor_grad_view),
  12493. src1->grad),
  12494. inplace);
  12495. }
  12496. } break;
  12497. case GGML_OP_CPY:
  12498. {
  12499. // necessary for llama
  12500. // cpy overwrites value of src1 by src0 and returns view(src1)
  12501. // the overwriting is mathematically equivalent to:
  12502. // tensor = src0 * 1 + src1 * 0
  12503. if (src0->grad) {
  12504. // dsrc0 = dtensor * 1
  12505. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12506. }
  12507. if (src1->grad) {
  12508. // dsrc1 = dtensor * 0 -> noop
  12509. }
  12510. } break;
  12511. case GGML_OP_CONT:
  12512. {
  12513. // same as cpy
  12514. if (src0->grad) {
  12515. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12516. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12517. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12518. }
  12519. } break;
  12520. case GGML_OP_RESHAPE:
  12521. {
  12522. // necessary for llama
  12523. if (src0->grad) {
  12524. src0->grad =
  12525. ggml_add_impl(ctx, src0->grad,
  12526. ggml_reshape(ctx, tensor->grad, src0->grad),
  12527. inplace);
  12528. }
  12529. } break;
  12530. case GGML_OP_VIEW:
  12531. {
  12532. // necessary for llama
  12533. if (src0->grad) {
  12534. size_t offset;
  12535. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  12536. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  12537. size_t nb1 = tensor->nb[1];
  12538. size_t nb2 = tensor->nb[2];
  12539. size_t nb3 = tensor->nb[3];
  12540. if (src0->type != src0->grad->type) {
  12541. // gradient is typically F32, but src0 could be other type
  12542. size_t ng = ggml_element_size(src0->grad);
  12543. size_t n0 = ggml_element_size(src0);
  12544. GGML_ASSERT(offset % n0 == 0);
  12545. GGML_ASSERT(nb1 % n0 == 0);
  12546. GGML_ASSERT(nb2 % n0 == 0);
  12547. GGML_ASSERT(nb3 % n0 == 0);
  12548. offset = (offset / n0) * ng;
  12549. nb1 = (nb1 / n0) * ng;
  12550. nb2 = (nb2 / n0) * ng;
  12551. nb3 = (nb3 / n0) * ng;
  12552. }
  12553. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12554. }
  12555. } break;
  12556. case GGML_OP_PERMUTE:
  12557. {
  12558. // necessary for llama
  12559. if (src0->grad) {
  12560. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  12561. int axis0 = axes[0] & 0x3;
  12562. int axis1 = axes[1] & 0x3;
  12563. int axis2 = axes[2] & 0x3;
  12564. int axis3 = axes[3] & 0x3;
  12565. int axes_backward[4] = {0,0,0,0};
  12566. axes_backward[axis0] = 0;
  12567. axes_backward[axis1] = 1;
  12568. axes_backward[axis2] = 2;
  12569. axes_backward[axis3] = 3;
  12570. src0->grad =
  12571. ggml_add_impl(ctx, src0->grad,
  12572. ggml_permute(ctx,
  12573. tensor->grad,
  12574. axes_backward[0],
  12575. axes_backward[1],
  12576. axes_backward[2],
  12577. axes_backward[3]),
  12578. inplace);
  12579. }
  12580. } break;
  12581. case GGML_OP_TRANSPOSE:
  12582. {
  12583. // necessary for llama
  12584. if (src0->grad) {
  12585. src0->grad =
  12586. ggml_add_impl(ctx, src0->grad,
  12587. ggml_transpose(ctx, tensor->grad),
  12588. inplace);
  12589. }
  12590. } break;
  12591. case GGML_OP_GET_ROWS:
  12592. {
  12593. // necessary for llama (only for tokenizer)
  12594. if (src0->grad) {
  12595. src0->grad =
  12596. ggml_add_impl(ctx, src0->grad,
  12597. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12598. inplace);
  12599. }
  12600. if (src1->grad) {
  12601. // noop
  12602. }
  12603. } break;
  12604. case GGML_OP_GET_ROWS_BACK:
  12605. {
  12606. GGML_ASSERT(false); // TODO: not implemented
  12607. } break;
  12608. case GGML_OP_DIAG:
  12609. {
  12610. GGML_ASSERT(false); // TODO: not implemented
  12611. } break;
  12612. case GGML_OP_DIAG_MASK_INF:
  12613. {
  12614. // necessary for llama
  12615. if (src0->grad) {
  12616. assert(src1->type == GGML_TYPE_I32);
  12617. assert(ggml_nelements(src1) == 2);
  12618. const int n_past = ((int32_t *) src1->data)[0];
  12619. src0->grad =
  12620. ggml_add_impl(ctx, src0->grad,
  12621. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12622. inplace);
  12623. }
  12624. if (src1->grad) {
  12625. // noop
  12626. }
  12627. } break;
  12628. case GGML_OP_DIAG_MASK_ZERO:
  12629. {
  12630. // necessary for llama
  12631. if (src0->grad) {
  12632. assert(src1->type == GGML_TYPE_I32);
  12633. assert(ggml_nelements(src1) == 2);
  12634. const int n_past = ((int32_t *) src1->data)[0];
  12635. src0->grad =
  12636. ggml_add_impl(ctx, src0->grad,
  12637. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12638. inplace);
  12639. }
  12640. if (src1->grad) {
  12641. // noop
  12642. }
  12643. } break;
  12644. case GGML_OP_SOFT_MAX:
  12645. {
  12646. // necessary for llama
  12647. if (src0->grad) {
  12648. src0->grad =
  12649. ggml_add_impl(ctx, src0->grad,
  12650. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12651. inplace);
  12652. }
  12653. } break;
  12654. case GGML_OP_SOFT_MAX_BACK:
  12655. {
  12656. GGML_ASSERT(false); // TODO: not implemented
  12657. } break;
  12658. case GGML_OP_ROPE:
  12659. {
  12660. // necessary for llama
  12661. if (src0->grad) {
  12662. assert(src1->type == GGML_TYPE_I32);
  12663. assert(ggml_nelements(src1) == 4);
  12664. const int n_past = ((int32_t *) src1->data)[0];
  12665. const int n_dims = ((int32_t *) src1->data)[1];
  12666. const int mode = ((int32_t *) src1->data)[2];
  12667. src0->grad = ggml_add_impl(ctx,
  12668. src0->grad,
  12669. ggml_rope_back(ctx,
  12670. tensor->grad,
  12671. n_past,
  12672. n_dims,
  12673. mode),
  12674. inplace);
  12675. }
  12676. if (src1->grad) {
  12677. // noop
  12678. }
  12679. } break;
  12680. case GGML_OP_ROPE_BACK:
  12681. {
  12682. if (src0->grad) {
  12683. assert(src1->type == GGML_TYPE_I32);
  12684. assert(ggml_nelements(src1) == 4);
  12685. const int n_past = ((int32_t *) src1->data)[0];
  12686. const int n_dims = ((int32_t *) src1->data)[1];
  12687. const int mode = ((int32_t *) src1->data)[2];
  12688. const int n_ctx = ((int32_t *) src1->data)[3];
  12689. src0->grad = ggml_add_impl(ctx,
  12690. src0->grad,
  12691. ggml_rope(ctx,
  12692. tensor->grad,
  12693. n_past,
  12694. n_dims,
  12695. mode,
  12696. n_ctx),
  12697. inplace);
  12698. }
  12699. if (src1->grad) {
  12700. // noop
  12701. }
  12702. } break;
  12703. case GGML_OP_ALIBI:
  12704. {
  12705. GGML_ASSERT(false); // TODO: not implemented
  12706. } break;
  12707. case GGML_OP_CLAMP:
  12708. {
  12709. GGML_ASSERT(false); // TODO: not implemented
  12710. } break;
  12711. case GGML_OP_CONV_1D:
  12712. {
  12713. GGML_ASSERT(false); // TODO: not implemented
  12714. } break;
  12715. case GGML_OP_CONV_2D:
  12716. {
  12717. GGML_ASSERT(false); // TODO: not implemented
  12718. } break;
  12719. case GGML_OP_FLASH_ATTN:
  12720. {
  12721. struct ggml_tensor * flash_grad = NULL;
  12722. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  12723. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12724. GGML_ASSERT(t == 0 || t == 1);
  12725. bool masked = t != 0;
  12726. flash_grad =
  12727. ggml_flash_attn_back(ctx,
  12728. src0,
  12729. src1,
  12730. tensor->opt[0],
  12731. tensor->grad,
  12732. masked);
  12733. }
  12734. if (src0->grad) {
  12735. struct ggml_tensor * grad_q = NULL;
  12736. const size_t nb0 = flash_grad->nb[0];
  12737. const size_t offset = 0;
  12738. switch(src0->n_dims) {
  12739. case 2:
  12740. {
  12741. grad_q = ggml_view_2d(ctx,
  12742. flash_grad,
  12743. src0->ne[0],
  12744. src0->ne[1],
  12745. nb0*src0->ne[0],
  12746. offset);
  12747. } break;
  12748. case 3:
  12749. {
  12750. grad_q = ggml_view_3d(ctx,
  12751. flash_grad,
  12752. src0->ne[0],
  12753. src0->ne[1],
  12754. src0->ne[2],
  12755. nb0*src0->ne[0],
  12756. nb0*src0->ne[0]*src0->ne[1],
  12757. offset);
  12758. } break;
  12759. case 4:
  12760. {
  12761. grad_q = ggml_view_4d(ctx,
  12762. flash_grad,
  12763. src0->ne[0],
  12764. src0->ne[1],
  12765. src0->ne[2],
  12766. src0->ne[3],
  12767. nb0*src0->ne[0],
  12768. nb0*src0->ne[0]*src0->ne[1],
  12769. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12770. offset);
  12771. } break;
  12772. }
  12773. src0->grad = ggml_add_impl(ctx,
  12774. src0->grad,
  12775. grad_q,
  12776. inplace);
  12777. }
  12778. if (src1->grad) {
  12779. struct ggml_tensor * grad_k = NULL;
  12780. const size_t nb0 = flash_grad->nb[0];
  12781. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12782. switch(src1->n_dims) {
  12783. case 2:
  12784. {
  12785. grad_k = ggml_view_2d(ctx,
  12786. flash_grad,
  12787. src1->ne[0],
  12788. src1->ne[1],
  12789. nb0*src1->ne[0],
  12790. offset);
  12791. } break;
  12792. case 3:
  12793. {
  12794. grad_k = ggml_view_3d(ctx,
  12795. flash_grad,
  12796. src1->ne[0],
  12797. src1->ne[1],
  12798. src1->ne[2],
  12799. nb0*src1->ne[0],
  12800. nb0*src1->ne[0]*src1->ne[1],
  12801. offset);
  12802. } break;
  12803. case 4:
  12804. {
  12805. grad_k = ggml_view_4d(ctx,
  12806. flash_grad,
  12807. src1->ne[0],
  12808. src1->ne[1],
  12809. src1->ne[2],
  12810. src1->ne[3],
  12811. nb0*src1->ne[0],
  12812. nb0*src1->ne[0]*src1->ne[1],
  12813. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12814. offset);
  12815. } break;
  12816. }
  12817. src1->grad = ggml_add_impl(ctx,
  12818. src1->grad,
  12819. grad_k,
  12820. inplace);
  12821. }
  12822. struct ggml_tensor * opt0 = tensor->opt[0];
  12823. if (opt0->grad) {
  12824. struct ggml_tensor * grad_v = NULL;
  12825. const size_t nb0 = flash_grad->nb[0];
  12826. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12827. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12828. switch(opt0->n_dims) {
  12829. case 2:
  12830. {
  12831. grad_v = ggml_view_2d(ctx,
  12832. flash_grad,
  12833. opt0->ne[0],
  12834. opt0->ne[1],
  12835. nb0*opt0->ne[0],
  12836. offset);
  12837. } break;
  12838. case 3:
  12839. {
  12840. grad_v = ggml_view_3d(ctx,
  12841. flash_grad,
  12842. opt0->ne[0],
  12843. opt0->ne[1],
  12844. opt0->ne[2],
  12845. nb0*opt0->ne[0],
  12846. nb0*opt0->ne[0]*opt0->ne[1],
  12847. offset);
  12848. } break;
  12849. case 4:
  12850. {
  12851. grad_v = ggml_view_4d(ctx,
  12852. flash_grad,
  12853. opt0->ne[0],
  12854. opt0->ne[1],
  12855. opt0->ne[2],
  12856. opt0->ne[3],
  12857. nb0*opt0->ne[0],
  12858. nb0*opt0->ne[0]*opt0->ne[1],
  12859. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12860. offset);
  12861. } break;
  12862. }
  12863. opt0->grad = ggml_add_impl(ctx,
  12864. opt0->grad,
  12865. grad_v,
  12866. inplace);
  12867. }
  12868. } break;
  12869. case GGML_OP_FLASH_FF:
  12870. {
  12871. GGML_ASSERT(false); // not supported
  12872. } break;
  12873. case GGML_OP_FLASH_ATTN_BACK:
  12874. {
  12875. GGML_ASSERT(false); // not supported
  12876. } break;
  12877. case GGML_OP_WIN_PART:
  12878. case GGML_OP_WIN_UNPART:
  12879. case GGML_OP_MAP_UNARY:
  12880. case GGML_OP_MAP_BINARY:
  12881. case GGML_OP_MAP_CUSTOM1:
  12882. case GGML_OP_MAP_CUSTOM2:
  12883. case GGML_OP_MAP_CUSTOM3:
  12884. {
  12885. GGML_ASSERT(false); // not supported
  12886. } break;
  12887. case GGML_OP_CROSS_ENTROPY_LOSS:
  12888. {
  12889. if (src0->grad) {
  12890. src0->grad = ggml_add_impl(ctx,
  12891. src0->grad,
  12892. ggml_cross_entropy_loss_back(ctx,
  12893. src0,
  12894. src1,
  12895. tensor->grad),
  12896. inplace);
  12897. }
  12898. } break;
  12899. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12900. {
  12901. GGML_ASSERT(false); // not supported
  12902. } break;
  12903. case GGML_OP_NONE:
  12904. {
  12905. // nop
  12906. } break;
  12907. case GGML_OP_COUNT:
  12908. {
  12909. GGML_ASSERT(false);
  12910. } break;
  12911. }
  12912. }
  12913. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12914. if (node->grad == NULL) {
  12915. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12916. // it can also happen during forward pass, if the user performs computations with constants
  12917. if (node->op != GGML_OP_NONE) {
  12918. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12919. }
  12920. }
  12921. // check if already visited
  12922. for (int i = 0; i < cgraph->n_nodes; i++) {
  12923. if (cgraph->nodes[i] == node) {
  12924. return;
  12925. }
  12926. }
  12927. for (int i = 0; i < cgraph->n_leafs; i++) {
  12928. if (cgraph->leafs[i] == node) {
  12929. return;
  12930. }
  12931. }
  12932. if (node->src0) {
  12933. ggml_visit_parents(cgraph, node->src0);
  12934. }
  12935. if (node->src1) {
  12936. ggml_visit_parents(cgraph, node->src1);
  12937. }
  12938. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  12939. if (node->opt[i]) {
  12940. ggml_visit_parents(cgraph, node->opt[i]);
  12941. }
  12942. }
  12943. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12944. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12945. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12946. if (strlen(node->name) == 0) {
  12947. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12948. }
  12949. cgraph->leafs[cgraph->n_leafs] = node;
  12950. cgraph->n_leafs++;
  12951. } else {
  12952. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12953. if (strlen(node->name) == 0) {
  12954. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12955. }
  12956. cgraph->nodes[cgraph->n_nodes] = node;
  12957. cgraph->grads[cgraph->n_nodes] = node->grad;
  12958. cgraph->n_nodes++;
  12959. }
  12960. }
  12961. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12962. if (!expand) {
  12963. cgraph->n_nodes = 0;
  12964. cgraph->n_leafs = 0;
  12965. }
  12966. const int n0 = cgraph->n_nodes;
  12967. UNUSED(n0);
  12968. ggml_visit_parents(cgraph, tensor);
  12969. const int n_new = cgraph->n_nodes - n0;
  12970. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12971. if (n_new > 0) {
  12972. // the last added node should always be starting point
  12973. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12974. }
  12975. }
  12976. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12977. ggml_build_forward_impl(cgraph, tensor, true);
  12978. }
  12979. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12980. struct ggml_cgraph result = {
  12981. /*.n_nodes =*/ 0,
  12982. /*.n_leafs =*/ 0,
  12983. /*.nodes =*/ { NULL },
  12984. /*.grads =*/ { NULL },
  12985. /*.leafs =*/ { NULL },
  12986. /*.perf_runs =*/ 0,
  12987. /*.perf_cycles =*/ 0,
  12988. /*.perf_time_us =*/ 0,
  12989. };
  12990. ggml_build_forward_impl(&result, tensor, false);
  12991. return result;
  12992. }
  12993. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12994. struct ggml_cgraph result = *gf;
  12995. GGML_ASSERT(gf->n_nodes > 0);
  12996. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12997. if (keep) {
  12998. for (int i = 0; i < gf->n_nodes; i++) {
  12999. struct ggml_tensor * node = gf->nodes[i];
  13000. if (node->grad) {
  13001. node->grad = ggml_dup_tensor(ctx, node);
  13002. gf->grads[i] = node->grad;
  13003. }
  13004. }
  13005. }
  13006. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13007. struct ggml_tensor * node = gf->nodes[i];
  13008. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13009. if (node->grad) {
  13010. ggml_compute_backward(ctx, node, keep);
  13011. }
  13012. }
  13013. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13014. struct ggml_tensor * node = gf->nodes[i];
  13015. if (node->is_param) {
  13016. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13017. ggml_build_forward_impl(&result, node->grad, true);
  13018. }
  13019. }
  13020. return result;
  13021. }
  13022. //
  13023. // thread data
  13024. //
  13025. // synchronization is done via busy loops
  13026. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13027. //
  13028. #ifdef __APPLE__
  13029. //#include <os/lock.h>
  13030. //
  13031. //typedef os_unfair_lock ggml_lock_t;
  13032. //
  13033. //#define ggml_lock_init(x) UNUSED(x)
  13034. //#define ggml_lock_destroy(x) UNUSED(x)
  13035. //#define ggml_lock_lock os_unfair_lock_lock
  13036. //#define ggml_lock_unlock os_unfair_lock_unlock
  13037. //
  13038. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13039. typedef int ggml_lock_t;
  13040. #define ggml_lock_init(x) UNUSED(x)
  13041. #define ggml_lock_destroy(x) UNUSED(x)
  13042. #define ggml_lock_lock(x) UNUSED(x)
  13043. #define ggml_lock_unlock(x) UNUSED(x)
  13044. #define GGML_LOCK_INITIALIZER 0
  13045. typedef pthread_t ggml_thread_t;
  13046. #define ggml_thread_create pthread_create
  13047. #define ggml_thread_join pthread_join
  13048. #else
  13049. //typedef pthread_spinlock_t ggml_lock_t;
  13050. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13051. //#define ggml_lock_destroy pthread_spin_destroy
  13052. //#define ggml_lock_lock pthread_spin_lock
  13053. //#define ggml_lock_unlock pthread_spin_unlock
  13054. typedef int ggml_lock_t;
  13055. #define ggml_lock_init(x) UNUSED(x)
  13056. #define ggml_lock_destroy(x) UNUSED(x)
  13057. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13058. #define ggml_lock_lock(x) _mm_pause()
  13059. #else
  13060. #define ggml_lock_lock(x) UNUSED(x)
  13061. #endif
  13062. #define ggml_lock_unlock(x) UNUSED(x)
  13063. #define GGML_LOCK_INITIALIZER 0
  13064. typedef pthread_t ggml_thread_t;
  13065. #define ggml_thread_create pthread_create
  13066. #define ggml_thread_join pthread_join
  13067. #endif
  13068. // Android's libc implementation "bionic" does not support setting affinity
  13069. #if defined(__linux__) && !defined(__BIONIC__)
  13070. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13071. if (!ggml_is_numa()) {
  13072. return;
  13073. }
  13074. // run thread on node_num thread_n / (threads per node)
  13075. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13076. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13077. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13078. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13079. CPU_ZERO_S(setsize, cpus);
  13080. for (size_t i = 0; i < node->n_cpus; ++i) {
  13081. CPU_SET_S(node->cpus[i], setsize, cpus);
  13082. }
  13083. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13084. if (rv) {
  13085. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13086. strerror(rv));
  13087. }
  13088. CPU_FREE(cpus);
  13089. }
  13090. void clear_numa_thread_affinity(void) {
  13091. if (!ggml_is_numa()) {
  13092. return;
  13093. }
  13094. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13095. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13096. CPU_ZERO_S(setsize, cpus);
  13097. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13098. CPU_SET_S(i, setsize, cpus);
  13099. }
  13100. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13101. if (rv) {
  13102. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13103. strerror(rv));
  13104. }
  13105. CPU_FREE(cpus);
  13106. }
  13107. #else
  13108. // TODO: Windows etc.
  13109. // (the linux implementation may also work on BSD, someone should test)
  13110. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13111. void clear_numa_thread_affinity(void) {}
  13112. #endif
  13113. struct ggml_compute_state_shared {
  13114. const struct ggml_cgraph * cgraph;
  13115. const struct ggml_cplan * cplan;
  13116. int64_t perf_node_start_cycles;
  13117. int64_t perf_node_start_time_us;
  13118. const int n_threads;
  13119. // synchronization primitives
  13120. atomic_int n_active; // num active threads
  13121. atomic_int node_n; // active graph node
  13122. };
  13123. struct ggml_compute_state {
  13124. ggml_thread_t thrd;
  13125. int ith;
  13126. struct ggml_compute_state_shared * shared;
  13127. };
  13128. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13129. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13130. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13131. node->perf_runs++;
  13132. node->perf_cycles += cycles_cur;
  13133. node->perf_time_us += time_us_cur;
  13134. }
  13135. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13136. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13137. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13138. const struct ggml_cplan * cplan = state->shared->cplan;
  13139. const int * n_tasks_arr = cplan->n_tasks;
  13140. const int n_threads = state->shared->n_threads;
  13141. set_numa_thread_affinity(state->ith, n_threads);
  13142. int node_n = -1;
  13143. while (true) {
  13144. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13145. // all other threads are finished and spinning
  13146. // do finalize and init here so we don't have synchronize again
  13147. struct ggml_compute_params params = {
  13148. /*.type =*/ GGML_TASK_FINALIZE,
  13149. /*.ith =*/ 0,
  13150. /*.nth =*/ 0,
  13151. /*.wsize =*/ cplan->work_size,
  13152. /*.wdata =*/ cplan->work_data,
  13153. };
  13154. if (node_n != -1) {
  13155. /* FINALIZE */
  13156. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13157. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13158. params.nth = n_tasks_arr[node_n];
  13159. ggml_compute_forward(&params, node);
  13160. ggml_graph_compute_perf_stats_node(node, state->shared);
  13161. }
  13162. }
  13163. // distribute new work or execute it direct if 1T
  13164. while (++node_n < cgraph->n_nodes) {
  13165. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13166. struct ggml_tensor * node = cgraph->nodes[node_n];
  13167. const int n_tasks = n_tasks_arr[node_n];
  13168. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13169. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13170. params.nth = n_tasks;
  13171. /* INIT */
  13172. if (GGML_OP_HAS_INIT[node->op]) {
  13173. params.type = GGML_TASK_INIT;
  13174. ggml_compute_forward(&params, node);
  13175. }
  13176. if (n_tasks == 1) {
  13177. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13178. // they do something more efficient than spinning (?)
  13179. params.type = GGML_TASK_COMPUTE;
  13180. ggml_compute_forward(&params, node);
  13181. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13182. params.type = GGML_TASK_FINALIZE;
  13183. ggml_compute_forward(&params, node);
  13184. ggml_graph_compute_perf_stats_node(node, state->shared);
  13185. }
  13186. } else {
  13187. break;
  13188. }
  13189. }
  13190. atomic_store(&state->shared->n_active, n_threads);
  13191. atomic_store(&state->shared->node_n, node_n);
  13192. } else {
  13193. // wait for other threads to finish
  13194. const int last = node_n;
  13195. do {
  13196. //sched_yield();
  13197. node_n = atomic_load(&state->shared->node_n);
  13198. } while (node_n == last);
  13199. }
  13200. // check if we should stop
  13201. if (node_n >= cgraph->n_nodes) break;
  13202. /* COMPUTE */
  13203. struct ggml_tensor * node = cgraph->nodes[node_n];
  13204. const int n_tasks = n_tasks_arr[node_n];
  13205. struct ggml_compute_params params = {
  13206. /*.type =*/ GGML_TASK_COMPUTE,
  13207. /*.ith =*/ state->ith,
  13208. /*.nth =*/ n_tasks,
  13209. /*.wsize =*/ cplan->work_size,
  13210. /*.wdata =*/ cplan->work_data,
  13211. };
  13212. if (state->ith < n_tasks) {
  13213. ggml_compute_forward(&params, node);
  13214. }
  13215. }
  13216. return 0;
  13217. }
  13218. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13219. if (n_threads <= 0) {
  13220. n_threads = GGML_DEFAULT_N_THREADS;
  13221. }
  13222. size_t work_size = 0;
  13223. struct ggml_cplan cplan;
  13224. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13225. // thread scheduling for the different operations + work buffer size estimation
  13226. for (int i = 0; i < cgraph->n_nodes; i++) {
  13227. int n_tasks = 1;
  13228. struct ggml_tensor * node = cgraph->nodes[i];
  13229. switch (node->op) {
  13230. case GGML_OP_CPY:
  13231. case GGML_OP_DUP:
  13232. {
  13233. n_tasks = n_threads;
  13234. size_t cur = 0;
  13235. if (ggml_is_quantized(node->type)) {
  13236. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13237. }
  13238. work_size = MAX(work_size, cur);
  13239. } break;
  13240. case GGML_OP_ADD:
  13241. case GGML_OP_ADD1:
  13242. {
  13243. n_tasks = n_threads;
  13244. size_t cur = 0;
  13245. if (ggml_is_quantized(node->src0->type)) {
  13246. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_tasks;
  13247. }
  13248. work_size = MAX(work_size, cur);
  13249. } break;
  13250. case GGML_OP_ACC:
  13251. {
  13252. n_tasks = n_threads;
  13253. size_t cur = 0;
  13254. if (ggml_is_quantized(node->src0->type)) {
  13255. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_tasks;
  13256. }
  13257. work_size = MAX(work_size, cur);
  13258. } break;
  13259. case GGML_OP_SUB:
  13260. case GGML_OP_DIV:
  13261. case GGML_OP_SQR:
  13262. case GGML_OP_SQRT:
  13263. case GGML_OP_LOG:
  13264. case GGML_OP_SUM:
  13265. case GGML_OP_SUM_ROWS:
  13266. case GGML_OP_MEAN:
  13267. case GGML_OP_ARGMAX:
  13268. case GGML_OP_REPEAT:
  13269. case GGML_OP_REPEAT_BACK:
  13270. case GGML_OP_ABS:
  13271. case GGML_OP_SGN:
  13272. case GGML_OP_NEG:
  13273. case GGML_OP_STEP:
  13274. case GGML_OP_TANH:
  13275. case GGML_OP_ELU:
  13276. case GGML_OP_RELU:
  13277. {
  13278. n_tasks = 1;
  13279. } break;
  13280. case GGML_OP_MUL:
  13281. case GGML_OP_GELU:
  13282. case GGML_OP_GELU_QUICK:
  13283. case GGML_OP_SILU:
  13284. case GGML_OP_SILU_BACK:
  13285. case GGML_OP_NORM:
  13286. case GGML_OP_RMS_NORM:
  13287. case GGML_OP_RMS_NORM_BACK:
  13288. {
  13289. n_tasks = n_threads;
  13290. } break;
  13291. case GGML_OP_MUL_MAT:
  13292. case GGML_OP_OUT_PROD:
  13293. {
  13294. n_tasks = n_threads;
  13295. // TODO: use different scheduling for different matrix sizes
  13296. //const int nr0 = ggml_nrows(node->src0);
  13297. //const int nr1 = ggml_nrows(node->src1);
  13298. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13299. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13300. size_t cur = 0;
  13301. const enum ggml_type vec_dot_type = type_traits[node->src0->type].vec_dot_type;
  13302. #if defined(GGML_USE_CUBLAS)
  13303. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13304. n_tasks = 1; // TODO: this actually is doing nothing
  13305. // the threads are still spinning
  13306. } else
  13307. #elif defined(GGML_USE_CLBLAST)
  13308. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13309. n_tasks = 1; // TODO: this actually is doing nothing
  13310. // the threads are still spinning
  13311. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13312. } else
  13313. #endif
  13314. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13315. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13316. n_tasks = 1; // TODO: this actually is doing nothing
  13317. // the threads are still spinning
  13318. if (node->src0->type != GGML_TYPE_F32) {
  13319. // here we need memory just for single 2D matrix from src0
  13320. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  13321. }
  13322. } else
  13323. #endif
  13324. if (node->src1->type != vec_dot_type) {
  13325. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[vec_dot_type];
  13326. } else {
  13327. cur = 0;
  13328. }
  13329. work_size = MAX(work_size, cur);
  13330. } break;
  13331. case GGML_OP_SCALE:
  13332. {
  13333. n_tasks = 1;
  13334. } break;
  13335. case GGML_OP_SET:
  13336. case GGML_OP_CONT:
  13337. case GGML_OP_RESHAPE:
  13338. case GGML_OP_VIEW:
  13339. case GGML_OP_PERMUTE:
  13340. case GGML_OP_TRANSPOSE:
  13341. case GGML_OP_GET_ROWS:
  13342. case GGML_OP_GET_ROWS_BACK:
  13343. case GGML_OP_DIAG:
  13344. case GGML_OP_DIAG_MASK_ZERO:
  13345. {
  13346. n_tasks = 1;
  13347. } break;
  13348. case GGML_OP_DIAG_MASK_INF:
  13349. case GGML_OP_SOFT_MAX:
  13350. case GGML_OP_SOFT_MAX_BACK:
  13351. case GGML_OP_ROPE:
  13352. case GGML_OP_ROPE_BACK:
  13353. {
  13354. n_tasks = n_threads;
  13355. } break;
  13356. case GGML_OP_ALIBI:
  13357. {
  13358. n_tasks = 1; //TODO
  13359. } break;
  13360. case GGML_OP_CLAMP:
  13361. {
  13362. n_tasks = 1; //TODO
  13363. } break;
  13364. case GGML_OP_CONV_1D:
  13365. {
  13366. n_tasks = n_threads;
  13367. GGML_ASSERT(node->src0->ne[3] == 1);
  13368. GGML_ASSERT(node->src1->ne[2] == 1);
  13369. GGML_ASSERT(node->src1->ne[3] == 1);
  13370. size_t cur = 0;
  13371. const int nk = node->src0->ne[0];
  13372. if (node->src0->type == GGML_TYPE_F16 &&
  13373. node->src1->type == GGML_TYPE_F32) {
  13374. cur = sizeof(ggml_fp16_t)*(
  13375. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13376. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13377. );
  13378. } else if (node->src0->type == GGML_TYPE_F32 &&
  13379. node->src1->type == GGML_TYPE_F32) {
  13380. cur = sizeof(float)*(
  13381. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  13382. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  13383. );
  13384. } else {
  13385. GGML_ASSERT(false);
  13386. }
  13387. work_size = MAX(work_size, cur);
  13388. } break;
  13389. case GGML_OP_CONV_2D:
  13390. {
  13391. n_tasks = n_threads;
  13392. GGML_ASSERT(node->src1->ne[3] == 1);
  13393. const int64_t ne00 = node->src0->ne[0]; // W
  13394. const int64_t ne01 = node->src0->ne[1]; // H
  13395. const int64_t ne02 = node->src0->ne[2]; // C
  13396. const int64_t ne03 = node->src0->ne[3]; // N
  13397. const int64_t ne10 = node->src1->ne[0]; // W
  13398. const int64_t ne11 = node->src1->ne[1]; // H
  13399. const int64_t ne12 = node->src1->ne[2]; // C
  13400. const int64_t nk = ne00*ne01;
  13401. UNUSED(ne02);
  13402. UNUSED(ne03);
  13403. UNUSED(nk);
  13404. size_t cur = 0;
  13405. if (node->src0->type == GGML_TYPE_F16 &&
  13406. node->src1->type == GGML_TYPE_F32) {
  13407. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13408. } else if (node->src0->type == GGML_TYPE_F32 &&
  13409. node->src1->type == GGML_TYPE_F32) {
  13410. cur = sizeof(float)* (ne10*ne11*ne12);
  13411. } else {
  13412. GGML_ASSERT(false);
  13413. }
  13414. work_size = MAX(work_size, cur);
  13415. } break;
  13416. case GGML_OP_FLASH_ATTN:
  13417. {
  13418. n_tasks = n_threads;
  13419. size_t cur = 0;
  13420. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13421. if (node->src1->type == GGML_TYPE_F32) {
  13422. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13423. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13424. }
  13425. if (node->src1->type == GGML_TYPE_F16) {
  13426. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13427. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13428. }
  13429. work_size = MAX(work_size, cur);
  13430. } break;
  13431. case GGML_OP_FLASH_FF:
  13432. {
  13433. n_tasks = n_threads;
  13434. size_t cur = 0;
  13435. if (node->src1->type == GGML_TYPE_F32) {
  13436. cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13437. cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
  13438. }
  13439. if (node->src1->type == GGML_TYPE_F16) {
  13440. cur = sizeof(float)*node->src1->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13441. cur += sizeof(float)*node->src1->ne[1]*n_tasks; // this is overestimated by x2
  13442. }
  13443. work_size = MAX(work_size, cur);
  13444. } break;
  13445. case GGML_OP_FLASH_ATTN_BACK:
  13446. {
  13447. n_tasks = n_threads;
  13448. size_t cur = 0;
  13449. const int64_t D = node->src0->ne[0];
  13450. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  13451. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13452. if (node->src1->type == GGML_TYPE_F32) {
  13453. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13454. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13455. }
  13456. if (node->src1->type == GGML_TYPE_F16) {
  13457. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13458. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13459. }
  13460. work_size = MAX(work_size, cur);
  13461. } break;
  13462. case GGML_OP_WIN_PART:
  13463. case GGML_OP_WIN_UNPART:
  13464. case GGML_OP_MAP_UNARY:
  13465. case GGML_OP_MAP_BINARY:
  13466. case GGML_OP_MAP_CUSTOM1:
  13467. case GGML_OP_MAP_CUSTOM2:
  13468. case GGML_OP_MAP_CUSTOM3:
  13469. {
  13470. n_tasks = 1;
  13471. } break;
  13472. case GGML_OP_CROSS_ENTROPY_LOSS:
  13473. {
  13474. n_tasks = n_threads;
  13475. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src0->ne[0]*n_tasks);
  13476. work_size = MAX(work_size, cur);
  13477. } break;
  13478. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13479. {
  13480. n_tasks = n_threads;
  13481. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*n_tasks;
  13482. work_size = MAX(work_size, cur);
  13483. } break;
  13484. case GGML_OP_NONE:
  13485. {
  13486. n_tasks = 1;
  13487. } break;
  13488. case GGML_OP_COUNT:
  13489. {
  13490. GGML_ASSERT(false);
  13491. } break;
  13492. }
  13493. cplan.n_tasks[i] = n_tasks;
  13494. }
  13495. if (work_size > 0) {
  13496. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13497. }
  13498. cplan.n_threads = n_threads;
  13499. cplan.work_size = work_size;
  13500. cplan.work_data = NULL;
  13501. return cplan;
  13502. }
  13503. void ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13504. {
  13505. GGML_ASSERT(cplan);
  13506. GGML_ASSERT(cplan->n_threads > 0);
  13507. if (cplan->work_size > 0) {
  13508. GGML_ASSERT(cplan->work_data);
  13509. }
  13510. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13511. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13512. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13513. }
  13514. }
  13515. }
  13516. const int n_threads = cplan->n_threads;
  13517. struct ggml_compute_state_shared state_shared = {
  13518. /*.cgraph =*/ cgraph,
  13519. /*.cgraph_plan =*/ cplan,
  13520. /*.perf_node_start_cycles =*/ 0,
  13521. /*.perf_node_start_time_us =*/ 0,
  13522. /*.n_threads =*/ n_threads,
  13523. /*.n_active =*/ n_threads,
  13524. /*.node_n =*/ -1,
  13525. };
  13526. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13527. // create thread pool
  13528. if (n_threads > 1) {
  13529. for (int j = 1; j < n_threads; ++j) {
  13530. workers[j] = (struct ggml_compute_state) {
  13531. .thrd = 0,
  13532. .ith = j,
  13533. .shared = &state_shared,
  13534. };
  13535. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13536. GGML_ASSERT(rc == 0);
  13537. }
  13538. }
  13539. workers[0].ith = 0;
  13540. workers[0].shared = &state_shared;
  13541. const int64_t perf_start_cycles = ggml_perf_cycles();
  13542. const int64_t perf_start_time_us = ggml_perf_time_us();
  13543. // this is a work thread too
  13544. ggml_graph_compute_thread(&workers[0]);
  13545. // don't leave affinity set on the main thread
  13546. clear_numa_thread_affinity();
  13547. // join thread pool
  13548. if (n_threads > 1) {
  13549. for (int j = 1; j < n_threads; j++) {
  13550. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13551. GGML_ASSERT(rc == 0);
  13552. }
  13553. }
  13554. // performance stats (graph)
  13555. {
  13556. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13557. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13558. cgraph->perf_runs++;
  13559. cgraph->perf_cycles += perf_cycles_cur;
  13560. cgraph->perf_time_us += perf_time_us_cur;
  13561. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13562. __func__, cgraph->perf_runs,
  13563. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13564. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13565. (double) perf_time_us_cur / 1000.0,
  13566. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13567. }
  13568. }
  13569. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13570. for (int i = 0; i < cgraph->n_nodes; i++) {
  13571. struct ggml_tensor * grad = cgraph->grads[i];
  13572. if (grad) {
  13573. ggml_set_zero(grad);
  13574. }
  13575. }
  13576. }
  13577. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13578. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13579. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13580. GGML_ASSERT(buf);
  13581. cplan.work_data = buf->data;
  13582. ggml_graph_compute(cgraph, &cplan);
  13583. }
  13584. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13585. for (int i = 0; i < cgraph->n_leafs; i++) {
  13586. struct ggml_tensor * leaf = cgraph->leafs[i];
  13587. if (strcmp(leaf->name, name) == 0) {
  13588. return leaf;
  13589. }
  13590. }
  13591. for (int i = 0; i < cgraph->n_nodes; i++) {
  13592. struct ggml_tensor * node = cgraph->nodes[i];
  13593. if (strcmp(node->name, name) == 0) {
  13594. return node;
  13595. }
  13596. }
  13597. return NULL;
  13598. }
  13599. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13600. const int64_t * ne = tensor->ne;
  13601. const size_t * nb = tensor->nb;
  13602. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13603. ggml_type_name(tensor->type),
  13604. ggml_op_name (tensor->op),
  13605. tensor->n_dims,
  13606. ne[0], ne[1], ne[2], ne[3],
  13607. nb[0], nb[1], nb[2], nb[3],
  13608. tensor->data,
  13609. tensor->name);
  13610. }
  13611. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13612. const int64_t * ne = tensor->ne;
  13613. const size_t * nb = tensor->nb;
  13614. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13615. arg,
  13616. ggml_type_name(tensor->type),
  13617. ggml_op_name (tensor->op),
  13618. tensor->n_dims,
  13619. ne[0], ne[1], ne[2], ne[3],
  13620. nb[0], nb[1], nb[2], nb[3],
  13621. tensor->data,
  13622. tensor->name);
  13623. }
  13624. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13625. //assert(cgraph->work == NULL);
  13626. //assert(cgraph->work_size == 0);
  13627. uint64_t size_eval = 0;
  13628. // compute size of intermediate results
  13629. // TODO: does not take into account scratch buffers !!!!
  13630. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13631. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13632. }
  13633. // print
  13634. {
  13635. FILE * fout = stdout;
  13636. fprintf(fout, "\n");
  13637. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13638. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13639. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13640. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13641. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13642. // header
  13643. fprintf(fout, "\n");
  13644. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13645. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13646. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13647. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13648. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13649. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  13650. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  13651. }
  13652. // header
  13653. fprintf(fout, "\n");
  13654. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13655. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13656. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13657. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13658. if (cgraph->nodes[i]->src0) {
  13659. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  13660. }
  13661. if (cgraph->nodes[i]->src1) {
  13662. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  13663. }
  13664. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13665. if (cgraph->nodes[i]->opt[j]) {
  13666. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  13667. }
  13668. }
  13669. fprintf(fout, "\n");
  13670. }
  13671. fprintf(fout, "\n");
  13672. }
  13673. // write binary data
  13674. {
  13675. FILE * fout = fopen(fname, "wb");
  13676. if (!fout) {
  13677. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13678. return;
  13679. }
  13680. // header
  13681. {
  13682. const uint32_t magic = GGML_FILE_MAGIC;
  13683. const uint32_t version = GGML_FILE_VERSION;
  13684. const uint32_t n_leafs = cgraph->n_leafs;
  13685. const uint32_t nodes = cgraph->n_nodes;
  13686. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13687. fwrite(&version, sizeof(uint32_t), 1, fout);
  13688. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13689. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13690. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13691. }
  13692. // leafs
  13693. {
  13694. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13695. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13696. const uint32_t type = tensor->type;
  13697. const uint32_t op = tensor->op;
  13698. const uint32_t n_dims = tensor->n_dims;
  13699. fwrite(&type, sizeof(uint32_t), 1, fout);
  13700. fwrite(&op, sizeof(uint32_t), 1, fout);
  13701. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13702. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13703. const uint64_t ne = tensor->ne[j];
  13704. const uint64_t nb = tensor->nb[j];
  13705. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13706. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13707. }
  13708. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13709. // dump the data
  13710. // TODO: pad this to 32 byte boundary
  13711. {
  13712. const size_t size = ggml_nbytes(tensor);
  13713. fwrite(tensor->data, sizeof(char), size, fout);
  13714. }
  13715. }
  13716. }
  13717. // nodes
  13718. {
  13719. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13720. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13721. const uint32_t type = tensor->type;
  13722. const uint32_t op = tensor->op;
  13723. const uint32_t n_dims = tensor->n_dims;
  13724. fwrite(&type, sizeof(uint32_t), 1, fout);
  13725. fwrite(&op, sizeof(uint32_t), 1, fout);
  13726. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13727. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13728. const uint64_t ne = tensor->ne[j];
  13729. const uint64_t nb = tensor->nb[j];
  13730. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13731. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13732. }
  13733. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13734. // output the op arguments
  13735. {
  13736. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13737. args[0] = tensor->src0;
  13738. args[1] = tensor->src1;
  13739. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13740. args[2 + j] = tensor->opt[j];
  13741. }
  13742. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13743. if (args[j]) {
  13744. int32_t idx = -1;
  13745. // check if leaf
  13746. {
  13747. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13748. if (args[j] == cgraph->leafs[k]) {
  13749. idx = k;
  13750. break;
  13751. }
  13752. }
  13753. }
  13754. // check if node
  13755. if (idx == -1) {
  13756. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13757. if (args[j] == cgraph->nodes[k]) {
  13758. idx = GGML_MAX_NODES + k;
  13759. break;
  13760. }
  13761. }
  13762. }
  13763. if (idx == -1) {
  13764. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13765. return;
  13766. }
  13767. fwrite(&idx, sizeof(int32_t), 1, fout);
  13768. } else {
  13769. const int32_t nul = -1;
  13770. fwrite(&nul, sizeof(int32_t), 1, fout);
  13771. }
  13772. }
  13773. }
  13774. }
  13775. }
  13776. fclose(fout);
  13777. }
  13778. }
  13779. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13780. assert(*ctx_data == NULL);
  13781. assert(*ctx_eval == NULL);
  13782. struct ggml_cgraph result = { 0 };
  13783. struct ggml_tensor * data = NULL;
  13784. // read file into data
  13785. {
  13786. FILE * fin = fopen(fname, "rb");
  13787. if (!fin) {
  13788. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13789. return result;
  13790. }
  13791. size_t fsize = 0;
  13792. fseek(fin, 0, SEEK_END);
  13793. fsize = ftell(fin);
  13794. fseek(fin, 0, SEEK_SET);
  13795. // create the data context
  13796. {
  13797. const size_t overhead = 1*ggml_tensor_overhead();
  13798. struct ggml_init_params params = {
  13799. .mem_size = fsize + overhead,
  13800. .mem_buffer = NULL,
  13801. .no_alloc = false,
  13802. };
  13803. *ctx_data = ggml_init(params);
  13804. if (!*ctx_data) {
  13805. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13806. fclose(fin);
  13807. return result;
  13808. }
  13809. }
  13810. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13811. {
  13812. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13813. if (ret != fsize) {
  13814. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13815. fclose(fin);
  13816. return result;
  13817. }
  13818. }
  13819. fclose(fin);
  13820. }
  13821. // populate result
  13822. {
  13823. char * ptr = (char *) data->data;
  13824. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13825. if (magic != GGML_FILE_MAGIC) {
  13826. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13827. return result;
  13828. }
  13829. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13830. if (version != GGML_FILE_VERSION) {
  13831. fprintf(stderr, "%s: invalid version number\n", __func__);
  13832. return result;
  13833. }
  13834. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13835. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13836. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13837. result.n_leafs = n_leafs;
  13838. result.n_nodes = n_nodes;
  13839. // create the data context
  13840. {
  13841. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13842. struct ggml_init_params params = {
  13843. .mem_size = size_eval + overhead,
  13844. .mem_buffer = NULL,
  13845. .no_alloc = true,
  13846. };
  13847. *ctx_eval = ggml_init(params);
  13848. if (!*ctx_eval) {
  13849. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13850. return result;
  13851. }
  13852. }
  13853. // leafs
  13854. {
  13855. uint32_t type;
  13856. uint32_t op;
  13857. uint32_t n_dims;
  13858. for (uint32_t i = 0; i < n_leafs; ++i) {
  13859. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13860. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13861. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13862. int64_t ne[GGML_MAX_DIMS];
  13863. size_t nb[GGML_MAX_DIMS];
  13864. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13865. uint64_t ne_cur;
  13866. uint64_t nb_cur;
  13867. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13868. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13869. ne[j] = ne_cur;
  13870. nb[j] = nb_cur;
  13871. }
  13872. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13873. tensor->op = (enum ggml_op) op;
  13874. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13875. tensor->data = (void *) ptr;
  13876. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13877. tensor->nb[j] = nb[j];
  13878. }
  13879. result.leafs[i] = tensor;
  13880. ptr += ggml_nbytes(tensor);
  13881. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13882. }
  13883. }
  13884. ggml_set_no_alloc(*ctx_eval, false);
  13885. // nodes
  13886. {
  13887. uint32_t type;
  13888. uint32_t op;
  13889. uint32_t n_dims;
  13890. for (uint32_t i = 0; i < n_nodes; ++i) {
  13891. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13892. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13893. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13894. enum ggml_op eop = (enum ggml_op) op;
  13895. int64_t ne[GGML_MAX_DIMS];
  13896. size_t nb[GGML_MAX_DIMS];
  13897. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13898. uint64_t ne_cur;
  13899. uint64_t nb_cur;
  13900. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13901. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13902. ne[j] = ne_cur;
  13903. nb[j] = nb_cur;
  13904. }
  13905. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13906. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  13907. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  13908. // parse args
  13909. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  13910. const int32_t arg_idx = ptr_arg_idx[j];
  13911. if (arg_idx == -1) {
  13912. continue;
  13913. }
  13914. if (arg_idx < GGML_MAX_NODES) {
  13915. args[j] = result.leafs[arg_idx];
  13916. } else {
  13917. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13918. }
  13919. }
  13920. // create the tensor
  13921. // "view" operations are handled differently
  13922. // TODO: handle inplace ops - currently a copy is always made
  13923. struct ggml_tensor * tensor = NULL;
  13924. switch (eop) {
  13925. // TODO: implement other view ops
  13926. case GGML_OP_RESHAPE:
  13927. {
  13928. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13929. } break;
  13930. case GGML_OP_VIEW:
  13931. {
  13932. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13933. uint64_t offs;
  13934. memcpy(&offs, args[2]->data, sizeof(offs));
  13935. tensor->data = ((char *) tensor->data) + offs;
  13936. } break;
  13937. case GGML_OP_TRANSPOSE:
  13938. {
  13939. tensor = ggml_transpose(*ctx_eval, args[0]);
  13940. } break;
  13941. case GGML_OP_PERMUTE:
  13942. {
  13943. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13944. } break;
  13945. default:
  13946. {
  13947. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13948. tensor->op = eop;
  13949. } break;
  13950. }
  13951. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13952. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13953. tensor->nb[j] = nb[j];
  13954. }
  13955. tensor->src0 = args[0];
  13956. tensor->src1 = args[1];
  13957. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  13958. tensor->opt[j] = args[2 + j];
  13959. }
  13960. result.nodes[i] = tensor;
  13961. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13962. }
  13963. }
  13964. }
  13965. return result;
  13966. }
  13967. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13968. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13969. GGML_PRINT("=== GRAPH ===\n");
  13970. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13971. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13972. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13973. for (int i = 0; i < cgraph->n_nodes; i++) {
  13974. struct ggml_tensor * node = cgraph->nodes[i];
  13975. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13976. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13977. i,
  13978. node->ne[0], node->ne[1], node->ne[2],
  13979. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13980. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13981. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13982. (double) node->perf_time_us / 1000.0,
  13983. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13984. }
  13985. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13986. for (int i = 0; i < cgraph->n_leafs; i++) {
  13987. struct ggml_tensor * node = cgraph->leafs[i];
  13988. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13989. i,
  13990. node->ne[0], node->ne[1],
  13991. GGML_OP_NAME[node->op]);
  13992. }
  13993. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13994. if (perf_total_per_op_us[i] == 0) {
  13995. continue;
  13996. }
  13997. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  13998. }
  13999. GGML_PRINT("========================================\n");
  14000. }
  14001. // check if node is part of the graph
  14002. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14003. if (cgraph == NULL) {
  14004. return true;
  14005. }
  14006. for (int i = 0; i < cgraph->n_nodes; i++) {
  14007. if (cgraph->nodes[i] == node) {
  14008. return true;
  14009. }
  14010. }
  14011. return false;
  14012. }
  14013. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14014. for (int i = 0; i < cgraph->n_nodes; i++) {
  14015. struct ggml_tensor * parent = cgraph->nodes[i];
  14016. if (parent->grad == node) {
  14017. return parent;
  14018. }
  14019. }
  14020. return NULL;
  14021. }
  14022. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14023. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14024. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14025. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14026. gparent0 ? (void *) gparent0 : (void *) parent,
  14027. gparent0 ? "g" : "x",
  14028. gparent ? (void *) gparent : (void *) node,
  14029. gparent ? "g" : "x",
  14030. gparent ? "empty" : "vee",
  14031. gparent ? "dashed" : "solid",
  14032. label);
  14033. }
  14034. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14035. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14036. (void *) parent, "x",
  14037. (void *) node, "x",
  14038. label);
  14039. }
  14040. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14041. char color[16];
  14042. FILE * fp = fopen(filename, "w");
  14043. GGML_ASSERT(fp);
  14044. fprintf(fp, "digraph G {\n");
  14045. fprintf(fp, " newrank = true;\n");
  14046. fprintf(fp, " rankdir = LR;\n");
  14047. for (int i = 0; i < gb->n_nodes; i++) {
  14048. struct ggml_tensor * node = gb->nodes[i];
  14049. if (ggml_graph_get_parent(gb, node) != NULL) {
  14050. continue;
  14051. }
  14052. if (node->is_param) {
  14053. snprintf(color, sizeof(color), "yellow");
  14054. } else if (node->grad) {
  14055. if (ggml_graph_find(gf, node)) {
  14056. snprintf(color, sizeof(color), "green");
  14057. } else {
  14058. snprintf(color, sizeof(color), "lightblue");
  14059. }
  14060. } else {
  14061. snprintf(color, sizeof(color), "white");
  14062. }
  14063. fprintf(fp, " \"%p\" [ "
  14064. "style = filled; fillcolor = %s; shape = record; "
  14065. "label=\"",
  14066. (void *) node, color);
  14067. if (strlen(node->name) > 0) {
  14068. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14069. } else {
  14070. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14071. }
  14072. if (node->n_dims == 2) {
  14073. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14074. } else {
  14075. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14076. }
  14077. if (node->grad) {
  14078. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14079. } else {
  14080. fprintf(fp, "\"; ]\n");
  14081. }
  14082. }
  14083. for (int i = 0; i < gb->n_leafs; i++) {
  14084. struct ggml_tensor * node = gb->leafs[i];
  14085. snprintf(color, sizeof(color), "pink");
  14086. fprintf(fp, " \"%p\" [ "
  14087. "style = filled; fillcolor = %s; shape = record; "
  14088. "label=\"<x>",
  14089. (void *) node, color);
  14090. if (strlen(node->name) > 0) {
  14091. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14092. } else {
  14093. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14094. }
  14095. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14096. if (ggml_nelements(node) < 5) {
  14097. fprintf(fp, " | (");
  14098. for (int j = 0; j < ggml_nelements(node); j++) {
  14099. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14100. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14101. }
  14102. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14103. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14104. }
  14105. else {
  14106. fprintf(fp, "#");
  14107. }
  14108. if (j < ggml_nelements(node) - 1) {
  14109. fprintf(fp, ", ");
  14110. }
  14111. }
  14112. fprintf(fp, ")");
  14113. }
  14114. fprintf(fp, "\"; ]\n");
  14115. }
  14116. for (int i = 0; i < gb->n_nodes; i++) {
  14117. struct ggml_tensor * node = gb->nodes[i];
  14118. if (node->src0) {
  14119. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14120. }
  14121. if (node->src1) {
  14122. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14123. }
  14124. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14125. if (node->opt[j]) {
  14126. char label[16];
  14127. snprintf(label, sizeof(label), "opt %d", j);
  14128. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14129. }
  14130. }
  14131. }
  14132. for (int i = 0; i < gb->n_leafs; i++) {
  14133. struct ggml_tensor * node = gb->leafs[i];
  14134. if (node->src0) {
  14135. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14136. }
  14137. if (node->src1) {
  14138. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14139. }
  14140. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14141. if (node->opt[j]) {
  14142. char label[16];
  14143. snprintf(label, sizeof(label), "opt %d", j);
  14144. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14145. }
  14146. }
  14147. }
  14148. fprintf(fp, "}\n");
  14149. fclose(fp);
  14150. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14151. }
  14152. ////////////////////////////////////////////////////////////////////////////////
  14153. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14154. int i = 0;
  14155. for (int p = 0; p < np; ++p) {
  14156. const int64_t ne = ggml_nelements(ps[p]) ;
  14157. // TODO: add function to set tensor from array
  14158. for (int64_t j = 0; j < ne; ++j) {
  14159. ggml_set_f32_1d(ps[p], j, x[i++]);
  14160. }
  14161. }
  14162. }
  14163. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14164. int i = 0;
  14165. for (int p = 0; p < np; ++p) {
  14166. const int64_t ne = ggml_nelements(ps[p]) ;
  14167. // TODO: add function to get all elements at once
  14168. for (int64_t j = 0; j < ne; ++j) {
  14169. x[i++] = ggml_get_f32_1d(ps[p], j);
  14170. }
  14171. }
  14172. }
  14173. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14174. int i = 0;
  14175. for (int p = 0; p < np; ++p) {
  14176. const int64_t ne = ggml_nelements(ps[p]) ;
  14177. // TODO: add function to get all elements at once
  14178. for (int64_t j = 0; j < ne; ++j) {
  14179. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14180. }
  14181. }
  14182. }
  14183. //
  14184. // ADAM
  14185. //
  14186. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14187. //
  14188. static enum ggml_opt_result ggml_opt_adam(
  14189. struct ggml_context * ctx,
  14190. struct ggml_opt_context * opt,
  14191. struct ggml_opt_params params,
  14192. struct ggml_tensor * f,
  14193. struct ggml_cgraph * gf,
  14194. struct ggml_cgraph * gb) {
  14195. GGML_ASSERT(ggml_is_scalar(f));
  14196. // these will store the parameters we want to optimize
  14197. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14198. int np = 0;
  14199. int nx = 0;
  14200. for (int i = 0; i < gf->n_nodes; ++i) {
  14201. if (gf->nodes[i]->is_param) {
  14202. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14203. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14204. ps[np++] = gf->nodes[i];
  14205. nx += ggml_nelements(gf->nodes[i]);
  14206. }
  14207. }
  14208. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14209. int iter = opt->iter;
  14210. ggml_opt_init(opt->ctx, opt, params, nx);
  14211. opt->iter = iter;
  14212. }
  14213. // constants
  14214. const float sched = params.adam.sched;
  14215. const float decay = params.adam.decay * sched;
  14216. const float alpha = params.adam.alpha * sched;
  14217. const float beta1 = params.adam.beta1;
  14218. const float beta2 = params.adam.beta2;
  14219. const float eps = params.adam.eps;
  14220. float * x = opt->adam.x->data; // view of the parameters
  14221. float * g1 = opt->adam.g1->data; // gradient
  14222. float * g2 = opt->adam.g2->data; // gradient squared
  14223. float * m = opt->adam.m->data; // first moment
  14224. float * v = opt->adam.v->data; // second moment
  14225. float * mh = opt->adam.mh->data; // first moment hat
  14226. float * vh = opt->adam.vh->data; // second moment hat
  14227. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14228. // update view
  14229. ggml_opt_get_params(np, ps, x);
  14230. // compute the function value
  14231. ggml_graph_reset (gf);
  14232. ggml_set_f32 (f->grad, 1.0f);
  14233. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14234. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14235. opt->adam.fx_best = opt->adam.fx_prev;
  14236. if (pf) {
  14237. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14238. }
  14239. // initialize
  14240. if (opt->just_initialized) {
  14241. opt->adam.n_no_improvement = 0;
  14242. opt->just_initialized = false;
  14243. }
  14244. float * fx_best = &opt->adam.fx_best;
  14245. float * fx_prev = &opt->adam.fx_prev;
  14246. int * n_no_improvement = &opt->adam.n_no_improvement;
  14247. int iter0 = opt->iter;
  14248. // run the optimizer
  14249. for (int t = 0; t < params.adam.n_iter; ++t) {
  14250. opt->iter = iter0 + t + 1;
  14251. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14252. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14253. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14254. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14255. for (int i = 0; i < np; ++i) {
  14256. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14257. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14258. }
  14259. const int64_t t_start_wall = ggml_time_us();
  14260. const int64_t t_start_cpu = ggml_cycles();
  14261. UNUSED(t_start_wall);
  14262. UNUSED(t_start_cpu);
  14263. {
  14264. // update the gradient
  14265. ggml_opt_get_grad(np, ps, g1);
  14266. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14267. ggml_vec_scale_f32(nx, m, beta1);
  14268. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14269. // g2 = g1^2
  14270. ggml_vec_sqr_f32 (nx, g2, g1);
  14271. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14272. ggml_vec_scale_f32(nx, v, beta2);
  14273. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14274. // m^hat = m_t / (1 - beta1^t)
  14275. // v^hat = v_t / (1 - beta2^t)
  14276. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14277. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14278. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14279. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14280. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14281. ggml_vec_cpy_f32 (nx, mh, m);
  14282. ggml_vec_cpy_f32 (nx, vh, v);
  14283. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14284. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14285. ggml_vec_sqrt_f32 (nx, vh, vh);
  14286. ggml_vec_acc1_f32 (nx, vh, eps);
  14287. ggml_vec_div_f32 (nx, mh, mh, vh);
  14288. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14289. ggml_vec_sub_f32 (nx, x, x, mh);
  14290. // update the parameters
  14291. ggml_opt_set_params(np, ps, x);
  14292. }
  14293. ggml_graph_reset (gf);
  14294. ggml_set_f32 (f->grad, 1.0f);
  14295. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14296. const float fx = ggml_get_f32_1d(f, 0);
  14297. // check convergence
  14298. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14299. GGML_PRINT_DEBUG("converged\n");
  14300. return GGML_OPT_OK;
  14301. }
  14302. // delta-based convergence test
  14303. if (pf != NULL) {
  14304. // need at least params.past iterations to start checking for convergence
  14305. if (params.past <= iter0 + t) {
  14306. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14307. if (fabsf(rate) < params.delta) {
  14308. return GGML_OPT_OK;
  14309. }
  14310. }
  14311. pf[(iter0 + t)%params.past] = fx;
  14312. }
  14313. // check for improvement
  14314. if (params.max_no_improvement > 0) {
  14315. if (fx_best[0] > fx) {
  14316. fx_best[0] = fx;
  14317. n_no_improvement[0] = 0;
  14318. } else {
  14319. ++n_no_improvement[0];
  14320. if (n_no_improvement[0] >= params.max_no_improvement) {
  14321. return GGML_OPT_OK;
  14322. }
  14323. }
  14324. }
  14325. fx_prev[0] = fx;
  14326. {
  14327. const int64_t t_end_cpu = ggml_cycles();
  14328. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14329. UNUSED(t_end_cpu);
  14330. const int64_t t_end_wall = ggml_time_us();
  14331. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14332. UNUSED(t_end_wall);
  14333. }
  14334. }
  14335. return GGML_OPT_DID_NOT_CONVERGE;
  14336. }
  14337. //
  14338. // L-BFGS
  14339. //
  14340. // the L-BFGS implementation below is based on the following implementation:
  14341. //
  14342. // https://github.com/chokkan/liblbfgs
  14343. //
  14344. struct ggml_lbfgs_iteration_data {
  14345. float alpha;
  14346. float ys;
  14347. float * s;
  14348. float * y;
  14349. };
  14350. static enum ggml_opt_result linesearch_backtracking(
  14351. struct ggml_context * ctx,
  14352. const struct ggml_opt_params * params,
  14353. int nx,
  14354. float * x,
  14355. float * fx,
  14356. float * g,
  14357. float * d,
  14358. float * step,
  14359. const float * xp,
  14360. struct ggml_tensor * f,
  14361. struct ggml_cgraph * gf,
  14362. struct ggml_cgraph * gb,
  14363. const int np,
  14364. struct ggml_tensor * ps[]) {
  14365. int count = 0;
  14366. float width = 0.0f;
  14367. float dg = 0.0f;
  14368. float finit = 0.0f;
  14369. float dginit = 0.0f;
  14370. float dgtest = 0.0f;
  14371. const float dec = 0.5f;
  14372. const float inc = 2.1f;
  14373. if (*step <= 0.f) {
  14374. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14375. }
  14376. // compute the initial gradient in the search direction
  14377. ggml_vec_dot_f32(nx, &dginit, g, d);
  14378. // make sure that d points to a descent direction
  14379. if (0 < dginit) {
  14380. return GGML_LINESEARCH_FAIL;
  14381. }
  14382. // initialize local variables
  14383. finit = *fx;
  14384. dgtest = params->lbfgs.ftol*dginit;
  14385. while (true) {
  14386. ggml_vec_cpy_f32(nx, x, xp);
  14387. ggml_vec_mad_f32(nx, x, d, *step);
  14388. // evaluate the function and gradient values
  14389. {
  14390. ggml_opt_set_params(np, ps, x);
  14391. ggml_graph_reset (gf);
  14392. ggml_set_f32 (f->grad, 1.0f);
  14393. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14394. ggml_opt_get_grad(np, ps, g);
  14395. *fx = ggml_get_f32_1d(f, 0);
  14396. }
  14397. ++count;
  14398. if (*fx > finit + (*step)*dgtest) {
  14399. width = dec;
  14400. } else {
  14401. // Armijo condition is satisfied
  14402. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14403. return count;
  14404. }
  14405. ggml_vec_dot_f32(nx, &dg, g, d);
  14406. // check the Wolfe condition
  14407. if (dg < params->lbfgs.wolfe * dginit) {
  14408. width = inc;
  14409. } else {
  14410. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14411. // regular Wolfe conditions
  14412. return count;
  14413. }
  14414. if(dg > -params->lbfgs.wolfe*dginit) {
  14415. width = dec;
  14416. } else {
  14417. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14418. return count;
  14419. }
  14420. return count;
  14421. }
  14422. }
  14423. if (*step < params->lbfgs.min_step) {
  14424. return GGML_LINESEARCH_MINIMUM_STEP;
  14425. }
  14426. if (*step > params->lbfgs.max_step) {
  14427. return GGML_LINESEARCH_MAXIMUM_STEP;
  14428. }
  14429. if (params->lbfgs.max_linesearch <= count) {
  14430. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14431. }
  14432. (*step) *= width;
  14433. }
  14434. return GGML_LINESEARCH_FAIL;
  14435. }
  14436. static enum ggml_opt_result ggml_opt_lbfgs(
  14437. struct ggml_context * ctx,
  14438. struct ggml_opt_context * opt,
  14439. struct ggml_opt_params params,
  14440. struct ggml_tensor * f,
  14441. struct ggml_cgraph * gf,
  14442. struct ggml_cgraph * gb) {
  14443. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14444. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14445. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14446. return GGML_OPT_INVALID_WOLFE;
  14447. }
  14448. }
  14449. const int m = params.lbfgs.m;
  14450. // these will store the parameters we want to optimize
  14451. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14452. int np = 0;
  14453. int nx = 0;
  14454. for (int i = 0; i < gf->n_nodes; ++i) {
  14455. if (gf->nodes[i]->is_param) {
  14456. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14457. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14458. ps[np++] = gf->nodes[i];
  14459. nx += ggml_nelements(gf->nodes[i]);
  14460. }
  14461. }
  14462. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14463. int iter = opt->iter;
  14464. ggml_opt_init(ctx, opt, params, nx);
  14465. opt->iter = iter;
  14466. }
  14467. float * x = opt->lbfgs.x->data; // current parameters
  14468. float * xp = opt->lbfgs.xp->data; // previous parameters
  14469. float * g = opt->lbfgs.g->data; // current gradient
  14470. float * gp = opt->lbfgs.gp->data; // previous gradient
  14471. float * d = opt->lbfgs.d->data; // search direction
  14472. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14473. float fx = 0.0f; // cost function value
  14474. float xnorm = 0.0f; // ||x||
  14475. float gnorm = 0.0f; // ||g||
  14476. // initialize x from the graph nodes
  14477. ggml_opt_get_params(np, ps, x);
  14478. // the L-BFGS memory
  14479. float * lm_alpha = opt->lbfgs.lmal->data;
  14480. float * lm_ys = opt->lbfgs.lmys->data;
  14481. float * lm_s = opt->lbfgs.lms->data;
  14482. float * lm_y = opt->lbfgs.lmy->data;
  14483. // evaluate the function value and its gradient
  14484. {
  14485. ggml_opt_set_params(np, ps, x);
  14486. ggml_graph_reset (gf);
  14487. ggml_set_f32 (f->grad, 1.0f);
  14488. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14489. ggml_opt_get_grad(np, ps, g);
  14490. fx = ggml_get_f32_1d(f, 0);
  14491. }
  14492. // search direction = -gradient
  14493. ggml_vec_neg_f32(nx, d, g);
  14494. // ||x||, ||g||
  14495. ggml_vec_norm_f32(nx, &xnorm, x);
  14496. ggml_vec_norm_f32(nx, &gnorm, g);
  14497. if (xnorm < 1.0f) {
  14498. xnorm = 1.0f;
  14499. }
  14500. // already optimized
  14501. if (gnorm/xnorm <= params.lbfgs.eps) {
  14502. return GGML_OPT_OK;
  14503. }
  14504. if (opt->just_initialized) {
  14505. if (pf) {
  14506. pf[0] = fx;
  14507. }
  14508. opt->lbfgs.fx_best = fx;
  14509. // initial step
  14510. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14511. opt->lbfgs.j = 0;
  14512. opt->lbfgs.k = 1;
  14513. opt->lbfgs.end = 0;
  14514. opt->lbfgs.n_no_improvement = 0;
  14515. opt->just_initialized = false;
  14516. }
  14517. float * fx_best = &opt->lbfgs.fx_best;
  14518. float * step = &opt->lbfgs.step;
  14519. int * j = &opt->lbfgs.j;
  14520. int * k = &opt->lbfgs.k;
  14521. int * end = &opt->lbfgs.end;
  14522. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14523. int ls = 0;
  14524. int bound = 0;
  14525. float ys = 0.0f;
  14526. float yy = 0.0f;
  14527. float beta = 0.0f;
  14528. int it = 0;
  14529. while (true) {
  14530. // store the current position and gradient vectors
  14531. ggml_vec_cpy_f32(nx, xp, x);
  14532. ggml_vec_cpy_f32(nx, gp, g);
  14533. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14534. if (ls < 0) {
  14535. // linesearch failed - go back to the previous point and return
  14536. ggml_vec_cpy_f32(nx, x, xp);
  14537. ggml_vec_cpy_f32(nx, g, gp);
  14538. return ls;
  14539. }
  14540. ggml_vec_norm_f32(nx, &xnorm, x);
  14541. ggml_vec_norm_f32(nx, &gnorm, g);
  14542. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14543. if (xnorm < 1.0f) {
  14544. xnorm = 1.0f;
  14545. }
  14546. if (gnorm/xnorm <= params.lbfgs.eps) {
  14547. // converged
  14548. return GGML_OPT_OK;
  14549. }
  14550. // delta-based convergence test
  14551. if (pf != NULL) {
  14552. // need at least params.past iterations to start checking for convergence
  14553. if (params.past <= k[0]) {
  14554. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14555. if (fabsf(rate) < params.delta) {
  14556. return GGML_OPT_OK;
  14557. }
  14558. }
  14559. pf[k[0]%params.past] = fx;
  14560. }
  14561. // check for improvement
  14562. if (params.max_no_improvement > 0) {
  14563. if (fx < fx_best[0]) {
  14564. fx_best[0] = fx;
  14565. n_no_improvement[0] = 0;
  14566. } else {
  14567. n_no_improvement[0]++;
  14568. if (n_no_improvement[0] >= params.max_no_improvement) {
  14569. return GGML_OPT_OK;
  14570. }
  14571. }
  14572. }
  14573. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14574. // reached the maximum number of iterations
  14575. return GGML_OPT_DID_NOT_CONVERGE;
  14576. }
  14577. // update vectors s and y:
  14578. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14579. // y_{k+1} = g_{k+1} - g_{k}.
  14580. //
  14581. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14582. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14583. // compute scalars ys and yy:
  14584. // ys = y^t \cdot s -> 1 / \rho.
  14585. // yy = y^t \cdot y.
  14586. //
  14587. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14588. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14589. lm_ys[end[0]] = ys;
  14590. // find new search direction
  14591. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14592. bound = (m <= k[0]) ? m : k[0];
  14593. k[0]++;
  14594. it++;
  14595. end[0] = (end[0] + 1)%m;
  14596. // initialize search direction with -g
  14597. ggml_vec_neg_f32(nx, d, g);
  14598. j[0] = end[0];
  14599. for (int i = 0; i < bound; ++i) {
  14600. j[0] = (j[0] + m - 1) % m;
  14601. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14602. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14603. lm_alpha[j[0]] /= lm_ys[j[0]];
  14604. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14605. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14606. }
  14607. ggml_vec_scale_f32(nx, d, ys/yy);
  14608. for (int i = 0; i < bound; ++i) {
  14609. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14610. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14611. beta /= lm_ys[j[0]];
  14612. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14613. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14614. j[0] = (j[0] + 1)%m;
  14615. }
  14616. step[0] = 1.0;
  14617. }
  14618. return GGML_OPT_DID_NOT_CONVERGE;
  14619. }
  14620. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14621. struct ggml_opt_params result;
  14622. switch (type) {
  14623. case GGML_OPT_ADAM:
  14624. {
  14625. result = (struct ggml_opt_params) {
  14626. .type = GGML_OPT_ADAM,
  14627. .n_threads = 1,
  14628. .past = 0,
  14629. .delta = 1e-5f,
  14630. .max_no_improvement = 100,
  14631. .print_forward_graph = true,
  14632. .print_backward_graph = true,
  14633. .adam = {
  14634. .n_iter = 10000,
  14635. .sched = 1.000f,
  14636. .decay = 0.001f,
  14637. .alpha = 0.001f,
  14638. .beta1 = 0.9f,
  14639. .beta2 = 0.999f,
  14640. .eps = 1e-8f,
  14641. .eps_f = 1e-5f,
  14642. .eps_g = 1e-3f,
  14643. },
  14644. };
  14645. } break;
  14646. case GGML_OPT_LBFGS:
  14647. {
  14648. result = (struct ggml_opt_params) {
  14649. .type = GGML_OPT_LBFGS,
  14650. .n_threads = 1,
  14651. .past = 0,
  14652. .delta = 1e-5f,
  14653. .max_no_improvement = 0,
  14654. .print_forward_graph = true,
  14655. .print_backward_graph = true,
  14656. .lbfgs = {
  14657. .m = 6,
  14658. .n_iter = 100,
  14659. .max_linesearch = 20,
  14660. .eps = 1e-5f,
  14661. .ftol = 1e-4f,
  14662. .wolfe = 0.9f,
  14663. .min_step = 1e-20f,
  14664. .max_step = 1e+20f,
  14665. .linesearch = GGML_LINESEARCH_DEFAULT,
  14666. },
  14667. };
  14668. } break;
  14669. }
  14670. return result;
  14671. }
  14672. GGML_API void ggml_opt_init(
  14673. struct ggml_context * ctx,
  14674. struct ggml_opt_context * opt,
  14675. struct ggml_opt_params params,
  14676. int64_t nx) {
  14677. opt->ctx = ctx;
  14678. opt->params = params;
  14679. opt->iter = 0;
  14680. opt->nx = nx;
  14681. opt->just_initialized = true;
  14682. switch (opt->params.type) {
  14683. case GGML_OPT_ADAM:
  14684. {
  14685. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14686. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14687. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14688. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14689. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14690. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14691. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14692. opt->adam.pf = params.past > 0
  14693. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14694. : NULL;
  14695. ggml_set_zero(opt->adam.x);
  14696. ggml_set_zero(opt->adam.g1);
  14697. ggml_set_zero(opt->adam.g2);
  14698. ggml_set_zero(opt->adam.m);
  14699. ggml_set_zero(opt->adam.v);
  14700. ggml_set_zero(opt->adam.mh);
  14701. ggml_set_zero(opt->adam.vh);
  14702. if (opt->adam.pf) {
  14703. ggml_set_zero(opt->adam.pf);
  14704. }
  14705. } break;
  14706. case GGML_OPT_LBFGS:
  14707. {
  14708. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14709. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14710. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14711. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14712. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14713. opt->lbfgs.pf = params.past > 0
  14714. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14715. : NULL;
  14716. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14717. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14718. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14719. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14720. ggml_set_zero(opt->lbfgs.x);
  14721. ggml_set_zero(opt->lbfgs.xp);
  14722. ggml_set_zero(opt->lbfgs.g);
  14723. ggml_set_zero(opt->lbfgs.gp);
  14724. ggml_set_zero(opt->lbfgs.d);
  14725. if (opt->lbfgs.pf) {
  14726. ggml_set_zero(opt->lbfgs.pf);
  14727. }
  14728. ggml_set_zero(opt->lbfgs.lmal);
  14729. ggml_set_zero(opt->lbfgs.lmys);
  14730. ggml_set_zero(opt->lbfgs.lms);
  14731. ggml_set_zero(opt->lbfgs.lmy);
  14732. } break;
  14733. }
  14734. }
  14735. enum ggml_opt_result ggml_opt(
  14736. struct ggml_context * ctx,
  14737. struct ggml_opt_params params,
  14738. struct ggml_tensor * f) {
  14739. bool free_ctx = false;
  14740. if (ctx == NULL) {
  14741. struct ggml_init_params params_ctx = {
  14742. .mem_size = 16*1024*1024,
  14743. .mem_buffer = NULL,
  14744. .no_alloc = false,
  14745. };
  14746. ctx = ggml_init(params_ctx);
  14747. if (ctx == NULL) {
  14748. return GGML_OPT_NO_CONTEXT;
  14749. }
  14750. free_ctx = true;
  14751. }
  14752. enum ggml_opt_result result = GGML_OPT_OK;
  14753. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14754. ggml_opt_init(ctx, opt, params, 0);
  14755. result = ggml_opt_resume(ctx, opt, f);
  14756. if (free_ctx) {
  14757. ggml_free(ctx);
  14758. }
  14759. return result;
  14760. }
  14761. enum ggml_opt_result ggml_opt_resume(
  14762. struct ggml_context * ctx,
  14763. struct ggml_opt_context * opt,
  14764. struct ggml_tensor * f) {
  14765. // build forward + backward compute graphs
  14766. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14767. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14768. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14769. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14770. *gf = ggml_build_forward (f);
  14771. *gb = ggml_build_backward(ctx, gf, true);
  14772. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14773. }
  14774. enum ggml_opt_result ggml_opt_resume_g(
  14775. struct ggml_context * ctx,
  14776. struct ggml_opt_context * opt,
  14777. struct ggml_tensor * f,
  14778. struct ggml_cgraph * gf,
  14779. struct ggml_cgraph * gb) {
  14780. // build forward + backward compute graphs
  14781. enum ggml_opt_result result = GGML_OPT_OK;
  14782. switch (opt->params.type) {
  14783. case GGML_OPT_ADAM:
  14784. {
  14785. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14786. } break;
  14787. case GGML_OPT_LBFGS:
  14788. {
  14789. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14790. } break;
  14791. }
  14792. if (opt->params.print_forward_graph) {
  14793. ggml_graph_print (gf);
  14794. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14795. }
  14796. if (opt->params.print_backward_graph) {
  14797. ggml_graph_print (gb);
  14798. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14799. }
  14800. return result;
  14801. }
  14802. ////////////////////////////////////////////////////////////////////////////////
  14803. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14804. assert(k % QK4_0 == 0);
  14805. const int nb = k / QK4_0;
  14806. for (int b = 0; b < n; b += k) {
  14807. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14808. quantize_row_q4_0_reference(src + b, y, k);
  14809. for (int i = 0; i < nb; i++) {
  14810. for (int j = 0; j < QK4_0; j += 2) {
  14811. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14812. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14813. hist[vi0]++;
  14814. hist[vi1]++;
  14815. }
  14816. }
  14817. }
  14818. return (n/QK4_0*sizeof(block_q4_0));
  14819. }
  14820. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14821. assert(k % QK4_1 == 0);
  14822. const int nb = k / QK4_1;
  14823. for (int b = 0; b < n; b += k) {
  14824. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14825. quantize_row_q4_1_reference(src + b, y, k);
  14826. for (int i = 0; i < nb; i++) {
  14827. for (int j = 0; j < QK4_1; j += 2) {
  14828. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14829. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14830. hist[vi0]++;
  14831. hist[vi1]++;
  14832. }
  14833. }
  14834. }
  14835. return (n/QK4_1*sizeof(block_q4_1));
  14836. }
  14837. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14838. assert(k % QK5_0 == 0);
  14839. const int nb = k / QK5_0;
  14840. for (int b = 0; b < n; b += k) {
  14841. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14842. quantize_row_q5_0_reference(src + b, y, k);
  14843. for (int i = 0; i < nb; i++) {
  14844. uint32_t qh;
  14845. memcpy(&qh, &y[i].qh, sizeof(qh));
  14846. for (int j = 0; j < QK5_0; j += 2) {
  14847. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14848. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14849. // cast to 16 bins
  14850. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14851. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14852. hist[vi0]++;
  14853. hist[vi1]++;
  14854. }
  14855. }
  14856. }
  14857. return (n/QK5_0*sizeof(block_q5_0));
  14858. }
  14859. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14860. assert(k % QK5_1 == 0);
  14861. const int nb = k / QK5_1;
  14862. for (int b = 0; b < n; b += k) {
  14863. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14864. quantize_row_q5_1_reference(src + b, y, k);
  14865. for (int i = 0; i < nb; i++) {
  14866. uint32_t qh;
  14867. memcpy(&qh, &y[i].qh, sizeof(qh));
  14868. for (int j = 0; j < QK5_1; j += 2) {
  14869. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14870. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14871. // cast to 16 bins
  14872. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14873. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14874. hist[vi0]++;
  14875. hist[vi1]++;
  14876. }
  14877. }
  14878. }
  14879. return (n/QK5_1*sizeof(block_q5_1));
  14880. }
  14881. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14882. assert(k % QK8_0 == 0);
  14883. const int nb = k / QK8_0;
  14884. for (int b = 0; b < n; b += k) {
  14885. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14886. quantize_row_q8_0_reference(src + b, y, k);
  14887. for (int i = 0; i < nb; i++) {
  14888. for (int j = 0; j < QK8_0; ++j) {
  14889. const int8_t vi = y[i].qs[j];
  14890. hist[vi/16 + 8]++;
  14891. }
  14892. }
  14893. }
  14894. return (n/QK8_0*sizeof(block_q8_0));
  14895. }
  14896. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14897. size_t result = 0;
  14898. switch (type) {
  14899. case GGML_TYPE_Q4_0:
  14900. {
  14901. GGML_ASSERT(start % QK4_0 == 0);
  14902. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14903. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14904. } break;
  14905. case GGML_TYPE_Q4_1:
  14906. {
  14907. GGML_ASSERT(start % QK4_1 == 0);
  14908. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14909. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14910. } break;
  14911. case GGML_TYPE_Q5_0:
  14912. {
  14913. GGML_ASSERT(start % QK5_0 == 0);
  14914. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14915. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14916. } break;
  14917. case GGML_TYPE_Q5_1:
  14918. {
  14919. GGML_ASSERT(start % QK5_1 == 0);
  14920. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14921. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14922. } break;
  14923. case GGML_TYPE_Q8_0:
  14924. {
  14925. GGML_ASSERT(start % QK8_0 == 0);
  14926. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14927. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14928. } break;
  14929. #ifdef GGML_USE_K_QUANTS
  14930. case GGML_TYPE_Q2_K:
  14931. {
  14932. GGML_ASSERT(start % QK_K == 0);
  14933. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14934. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14935. } break;
  14936. case GGML_TYPE_Q3_K:
  14937. {
  14938. GGML_ASSERT(start % QK_K == 0);
  14939. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14940. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14941. } break;
  14942. case GGML_TYPE_Q4_K:
  14943. {
  14944. GGML_ASSERT(start % QK_K == 0);
  14945. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14946. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14947. } break;
  14948. case GGML_TYPE_Q5_K:
  14949. {
  14950. GGML_ASSERT(start % QK_K == 0);
  14951. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14952. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14953. } break;
  14954. case GGML_TYPE_Q6_K:
  14955. {
  14956. GGML_ASSERT(start % QK_K == 0);
  14957. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14958. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14959. } break;
  14960. #endif
  14961. case GGML_TYPE_F16:
  14962. {
  14963. int elemsize = sizeof(ggml_fp16_t);
  14964. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14965. result = n * elemsize;
  14966. } break;
  14967. case GGML_TYPE_F32:
  14968. {
  14969. int elemsize = sizeof(float);
  14970. result = n * elemsize;
  14971. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14972. } break;
  14973. default:
  14974. assert(false);
  14975. }
  14976. return result;
  14977. }
  14978. ////////////////////////////////////////////////////////////////////////////////
  14979. int ggml_cpu_has_avx(void) {
  14980. #if defined(__AVX__)
  14981. return 1;
  14982. #else
  14983. return 0;
  14984. #endif
  14985. }
  14986. int ggml_cpu_has_avx2(void) {
  14987. #if defined(__AVX2__)
  14988. return 1;
  14989. #else
  14990. return 0;
  14991. #endif
  14992. }
  14993. int ggml_cpu_has_avx512(void) {
  14994. #if defined(__AVX512F__)
  14995. return 1;
  14996. #else
  14997. return 0;
  14998. #endif
  14999. }
  15000. int ggml_cpu_has_avx512_vbmi(void) {
  15001. #if defined(__AVX512VBMI__)
  15002. return 1;
  15003. #else
  15004. return 0;
  15005. #endif
  15006. }
  15007. int ggml_cpu_has_avx512_vnni(void) {
  15008. #if defined(__AVX512VNNI__)
  15009. return 1;
  15010. #else
  15011. return 0;
  15012. #endif
  15013. }
  15014. int ggml_cpu_has_fma(void) {
  15015. #if defined(__FMA__)
  15016. return 1;
  15017. #else
  15018. return 0;
  15019. #endif
  15020. }
  15021. int ggml_cpu_has_neon(void) {
  15022. #if defined(__ARM_NEON)
  15023. return 1;
  15024. #else
  15025. return 0;
  15026. #endif
  15027. }
  15028. int ggml_cpu_has_arm_fma(void) {
  15029. #if defined(__ARM_FEATURE_FMA)
  15030. return 1;
  15031. #else
  15032. return 0;
  15033. #endif
  15034. }
  15035. int ggml_cpu_has_f16c(void) {
  15036. #if defined(__F16C__)
  15037. return 1;
  15038. #else
  15039. return 0;
  15040. #endif
  15041. }
  15042. int ggml_cpu_has_fp16_va(void) {
  15043. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15044. return 1;
  15045. #else
  15046. return 0;
  15047. #endif
  15048. }
  15049. int ggml_cpu_has_wasm_simd(void) {
  15050. #if defined(__wasm_simd128__)
  15051. return 1;
  15052. #else
  15053. return 0;
  15054. #endif
  15055. }
  15056. int ggml_cpu_has_blas(void) {
  15057. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15058. return 1;
  15059. #else
  15060. return 0;
  15061. #endif
  15062. }
  15063. int ggml_cpu_has_cublas(void) {
  15064. #if defined(GGML_USE_CUBLAS)
  15065. return 1;
  15066. #else
  15067. return 0;
  15068. #endif
  15069. }
  15070. int ggml_cpu_has_clblast(void) {
  15071. #if defined(GGML_USE_CLBLAST)
  15072. return 1;
  15073. #else
  15074. return 0;
  15075. #endif
  15076. }
  15077. int ggml_cpu_has_gpublas(void) {
  15078. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15079. }
  15080. int ggml_cpu_has_sse3(void) {
  15081. #if defined(__SSE3__)
  15082. return 1;
  15083. #else
  15084. return 0;
  15085. #endif
  15086. }
  15087. int ggml_cpu_has_vsx(void) {
  15088. #if defined(__POWER9_VECTOR__)
  15089. return 1;
  15090. #else
  15091. return 0;
  15092. #endif
  15093. }
  15094. ////////////////////////////////////////////////////////////////////////////////