| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- #!/usr/bin/env python3
- import argparse
- import os
- import numpy as np
- import importlib
- from pathlib import Path
- from transformers import AutoTokenizer, AutoConfig, AutoModel
- import torch
- unreleased_model_name = os.getenv('UNRELEASED_MODEL_NAME')
- parser = argparse.ArgumentParser(description='Process model with specified path')
- parser.add_argument('--model-path', '-m', help='Path to the model')
- parser.add_argument('--prompts-file', '-p', help='Path to file containing prompts (one per line)')
- parser.add_argument('--use-sentence-transformers', action='store_true',
- help='Use SentenceTransformer to apply all numbered layers (01_Pooling, 02_Dense, 03_Dense, 04_Normalize)')
- args = parser.parse_args()
- def read_prompt_from_file(file_path):
- try:
- with open(file_path, 'r', encoding='utf-8') as f:
- return f.read().strip()
- except FileNotFoundError:
- print(f"Error: Prompts file '{file_path}' not found")
- exit(1)
- except Exception as e:
- print(f"Error reading prompts file: {e}")
- exit(1)
- model_path = os.environ.get('EMBEDDING_MODEL_PATH', args.model_path)
- if model_path is None:
- parser.error("Model path must be specified either via --model-path argument or EMBEDDING_MODEL_PATH environment variable")
- # Determine if we should use SentenceTransformer
- use_sentence_transformers = args.use_sentence_transformers or os.environ.get('USE_SENTENCE_TRANSFORMERS', '').lower() in ('1', 'true', 'yes')
- if use_sentence_transformers:
- from sentence_transformers import SentenceTransformer
- print("Using SentenceTransformer to apply all numbered layers")
- model = SentenceTransformer(model_path)
- tokenizer = model.tokenizer
- config = model[0].auto_model.config # type: ignore
- else:
- tokenizer = AutoTokenizer.from_pretrained(model_path)
- config = AutoConfig.from_pretrained(model_path)
- # This can be used to override the sliding window size for manual testing. This
- # can be useful to verify the sliding window attention mask in the original model
- # and compare it with the converted .gguf model.
- if hasattr(config, 'sliding_window'):
- original_sliding_window = config.sliding_window
- #original_sliding_window = 6
- print(f"Modified sliding window: {original_sliding_window} -> {config.sliding_window}")
- print(f"Using unreleased model: {unreleased_model_name}")
- if unreleased_model_name:
- model_name_lower = unreleased_model_name.lower()
- unreleased_module_path = f"transformers.models.{model_name_lower}.modular_{model_name_lower}"
- class_name = f"{unreleased_model_name}Model"
- print(f"Importing unreleased model module: {unreleased_module_path}")
- try:
- model_class = getattr(importlib.import_module(unreleased_module_path), class_name)
- model = model_class.from_pretrained(model_path, config=config)
- except (ImportError, AttributeError) as e:
- print(f"Failed to import or load model: {e}")
- exit(1)
- else:
- model = AutoModel.from_pretrained(model_path, config=config)
- print(f"Model class: {type(model)}")
- print(f"Model file: {type(model).__module__}")
- # Verify the model is using the correct sliding window
- if not use_sentence_transformers:
- if hasattr(model.config, 'sliding_window'): # type: ignore
- print(f"Model's sliding_window: {model.config.sliding_window}") # type: ignore
- else:
- print("Model config does not have sliding_window attribute")
- model_name = os.path.basename(model_path)
- if args.prompts_file:
- prompt_text = read_prompt_from_file(args.prompts_file)
- texts = [prompt_text]
- else:
- texts = ["Hello world today"]
- with torch.no_grad():
- if use_sentence_transformers:
- embeddings = model.encode(texts, convert_to_numpy=True)
- all_embeddings = embeddings # Shape: [batch_size, hidden_size]
- encoded = tokenizer(
- texts,
- padding=True,
- truncation=True,
- return_tensors="pt"
- )
- tokens = encoded['input_ids'][0]
- token_strings = tokenizer.convert_ids_to_tokens(tokens)
- for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
- print(f"{token_id:6d} -> '{token_str}'")
- print(f"Embeddings shape (after all SentenceTransformer layers): {all_embeddings.shape}")
- print(f"Embedding dimension: {all_embeddings.shape[1] if len(all_embeddings.shape) > 1 else all_embeddings.shape[0]}") # type: ignore
- else:
- # Standard approach: use base model output only
- encoded = tokenizer(
- texts,
- padding=True,
- truncation=True,
- return_tensors="pt"
- )
- tokens = encoded['input_ids'][0]
- token_strings = tokenizer.convert_ids_to_tokens(tokens)
- for i, (token_id, token_str) in enumerate(zip(tokens, token_strings)):
- print(f"{token_id:6d} -> '{token_str}'")
- outputs = model(**encoded)
- hidden_states = outputs.last_hidden_state # Shape: [batch_size, seq_len, hidden_size]
- all_embeddings = hidden_states[0].cpu().numpy() # Shape: [seq_len, hidden_size]
- print(f"Hidden states shape: {hidden_states.shape}")
- print(f"All embeddings shape: {all_embeddings.shape}")
- print(f"Embedding dimension: {all_embeddings.shape[1]}")
- if len(all_embeddings.shape) == 1:
- n_embd = all_embeddings.shape[0] # type: ignore
- n_embd_count = 1
- all_embeddings = all_embeddings.reshape(1, -1)
- else:
- n_embd = all_embeddings.shape[1] # type: ignore
- n_embd_count = all_embeddings.shape[0] # type: ignore
- print()
- for j in range(n_embd_count):
- embedding = all_embeddings[j]
- print(f"embedding {j}: ", end="")
- # Print first 3 values
- for i in range(min(3, n_embd)):
- print(f"{embedding[i]:9.6f} ", end="")
- print(" ... ", end="")
- # Print last 3 values
- for i in range(n_embd - 3, n_embd):
- print(f"{embedding[i]:9.6f} ", end="")
- print() # New line
- print()
- data_dir = Path("data")
- data_dir.mkdir(exist_ok=True)
- bin_filename = data_dir / f"pytorch-{model_name}-embeddings.bin"
- txt_filename = data_dir / f"pytorch-{model_name}-embeddings.txt"
- flattened_embeddings = all_embeddings.flatten()
- flattened_embeddings.astype(np.float32).tofile(bin_filename)
- with open(txt_filename, "w") as f:
- idx = 0
- for j in range(n_embd_count):
- for value in all_embeddings[j]:
- f.write(f"{idx}: {value:.6f}\n")
- idx += 1
- print(f"Total values: {len(flattened_embeddings)} ({n_embd_count} embeddings × {n_embd} dimensions)")
- print("")
- print(f"Saved bin embeddings to: {bin_filename}")
- print(f"Saved txt embeddings to: {txt_filename}")
|