llama-cli-cuda.Dockerfile 1.2 KB

12345678910111213141516171819202122232425262728293031323334353637
  1. ARG UBUNTU_VERSION=22.04
  2. # This needs to generally match the container host's environment.
  3. ARG CUDA_VERSION=12.6.0
  4. # Target the CUDA build image
  5. ARG BASE_CUDA_DEV_CONTAINER=nvidia/cuda:${CUDA_VERSION}-devel-ubuntu${UBUNTU_VERSION}
  6. # Target the CUDA runtime image
  7. ARG BASE_CUDA_RUN_CONTAINER=nvidia/cuda:${CUDA_VERSION}-runtime-ubuntu${UBUNTU_VERSION}
  8. FROM ${BASE_CUDA_DEV_CONTAINER} AS build
  9. # CUDA architecture to build for (defaults to all supported archs)
  10. ARG CUDA_DOCKER_ARCH=default
  11. RUN apt-get update && \
  12. apt-get install -y build-essential git cmake
  13. WORKDIR /app
  14. COPY . .
  15. # Use the default CUDA archs if not specified
  16. RUN if [ "${CUDA_DOCKER_ARCH}" != "default" ]; then \
  17. export CMAKE_ARGS="-DCMAKE_CUDA_ARCHITECTURES=${CUDA_DOCKER_ARCH}"; \
  18. fi && \
  19. cmake -B build -DGGML_CUDA=ON ${CMAKE_ARGS} -DCMAKE_EXE_LINKER_FLAGS=-Wl,--allow-shlib-undefined . && \
  20. cmake --build build --config Release --target llama-cli -j$(nproc)
  21. FROM ${BASE_CUDA_RUN_CONTAINER} AS runtime
  22. RUN apt-get update && \
  23. apt-get install -y libgomp1
  24. COPY --from=build /app/build/ggml/src/libggml.so /libggml.so
  25. COPY --from=build /app/build/src/libllama.so /libllama.so
  26. COPY --from=build /app/build/bin/llama-cli /llama-cli
  27. ENTRYPOINT [ "/llama-cli" ]