1
0

convert_hf_to_gguf.py 198 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  60. if type(self) is Model:
  61. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  62. self.dir_model = dir_model
  63. self.ftype = ftype
  64. self.fname_out = fname_out
  65. self.is_big_endian = is_big_endian
  66. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  67. self.use_temp_file = use_temp_file
  68. self.lazy = not eager
  69. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  70. self.is_safetensors = len(self.part_names) > 0
  71. if not self.is_safetensors:
  72. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  73. self.hparams = Model.load_hparams(self.dir_model)
  74. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  75. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  76. self.tensor_names = None
  77. self.metadata_override = metadata_override
  78. self.model_name = model_name
  79. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  80. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  81. if self.ftype == gguf.LlamaFileType.GUESSED:
  82. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  83. _, first_tensor = next(self.get_tensors())
  84. if first_tensor.dtype == torch.float16:
  85. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  86. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  87. else:
  88. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  89. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  90. # Configure GGUF Writer
  91. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  92. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  93. @classmethod
  94. def __init_subclass__(cls):
  95. # can't use an abstract property, because overriding it without type errors
  96. # would require using decorated functions instead of simply defining the property
  97. if "model_arch" not in cls.__dict__:
  98. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  99. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  100. key = next((k for k in keys if k in self.hparams), None)
  101. if key is not None:
  102. return self.hparams[key]
  103. if optional:
  104. return None
  105. raise KeyError(f"could not find any of: {keys}")
  106. def set_vocab(self):
  107. self._set_vocab_gpt2()
  108. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  109. tensor_names_from_parts: set[str] = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. index_file = self.dir_model / index_name
  113. if index_file.is_file():
  114. self.tensor_names = set()
  115. logger.info(f"gguf: loading model weight map from '{index_name}'")
  116. with open(index_file, "r", encoding="utf-8") as f:
  117. index: dict[str, Any] = json.load(f)
  118. weight_map = index.get("weight_map")
  119. if weight_map is None or not isinstance(weight_map, dict):
  120. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  121. self.tensor_names.update(weight_map.keys())
  122. else:
  123. self.tensor_names = tensor_names_from_parts
  124. weight_map = {}
  125. for part_name in self.part_names:
  126. logger.info(f"gguf: loading model part '{part_name}'")
  127. ctx: ContextManager[Any]
  128. if self.is_safetensors:
  129. from safetensors import safe_open
  130. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  131. else:
  132. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  133. with ctx as model_part:
  134. tensor_names_from_parts.update(model_part.keys())
  135. for name in model_part.keys():
  136. if self.is_safetensors:
  137. if self.lazy:
  138. data = model_part.get_slice(name)
  139. data = LazyTorchTensor.from_safetensors_slice(data)
  140. else:
  141. data = model_part.get_tensor(name)
  142. else:
  143. data = model_part[name]
  144. if self.lazy:
  145. data = LazyTorchTensor.from_eager(data)
  146. yield name, data
  147. # verify tensor name presence and identify potentially missing files
  148. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  149. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  150. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  151. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  152. if len(extra) == 0 and len(missing_files) > 0:
  153. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  154. else:
  155. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  156. f"Missing tensors: {missing}\n"
  157. f"Extra tensors: {extra}")
  158. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  159. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  160. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  161. name: str = gguf.TENSOR_NAMES[key]
  162. if "{bid}" in name:
  163. assert bid is not None
  164. name = name.format(bid=bid)
  165. return name + suffix
  166. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  167. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  168. return False
  169. key_name: str = gguf.TENSOR_NAMES[key]
  170. if "{bid}" in key_name:
  171. if bid is None:
  172. return False
  173. key_name = key_name.format(bid=bid)
  174. else:
  175. if bid is not None:
  176. return False
  177. return name == (key_name + suffix)
  178. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  179. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  180. if new_name is None:
  181. raise ValueError(f"Can not map tensor {name!r}")
  182. return new_name
  183. def set_gguf_parameters(self):
  184. self.gguf_writer.add_block_count(self.block_count)
  185. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  186. self.gguf_writer.add_context_length(n_ctx)
  187. logger.info(f"gguf: context length = {n_ctx}")
  188. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  189. self.gguf_writer.add_embedding_length(n_embd)
  190. logger.info(f"gguf: embedding length = {n_embd}")
  191. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  192. self.gguf_writer.add_feed_forward_length(n_ff)
  193. logger.info(f"gguf: feed forward length = {n_ff}")
  194. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  195. self.gguf_writer.add_head_count(n_head)
  196. logger.info(f"gguf: head count = {n_head}")
  197. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  198. self.gguf_writer.add_head_count_kv(n_head_kv)
  199. logger.info(f"gguf: key-value head count = {n_head_kv}")
  200. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  201. self.gguf_writer.add_rope_freq_base(rope_theta)
  202. logger.info(f"gguf: rope theta = {rope_theta}")
  203. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  204. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  205. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  206. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  207. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  208. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  209. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  210. self.gguf_writer.add_expert_count(n_experts)
  211. logger.info(f"gguf: expert count = {n_experts}")
  212. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  213. self.gguf_writer.add_expert_used_count(n_experts_used)
  214. logger.info(f"gguf: experts used count = {n_experts_used}")
  215. if (head_dim := self.hparams.get("head_dim")) is not None:
  216. self.gguf_writer.add_key_length(head_dim)
  217. self.gguf_writer.add_value_length(head_dim)
  218. self.gguf_writer.add_file_type(self.ftype)
  219. logger.info(f"gguf: file type = {self.ftype}")
  220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  221. del bid # unused
  222. return [(self.map_tensor_name(name), data_torch)]
  223. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  224. del name, new_name, bid, n_dims # unused
  225. return False
  226. # some models need extra generated tensors (like rope_freqs)
  227. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  228. return ()
  229. def prepare_tensors(self):
  230. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  231. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  232. # we don't need these
  233. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  234. continue
  235. old_dtype = data_torch.dtype
  236. # convert any unsupported data types to float32
  237. if data_torch.dtype not in (torch.float16, torch.float32):
  238. data_torch = data_torch.to(torch.float32)
  239. # use the first number-like part of the tensor name as the block id
  240. bid = None
  241. for part in name.split("."):
  242. if part.isdecimal():
  243. bid = int(part)
  244. break
  245. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  246. data = data_torch.squeeze().numpy()
  247. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  248. if len(data.shape) == 0:
  249. data = data_torch.numpy()
  250. n_dims = len(data.shape)
  251. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  252. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  253. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  254. data_qtype = gguf.GGMLQuantizationType.F32
  255. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  256. # Some tensor types are always in float32
  257. if data_qtype is False and (
  258. any(
  259. self.match_model_tensor_name(new_name, key, bid)
  260. for key in (
  261. gguf.MODEL_TENSOR.FFN_GATE_INP,
  262. gguf.MODEL_TENSOR.POS_EMBD,
  263. gguf.MODEL_TENSOR.TOKEN_TYPES,
  264. gguf.MODEL_TENSOR.SSM_CONV1D,
  265. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  266. gguf.MODEL_TENSOR.TIME_MIX_W1,
  267. gguf.MODEL_TENSOR.TIME_MIX_W2,
  268. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  270. )
  271. )
  272. or not new_name.endswith(".weight")
  273. ):
  274. data_qtype = gguf.GGMLQuantizationType.F32
  275. if data_qtype is False and any(
  276. self.match_model_tensor_name(new_name, key, bid)
  277. for key in (
  278. gguf.MODEL_TENSOR.TOKEN_EMBD,
  279. gguf.MODEL_TENSOR.OUTPUT,
  280. )
  281. ):
  282. if self.ftype in (
  283. gguf.LlamaFileType.MOSTLY_TQ1_0,
  284. gguf.LlamaFileType.MOSTLY_TQ2_0,
  285. ):
  286. # TODO: use Q4_K and Q6_K
  287. data_qtype = gguf.GGMLQuantizationType.F16
  288. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  289. if isinstance(data_qtype, bool):
  290. if self.ftype == gguf.LlamaFileType.ALL_F32:
  291. data_qtype = gguf.GGMLQuantizationType.F32
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  293. data_qtype = gguf.GGMLQuantizationType.F16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  295. data_qtype = gguf.GGMLQuantizationType.BF16
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  297. data_qtype = gguf.GGMLQuantizationType.Q8_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  300. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  301. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  302. else:
  303. raise ValueError(f"Unknown file type: {self.ftype.name}")
  304. try:
  305. data = gguf.quants.quantize(data, data_qtype)
  306. except gguf.QuantError as e:
  307. logger.warning("%s, %s", e, "falling back to F16")
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. data = gguf.quants.quantize(data, data_qtype)
  310. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  311. # reverse shape to make it similar to the internal ggml dimension order
  312. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  313. # n_dims is implicit in the shape
  314. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  315. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  316. def set_type(self):
  317. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  318. def prepare_metadata(self, vocab_only: bool):
  319. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  320. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  321. # Fallback to model directory name if metadata name is still missing
  322. if self.metadata.name is None:
  323. self.metadata.name = self.dir_model.name
  324. # Generate parameter weight class (useful for leader boards) if not yet determined
  325. if self.metadata.size_label is None and total_params > 0:
  326. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  327. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  328. output_type: str = self.ftype.name.partition("_")[2]
  329. # Filename Output
  330. if self.fname_out.is_dir():
  331. # Generate default filename based on model specification and available metadata
  332. if not vocab_only:
  333. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  334. else:
  335. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  336. # Use the default filename
  337. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  338. else:
  339. # Output path is a custom defined templated filename
  340. # Note: `not is_dir()` is used because `.is_file()` will not detect
  341. # file template strings as it doesn't actually exist as a file
  342. # Process templated file name with the output ftype, useful with the "auto" ftype
  343. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  344. self.set_type()
  345. logger.info("Set meta model")
  346. self.metadata.set_gguf_meta_model(self.gguf_writer)
  347. logger.info("Set model parameters")
  348. self.set_gguf_parameters()
  349. logger.info("Set model tokenizer")
  350. self.set_vocab()
  351. logger.info("Set model quantization version")
  352. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  353. def write(self):
  354. self.prepare_tensors()
  355. self.prepare_metadata(vocab_only=False)
  356. self.gguf_writer.write_header_to_file(path=self.fname_out)
  357. self.gguf_writer.write_kv_data_to_file()
  358. self.gguf_writer.write_tensors_to_file(progress=True)
  359. self.gguf_writer.close()
  360. def write_vocab(self):
  361. if len(self.gguf_writer.tensors) != 1:
  362. raise ValueError('Splitting the vocabulary is not supported')
  363. self.prepare_metadata(vocab_only=True)
  364. self.gguf_writer.write_header_to_file(path=self.fname_out)
  365. self.gguf_writer.write_kv_data_to_file()
  366. self.gguf_writer.close()
  367. @staticmethod
  368. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  369. part_names: list[str] = []
  370. for filename in os.listdir(dir_model):
  371. if filename.startswith(prefix) and filename.endswith(suffix):
  372. part_names.append(filename)
  373. part_names.sort()
  374. return part_names
  375. @staticmethod
  376. def load_hparams(dir_model: Path):
  377. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  378. return json.load(f)
  379. @classmethod
  380. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  381. assert names
  382. def func(modelcls: AnyModel) -> AnyModel:
  383. for name in names:
  384. cls._model_classes[name] = modelcls
  385. return modelcls
  386. return func
  387. @classmethod
  388. def from_model_architecture(cls, arch: str) -> type[Model]:
  389. try:
  390. return cls._model_classes[arch]
  391. except KeyError:
  392. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  393. def does_token_look_special(self, token: str | bytes) -> bool:
  394. if isinstance(token, (bytes, bytearray)):
  395. token_text = token.decode(encoding="utf-8")
  396. elif isinstance(token, memoryview):
  397. token_text = token.tobytes().decode(encoding="utf-8")
  398. else:
  399. token_text = token
  400. # Some models mark some added tokens which ought to be control tokens as not special.
  401. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  402. seems_special = token_text in (
  403. "<pad>", # deepseek-coder
  404. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  405. )
  406. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  407. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  408. # TODO: should these be marked as UNUSED instead? (maybe not)
  409. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  410. return seems_special
  411. # used for GPT-2 BPE and WordPiece vocabs
  412. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  413. tokens: list[str] = []
  414. toktypes: list[int] = []
  415. from transformers import AutoTokenizer
  416. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  417. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  418. assert max(tokenizer.vocab.values()) < vocab_size
  419. tokpre = self.get_vocab_base_pre(tokenizer)
  420. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  421. added_vocab = tokenizer.get_added_vocab()
  422. for i in range(vocab_size):
  423. if i not in reverse_vocab:
  424. tokens.append(f"[PAD{i}]")
  425. toktypes.append(gguf.TokenType.UNUSED)
  426. else:
  427. token: str = reverse_vocab[i]
  428. if token in added_vocab:
  429. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  430. toktypes.append(gguf.TokenType.CONTROL)
  431. else:
  432. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  433. toktypes.append(gguf.TokenType.USER_DEFINED)
  434. else:
  435. toktypes.append(gguf.TokenType.NORMAL)
  436. tokens.append(token)
  437. return tokens, toktypes, tokpre
  438. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  439. # do not modify it manually!
  440. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  441. # Marker: Start get_vocab_base_pre
  442. def get_vocab_base_pre(self, tokenizer) -> str:
  443. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  444. # is specific for the BPE pre-tokenizer used by the model
  445. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  446. # use in llama.cpp to implement the same pre-tokenizer
  447. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  448. chktok = tokenizer.encode(chktxt)
  449. chkhsh = sha256(str(chktok).encode()).hexdigest()
  450. logger.debug(f"chktok: {chktok}")
  451. logger.debug(f"chkhsh: {chkhsh}")
  452. res = None
  453. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  454. # or pull the latest version of the model from Huggingface
  455. # don't edit the hashes manually!
  456. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  457. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  458. res = "llama-bpe"
  459. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  460. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  461. res = "deepseek-llm"
  462. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  463. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  464. res = "deepseek-coder"
  465. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  466. # ref: https://huggingface.co/tiiuae/falcon-7b
  467. res = "falcon"
  468. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  469. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  470. res = "bert-bge"
  471. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  472. # ref: https://huggingface.co/mosaicml/mpt-7b
  473. res = "mpt"
  474. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  475. # ref: https://huggingface.co/bigcode/starcoder2-3b
  476. res = "starcoder"
  477. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  478. # ref: https://huggingface.co/openai-community/gpt2
  479. res = "gpt-2"
  480. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  481. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  482. res = "stablelm2"
  483. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  484. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  485. res = "refact"
  486. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  487. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  488. res = "command-r"
  489. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  490. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  491. res = "qwen2"
  492. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  493. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  494. res = "olmo"
  495. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  496. # ref: https://huggingface.co/databricks/dbrx-base
  497. res = "dbrx"
  498. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  499. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  500. res = "jina-v1-en"
  501. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  502. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  503. res = "jina-v2-en"
  504. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  505. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  506. res = "jina-v2-es"
  507. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  508. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  509. res = "jina-v2-de"
  510. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  511. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  512. res = "smaug-bpe"
  513. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  514. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  515. res = "poro-chat"
  516. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  517. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  518. res = "jina-v2-code"
  519. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  520. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  521. res = "chatglm-bpe"
  522. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  523. # ref: https://huggingface.co/LumiOpen/Viking-7B
  524. res = "viking"
  525. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  526. # ref: https://huggingface.co/core42/jais-13b
  527. res = "jais"
  528. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  529. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  530. res = "codeshell"
  531. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  532. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  533. res = "tekken"
  534. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  535. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  536. res = "smollm"
  537. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  538. # ref: https://huggingface.co/bigscience/bloom
  539. res = "bloom"
  540. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  541. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  542. res = "gpt3-finnish"
  543. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  544. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  545. res = "exaone"
  546. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  547. # ref: https://huggingface.co/microsoft/phi-2
  548. res = "phi-2"
  549. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  550. # ref: https://huggingface.co/facebook/chameleon-7b
  551. res = "chameleon"
  552. if res is None:
  553. logger.warning("\n")
  554. logger.warning("**************************************************************************************")
  555. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  556. logger.warning("** There are 2 possible reasons for this:")
  557. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  558. logger.warning("** - the pre-tokenization config has changed upstream")
  559. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  560. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  561. logger.warning("**")
  562. logger.warning(f"** chkhsh: {chkhsh}")
  563. logger.warning("**************************************************************************************")
  564. logger.warning("\n")
  565. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  566. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  567. logger.debug(f"chkhsh: {chkhsh}")
  568. return res
  569. # Marker: End get_vocab_base_pre
  570. def _set_vocab_gpt2(self) -> None:
  571. tokens, toktypes, tokpre = self.get_vocab_base()
  572. self.gguf_writer.add_tokenizer_model("gpt2")
  573. self.gguf_writer.add_tokenizer_pre(tokpre)
  574. self.gguf_writer.add_token_list(tokens)
  575. self.gguf_writer.add_token_types(toktypes)
  576. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  577. special_vocab.add_to_gguf(self.gguf_writer)
  578. def _set_vocab_qwen(self):
  579. dir_model = self.dir_model
  580. hparams = self.hparams
  581. tokens: list[str] = []
  582. toktypes: list[int] = []
  583. from transformers import AutoTokenizer
  584. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  585. vocab_size = hparams["vocab_size"]
  586. assert max(tokenizer.get_vocab().values()) < vocab_size
  587. tokpre = self.get_vocab_base_pre(tokenizer)
  588. merges = []
  589. vocab = {}
  590. mergeable_ranks = tokenizer.mergeable_ranks
  591. for token, rank in mergeable_ranks.items():
  592. vocab[QwenModel.token_bytes_to_string(token)] = rank
  593. if len(token) == 1:
  594. continue
  595. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  596. assert len(merged) == 2
  597. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  598. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  599. added_vocab = tokenizer.special_tokens
  600. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  601. for i in range(vocab_size):
  602. if i not in reverse_vocab:
  603. tokens.append(f"[PAD{i}]")
  604. toktypes.append(gguf.TokenType.UNUSED)
  605. elif reverse_vocab[i] in added_vocab:
  606. tokens.append(reverse_vocab[i])
  607. toktypes.append(gguf.TokenType.CONTROL)
  608. else:
  609. tokens.append(reverse_vocab[i])
  610. toktypes.append(gguf.TokenType.NORMAL)
  611. self.gguf_writer.add_tokenizer_model("gpt2")
  612. self.gguf_writer.add_tokenizer_pre(tokpre)
  613. self.gguf_writer.add_token_list(tokens)
  614. self.gguf_writer.add_token_types(toktypes)
  615. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  616. special_vocab.merges = merges
  617. # only add special tokens when they were not already loaded from config.json
  618. if len(special_vocab.special_token_ids) == 0:
  619. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  620. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  621. # this one is usually not in config.json anyway
  622. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  623. special_vocab.add_to_gguf(self.gguf_writer)
  624. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  625. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  626. self.gguf_writer.add_tokenizer_model("llama")
  627. self.gguf_writer.add_tokenizer_pre("default")
  628. self.gguf_writer.add_token_list(tokens)
  629. self.gguf_writer.add_token_scores(scores)
  630. self.gguf_writer.add_token_types(toktypes)
  631. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  632. special_vocab.add_to_gguf(self.gguf_writer)
  633. def _create_vocab_sentencepiece(self):
  634. from sentencepiece import SentencePieceProcessor
  635. tokenizer_path = self.dir_model / 'tokenizer.model'
  636. if not tokenizer_path.is_file():
  637. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  638. tokenizer = SentencePieceProcessor()
  639. tokenizer.LoadFromFile(str(tokenizer_path))
  640. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  641. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  642. scores: list[float] = [-10000.0] * vocab_size
  643. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  644. for token_id in range(tokenizer.vocab_size()):
  645. piece = tokenizer.IdToPiece(token_id)
  646. text = piece.encode("utf-8")
  647. score = tokenizer.GetScore(token_id)
  648. toktype = SentencePieceTokenTypes.NORMAL
  649. if tokenizer.IsUnknown(token_id):
  650. toktype = SentencePieceTokenTypes.UNKNOWN
  651. elif tokenizer.IsControl(token_id):
  652. toktype = SentencePieceTokenTypes.CONTROL
  653. elif tokenizer.IsUnused(token_id):
  654. toktype = SentencePieceTokenTypes.UNUSED
  655. elif tokenizer.IsByte(token_id):
  656. toktype = SentencePieceTokenTypes.BYTE
  657. tokens[token_id] = text
  658. scores[token_id] = score
  659. toktypes[token_id] = toktype
  660. added_tokens_file = self.dir_model / 'added_tokens.json'
  661. if added_tokens_file.is_file():
  662. with open(added_tokens_file, "r", encoding="utf-8") as f:
  663. added_tokens_json = json.load(f)
  664. for key in added_tokens_json:
  665. token_id = added_tokens_json[key]
  666. if token_id >= vocab_size:
  667. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  668. continue
  669. tokens[token_id] = key.encode("utf-8")
  670. scores[token_id] = -1000.0
  671. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  672. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  673. if tokenizer_config_file.is_file():
  674. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  675. tokenizer_config_json = json.load(f)
  676. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  677. for token_id, token_data in added_tokens_decoder.items():
  678. token_id = int(token_id)
  679. token: str = token_data["content"]
  680. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  681. if tokens[token_id] != token.encode("utf-8"):
  682. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  683. if token_data.get("special") or self.does_token_look_special(token):
  684. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  685. else:
  686. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  687. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  688. scores[token_id] = -1000.0
  689. tokens[token_id] = token.encode("utf-8")
  690. if vocab_size > len(tokens):
  691. pad_count = vocab_size - len(tokens)
  692. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  693. for i in range(1, pad_count + 1):
  694. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  695. scores.append(-1000.0)
  696. toktypes.append(SentencePieceTokenTypes.UNUSED)
  697. return tokens, scores, toktypes
  698. def _set_vocab_llama_hf(self):
  699. vocab = gguf.LlamaHfVocab(self.dir_model)
  700. tokens = []
  701. scores = []
  702. toktypes = []
  703. for text, score, toktype in vocab.all_tokens():
  704. tokens.append(text)
  705. scores.append(score)
  706. toktypes.append(toktype)
  707. assert len(tokens) == vocab.vocab_size
  708. self.gguf_writer.add_tokenizer_model("llama")
  709. self.gguf_writer.add_tokenizer_pre("default")
  710. self.gguf_writer.add_token_list(tokens)
  711. self.gguf_writer.add_token_scores(scores)
  712. self.gguf_writer.add_token_types(toktypes)
  713. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  714. special_vocab.add_to_gguf(self.gguf_writer)
  715. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  716. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  717. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  718. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  719. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  720. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  721. assert field # tokenizer model
  722. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  723. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  724. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  725. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  726. assert field # token list
  727. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  728. if model_name == "llama-spm":
  729. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  730. assert field # token scores
  731. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  732. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  733. assert field # token types
  734. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  735. if model_name != "llama-spm":
  736. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  737. assert field # token merges
  738. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  739. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  740. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  741. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  742. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  743. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  744. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  745. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  746. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  747. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  748. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  749. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  750. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  751. @Model.register("GPTNeoXForCausalLM")
  752. class GPTNeoXModel(Model):
  753. model_arch = gguf.MODEL_ARCH.GPTNEOX
  754. def set_gguf_parameters(self):
  755. block_count = self.hparams["num_hidden_layers"]
  756. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  757. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  758. self.gguf_writer.add_block_count(block_count)
  759. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  760. self.gguf_writer.add_rope_dimension_count(
  761. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  762. )
  763. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  764. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  765. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  767. del bid # unused
  768. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  769. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  770. tensors: list[tuple[str, Tensor]] = []
  771. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  772. # Map bloom-style qkv_linear to gpt-style qkv_linear
  773. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  774. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  775. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  776. data_torch = torch.cat(
  777. (
  778. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  779. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  780. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  781. ),
  782. dim=0,
  783. )
  784. logger.info("re-format attention.linear_qkv.weight")
  785. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  786. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  787. data_torch = torch.cat(
  788. (
  789. qkv_bias[:, 0, :].reshape((n_embed,)),
  790. qkv_bias[:, 1, :].reshape((n_embed,)),
  791. qkv_bias[:, 2, :].reshape((n_embed,)),
  792. ),
  793. dim=0,
  794. )
  795. logger.info("re-format attention.linear_qkv.bias")
  796. tensors.append((self.map_tensor_name(name), data_torch))
  797. return tensors
  798. @Model.register("BloomForCausalLM", "BloomModel")
  799. class BloomModel(Model):
  800. model_arch = gguf.MODEL_ARCH.BLOOM
  801. def set_gguf_parameters(self):
  802. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  803. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  804. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  805. self.gguf_writer.add_embedding_length(n_embed)
  806. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  807. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  808. self.gguf_writer.add_head_count(n_head)
  809. self.gguf_writer.add_head_count_kv(n_head)
  810. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  811. self.gguf_writer.add_file_type(self.ftype)
  812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  813. del bid # unused
  814. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  815. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  816. name = re.sub(r'transformer\.', '', name)
  817. tensors: list[tuple[str, Tensor]] = []
  818. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  819. # Map bloom-style qkv_linear to gpt-style qkv_linear
  820. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  821. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  822. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  823. data_torch = torch.cat(
  824. (
  825. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  826. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  827. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  828. ),
  829. dim=0,
  830. )
  831. logger.info("re-format attention.linear_qkv.weight")
  832. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  833. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  834. data_torch = torch.cat(
  835. (
  836. qkv_bias[:, 0, :].reshape((n_embed,)),
  837. qkv_bias[:, 1, :].reshape((n_embed,)),
  838. qkv_bias[:, 2, :].reshape((n_embed,)),
  839. ),
  840. dim=0,
  841. )
  842. logger.info("re-format attention.linear_qkv.bias")
  843. tensors.append((self.map_tensor_name(name), data_torch))
  844. if name == "word_embeddings.weight":
  845. assert self.tensor_names is not None
  846. # TODO: tie them at runtime, don't duplicate in the model file
  847. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  848. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  849. return tensors
  850. @Model.register("MPTForCausalLM")
  851. class MPTModel(Model):
  852. model_arch = gguf.MODEL_ARCH.MPT
  853. def set_vocab(self):
  854. try:
  855. self._set_vocab_gpt2()
  856. except Exception:
  857. # Fallback for SEA-LION model
  858. self._set_vocab_sentencepiece()
  859. self.gguf_writer.add_add_bos_token(False)
  860. self.gguf_writer.add_pad_token_id(3)
  861. self.gguf_writer.add_eos_token_id(1)
  862. self.gguf_writer.add_unk_token_id(0)
  863. def set_gguf_parameters(self):
  864. block_count = self.hparams["n_layers"]
  865. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  866. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  867. self.gguf_writer.add_block_count(block_count)
  868. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  869. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  870. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  871. self.gguf_writer.add_head_count_kv(kv_n_heads)
  872. self.gguf_writer.add_layer_norm_eps(1e-5)
  873. if self.hparams["attn_config"]["clip_qkv"] is not None:
  874. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  875. if self.hparams["attn_config"]["alibi"]:
  876. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  877. else:
  878. self.gguf_writer.add_max_alibi_bias(0.0)
  879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  880. del bid # unused
  881. if "scales" in name:
  882. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  883. new_name = new_name.replace("scales", "act.scales")
  884. else:
  885. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  886. return [(new_name, data_torch)]
  887. @Model.register("OrionForCausalLM")
  888. class OrionModel(Model):
  889. model_arch = gguf.MODEL_ARCH.ORION
  890. def set_vocab(self):
  891. self._set_vocab_sentencepiece()
  892. def set_gguf_parameters(self):
  893. block_count = self.hparams["num_hidden_layers"]
  894. head_count = self.hparams["num_attention_heads"]
  895. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  896. ctx_length = 0
  897. if "max_sequence_length" in self.hparams:
  898. ctx_length = self.hparams["max_sequence_length"]
  899. elif "max_position_embeddings" in self.hparams:
  900. ctx_length = self.hparams["max_position_embeddings"]
  901. elif "model_max_length" in self.hparams:
  902. ctx_length = self.hparams["model_max_length"]
  903. else:
  904. raise ValueError("gguf: can not find ctx length parameter.")
  905. self.gguf_writer.add_file_type(self.ftype)
  906. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  907. self.gguf_writer.add_context_length(ctx_length)
  908. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  909. self.gguf_writer.add_block_count(block_count)
  910. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  911. self.gguf_writer.add_head_count(head_count)
  912. self.gguf_writer.add_head_count_kv(head_count_kv)
  913. # note: config provides rms norm but it is actually layer norm
  914. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  915. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  916. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  917. class BaichuanModel(Model):
  918. model_arch = gguf.MODEL_ARCH.BAICHUAN
  919. def set_vocab(self):
  920. self._set_vocab_sentencepiece()
  921. def set_gguf_parameters(self):
  922. block_count = self.hparams["num_hidden_layers"]
  923. head_count = self.hparams["num_attention_heads"]
  924. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  925. ctx_length = 0
  926. if "max_sequence_length" in self.hparams:
  927. ctx_length = self.hparams["max_sequence_length"]
  928. elif "max_position_embeddings" in self.hparams:
  929. ctx_length = self.hparams["max_position_embeddings"]
  930. elif "model_max_length" in self.hparams:
  931. ctx_length = self.hparams["model_max_length"]
  932. else:
  933. raise ValueError("gguf: can not find ctx length parameter.")
  934. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  935. self.gguf_writer.add_context_length(ctx_length)
  936. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  937. self.gguf_writer.add_block_count(block_count)
  938. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  939. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  940. self.gguf_writer.add_head_count(head_count)
  941. self.gguf_writer.add_head_count_kv(head_count_kv)
  942. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  943. self.gguf_writer.add_file_type(self.ftype)
  944. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  945. if self.hparams["rope_scaling"].get("type") == "linear":
  946. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  947. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  948. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  949. head_count = self.hparams["num_attention_heads"]
  950. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  951. tensors: list[tuple[str, Tensor]] = []
  952. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  953. logger.info(f"Unpacking and permuting layer {bid}")
  954. tensors = [
  955. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  956. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  957. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  958. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  959. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  960. self._reverse_hf_part(data_torch, 2)),
  961. ]
  962. else:
  963. tensors = [(self.map_tensor_name(name), data_torch)]
  964. return tensors
  965. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  966. if n_kv_head is not None and n_head != n_kv_head:
  967. n_head //= n_kv_head
  968. return (
  969. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  970. .swapaxes(1, 2)
  971. .reshape(weights.shape)
  972. )
  973. def _reverse_hf_permute_part(
  974. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  975. ) -> Tensor:
  976. r = weights.shape[0] // 3
  977. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  978. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  979. r = weights.shape[0] // 3
  980. return weights[r * n_part:r * n_part + r, ...]
  981. @Model.register("XverseForCausalLM")
  982. class XverseModel(Model):
  983. model_arch = gguf.MODEL_ARCH.XVERSE
  984. def set_vocab(self):
  985. assert (self.dir_model / "tokenizer.json").is_file()
  986. dir_model = self.dir_model
  987. hparams = self.hparams
  988. tokens: list[bytes] = []
  989. toktypes: list[int] = []
  990. from transformers import AutoTokenizer
  991. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  992. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  993. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  994. # because vocab_size is the count of items, and indexes start at 0.
  995. max_vocab_index = max(tokenizer.get_vocab().values())
  996. if max_vocab_index >= vocab_size:
  997. raise ValueError("Vocabulary size exceeds expected maximum size.")
  998. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  999. added_vocab = tokenizer.get_added_vocab()
  1000. for token_id in range(vocab_size):
  1001. token_text = reverse_vocab[token_id].encode('utf-8')
  1002. # replace "\x00" to string with length > 0
  1003. if token_text == b"\x00":
  1004. toktype = gguf.TokenType.BYTE # special
  1005. token_text = f"<{token_text}>".encode('utf-8')
  1006. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1007. toktype = gguf.TokenType.BYTE # special
  1008. elif reverse_vocab[token_id] in added_vocab:
  1009. if tokenizer.added_tokens_decoder[token_id].special:
  1010. toktype = gguf.TokenType.CONTROL
  1011. else:
  1012. toktype = gguf.TokenType.USER_DEFINED
  1013. else:
  1014. toktype = gguf.TokenType.NORMAL
  1015. tokens.append(token_text)
  1016. toktypes.append(toktype)
  1017. self.gguf_writer.add_tokenizer_model("llama")
  1018. self.gguf_writer.add_tokenizer_pre("default")
  1019. self.gguf_writer.add_token_list(tokens)
  1020. self.gguf_writer.add_token_types(toktypes)
  1021. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1022. special_vocab.add_to_gguf(self.gguf_writer)
  1023. def set_gguf_parameters(self):
  1024. block_count = self.hparams["num_hidden_layers"]
  1025. head_count = self.hparams["num_attention_heads"]
  1026. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1027. ctx_length = 0
  1028. if "max_sequence_length" in self.hparams:
  1029. ctx_length = self.hparams["max_sequence_length"]
  1030. elif "max_position_embeddings" in self.hparams:
  1031. ctx_length = self.hparams["max_position_embeddings"]
  1032. elif "model_max_length" in self.hparams:
  1033. ctx_length = self.hparams["model_max_length"]
  1034. else:
  1035. raise ValueError("gguf: can not find ctx length parameter.")
  1036. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1037. self.gguf_writer.add_context_length(ctx_length)
  1038. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1039. self.gguf_writer.add_block_count(block_count)
  1040. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1041. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1042. self.gguf_writer.add_head_count(head_count)
  1043. self.gguf_writer.add_head_count_kv(head_count_kv)
  1044. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1045. self.gguf_writer.add_file_type(self.ftype)
  1046. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1047. if self.hparams["rope_scaling"].get("type") == "linear":
  1048. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1049. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1051. del bid # unused
  1052. head_count = self.hparams["num_attention_heads"]
  1053. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1054. # HF models permute some of the tensors, so we need to undo that
  1055. if name.endswith("q_proj.weight"):
  1056. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1057. if name.endswith("k_proj.weight"):
  1058. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1059. return [(self.map_tensor_name(name), data_torch)]
  1060. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1061. if n_kv_head is not None and n_head != n_kv_head:
  1062. n_head //= n_kv_head
  1063. return (
  1064. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1065. .swapaxes(1, 2)
  1066. .reshape(weights.shape)
  1067. )
  1068. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1069. class FalconModel(Model):
  1070. model_arch = gguf.MODEL_ARCH.FALCON
  1071. def set_gguf_parameters(self):
  1072. block_count = self.hparams.get("num_hidden_layers")
  1073. if block_count is None:
  1074. block_count = self.hparams["n_layer"] # old name
  1075. n_head = self.hparams.get("num_attention_heads")
  1076. if n_head is None:
  1077. n_head = self.hparams["n_head"] # old name
  1078. n_head_kv = self.hparams.get("num_kv_heads")
  1079. if n_head_kv is None:
  1080. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1081. self.gguf_writer.add_context_length(2048) # not in config.json
  1082. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1083. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1084. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1085. self.gguf_writer.add_block_count(block_count)
  1086. self.gguf_writer.add_head_count(n_head)
  1087. self.gguf_writer.add_head_count_kv(n_head_kv)
  1088. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1089. self.gguf_writer.add_file_type(self.ftype)
  1090. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1091. del bid # unused
  1092. # QKV tensor transform
  1093. # The original query_key_value tensor contains n_head_kv "kv groups",
  1094. # each consisting of n_head/n_head_kv query weights followed by one key
  1095. # and one value weight (shared by all query heads in the kv group).
  1096. # This layout makes it a big pain to work with in GGML.
  1097. # So we rearrange them here,, so that we have n_head query weights
  1098. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1099. # in contiguous fashion.
  1100. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1101. if "query_key_value" in name:
  1102. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1103. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1104. head_dim = self.hparams["hidden_size"] // n_head
  1105. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1106. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1107. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1108. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1109. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1110. return [(self.map_tensor_name(name), data_torch)]
  1111. @Model.register("GPTBigCodeForCausalLM")
  1112. class StarCoderModel(Model):
  1113. model_arch = gguf.MODEL_ARCH.STARCODER
  1114. def set_gguf_parameters(self):
  1115. block_count = self.hparams["n_layer"]
  1116. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1117. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1118. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1119. self.gguf_writer.add_block_count(block_count)
  1120. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1121. self.gguf_writer.add_head_count_kv(1)
  1122. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1123. self.gguf_writer.add_file_type(self.ftype)
  1124. @Model.register("GPTRefactForCausalLM")
  1125. class RefactModel(Model):
  1126. model_arch = gguf.MODEL_ARCH.REFACT
  1127. def set_vocab(self):
  1128. super().set_vocab()
  1129. # TODO: how to determine special FIM tokens automatically?
  1130. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1131. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1132. special_vocab._set_special_token("prefix", 1)
  1133. special_vocab._set_special_token("suffix", 3)
  1134. special_vocab._set_special_token("middle", 2)
  1135. special_vocab.chat_template = None # do not add it twice
  1136. special_vocab.add_to_gguf(self.gguf_writer)
  1137. def set_gguf_parameters(self):
  1138. hidden_dim = self.hparams["n_embd"]
  1139. inner_dim = 4 * hidden_dim
  1140. hidden_dim = int(2 * inner_dim / 3)
  1141. multiple_of = 256
  1142. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1143. block_count = self.hparams["n_layer"]
  1144. # refact uses Alibi. So this is from config.json which might be used by training.
  1145. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1146. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1147. self.gguf_writer.add_feed_forward_length(ff_dim)
  1148. self.gguf_writer.add_block_count(block_count)
  1149. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1150. self.gguf_writer.add_head_count_kv(1)
  1151. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1152. self.gguf_writer.add_file_type(self.ftype)
  1153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1154. hidden_dim = self.hparams["n_embd"]
  1155. inner_dim = 4 * hidden_dim
  1156. hidden_dim = int(2 * inner_dim / 3)
  1157. multiple_of = 256
  1158. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1159. n_head = self.hparams["n_head"]
  1160. n_head_kv = 1
  1161. head_dim = self.hparams["n_embd"] // n_head
  1162. tensors: list[tuple[str, Tensor]] = []
  1163. if bid is not None:
  1164. if name == f"transformer.h.{bid}.attn.kv.weight":
  1165. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1166. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1167. elif name == f"transformer.h.{bid}.attn.q.weight":
  1168. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1169. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1170. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1171. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1172. if len(tensors) == 0:
  1173. tensors.append((self.map_tensor_name(name), data_torch))
  1174. return tensors
  1175. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1176. class StableLMModel(Model):
  1177. model_arch = gguf.MODEL_ARCH.STABLELM
  1178. def set_vocab(self):
  1179. if (self.dir_model / "tokenizer.json").is_file():
  1180. self._set_vocab_gpt2()
  1181. else:
  1182. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1183. self._set_vocab_qwen()
  1184. def set_gguf_parameters(self):
  1185. hparams = self.hparams
  1186. block_count = hparams["num_hidden_layers"]
  1187. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1188. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1189. self.gguf_writer.add_block_count(block_count)
  1190. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1191. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1192. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1193. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1194. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1195. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1196. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1197. self.gguf_writer.add_file_type(self.ftype)
  1198. _q_norms: list[dict[str, Tensor]] | None = None
  1199. _k_norms: list[dict[str, Tensor]] | None = None
  1200. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1201. n_head = self.hparams["num_attention_heads"]
  1202. n_kv_head = self.hparams["num_key_value_heads"]
  1203. if name.find("q_layernorm.norms") != -1:
  1204. assert bid is not None
  1205. if self._q_norms is None:
  1206. self._q_norms = [{} for _ in range(self.block_count)]
  1207. self._q_norms[bid][name] = data_torch
  1208. if len(self._q_norms[bid]) >= n_head:
  1209. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1210. else:
  1211. return []
  1212. if name.find("k_layernorm.norms") != -1:
  1213. assert bid is not None
  1214. if self._k_norms is None:
  1215. self._k_norms = [{} for _ in range(self.block_count)]
  1216. self._k_norms[bid][name] = data_torch
  1217. if len(self._k_norms[bid]) >= n_kv_head:
  1218. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1219. else:
  1220. return []
  1221. return [(self.map_tensor_name(name), data_torch)]
  1222. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1223. datas: list[Tensor] = []
  1224. # extract the norms in order
  1225. for xid in range(n_head):
  1226. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1227. datas.append(norms[ename])
  1228. del norms[ename]
  1229. data_torch = torch.stack(datas, dim=0)
  1230. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1231. new_name = self.map_tensor_name(merged_name)
  1232. return [(new_name, data_torch)]
  1233. def prepare_tensors(self):
  1234. super().prepare_tensors()
  1235. if self._q_norms is not None or self._k_norms is not None:
  1236. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1237. norms = (
  1238. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1239. ) + (
  1240. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1241. )
  1242. if len(norms) > 0:
  1243. raise ValueError(f"Unprocessed norms: {norms}")
  1244. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1245. class LlamaModel(Model):
  1246. model_arch = gguf.MODEL_ARCH.LLAMA
  1247. def set_vocab(self):
  1248. try:
  1249. self._set_vocab_sentencepiece()
  1250. except FileNotFoundError:
  1251. try:
  1252. self._set_vocab_llama_hf()
  1253. except (FileNotFoundError, TypeError):
  1254. # Llama 3
  1255. self._set_vocab_gpt2()
  1256. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1257. if self.hparams.get("vocab_size", 32000) == 32016:
  1258. special_vocab = gguf.SpecialVocab(
  1259. self.dir_model, load_merges=False,
  1260. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1261. )
  1262. special_vocab._set_special_token("prefix", 32007)
  1263. special_vocab._set_special_token("suffix", 32008)
  1264. special_vocab._set_special_token("middle", 32009)
  1265. special_vocab._set_special_token("eot", 32010)
  1266. special_vocab.add_to_gguf(self.gguf_writer)
  1267. def set_gguf_parameters(self):
  1268. super().set_gguf_parameters()
  1269. hparams = self.hparams
  1270. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1271. if "head_dim" in hparams:
  1272. rope_dim = hparams["head_dim"]
  1273. else:
  1274. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1275. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1276. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1277. if self.hparams["rope_scaling"].get("type") == "linear":
  1278. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1279. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1280. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1281. if tokenizer_config_file.is_file():
  1282. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1283. tokenizer_config_json = json.load(f)
  1284. if "add_prefix_space" in tokenizer_config_json:
  1285. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1286. # Apply to granite small models only
  1287. if self.hparams.get("vocab_size", 32000) == 49152:
  1288. self.gguf_writer.add_add_bos_token(False)
  1289. @staticmethod
  1290. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1291. if n_head_kv is not None and n_head != n_head_kv:
  1292. n_head = n_head_kv
  1293. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1294. .swapaxes(1, 2)
  1295. .reshape(weights.shape))
  1296. _experts: list[dict[str, Tensor]] | None = None
  1297. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1298. n_head = self.hparams["num_attention_heads"]
  1299. n_kv_head = self.hparams.get("num_key_value_heads")
  1300. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1301. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1302. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1303. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1304. # process the experts separately
  1305. if name.find("block_sparse_moe.experts") != -1:
  1306. n_experts = self.hparams["num_local_experts"]
  1307. assert bid is not None
  1308. if self._experts is None:
  1309. self._experts = [{} for _ in range(self.block_count)]
  1310. self._experts[bid][name] = data_torch
  1311. if len(self._experts[bid]) >= n_experts * 3:
  1312. tensors: list[tuple[str, Tensor]] = []
  1313. # merge the experts into a single 3d tensor
  1314. for wid in ["w1", "w2", "w3"]:
  1315. datas: list[Tensor] = []
  1316. for xid in range(n_experts):
  1317. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1318. datas.append(self._experts[bid][ename])
  1319. del self._experts[bid][ename]
  1320. data_torch = torch.stack(datas, dim=0)
  1321. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1322. new_name = self.map_tensor_name(merged_name)
  1323. tensors.append((new_name, data_torch))
  1324. return tensors
  1325. else:
  1326. return []
  1327. return [(self.map_tensor_name(name), data_torch)]
  1328. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1329. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1330. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1331. base = self.hparams.get("rope_theta", 10000.0)
  1332. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1333. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1334. factor = rope_scaling.get("factor", 8.0)
  1335. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1336. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1337. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1338. low_freq_wavelen = old_context_len / low_freq_factor
  1339. high_freq_wavelen = old_context_len / high_freq_factor
  1340. assert low_freq_wavelen != high_freq_wavelen
  1341. rope_factors = []
  1342. for freq in freqs:
  1343. wavelen = 2 * math.pi / freq
  1344. if wavelen < high_freq_wavelen:
  1345. rope_factors.append(1)
  1346. elif wavelen > low_freq_wavelen:
  1347. rope_factors.append(factor)
  1348. else:
  1349. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1350. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1351. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1352. def prepare_tensors(self):
  1353. super().prepare_tensors()
  1354. if self._experts is not None:
  1355. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1356. experts = [k for d in self._experts for k in d.keys()]
  1357. if len(experts) > 0:
  1358. raise ValueError(f"Unprocessed experts: {experts}")
  1359. @Model.register("BitnetForCausalLM")
  1360. class BitnetModel(Model):
  1361. model_arch = gguf.MODEL_ARCH.BITNET
  1362. def set_vocab(self):
  1363. self._set_vocab_sentencepiece()
  1364. def set_gguf_parameters(self):
  1365. super().set_gguf_parameters()
  1366. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1367. self.gguf_writer.add_rope_scaling_factor(1.0)
  1368. def weight_quant(self, weight: Tensor) -> Tensor:
  1369. dtype = weight.dtype
  1370. weight = weight.float()
  1371. scale = weight.abs().mean().clamp(min=1e-5)
  1372. iscale = 1 / scale
  1373. # TODO: multiply by the scale directly instead of inverting it twice
  1374. # (this is also unnecessarily doubly inverted upstream)
  1375. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1376. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1377. return result.type(dtype)
  1378. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1379. new_name = self.map_tensor_name(name)
  1380. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1381. gguf.MODEL_TENSOR.ATTN_Q,
  1382. gguf.MODEL_TENSOR.ATTN_K,
  1383. gguf.MODEL_TENSOR.ATTN_V,
  1384. gguf.MODEL_TENSOR.ATTN_OUT,
  1385. gguf.MODEL_TENSOR.FFN_UP,
  1386. gguf.MODEL_TENSOR.FFN_DOWN,
  1387. gguf.MODEL_TENSOR.FFN_GATE,
  1388. ]):
  1389. # transform weight into 1/0/-1 (in fp32)
  1390. data_torch = self.weight_quant(data_torch)
  1391. yield (new_name, data_torch)
  1392. @Model.register("GrokForCausalLM")
  1393. class GrokModel(Model):
  1394. model_arch = gguf.MODEL_ARCH.GROK
  1395. def set_vocab(self):
  1396. self._set_vocab_sentencepiece()
  1397. def __init__(self, *args, **kwargs):
  1398. super().__init__(*args, **kwargs)
  1399. def set_gguf_parameters(self):
  1400. super().set_gguf_parameters()
  1401. _experts: list[dict[str, Tensor]] | None = None
  1402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1403. # process the experts separately
  1404. if name.find(".moe.") != -1:
  1405. n_experts = self.hparams["num_local_experts"]
  1406. assert bid is not None
  1407. if self._experts is None:
  1408. self._experts = [{} for _ in range(self.block_count)]
  1409. self._experts[bid][name] = data_torch
  1410. if len(self._experts[bid]) >= n_experts * 3:
  1411. tensors: list[tuple[str, Tensor]] = []
  1412. # merge the experts into a single 3d tensor
  1413. for wid in ["linear", "linear_1", "linear_v"]:
  1414. datas: list[Tensor] = []
  1415. for xid in range(n_experts):
  1416. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1417. datas.append(self._experts[bid][ename])
  1418. del self._experts[bid][ename]
  1419. data_torch = torch.stack(datas, dim=0)
  1420. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1421. new_name = self.map_tensor_name(merged_name)
  1422. tensors.append((new_name, data_torch))
  1423. return tensors
  1424. else:
  1425. return []
  1426. return [(self.map_tensor_name(name), data_torch)]
  1427. @Model.register("DbrxForCausalLM")
  1428. class DbrxModel(Model):
  1429. model_arch = gguf.MODEL_ARCH.DBRX
  1430. def set_gguf_parameters(self):
  1431. ffn_config = self.hparams["ffn_config"]
  1432. attn_config = self.hparams["attn_config"]
  1433. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1434. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1435. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1436. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1437. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1438. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1439. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1440. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1441. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1442. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1443. self.gguf_writer.add_layer_norm_eps(1e-5)
  1444. self.gguf_writer.add_file_type(self.ftype)
  1445. logger.info(f"gguf: file type = {self.ftype}")
  1446. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1447. del bid # unused
  1448. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1449. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1450. n_embd = self.hparams["d_model"]
  1451. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1452. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1453. # But llama.cpp moe graph works differently
  1454. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1455. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1456. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1457. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1458. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1459. experts = False
  1460. for exp_tensor_name in exp_tensor_names.keys():
  1461. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1462. experts = True
  1463. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1464. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1465. data_torch = data_torch.permute(*permute_tensor)
  1466. break
  1467. # map tensor names
  1468. # In MoE models the ffn tensors are typically most of the model weights,
  1469. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1470. # Every other model has the weight names ending in .weight,
  1471. # let's assume that is the convention which is not the case for dbrx:
  1472. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1473. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1474. return [(new_name, data_torch)]
  1475. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1476. del name, new_name, bid # unused
  1477. return n_dims > 1
  1478. @Model.register("MiniCPMForCausalLM")
  1479. class MiniCPMModel(Model):
  1480. model_arch = gguf.MODEL_ARCH.MINICPM
  1481. def set_gguf_parameters(self):
  1482. block_count = self.hparams["num_hidden_layers"]
  1483. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1484. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1485. self.gguf_writer.add_block_count(block_count)
  1486. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1487. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1488. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1489. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1490. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1491. self.gguf_writer.add_file_type(self.ftype)
  1492. def set_vocab(self):
  1493. self._set_vocab_llama_hf()
  1494. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1495. if n_kv_head is not None and n_head != n_kv_head:
  1496. n_head //= n_kv_head
  1497. return (
  1498. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1499. .swapaxes(1, 2)
  1500. .reshape(weights.shape)
  1501. )
  1502. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1503. del bid # unused
  1504. n_head = self.hparams["num_attention_heads"]
  1505. n_kv_head = self.hparams.get("num_key_value_heads")
  1506. # HF models permute some of the tensors, so we need to undo that
  1507. if name.endswith(("q_proj.weight")):
  1508. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1509. if name.endswith(("k_proj.weight")):
  1510. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1511. return [(self.map_tensor_name(name), data_torch)]
  1512. @Model.register("MiniCPM3ForCausalLM")
  1513. class MiniCPM3Model(Model):
  1514. model_arch = gguf.MODEL_ARCH.MINICPM3
  1515. def set_gguf_parameters(self):
  1516. hparams = self.hparams
  1517. self.gguf_writer.add_file_type(self.ftype)
  1518. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1519. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1520. self.gguf_writer.add_block_count(self.block_count)
  1521. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1522. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1523. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1524. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1525. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1526. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1527. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1528. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1529. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1530. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1531. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1532. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1533. if rope_scaling is not None:
  1534. rope_dims = self.hparams["qk_rope_head_dim"]
  1535. long_factors = rope_scaling.get('long_factor', None)
  1536. short_factors = rope_scaling.get('short_factor', None)
  1537. if long_factors is None or short_factors is None:
  1538. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1539. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1540. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1541. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1542. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1543. def set_vocab(self):
  1544. self._set_vocab_sentencepiece()
  1545. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1546. if n_kv_head is not None and n_head != n_kv_head:
  1547. n_head //= n_kv_head
  1548. return (
  1549. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1550. .swapaxes(1, 2)
  1551. .reshape(weights.shape)
  1552. )
  1553. @Model.register("QWenLMHeadModel")
  1554. class QwenModel(Model):
  1555. model_arch = gguf.MODEL_ARCH.QWEN
  1556. @staticmethod
  1557. def token_bytes_to_string(b):
  1558. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1559. byte_encoder = bytes_to_unicode()
  1560. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1561. @staticmethod
  1562. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1563. parts = [bytes([b]) for b in token]
  1564. while True:
  1565. min_idx = None
  1566. min_rank = None
  1567. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1568. rank = mergeable_ranks.get(pair[0] + pair[1])
  1569. if rank is not None and (min_rank is None or rank < min_rank):
  1570. min_idx = i
  1571. min_rank = rank
  1572. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1573. break
  1574. assert min_idx is not None
  1575. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1576. return parts
  1577. def set_vocab(self):
  1578. self._set_vocab_qwen()
  1579. def set_gguf_parameters(self):
  1580. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1581. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1582. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1583. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1584. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1585. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1586. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1587. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1588. self.gguf_writer.add_file_type(self.ftype)
  1589. @Model.register("Qwen2ForCausalLM")
  1590. class Qwen2Model(Model):
  1591. model_arch = gguf.MODEL_ARCH.QWEN2
  1592. def set_vocab(self):
  1593. try:
  1594. self._set_vocab_sentencepiece()
  1595. except FileNotFoundError:
  1596. self._set_vocab_gpt2()
  1597. @Model.register("Qwen2MoeForCausalLM")
  1598. class Qwen2MoeModel(Model):
  1599. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1600. def set_gguf_parameters(self):
  1601. super().set_gguf_parameters()
  1602. if (n_experts := self.hparams.get("num_experts")) is not None:
  1603. self.gguf_writer.add_expert_count(n_experts)
  1604. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1605. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1606. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1607. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1608. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1609. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1610. _experts: list[dict[str, Tensor]] | None = None
  1611. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1612. # process the experts separately
  1613. if name.find("experts") != -1:
  1614. n_experts = self.hparams["num_experts"]
  1615. assert bid is not None
  1616. if self._experts is None:
  1617. self._experts = [{} for _ in range(self.block_count)]
  1618. self._experts[bid][name] = data_torch
  1619. if len(self._experts[bid]) >= n_experts * 3:
  1620. tensors: list[tuple[str, Tensor]] = []
  1621. # merge the experts into a single 3d tensor
  1622. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1623. datas: list[Tensor] = []
  1624. for xid in range(n_experts):
  1625. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1626. datas.append(self._experts[bid][ename])
  1627. del self._experts[bid][ename]
  1628. data_torch = torch.stack(datas, dim=0)
  1629. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1630. new_name = self.map_tensor_name(merged_name)
  1631. tensors.append((new_name, data_torch))
  1632. return tensors
  1633. else:
  1634. return []
  1635. return [(self.map_tensor_name(name), data_torch)]
  1636. def prepare_tensors(self):
  1637. super().prepare_tensors()
  1638. if self._experts is not None:
  1639. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1640. experts = [k for d in self._experts for k in d.keys()]
  1641. if len(experts) > 0:
  1642. raise ValueError(f"Unprocessed experts: {experts}")
  1643. @Model.register("GPT2LMHeadModel")
  1644. class GPT2Model(Model):
  1645. model_arch = gguf.MODEL_ARCH.GPT2
  1646. def set_gguf_parameters(self):
  1647. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1648. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1649. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1650. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1651. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1652. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1653. self.gguf_writer.add_file_type(self.ftype)
  1654. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1655. del bid # unused
  1656. tensors: list[tuple[str, Tensor]] = []
  1657. # we don't need these
  1658. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1659. return tensors
  1660. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1661. data_torch = data_torch.transpose(1, 0)
  1662. new_name = self.map_tensor_name(name)
  1663. tensors.append((new_name, data_torch))
  1664. # note: GPT2 output is tied to (same as) wte in original model
  1665. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1666. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1667. return tensors
  1668. @Model.register("PhiForCausalLM")
  1669. class Phi2Model(Model):
  1670. model_arch = gguf.MODEL_ARCH.PHI2
  1671. def set_gguf_parameters(self):
  1672. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1673. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1674. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1675. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1676. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1677. self.gguf_writer.add_embedding_length(n_embd)
  1678. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1679. self.gguf_writer.add_block_count(block_count)
  1680. self.gguf_writer.add_head_count(n_head)
  1681. self.gguf_writer.add_head_count_kv(n_head)
  1682. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1683. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1684. self.gguf_writer.add_file_type(self.ftype)
  1685. self.gguf_writer.add_add_bos_token(False)
  1686. @Model.register("Phi3ForCausalLM")
  1687. class Phi3MiniModel(Model):
  1688. model_arch = gguf.MODEL_ARCH.PHI3
  1689. def set_vocab(self):
  1690. from sentencepiece import SentencePieceProcessor
  1691. tokenizer_path = self.dir_model / 'tokenizer.model'
  1692. if not tokenizer_path.is_file():
  1693. raise ValueError(f'Error: Missing {tokenizer_path}')
  1694. tokenizer = SentencePieceProcessor()
  1695. tokenizer.LoadFromFile(str(tokenizer_path))
  1696. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1697. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1698. scores: list[float] = [-10000.0] * vocab_size
  1699. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1700. for token_id in range(tokenizer.vocab_size()):
  1701. piece = tokenizer.IdToPiece(token_id)
  1702. text = piece.encode("utf-8")
  1703. score = tokenizer.GetScore(token_id)
  1704. toktype = SentencePieceTokenTypes.NORMAL
  1705. if tokenizer.IsUnknown(token_id):
  1706. toktype = SentencePieceTokenTypes.UNKNOWN
  1707. elif tokenizer.IsControl(token_id):
  1708. toktype = SentencePieceTokenTypes.CONTROL
  1709. elif tokenizer.IsUnused(token_id):
  1710. toktype = SentencePieceTokenTypes.UNUSED
  1711. elif tokenizer.IsByte(token_id):
  1712. toktype = SentencePieceTokenTypes.BYTE
  1713. tokens[token_id] = text
  1714. scores[token_id] = score
  1715. toktypes[token_id] = toktype
  1716. added_tokens_file = self.dir_model / 'added_tokens.json'
  1717. if added_tokens_file.is_file():
  1718. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1719. added_tokens_json = json.load(f)
  1720. for key in added_tokens_json:
  1721. token_id = added_tokens_json[key]
  1722. if token_id >= vocab_size:
  1723. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1724. continue
  1725. tokens[token_id] = key.encode("utf-8")
  1726. scores[token_id] = -1000.0
  1727. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1728. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1729. if tokenizer_config_file.is_file():
  1730. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1731. tokenizer_config_json = json.load(f)
  1732. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1733. for token_id, foken_data in added_tokens_decoder.items():
  1734. token_id = int(token_id)
  1735. token = foken_data["content"].encode("utf-8")
  1736. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1737. if tokens[token_id] != token:
  1738. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1739. tokens[token_id] = token
  1740. scores[token_id] = -1000.0
  1741. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1742. if foken_data.get("special"):
  1743. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1744. tokenizer_file = self.dir_model / 'tokenizer.json'
  1745. if tokenizer_file.is_file():
  1746. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1747. tokenizer_json = json.load(f)
  1748. added_tokens = tokenizer_json.get("added_tokens", [])
  1749. for foken_data in added_tokens:
  1750. token_id = int(foken_data["id"])
  1751. token = foken_data["content"].encode("utf-8")
  1752. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1753. if tokens[token_id] != token:
  1754. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1755. tokens[token_id] = token
  1756. scores[token_id] = -1000.0
  1757. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1758. if foken_data.get("special"):
  1759. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1760. self.gguf_writer.add_tokenizer_model("llama")
  1761. self.gguf_writer.add_tokenizer_pre("default")
  1762. self.gguf_writer.add_token_list(tokens)
  1763. self.gguf_writer.add_token_scores(scores)
  1764. self.gguf_writer.add_token_types(toktypes)
  1765. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1766. special_vocab.add_to_gguf(self.gguf_writer)
  1767. def set_gguf_parameters(self):
  1768. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1769. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1770. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1771. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1772. rms_eps = self.find_hparam(["rms_norm_eps"])
  1773. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1774. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1775. rope_dims = n_embd // n_head
  1776. self.gguf_writer.add_context_length(max_pos_embds)
  1777. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1778. self.gguf_writer.add_embedding_length(n_embd)
  1779. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1780. self.gguf_writer.add_block_count(block_count)
  1781. self.gguf_writer.add_head_count(n_head)
  1782. self.gguf_writer.add_head_count_kv(n_head_kv)
  1783. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1784. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1785. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1786. self.gguf_writer.add_file_type(self.ftype)
  1787. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1788. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1789. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1790. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1791. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1792. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1793. rope_dims = n_embd // n_head
  1794. # write rope scaling for long context (128k) model
  1795. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1796. if rope_scaling is None:
  1797. return
  1798. scale = max_pos_embds / orig_max_pos_embds
  1799. rope_scaling_type = rope_scaling.get('type', '').lower()
  1800. if len(rope_scaling_type) == 0:
  1801. raise KeyError('Missing the required key rope_scaling.type')
  1802. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1803. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1804. elif rope_scaling_type == 'yarn':
  1805. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1806. else:
  1807. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1808. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1809. long_factors = rope_scaling.get('long_factor', None)
  1810. short_factors = rope_scaling.get('short_factor', None)
  1811. if long_factors is None or short_factors is None:
  1812. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1813. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1814. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1815. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1816. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1817. @Model.register("PlamoForCausalLM")
  1818. class PlamoModel(Model):
  1819. model_arch = gguf.MODEL_ARCH.PLAMO
  1820. def set_vocab(self):
  1821. self._set_vocab_sentencepiece()
  1822. def set_gguf_parameters(self):
  1823. hparams = self.hparams
  1824. block_count = hparams["num_hidden_layers"]
  1825. self.gguf_writer.add_context_length(4096) # not in config.json
  1826. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1827. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1828. self.gguf_writer.add_block_count(block_count)
  1829. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1830. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1831. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1832. self.gguf_writer.add_file_type(self.ftype)
  1833. def shuffle_attn_q_weight(self, data_torch):
  1834. assert data_torch.size() == (5120, 5120)
  1835. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1836. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1837. data_torch = torch.reshape(data_torch, (5120, 5120))
  1838. return data_torch
  1839. def shuffle_attn_output_weight(self, data_torch):
  1840. assert data_torch.size() == (5120, 5120)
  1841. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1842. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1843. data_torch = torch.reshape(data_torch, (5120, 5120))
  1844. return data_torch
  1845. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1846. del bid # unused
  1847. new_name = self.map_tensor_name(name)
  1848. # shuffle for broadcasting of gqa in ggml_mul_mat
  1849. if new_name.endswith("attn_q.weight"):
  1850. data_torch = self.shuffle_attn_q_weight(data_torch)
  1851. elif new_name.endswith("attn_output.weight"):
  1852. data_torch = self.shuffle_attn_output_weight(data_torch)
  1853. return [(new_name, data_torch)]
  1854. @Model.register("CodeShellForCausalLM")
  1855. class CodeShellModel(Model):
  1856. model_arch = gguf.MODEL_ARCH.CODESHELL
  1857. def set_gguf_parameters(self):
  1858. block_count = self.hparams["n_layer"]
  1859. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1860. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1861. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1862. self.gguf_writer.add_block_count(block_count)
  1863. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1864. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1865. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1866. self.gguf_writer.add_file_type(self.ftype)
  1867. self.gguf_writer.add_rope_freq_base(10000.0)
  1868. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1869. self.gguf_writer.add_rope_scaling_factor(1.0)
  1870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1871. del bid # unused
  1872. new_name = self.map_tensor_name(name)
  1873. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1874. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1875. assert self.tensor_names is not None
  1876. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1877. # copy tok_embd.weight to output.weight
  1878. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1879. return tensors
  1880. @Model.register("InternLM2ForCausalLM")
  1881. class InternLM2Model(Model):
  1882. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1883. def set_vocab(self):
  1884. # (TODO): Is there a better way?
  1885. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1886. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1887. # recognized as an empty string in C++.
  1888. from sentencepiece import SentencePieceProcessor
  1889. from sentencepiece import sentencepiece_model_pb2 as model
  1890. tokenizer_path = self.dir_model / 'tokenizer.model'
  1891. tokens: list[bytes] = []
  1892. scores: list[float] = []
  1893. toktypes: list[int] = []
  1894. if not tokenizer_path.is_file():
  1895. logger.error(f'Error: Missing {tokenizer_path}')
  1896. sys.exit(1)
  1897. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1898. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1899. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1900. tokenizer = SentencePieceProcessor()
  1901. tokenizer.LoadFromFile(str(tokenizer_path))
  1902. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1903. for token_id in range(vocab_size):
  1904. piece = tokenizer.IdToPiece(token_id)
  1905. text = piece.encode("utf-8")
  1906. score = tokenizer.GetScore(token_id)
  1907. if text == b"\x00":
  1908. # (TODO): fixme
  1909. # Hack here and replace the \x00 characters.
  1910. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1911. text = "🐉".encode("utf-8")
  1912. toktype = SentencePieceTokenTypes.NORMAL
  1913. if tokenizer.IsUnknown(token_id):
  1914. toktype = SentencePieceTokenTypes.UNKNOWN
  1915. elif tokenizer.IsControl(token_id):
  1916. toktype = SentencePieceTokenTypes.CONTROL
  1917. elif tokenizer.IsUnused(token_id):
  1918. toktype = SentencePieceTokenTypes.UNUSED
  1919. elif tokenizer.IsByte(token_id):
  1920. toktype = SentencePieceTokenTypes.BYTE
  1921. # take care of ununsed raw token
  1922. if piece.startswith('[UNUSED'):
  1923. toktype = SentencePieceTokenTypes.UNUSED
  1924. tokens.append(text)
  1925. scores.append(score)
  1926. toktypes.append(toktype)
  1927. added_tokens_file = self.dir_model / 'added_tokens.json'
  1928. if added_tokens_file.is_file():
  1929. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1930. added_tokens_json = json.load(f)
  1931. for key in added_tokens_json:
  1932. tokens.append(key.encode("utf-8"))
  1933. scores.append(-1000.0)
  1934. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1935. chat_eos_token = '<|im_end|>'
  1936. chat_eos_token_id = None
  1937. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1938. if tokenizer_config_file.is_file():
  1939. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1940. tokenizer_config_json = json.load(f)
  1941. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1942. for token_id, foken_data in added_tokens_decoder.items():
  1943. token_id = int(token_id)
  1944. token = foken_data["content"]
  1945. if token == chat_eos_token:
  1946. chat_eos_token_id = token_id
  1947. token = token.encode("utf-8")
  1948. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1949. if tokens[token_id] != token:
  1950. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1951. tokens[token_id] = token
  1952. scores[token_id] = -1000.0
  1953. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1954. if foken_data.get("special"):
  1955. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1956. tokenizer_file = self.dir_model / 'tokenizer.json'
  1957. if tokenizer_file.is_file():
  1958. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1959. tokenizer_json = json.load(f)
  1960. added_tokens = tokenizer_json.get("added_tokens", [])
  1961. for foken_data in added_tokens:
  1962. token_id = int(foken_data["id"])
  1963. token = foken_data["content"]
  1964. if token == chat_eos_token:
  1965. chat_eos_token_id = token_id
  1966. token = token.encode("utf-8")
  1967. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1968. if tokens[token_id] != token:
  1969. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1970. tokens[token_id] = token
  1971. scores[token_id] = -1000.0
  1972. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1973. if foken_data.get("special"):
  1974. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1975. self.gguf_writer.add_tokenizer_model("llama")
  1976. self.gguf_writer.add_tokenizer_pre("default")
  1977. self.gguf_writer.add_token_list(tokens)
  1978. self.gguf_writer.add_token_scores(scores)
  1979. self.gguf_writer.add_token_types(toktypes)
  1980. self.gguf_writer.add_add_space_prefix(add_prefix)
  1981. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1982. old_eos = special_vocab.special_token_ids["eos"]
  1983. if chat_eos_token_id is not None:
  1984. # For the chat model, we replace the eos with '<|im_end|>'.
  1985. # TODO: this is a hack, should be fixed
  1986. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1987. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1988. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1989. " in chat mode so that the conversation can end normally.")
  1990. special_vocab.add_to_gguf(self.gguf_writer)
  1991. def set_gguf_parameters(self):
  1992. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1993. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1994. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1995. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1996. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1997. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1998. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1999. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2000. self.gguf_writer.add_file_type(self.ftype)
  2001. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2002. if self.hparams["rope_scaling"].get("type") == "linear":
  2003. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2004. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2006. num_heads = self.hparams["num_attention_heads"]
  2007. num_kv_heads = self.hparams["num_key_value_heads"]
  2008. n_embd = self.hparams["hidden_size"]
  2009. q_per_kv = num_heads // num_kv_heads
  2010. head_dim = n_embd // num_heads
  2011. num_groups = num_heads // q_per_kv
  2012. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2013. qkv = data_torch
  2014. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2015. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2016. # The model weights of q and k equire additional reshape.
  2017. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2018. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2019. v = v.reshape((-1, v.shape[-1]))
  2020. return [
  2021. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2022. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2023. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2024. ]
  2025. else:
  2026. return [(self.map_tensor_name(name), data_torch)]
  2027. @Model.register("BertModel", "CamembertModel")
  2028. class BertModel(Model):
  2029. model_arch = gguf.MODEL_ARCH.BERT
  2030. def __init__(self, *args, **kwargs):
  2031. super().__init__(*args, **kwargs)
  2032. self.vocab_size = None
  2033. def set_gguf_parameters(self):
  2034. super().set_gguf_parameters()
  2035. self.gguf_writer.add_causal_attention(False)
  2036. # get pooling path
  2037. pooling_path = None
  2038. module_path = self.dir_model / "modules.json"
  2039. if module_path.is_file():
  2040. with open(module_path, encoding="utf-8") as f:
  2041. modules = json.load(f)
  2042. for mod in modules:
  2043. if mod["type"] == "sentence_transformers.models.Pooling":
  2044. pooling_path = mod["path"]
  2045. break
  2046. # get pooling type
  2047. if pooling_path is not None:
  2048. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2049. pooling = json.load(f)
  2050. if pooling["pooling_mode_mean_tokens"]:
  2051. pooling_type = gguf.PoolingType.MEAN
  2052. elif pooling["pooling_mode_cls_token"]:
  2053. pooling_type = gguf.PoolingType.CLS
  2054. else:
  2055. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2056. self.gguf_writer.add_pooling_type(pooling_type)
  2057. def set_vocab(self):
  2058. tokens, toktypes, tokpre = self.get_vocab_base()
  2059. self.vocab_size = len(tokens)
  2060. # we need this to validate the size of the token_type embeddings
  2061. # though currently we are passing all zeros to the token_type embeddings
  2062. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  2063. # convert to phantom space vocab
  2064. def phantom(tok):
  2065. if tok.startswith("[") and tok.endswith("]"):
  2066. return tok
  2067. if tok.startswith("##"):
  2068. return tok[2:]
  2069. return "\u2581" + tok
  2070. tokens = list(map(phantom, tokens))
  2071. # add vocab to gguf
  2072. self.gguf_writer.add_tokenizer_model("bert")
  2073. self.gguf_writer.add_tokenizer_pre(tokpre)
  2074. self.gguf_writer.add_token_list(tokens)
  2075. self.gguf_writer.add_token_types(toktypes)
  2076. # handle special tokens
  2077. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2078. special_vocab.add_to_gguf(self.gguf_writer)
  2079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2080. del bid # unused
  2081. # we are only using BERT for embeddings so we don't need the pooling layer
  2082. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2083. return [] # we don't need these
  2084. return [(self.map_tensor_name(name), data_torch)]
  2085. @Model.register("NomicBertModel")
  2086. class NomicBertModel(BertModel):
  2087. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2088. def __init__(self, *args, **kwargs):
  2089. super().__init__(*args, **kwargs)
  2090. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2091. self.hparams["n_ctx"] = 2048
  2092. # SwigLU activation
  2093. assert self.hparams["activation_function"] == "swiglu"
  2094. # this doesn't do anything in the HF version
  2095. assert self.hparams["causal"] is False
  2096. # no bias tensors
  2097. assert self.hparams["qkv_proj_bias"] is False
  2098. assert self.hparams["mlp_fc1_bias"] is False
  2099. assert self.hparams["mlp_fc2_bias"] is False
  2100. # norm at end of layer
  2101. assert self.hparams["prenorm"] is False
  2102. # standard RoPE
  2103. assert self.hparams["rotary_emb_fraction"] == 1.0
  2104. assert self.hparams["rotary_emb_interleaved"] is False
  2105. assert self.hparams["rotary_emb_scale_base"] is None
  2106. def set_gguf_parameters(self):
  2107. super().set_gguf_parameters()
  2108. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2109. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2110. class XLMRobertaModel(BertModel):
  2111. model_arch = gguf.MODEL_ARCH.BERT
  2112. def __init__(self, *args, **kwargs):
  2113. super().__init__(*args, **kwargs)
  2114. # we need the pad_token_id to know how to chop down position_embd matrix
  2115. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2116. self._position_offset = 1 + pad_token_id
  2117. if "max_position_embeddings" in self.hparams:
  2118. self.hparams["max_position_embeddings"] -= self._position_offset
  2119. else:
  2120. self._position_offset = None
  2121. def set_vocab(self):
  2122. # to avoid TypeError: Descriptors cannot be created directly
  2123. # exception when importing sentencepiece_model_pb2
  2124. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2125. from sentencepiece import SentencePieceProcessor
  2126. from sentencepiece import sentencepiece_model_pb2 as model
  2127. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2128. if not tokenizer_path.is_file():
  2129. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2130. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2131. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2132. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2133. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2134. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2135. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2136. tokenizer = SentencePieceProcessor()
  2137. tokenizer.LoadFromFile(str(tokenizer_path))
  2138. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2139. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2140. scores: list[float] = [-10000.0] * vocab_size
  2141. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2142. for token_id in range(tokenizer.vocab_size()):
  2143. piece = tokenizer.IdToPiece(token_id)
  2144. text = piece.encode("utf-8")
  2145. score = tokenizer.GetScore(token_id)
  2146. toktype = SentencePieceTokenTypes.NORMAL
  2147. if tokenizer.IsUnknown(token_id):
  2148. toktype = SentencePieceTokenTypes.UNKNOWN
  2149. elif tokenizer.IsControl(token_id):
  2150. toktype = SentencePieceTokenTypes.CONTROL
  2151. elif tokenizer.IsUnused(token_id):
  2152. toktype = SentencePieceTokenTypes.UNUSED
  2153. elif tokenizer.IsByte(token_id):
  2154. toktype = SentencePieceTokenTypes.BYTE
  2155. tokens[token_id] = text
  2156. scores[token_id] = score
  2157. toktypes[token_id] = toktype
  2158. if vocab_size > len(tokens):
  2159. pad_count = vocab_size - len(tokens)
  2160. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2161. for i in range(1, pad_count + 1):
  2162. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2163. scores.append(-1000.0)
  2164. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2165. # realign tokens (see HF tokenizer code)
  2166. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2167. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2168. toktypes = [
  2169. SentencePieceTokenTypes.CONTROL,
  2170. SentencePieceTokenTypes.CONTROL,
  2171. SentencePieceTokenTypes.CONTROL,
  2172. SentencePieceTokenTypes.UNKNOWN,
  2173. ] + toktypes[3:-1]
  2174. self.gguf_writer.add_tokenizer_model("t5")
  2175. self.gguf_writer.add_tokenizer_pre("default")
  2176. self.gguf_writer.add_token_list(tokens)
  2177. self.gguf_writer.add_token_scores(scores)
  2178. self.gguf_writer.add_token_types(toktypes)
  2179. self.gguf_writer.add_add_space_prefix(add_prefix)
  2180. self.gguf_writer.add_token_type_count(1)
  2181. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2182. if precompiled_charsmap:
  2183. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2184. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2185. special_vocab.add_to_gguf(self.gguf_writer)
  2186. self.gguf_writer.add_add_bos_token(True)
  2187. self.gguf_writer.add_add_eos_token(True)
  2188. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2189. # if name starts with "roberta.", remove the prefix
  2190. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2191. if name.startswith("roberta."):
  2192. name = name[8:]
  2193. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2194. if name == "embeddings.position_embeddings.weight":
  2195. if self._position_offset is not None:
  2196. data_torch = data_torch[self._position_offset:,:]
  2197. return super().modify_tensors(data_torch, name, bid)
  2198. @Model.register("GemmaForCausalLM")
  2199. class GemmaModel(Model):
  2200. model_arch = gguf.MODEL_ARCH.GEMMA
  2201. def set_vocab(self):
  2202. self._set_vocab_sentencepiece()
  2203. # TODO: these special tokens should be exported only for the CodeGemma family
  2204. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2205. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2206. special_vocab._set_special_token("prefix", 67)
  2207. special_vocab._set_special_token("suffix", 69)
  2208. special_vocab._set_special_token("middle", 68)
  2209. special_vocab._set_special_token("fsep", 70)
  2210. special_vocab._set_special_token("eot", 107)
  2211. special_vocab.chat_template = None # do not add it twice
  2212. special_vocab.add_to_gguf(self.gguf_writer)
  2213. self.gguf_writer.add_add_space_prefix(False)
  2214. def set_gguf_parameters(self):
  2215. hparams = self.hparams
  2216. block_count = hparams["num_hidden_layers"]
  2217. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2218. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2219. self.gguf_writer.add_block_count(block_count)
  2220. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2221. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2222. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2223. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2224. self.gguf_writer.add_key_length(hparams["head_dim"])
  2225. self.gguf_writer.add_value_length(hparams["head_dim"])
  2226. self.gguf_writer.add_file_type(self.ftype)
  2227. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2228. del bid # unused
  2229. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2230. # To prevent errors, skip loading lm_head.weight.
  2231. if name == "lm_head.weight":
  2232. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2233. return []
  2234. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2235. if name.endswith("norm.weight"):
  2236. data_torch = data_torch + 1
  2237. return [(self.map_tensor_name(name), data_torch)]
  2238. @Model.register("Gemma2ForCausalLM")
  2239. class Gemma2Model(Model):
  2240. model_arch = gguf.MODEL_ARCH.GEMMA2
  2241. def set_vocab(self):
  2242. self._set_vocab_sentencepiece()
  2243. self.gguf_writer.add_add_space_prefix(False)
  2244. def set_gguf_parameters(self):
  2245. hparams = self.hparams
  2246. block_count = hparams["num_hidden_layers"]
  2247. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2248. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2249. self.gguf_writer.add_block_count(block_count)
  2250. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2251. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2252. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2253. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2254. self.gguf_writer.add_key_length(hparams["head_dim"])
  2255. self.gguf_writer.add_value_length(hparams["head_dim"])
  2256. self.gguf_writer.add_file_type(self.ftype)
  2257. self.gguf_writer.add_attn_logit_softcapping(
  2258. self.hparams["attn_logit_softcapping"]
  2259. )
  2260. self.gguf_writer.add_final_logit_softcapping(
  2261. self.hparams["final_logit_softcapping"]
  2262. )
  2263. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2264. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2265. del bid # unused
  2266. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2267. # To prevent errors, skip loading lm_head.weight.
  2268. if name == "lm_head.weight":
  2269. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2270. return []
  2271. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2272. if name.endswith("norm.weight"):
  2273. data_torch = data_torch + 1
  2274. return [(self.map_tensor_name(name), data_torch)]
  2275. @Model.register("Starcoder2ForCausalLM")
  2276. class StarCoder2Model(Model):
  2277. model_arch = gguf.MODEL_ARCH.STARCODER2
  2278. @Model.register("Rwkv6ForCausalLM")
  2279. class Rwkv6Model(Model):
  2280. model_arch = gguf.MODEL_ARCH.RWKV6
  2281. def set_vocab(self):
  2282. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2283. vocab_size = self.hparams.get("vocab_size", 65536)
  2284. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2285. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2286. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2287. lines = f.readlines()
  2288. for line in lines:
  2289. parts = line.split(' ')
  2290. assert len(parts) >= 3
  2291. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2292. token = token.encode("utf-8") if isinstance(token, str) else token
  2293. assert isinstance(token, bytes)
  2294. assert len(token) == token_len
  2295. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2296. tokens.append(token_text.encode("utf-8"))
  2297. toktypes.append(gguf.TokenType.NORMAL)
  2298. remainder = vocab_size - len(tokens)
  2299. assert remainder >= 0
  2300. for i in range(len(tokens), vocab_size):
  2301. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2302. toktypes.append(gguf.TokenType.UNUSED)
  2303. self.gguf_writer.add_tokenizer_model("rwkv")
  2304. self.gguf_writer.add_token_list(tokens)
  2305. self.gguf_writer.add_token_types(toktypes)
  2306. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2307. special_vocab.add_to_gguf(self.gguf_writer)
  2308. def set_gguf_parameters(self):
  2309. block_count = self.hparams["num_hidden_layers"]
  2310. head_size = self.hparams["head_size"]
  2311. hidden_size = self.hparams["hidden_size"]
  2312. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2313. rescale_every_n_layers = self.hparams["rescale_every"]
  2314. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2315. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2316. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2317. # RWKV isn't context limited
  2318. self.gguf_writer.add_context_length(1048576)
  2319. self.gguf_writer.add_embedding_length(hidden_size)
  2320. self.gguf_writer.add_block_count(block_count)
  2321. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2322. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2323. self.gguf_writer.add_wkv_head_size(head_size)
  2324. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2325. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2326. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2327. self.gguf_writer.add_file_type(self.ftype)
  2328. # required by llama.cpp, unused
  2329. self.gguf_writer.add_head_count(0)
  2330. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2331. new_name = self.map_tensor_name(name)
  2332. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2333. new_name += ".weight"
  2334. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2335. data_torch = data_torch.transpose(0, 1)
  2336. if new_name.endswith("time_mix_w2.weight"):
  2337. data_torch = data_torch.permute(0, 2, 1)
  2338. rescale_every_n_layers = self.hparams["rescale_every"]
  2339. if rescale_every_n_layers > 0:
  2340. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2341. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2342. yield (new_name, data_torch)
  2343. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2344. class MambaModel(Model):
  2345. model_arch = gguf.MODEL_ARCH.MAMBA
  2346. def set_vocab(self):
  2347. vocab_size = self.hparams["vocab_size"]
  2348. # Round vocab size to next multiple of 8
  2349. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2350. # pad using ceiling division
  2351. # ref: https://stackoverflow.com/a/17511341/22827863
  2352. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2353. self.hparams["vocab_size"] = vocab_size
  2354. if (self.dir_model / "tokenizer.json").is_file():
  2355. self._set_vocab_gpt2()
  2356. elif (self.dir_model / "tokenizer.model").is_file():
  2357. self._set_vocab_sentencepiece()
  2358. else:
  2359. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2360. self._set_vocab_builtin("gpt-neox", vocab_size)
  2361. def set_gguf_parameters(self):
  2362. d_model = self.find_hparam(["hidden_size", "d_model"])
  2363. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2364. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2365. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2366. # ceiling division
  2367. # ref: https://stackoverflow.com/a/17511341/22827863
  2368. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2369. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2370. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2371. use_dt_b_c_norm = False
  2372. # For falconmamba we do apply RMS norm on B / DT and C layers
  2373. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2374. use_dt_b_c_norm = True
  2375. # Fail early for models which don't have a block expansion factor of 2
  2376. assert d_inner == 2 * d_model
  2377. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2378. self.gguf_writer.add_embedding_length(d_model)
  2379. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2380. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2381. self.gguf_writer.add_block_count(self.block_count)
  2382. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2383. self.gguf_writer.add_ssm_inner_size(d_inner)
  2384. self.gguf_writer.add_ssm_state_size(d_state)
  2385. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2386. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2387. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2388. self.gguf_writer.add_file_type(self.ftype)
  2389. _tok_embd = None
  2390. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2391. del bid # unused
  2392. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2393. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2394. new_name = self.map_tensor_name(name)
  2395. if name.endswith(".A_log"):
  2396. logger.debug("A_log --> A ==> " + new_name)
  2397. data_torch = -torch.exp(data_torch)
  2398. # assuming token_embd.weight is seen before output.weight
  2399. if self._tok_embd is not None and new_name == output_name:
  2400. if torch.equal(self._tok_embd, data_torch):
  2401. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2402. return []
  2403. elif new_name == tok_embd_name:
  2404. self._tok_embd = data_torch
  2405. return [(new_name, data_torch)]
  2406. @Model.register("CohereForCausalLM")
  2407. class CommandR2Model(Model):
  2408. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2409. def __init__(self, *args, **kwargs):
  2410. super().__init__(*args, **kwargs)
  2411. # max_position_embeddings = 8192 in config.json but model was actually
  2412. # trained on 128k context length
  2413. # aya-23 models don't have model_max_length specified
  2414. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2415. def set_gguf_parameters(self):
  2416. super().set_gguf_parameters()
  2417. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2418. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2419. @Model.register("OlmoForCausalLM")
  2420. @Model.register("OLMoForCausalLM")
  2421. class OlmoModel(Model):
  2422. model_arch = gguf.MODEL_ARCH.OLMO
  2423. def set_gguf_parameters(self):
  2424. super().set_gguf_parameters()
  2425. self.gguf_writer.add_layer_norm_eps(1e-5)
  2426. clip_qkv = self.hparams.get("clip_qkv")
  2427. if clip_qkv is not None:
  2428. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2429. # Same as super class, but permuting q_proj, k_proj
  2430. # Copied from: LlamaModel
  2431. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2432. del bid # unused
  2433. n_head = self.hparams["num_attention_heads"]
  2434. n_kv_head = self.hparams.get("num_key_value_heads")
  2435. if name.endswith("q_proj.weight"):
  2436. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2437. if name.endswith("k_proj.weight"):
  2438. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2439. return [(self.map_tensor_name(name), data_torch)]
  2440. @Model.register("OlmoeForCausalLM")
  2441. class OlmoeModel(Model):
  2442. model_arch = gguf.MODEL_ARCH.OLMOE
  2443. def set_gguf_parameters(self):
  2444. super().set_gguf_parameters()
  2445. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2446. if (n_experts := self.hparams.get("num_experts")) is not None:
  2447. self.gguf_writer.add_expert_count(n_experts)
  2448. _experts: list[dict[str, Tensor]] | None = None
  2449. # Copied from: Qwen2MoeModel
  2450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2451. # process the experts separately
  2452. if name.find("experts") != -1:
  2453. n_experts = self.hparams["num_experts"]
  2454. assert bid is not None
  2455. if self._experts is None:
  2456. self._experts = [{} for _ in range(self.block_count)]
  2457. self._experts[bid][name] = data_torch
  2458. if len(self._experts[bid]) >= n_experts * 3:
  2459. tensors: list[tuple[str, Tensor]] = []
  2460. # merge the experts into a single 3d tensor
  2461. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2462. datas: list[Tensor] = []
  2463. for xid in range(n_experts):
  2464. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2465. datas.append(self._experts[bid][ename])
  2466. del self._experts[bid][ename]
  2467. data_torch = torch.stack(datas, dim=0)
  2468. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2469. new_name = self.map_tensor_name(merged_name)
  2470. tensors.append((new_name, data_torch))
  2471. return tensors
  2472. else:
  2473. return []
  2474. return [(self.map_tensor_name(name), data_torch)]
  2475. # Copied from: Qwen2MoeModel
  2476. def prepare_tensors(self):
  2477. super().prepare_tensors()
  2478. if self._experts is not None:
  2479. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2480. experts = [k for d in self._experts for k in d.keys()]
  2481. if len(experts) > 0:
  2482. raise ValueError(f"Unprocessed experts: {experts}")
  2483. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2484. class JinaBertV2Model(BertModel):
  2485. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2486. def __init__(self, *args, **kwargs):
  2487. super().__init__(*args, **kwargs)
  2488. self.intermediate_size = self.hparams["intermediate_size"]
  2489. def get_tensors(self):
  2490. for name, data in super().get_tensors():
  2491. if 'gated_layer' in name:
  2492. d1 = data[:self.intermediate_size, :]
  2493. name1 = name.replace('gated_layers', 'gated_layers_w')
  2494. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2495. d2 = data[self.intermediate_size:, :]
  2496. name2 = name.replace('gated_layers', 'gated_layers_v')
  2497. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2498. yield name1, d1
  2499. yield name2, d2
  2500. continue
  2501. yield name, data
  2502. def set_vocab(self):
  2503. tokenizer_class = 'BertTokenizer'
  2504. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2505. tokenizer_class = json.load(f)['tokenizer_class']
  2506. if tokenizer_class == 'BertTokenizer':
  2507. super().set_vocab()
  2508. elif tokenizer_class == 'RobertaTokenizer':
  2509. self._set_vocab_gpt2()
  2510. self.gguf_writer.add_token_type_count(2)
  2511. else:
  2512. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2513. self.gguf_writer.add_add_bos_token(True)
  2514. self.gguf_writer.add_add_eos_token(True)
  2515. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2516. # if name starts with "bert.", remove the prefix
  2517. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2518. if name.startswith("bert."):
  2519. name = name[5:]
  2520. return super().modify_tensors(data_torch, name, bid)
  2521. @Model.register("OpenELMForCausalLM")
  2522. class OpenELMModel(Model):
  2523. model_arch = gguf.MODEL_ARCH.OPENELM
  2524. @staticmethod
  2525. def _make_divisible(v: float | int, divisor: int) -> int:
  2526. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2527. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2528. # Make sure that round down does not go down by more than 10%.
  2529. if new_v < 0.9 * v:
  2530. new_v += divisor
  2531. return new_v
  2532. def __init__(self, *args, **kwargs):
  2533. super().__init__(*args, **kwargs)
  2534. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2535. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2536. self._n_embd: int = self.hparams["model_dim"]
  2537. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2538. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2539. self._ffn_dims: list[int] = [
  2540. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2541. for multiplier in ffn_multipliers
  2542. ]
  2543. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2544. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2545. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2546. def set_vocab(self):
  2547. try:
  2548. self._set_vocab_sentencepiece()
  2549. except FileNotFoundError:
  2550. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2551. def set_gguf_parameters(self):
  2552. n_embd = self._n_embd
  2553. head_dim = self.hparams["head_dim"]
  2554. rot_pct = 1.0
  2555. assert self.block_count == len(self._num_kv_heads)
  2556. assert self.block_count == len(self._num_query_heads)
  2557. assert self.block_count == len(self._ffn_dims)
  2558. self.gguf_writer.add_block_count(self.block_count)
  2559. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2560. self.gguf_writer.add_embedding_length(n_embd)
  2561. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2562. self.gguf_writer.add_head_count(self._num_query_heads)
  2563. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2564. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2565. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2566. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2567. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2568. self.gguf_writer.add_key_length(head_dim)
  2569. self.gguf_writer.add_value_length(head_dim)
  2570. self.gguf_writer.add_file_type(self.ftype)
  2571. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2572. if "n_layers" in keys:
  2573. return self.hparams["num_transformer_layers"]
  2574. return super().find_hparam(keys, optional)
  2575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2576. # split ff
  2577. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2578. ff_dim = self._ffn_dims[bid]
  2579. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2580. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2581. return
  2582. yield (self.map_tensor_name(name), data_torch)
  2583. @Model.register("ArcticForCausalLM")
  2584. class ArcticModel(Model):
  2585. model_arch = gguf.MODEL_ARCH.ARCTIC
  2586. def set_vocab(self):
  2587. # The reason for using a custom implementation here is that the
  2588. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2589. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2590. from sentencepiece import SentencePieceProcessor
  2591. tokenizer_path = self.dir_model / 'tokenizer.model'
  2592. if not tokenizer_path.is_file():
  2593. logger.error(f'Error: Missing {tokenizer_path}')
  2594. sys.exit(1)
  2595. # Read the whole vocabulary from the tokenizer.model file
  2596. tokenizer = SentencePieceProcessor()
  2597. tokenizer.LoadFromFile(str(tokenizer_path))
  2598. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2599. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2600. scores: list[float] = [-10000.0] * vocab_size
  2601. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2602. for token_id in range(tokenizer.vocab_size()):
  2603. piece = tokenizer.IdToPiece(token_id)
  2604. text = piece.encode("utf-8")
  2605. score = tokenizer.GetScore(token_id)
  2606. toktype = SentencePieceTokenTypes.NORMAL
  2607. if tokenizer.IsUnknown(token_id):
  2608. toktype = SentencePieceTokenTypes.UNKNOWN
  2609. elif tokenizer.IsControl(token_id):
  2610. toktype = SentencePieceTokenTypes.CONTROL
  2611. elif tokenizer.IsUnused(token_id):
  2612. toktype = SentencePieceTokenTypes.UNUSED
  2613. elif tokenizer.IsByte(token_id):
  2614. toktype = SentencePieceTokenTypes.BYTE
  2615. tokens[token_id] = text
  2616. scores[token_id] = score
  2617. toktypes[token_id] = toktype
  2618. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2619. # of information about added/redefined tokens and modify them accordingly.
  2620. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2621. if tokenizer_config_file.is_file():
  2622. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2623. tokenizer_config_json = json.load(f)
  2624. if "added_tokens_decoder" in tokenizer_config_json:
  2625. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2626. for token_id, token_json in added_tokens_decoder.items():
  2627. token_id = int(token_id)
  2628. if token_id >= vocab_size:
  2629. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2630. continue
  2631. token_content = token_json["content"]
  2632. token_type = SentencePieceTokenTypes.USER_DEFINED
  2633. token_score = -10000.0
  2634. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2635. # Set the score to 0.0 as in the original tokenizer.model
  2636. if ("special" in token_json) and token_json["special"]:
  2637. if token_content == tokenizer_config_json["unk_token"]:
  2638. token_type = SentencePieceTokenTypes.UNKNOWN
  2639. else:
  2640. token_type = SentencePieceTokenTypes.CONTROL
  2641. token_score = 0.0
  2642. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2643. tokens[token_id] = token_content.encode("utf-8")
  2644. toktypes[token_id] = token_type
  2645. scores[token_id] = token_score
  2646. self.gguf_writer.add_tokenizer_model("llama")
  2647. self.gguf_writer.add_tokenizer_pre("default")
  2648. self.gguf_writer.add_token_list(tokens)
  2649. self.gguf_writer.add_token_scores(scores)
  2650. self.gguf_writer.add_token_types(toktypes)
  2651. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2652. special_vocab.add_to_gguf(self.gguf_writer)
  2653. def set_gguf_parameters(self):
  2654. super().set_gguf_parameters()
  2655. hparams = self.hparams
  2656. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2657. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2658. _experts: list[dict[str, Tensor]] | None = None
  2659. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2660. n_head = self.hparams["num_attention_heads"]
  2661. n_kv_head = self.hparams.get("num_key_value_heads")
  2662. if name.endswith("q_proj.weight"):
  2663. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2664. if name.endswith("k_proj.weight"):
  2665. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2666. # process the experts separately
  2667. if name.find("block_sparse_moe.experts") != -1:
  2668. n_experts = self.hparams["num_local_experts"]
  2669. assert bid is not None
  2670. if self._experts is None:
  2671. self._experts = [{} for _ in range(self.block_count)]
  2672. self._experts[bid][name] = data_torch
  2673. if len(self._experts[bid]) >= n_experts * 3:
  2674. tensors: list[tuple[str, Tensor]] = []
  2675. # merge the experts into a single 3d tensor
  2676. for wid in ["w1", "w2", "w3"]:
  2677. datas: list[Tensor] = []
  2678. for xid in range(n_experts):
  2679. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2680. datas.append(self._experts[bid][ename])
  2681. del self._experts[bid][ename]
  2682. data_torch = torch.stack(datas, dim=0)
  2683. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2684. new_name = self.map_tensor_name(merged_name)
  2685. tensors.append((new_name, data_torch))
  2686. return tensors
  2687. else:
  2688. return []
  2689. return [(self.map_tensor_name(name), data_torch)]
  2690. def prepare_tensors(self):
  2691. super().prepare_tensors()
  2692. if self._experts is not None:
  2693. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2694. experts = [k for d in self._experts for k in d.keys()]
  2695. if len(experts) > 0:
  2696. raise ValueError(f"Unprocessed experts: {experts}")
  2697. @Model.register("DeepseekV2ForCausalLM")
  2698. class DeepseekV2Model(Model):
  2699. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2700. def set_vocab(self):
  2701. self._set_vocab_gpt2()
  2702. def set_gguf_parameters(self):
  2703. super().set_gguf_parameters()
  2704. hparams = self.hparams
  2705. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2706. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2707. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2708. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2709. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2710. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2711. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2712. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2713. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2714. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2715. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2716. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2717. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2718. if self.hparams["rope_scaling"].get("type") == "yarn":
  2719. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2720. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2721. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2722. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2723. _experts: list[dict[str, Tensor]] | None = None
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. # process the experts separately
  2726. if name.find("mlp.experts") != -1:
  2727. n_experts = self.hparams["n_routed_experts"]
  2728. assert bid is not None
  2729. if self._experts is None:
  2730. self._experts = [{} for _ in range(self.block_count)]
  2731. self._experts[bid][name] = data_torch
  2732. if len(self._experts[bid]) >= n_experts * 3:
  2733. tensors: list[tuple[str, Tensor]] = []
  2734. # merge the experts into a single 3d tensor
  2735. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2736. datas: list[Tensor] = []
  2737. for xid in range(n_experts):
  2738. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2739. datas.append(self._experts[bid][ename])
  2740. del self._experts[bid][ename]
  2741. data_torch = torch.stack(datas, dim=0)
  2742. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2743. new_name = self.map_tensor_name(merged_name)
  2744. tensors.append((new_name, data_torch))
  2745. return tensors
  2746. else:
  2747. return []
  2748. return [(self.map_tensor_name(name), data_torch)]
  2749. def prepare_tensors(self):
  2750. super().prepare_tensors()
  2751. if self._experts is not None:
  2752. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2753. experts = [k for d in self._experts for k in d.keys()]
  2754. if len(experts) > 0:
  2755. raise ValueError(f"Unprocessed experts: {experts}")
  2756. @Model.register("T5WithLMHeadModel")
  2757. @Model.register("T5ForConditionalGeneration")
  2758. @Model.register("MT5ForConditionalGeneration")
  2759. @Model.register("UMT5ForConditionalGeneration")
  2760. class T5Model(Model):
  2761. model_arch = gguf.MODEL_ARCH.T5
  2762. def __init__(self, *args, **kwargs):
  2763. super().__init__(*args, **kwargs)
  2764. self.shared_token_embeddings_found = False
  2765. def set_vocab(self):
  2766. # to avoid TypeError: Descriptors cannot be created directly
  2767. # exception when importing sentencepiece_model_pb2
  2768. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2769. from sentencepiece import SentencePieceProcessor
  2770. from sentencepiece import sentencepiece_model_pb2 as model
  2771. tokenizer_path = self.dir_model / 'tokenizer.model'
  2772. # many older models use spiece.model tokenizer model filename
  2773. if not tokenizer_path.is_file():
  2774. tokenizer_path = self.dir_model / 'spiece.model'
  2775. if not tokenizer_path.is_file():
  2776. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2777. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2778. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2779. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2780. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2781. # assure the tokenizer model file name is correct
  2782. assert tokenizer_path.name == 'tokenizer.model'
  2783. return self._set_vocab_sentencepiece()
  2784. else:
  2785. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2786. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2787. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2788. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2789. tokenizer = SentencePieceProcessor()
  2790. tokenizer.LoadFromFile(str(tokenizer_path))
  2791. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2792. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2793. scores: list[float] = [-10000.0] * vocab_size
  2794. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2795. for token_id in range(tokenizer.vocab_size()):
  2796. piece = tokenizer.IdToPiece(token_id)
  2797. text = piece.encode("utf-8")
  2798. score = tokenizer.GetScore(token_id)
  2799. toktype = SentencePieceTokenTypes.NORMAL
  2800. if tokenizer.IsUnknown(token_id):
  2801. toktype = SentencePieceTokenTypes.UNKNOWN
  2802. elif tokenizer.IsControl(token_id):
  2803. toktype = SentencePieceTokenTypes.CONTROL
  2804. elif tokenizer.IsUnused(token_id):
  2805. toktype = SentencePieceTokenTypes.UNUSED
  2806. elif tokenizer.IsByte(token_id):
  2807. toktype = SentencePieceTokenTypes.BYTE
  2808. tokens[token_id] = text
  2809. scores[token_id] = score
  2810. toktypes[token_id] = toktype
  2811. added_tokens_file = self.dir_model / 'added_tokens.json'
  2812. if added_tokens_file.is_file():
  2813. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2814. added_tokens_json = json.load(f)
  2815. for key in added_tokens_json:
  2816. token_id = added_tokens_json[key]
  2817. if token_id >= vocab_size:
  2818. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2819. continue
  2820. tokens[token_id] = key.encode("utf-8")
  2821. scores[token_id] = -1000.0
  2822. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2823. if vocab_size > len(tokens):
  2824. pad_count = vocab_size - len(tokens)
  2825. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2826. for i in range(1, pad_count + 1):
  2827. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2828. scores.append(-1000.0)
  2829. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2830. self.gguf_writer.add_tokenizer_model("t5")
  2831. self.gguf_writer.add_tokenizer_pre("default")
  2832. self.gguf_writer.add_token_list(tokens)
  2833. self.gguf_writer.add_token_scores(scores)
  2834. self.gguf_writer.add_token_types(toktypes)
  2835. self.gguf_writer.add_add_space_prefix(add_prefix)
  2836. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2837. if precompiled_charsmap:
  2838. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2839. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2840. special_vocab.add_to_gguf(self.gguf_writer)
  2841. self.gguf_writer.add_add_bos_token(False)
  2842. self.gguf_writer.add_add_eos_token(True)
  2843. def set_gguf_parameters(self):
  2844. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2845. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2846. n_ctx = 512
  2847. self.gguf_writer.add_context_length(n_ctx)
  2848. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2849. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2850. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2851. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2852. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2853. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2854. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2855. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2856. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2857. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2858. self.gguf_writer.add_file_type(self.ftype)
  2859. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2860. del bid # unused
  2861. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2862. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2863. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2864. # and decoder and ignore the remaining ones.
  2865. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2866. if not self.shared_token_embeddings_found:
  2867. name = "shared.weight"
  2868. self.shared_token_embeddings_found = True
  2869. else:
  2870. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2871. return []
  2872. return [(self.map_tensor_name(name), data_torch)]
  2873. @Model.register("T5EncoderModel")
  2874. class T5EncoderModel(Model):
  2875. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2876. def __init__(self, *args, **kwargs):
  2877. super().__init__(*args, **kwargs)
  2878. self.shared_token_embeddings_found = False
  2879. def set_vocab(self):
  2880. # to avoid TypeError: Descriptors cannot be created directly
  2881. # exception when importing sentencepiece_model_pb2
  2882. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2883. from sentencepiece import SentencePieceProcessor
  2884. from sentencepiece import sentencepiece_model_pb2 as model
  2885. tokenizer_path = self.dir_model / 'tokenizer.model'
  2886. # many older models use spiece.model tokenizer model filename
  2887. if not tokenizer_path.is_file():
  2888. tokenizer_path = self.dir_model / 'spiece.model'
  2889. if not tokenizer_path.is_file():
  2890. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2891. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2892. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2893. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2894. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2895. # assure the tokenizer model file name is correct
  2896. assert tokenizer_path.name == 'tokenizer.model'
  2897. return self._set_vocab_sentencepiece()
  2898. else:
  2899. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2900. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2901. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2902. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2903. tokenizer = SentencePieceProcessor()
  2904. tokenizer.LoadFromFile(str(tokenizer_path))
  2905. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2906. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2907. scores: list[float] = [-10000.0] * vocab_size
  2908. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2909. for token_id in range(tokenizer.vocab_size()):
  2910. piece = tokenizer.IdToPiece(token_id)
  2911. text = piece.encode("utf-8")
  2912. score = tokenizer.GetScore(token_id)
  2913. toktype = SentencePieceTokenTypes.NORMAL
  2914. if tokenizer.IsUnknown(token_id):
  2915. toktype = SentencePieceTokenTypes.UNKNOWN
  2916. elif tokenizer.IsControl(token_id):
  2917. toktype = SentencePieceTokenTypes.CONTROL
  2918. elif tokenizer.IsUnused(token_id):
  2919. toktype = SentencePieceTokenTypes.UNUSED
  2920. elif tokenizer.IsByte(token_id):
  2921. toktype = SentencePieceTokenTypes.BYTE
  2922. tokens[token_id] = text
  2923. scores[token_id] = score
  2924. toktypes[token_id] = toktype
  2925. added_tokens_file = self.dir_model / 'added_tokens.json'
  2926. if added_tokens_file.is_file():
  2927. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2928. added_tokens_json = json.load(f)
  2929. for key in added_tokens_json:
  2930. token_id = added_tokens_json[key]
  2931. if token_id >= vocab_size:
  2932. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2933. continue
  2934. tokens[token_id] = key.encode("utf-8")
  2935. scores[token_id] = -1000.0
  2936. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2937. if vocab_size > len(tokens):
  2938. pad_count = vocab_size - len(tokens)
  2939. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2940. for i in range(1, pad_count + 1):
  2941. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2942. scores.append(-1000.0)
  2943. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2944. self.gguf_writer.add_tokenizer_model("t5")
  2945. self.gguf_writer.add_tokenizer_pre("default")
  2946. self.gguf_writer.add_token_list(tokens)
  2947. self.gguf_writer.add_token_scores(scores)
  2948. self.gguf_writer.add_token_types(toktypes)
  2949. self.gguf_writer.add_add_space_prefix(add_prefix)
  2950. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2951. if precompiled_charsmap:
  2952. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2953. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2954. special_vocab.add_to_gguf(self.gguf_writer)
  2955. self.gguf_writer.add_add_bos_token(False)
  2956. self.gguf_writer.add_add_eos_token(True)
  2957. def set_gguf_parameters(self):
  2958. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2959. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2960. n_ctx = 512
  2961. self.gguf_writer.add_context_length(n_ctx)
  2962. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2963. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2964. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2965. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2966. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2967. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2968. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2969. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2970. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2971. self.gguf_writer.add_file_type(self.ftype)
  2972. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2973. del bid # unused
  2974. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2975. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2976. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2977. # and decoder and ignore the remaining ones.
  2978. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2979. if not self.shared_token_embeddings_found:
  2980. name = "shared.weight"
  2981. self.shared_token_embeddings_found = True
  2982. else:
  2983. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2984. return []
  2985. return [(self.map_tensor_name(name), data_torch)]
  2986. @Model.register("JAISLMHeadModel")
  2987. class JaisModel(Model):
  2988. model_arch = gguf.MODEL_ARCH.JAIS
  2989. def __init__(self, *args, **kwargs):
  2990. super().__init__(*args, **kwargs)
  2991. # SwigLU activation
  2992. assert self.hparams["activation_function"] == "swiglu"
  2993. # ALiBi position embedding
  2994. assert self.hparams["position_embedding_type"] == "alibi"
  2995. # Embeddings scale
  2996. self.embeddings_scale = 1.0
  2997. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2998. self.output_is_wte = False
  2999. if 'mup_embeddings_scale' in self.hparams:
  3000. self.output_is_wte = True # Hack (?)
  3001. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3002. elif 'embeddings_scale' in self.hparams:
  3003. self.embeddings_scale = self.hparams['embeddings_scale']
  3004. else:
  3005. assert False
  3006. self.width_scale = 1.0
  3007. if 'mup_output_alpha' in self.hparams:
  3008. assert 'mup_width_scale' in self.hparams
  3009. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3010. elif 'width_scale' in self.hparams:
  3011. self.width_scale = self.hparams['width_scale']
  3012. else:
  3013. assert False
  3014. self.max_alibi_bias = 8.0
  3015. def set_vocab(self):
  3016. self._set_vocab_gpt2()
  3017. def set_gguf_parameters(self):
  3018. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3019. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3020. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3021. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3022. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3023. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3024. self.gguf_writer.add_file_type(self.ftype)
  3025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3026. del bid # unused
  3027. tensors: list[tuple[str, Tensor]] = []
  3028. # we don't need these
  3029. if name.endswith((".attn.bias")):
  3030. return tensors
  3031. if name.endswith(("relative_pe.slopes")):
  3032. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3033. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3034. # but Jais's PyTorch model simply precalculates the slope values and places them
  3035. # in relative_pes.slopes
  3036. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3037. first_val = float(data_torch[0].item())
  3038. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3039. return tensors
  3040. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3041. data_torch = data_torch.transpose(1, 0)
  3042. new_name = self.map_tensor_name(name)
  3043. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3044. tensors.append((new_name, data_torch * self.embeddings_scale))
  3045. if self.output_is_wte:
  3046. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  3047. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3048. assert not self.output_is_wte
  3049. tensors.append((new_name, data_torch * self.width_scale))
  3050. else:
  3051. tensors.append((new_name, data_torch))
  3052. return tensors
  3053. def prepare_tensors(self):
  3054. super().prepare_tensors()
  3055. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3056. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3057. class ChatGLMModel(Model):
  3058. model_arch = gguf.MODEL_ARCH.CHATGLM
  3059. def set_vocab_chatglm3(self):
  3060. dir_model = self.dir_model
  3061. hparams = self.hparams
  3062. tokens: list[bytes] = []
  3063. toktypes: list[int] = []
  3064. scores: list[float] = []
  3065. from transformers import AutoTokenizer
  3066. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3067. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3068. assert max(tokenizer.get_vocab().values()) < vocab_size
  3069. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3070. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3071. for token_id in range(vocab_size):
  3072. piece = tokenizer._convert_id_to_token(token_id)
  3073. if token_id == 0:
  3074. piece = "<unk>"
  3075. elif token_id == 1:
  3076. piece = "<bos>"
  3077. elif token_id == 2:
  3078. piece = "<eos>"
  3079. text = piece.encode("utf-8")
  3080. score = 0.0
  3081. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3082. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3083. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3084. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3085. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3086. if piece in special_tokens:
  3087. toktype = SentencePieceTokenTypes.CONTROL
  3088. elif len(piece) == 0:
  3089. text = f"[PAD{token_id}]".encode("utf-8")
  3090. toktype = SentencePieceTokenTypes.UNUSED
  3091. else:
  3092. toktype = SentencePieceTokenTypes.USER_DEFINED
  3093. tokens.append(text)
  3094. scores.append(score)
  3095. toktypes.append(toktype)
  3096. continue
  3097. toktype = SentencePieceTokenTypes.NORMAL
  3098. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3099. toktype = SentencePieceTokenTypes.UNKNOWN
  3100. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3101. toktype = SentencePieceTokenTypes.CONTROL
  3102. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3103. toktype = SentencePieceTokenTypes.UNUSED
  3104. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3105. toktype = SentencePieceTokenTypes.BYTE
  3106. tokens.append(text)
  3107. scores.append(score)
  3108. toktypes.append(toktype)
  3109. self.gguf_writer.add_tokenizer_model("llama")
  3110. # glm3 needs prefix and suffix formatted as:
  3111. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3112. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3113. self.gguf_writer.add_token_list(tokens)
  3114. self.gguf_writer.add_token_scores(scores)
  3115. self.gguf_writer.add_token_types(toktypes)
  3116. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3117. special_vocab.add_to_gguf(self.gguf_writer)
  3118. @staticmethod
  3119. def token_bytes_to_string(b):
  3120. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3121. byte_encoder = bytes_to_unicode()
  3122. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3123. @staticmethod
  3124. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3125. parts = [bytes([b]) for b in token]
  3126. while True:
  3127. min_idx = None
  3128. min_rank = None
  3129. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3130. rank = mergeable_ranks.get(pair[0] + pair[1])
  3131. if rank is not None and (min_rank is None or rank < min_rank):
  3132. min_idx = i
  3133. min_rank = rank
  3134. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3135. break
  3136. assert min_idx is not None
  3137. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3138. return parts
  3139. def set_vocab(self):
  3140. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3141. self.set_vocab_chatglm3()
  3142. return
  3143. dir_model = self.dir_model
  3144. hparams = self.hparams
  3145. tokens: list[str] = []
  3146. toktypes: list[int] = []
  3147. from transformers import AutoTokenizer
  3148. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3149. vocab_size = hparams["padded_vocab_size"]
  3150. assert max(tokenizer.get_vocab().values()) < vocab_size
  3151. tokpre = self.get_vocab_base_pre(tokenizer)
  3152. merges = []
  3153. vocab = {}
  3154. mergeable_ranks = tokenizer.mergeable_ranks
  3155. for token, rank in mergeable_ranks.items():
  3156. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3157. if len(token) == 1:
  3158. continue
  3159. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3160. assert len(merged) >= 2 and len(merged) <= 7
  3161. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3162. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3163. added_vocab = tokenizer.get_added_vocab()
  3164. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3165. for i in range(vocab_size):
  3166. if i not in reverse_vocab:
  3167. tokens.append(f"[PAD{i}]")
  3168. toktypes.append(gguf.TokenType.UNUSED)
  3169. elif reverse_vocab[i] in added_vocab:
  3170. tokens.append(reverse_vocab[i])
  3171. if tokenizer.added_tokens_decoder[i].special:
  3172. toktypes.append(gguf.TokenType.CONTROL)
  3173. else:
  3174. toktypes.append(gguf.TokenType.USER_DEFINED)
  3175. else:
  3176. tokens.append(reverse_vocab[i])
  3177. toktypes.append(gguf.TokenType.NORMAL)
  3178. self.gguf_writer.add_tokenizer_model("gpt2")
  3179. self.gguf_writer.add_tokenizer_pre(tokpre)
  3180. self.gguf_writer.add_token_list(tokens)
  3181. self.gguf_writer.add_token_types(toktypes)
  3182. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3183. special_vocab.merges = merges
  3184. # only add special tokens when they were not already loaded from config.json
  3185. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3186. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3187. # this one is usually not in config.json anyway
  3188. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3189. special_vocab.add_to_gguf(self.gguf_writer)
  3190. def set_gguf_parameters(self):
  3191. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3192. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3193. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3194. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3195. self.gguf_writer.add_embedding_length(n_embed)
  3196. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3197. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3198. self.gguf_writer.add_head_count(n_head)
  3199. self.gguf_writer.add_head_count_kv(n_head_kv)
  3200. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3201. self.gguf_writer.add_file_type(self.ftype)
  3202. self.gguf_writer.add_rope_dimension_count(64)
  3203. self.gguf_writer.add_add_bos_token(False)
  3204. rope_freq = 10000
  3205. if "rope_ratio" in self.hparams:
  3206. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3207. self.gguf_writer.add_rope_freq_base(rope_freq)
  3208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3209. del bid # unused
  3210. if name.endswith(".rotary_pos_emb.inv_freq"):
  3211. return []
  3212. name = name.removeprefix("transformer.")
  3213. return [(self.map_tensor_name(name), data_torch)]
  3214. @Model.register("NemotronForCausalLM")
  3215. class NemotronModel(Model):
  3216. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3217. def set_vocab(self):
  3218. self._set_vocab_sentencepiece()
  3219. self.gguf_writer.add_pad_token_id(0)
  3220. self.gguf_writer.add_unk_token_id(1)
  3221. def set_gguf_parameters(self):
  3222. super().set_gguf_parameters()
  3223. hparams = self.hparams
  3224. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3225. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3226. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3227. # * Partial RoPE
  3228. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3229. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3230. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3231. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3232. # * RopeScaling for Nemotron
  3233. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3234. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3235. else:
  3236. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3237. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3238. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3239. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3240. # model.layers.{l}.input_layernorm.weight
  3241. # model.layers.{l}.post_attention_layernorm.weight
  3242. # model.norm.weight
  3243. if name.endswith("norm.weight"):
  3244. data_torch = data_torch + 1
  3245. return [(self.map_tensor_name(name), data_torch)]
  3246. @Model.register("ExaoneForCausalLM")
  3247. class ExaoneModel(Model):
  3248. model_arch = gguf.MODEL_ARCH.EXAONE
  3249. def set_gguf_parameters(self):
  3250. hparams = self.hparams
  3251. assert (hparams["activation_function"] == "silu")
  3252. max_position_embeddings = hparams["max_position_embeddings"]
  3253. embed_dim = hparams["hidden_size"]
  3254. num_heads = hparams["num_attention_heads"]
  3255. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3256. layer_norm_eps = hparams["layer_norm_epsilon"]
  3257. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3258. num_layers = hparams["num_layers"]
  3259. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3260. # attention_dropout_rate = hparams["attention_dropout"]
  3261. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3262. # embed_dropout_rate = hparams["embed_dropout"]
  3263. self.gguf_writer.add_embedding_length(embed_dim)
  3264. self.gguf_writer.add_head_count(num_heads)
  3265. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3266. self.gguf_writer.add_context_length(max_position_embeddings)
  3267. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3268. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3269. self.gguf_writer.add_block_count(num_layers)
  3270. self.gguf_writer.add_file_type(self.ftype)
  3271. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3272. self.gguf_writer.add_rope_freq_base(rope_theta)
  3273. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3274. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3275. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3276. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3277. if hparams["rope_scaling"].get("type") == "linear":
  3278. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3279. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3280. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3281. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3282. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3283. base = self.hparams.get("rope_theta", 10000.0)
  3284. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3285. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3286. factor = rope_scaling.get("factor", 8.0)
  3287. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3288. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3289. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3290. low_freq_wavelen = old_context_len / low_freq_factor
  3291. high_freq_wavelen = old_context_len / high_freq_factor
  3292. assert low_freq_wavelen != high_freq_wavelen
  3293. rope_factors = []
  3294. for freq in freqs:
  3295. wavelen = 2 * math.pi / freq
  3296. if wavelen < high_freq_wavelen:
  3297. rope_factors.append(1)
  3298. elif wavelen > low_freq_wavelen:
  3299. rope_factors.append(factor)
  3300. else:
  3301. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3302. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3303. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3304. @Model.register("GraniteForCausalLM")
  3305. class GraniteModel(LlamaModel):
  3306. """Conversion for IBM's GraniteForCausalLM"""
  3307. model_arch = gguf.MODEL_ARCH.GRANITE
  3308. def set_gguf_parameters(self):
  3309. """Granite uses standard llama parameters with the following differences:
  3310. - No head_dim support
  3311. - New multiplier params:
  3312. - attention_scale
  3313. - embedding_scale
  3314. - residual_scale
  3315. - logits_scaling
  3316. """
  3317. if head_dim := self.hparams.pop("head_dim", None):
  3318. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3319. super().set_gguf_parameters()
  3320. # NOTE: Convert _multiplier params to _scale params for naming
  3321. # consistency
  3322. if attention_scale := self.hparams.get("attention_multiplier"):
  3323. self.gguf_writer.add_attention_scale(attention_scale)
  3324. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3325. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3326. self.gguf_writer.add_embedding_scale(embedding_scale)
  3327. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3328. if residual_scale := self.hparams.get("residual_multiplier"):
  3329. self.gguf_writer.add_residual_scale(residual_scale)
  3330. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3331. if logits_scale := self.hparams.get("logits_scaling"):
  3332. self.gguf_writer.add_logit_scale(logits_scale)
  3333. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3334. @Model.register("GraniteMoeForCausalLM")
  3335. class GraniteMoeModel(GraniteModel):
  3336. """Conversion for IBM's GraniteMoeForCausalLM"""
  3337. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3339. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3340. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3341. the hidden size that is then split during forward. To keep compatibility
  3342. with existing mixtral support, we pull them apart here.
  3343. """
  3344. if name.endswith("block_sparse_moe.input_linear.weight"):
  3345. ffn_dim = self.hparams["intermediate_size"]
  3346. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3347. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3348. return [
  3349. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3350. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3351. ]
  3352. return super().modify_tensors(data_torch, name, bid)
  3353. @Model.register("ChameleonForConditionalGeneration")
  3354. @Model.register("ChameleonForCausalLM") # obsolete
  3355. class ChameleonModel(Model):
  3356. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3357. def set_gguf_parameters(self):
  3358. super().set_gguf_parameters()
  3359. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3360. def set_vocab(self):
  3361. self._set_vocab_gpt2()
  3362. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3363. # ignore image tokenizer for now
  3364. # TODO: remove this once image support is implemented for Chameleon
  3365. if name.startswith("model.vqmodel"):
  3366. return []
  3367. n_head = self.hparams["num_attention_heads"]
  3368. n_kv_head = self.hparams.get("num_key_value_heads")
  3369. hidden_dim = self.hparams.get("hidden_size")
  3370. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3371. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3372. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3373. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3374. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3375. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3376. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3377. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3378. return [(self.map_tensor_name(name), data_torch)]
  3379. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3380. @staticmethod
  3381. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3382. head_dim = hidden_dim // n_heads
  3383. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3384. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3385. return data_torch
  3386. ###### CONVERSION LOGIC ######
  3387. # tree of lazy tensors
  3388. class LazyTorchTensor(gguf.LazyBase):
  3389. _tensor_type = torch.Tensor
  3390. # to keep the type-checker happy
  3391. dtype: torch.dtype
  3392. shape: torch.Size
  3393. # only used when converting a torch.Tensor to a np.ndarray
  3394. _dtype_map: dict[torch.dtype, type] = {
  3395. torch.float16: np.float16,
  3396. torch.float32: np.float32,
  3397. }
  3398. # used for safetensors slices
  3399. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3400. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3401. _dtype_str_map: dict[str, torch.dtype] = {
  3402. "F64": torch.float64,
  3403. "F32": torch.float32,
  3404. "BF16": torch.bfloat16,
  3405. "F16": torch.float16,
  3406. # "U64": torch.uint64,
  3407. "I64": torch.int64,
  3408. # "U32": torch.uint32,
  3409. "I32": torch.int32,
  3410. # "U16": torch.uint16,
  3411. "I16": torch.int16,
  3412. "U8": torch.uint8,
  3413. "I8": torch.int8,
  3414. "BOOL": torch.bool,
  3415. "F8_E4M3": torch.float8_e4m3fn,
  3416. "F8_E5M2": torch.float8_e5m2,
  3417. }
  3418. def numpy(self) -> gguf.LazyNumpyTensor:
  3419. dtype = self._dtype_map[self.dtype]
  3420. return gguf.LazyNumpyTensor(
  3421. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3422. args=(self,),
  3423. func=(lambda s: s.numpy())
  3424. )
  3425. @classmethod
  3426. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3427. return torch.empty(size=shape, dtype=dtype, device="meta")
  3428. @classmethod
  3429. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3430. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3431. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3432. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3433. return cast(torch.Tensor, lazy)
  3434. @classmethod
  3435. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3436. del types # unused
  3437. if kwargs is None:
  3438. kwargs = {}
  3439. if func is torch.Tensor.numpy:
  3440. return args[0].numpy()
  3441. return cls._wrap_fn(func)(*args, **kwargs)
  3442. def parse_args() -> argparse.Namespace:
  3443. parser = argparse.ArgumentParser(
  3444. description="Convert a huggingface model to a GGML compatible file")
  3445. parser.add_argument(
  3446. "--vocab-only", action="store_true",
  3447. help="extract only the vocab",
  3448. )
  3449. parser.add_argument(
  3450. "--outfile", type=Path,
  3451. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3452. )
  3453. parser.add_argument(
  3454. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3455. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3456. )
  3457. parser.add_argument(
  3458. "--bigendian", action="store_true",
  3459. help="model is executed on big endian machine",
  3460. )
  3461. parser.add_argument(
  3462. "model", type=Path,
  3463. help="directory containing model file",
  3464. )
  3465. parser.add_argument(
  3466. "--use-temp-file", action="store_true",
  3467. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3468. )
  3469. parser.add_argument(
  3470. "--no-lazy", action="store_true",
  3471. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3472. )
  3473. parser.add_argument(
  3474. "--model-name", type=str, default=None,
  3475. help="name of the model",
  3476. )
  3477. parser.add_argument(
  3478. "--verbose", action="store_true",
  3479. help="increase output verbosity",
  3480. )
  3481. parser.add_argument(
  3482. "--split-max-tensors", type=int, default=0,
  3483. help="max tensors in each split",
  3484. )
  3485. parser.add_argument(
  3486. "--split-max-size", type=str, default="0",
  3487. help="max size per split N(M|G)",
  3488. )
  3489. parser.add_argument(
  3490. "--dry-run", action="store_true",
  3491. help="only print out a split plan and exit, without writing any new files",
  3492. )
  3493. parser.add_argument(
  3494. "--no-tensor-first-split", action="store_true",
  3495. help="do not add tensors to the first split (disabled by default)"
  3496. )
  3497. parser.add_argument(
  3498. "--metadata", type=Path,
  3499. help="Specify the path for an authorship metadata override file"
  3500. )
  3501. return parser.parse_args()
  3502. def split_str_to_n_bytes(split_str: str) -> int:
  3503. if split_str.endswith("K"):
  3504. n = int(split_str[:-1]) * 1000
  3505. elif split_str.endswith("M"):
  3506. n = int(split_str[:-1]) * 1000 * 1000
  3507. elif split_str.endswith("G"):
  3508. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3509. elif split_str.isnumeric():
  3510. n = int(split_str)
  3511. else:
  3512. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3513. if n < 0:
  3514. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3515. return n
  3516. def main() -> None:
  3517. args = parse_args()
  3518. if args.verbose:
  3519. logging.basicConfig(level=logging.DEBUG)
  3520. else:
  3521. logging.basicConfig(level=logging.INFO)
  3522. dir_model = args.model
  3523. if not dir_model.is_dir():
  3524. logger.error(f'Error: {args.model} is not a directory')
  3525. sys.exit(1)
  3526. ftype_map: dict[str, gguf.LlamaFileType] = {
  3527. "f32": gguf.LlamaFileType.ALL_F32,
  3528. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3529. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3530. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3531. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3532. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3533. "auto": gguf.LlamaFileType.GUESSED,
  3534. }
  3535. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3536. if args.use_temp_file and is_split:
  3537. logger.error("Error: Cannot use temp file when splitting")
  3538. sys.exit(1)
  3539. if args.outfile is not None:
  3540. fname_out = args.outfile
  3541. else:
  3542. fname_out = dir_model
  3543. logger.info(f"Loading model: {dir_model.name}")
  3544. hparams = Model.load_hparams(dir_model)
  3545. with torch.inference_mode():
  3546. output_type = ftype_map[args.outtype]
  3547. model_architecture = hparams["architectures"][0]
  3548. try:
  3549. model_class = Model.from_model_architecture(model_architecture)
  3550. except NotImplementedError:
  3551. logger.error(f"Model {model_architecture} is not supported")
  3552. sys.exit(1)
  3553. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3554. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3555. eager=args.no_lazy,
  3556. metadata_override=args.metadata, model_name=args.model_name,
  3557. split_max_tensors=args.split_max_tensors,
  3558. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3559. small_first_shard=args.no_tensor_first_split)
  3560. if args.vocab_only:
  3561. logger.info("Exporting model vocab...")
  3562. model_instance.write_vocab()
  3563. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3564. else:
  3565. logger.info("Exporting model...")
  3566. model_instance.write()
  3567. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3568. logger.info(f"Model successfully exported to {out_path}")
  3569. if __name__ == '__main__':
  3570. main()