ggml.c 741 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898228992290022901229022290322904229052290622907229082290922910229112291222913229142291522916229172291822919229202292122922229232292422925229262292722928229292293022931229322293322934229352293622937229382293922940229412294222943229442294522946229472294822949229502295122952229532295422955229562295722958229592296022961229622296322964229652296622967229682296922970229712297222973229742297522976229772297822979229802298122982229832298422985229862298722988229892299022991229922299322994229952299622997229982299923000230012300223003230042300523006230072300823009230102301123012230132301423015230162301723018230192302023021230222302323024230252302623027230282302923030230312303223033230342303523036230372303823039230402304123042230432304423045230462304723048230492305023051230522305323054230552305623057230582305923060230612306223063230642306523066230672306823069
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_METAL
  28. #include <unistd.h>
  29. #endif
  30. #ifdef __ARM_FEATURE_MATMUL_INT8
  31. #undef GGML_USE_LLAMAFILE
  32. #endif
  33. #ifdef GGML_USE_LLAMAFILE
  34. #include "sgemm.h"
  35. #endif
  36. #if defined(_MSC_VER)
  37. // disable "possible loss of data" to avoid hundreds of casts
  38. // we should just be careful :)
  39. #pragma warning(disable: 4244 4267)
  40. // disable POSIX deprecation warnings
  41. // these functions are never going away, anyway
  42. #pragma warning(disable: 4996)
  43. #endif
  44. #if defined(_WIN32)
  45. #define WIN32_LEAN_AND_MEAN
  46. #ifndef NOMINMAX
  47. #define NOMINMAX
  48. #endif
  49. #include <windows.h>
  50. typedef volatile LONG atomic_int;
  51. typedef atomic_int atomic_bool;
  52. static void atomic_store(atomic_int * ptr, LONG val) {
  53. InterlockedExchange(ptr, val);
  54. }
  55. static LONG atomic_load(atomic_int * ptr) {
  56. return InterlockedCompareExchange(ptr, 0, 0);
  57. }
  58. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  59. return InterlockedExchangeAdd(ptr, inc);
  60. }
  61. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  62. return atomic_fetch_add(ptr, -(dec));
  63. }
  64. typedef HANDLE pthread_t;
  65. typedef DWORD thread_ret_t;
  66. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  67. (void) unused;
  68. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  69. if (handle == NULL)
  70. {
  71. return EAGAIN;
  72. }
  73. *out = handle;
  74. return 0;
  75. }
  76. static int pthread_join(pthread_t thread, void * unused) {
  77. (void) unused;
  78. int ret = (int) WaitForSingleObject(thread, INFINITE);
  79. CloseHandle(thread);
  80. return ret;
  81. }
  82. static int sched_yield (void) {
  83. Sleep (0);
  84. return 0;
  85. }
  86. #else
  87. #include <pthread.h>
  88. #include <stdatomic.h>
  89. typedef void * thread_ret_t;
  90. #include <sys/types.h>
  91. #include <sys/stat.h>
  92. #include <unistd.h>
  93. #endif
  94. #ifdef GGML_USE_CPU_HBM
  95. #include <hbwmalloc.h>
  96. #endif
  97. #if defined(__APPLE__)
  98. #include <TargetConditionals.h>
  99. #endif
  100. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  101. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  102. #include <sys/wait.h>
  103. void ggml_print_backtrace(void) {
  104. /*
  105. #include <execinfo.h>
  106. #include <dlfcn.h>
  107. void * trace[100];
  108. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  109. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  110. */
  111. // backtrack_symbols does not show line numbers, use gdb instead
  112. char attach[32];
  113. snprintf(attach, sizeof(attach), "attach %d", getpid());
  114. int pid = fork();
  115. if (pid == 0) {
  116. execlp("gdb", "gdb", "--batch",
  117. "-ex", "set style enabled on",
  118. "-ex", attach,
  119. "-ex", "bt -frame-info source-and-location",
  120. "-ex", "detach",
  121. "-ex", "quit",
  122. (char *) NULL);
  123. } else {
  124. waitpid(pid, NULL, 0);
  125. }
  126. }
  127. #else
  128. void ggml_print_backtrace(void) {
  129. // platform not supported
  130. }
  131. #endif
  132. /*#define GGML_PERF*/
  133. #define GGML_DEBUG 0
  134. #define GGML_GELU_FP16
  135. #define GGML_GELU_QUICK_FP16
  136. #define GGML_SILU_FP16
  137. // #define GGML_CROSS_ENTROPY_EXP_FP16
  138. // #define GGML_FLASH_ATTN_EXP_FP16
  139. #define GGML_SOFT_MAX_UNROLL 4
  140. #define GGML_VEC_DOT_UNROLL 2
  141. #define GGML_VEC_MAD_UNROLL 32
  142. //
  143. // logging
  144. //
  145. #if (GGML_DEBUG >= 1)
  146. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG(...)
  149. #endif
  150. #if (GGML_DEBUG >= 5)
  151. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  152. #else
  153. #define GGML_PRINT_DEBUG_5(...)
  154. #endif
  155. #if (GGML_DEBUG >= 10)
  156. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  157. #else
  158. #define GGML_PRINT_DEBUG_10(...)
  159. #endif
  160. #define GGML_PRINT(...) printf(__VA_ARGS__)
  161. //
  162. // end of logging block
  163. //
  164. #ifdef GGML_USE_ACCELERATE
  165. // uncomment to use vDSP for soft max computation
  166. // note: not sure if it is actually faster
  167. //#define GGML_SOFT_MAX_ACCELERATE
  168. #endif
  169. #if defined(_MSC_VER) || defined(__MINGW32__)
  170. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  171. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  172. #else
  173. inline static void * ggml_aligned_malloc(size_t size) {
  174. if (size == 0) {
  175. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  176. return NULL;
  177. }
  178. void * aligned_memory = NULL;
  179. #ifdef GGML_USE_CPU_HBM
  180. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  181. #elif GGML_USE_METAL
  182. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  183. #else
  184. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  185. #endif
  186. if (result != 0) {
  187. // Handle allocation failure
  188. const char *error_desc = "unknown allocation error";
  189. switch (result) {
  190. case EINVAL:
  191. error_desc = "invalid alignment value";
  192. break;
  193. case ENOMEM:
  194. error_desc = "insufficient memory";
  195. break;
  196. }
  197. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  198. GGML_ASSERT(false);
  199. return NULL;
  200. }
  201. return aligned_memory;
  202. }
  203. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  204. #ifdef GGML_USE_CPU_HBM
  205. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  206. #else
  207. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  208. #endif
  209. #endif
  210. inline static void * ggml_malloc(size_t size) {
  211. if (size == 0) {
  212. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  213. return NULL;
  214. }
  215. void * result = malloc(size);
  216. if (result == NULL) {
  217. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  218. GGML_ASSERT(false);
  219. }
  220. return result;
  221. }
  222. // calloc
  223. inline static void * ggml_calloc(size_t num, size_t size) {
  224. if (num == 0 || size == 0) {
  225. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  226. return NULL;
  227. }
  228. void * result = calloc(num, size);
  229. if (result == NULL) {
  230. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  231. GGML_ASSERT(false);
  232. }
  233. return result;
  234. }
  235. #define GGML_MALLOC(size) ggml_malloc(size)
  236. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  237. #define GGML_FREE(ptr) free(ptr)
  238. #define UNUSED GGML_UNUSED
  239. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  240. #if defined(GGML_USE_ACCELERATE)
  241. #include <Accelerate/Accelerate.h>
  242. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  243. #include "ggml-opencl.h"
  244. #endif
  245. #elif defined(GGML_USE_OPENBLAS)
  246. #if defined(GGML_BLAS_USE_MKL)
  247. #include <mkl.h>
  248. #else
  249. #include <cblas.h>
  250. #endif
  251. #elif defined(GGML_USE_CLBLAST)
  252. #include "ggml-opencl.h"
  253. #endif
  254. // floating point type used to accumulate sums
  255. typedef double ggml_float;
  256. #undef MIN
  257. #undef MAX
  258. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  259. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  260. //
  261. // global data
  262. //
  263. // precomputed gelu table for f16 (128 KB)
  264. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  265. // precomputed quick gelu table for f16 (128 KB)
  266. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  267. // precomputed silu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  269. // precomputed exp table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  284. return GGML_FP16_TO_FP32(x);
  285. }
  286. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  287. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  291. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  292. return GGML_BF16_TO_FP32(x); // it just left shifts
  293. }
  294. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  295. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  296. return GGML_FP32_TO_BF16(x);
  297. }
  298. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  299. for (int64_t i = 0; i < n; i++) {
  300. y[i] = GGML_FP16_TO_FP32(x[i]);
  301. }
  302. }
  303. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  304. int64_t i = 0;
  305. #if defined(__F16C__)
  306. for (; i + 7 < n; i += 8) {
  307. __m256 x_vec = _mm256_loadu_ps(x + i);
  308. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  309. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  310. }
  311. for(; i + 3 < n; i += 4) {
  312. __m128 x_vec = _mm_loadu_ps(x + i);
  313. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  315. }
  316. #endif
  317. for (; i < n; i++) {
  318. y[i] = GGML_FP32_TO_FP16(x[i]);
  319. }
  320. }
  321. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  322. int64_t i = 0;
  323. #if defined(__AVX512F__)
  324. for (; i + 16 <= n; i += 16) {
  325. _mm512_storeu_ps(y + i,
  326. _mm512_castsi512_ps(
  327. _mm512_slli_epi32(
  328. _mm512_cvtepu16_epi32(
  329. _mm256_loadu_si256(
  330. (const __m256i *)(x + i))),
  331. 16)));
  332. }
  333. #elif defined(__AVX2__)
  334. for (; i + 8 <= n; i += 8) {
  335. _mm256_storeu_ps(y + i,
  336. _mm256_castsi256_ps(
  337. _mm256_slli_epi32(
  338. _mm256_cvtepu16_epi32(
  339. _mm_loadu_si128(
  340. (const __m128i *)(x + i))),
  341. 16)));
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_BF16_TO_FP32(x[i]);
  346. }
  347. }
  348. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  349. int i = 0;
  350. #if defined(__AVX512BF16__)
  351. for (; i + 32 <= n; i += 32) {
  352. _mm512_storeu_ps(
  353. (__m512 *)(y + i),
  354. (__m512)_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  355. _mm512_loadu_ps(x + i)));
  356. }
  357. #endif
  358. for (; i < n; i++) {
  359. y[i] = GGML_FP32_TO_BF16(x[i]);
  360. }
  361. }
  362. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  363. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  364. }
  365. //
  366. // timing
  367. //
  368. #if defined(_MSC_VER) || defined(__MINGW32__)
  369. static int64_t timer_freq, timer_start;
  370. void ggml_time_init(void) {
  371. LARGE_INTEGER t;
  372. QueryPerformanceFrequency(&t);
  373. timer_freq = t.QuadPart;
  374. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  375. // and the uptime is high enough.
  376. // We subtract the program start time to reduce the likelihood of that happening.
  377. QueryPerformanceCounter(&t);
  378. timer_start = t.QuadPart;
  379. }
  380. int64_t ggml_time_ms(void) {
  381. LARGE_INTEGER t;
  382. QueryPerformanceCounter(&t);
  383. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  384. }
  385. int64_t ggml_time_us(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  389. }
  390. #else
  391. void ggml_time_init(void) {}
  392. int64_t ggml_time_ms(void) {
  393. struct timespec ts;
  394. clock_gettime(CLOCK_MONOTONIC, &ts);
  395. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  396. }
  397. int64_t ggml_time_us(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  401. }
  402. #endif
  403. int64_t ggml_cycles(void) {
  404. return clock();
  405. }
  406. int64_t ggml_cycles_per_ms(void) {
  407. return CLOCKS_PER_SEC/1000;
  408. }
  409. #ifdef GGML_PERF
  410. #define ggml_perf_time_ms() ggml_time_ms()
  411. #define ggml_perf_time_us() ggml_time_us()
  412. #define ggml_perf_cycles() ggml_cycles()
  413. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  414. #else
  415. #define ggml_perf_time_ms() 0
  416. #define ggml_perf_time_us() 0
  417. #define ggml_perf_cycles() 0
  418. #define ggml_perf_cycles_per_ms() 0
  419. #endif
  420. //
  421. // cross-platform UTF-8 file paths
  422. //
  423. #ifdef _WIN32
  424. static wchar_t * ggml_mbstowcs(const char * mbs) {
  425. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  426. if (!wlen) {
  427. errno = EINVAL;
  428. return NULL;
  429. }
  430. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  431. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  432. if (!wlen) {
  433. GGML_FREE(wbuf);
  434. errno = EINVAL;
  435. return NULL;
  436. }
  437. return wbuf;
  438. }
  439. #endif
  440. FILE * ggml_fopen(const char * fname, const char * mode) {
  441. #ifdef _WIN32
  442. FILE * file = NULL;
  443. // convert fname (UTF-8)
  444. wchar_t * wfname = ggml_mbstowcs(fname);
  445. if (wfname) {
  446. // convert mode (ANSI)
  447. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  448. wchar_t * wmode_p = wmode;
  449. do {
  450. *wmode_p++ = (wchar_t)*mode;
  451. } while (*mode++);
  452. // open file
  453. file = _wfopen(wfname, wmode);
  454. GGML_FREE(wfname);
  455. GGML_FREE(wmode);
  456. }
  457. return file;
  458. #else
  459. return fopen(fname, mode);
  460. #endif
  461. }
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  478. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  479. [GGML_TYPE_I8] = {
  480. .type_name = "i8",
  481. .blck_size = 1,
  482. .type_size = sizeof(int8_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I16] = {
  486. .type_name = "i16",
  487. .blck_size = 1,
  488. .type_size = sizeof(int16_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I32] = {
  492. .type_name = "i32",
  493. .blck_size = 1,
  494. .type_size = sizeof(int32_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_I64] = {
  498. .type_name = "i64",
  499. .blck_size = 1,
  500. .type_size = sizeof(int64_t),
  501. .is_quantized = false,
  502. },
  503. [GGML_TYPE_F64] = {
  504. .type_name = "f64",
  505. .blck_size = 1,
  506. .type_size = sizeof(double),
  507. .is_quantized = false,
  508. .nrows = 1,
  509. },
  510. [GGML_TYPE_F32] = {
  511. .type_name = "f32",
  512. .blck_size = 1,
  513. .type_size = sizeof(float),
  514. .is_quantized = false,
  515. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  516. .vec_dot_type = GGML_TYPE_F32,
  517. .nrows = 1,
  518. },
  519. [GGML_TYPE_F16] = {
  520. .type_name = "f16",
  521. .blck_size = 1,
  522. .type_size = sizeof(ggml_fp16_t),
  523. .is_quantized = false,
  524. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  525. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  526. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  528. .vec_dot_type = GGML_TYPE_F16,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q4_0] = {
  532. .type_name = "q4_0",
  533. .blck_size = QK4_0,
  534. .type_size = sizeof(block_q4_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  537. .from_float = quantize_row_q4_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  539. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. #if defined (__ARM_FEATURE_MATMUL_INT8)
  542. .nrows = 2,
  543. #else
  544. .nrows = 1,
  545. #endif
  546. },
  547. [GGML_TYPE_Q4_1] = {
  548. .type_name = "q4_1",
  549. .blck_size = QK4_1,
  550. .type_size = sizeof(block_q4_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  553. .from_float = quantize_row_q4_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  555. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. #if defined (__ARM_FEATURE_MATMUL_INT8)
  558. .nrows = 2,
  559. #else
  560. .nrows = 1,
  561. #endif
  562. },
  563. [4] = { // GGML_TYPE_Q4_2
  564. .type_name = "DEPRECATED",
  565. .blck_size = 0,
  566. .type_size = 0,
  567. .is_quantized = false,
  568. .to_float = NULL,
  569. .from_float = NULL,
  570. .from_float_reference = NULL,
  571. .vec_dot = NULL,
  572. .vec_dot_type = GGML_TYPE_COUNT,
  573. .nrows = 1,
  574. },
  575. [5] = { // GGML_TYPE_Q4_3
  576. .type_name = "DEPRECATED",
  577. .blck_size = 0,
  578. .type_size = 0,
  579. .is_quantized = false,
  580. .to_float = NULL,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = NULL,
  584. .vec_dot_type = GGML_TYPE_COUNT,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q5_0] = {
  588. .type_name = "q5_0",
  589. .blck_size = QK5_0,
  590. .type_size = sizeof(block_q5_0),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  593. .from_float = quantize_row_q5_0,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  595. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  596. .vec_dot_type = GGML_TYPE_Q8_0,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q5_1] = {
  600. .type_name = "q5_1",
  601. .blck_size = QK5_1,
  602. .type_size = sizeof(block_q5_1),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  605. .from_float = quantize_row_q5_1,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  607. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  608. .vec_dot_type = GGML_TYPE_Q8_1,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q8_0] = {
  612. .type_name = "q8_0",
  613. .blck_size = QK8_0,
  614. .type_size = sizeof(block_q8_0),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  617. .from_float = quantize_row_q8_0,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  619. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  620. .vec_dot_type = GGML_TYPE_Q8_0,
  621. #if defined (__ARM_FEATURE_MATMUL_INT8)
  622. .nrows = 2,
  623. #else
  624. .nrows = 1,
  625. #endif
  626. },
  627. [GGML_TYPE_Q8_1] = {
  628. .type_name = "q8_1",
  629. .blck_size = QK8_1,
  630. .type_size = sizeof(block_q8_1),
  631. .is_quantized = true,
  632. .from_float = quantize_row_q8_1,
  633. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  634. .vec_dot_type = GGML_TYPE_Q8_1,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q2_K] = {
  638. .type_name = "q2_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q2_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  643. .from_float = quantize_row_q2_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  645. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q3_K] = {
  650. .type_name = "q3_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q3_K),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  655. .from_float = quantize_row_q3_K,
  656. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  657. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q4_K] = {
  662. .type_name = "q4_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q4_K),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  667. .from_float = quantize_row_q4_K,
  668. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  669. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q5_K] = {
  674. .type_name = "q5_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q5_K),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  679. .from_float = quantize_row_q5_K,
  680. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  681. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_Q6_K] = {
  686. .type_name = "q6_K",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_q6_K),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  691. .from_float = quantize_row_q6_K,
  692. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  693. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_XXS] = {
  698. .type_name = "iq2_xxs",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_xxs),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  703. .from_float = NULL,
  704. .from_float_reference = NULL,
  705. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ2_XS] = {
  710. .type_name = "iq2_xs",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq2_xs),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ3_XXS] = {
  722. .type_name = "iq3_xxs",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq3_xxs),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  727. .from_float = quantize_row_iq3_xxs,
  728. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  729. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ3_S] = {
  734. .type_name = "iq3_s",
  735. .blck_size = QK_K,
  736. .type_size = sizeof(block_iq3_s),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  739. .from_float = quantize_row_iq3_s,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  741. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  742. .vec_dot_type = GGML_TYPE_Q8_K,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ2_S] = {
  746. .type_name = "iq2_s",
  747. .blck_size = QK_K,
  748. .type_size = sizeof(block_iq2_s),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  751. .from_float = quantize_row_iq2_s,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  753. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  754. .vec_dot_type = GGML_TYPE_Q8_K,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_IQ1_S] = {
  758. .type_name = "iq1_s",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_iq1_s),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  763. .from_float = NULL,
  764. .from_float_reference = NULL,
  765. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  766. .vec_dot_type = GGML_TYPE_Q8_K,
  767. .nrows = 1,
  768. },
  769. [GGML_TYPE_IQ1_M] = {
  770. .type_name = "iq1_m",
  771. .blck_size = QK_K,
  772. .type_size = sizeof(block_iq1_m),
  773. .is_quantized = true,
  774. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  775. .from_float = NULL,
  776. .from_float_reference = NULL,
  777. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  778. .vec_dot_type = GGML_TYPE_Q8_K,
  779. .nrows = 1,
  780. },
  781. [GGML_TYPE_IQ4_NL] = {
  782. .type_name = "iq4_nl",
  783. .blck_size = QK4_NL,
  784. .type_size = sizeof(block_iq4_nl),
  785. .is_quantized = true,
  786. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  787. .from_float = quantize_row_iq4_nl,
  788. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  789. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  790. .vec_dot_type = GGML_TYPE_Q8_0,
  791. .nrows = 1,
  792. },
  793. [GGML_TYPE_IQ4_XS] = {
  794. .type_name = "iq4_xs",
  795. #if QK_K == 64
  796. .blck_size = QK4_NL,
  797. #else
  798. .blck_size = QK_K,
  799. #endif
  800. .type_size = sizeof(block_iq4_xs),
  801. .is_quantized = true,
  802. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  803. .from_float = quantize_row_iq4_xs,
  804. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  805. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  806. #if QK_K == 64
  807. .vec_dot_type = GGML_TYPE_Q8_0,
  808. #else
  809. .vec_dot_type = GGML_TYPE_Q8_K,
  810. #endif
  811. .nrows = 1,
  812. },
  813. [GGML_TYPE_Q8_K] = {
  814. .type_name = "q8_K",
  815. .blck_size = QK_K,
  816. .type_size = sizeof(block_q8_K),
  817. .is_quantized = true,
  818. .from_float = quantize_row_q8_K,
  819. },
  820. [GGML_TYPE_BF16] = {
  821. .type_name = "bf16",
  822. .blck_size = 1,
  823. .type_size = sizeof(ggml_bf16_t),
  824. .is_quantized = false,
  825. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  826. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  827. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  828. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  829. .vec_dot_type = GGML_TYPE_BF16,
  830. .nrows = 1,
  831. }
  832. };
  833. // For internal test use
  834. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  835. GGML_ASSERT(type < GGML_TYPE_COUNT);
  836. return type_traits[type];
  837. }
  838. //
  839. // simd mappings
  840. //
  841. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  842. // we then implement the fundamental computation operations below using only these macros
  843. // adding support for new architectures requires to define the corresponding SIMD macros
  844. //
  845. // GGML_F32_STEP / GGML_F16_STEP
  846. // number of elements to process in a single step
  847. //
  848. // GGML_F32_EPR / GGML_F16_EPR
  849. // number of elements to fit in a single register
  850. //
  851. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  852. #define GGML_SIMD
  853. // F32 NEON
  854. #define GGML_F32_STEP 16
  855. #define GGML_F32_EPR 4
  856. #define GGML_F32x4 float32x4_t
  857. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  858. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  859. #define GGML_F32x4_LOAD vld1q_f32
  860. #define GGML_F32x4_STORE vst1q_f32
  861. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  862. #define GGML_F32x4_ADD vaddq_f32
  863. #define GGML_F32x4_MUL vmulq_f32
  864. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  865. #define GGML_F32x4_REDUCE(res, x) \
  866. { \
  867. int offset = GGML_F32_ARR >> 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vaddq_f32(x[i], x[offset+i]); \
  870. } \
  871. offset >>= 1; \
  872. for (int i = 0; i < offset; ++i) { \
  873. x[i] = vaddq_f32(x[i], x[offset+i]); \
  874. } \
  875. offset >>= 1; \
  876. for (int i = 0; i < offset; ++i) { \
  877. x[i] = vaddq_f32(x[i], x[offset+i]); \
  878. } \
  879. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  880. }
  881. #define GGML_F32_VEC GGML_F32x4
  882. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  883. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  884. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  885. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  886. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  887. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  888. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  889. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  890. // F16 NEON
  891. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  892. #define GGML_F16_STEP 32
  893. #define GGML_F16_EPR 8
  894. #define GGML_F16x8 float16x8_t
  895. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  896. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  897. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  898. #define GGML_F16x8_STORE vst1q_f16
  899. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  900. #define GGML_F16x8_ADD vaddq_f16
  901. #define GGML_F16x8_MUL vmulq_f16
  902. #define GGML_F16x8_REDUCE(res, x) \
  903. do { \
  904. int offset = GGML_F16_ARR >> 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = vaddq_f16(x[i], x[offset+i]); \
  907. } \
  908. offset >>= 1; \
  909. for (int i = 0; i < offset; ++i) { \
  910. x[i] = vaddq_f16(x[i], x[offset+i]); \
  911. } \
  912. offset >>= 1; \
  913. for (int i = 0; i < offset; ++i) { \
  914. x[i] = vaddq_f16(x[i], x[offset+i]); \
  915. } \
  916. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  917. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  918. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  919. } while (0)
  920. #define GGML_F16_VEC GGML_F16x8
  921. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  922. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  923. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  924. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  925. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  926. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  927. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  928. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  929. #else
  930. // if FP16 vector arithmetic is not supported, we use FP32 instead
  931. // and take advantage of the vcvt_ functions to convert to/from FP16
  932. #define GGML_F16_STEP 16
  933. #define GGML_F16_EPR 4
  934. #define GGML_F32Cx4 float32x4_t
  935. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  936. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  937. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  938. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  939. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  940. #define GGML_F32Cx4_ADD vaddq_f32
  941. #define GGML_F32Cx4_MUL vmulq_f32
  942. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  943. #define GGML_F16_VEC GGML_F32Cx4
  944. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  945. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  946. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  947. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  948. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  949. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  950. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  951. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  952. #endif
  953. #elif defined(__AVX512F__)
  954. #define GGML_SIMD
  955. // F32 AVX512
  956. #define GGML_F32_STEP 64
  957. #define GGML_F32_EPR 16
  958. #define GGML_F32x16 __m512
  959. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  960. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  961. #define GGML_F32x16_LOAD _mm512_loadu_ps
  962. #define GGML_F32x16_STORE _mm512_storeu_ps
  963. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  964. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  965. #define GGML_F32x16_ADD _mm512_add_ps
  966. #define GGML_F32x16_MUL _mm512_mul_ps
  967. #define GGML_F32x16_REDUCE(res, x) \
  968. do { \
  969. int offset = GGML_F32_ARR >> 1; \
  970. for (int i = 0; i < offset; ++i) { \
  971. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  972. } \
  973. offset >>= 1; \
  974. for (int i = 0; i < offset; ++i) { \
  975. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  976. } \
  977. offset >>= 1; \
  978. for (int i = 0; i < offset; ++i) { \
  979. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  980. } \
  981. res = _mm512_reduce_add_ps(x[0]); \
  982. } while (0)
  983. // TODO: is this optimal ?
  984. #define GGML_F32_VEC GGML_F32x16
  985. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  986. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  987. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  988. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  989. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  990. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  991. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  992. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  993. // F16 AVX512
  994. // F16 AVX
  995. #define GGML_F16_STEP 64
  996. #define GGML_F16_EPR 16
  997. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  998. #define GGML_F32Cx16 __m512
  999. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1000. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1001. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1002. // so F16C guard isn't required
  1003. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1004. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1005. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1006. #define GGML_F32Cx16_ADD _mm512_add_ps
  1007. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1008. #define GGML_F32Cx16_REDUCE(res, x) \
  1009. do { \
  1010. int offset = GGML_F32_ARR >> 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. offset >>= 1; \
  1015. for (int i = 0; i < offset; ++i) { \
  1016. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1017. } \
  1018. offset >>= 1; \
  1019. for (int i = 0; i < offset; ++i) { \
  1020. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1021. } \
  1022. res = _mm512_reduce_add_ps(x[0]); \
  1023. } while (0)
  1024. #define GGML_F16_VEC GGML_F32Cx16
  1025. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1026. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1027. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1028. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1029. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1030. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1031. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1032. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1033. #elif defined(__AVX__)
  1034. #define GGML_SIMD
  1035. // F32 AVX
  1036. #define GGML_F32_STEP 32
  1037. #define GGML_F32_EPR 8
  1038. #define GGML_F32x8 __m256
  1039. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1040. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1041. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1042. #define GGML_F32x8_STORE _mm256_storeu_ps
  1043. #if defined(__FMA__)
  1044. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1045. #else
  1046. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1047. #endif
  1048. #define GGML_F32x8_ADD _mm256_add_ps
  1049. #define GGML_F32x8_MUL _mm256_mul_ps
  1050. #define GGML_F32x8_REDUCE(res, x) \
  1051. do { \
  1052. int offset = GGML_F32_ARR >> 1; \
  1053. for (int i = 0; i < offset; ++i) { \
  1054. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1055. } \
  1056. offset >>= 1; \
  1057. for (int i = 0; i < offset; ++i) { \
  1058. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1059. } \
  1060. offset >>= 1; \
  1061. for (int i = 0; i < offset; ++i) { \
  1062. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1063. } \
  1064. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1065. _mm256_extractf128_ps(x[0], 1)); \
  1066. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1067. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1068. } while (0)
  1069. // TODO: is this optimal ?
  1070. #define GGML_F32_VEC GGML_F32x8
  1071. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1072. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1073. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1074. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1075. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1076. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1077. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1078. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1079. // F16 AVX
  1080. #define GGML_F16_STEP 32
  1081. #define GGML_F16_EPR 8
  1082. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1083. #define GGML_F32Cx8 __m256
  1084. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1085. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1086. #if defined(__F16C__)
  1087. // the _mm256_cvt intrinsics require F16C
  1088. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1089. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1090. #else
  1091. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1092. float tmp[8];
  1093. for (int i = 0; i < 8; i++) {
  1094. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1095. }
  1096. return _mm256_loadu_ps(tmp);
  1097. }
  1098. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1099. float arr[8];
  1100. _mm256_storeu_ps(arr, y);
  1101. for (int i = 0; i < 8; i++)
  1102. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1103. }
  1104. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1105. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1106. #endif
  1107. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1108. #define GGML_F32Cx8_ADD _mm256_add_ps
  1109. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1110. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1111. #define GGML_F16_VEC GGML_F32Cx8
  1112. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1113. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1114. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1115. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1116. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1117. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1118. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1119. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1120. #elif defined(__POWER9_VECTOR__)
  1121. #define GGML_SIMD
  1122. // F32 POWER9
  1123. #define GGML_F32_STEP 32
  1124. #define GGML_F32_EPR 4
  1125. #define GGML_F32x4 vector float
  1126. #define GGML_F32x4_ZERO 0.0f
  1127. #define GGML_F32x4_SET1 vec_splats
  1128. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1129. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1130. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1131. #define GGML_F32x4_ADD vec_add
  1132. #define GGML_F32x4_MUL vec_mul
  1133. #define GGML_F32x4_REDUCE(res, x) \
  1134. { \
  1135. int offset = GGML_F32_ARR >> 1; \
  1136. for (int i = 0; i < offset; ++i) { \
  1137. x[i] = vec_add(x[i], x[offset+i]); \
  1138. } \
  1139. offset >>= 1; \
  1140. for (int i = 0; i < offset; ++i) { \
  1141. x[i] = vec_add(x[i], x[offset+i]); \
  1142. } \
  1143. offset >>= 1; \
  1144. for (int i = 0; i < offset; ++i) { \
  1145. x[i] = vec_add(x[i], x[offset+i]); \
  1146. } \
  1147. res = vec_extract(x[0], 0) + \
  1148. vec_extract(x[0], 1) + \
  1149. vec_extract(x[0], 2) + \
  1150. vec_extract(x[0], 3); \
  1151. }
  1152. #define GGML_F32_VEC GGML_F32x4
  1153. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1154. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1155. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1156. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1157. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1158. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1159. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1160. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1161. // F16 POWER9
  1162. #define GGML_F16_STEP GGML_F32_STEP
  1163. #define GGML_F16_EPR GGML_F32_EPR
  1164. #define GGML_F16_VEC GGML_F32x4
  1165. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1166. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1167. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1168. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1169. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1170. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1171. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1172. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1173. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1174. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1175. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1176. #define GGML_F16_VEC_STORE(p, r, i) \
  1177. if (i & 0x1) \
  1178. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1179. r[i - GGML_ENDIAN_BYTE(0)]), \
  1180. 0, p - GGML_F16_EPR)
  1181. #elif defined(__wasm_simd128__)
  1182. #define GGML_SIMD
  1183. // F32 WASM
  1184. #define GGML_F32_STEP 16
  1185. #define GGML_F32_EPR 4
  1186. #define GGML_F32x4 v128_t
  1187. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1188. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1189. #define GGML_F32x4_LOAD wasm_v128_load
  1190. #define GGML_F32x4_STORE wasm_v128_store
  1191. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1192. #define GGML_F32x4_ADD wasm_f32x4_add
  1193. #define GGML_F32x4_MUL wasm_f32x4_mul
  1194. #define GGML_F32x4_REDUCE(res, x) \
  1195. { \
  1196. int offset = GGML_F32_ARR >> 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. offset >>= 1; \
  1201. for (int i = 0; i < offset; ++i) { \
  1202. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1203. } \
  1204. offset >>= 1; \
  1205. for (int i = 0; i < offset; ++i) { \
  1206. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1207. } \
  1208. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1209. wasm_f32x4_extract_lane(x[0], 1) + \
  1210. wasm_f32x4_extract_lane(x[0], 2) + \
  1211. wasm_f32x4_extract_lane(x[0], 3); \
  1212. }
  1213. #define GGML_F32_VEC GGML_F32x4
  1214. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1215. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1216. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1217. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1218. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1219. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1220. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1221. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1222. // F16 WASM
  1223. #define GGML_F16_STEP 16
  1224. #define GGML_F16_EPR 4
  1225. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1226. float tmp[4];
  1227. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1228. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1229. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1230. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1231. return wasm_v128_load(tmp);
  1232. }
  1233. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1234. float tmp[4];
  1235. wasm_v128_store(tmp, x);
  1236. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1237. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1238. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1239. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1240. }
  1241. #define GGML_F16x4 v128_t
  1242. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1243. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1244. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1245. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1246. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1247. #define GGML_F16x4_ADD wasm_f32x4_add
  1248. #define GGML_F16x4_MUL wasm_f32x4_mul
  1249. #define GGML_F16x4_REDUCE(res, x) \
  1250. { \
  1251. int offset = GGML_F16_ARR >> 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. offset >>= 1; \
  1256. for (int i = 0; i < offset; ++i) { \
  1257. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1258. } \
  1259. offset >>= 1; \
  1260. for (int i = 0; i < offset; ++i) { \
  1261. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1262. } \
  1263. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1264. wasm_f32x4_extract_lane(x[0], 1) + \
  1265. wasm_f32x4_extract_lane(x[0], 2) + \
  1266. wasm_f32x4_extract_lane(x[0], 3); \
  1267. }
  1268. #define GGML_F16_VEC GGML_F16x4
  1269. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1270. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1271. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1272. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1273. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1274. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1275. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1276. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1277. #elif defined(__SSE3__)
  1278. #define GGML_SIMD
  1279. // F32 SSE
  1280. #define GGML_F32_STEP 32
  1281. #define GGML_F32_EPR 4
  1282. #define GGML_F32x4 __m128
  1283. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1284. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1285. #define GGML_F32x4_LOAD _mm_loadu_ps
  1286. #define GGML_F32x4_STORE _mm_storeu_ps
  1287. #if defined(__FMA__)
  1288. // TODO: Does this work?
  1289. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1290. #else
  1291. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1292. #endif
  1293. #define GGML_F32x4_ADD _mm_add_ps
  1294. #define GGML_F32x4_MUL _mm_mul_ps
  1295. #define GGML_F32x4_REDUCE(res, x) \
  1296. { \
  1297. int offset = GGML_F32_ARR >> 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. offset >>= 1; \
  1302. for (int i = 0; i < offset; ++i) { \
  1303. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1304. } \
  1305. offset >>= 1; \
  1306. for (int i = 0; i < offset; ++i) { \
  1307. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1308. } \
  1309. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1310. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1311. }
  1312. // TODO: is this optimal ?
  1313. #define GGML_F32_VEC GGML_F32x4
  1314. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1315. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1316. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1317. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1318. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1319. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1320. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1321. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1322. // F16 SSE
  1323. #define GGML_F16_STEP 32
  1324. #define GGML_F16_EPR 4
  1325. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1326. float tmp[4];
  1327. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1328. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1329. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1330. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1331. return _mm_loadu_ps(tmp);
  1332. }
  1333. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1334. float arr[4];
  1335. _mm_storeu_ps(arr, y);
  1336. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1337. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1338. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1339. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1340. }
  1341. #define GGML_F32Cx4 __m128
  1342. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1343. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1344. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1345. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1346. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1347. #define GGML_F32Cx4_ADD _mm_add_ps
  1348. #define GGML_F32Cx4_MUL _mm_mul_ps
  1349. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1350. #define GGML_F16_VEC GGML_F32Cx4
  1351. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1352. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1353. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1354. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1355. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1356. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1357. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1358. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1359. #endif
  1360. // GGML_F32_ARR / GGML_F16_ARR
  1361. // number of registers to use per step
  1362. #ifdef GGML_SIMD
  1363. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1364. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1365. #endif
  1366. //
  1367. // fundamental operations
  1368. //
  1369. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1370. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1371. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1372. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1373. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1374. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1375. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1376. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1377. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1378. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1379. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1380. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1381. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1382. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1383. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1384. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1385. assert(nrc == 1);
  1386. UNUSED(nrc);
  1387. UNUSED(bx);
  1388. UNUSED(by);
  1389. UNUSED(bs);
  1390. #if defined(GGML_SIMD)
  1391. float sumf = 0.0f;
  1392. const int np = (n & ~(GGML_F32_STEP - 1));
  1393. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1394. GGML_F32_VEC ax[GGML_F32_ARR];
  1395. GGML_F32_VEC ay[GGML_F32_ARR];
  1396. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1397. for (int j = 0; j < GGML_F32_ARR; j++) {
  1398. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1399. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1400. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1401. }
  1402. }
  1403. // reduce sum0..sum3 to sum0
  1404. GGML_F32_VEC_REDUCE(sumf, sum);
  1405. // leftovers
  1406. for (int i = np; i < n; ++i) {
  1407. sumf += x[i]*y[i];
  1408. }
  1409. #else
  1410. // scalar
  1411. ggml_float sumf = 0.0;
  1412. for (int i = 0; i < n; ++i) {
  1413. sumf += (ggml_float)(x[i]*y[i]);
  1414. }
  1415. #endif
  1416. *s = sumf;
  1417. }
  1418. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1419. assert(nrc == 1);
  1420. UNUSED(nrc);
  1421. UNUSED(bx);
  1422. UNUSED(by);
  1423. UNUSED(bs);
  1424. int i = 0;
  1425. ggml_float sumf = 0;
  1426. #if defined(__AVX512BF16__)
  1427. __m512 c1 = _mm512_setzero_ps();
  1428. __m512 c2 = _mm512_setzero_ps();
  1429. for (; i + 64 <= n; i += 64) {
  1430. c1 = _mm512_dpbf16_ps(c1, (__m512bh)_mm512_loadu_ps((const float *)(x + i)),
  1431. (__m512bh)_mm512_loadu_ps((const float *)(y + i)));
  1432. c2 = _mm512_dpbf16_ps(c2, (__m512bh)_mm512_loadu_ps((const float *)(x + i + 32)),
  1433. (__m512bh)_mm512_loadu_ps((const float *)(y + i + 32)));
  1434. }
  1435. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1436. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1437. #elif defined(__AVX512F__)
  1438. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1439. __m512 c1 = _mm512_setzero_ps();
  1440. __m512 c2 = _mm512_setzero_ps();
  1441. for (; i + 32 <= n; i += 32) {
  1442. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1443. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1444. }
  1445. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1446. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1447. #undef LOAD
  1448. #elif defined(__AVX2__)
  1449. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1450. __m256 c1 = _mm256_setzero_ps();
  1451. __m256 c2 = _mm256_setzero_ps();
  1452. __m256 c3 = _mm256_setzero_ps();
  1453. __m256 c4 = _mm256_setzero_ps();
  1454. for (; i + 32 <= n; i += 32) {
  1455. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1456. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1457. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1458. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1459. }
  1460. __m128 g;
  1461. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1462. _mm256_add_ps(c2, c4));
  1463. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1464. _mm256_castps256_ps128(c1));
  1465. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1466. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1467. sumf += (ggml_float)_mm_cvtss_f32(g);
  1468. #undef LOAD
  1469. #endif
  1470. for (; i < n; ++i) {
  1471. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1472. GGML_BF16_TO_FP32(y[i]));
  1473. }
  1474. *s = sumf;
  1475. }
  1476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1477. assert(nrc == 1);
  1478. UNUSED(nrc);
  1479. UNUSED(bx);
  1480. UNUSED(by);
  1481. UNUSED(bs);
  1482. ggml_float sumf = 0.0;
  1483. #if defined(GGML_SIMD)
  1484. const int np = (n & ~(GGML_F16_STEP - 1));
  1485. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1486. GGML_F16_VEC ax[GGML_F16_ARR];
  1487. GGML_F16_VEC ay[GGML_F16_ARR];
  1488. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1489. for (int j = 0; j < GGML_F16_ARR; j++) {
  1490. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1491. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1492. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1493. }
  1494. }
  1495. // reduce sum0..sum3 to sum0
  1496. GGML_F16_VEC_REDUCE(sumf, sum);
  1497. // leftovers
  1498. for (int i = np; i < n; ++i) {
  1499. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1500. }
  1501. #else
  1502. for (int i = 0; i < n; ++i) {
  1503. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1504. }
  1505. #endif
  1506. *s = sumf;
  1507. }
  1508. // compute GGML_VEC_DOT_UNROLL dot products at once
  1509. // xs - x row stride in bytes
  1510. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1511. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1512. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1513. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1514. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1515. }
  1516. #if defined(GGML_SIMD)
  1517. const int np = (n & ~(GGML_F16_STEP - 1));
  1518. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1519. GGML_F16_VEC ax[GGML_F16_ARR];
  1520. GGML_F16_VEC ay[GGML_F16_ARR];
  1521. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1522. for (int j = 0; j < GGML_F16_ARR; j++) {
  1523. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1524. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1525. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1526. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1527. }
  1528. }
  1529. }
  1530. // reduce sum0..sum3 to sum0
  1531. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1532. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1533. }
  1534. // leftovers
  1535. for (int i = np; i < n; ++i) {
  1536. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1537. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1538. }
  1539. }
  1540. #else
  1541. for (int i = 0; i < n; ++i) {
  1542. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1543. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1544. }
  1545. }
  1546. #endif
  1547. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1548. s[i] = sumf[i];
  1549. }
  1550. }
  1551. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1552. #if defined(GGML_SIMD)
  1553. const int np = (n & ~(GGML_F32_STEP - 1));
  1554. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1555. GGML_F32_VEC ax[GGML_F32_ARR];
  1556. GGML_F32_VEC ay[GGML_F32_ARR];
  1557. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1558. for (int j = 0; j < GGML_F32_ARR; j++) {
  1559. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1560. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1561. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1562. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1563. }
  1564. }
  1565. // leftovers
  1566. for (int i = np; i < n; ++i) {
  1567. y[i] += x[i]*v;
  1568. }
  1569. #else
  1570. // scalar
  1571. for (int i = 0; i < n; ++i) {
  1572. y[i] += x[i]*v;
  1573. }
  1574. #endif
  1575. }
  1576. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1577. #if defined(GGML_SIMD)
  1578. const int np = (n & ~(GGML_F16_STEP - 1));
  1579. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1580. GGML_F16_VEC ax[GGML_F16_ARR];
  1581. GGML_F16_VEC ay[GGML_F16_ARR];
  1582. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1583. for (int j = 0; j < GGML_F16_ARR; j++) {
  1584. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1585. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1586. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1587. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1588. }
  1589. }
  1590. // leftovers
  1591. for (int i = np; i < n; ++i) {
  1592. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1593. }
  1594. #else
  1595. // scalar
  1596. for (int i = 0; i < n; ++i) {
  1597. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1598. }
  1599. #endif
  1600. }
  1601. // xs and vs are byte strides of x and v
  1602. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1603. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1604. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1605. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1606. x[i] = (const float *) ((const char *) xv + i*xs);
  1607. v[i] = (const float *) ((const char *) vv + i*vs);
  1608. }
  1609. #if defined(GGML_SIMD)
  1610. const int np = (n & ~(GGML_F32_STEP - 1));
  1611. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1612. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1613. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1614. }
  1615. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1616. GGML_F32_VEC ay[GGML_F32_ARR];
  1617. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1618. for (int j = 0; j < GGML_F32_ARR; j++) {
  1619. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1620. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1621. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1622. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1623. }
  1624. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1625. }
  1626. }
  1627. // leftovers
  1628. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1629. for (int i = np; i < n; ++i) {
  1630. y[i] += x[k][i]*v[k][0];
  1631. }
  1632. }
  1633. #else
  1634. // scalar
  1635. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1636. for (int i = 0; i < n; ++i) {
  1637. y[i] += x[k][i]*v[k][0];
  1638. }
  1639. }
  1640. #endif
  1641. }
  1642. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1643. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1644. #if defined(GGML_USE_ACCELERATE)
  1645. vDSP_vsmul(y, 1, &v, y, 1, n);
  1646. #elif defined(GGML_SIMD)
  1647. const int np = (n & ~(GGML_F32_STEP - 1));
  1648. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1649. GGML_F32_VEC ay[GGML_F32_ARR];
  1650. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1651. for (int j = 0; j < GGML_F32_ARR; j++) {
  1652. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1653. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1654. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1655. }
  1656. }
  1657. // leftovers
  1658. for (int i = np; i < n; ++i) {
  1659. y[i] *= v;
  1660. }
  1661. #else
  1662. // scalar
  1663. for (int i = 0; i < n; ++i) {
  1664. y[i] *= v;
  1665. }
  1666. #endif
  1667. }
  1668. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1669. #if defined(GGML_SIMD)
  1670. const int np = (n & ~(GGML_F16_STEP - 1));
  1671. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1672. GGML_F16_VEC ay[GGML_F16_ARR];
  1673. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1674. for (int j = 0; j < GGML_F16_ARR; j++) {
  1675. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1676. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1677. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1678. }
  1679. }
  1680. // leftovers
  1681. for (int i = np; i < n; ++i) {
  1682. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1683. }
  1684. #else
  1685. // scalar
  1686. for (int i = 0; i < n; ++i) {
  1687. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1688. }
  1689. #endif
  1690. }
  1691. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1692. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1693. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1694. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1695. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1696. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1697. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1698. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1699. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1700. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1701. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1702. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1703. // TODO: optimize performance
  1704. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1705. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1706. static const float GELU_COEF_A = 0.044715f;
  1707. static const float GELU_QUICK_COEF = -1.702f;
  1708. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1709. inline static float ggml_gelu_f32(float x) {
  1710. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1711. }
  1712. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1713. const uint16_t * i16 = (const uint16_t *) x;
  1714. for (int i = 0; i < n; ++i) {
  1715. y[i] = ggml_table_gelu_f16[i16[i]];
  1716. }
  1717. }
  1718. #ifdef GGML_GELU_FP16
  1719. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1720. uint16_t t;
  1721. for (int i = 0; i < n; ++i) {
  1722. if (x[i] <= -10.0f) {
  1723. y[i] = 0.0f;
  1724. } else if (x[i] >= 10.0f) {
  1725. y[i] = x[i];
  1726. } else {
  1727. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1728. memcpy(&t, &fp16, sizeof(uint16_t));
  1729. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1730. }
  1731. }
  1732. }
  1733. #else
  1734. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1735. for (int i = 0; i < n; ++i) {
  1736. y[i] = ggml_gelu_f32(x[i]);
  1737. }
  1738. }
  1739. #endif
  1740. inline static float ggml_gelu_quick_f32(float x) {
  1741. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1742. }
  1743. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1744. // const uint16_t * i16 = (const uint16_t *) x;
  1745. // for (int i = 0; i < n; ++i) {
  1746. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1747. // }
  1748. //}
  1749. #ifdef GGML_GELU_QUICK_FP16
  1750. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1751. uint16_t t;
  1752. for (int i = 0; i < n; ++i) {
  1753. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1754. memcpy(&t, &fp16, sizeof(uint16_t));
  1755. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1756. }
  1757. }
  1758. #else
  1759. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1760. for (int i = 0; i < n; ++i) {
  1761. y[i] = ggml_gelu_quick_f32(x[i]);
  1762. }
  1763. }
  1764. #endif
  1765. // Sigmoid Linear Unit (SiLU) function
  1766. inline static float ggml_silu_f32(float x) {
  1767. return x/(1.0f + expf(-x));
  1768. }
  1769. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1770. // const uint16_t * i16 = (const uint16_t *) x;
  1771. // for (int i = 0; i < n; ++i) {
  1772. // y[i] = ggml_table_silu_f16[i16[i]];
  1773. // }
  1774. //}
  1775. #ifdef GGML_SILU_FP16
  1776. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1777. uint16_t t;
  1778. for (int i = 0; i < n; ++i) {
  1779. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1780. memcpy(&t, &fp16, sizeof(uint16_t));
  1781. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1782. }
  1783. }
  1784. #else
  1785. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1786. for (int i = 0; i < n; ++i) {
  1787. y[i] = ggml_silu_f32(x[i]);
  1788. }
  1789. }
  1790. #endif
  1791. inline static float ggml_silu_backward_f32(float x, float dy) {
  1792. const float s = 1.0f/(1.0f + expf(-x));
  1793. return dy*s*(1.0f + x*(1.0f - s));
  1794. }
  1795. #ifdef GGML_SILU_FP16
  1796. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1797. for (int i = 0; i < n; ++i) {
  1798. // we did not use x[i] to compute forward silu but its f16 equivalent
  1799. // take derivative at f16 of x[i]:
  1800. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1801. float usedx = GGML_FP16_TO_FP32(fp16);
  1802. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1803. }
  1804. }
  1805. #else
  1806. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1807. for (int i = 0; i < n; ++i) {
  1808. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1809. }
  1810. }
  1811. #endif
  1812. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1813. #ifndef GGML_USE_ACCELERATE
  1814. ggml_float sum = 0.0;
  1815. for (int i = 0; i < n; ++i) {
  1816. sum += (ggml_float)x[i];
  1817. }
  1818. *s = sum;
  1819. #else
  1820. vDSP_sve(x, 1, s, n);
  1821. #endif
  1822. }
  1823. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1824. ggml_float sum = 0.0;
  1825. for (int i = 0; i < n; ++i) {
  1826. sum += (ggml_float)x[i];
  1827. }
  1828. *s = sum;
  1829. }
  1830. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1831. float sum = 0.0f;
  1832. for (int i = 0; i < n; ++i) {
  1833. sum += GGML_FP16_TO_FP32(x[i]);
  1834. }
  1835. *s = sum;
  1836. }
  1837. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  1838. float sum = 0.0f;
  1839. for (int i = 0; i < n; ++i) {
  1840. sum += GGML_BF16_TO_FP32(x[i]);
  1841. }
  1842. *s = sum;
  1843. }
  1844. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1845. #ifndef GGML_USE_ACCELERATE
  1846. float max = -INFINITY;
  1847. for (int i = 0; i < n; ++i) {
  1848. max = MAX(max, x[i]);
  1849. }
  1850. *s = max;
  1851. #else
  1852. vDSP_maxv(x, 1, s, n);
  1853. #endif
  1854. }
  1855. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1856. ggml_vec_norm_f32(n, s, x);
  1857. *s = 1.f/(*s);
  1858. }
  1859. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1860. float max = -INFINITY;
  1861. int idx = 0;
  1862. for (int i = 0; i < n; ++i) {
  1863. max = MAX(max, x[i]);
  1864. if (max == x[i]) { idx = i; }
  1865. }
  1866. *s = idx;
  1867. }
  1868. //
  1869. // data types
  1870. //
  1871. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1872. "NONE",
  1873. "DUP",
  1874. "ADD",
  1875. "ADD1",
  1876. "ACC",
  1877. "SUB",
  1878. "MUL",
  1879. "DIV",
  1880. "SQR",
  1881. "SQRT",
  1882. "LOG",
  1883. "SUM",
  1884. "SUM_ROWS",
  1885. "MEAN",
  1886. "ARGMAX",
  1887. "REPEAT",
  1888. "REPEAT_BACK",
  1889. "CONCAT",
  1890. "SILU_BACK",
  1891. "NORM",
  1892. "RMS_NORM",
  1893. "RMS_NORM_BACK",
  1894. "GROUP_NORM",
  1895. "MUL_MAT",
  1896. "MUL_MAT_ID",
  1897. "OUT_PROD",
  1898. "SCALE",
  1899. "SET",
  1900. "CPY",
  1901. "CONT",
  1902. "RESHAPE",
  1903. "VIEW",
  1904. "PERMUTE",
  1905. "TRANSPOSE",
  1906. "GET_ROWS",
  1907. "GET_ROWS_BACK",
  1908. "DIAG",
  1909. "DIAG_MASK_INF",
  1910. "DIAG_MASK_ZERO",
  1911. "SOFT_MAX",
  1912. "SOFT_MAX_BACK",
  1913. "ROPE",
  1914. "ROPE_BACK",
  1915. "CLAMP",
  1916. "CONV_TRANSPOSE_1D",
  1917. "IM2COL",
  1918. "CONV_TRANSPOSE_2D",
  1919. "POOL_1D",
  1920. "POOL_2D",
  1921. "UPSCALE",
  1922. "PAD",
  1923. "ARANGE",
  1924. "TIMESTEP_EMBEDDING",
  1925. "ARGSORT",
  1926. "LEAKY_RELU",
  1927. "FLASH_ATTN",
  1928. "FLASH_ATTN_EXT",
  1929. "FLASH_FF",
  1930. "FLASH_ATTN_BACK",
  1931. "SSM_CONV",
  1932. "SSM_SCAN",
  1933. "WIN_PART",
  1934. "WIN_UNPART",
  1935. "GET_REL_POS",
  1936. "ADD_REL_POS",
  1937. "UNARY",
  1938. "MAP_UNARY",
  1939. "MAP_BINARY",
  1940. "MAP_CUSTOM1_F32",
  1941. "MAP_CUSTOM2_F32",
  1942. "MAP_CUSTOM3_F32",
  1943. "MAP_CUSTOM1",
  1944. "MAP_CUSTOM2",
  1945. "MAP_CUSTOM3",
  1946. "CROSS_ENTROPY_LOSS",
  1947. "CROSS_ENTROPY_LOSS_BACK",
  1948. };
  1949. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1950. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1951. "none",
  1952. "x",
  1953. "x+y",
  1954. "x+y",
  1955. "view(x,nb,offset)+=y->x",
  1956. "x-y",
  1957. "x*y",
  1958. "x/y",
  1959. "x^2",
  1960. "√x",
  1961. "log(x)",
  1962. "Σx",
  1963. "Σx_k",
  1964. "Σx/n",
  1965. "argmax(x)",
  1966. "repeat(x)",
  1967. "repeat_back(x)",
  1968. "concat(x, y)",
  1969. "silu_back(x)",
  1970. "norm(x)",
  1971. "rms_norm(x)",
  1972. "rms_norm_back(x)",
  1973. "group_norm(x)",
  1974. "X*Y",
  1975. "X[i]*Y",
  1976. "X*Y",
  1977. "x*v",
  1978. "y-\\>view(x)",
  1979. "x-\\>y",
  1980. "cont(x)",
  1981. "reshape(x)",
  1982. "view(x)",
  1983. "permute(x)",
  1984. "transpose(x)",
  1985. "get_rows(x)",
  1986. "get_rows_back(x)",
  1987. "diag(x)",
  1988. "diag_mask_inf(x)",
  1989. "diag_mask_zero(x)",
  1990. "soft_max(x)",
  1991. "soft_max_back(x)",
  1992. "rope(x)",
  1993. "rope_back(x)",
  1994. "clamp(x)",
  1995. "conv_transpose_1d(x)",
  1996. "im2col(x)",
  1997. "conv_transpose_2d(x)",
  1998. "pool_1d(x)",
  1999. "pool_2d(x)",
  2000. "upscale(x)",
  2001. "pad(x)",
  2002. "arange(start, stop, step)",
  2003. "timestep_embedding(timesteps, dim, max_period)",
  2004. "argsort(x)",
  2005. "leaky_relu(x)",
  2006. "flash_attn(x)",
  2007. "flash_attn_ext(x)",
  2008. "flash_ff(x)",
  2009. "flash_attn_back(x)",
  2010. "ssm_conv(x)",
  2011. "ssm_scan(x)",
  2012. "win_part(x)",
  2013. "win_unpart(x)",
  2014. "get_rel_pos(x)",
  2015. "add_rel_pos(x)",
  2016. "unary(x)",
  2017. "f(x)",
  2018. "f(x,y)",
  2019. "custom_f32(x)",
  2020. "custom_f32(x,y)",
  2021. "custom_f32(x,y,z)",
  2022. "custom(x)",
  2023. "custom(x,y)",
  2024. "custom(x,y,z)",
  2025. "cross_entropy_loss(x,y)",
  2026. "cross_entropy_loss_back(x,y)",
  2027. };
  2028. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  2029. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2030. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2031. "ABS",
  2032. "SGN",
  2033. "NEG",
  2034. "STEP",
  2035. "TANH",
  2036. "ELU",
  2037. "RELU",
  2038. "SIGMOID",
  2039. "GELU",
  2040. "GELU_QUICK",
  2041. "SILU",
  2042. "HARDSWISH",
  2043. "HARDSIGMOID",
  2044. };
  2045. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2046. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2047. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2048. // WARN:
  2049. // Mis-configuration can lead to problem that's hard to reason about:
  2050. // * At best it crash or talks nosense.
  2051. // * At worst it talks slightly difference but hard to perceive.
  2052. //
  2053. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2054. // Take care about compile options (e.g., GGML_USE_xxx).
  2055. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2056. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2057. static void ggml_setup_op_has_task_pass(void) {
  2058. { // INIT
  2059. bool * p = GGML_OP_HAS_INIT;
  2060. p[GGML_OP_ACC ] = true;
  2061. p[GGML_OP_MUL_MAT ] = true;
  2062. p[GGML_OP_MUL_MAT_ID ] = true;
  2063. p[GGML_OP_OUT_PROD ] = true;
  2064. p[GGML_OP_SET ] = true;
  2065. p[GGML_OP_GET_ROWS_BACK ] = true;
  2066. p[GGML_OP_DIAG_MASK_INF ] = true;
  2067. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2068. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2069. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2070. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2071. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2072. p[GGML_OP_ADD_REL_POS ] = true;
  2073. }
  2074. { // FINALIZE
  2075. bool * p = GGML_OP_HAS_FINALIZE;
  2076. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2077. }
  2078. }
  2079. //
  2080. // ggml context
  2081. //
  2082. struct ggml_context {
  2083. size_t mem_size;
  2084. void * mem_buffer;
  2085. bool mem_buffer_owned;
  2086. bool no_alloc;
  2087. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  2088. int n_objects;
  2089. struct ggml_object * objects_begin;
  2090. struct ggml_object * objects_end;
  2091. struct ggml_scratch scratch;
  2092. struct ggml_scratch scratch_save;
  2093. };
  2094. struct ggml_context_container {
  2095. bool used;
  2096. struct ggml_context context;
  2097. };
  2098. //
  2099. // NUMA support
  2100. //
  2101. #define GGML_NUMA_MAX_NODES 8
  2102. #define GGML_NUMA_MAX_CPUS 512
  2103. struct ggml_numa_node {
  2104. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2105. uint32_t n_cpus;
  2106. };
  2107. struct ggml_numa_nodes {
  2108. enum ggml_numa_strategy numa_strategy;
  2109. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2110. uint32_t n_nodes;
  2111. uint32_t total_cpus; // hardware threads on system
  2112. uint32_t current_node; // node on which main process is execting
  2113. #if defined(__gnu_linux__)
  2114. cpu_set_t cpuset; // cpuset from numactl
  2115. #else
  2116. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2117. #endif
  2118. };
  2119. //
  2120. // ggml state
  2121. //
  2122. struct ggml_state {
  2123. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2124. struct ggml_numa_nodes numa;
  2125. };
  2126. // global state
  2127. static struct ggml_state g_state;
  2128. static atomic_int g_state_barrier = 0;
  2129. // barrier via spin lock
  2130. inline static void ggml_critical_section_start(void) {
  2131. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2132. while (processing > 0) {
  2133. // wait for other threads to finish
  2134. atomic_fetch_sub(&g_state_barrier, 1);
  2135. sched_yield(); // TODO: reconsider this
  2136. processing = atomic_fetch_add(&g_state_barrier, 1);
  2137. }
  2138. }
  2139. // TODO: make this somehow automatically executed
  2140. // some sort of "sentry" mechanism
  2141. inline static void ggml_critical_section_end(void) {
  2142. atomic_fetch_sub(&g_state_barrier, 1);
  2143. }
  2144. #if defined(__gnu_linux__)
  2145. static cpu_set_t ggml_get_numa_affinity(void) {
  2146. cpu_set_t cpuset;
  2147. pthread_t thread;
  2148. thread = pthread_self();
  2149. CPU_ZERO(&cpuset);
  2150. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2151. return cpuset;
  2152. }
  2153. #else
  2154. static uint32_t ggml_get_numa_affinity(void) {
  2155. return 0; // no NUMA support
  2156. }
  2157. #endif
  2158. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2159. if (g_state.numa.n_nodes > 0) {
  2160. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2161. return;
  2162. }
  2163. #if defined(__gnu_linux__)
  2164. struct stat st;
  2165. char path[256];
  2166. int rv;
  2167. // set numa scheme
  2168. g_state.numa.numa_strategy = numa_flag;
  2169. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2170. g_state.numa.cpuset = ggml_get_numa_affinity();
  2171. // enumerate nodes
  2172. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2173. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2174. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2175. if (stat(path, &st) != 0) { break; }
  2176. ++g_state.numa.n_nodes;
  2177. }
  2178. // enumerate CPUs
  2179. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2180. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2181. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2182. if (stat(path, &st) != 0) { break; }
  2183. ++g_state.numa.total_cpus;
  2184. }
  2185. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2186. // figure out which node we're on
  2187. uint current_cpu;
  2188. int getcpu_ret = 0;
  2189. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2190. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2191. #else
  2192. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2193. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2194. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2195. # endif
  2196. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2197. #endif
  2198. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2199. g_state.numa.n_nodes = 0;
  2200. return;
  2201. }
  2202. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2203. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2204. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2205. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2206. node->n_cpus = 0;
  2207. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2208. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2209. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2210. if (stat(path, &st) == 0) {
  2211. node->cpus[node->n_cpus++] = c;
  2212. GGML_PRINT_DEBUG(" %u", c);
  2213. }
  2214. }
  2215. GGML_PRINT_DEBUG("\n");
  2216. }
  2217. if (ggml_is_numa()) {
  2218. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2219. if (fptr != NULL) {
  2220. char buf[42];
  2221. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2222. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2223. }
  2224. fclose(fptr);
  2225. }
  2226. }
  2227. #else
  2228. GGML_UNUSED(numa_flag);
  2229. // TODO
  2230. #endif
  2231. }
  2232. bool ggml_is_numa(void) {
  2233. return g_state.numa.n_nodes > 1;
  2234. }
  2235. ////////////////////////////////////////////////////////////////////////////////
  2236. void ggml_print_object(const struct ggml_object * obj) {
  2237. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2238. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2239. }
  2240. void ggml_print_objects(const struct ggml_context * ctx) {
  2241. struct ggml_object * obj = ctx->objects_begin;
  2242. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2243. while (obj != NULL) {
  2244. ggml_print_object(obj);
  2245. obj = obj->next;
  2246. }
  2247. GGML_PRINT("%s: --- end ---\n", __func__);
  2248. }
  2249. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2250. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2251. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2252. }
  2253. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2254. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2255. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2256. }
  2257. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2258. size_t nbytes;
  2259. size_t blck_size = ggml_blck_size(tensor->type);
  2260. if (blck_size == 1) {
  2261. nbytes = ggml_type_size(tensor->type);
  2262. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2263. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2264. }
  2265. }
  2266. else {
  2267. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2268. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2269. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2270. }
  2271. }
  2272. return nbytes;
  2273. }
  2274. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2275. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2276. }
  2277. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2278. return type_traits[type].blck_size;
  2279. }
  2280. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2281. return type_traits[type].type_size;
  2282. }
  2283. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2284. assert(ne % ggml_blck_size(type) == 0);
  2285. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2286. }
  2287. double ggml_type_sizef(enum ggml_type type) {
  2288. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2289. }
  2290. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2291. return type_traits[type].type_name;
  2292. }
  2293. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2294. return type_traits[type].is_quantized;
  2295. }
  2296. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2297. return GGML_OP_NAME[op];
  2298. }
  2299. const char * ggml_op_symbol(enum ggml_op op) {
  2300. return GGML_OP_SYMBOL[op];
  2301. }
  2302. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2303. return GGML_UNARY_OP_NAME[op];
  2304. }
  2305. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2306. if (t->op == GGML_OP_UNARY) {
  2307. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2308. return ggml_unary_op_name(uop);
  2309. }
  2310. else {
  2311. return ggml_op_name(t->op);
  2312. }
  2313. }
  2314. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2315. return ggml_type_size(tensor->type);
  2316. }
  2317. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2318. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2319. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2320. }
  2321. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2322. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2323. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2324. }
  2325. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2326. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2327. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2328. }
  2329. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2330. return tensor->ne[3] == 1;
  2331. }
  2332. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2333. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2334. if (tensor->ne[i] > 1) {
  2335. return i + 1;
  2336. }
  2337. }
  2338. return 1;
  2339. }
  2340. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2341. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2342. return (t0->ne[0] == t1->ne[0]) &&
  2343. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2344. (t1->ne[3]%t0->ne[3] == 0);
  2345. }
  2346. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2347. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2348. return (t0->ne[1] == t1->ne[1]) &&
  2349. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2350. (t1->ne[3]%t0->ne[3] == 0);
  2351. }
  2352. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2353. enum ggml_type wtype = GGML_TYPE_COUNT;
  2354. switch (ftype) {
  2355. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2356. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2357. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2358. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2359. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2360. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2361. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2362. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2363. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2364. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2365. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2366. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2367. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2368. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2369. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2370. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2371. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2372. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2373. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2374. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2375. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2376. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2377. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2378. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2379. }
  2380. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2381. return wtype;
  2382. }
  2383. size_t ggml_tensor_overhead(void) {
  2384. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2385. }
  2386. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2387. return tensor->nb[0] > tensor->nb[1];
  2388. }
  2389. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2390. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2391. return
  2392. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2393. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2394. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2395. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2396. }
  2397. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2398. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2399. return
  2400. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2401. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2402. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2403. }
  2404. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2405. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2406. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2407. }
  2408. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2409. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2410. return
  2411. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2412. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2413. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2414. }
  2415. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2416. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2417. if (tensor->ne[i] == 0) {
  2418. // empty if any dimension has no elements
  2419. return true;
  2420. }
  2421. }
  2422. return false;
  2423. }
  2424. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2425. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2426. return
  2427. (t0->ne[0] == t1->ne[0] ) &&
  2428. (t0->ne[1] == t1->ne[1] ) &&
  2429. (t0->ne[2] == t1->ne[2] ) &&
  2430. (t0->ne[3] == t1->ne[3] );
  2431. }
  2432. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2433. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2434. return
  2435. (t0->nb[0] == t1->nb[0] ) &&
  2436. (t0->nb[1] == t1->nb[1] ) &&
  2437. (t0->nb[2] == t1->nb[2] ) &&
  2438. (t0->nb[3] == t1->nb[3] );
  2439. }
  2440. // check if t1 can be represented as a repeatition of t0
  2441. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2442. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2443. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2444. (t1->ne[0]%t0->ne[0] == 0) &&
  2445. (t1->ne[1]%t0->ne[1] == 0) &&
  2446. (t1->ne[2]%t0->ne[2] == 0) &&
  2447. (t1->ne[3]%t0->ne[3] == 0);
  2448. }
  2449. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2450. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2451. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2452. }
  2453. static inline int ggml_up32(int n) {
  2454. return (n + 31) & ~31;
  2455. }
  2456. //static inline int ggml_up64(int n) {
  2457. // return (n + 63) & ~63;
  2458. //}
  2459. static inline int ggml_up(int n, int m) {
  2460. // assert m is a power of 2
  2461. GGML_ASSERT((m & (m - 1)) == 0);
  2462. return (n + m - 1) & ~(m - 1);
  2463. }
  2464. // assert that pointer is aligned to GGML_MEM_ALIGN
  2465. #define ggml_assert_aligned(ptr) \
  2466. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2467. ////////////////////////////////////////////////////////////////////////////////
  2468. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2469. // make this function thread safe
  2470. ggml_critical_section_start();
  2471. static bool is_first_call = true;
  2472. if (is_first_call) {
  2473. // initialize time system (required on Windows)
  2474. ggml_time_init();
  2475. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2476. {
  2477. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2478. for (int i = 0; i < (1 << 16); ++i) {
  2479. union {
  2480. uint16_t u16;
  2481. ggml_fp16_t fp16;
  2482. } u = {i};
  2483. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2484. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2485. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2486. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2487. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2488. }
  2489. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2490. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2491. }
  2492. // initialize g_state
  2493. {
  2494. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2495. g_state = (struct ggml_state) {
  2496. /*.contexts =*/ { { 0 } },
  2497. /*.numa =*/ {
  2498. .n_nodes = 0,
  2499. .total_cpus = 0,
  2500. },
  2501. };
  2502. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2503. g_state.contexts[i].used = false;
  2504. }
  2505. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2506. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2507. }
  2508. #if defined(GGML_USE_CLBLAST)
  2509. ggml_cl_init();
  2510. #endif
  2511. ggml_setup_op_has_task_pass();
  2512. is_first_call = false;
  2513. }
  2514. // find non-used context in g_state
  2515. struct ggml_context * ctx = NULL;
  2516. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2517. if (!g_state.contexts[i].used) {
  2518. g_state.contexts[i].used = true;
  2519. ctx = &g_state.contexts[i].context;
  2520. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2521. break;
  2522. }
  2523. }
  2524. if (ctx == NULL) {
  2525. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2526. ggml_critical_section_end();
  2527. return NULL;
  2528. }
  2529. // allow to call ggml_init with 0 size
  2530. if (params.mem_size == 0) {
  2531. params.mem_size = GGML_MEM_ALIGN;
  2532. }
  2533. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2534. *ctx = (struct ggml_context) {
  2535. /*.mem_size =*/ mem_size,
  2536. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2537. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2538. /*.no_alloc =*/ params.no_alloc,
  2539. /*.no_alloc_save =*/ params.no_alloc,
  2540. /*.n_objects =*/ 0,
  2541. /*.objects_begin =*/ NULL,
  2542. /*.objects_end =*/ NULL,
  2543. /*.scratch =*/ { 0, 0, NULL, },
  2544. /*.scratch_save =*/ { 0, 0, NULL, },
  2545. };
  2546. GGML_ASSERT(ctx->mem_buffer != NULL);
  2547. ggml_assert_aligned(ctx->mem_buffer);
  2548. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2549. ggml_critical_section_end();
  2550. return ctx;
  2551. }
  2552. void ggml_free(struct ggml_context * ctx) {
  2553. if (ctx == NULL) {
  2554. return;
  2555. }
  2556. // make this function thread safe
  2557. ggml_critical_section_start();
  2558. bool found = false;
  2559. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2560. if (&g_state.contexts[i].context == ctx) {
  2561. g_state.contexts[i].used = false;
  2562. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2563. __func__, i, ggml_used_mem(ctx));
  2564. if (ctx->mem_buffer_owned) {
  2565. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2566. }
  2567. found = true;
  2568. break;
  2569. }
  2570. }
  2571. if (!found) {
  2572. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2573. }
  2574. ggml_critical_section_end();
  2575. }
  2576. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2577. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2578. }
  2579. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2580. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2581. ctx->scratch = scratch;
  2582. return result;
  2583. }
  2584. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2585. return ctx->no_alloc;
  2586. }
  2587. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2588. ctx->no_alloc = no_alloc;
  2589. }
  2590. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2591. return ctx->mem_buffer;
  2592. }
  2593. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2594. return ctx->mem_size;
  2595. }
  2596. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2597. size_t max_size = 0;
  2598. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2599. size_t bytes = ggml_nbytes(tensor);
  2600. max_size = MAX(max_size, bytes);
  2601. }
  2602. return max_size;
  2603. }
  2604. // IMPORTANT:
  2605. // when creating "opt" tensors, always save and load the scratch buffer
  2606. // this is an error prone process, but it is necessary to support inplace
  2607. // operators when using scratch buffers
  2608. // TODO: implement a better way
  2609. static void ggml_scratch_save(struct ggml_context * ctx) {
  2610. // this is needed to allow opt tensors to store their data
  2611. // TODO: again, need to find a better way
  2612. ctx->no_alloc_save = ctx->no_alloc;
  2613. ctx->no_alloc = false;
  2614. ctx->scratch_save = ctx->scratch;
  2615. ctx->scratch.data = NULL;
  2616. }
  2617. static void ggml_scratch_load(struct ggml_context * ctx) {
  2618. ctx->no_alloc = ctx->no_alloc_save;
  2619. ctx->scratch = ctx->scratch_save;
  2620. }
  2621. ////////////////////////////////////////////////////////////////////////////////
  2622. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2623. // always insert objects at the end of the context's memory pool
  2624. struct ggml_object * obj_cur = ctx->objects_end;
  2625. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2626. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2627. const size_t cur_end = cur_offs + cur_size;
  2628. // align to GGML_MEM_ALIGN
  2629. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2630. char * const mem_buffer = ctx->mem_buffer;
  2631. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2632. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2633. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2634. __func__, cur_end + size_needed, ctx->mem_size);
  2635. assert(false);
  2636. return NULL;
  2637. }
  2638. *obj_new = (struct ggml_object) {
  2639. .offs = cur_end + GGML_OBJECT_SIZE,
  2640. .size = size_needed,
  2641. .next = NULL,
  2642. .type = type,
  2643. };
  2644. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2645. if (obj_cur != NULL) {
  2646. obj_cur->next = obj_new;
  2647. } else {
  2648. // this is the first object in this context
  2649. ctx->objects_begin = obj_new;
  2650. }
  2651. ctx->objects_end = obj_new;
  2652. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2653. return obj_new;
  2654. }
  2655. static struct ggml_tensor * ggml_new_tensor_impl(
  2656. struct ggml_context * ctx,
  2657. enum ggml_type type,
  2658. int n_dims,
  2659. const int64_t * ne,
  2660. struct ggml_tensor * view_src,
  2661. size_t view_offs) {
  2662. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2663. // find the base tensor and absolute offset
  2664. if (view_src != NULL && view_src->view_src != NULL) {
  2665. view_offs += view_src->view_offs;
  2666. view_src = view_src->view_src;
  2667. }
  2668. size_t data_size = ggml_row_size(type, ne[0]);
  2669. for (int i = 1; i < n_dims; i++) {
  2670. data_size *= ne[i];
  2671. }
  2672. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  2673. void * data = view_src != NULL ? view_src->data : NULL;
  2674. if (data != NULL) {
  2675. data = (char *) data + view_offs;
  2676. }
  2677. size_t obj_alloc_size = 0;
  2678. if (view_src == NULL && !ctx->no_alloc) {
  2679. if (ctx->scratch.data != NULL) {
  2680. // allocate tensor data in the scratch buffer
  2681. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2682. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2683. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2684. assert(false);
  2685. return NULL;
  2686. }
  2687. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2688. ctx->scratch.offs += data_size;
  2689. } else {
  2690. // allocate tensor data in the context's memory pool
  2691. obj_alloc_size = data_size;
  2692. }
  2693. }
  2694. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2695. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2696. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2697. #ifdef __clang__
  2698. // temporary until ggml_tensor::backend is removed
  2699. #pragma clang diagnostic push
  2700. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  2701. #endif
  2702. *result = (struct ggml_tensor) {
  2703. /*.type =*/ type,
  2704. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2705. /*.buffer =*/ NULL,
  2706. /*.ne =*/ { 1, 1, 1, 1 },
  2707. /*.nb =*/ { 0, 0, 0, 0 },
  2708. /*.op =*/ GGML_OP_NONE,
  2709. /*.op_params =*/ { 0 },
  2710. /*.flags =*/ 0,
  2711. /*.grad =*/ NULL,
  2712. /*.src =*/ { NULL },
  2713. /*.perf_runs =*/ 0,
  2714. /*.perf_cycles =*/ 0,
  2715. /*.perf_time_us =*/ 0,
  2716. /*.view_src =*/ view_src,
  2717. /*.view_offs =*/ view_offs,
  2718. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2719. /*.name =*/ { 0 },
  2720. /*.extra =*/ NULL,
  2721. /*.padding =*/ { 0 },
  2722. };
  2723. #ifdef __clang__
  2724. #pragma clang diagnostic pop
  2725. #endif
  2726. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2727. //ggml_assert_aligned(result->data);
  2728. for (int i = 0; i < n_dims; i++) {
  2729. result->ne[i] = ne[i];
  2730. }
  2731. result->nb[0] = ggml_type_size(type);
  2732. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2733. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2734. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2735. }
  2736. ctx->n_objects++;
  2737. return result;
  2738. }
  2739. struct ggml_tensor * ggml_new_tensor(
  2740. struct ggml_context * ctx,
  2741. enum ggml_type type,
  2742. int n_dims,
  2743. const int64_t * ne) {
  2744. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2745. }
  2746. struct ggml_tensor * ggml_new_tensor_1d(
  2747. struct ggml_context * ctx,
  2748. enum ggml_type type,
  2749. int64_t ne0) {
  2750. return ggml_new_tensor(ctx, type, 1, &ne0);
  2751. }
  2752. struct ggml_tensor * ggml_new_tensor_2d(
  2753. struct ggml_context * ctx,
  2754. enum ggml_type type,
  2755. int64_t ne0,
  2756. int64_t ne1) {
  2757. const int64_t ne[2] = { ne0, ne1 };
  2758. return ggml_new_tensor(ctx, type, 2, ne);
  2759. }
  2760. struct ggml_tensor * ggml_new_tensor_3d(
  2761. struct ggml_context * ctx,
  2762. enum ggml_type type,
  2763. int64_t ne0,
  2764. int64_t ne1,
  2765. int64_t ne2) {
  2766. const int64_t ne[3] = { ne0, ne1, ne2 };
  2767. return ggml_new_tensor(ctx, type, 3, ne);
  2768. }
  2769. struct ggml_tensor * ggml_new_tensor_4d(
  2770. struct ggml_context * ctx,
  2771. enum ggml_type type,
  2772. int64_t ne0,
  2773. int64_t ne1,
  2774. int64_t ne2,
  2775. int64_t ne3) {
  2776. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2777. return ggml_new_tensor(ctx, type, 4, ne);
  2778. }
  2779. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2780. ggml_scratch_save(ctx);
  2781. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2782. ggml_scratch_load(ctx);
  2783. ggml_set_i32(result, value);
  2784. return result;
  2785. }
  2786. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2787. ggml_scratch_save(ctx);
  2788. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2789. ggml_scratch_load(ctx);
  2790. ggml_set_f32(result, value);
  2791. return result;
  2792. }
  2793. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2794. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2795. }
  2796. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2797. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2798. assert(params_size <= GGML_MAX_OP_PARAMS);
  2799. memcpy(tensor->op_params, params, params_size);
  2800. }
  2801. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2802. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2803. return ((const int32_t *)(tensor->op_params))[i];
  2804. }
  2805. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2806. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2807. return ((const float *)(tensor->op_params))[i];
  2808. }
  2809. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2810. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2811. ((int32_t *)(tensor->op_params))[i] = value;
  2812. }
  2813. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2814. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2815. ((float *)(tensor->op_params))[i] = value;
  2816. }
  2817. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2818. memset(tensor->data, 0, ggml_nbytes(tensor));
  2819. return tensor;
  2820. }
  2821. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2822. const int n = ggml_nrows(tensor);
  2823. const int nc = tensor->ne[0];
  2824. const size_t n1 = tensor->nb[1];
  2825. char * const data = tensor->data;
  2826. switch (tensor->type) {
  2827. case GGML_TYPE_I8:
  2828. {
  2829. assert(tensor->nb[0] == sizeof(int8_t));
  2830. for (int i = 0; i < n; i++) {
  2831. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2832. }
  2833. } break;
  2834. case GGML_TYPE_I16:
  2835. {
  2836. assert(tensor->nb[0] == sizeof(int16_t));
  2837. for (int i = 0; i < n; i++) {
  2838. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2839. }
  2840. } break;
  2841. case GGML_TYPE_I32:
  2842. {
  2843. assert(tensor->nb[0] == sizeof(int32_t));
  2844. for (int i = 0; i < n; i++) {
  2845. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2846. }
  2847. } break;
  2848. case GGML_TYPE_F16:
  2849. {
  2850. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2851. for (int i = 0; i < n; i++) {
  2852. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2853. }
  2854. } break;
  2855. case GGML_TYPE_BF16:
  2856. {
  2857. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2858. for (int i = 0; i < n; i++) {
  2859. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2860. }
  2861. } break;
  2862. case GGML_TYPE_F32:
  2863. {
  2864. assert(tensor->nb[0] == sizeof(float));
  2865. for (int i = 0; i < n; i++) {
  2866. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2867. }
  2868. } break;
  2869. default:
  2870. {
  2871. GGML_ASSERT(false);
  2872. } break;
  2873. }
  2874. return tensor;
  2875. }
  2876. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2877. const int n = ggml_nrows(tensor);
  2878. const int nc = tensor->ne[0];
  2879. const size_t n1 = tensor->nb[1];
  2880. char * const data = tensor->data;
  2881. switch (tensor->type) {
  2882. case GGML_TYPE_I8:
  2883. {
  2884. assert(tensor->nb[0] == sizeof(int8_t));
  2885. for (int i = 0; i < n; i++) {
  2886. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2887. }
  2888. } break;
  2889. case GGML_TYPE_I16:
  2890. {
  2891. assert(tensor->nb[0] == sizeof(int16_t));
  2892. for (int i = 0; i < n; i++) {
  2893. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2894. }
  2895. } break;
  2896. case GGML_TYPE_I32:
  2897. {
  2898. assert(tensor->nb[0] == sizeof(int32_t));
  2899. for (int i = 0; i < n; i++) {
  2900. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2901. }
  2902. } break;
  2903. case GGML_TYPE_F16:
  2904. {
  2905. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2906. for (int i = 0; i < n; i++) {
  2907. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2908. }
  2909. } break;
  2910. case GGML_TYPE_BF16:
  2911. {
  2912. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  2913. for (int i = 0; i < n; i++) {
  2914. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  2915. }
  2916. } break;
  2917. case GGML_TYPE_F32:
  2918. {
  2919. assert(tensor->nb[0] == sizeof(float));
  2920. for (int i = 0; i < n; i++) {
  2921. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2922. }
  2923. } break;
  2924. default:
  2925. {
  2926. GGML_ASSERT(false);
  2927. } break;
  2928. }
  2929. return tensor;
  2930. }
  2931. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2932. const int64_t ne2 = tensor->ne[2];
  2933. const int64_t ne1 = tensor->ne[1];
  2934. const int64_t ne0 = tensor->ne[0];
  2935. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2936. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2937. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2938. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2939. if (i0) {
  2940. * i0 = i0_;
  2941. }
  2942. if (i1) {
  2943. * i1 = i1_;
  2944. }
  2945. if (i2) {
  2946. * i2 = i2_;
  2947. }
  2948. if (i3) {
  2949. * i3 = i3_;
  2950. }
  2951. }
  2952. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2953. if (!ggml_is_contiguous(tensor)) {
  2954. int64_t id[4] = { 0, 0, 0, 0 };
  2955. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2956. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2957. }
  2958. switch (tensor->type) {
  2959. case GGML_TYPE_I8:
  2960. {
  2961. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2962. return ((int8_t *)(tensor->data))[i];
  2963. }
  2964. case GGML_TYPE_I16:
  2965. {
  2966. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2967. return ((int16_t *)(tensor->data))[i];
  2968. }
  2969. case GGML_TYPE_I32:
  2970. {
  2971. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2972. return ((int32_t *)(tensor->data))[i];
  2973. }
  2974. case GGML_TYPE_F16:
  2975. {
  2976. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2977. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2978. }
  2979. case GGML_TYPE_BF16:
  2980. {
  2981. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  2982. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  2983. }
  2984. case GGML_TYPE_F32:
  2985. {
  2986. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2987. return ((float *)(tensor->data))[i];
  2988. }
  2989. default:
  2990. {
  2991. GGML_ASSERT(false);
  2992. }
  2993. }
  2994. return 0.0f;
  2995. }
  2996. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2997. if (!ggml_is_contiguous(tensor)) {
  2998. int64_t id[4] = { 0, 0, 0, 0 };
  2999. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3000. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3001. return;
  3002. }
  3003. switch (tensor->type) {
  3004. case GGML_TYPE_I8:
  3005. {
  3006. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3007. ((int8_t *)(tensor->data))[i] = value;
  3008. } break;
  3009. case GGML_TYPE_I16:
  3010. {
  3011. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3012. ((int16_t *)(tensor->data))[i] = value;
  3013. } break;
  3014. case GGML_TYPE_I32:
  3015. {
  3016. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3017. ((int32_t *)(tensor->data))[i] = value;
  3018. } break;
  3019. case GGML_TYPE_F16:
  3020. {
  3021. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3022. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3023. } break;
  3024. case GGML_TYPE_BF16:
  3025. {
  3026. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3027. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3028. } break;
  3029. case GGML_TYPE_F32:
  3030. {
  3031. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3032. ((float *)(tensor->data))[i] = value;
  3033. } break;
  3034. default:
  3035. {
  3036. GGML_ASSERT(false);
  3037. } break;
  3038. }
  3039. }
  3040. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3041. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3042. switch (tensor->type) {
  3043. case GGML_TYPE_I8:
  3044. return ((int8_t *) data)[0];
  3045. case GGML_TYPE_I16:
  3046. return ((int16_t *) data)[0];
  3047. case GGML_TYPE_I32:
  3048. return ((int32_t *) data)[0];
  3049. case GGML_TYPE_F16:
  3050. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3051. case GGML_TYPE_BF16:
  3052. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3053. case GGML_TYPE_F32:
  3054. return ((float *) data)[0];
  3055. default:
  3056. GGML_ASSERT(false);
  3057. }
  3058. return 0.0f;
  3059. }
  3060. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3061. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3062. switch (tensor->type) {
  3063. case GGML_TYPE_I8:
  3064. {
  3065. ((int8_t *)(data))[0] = value;
  3066. } break;
  3067. case GGML_TYPE_I16:
  3068. {
  3069. ((int16_t *)(data))[0] = value;
  3070. } break;
  3071. case GGML_TYPE_I32:
  3072. {
  3073. ((int32_t *)(data))[0] = value;
  3074. } break;
  3075. case GGML_TYPE_F16:
  3076. {
  3077. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3078. } break;
  3079. case GGML_TYPE_BF16:
  3080. {
  3081. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3082. } break;
  3083. case GGML_TYPE_F32:
  3084. {
  3085. ((float *)(data))[0] = value;
  3086. } break;
  3087. default:
  3088. {
  3089. GGML_ASSERT(false);
  3090. } break;
  3091. }
  3092. }
  3093. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3094. if (!ggml_is_contiguous(tensor)) {
  3095. int64_t id[4] = { 0, 0, 0, 0 };
  3096. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3097. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3098. }
  3099. switch (tensor->type) {
  3100. case GGML_TYPE_I8:
  3101. {
  3102. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3103. return ((int8_t *)(tensor->data))[i];
  3104. }
  3105. case GGML_TYPE_I16:
  3106. {
  3107. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3108. return ((int16_t *)(tensor->data))[i];
  3109. }
  3110. case GGML_TYPE_I32:
  3111. {
  3112. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3113. return ((int32_t *)(tensor->data))[i];
  3114. }
  3115. case GGML_TYPE_F16:
  3116. {
  3117. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3118. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3119. }
  3120. case GGML_TYPE_BF16:
  3121. {
  3122. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3123. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3124. }
  3125. case GGML_TYPE_F32:
  3126. {
  3127. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3128. return ((float *)(tensor->data))[i];
  3129. }
  3130. default:
  3131. {
  3132. GGML_ASSERT(false);
  3133. }
  3134. }
  3135. return 0.0f;
  3136. }
  3137. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3138. if (!ggml_is_contiguous(tensor)) {
  3139. int64_t id[4] = { 0, 0, 0, 0 };
  3140. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3141. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3142. return;
  3143. }
  3144. switch (tensor->type) {
  3145. case GGML_TYPE_I8:
  3146. {
  3147. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3148. ((int8_t *)(tensor->data))[i] = value;
  3149. } break;
  3150. case GGML_TYPE_I16:
  3151. {
  3152. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3153. ((int16_t *)(tensor->data))[i] = value;
  3154. } break;
  3155. case GGML_TYPE_I32:
  3156. {
  3157. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3158. ((int32_t *)(tensor->data))[i] = value;
  3159. } break;
  3160. case GGML_TYPE_F16:
  3161. {
  3162. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3163. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3164. } break;
  3165. case GGML_TYPE_BF16:
  3166. {
  3167. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3168. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3169. } break;
  3170. case GGML_TYPE_F32:
  3171. {
  3172. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3173. ((float *)(tensor->data))[i] = value;
  3174. } break;
  3175. default:
  3176. {
  3177. GGML_ASSERT(false);
  3178. } break;
  3179. }
  3180. }
  3181. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3182. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3183. switch (tensor->type) {
  3184. case GGML_TYPE_I8:
  3185. return ((int8_t *) data)[0];
  3186. case GGML_TYPE_I16:
  3187. return ((int16_t *) data)[0];
  3188. case GGML_TYPE_I32:
  3189. return ((int32_t *) data)[0];
  3190. case GGML_TYPE_F16:
  3191. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3192. case GGML_TYPE_BF16:
  3193. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3194. case GGML_TYPE_F32:
  3195. return ((float *) data)[0];
  3196. default:
  3197. GGML_ASSERT(false);
  3198. }
  3199. return 0.0f;
  3200. }
  3201. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3202. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3203. switch (tensor->type) {
  3204. case GGML_TYPE_I8:
  3205. {
  3206. ((int8_t *)(data))[0] = value;
  3207. } break;
  3208. case GGML_TYPE_I16:
  3209. {
  3210. ((int16_t *)(data))[0] = value;
  3211. } break;
  3212. case GGML_TYPE_I32:
  3213. {
  3214. ((int32_t *)(data))[0] = value;
  3215. } break;
  3216. case GGML_TYPE_F16:
  3217. {
  3218. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3219. } break;
  3220. case GGML_TYPE_BF16:
  3221. {
  3222. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3223. } break;
  3224. case GGML_TYPE_F32:
  3225. {
  3226. ((float *)(data))[0] = value;
  3227. } break;
  3228. default:
  3229. {
  3230. GGML_ASSERT(false);
  3231. } break;
  3232. }
  3233. }
  3234. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3235. return tensor->data;
  3236. }
  3237. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3238. assert(tensor->type == GGML_TYPE_F32);
  3239. return (float *)(tensor->data);
  3240. }
  3241. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3242. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3243. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3244. }
  3245. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3246. return tensor->name;
  3247. }
  3248. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3249. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3250. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3251. return tensor;
  3252. }
  3253. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3254. va_list args;
  3255. va_start(args, fmt);
  3256. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3257. va_end(args);
  3258. return tensor;
  3259. }
  3260. struct ggml_tensor * ggml_view_tensor(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * src) {
  3263. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3264. ggml_format_name(result, "%s (view)", src->name);
  3265. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3266. result->nb[i] = src->nb[i];
  3267. }
  3268. return result;
  3269. }
  3270. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3271. struct ggml_object * obj = ctx->objects_begin;
  3272. char * const mem_buffer = ctx->mem_buffer;
  3273. while (obj != NULL) {
  3274. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3275. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3276. }
  3277. obj = obj->next;
  3278. }
  3279. return NULL;
  3280. }
  3281. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3282. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3283. obj = obj->next;
  3284. char * const mem_buffer = ctx->mem_buffer;
  3285. while (obj != NULL) {
  3286. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3287. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3288. }
  3289. obj = obj->next;
  3290. }
  3291. return NULL;
  3292. }
  3293. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3294. struct ggml_object * obj = ctx->objects_begin;
  3295. char * const mem_buffer = ctx->mem_buffer;
  3296. while (obj != NULL) {
  3297. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3298. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3299. if (strcmp(cur->name, name) == 0) {
  3300. return cur;
  3301. }
  3302. }
  3303. obj = obj->next;
  3304. }
  3305. return NULL;
  3306. }
  3307. ////////////////////////////////////////////////////////////////////////////////
  3308. // ggml_dup
  3309. static struct ggml_tensor * ggml_dup_impl(
  3310. struct ggml_context * ctx,
  3311. struct ggml_tensor * a,
  3312. bool inplace) {
  3313. bool is_node = false;
  3314. if (!inplace && (a->grad)) {
  3315. is_node = true;
  3316. }
  3317. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3318. result->op = GGML_OP_DUP;
  3319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3320. result->src[0] = a;
  3321. return result;
  3322. }
  3323. struct ggml_tensor * ggml_dup(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a) {
  3326. return ggml_dup_impl(ctx, a, false);
  3327. }
  3328. struct ggml_tensor * ggml_dup_inplace(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a) {
  3331. return ggml_dup_impl(ctx, a, true);
  3332. }
  3333. // ggml_add
  3334. static struct ggml_tensor * ggml_add_impl(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a,
  3337. struct ggml_tensor * b,
  3338. bool inplace) {
  3339. GGML_ASSERT(ggml_can_repeat(b, a));
  3340. bool is_node = false;
  3341. if (!inplace && (a->grad || b->grad)) {
  3342. // TODO: support backward pass for broadcasting
  3343. GGML_ASSERT(ggml_are_same_shape(a, b));
  3344. is_node = true;
  3345. }
  3346. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3347. result->op = GGML_OP_ADD;
  3348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3349. result->src[0] = a;
  3350. result->src[1] = b;
  3351. return result;
  3352. }
  3353. struct ggml_tensor * ggml_add(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a,
  3356. struct ggml_tensor * b) {
  3357. return ggml_add_impl(ctx, a, b, false);
  3358. }
  3359. struct ggml_tensor * ggml_add_inplace(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a,
  3362. struct ggml_tensor * b) {
  3363. return ggml_add_impl(ctx, a, b, true);
  3364. }
  3365. // ggml_add_cast
  3366. static struct ggml_tensor * ggml_add_cast_impl(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a,
  3369. struct ggml_tensor * b,
  3370. enum ggml_type type) {
  3371. // TODO: support less-strict constraint
  3372. // GGML_ASSERT(ggml_can_repeat(b, a));
  3373. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3374. // currently only supported for quantized input and f16
  3375. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3376. a->type == GGML_TYPE_F16 ||
  3377. a->type == GGML_TYPE_BF16);
  3378. bool is_node = false;
  3379. if (a->grad || b->grad) {
  3380. // TODO: support backward pass for broadcasting
  3381. GGML_ASSERT(ggml_are_same_shape(a, b));
  3382. is_node = true;
  3383. }
  3384. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3385. result->op = GGML_OP_ADD;
  3386. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3387. result->src[0] = a;
  3388. result->src[1] = b;
  3389. return result;
  3390. }
  3391. struct ggml_tensor * ggml_add_cast(
  3392. struct ggml_context * ctx,
  3393. struct ggml_tensor * a,
  3394. struct ggml_tensor * b,
  3395. enum ggml_type type) {
  3396. return ggml_add_cast_impl(ctx, a, b, type);
  3397. }
  3398. // ggml_add1
  3399. static struct ggml_tensor * ggml_add1_impl(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a,
  3402. struct ggml_tensor * b,
  3403. bool inplace) {
  3404. GGML_ASSERT(ggml_is_scalar(b));
  3405. GGML_ASSERT(ggml_is_padded_1d(a));
  3406. bool is_node = false;
  3407. if (a->grad || b->grad) {
  3408. is_node = true;
  3409. }
  3410. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3411. result->op = GGML_OP_ADD1;
  3412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3413. result->src[0] = a;
  3414. result->src[1] = b;
  3415. return result;
  3416. }
  3417. struct ggml_tensor * ggml_add1(
  3418. struct ggml_context * ctx,
  3419. struct ggml_tensor * a,
  3420. struct ggml_tensor * b) {
  3421. return ggml_add1_impl(ctx, a, b, false);
  3422. }
  3423. struct ggml_tensor * ggml_add1_inplace(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a,
  3426. struct ggml_tensor * b) {
  3427. return ggml_add1_impl(ctx, a, b, true);
  3428. }
  3429. // ggml_acc
  3430. static struct ggml_tensor * ggml_acc_impl(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b,
  3434. size_t nb1,
  3435. size_t nb2,
  3436. size_t nb3,
  3437. size_t offset,
  3438. bool inplace) {
  3439. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3440. GGML_ASSERT(ggml_is_contiguous(a));
  3441. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3442. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3443. bool is_node = false;
  3444. if (!inplace && (a->grad || b->grad)) {
  3445. is_node = true;
  3446. }
  3447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3448. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3449. ggml_set_op_params(result, params, sizeof(params));
  3450. result->op = GGML_OP_ACC;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src[0] = a;
  3453. result->src[1] = b;
  3454. return result;
  3455. }
  3456. struct ggml_tensor * ggml_acc(
  3457. struct ggml_context * ctx,
  3458. struct ggml_tensor * a,
  3459. struct ggml_tensor * b,
  3460. size_t nb1,
  3461. size_t nb2,
  3462. size_t nb3,
  3463. size_t offset) {
  3464. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3465. }
  3466. struct ggml_tensor * ggml_acc_inplace(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a,
  3469. struct ggml_tensor * b,
  3470. size_t nb1,
  3471. size_t nb2,
  3472. size_t nb3,
  3473. size_t offset) {
  3474. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3475. }
  3476. // ggml_sub
  3477. static struct ggml_tensor * ggml_sub_impl(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b,
  3481. bool inplace) {
  3482. GGML_ASSERT(ggml_are_same_shape(a, b));
  3483. bool is_node = false;
  3484. if (!inplace && (a->grad || b->grad)) {
  3485. is_node = true;
  3486. }
  3487. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3488. result->op = GGML_OP_SUB;
  3489. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3490. result->src[0] = a;
  3491. result->src[1] = b;
  3492. return result;
  3493. }
  3494. struct ggml_tensor * ggml_sub(
  3495. struct ggml_context * ctx,
  3496. struct ggml_tensor * a,
  3497. struct ggml_tensor * b) {
  3498. return ggml_sub_impl(ctx, a, b, false);
  3499. }
  3500. struct ggml_tensor * ggml_sub_inplace(
  3501. struct ggml_context * ctx,
  3502. struct ggml_tensor * a,
  3503. struct ggml_tensor * b) {
  3504. return ggml_sub_impl(ctx, a, b, true);
  3505. }
  3506. // ggml_mul
  3507. static struct ggml_tensor * ggml_mul_impl(
  3508. struct ggml_context * ctx,
  3509. struct ggml_tensor * a,
  3510. struct ggml_tensor * b,
  3511. bool inplace) {
  3512. GGML_ASSERT(ggml_can_repeat(b, a));
  3513. bool is_node = false;
  3514. if (!inplace && (a->grad || b->grad)) {
  3515. // TODO: support backward pass for broadcasting
  3516. GGML_ASSERT(ggml_are_same_shape(a, b));
  3517. is_node = true;
  3518. }
  3519. if (inplace) {
  3520. GGML_ASSERT(!is_node);
  3521. }
  3522. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3523. result->op = GGML_OP_MUL;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src[0] = a;
  3526. result->src[1] = b;
  3527. return result;
  3528. }
  3529. struct ggml_tensor * ggml_mul(
  3530. struct ggml_context * ctx,
  3531. struct ggml_tensor * a,
  3532. struct ggml_tensor * b) {
  3533. return ggml_mul_impl(ctx, a, b, false);
  3534. }
  3535. struct ggml_tensor * ggml_mul_inplace(
  3536. struct ggml_context * ctx,
  3537. struct ggml_tensor * a,
  3538. struct ggml_tensor * b) {
  3539. return ggml_mul_impl(ctx, a, b, true);
  3540. }
  3541. // ggml_div
  3542. static struct ggml_tensor * ggml_div_impl(
  3543. struct ggml_context * ctx,
  3544. struct ggml_tensor * a,
  3545. struct ggml_tensor * b,
  3546. bool inplace) {
  3547. GGML_ASSERT(ggml_can_repeat(b, a));
  3548. bool is_node = false;
  3549. if (!inplace && (a->grad || b->grad)) {
  3550. is_node = true;
  3551. }
  3552. if (inplace) {
  3553. GGML_ASSERT(!is_node);
  3554. }
  3555. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3556. result->op = GGML_OP_DIV;
  3557. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3558. result->src[0] = a;
  3559. result->src[1] = b;
  3560. return result;
  3561. }
  3562. struct ggml_tensor * ggml_div(
  3563. struct ggml_context * ctx,
  3564. struct ggml_tensor * a,
  3565. struct ggml_tensor * b) {
  3566. return ggml_div_impl(ctx, a, b, false);
  3567. }
  3568. struct ggml_tensor * ggml_div_inplace(
  3569. struct ggml_context * ctx,
  3570. struct ggml_tensor * a,
  3571. struct ggml_tensor * b) {
  3572. return ggml_div_impl(ctx, a, b, true);
  3573. }
  3574. // ggml_sqr
  3575. static struct ggml_tensor * ggml_sqr_impl(
  3576. struct ggml_context * ctx,
  3577. struct ggml_tensor * a,
  3578. bool inplace) {
  3579. bool is_node = false;
  3580. if (!inplace && (a->grad)) {
  3581. is_node = true;
  3582. }
  3583. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3584. result->op = GGML_OP_SQR;
  3585. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3586. result->src[0] = a;
  3587. return result;
  3588. }
  3589. struct ggml_tensor * ggml_sqr(
  3590. struct ggml_context * ctx,
  3591. struct ggml_tensor * a) {
  3592. return ggml_sqr_impl(ctx, a, false);
  3593. }
  3594. struct ggml_tensor * ggml_sqr_inplace(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_sqr_impl(ctx, a, true);
  3598. }
  3599. // ggml_sqrt
  3600. static struct ggml_tensor * ggml_sqrt_impl(
  3601. struct ggml_context * ctx,
  3602. struct ggml_tensor * a,
  3603. bool inplace) {
  3604. bool is_node = false;
  3605. if (!inplace && (a->grad)) {
  3606. is_node = true;
  3607. }
  3608. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3609. result->op = GGML_OP_SQRT;
  3610. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3611. result->src[0] = a;
  3612. return result;
  3613. }
  3614. struct ggml_tensor * ggml_sqrt(
  3615. struct ggml_context * ctx,
  3616. struct ggml_tensor * a) {
  3617. return ggml_sqrt_impl(ctx, a, false);
  3618. }
  3619. struct ggml_tensor * ggml_sqrt_inplace(
  3620. struct ggml_context * ctx,
  3621. struct ggml_tensor * a) {
  3622. return ggml_sqrt_impl(ctx, a, true);
  3623. }
  3624. // ggml_log
  3625. static struct ggml_tensor * ggml_log_impl(
  3626. struct ggml_context * ctx,
  3627. struct ggml_tensor * a,
  3628. bool inplace) {
  3629. bool is_node = false;
  3630. if (!inplace && (a->grad)) {
  3631. is_node = true;
  3632. }
  3633. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3634. result->op = GGML_OP_LOG;
  3635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3636. result->src[0] = a;
  3637. return result;
  3638. }
  3639. struct ggml_tensor * ggml_log(
  3640. struct ggml_context * ctx,
  3641. struct ggml_tensor * a) {
  3642. return ggml_log_impl(ctx, a, false);
  3643. }
  3644. struct ggml_tensor * ggml_log_inplace(
  3645. struct ggml_context * ctx,
  3646. struct ggml_tensor * a) {
  3647. return ggml_log_impl(ctx, a, true);
  3648. }
  3649. // ggml_sum
  3650. struct ggml_tensor * ggml_sum(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a) {
  3653. bool is_node = false;
  3654. if (a->grad) {
  3655. is_node = true;
  3656. }
  3657. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3658. result->op = GGML_OP_SUM;
  3659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3660. result->src[0] = a;
  3661. return result;
  3662. }
  3663. // ggml_sum_rows
  3664. struct ggml_tensor * ggml_sum_rows(
  3665. struct ggml_context * ctx,
  3666. struct ggml_tensor * a) {
  3667. bool is_node = false;
  3668. if (a->grad) {
  3669. is_node = true;
  3670. }
  3671. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3672. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3673. ne[i] = a->ne[i];
  3674. }
  3675. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3676. result->op = GGML_OP_SUM_ROWS;
  3677. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3678. result->src[0] = a;
  3679. return result;
  3680. }
  3681. // ggml_mean
  3682. struct ggml_tensor * ggml_mean(
  3683. struct ggml_context * ctx,
  3684. struct ggml_tensor * a) {
  3685. bool is_node = false;
  3686. if (a->grad) {
  3687. GGML_ASSERT(false); // TODO: implement
  3688. is_node = true;
  3689. }
  3690. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3691. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3692. result->op = GGML_OP_MEAN;
  3693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3694. result->src[0] = a;
  3695. return result;
  3696. }
  3697. // ggml_argmax
  3698. struct ggml_tensor * ggml_argmax(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a) {
  3701. GGML_ASSERT(ggml_is_matrix(a));
  3702. bool is_node = false;
  3703. if (a->grad) {
  3704. GGML_ASSERT(false);
  3705. is_node = true;
  3706. }
  3707. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3708. result->op = GGML_OP_ARGMAX;
  3709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3710. result->src[0] = a;
  3711. return result;
  3712. }
  3713. // ggml_repeat
  3714. struct ggml_tensor * ggml_repeat(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a,
  3717. struct ggml_tensor * b) {
  3718. GGML_ASSERT(ggml_can_repeat(a, b));
  3719. bool is_node = false;
  3720. if (a->grad) {
  3721. is_node = true;
  3722. }
  3723. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3724. result->op = GGML_OP_REPEAT;
  3725. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3726. result->src[0] = a;
  3727. return result;
  3728. }
  3729. // ggml_repeat_back
  3730. struct ggml_tensor * ggml_repeat_back(
  3731. struct ggml_context * ctx,
  3732. struct ggml_tensor * a,
  3733. struct ggml_tensor * b) {
  3734. GGML_ASSERT(ggml_can_repeat(b, a));
  3735. bool is_node = false;
  3736. if (a->grad) {
  3737. is_node = true;
  3738. }
  3739. if (ggml_are_same_shape(a, b) && !is_node) {
  3740. return a;
  3741. }
  3742. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3743. result->op = GGML_OP_REPEAT_BACK;
  3744. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3745. result->src[0] = a;
  3746. return result;
  3747. }
  3748. // ggml_concat
  3749. struct ggml_tensor * ggml_concat(
  3750. struct ggml_context* ctx,
  3751. struct ggml_tensor* a,
  3752. struct ggml_tensor* b) {
  3753. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3754. bool is_node = false;
  3755. if (a->grad || b->grad) {
  3756. is_node = true;
  3757. }
  3758. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3759. result->op = GGML_OP_CONCAT;
  3760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3761. result->src[0] = a;
  3762. result->src[1] = b;
  3763. return result;
  3764. }
  3765. // ggml_abs
  3766. struct ggml_tensor * ggml_abs(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a) {
  3769. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3770. }
  3771. struct ggml_tensor * ggml_abs_inplace(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a) {
  3774. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3775. }
  3776. // ggml_sgn
  3777. struct ggml_tensor * ggml_sgn(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a) {
  3780. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3781. }
  3782. struct ggml_tensor * ggml_sgn_inplace(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a) {
  3785. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3786. }
  3787. // ggml_neg
  3788. struct ggml_tensor * ggml_neg(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a) {
  3791. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3792. }
  3793. struct ggml_tensor * ggml_neg_inplace(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a) {
  3796. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3797. }
  3798. // ggml_step
  3799. struct ggml_tensor * ggml_step(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a) {
  3802. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3803. }
  3804. struct ggml_tensor * ggml_step_inplace(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a) {
  3807. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3808. }
  3809. // ggml_tanh
  3810. struct ggml_tensor * ggml_tanh(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a) {
  3813. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3814. }
  3815. struct ggml_tensor * ggml_tanh_inplace(
  3816. struct ggml_context * ctx,
  3817. struct ggml_tensor * a) {
  3818. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3819. }
  3820. // ggml_elu
  3821. struct ggml_tensor * ggml_elu(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a) {
  3824. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3825. }
  3826. struct ggml_tensor * ggml_elu_inplace(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a) {
  3829. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3830. }
  3831. // ggml_relu
  3832. struct ggml_tensor * ggml_relu(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3836. }
  3837. struct ggml_tensor * ggml_relu_inplace(
  3838. struct ggml_context * ctx,
  3839. struct ggml_tensor * a) {
  3840. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3841. }
  3842. // ggml_leaky_relu
  3843. struct ggml_tensor * ggml_leaky_relu(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3846. bool is_node = false;
  3847. if (!inplace && (a->grad)) {
  3848. is_node = true;
  3849. }
  3850. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3851. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3852. result->op = GGML_OP_LEAKY_RELU;
  3853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3854. result->src[0] = a;
  3855. return result;
  3856. }
  3857. // ggml_sigmoid
  3858. struct ggml_tensor * ggml_sigmoid(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  3862. }
  3863. struct ggml_tensor * ggml_sigmoid_inplace(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  3867. }
  3868. // ggml_gelu
  3869. struct ggml_tensor * ggml_gelu(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a) {
  3872. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3873. }
  3874. struct ggml_tensor * ggml_gelu_inplace(
  3875. struct ggml_context * ctx,
  3876. struct ggml_tensor * a) {
  3877. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3878. }
  3879. // ggml_gelu_quick
  3880. struct ggml_tensor * ggml_gelu_quick(
  3881. struct ggml_context * ctx,
  3882. struct ggml_tensor * a) {
  3883. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3884. }
  3885. struct ggml_tensor * ggml_gelu_quick_inplace(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a) {
  3888. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3889. }
  3890. // ggml_silu
  3891. struct ggml_tensor * ggml_silu(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a) {
  3894. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3895. }
  3896. struct ggml_tensor * ggml_silu_inplace(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a) {
  3899. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3900. }
  3901. // ggml_silu_back
  3902. struct ggml_tensor * ggml_silu_back(
  3903. struct ggml_context * ctx,
  3904. struct ggml_tensor * a,
  3905. struct ggml_tensor * b) {
  3906. bool is_node = false;
  3907. if (a->grad || b->grad) {
  3908. // TODO: implement backward
  3909. is_node = true;
  3910. }
  3911. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3912. result->op = GGML_OP_SILU_BACK;
  3913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3914. result->src[0] = a;
  3915. result->src[1] = b;
  3916. return result;
  3917. }
  3918. // ggml hardswish
  3919. struct ggml_tensor * ggml_hardswish(
  3920. struct ggml_context * ctx,
  3921. struct ggml_tensor * a) {
  3922. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3923. }
  3924. // ggml hardsigmoid
  3925. struct ggml_tensor * ggml_hardsigmoid(
  3926. struct ggml_context * ctx,
  3927. struct ggml_tensor * a) {
  3928. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3929. }
  3930. // ggml_norm
  3931. static struct ggml_tensor * ggml_norm_impl(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. float eps,
  3935. bool inplace) {
  3936. bool is_node = false;
  3937. if (!inplace && (a->grad)) {
  3938. GGML_ASSERT(false); // TODO: implement backward
  3939. is_node = true;
  3940. }
  3941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3942. ggml_set_op_params(result, &eps, sizeof(eps));
  3943. result->op = GGML_OP_NORM;
  3944. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3945. result->src[0] = a;
  3946. return result;
  3947. }
  3948. struct ggml_tensor * ggml_norm(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. float eps) {
  3952. return ggml_norm_impl(ctx, a, eps, false);
  3953. }
  3954. struct ggml_tensor * ggml_norm_inplace(
  3955. struct ggml_context * ctx,
  3956. struct ggml_tensor * a,
  3957. float eps) {
  3958. return ggml_norm_impl(ctx, a, eps, true);
  3959. }
  3960. // ggml_rms_norm
  3961. static struct ggml_tensor * ggml_rms_norm_impl(
  3962. struct ggml_context * ctx,
  3963. struct ggml_tensor * a,
  3964. float eps,
  3965. bool inplace) {
  3966. bool is_node = false;
  3967. if (!inplace && (a->grad)) {
  3968. is_node = true;
  3969. }
  3970. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3971. ggml_set_op_params(result, &eps, sizeof(eps));
  3972. result->op = GGML_OP_RMS_NORM;
  3973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3974. result->src[0] = a;
  3975. return result;
  3976. }
  3977. struct ggml_tensor * ggml_rms_norm(
  3978. struct ggml_context * ctx,
  3979. struct ggml_tensor * a,
  3980. float eps) {
  3981. return ggml_rms_norm_impl(ctx, a, eps, false);
  3982. }
  3983. struct ggml_tensor * ggml_rms_norm_inplace(
  3984. struct ggml_context * ctx,
  3985. struct ggml_tensor * a,
  3986. float eps) {
  3987. return ggml_rms_norm_impl(ctx, a, eps, true);
  3988. }
  3989. // ggml_rms_norm_back
  3990. struct ggml_tensor * ggml_rms_norm_back(
  3991. struct ggml_context * ctx,
  3992. struct ggml_tensor * a,
  3993. struct ggml_tensor * b,
  3994. float eps) {
  3995. bool is_node = false;
  3996. if (a->grad) {
  3997. // TODO: implement backward
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4001. ggml_set_op_params(result, &eps, sizeof(eps));
  4002. result->op = GGML_OP_RMS_NORM_BACK;
  4003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4004. result->src[0] = a;
  4005. result->src[1] = b;
  4006. return result;
  4007. }
  4008. // ggml_group_norm
  4009. static struct ggml_tensor * ggml_group_norm_impl(
  4010. struct ggml_context * ctx,
  4011. struct ggml_tensor * a,
  4012. int n_groups,
  4013. bool inplace) {
  4014. bool is_node = false;
  4015. if (!inplace && (a->grad)) {
  4016. GGML_ASSERT(false); // TODO: implement backward
  4017. is_node = true;
  4018. }
  4019. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4020. result->op_params[0] = n_groups;
  4021. result->op = GGML_OP_GROUP_NORM;
  4022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4023. result->src[0] = a;
  4024. return result;
  4025. }
  4026. struct ggml_tensor * ggml_group_norm(
  4027. struct ggml_context * ctx,
  4028. struct ggml_tensor * a,
  4029. int n_groups) {
  4030. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4031. }
  4032. struct ggml_tensor * ggml_group_norm_inplace(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * a,
  4035. int n_groups) {
  4036. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4037. }
  4038. // ggml_mul_mat
  4039. struct ggml_tensor * ggml_mul_mat(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a,
  4042. struct ggml_tensor * b) {
  4043. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4044. GGML_ASSERT(!ggml_is_transposed(a));
  4045. bool is_node = false;
  4046. if (a->grad || b->grad) {
  4047. is_node = true;
  4048. }
  4049. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4050. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4051. result->op = GGML_OP_MUL_MAT;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src[0] = a;
  4054. result->src[1] = b;
  4055. return result;
  4056. }
  4057. void ggml_mul_mat_set_prec(
  4058. struct ggml_tensor * a,
  4059. enum ggml_prec prec) {
  4060. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4061. const int32_t prec_i32 = (int32_t) prec;
  4062. ggml_set_op_params_i32(a, 0, prec_i32);
  4063. }
  4064. // ggml_mul_mat_id
  4065. /*
  4066. c = ggml_mul_mat_id(ctx, as, b, ids);
  4067. as -> [cols, rows, n_expert]
  4068. ids -> [n_experts_used, n_tokens] (i32)
  4069. b -> [cols, n_expert_used, n_tokens]
  4070. c -> [cols, n_expert_used, n_tokens]
  4071. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4072. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4073. */
  4074. struct ggml_tensor * ggml_mul_mat_id(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * as,
  4077. struct ggml_tensor * b,
  4078. struct ggml_tensor * ids) {
  4079. GGML_ASSERT(!ggml_is_transposed(as));
  4080. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4081. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4082. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4083. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4084. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4085. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4086. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4087. bool is_node = false;
  4088. if (as->grad || b->grad) {
  4089. is_node = true;
  4090. }
  4091. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4092. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4093. result->op = GGML_OP_MUL_MAT_ID;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src[0] = as;
  4096. result->src[1] = b;
  4097. result->src[2] = ids;
  4098. return result;
  4099. }
  4100. // ggml_out_prod
  4101. struct ggml_tensor * ggml_out_prod(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a,
  4104. struct ggml_tensor * b) {
  4105. GGML_ASSERT(ggml_can_out_prod(a, b));
  4106. GGML_ASSERT(!ggml_is_transposed(a));
  4107. bool is_node = false;
  4108. if (a->grad || b->grad) {
  4109. is_node = true;
  4110. }
  4111. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4112. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4113. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4114. result->op = GGML_OP_OUT_PROD;
  4115. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4116. result->src[0] = a;
  4117. result->src[1] = b;
  4118. return result;
  4119. }
  4120. // ggml_scale
  4121. static struct ggml_tensor * ggml_scale_impl(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. float s,
  4125. bool inplace) {
  4126. GGML_ASSERT(ggml_is_padded_1d(a));
  4127. bool is_node = false;
  4128. if (a->grad) {
  4129. is_node = true;
  4130. }
  4131. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4132. ggml_set_op_params(result, &s, sizeof(s));
  4133. result->op = GGML_OP_SCALE;
  4134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4135. result->src[0] = a;
  4136. return result;
  4137. }
  4138. struct ggml_tensor * ggml_scale(
  4139. struct ggml_context * ctx,
  4140. struct ggml_tensor * a,
  4141. float s) {
  4142. return ggml_scale_impl(ctx, a, s, false);
  4143. }
  4144. struct ggml_tensor * ggml_scale_inplace(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. float s) {
  4148. return ggml_scale_impl(ctx, a, s, true);
  4149. }
  4150. // ggml_set
  4151. static struct ggml_tensor * ggml_set_impl(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a,
  4154. struct ggml_tensor * b,
  4155. size_t nb1,
  4156. size_t nb2,
  4157. size_t nb3,
  4158. size_t offset,
  4159. bool inplace) {
  4160. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4161. bool is_node = false;
  4162. if (a->grad || b->grad) {
  4163. is_node = true;
  4164. }
  4165. // make a view of the destination
  4166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4167. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4168. ggml_set_op_params(result, params, sizeof(params));
  4169. result->op = GGML_OP_SET;
  4170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4171. result->src[0] = a;
  4172. result->src[1] = b;
  4173. return result;
  4174. }
  4175. struct ggml_tensor * ggml_set(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b,
  4179. size_t nb1,
  4180. size_t nb2,
  4181. size_t nb3,
  4182. size_t offset) {
  4183. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4184. }
  4185. struct ggml_tensor * ggml_set_inplace(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a,
  4188. struct ggml_tensor * b,
  4189. size_t nb1,
  4190. size_t nb2,
  4191. size_t nb3,
  4192. size_t offset) {
  4193. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4194. }
  4195. struct ggml_tensor * ggml_set_1d(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a,
  4198. struct ggml_tensor * b,
  4199. size_t offset) {
  4200. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4201. }
  4202. struct ggml_tensor * ggml_set_1d_inplace(
  4203. struct ggml_context * ctx,
  4204. struct ggml_tensor * a,
  4205. struct ggml_tensor * b,
  4206. size_t offset) {
  4207. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4208. }
  4209. struct ggml_tensor * ggml_set_2d(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a,
  4212. struct ggml_tensor * b,
  4213. size_t nb1,
  4214. size_t offset) {
  4215. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4216. }
  4217. struct ggml_tensor * ggml_set_2d_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. struct ggml_tensor * b,
  4221. size_t nb1,
  4222. size_t offset) {
  4223. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4224. }
  4225. // ggml_cpy
  4226. static struct ggml_tensor * ggml_cpy_impl(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a,
  4229. struct ggml_tensor * b) {
  4230. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4231. bool is_node = false;
  4232. if (a->grad || b->grad) {
  4233. // inplace is false and either one have a grad
  4234. is_node = true;
  4235. }
  4236. // make a view of the destination
  4237. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4238. if (strlen(b->name) > 0) {
  4239. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4240. } else {
  4241. ggml_format_name(result, "%s (copy)", a->name);
  4242. }
  4243. result->op = GGML_OP_CPY;
  4244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4245. result->src[0] = a;
  4246. result->src[1] = b;
  4247. return result;
  4248. }
  4249. struct ggml_tensor * ggml_cpy(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a,
  4252. struct ggml_tensor * b) {
  4253. return ggml_cpy_impl(ctx, a, b);
  4254. }
  4255. struct ggml_tensor * ggml_cast(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a,
  4258. enum ggml_type type) {
  4259. bool is_node = false;
  4260. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4261. ggml_format_name(result, "%s (copy)", a->name);
  4262. result->op = GGML_OP_CPY;
  4263. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4264. result->src[0] = a;
  4265. result->src[1] = result;
  4266. return result;
  4267. }
  4268. // ggml_cont
  4269. static struct ggml_tensor * ggml_cont_impl(
  4270. struct ggml_context * ctx,
  4271. struct ggml_tensor * a) {
  4272. bool is_node = false;
  4273. if (a->grad) {
  4274. is_node = true;
  4275. }
  4276. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4277. ggml_format_name(result, "%s (cont)", a->name);
  4278. result->op = GGML_OP_CONT;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src[0] = a;
  4281. return result;
  4282. }
  4283. struct ggml_tensor * ggml_cont(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_cont_impl(ctx, a);
  4287. }
  4288. // make contiguous, with new shape
  4289. GGML_API struct ggml_tensor * ggml_cont_1d(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. int64_t ne0) {
  4293. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4294. }
  4295. GGML_API struct ggml_tensor * ggml_cont_2d(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a,
  4298. int64_t ne0,
  4299. int64_t ne1) {
  4300. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4301. }
  4302. GGML_API struct ggml_tensor * ggml_cont_3d(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. int64_t ne0,
  4306. int64_t ne1,
  4307. int64_t ne2) {
  4308. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4309. }
  4310. struct ggml_tensor * ggml_cont_4d(
  4311. struct ggml_context * ctx,
  4312. struct ggml_tensor * a,
  4313. int64_t ne0,
  4314. int64_t ne1,
  4315. int64_t ne2,
  4316. int64_t ne3) {
  4317. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4318. bool is_node = false;
  4319. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4320. ggml_format_name(result, "%s (cont)", a->name);
  4321. result->op = GGML_OP_CONT;
  4322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4323. result->src[0] = a;
  4324. return result;
  4325. }
  4326. // ggml_reshape
  4327. struct ggml_tensor * ggml_reshape(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a,
  4330. struct ggml_tensor * b) {
  4331. GGML_ASSERT(ggml_is_contiguous(a));
  4332. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4333. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4334. bool is_node = false;
  4335. if (a->grad) {
  4336. is_node = true;
  4337. }
  4338. if (b->grad) {
  4339. // gradient propagation is not supported
  4340. //GGML_ASSERT(false);
  4341. }
  4342. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4343. ggml_format_name(result, "%s (reshaped)", a->name);
  4344. result->op = GGML_OP_RESHAPE;
  4345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4346. result->src[0] = a;
  4347. return result;
  4348. }
  4349. struct ggml_tensor * ggml_reshape_1d(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a,
  4352. int64_t ne0) {
  4353. GGML_ASSERT(ggml_is_contiguous(a));
  4354. GGML_ASSERT(ggml_nelements(a) == ne0);
  4355. bool is_node = false;
  4356. if (a->grad) {
  4357. is_node = true;
  4358. }
  4359. const int64_t ne[1] = { ne0 };
  4360. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4361. ggml_format_name(result, "%s (reshaped)", a->name);
  4362. result->op = GGML_OP_RESHAPE;
  4363. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4364. result->src[0] = a;
  4365. return result;
  4366. }
  4367. struct ggml_tensor * ggml_reshape_2d(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. int64_t ne0,
  4371. int64_t ne1) {
  4372. GGML_ASSERT(ggml_is_contiguous(a));
  4373. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4374. bool is_node = false;
  4375. if (a->grad) {
  4376. is_node = true;
  4377. }
  4378. const int64_t ne[2] = { ne0, ne1 };
  4379. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4380. ggml_format_name(result, "%s (reshaped)", a->name);
  4381. result->op = GGML_OP_RESHAPE;
  4382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4383. result->src[0] = a;
  4384. return result;
  4385. }
  4386. struct ggml_tensor * ggml_reshape_3d(
  4387. struct ggml_context * ctx,
  4388. struct ggml_tensor * a,
  4389. int64_t ne0,
  4390. int64_t ne1,
  4391. int64_t ne2) {
  4392. GGML_ASSERT(ggml_is_contiguous(a));
  4393. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4394. bool is_node = false;
  4395. if (a->grad) {
  4396. is_node = true;
  4397. }
  4398. const int64_t ne[3] = { ne0, ne1, ne2 };
  4399. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4400. ggml_format_name(result, "%s (reshaped)", a->name);
  4401. result->op = GGML_OP_RESHAPE;
  4402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4403. result->src[0] = a;
  4404. return result;
  4405. }
  4406. struct ggml_tensor * ggml_reshape_4d(
  4407. struct ggml_context * ctx,
  4408. struct ggml_tensor * a,
  4409. int64_t ne0,
  4410. int64_t ne1,
  4411. int64_t ne2,
  4412. int64_t ne3) {
  4413. GGML_ASSERT(ggml_is_contiguous(a));
  4414. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4415. bool is_node = false;
  4416. if (a->grad) {
  4417. is_node = true;
  4418. }
  4419. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4420. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4421. ggml_format_name(result, "%s (reshaped)", a->name);
  4422. result->op = GGML_OP_RESHAPE;
  4423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4424. result->src[0] = a;
  4425. return result;
  4426. }
  4427. static struct ggml_tensor * ggml_view_impl(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. int n_dims,
  4431. const int64_t * ne,
  4432. size_t offset) {
  4433. bool is_node = false;
  4434. if (a->grad) {
  4435. is_node = true;
  4436. }
  4437. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4438. ggml_format_name(result, "%s (view)", a->name);
  4439. ggml_set_op_params(result, &offset, sizeof(offset));
  4440. result->op = GGML_OP_VIEW;
  4441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4442. result->src[0] = a;
  4443. return result;
  4444. }
  4445. // ggml_view_1d
  4446. struct ggml_tensor * ggml_view_1d(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a,
  4449. int64_t ne0,
  4450. size_t offset) {
  4451. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4452. return result;
  4453. }
  4454. // ggml_view_2d
  4455. struct ggml_tensor * ggml_view_2d(
  4456. struct ggml_context * ctx,
  4457. struct ggml_tensor * a,
  4458. int64_t ne0,
  4459. int64_t ne1,
  4460. size_t nb1,
  4461. size_t offset) {
  4462. const int64_t ne[2] = { ne0, ne1 };
  4463. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4464. result->nb[1] = nb1;
  4465. result->nb[2] = result->nb[1]*ne1;
  4466. result->nb[3] = result->nb[2];
  4467. return result;
  4468. }
  4469. // ggml_view_3d
  4470. struct ggml_tensor * ggml_view_3d(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. int64_t ne0,
  4474. int64_t ne1,
  4475. int64_t ne2,
  4476. size_t nb1,
  4477. size_t nb2,
  4478. size_t offset) {
  4479. const int64_t ne[3] = { ne0, ne1, ne2 };
  4480. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4481. result->nb[1] = nb1;
  4482. result->nb[2] = nb2;
  4483. result->nb[3] = result->nb[2]*ne2;
  4484. return result;
  4485. }
  4486. // ggml_view_4d
  4487. struct ggml_tensor * ggml_view_4d(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. int64_t ne0,
  4491. int64_t ne1,
  4492. int64_t ne2,
  4493. int64_t ne3,
  4494. size_t nb1,
  4495. size_t nb2,
  4496. size_t nb3,
  4497. size_t offset) {
  4498. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4499. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4500. result->nb[1] = nb1;
  4501. result->nb[2] = nb2;
  4502. result->nb[3] = nb3;
  4503. return result;
  4504. }
  4505. // ggml_permute
  4506. struct ggml_tensor * ggml_permute(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. int axis0,
  4510. int axis1,
  4511. int axis2,
  4512. int axis3) {
  4513. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4514. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4515. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4516. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4517. GGML_ASSERT(axis0 != axis1);
  4518. GGML_ASSERT(axis0 != axis2);
  4519. GGML_ASSERT(axis0 != axis3);
  4520. GGML_ASSERT(axis1 != axis2);
  4521. GGML_ASSERT(axis1 != axis3);
  4522. GGML_ASSERT(axis2 != axis3);
  4523. bool is_node = false;
  4524. if (a->grad) {
  4525. is_node = true;
  4526. }
  4527. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4528. ggml_format_name(result, "%s (permuted)", a->name);
  4529. int ne[GGML_MAX_DIMS];
  4530. int nb[GGML_MAX_DIMS];
  4531. ne[axis0] = a->ne[0];
  4532. ne[axis1] = a->ne[1];
  4533. ne[axis2] = a->ne[2];
  4534. ne[axis3] = a->ne[3];
  4535. nb[axis0] = a->nb[0];
  4536. nb[axis1] = a->nb[1];
  4537. nb[axis2] = a->nb[2];
  4538. nb[axis3] = a->nb[3];
  4539. result->ne[0] = ne[0];
  4540. result->ne[1] = ne[1];
  4541. result->ne[2] = ne[2];
  4542. result->ne[3] = ne[3];
  4543. result->nb[0] = nb[0];
  4544. result->nb[1] = nb[1];
  4545. result->nb[2] = nb[2];
  4546. result->nb[3] = nb[3];
  4547. result->op = GGML_OP_PERMUTE;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src[0] = a;
  4550. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4551. ggml_set_op_params(result, params, sizeof(params));
  4552. return result;
  4553. }
  4554. // ggml_transpose
  4555. struct ggml_tensor * ggml_transpose(
  4556. struct ggml_context * ctx,
  4557. struct ggml_tensor * a) {
  4558. bool is_node = false;
  4559. if (a->grad) {
  4560. is_node = true;
  4561. }
  4562. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4563. ggml_format_name(result, "%s (transposed)", a->name);
  4564. result->ne[0] = a->ne[1];
  4565. result->ne[1] = a->ne[0];
  4566. result->nb[0] = a->nb[1];
  4567. result->nb[1] = a->nb[0];
  4568. result->op = GGML_OP_TRANSPOSE;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src[0] = a;
  4571. return result;
  4572. }
  4573. // ggml_get_rows
  4574. struct ggml_tensor * ggml_get_rows(
  4575. struct ggml_context * ctx,
  4576. struct ggml_tensor * a,
  4577. struct ggml_tensor * b) {
  4578. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4579. GGML_ASSERT(b->ne[3] == 1);
  4580. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4581. bool is_node = false;
  4582. if (a->grad || b->grad) {
  4583. is_node = true;
  4584. }
  4585. // TODO: implement non F32 return
  4586. enum ggml_type type = GGML_TYPE_F32;
  4587. if (a->type == GGML_TYPE_I32) {
  4588. type = a->type;
  4589. }
  4590. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4591. result->op = GGML_OP_GET_ROWS;
  4592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4593. result->src[0] = a;
  4594. result->src[1] = b;
  4595. return result;
  4596. }
  4597. // ggml_get_rows_back
  4598. struct ggml_tensor * ggml_get_rows_back(
  4599. struct ggml_context * ctx,
  4600. struct ggml_tensor * a,
  4601. struct ggml_tensor * b,
  4602. struct ggml_tensor * c) {
  4603. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4604. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4605. bool is_node = false;
  4606. if (a->grad || b->grad) {
  4607. is_node = true;
  4608. }
  4609. // TODO: implement non F32 return
  4610. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4611. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4612. result->op = GGML_OP_GET_ROWS_BACK;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src[0] = a;
  4615. result->src[1] = b;
  4616. return result;
  4617. }
  4618. // ggml_diag
  4619. struct ggml_tensor * ggml_diag(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a) {
  4622. GGML_ASSERT(a->ne[1] == 1);
  4623. bool is_node = false;
  4624. if (a->grad) {
  4625. is_node = true;
  4626. }
  4627. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4628. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4629. result->op = GGML_OP_DIAG;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = a;
  4632. return result;
  4633. }
  4634. // ggml_diag_mask_inf
  4635. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. int n_past,
  4639. bool inplace) {
  4640. bool is_node = false;
  4641. if (a->grad) {
  4642. is_node = true;
  4643. }
  4644. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4645. int32_t params[] = { n_past };
  4646. ggml_set_op_params(result, params, sizeof(params));
  4647. result->op = GGML_OP_DIAG_MASK_INF;
  4648. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4649. result->src[0] = a;
  4650. return result;
  4651. }
  4652. struct ggml_tensor * ggml_diag_mask_inf(
  4653. struct ggml_context * ctx,
  4654. struct ggml_tensor * a,
  4655. int n_past) {
  4656. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4657. }
  4658. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4659. struct ggml_context * ctx,
  4660. struct ggml_tensor * a,
  4661. int n_past) {
  4662. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4663. }
  4664. // ggml_diag_mask_zero
  4665. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4666. struct ggml_context * ctx,
  4667. struct ggml_tensor * a,
  4668. int n_past,
  4669. bool inplace) {
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4675. int32_t params[] = { n_past };
  4676. ggml_set_op_params(result, params, sizeof(params));
  4677. result->op = GGML_OP_DIAG_MASK_ZERO;
  4678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4679. result->src[0] = a;
  4680. return result;
  4681. }
  4682. struct ggml_tensor * ggml_diag_mask_zero(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. int n_past) {
  4686. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4687. }
  4688. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int n_past) {
  4692. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4693. }
  4694. // ggml_soft_max
  4695. static struct ggml_tensor * ggml_soft_max_impl(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. struct ggml_tensor * mask,
  4699. float scale,
  4700. float max_bias,
  4701. bool inplace) {
  4702. GGML_ASSERT(ggml_is_contiguous(a));
  4703. if (mask) {
  4704. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  4705. GGML_ASSERT(ggml_is_contiguous(mask));
  4706. GGML_ASSERT(ggml_is_matrix(mask));
  4707. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  4708. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  4709. }
  4710. if (max_bias > 0.0f) {
  4711. GGML_ASSERT(mask);
  4712. }
  4713. bool is_node = false;
  4714. if (a->grad) {
  4715. is_node = true;
  4716. }
  4717. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4718. float params[] = { scale, max_bias };
  4719. ggml_set_op_params(result, params, sizeof(params));
  4720. result->op = GGML_OP_SOFT_MAX;
  4721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4722. result->src[0] = a;
  4723. result->src[1] = mask;
  4724. return result;
  4725. }
  4726. struct ggml_tensor * ggml_soft_max(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a) {
  4729. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  4730. }
  4731. struct ggml_tensor * ggml_soft_max_inplace(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a) {
  4734. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  4735. }
  4736. struct ggml_tensor * ggml_soft_max_ext(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * mask,
  4740. float scale,
  4741. float max_bias) {
  4742. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  4743. }
  4744. // ggml_soft_max_back
  4745. static struct ggml_tensor * ggml_soft_max_back_impl(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. struct ggml_tensor * b,
  4749. bool inplace) {
  4750. bool is_node = false;
  4751. if (a->grad || b->grad) {
  4752. is_node = true; // TODO : implement backward pass
  4753. }
  4754. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4755. result->op = GGML_OP_SOFT_MAX_BACK;
  4756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4757. result->src[0] = a;
  4758. result->src[1] = b;
  4759. return result;
  4760. }
  4761. struct ggml_tensor * ggml_soft_max_back(
  4762. struct ggml_context * ctx,
  4763. struct ggml_tensor * a,
  4764. struct ggml_tensor * b) {
  4765. return ggml_soft_max_back_impl(ctx, a, b, false);
  4766. }
  4767. struct ggml_tensor * ggml_soft_max_back_inplace(
  4768. struct ggml_context * ctx,
  4769. struct ggml_tensor * a,
  4770. struct ggml_tensor * b) {
  4771. return ggml_soft_max_back_impl(ctx, a, b, true);
  4772. }
  4773. // ggml_rope
  4774. static struct ggml_tensor * ggml_rope_impl(
  4775. struct ggml_context * ctx,
  4776. struct ggml_tensor * a,
  4777. struct ggml_tensor * b,
  4778. int n_dims,
  4779. int mode,
  4780. int n_ctx,
  4781. int n_orig_ctx,
  4782. float freq_base,
  4783. float freq_scale,
  4784. float ext_factor,
  4785. float attn_factor,
  4786. float beta_fast,
  4787. float beta_slow,
  4788. float xpos_base,
  4789. bool xpos_down,
  4790. bool inplace) {
  4791. GGML_ASSERT(ggml_is_vector(b));
  4792. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4793. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4794. bool is_node = false;
  4795. if (a->grad) {
  4796. is_node = true;
  4797. }
  4798. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4799. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4800. memcpy(params + 5, &freq_base, sizeof(float));
  4801. memcpy(params + 6, &freq_scale, sizeof(float));
  4802. memcpy(params + 7, &ext_factor, sizeof(float));
  4803. memcpy(params + 8, &attn_factor, sizeof(float));
  4804. memcpy(params + 9, &beta_fast, sizeof(float));
  4805. memcpy(params + 10, &beta_slow, sizeof(float));
  4806. memcpy(params + 11, &xpos_base, sizeof(float));
  4807. memcpy(params + 12, &xpos_down, sizeof(bool));
  4808. ggml_set_op_params(result, params, sizeof(params));
  4809. result->op = GGML_OP_ROPE;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src[0] = a;
  4812. result->src[1] = b;
  4813. return result;
  4814. }
  4815. struct ggml_tensor * ggml_rope(
  4816. struct ggml_context * ctx,
  4817. struct ggml_tensor * a,
  4818. struct ggml_tensor * b,
  4819. int n_dims,
  4820. int mode,
  4821. int n_ctx) {
  4822. return ggml_rope_impl(
  4823. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4824. );
  4825. }
  4826. struct ggml_tensor * ggml_rope_inplace(
  4827. struct ggml_context * ctx,
  4828. struct ggml_tensor * a,
  4829. struct ggml_tensor * b,
  4830. int n_dims,
  4831. int mode,
  4832. int n_ctx) {
  4833. return ggml_rope_impl(
  4834. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4835. );
  4836. }
  4837. struct ggml_tensor * ggml_rope_custom(
  4838. struct ggml_context * ctx,
  4839. struct ggml_tensor * a,
  4840. struct ggml_tensor * b,
  4841. int n_dims,
  4842. int mode,
  4843. int n_ctx,
  4844. int n_orig_ctx,
  4845. float freq_base,
  4846. float freq_scale,
  4847. float ext_factor,
  4848. float attn_factor,
  4849. float beta_fast,
  4850. float beta_slow) {
  4851. return ggml_rope_impl(
  4852. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4853. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4854. );
  4855. }
  4856. struct ggml_tensor * ggml_rope_custom_inplace(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. struct ggml_tensor * b,
  4860. int n_dims,
  4861. int mode,
  4862. int n_ctx,
  4863. int n_orig_ctx,
  4864. float freq_base,
  4865. float freq_scale,
  4866. float ext_factor,
  4867. float attn_factor,
  4868. float beta_fast,
  4869. float beta_slow) {
  4870. return ggml_rope_impl(
  4871. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4872. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4873. );
  4874. }
  4875. struct ggml_tensor * ggml_rope_xpos_inplace(
  4876. struct ggml_context * ctx,
  4877. struct ggml_tensor * a,
  4878. struct ggml_tensor * b,
  4879. int n_dims,
  4880. float base,
  4881. bool down) {
  4882. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4883. }
  4884. // ggml_rope_back
  4885. struct ggml_tensor * ggml_rope_back(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a,
  4888. struct ggml_tensor * b,
  4889. int n_dims,
  4890. int mode,
  4891. int n_ctx,
  4892. int n_orig_ctx,
  4893. float freq_base,
  4894. float freq_scale,
  4895. float ext_factor,
  4896. float attn_factor,
  4897. float beta_fast,
  4898. float beta_slow,
  4899. float xpos_base,
  4900. bool xpos_down) {
  4901. GGML_ASSERT(ggml_is_vector(b));
  4902. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4903. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4904. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4905. bool is_node = false;
  4906. if (a->grad) {
  4907. is_node = false; // TODO: implement backward
  4908. }
  4909. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4910. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4911. memcpy(params + 5, &freq_base, sizeof(float));
  4912. memcpy(params + 6, &freq_scale, sizeof(float));
  4913. memcpy(params + 7, &ext_factor, sizeof(float));
  4914. memcpy(params + 8, &attn_factor, sizeof(float));
  4915. memcpy(params + 9, &beta_fast, sizeof(float));
  4916. memcpy(params + 10, &beta_slow, sizeof(float));
  4917. memcpy(params + 11, &xpos_base, sizeof(float));
  4918. memcpy(params + 12, &xpos_down, sizeof(bool));
  4919. ggml_set_op_params(result, params, sizeof(params));
  4920. result->op = GGML_OP_ROPE_BACK;
  4921. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4922. result->src[0] = a;
  4923. result->src[1] = b;
  4924. return result;
  4925. }
  4926. // ggml_clamp
  4927. struct ggml_tensor * ggml_clamp(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. float min,
  4931. float max) {
  4932. bool is_node = false;
  4933. if (a->grad) {
  4934. GGML_ASSERT(false); // TODO: implement backward
  4935. is_node = true;
  4936. }
  4937. // TODO: when implement backward, fix this:
  4938. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4939. float params[] = { min, max };
  4940. ggml_set_op_params(result, params, sizeof(params));
  4941. result->op = GGML_OP_CLAMP;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src[0] = a;
  4944. return result;
  4945. }
  4946. // ggml_conv_1d
  4947. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4948. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4949. }
  4950. GGML_API struct ggml_tensor * ggml_conv_1d(
  4951. struct ggml_context * ctx,
  4952. struct ggml_tensor * a,
  4953. struct ggml_tensor * b,
  4954. int s0,
  4955. int p0,
  4956. int d0) {
  4957. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4958. struct ggml_tensor * result =
  4959. ggml_mul_mat(ctx,
  4960. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4961. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4962. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4963. return result;
  4964. }
  4965. // ggml_conv_1d_ph
  4966. struct ggml_tensor* ggml_conv_1d_ph(
  4967. struct ggml_context * ctx,
  4968. struct ggml_tensor * a,
  4969. struct ggml_tensor * b,
  4970. int s,
  4971. int d) {
  4972. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4973. }
  4974. // ggml_conv_transpose_1d
  4975. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4976. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4977. }
  4978. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4979. struct ggml_context * ctx,
  4980. struct ggml_tensor * a,
  4981. struct ggml_tensor * b,
  4982. int s0,
  4983. int p0,
  4984. int d0) {
  4985. GGML_ASSERT(ggml_is_matrix(b));
  4986. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4987. GGML_ASSERT(a->ne[3] == 1);
  4988. GGML_ASSERT(p0 == 0);
  4989. GGML_ASSERT(d0 == 1);
  4990. bool is_node = false;
  4991. if (a->grad || b->grad) {
  4992. GGML_ASSERT(false); // TODO: implement backward
  4993. is_node = true;
  4994. }
  4995. const int64_t ne[4] = {
  4996. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4997. a->ne[1], b->ne[2], 1,
  4998. };
  4999. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5000. int32_t params[] = { s0, p0, d0 };
  5001. ggml_set_op_params(result, params, sizeof(params));
  5002. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5003. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5004. result->src[0] = a;
  5005. result->src[1] = b;
  5006. return result;
  5007. }
  5008. // ggml_conv_depthwise
  5009. struct ggml_tensor * ggml_conv_depthwise_2d(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. struct ggml_tensor * b,
  5013. int s0,
  5014. int s1,
  5015. int p0,
  5016. int p1,
  5017. int d0,
  5018. int d1) {
  5019. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5020. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5021. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5022. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5023. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5024. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5025. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5026. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5027. return result;
  5028. }
  5029. // ggml_conv_2d
  5030. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5031. // a: [OC,IC, KH, KW]
  5032. // b: [N, IC, IH, IW]
  5033. // result: [N, OH, OW, IC*KH*KW]
  5034. struct ggml_tensor * ggml_im2col(
  5035. struct ggml_context * ctx,
  5036. struct ggml_tensor * a,
  5037. struct ggml_tensor * b,
  5038. int s0,
  5039. int s1,
  5040. int p0,
  5041. int p1,
  5042. int d0,
  5043. int d1,
  5044. bool is_2D,
  5045. enum ggml_type dst_type) {
  5046. if(is_2D) {
  5047. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5048. } else {
  5049. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5050. }
  5051. bool is_node = false;
  5052. if (a->grad || b->grad) {
  5053. GGML_ASSERT(false); // TODO: implement backward
  5054. is_node = true;
  5055. }
  5056. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5057. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5058. const int64_t ne[4] = {
  5059. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5060. OW,
  5061. is_2D ? OH : b->ne[2],
  5062. is_2D ? b->ne[3] : 1,
  5063. };
  5064. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5065. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5066. ggml_set_op_params(result, params, sizeof(params));
  5067. result->op = GGML_OP_IM2COL;
  5068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5069. result->src[0] = a;
  5070. result->src[1] = b;
  5071. return result;
  5072. }
  5073. // a: [OC,IC, KH, KW]
  5074. // b: [N, IC, IH, IW]
  5075. // result: [N, OC, OH, OW]
  5076. struct ggml_tensor * ggml_conv_2d(
  5077. struct ggml_context * ctx,
  5078. struct ggml_tensor * a,
  5079. struct ggml_tensor * b,
  5080. int s0,
  5081. int s1,
  5082. int p0,
  5083. int p1,
  5084. int d0,
  5085. int d1) {
  5086. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5087. struct ggml_tensor * result =
  5088. ggml_mul_mat(ctx,
  5089. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5090. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5091. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5092. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5093. return result;
  5094. }
  5095. // ggml_conv_2d_sk_p0
  5096. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. struct ggml_tensor * b) {
  5100. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5101. }
  5102. // ggml_conv_2d_s1_ph
  5103. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. struct ggml_tensor * b) {
  5107. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5108. }
  5109. // ggml_conv_transpose_2d_p0
  5110. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5111. return (ins - 1) * s - 2 * p + ks;
  5112. }
  5113. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5114. struct ggml_context * ctx,
  5115. struct ggml_tensor * a,
  5116. struct ggml_tensor * b,
  5117. int stride) {
  5118. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5119. bool is_node = false;
  5120. if (a->grad || b->grad) {
  5121. GGML_ASSERT(false); // TODO: implement backward
  5122. is_node = true;
  5123. }
  5124. const int64_t ne[4] = {
  5125. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5126. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5127. a->ne[2], b->ne[3],
  5128. };
  5129. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5130. ggml_set_op_params_i32(result, 0, stride);
  5131. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. result->src[1] = b;
  5135. return result;
  5136. }
  5137. // ggml_pool_*
  5138. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5139. return (ins + 2 * p - ks) / s + 1;
  5140. }
  5141. // ggml_pool_1d
  5142. struct ggml_tensor * ggml_pool_1d(
  5143. struct ggml_context * ctx,
  5144. struct ggml_tensor * a,
  5145. enum ggml_op_pool op,
  5146. int k0,
  5147. int s0,
  5148. int p0) {
  5149. bool is_node = false;
  5150. if (a->grad) {
  5151. GGML_ASSERT(false); // TODO: implement backward
  5152. is_node = true;
  5153. }
  5154. const int64_t ne[4] = {
  5155. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5156. a->ne[1],
  5157. a->ne[2],
  5158. a->ne[3],
  5159. };
  5160. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5161. int32_t params[] = { op, k0, s0, p0 };
  5162. ggml_set_op_params(result, params, sizeof(params));
  5163. result->op = GGML_OP_POOL_1D;
  5164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5165. result->src[0] = a;
  5166. return result;
  5167. }
  5168. // ggml_pool_2d
  5169. struct ggml_tensor * ggml_pool_2d(
  5170. struct ggml_context * ctx,
  5171. struct ggml_tensor * a,
  5172. enum ggml_op_pool op,
  5173. int k0,
  5174. int k1,
  5175. int s0,
  5176. int s1,
  5177. float p0,
  5178. float p1) {
  5179. bool is_node = false;
  5180. if (a->grad) {
  5181. GGML_ASSERT(false); // TODO: implement backward
  5182. is_node = true;
  5183. }
  5184. struct ggml_tensor * result;
  5185. const int64_t ne[3] = {
  5186. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5187. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5188. a->ne[2],
  5189. };
  5190. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5191. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5192. ggml_set_op_params(result, params, sizeof(params));
  5193. result->op = GGML_OP_POOL_2D;
  5194. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5195. result->src[0] = a;
  5196. return result;
  5197. }
  5198. // ggml_upscale
  5199. static struct ggml_tensor * ggml_upscale_impl(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. int ne0,
  5203. int ne1,
  5204. int ne2,
  5205. int ne3) {
  5206. bool is_node = false;
  5207. if (a->grad) {
  5208. GGML_ASSERT(false); // TODO: implement backward
  5209. is_node = true;
  5210. }
  5211. GGML_ASSERT(a->ne[0] <= ne0);
  5212. GGML_ASSERT(a->ne[1] <= ne1);
  5213. GGML_ASSERT(a->ne[2] <= ne2);
  5214. GGML_ASSERT(a->ne[3] <= ne3);
  5215. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5216. ne0,
  5217. ne1,
  5218. ne2,
  5219. ne3
  5220. );
  5221. result->op = GGML_OP_UPSCALE;
  5222. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5223. result->src[0] = a;
  5224. return result;
  5225. }
  5226. struct ggml_tensor * ggml_upscale(
  5227. struct ggml_context * ctx,
  5228. struct ggml_tensor * a,
  5229. int scale_factor) {
  5230. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5231. }
  5232. struct ggml_tensor * ggml_upscale_ext(
  5233. struct ggml_context * ctx,
  5234. struct ggml_tensor * a,
  5235. int ne0,
  5236. int ne1,
  5237. int ne2,
  5238. int ne3) {
  5239. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5240. }
  5241. // ggml_pad
  5242. struct ggml_tensor * ggml_pad(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. int p0, int p1, int p2, int p3) {
  5246. bool is_node = false;
  5247. if (a->grad) {
  5248. GGML_ASSERT(false); // TODO: implement backward
  5249. is_node = true;
  5250. }
  5251. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5252. a->ne[0] + p0,
  5253. a->ne[1] + p1,
  5254. a->ne[2] + p2,
  5255. a->ne[3] + p3);
  5256. result->op = GGML_OP_PAD;
  5257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5258. result->src[0] = a;
  5259. return result;
  5260. }
  5261. // ggml_arange
  5262. struct ggml_tensor * ggml_arange(
  5263. struct ggml_context * ctx,
  5264. float start,
  5265. float stop,
  5266. float step) {
  5267. GGML_ASSERT(stop > start);
  5268. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5269. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5270. result->op = GGML_OP_ARANGE;
  5271. ggml_set_op_params_f32(result, 0, start);
  5272. ggml_set_op_params_f32(result, 1, stop);
  5273. ggml_set_op_params_f32(result, 2, step);
  5274. return result;
  5275. }
  5276. // ggml_timestep_embedding
  5277. struct ggml_tensor * ggml_timestep_embedding(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * timesteps,
  5280. int dim,
  5281. int max_period) {
  5282. bool is_node = false;
  5283. if (timesteps->grad) {
  5284. GGML_ASSERT(false); // TODO: implement backward
  5285. is_node = true;
  5286. }
  5287. int actual_dim = dim;
  5288. if (dim % 2 != 0) {
  5289. actual_dim = dim + 1;
  5290. }
  5291. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5292. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5293. ggml_set_op_params_i32(result, 0, dim);
  5294. ggml_set_op_params_i32(result, 1, max_period);
  5295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5296. result->src[0] = timesteps;
  5297. return result;
  5298. }
  5299. // ggml_argsort
  5300. struct ggml_tensor * ggml_argsort(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a,
  5303. enum ggml_sort_order order) {
  5304. bool is_node = false;
  5305. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5306. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5307. result->op = GGML_OP_ARGSORT;
  5308. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5309. result->src[0] = a;
  5310. return result;
  5311. }
  5312. // ggml_top_k
  5313. struct ggml_tensor * ggml_top_k(
  5314. struct ggml_context * ctx,
  5315. struct ggml_tensor * a,
  5316. int k) {
  5317. GGML_ASSERT(a->ne[0] >= k);
  5318. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5319. result = ggml_view_4d(ctx, result,
  5320. k, result->ne[1], result->ne[2], result->ne[3],
  5321. result->nb[1], result->nb[2], result->nb[3],
  5322. 0);
  5323. return result;
  5324. }
  5325. // ggml_flash_attn
  5326. struct ggml_tensor * ggml_flash_attn(
  5327. struct ggml_context * ctx,
  5328. struct ggml_tensor * q,
  5329. struct ggml_tensor * k,
  5330. struct ggml_tensor * v,
  5331. bool masked) {
  5332. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5333. // TODO: check if vT can be multiplied by (k*qT)
  5334. bool is_node = false;
  5335. if (q->grad || k->grad || v->grad) {
  5336. is_node = true;
  5337. }
  5338. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5339. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5340. int32_t t = masked ? 1 : 0;
  5341. ggml_set_op_params(result, &t, sizeof(t));
  5342. result->op = GGML_OP_FLASH_ATTN;
  5343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5344. result->src[0] = q;
  5345. result->src[1] = k;
  5346. result->src[2] = v;
  5347. return result;
  5348. }
  5349. // ggml_flash_attn_ext
  5350. struct ggml_tensor * ggml_flash_attn_ext(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * q,
  5353. struct ggml_tensor * k,
  5354. struct ggml_tensor * v,
  5355. struct ggml_tensor * mask,
  5356. float scale,
  5357. float max_bias) {
  5358. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5359. // TODO: check if vT can be multiplied by (k*qT)
  5360. if (mask) {
  5361. GGML_ASSERT(ggml_is_contiguous(mask));
  5362. GGML_ASSERT(mask->ne[2] == 1);
  5363. GGML_ASSERT(mask->ne[3] == 1);
  5364. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5365. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5366. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5367. }
  5368. if (max_bias > 0.0f) {
  5369. GGML_ASSERT(mask);
  5370. }
  5371. bool is_node = false;
  5372. if (q->grad || k->grad || v->grad) {
  5373. is_node = true;
  5374. }
  5375. // permute(0, 2, 1, 3)
  5376. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5377. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5378. float params[] = { scale, max_bias };
  5379. ggml_set_op_params(result, params, sizeof(params));
  5380. result->op = GGML_OP_FLASH_ATTN_EXT;
  5381. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5382. result->src[0] = q;
  5383. result->src[1] = k;
  5384. result->src[2] = v;
  5385. result->src[3] = mask;
  5386. return result;
  5387. }
  5388. void ggml_flash_attn_ext_set_prec(
  5389. struct ggml_tensor * a,
  5390. enum ggml_prec prec) {
  5391. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5392. const int32_t prec_i32 = (int32_t) prec;
  5393. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5394. }
  5395. // ggml_flash_ff
  5396. struct ggml_tensor * ggml_flash_ff(
  5397. struct ggml_context * ctx,
  5398. struct ggml_tensor * a,
  5399. struct ggml_tensor * b0,
  5400. struct ggml_tensor * b1,
  5401. struct ggml_tensor * c0,
  5402. struct ggml_tensor * c1) {
  5403. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5404. // TODO: more checks
  5405. bool is_node = false;
  5406. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5407. is_node = true;
  5408. }
  5409. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5410. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5411. result->op = GGML_OP_FLASH_FF;
  5412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5413. result->src[0] = a;
  5414. result->src[1] = b0;
  5415. result->src[2] = b1;
  5416. result->src[3] = c0;
  5417. result->src[4] = c1;
  5418. return result;
  5419. }
  5420. // ggml_flash_attn_back
  5421. struct ggml_tensor * ggml_flash_attn_back(
  5422. struct ggml_context * ctx,
  5423. struct ggml_tensor * q,
  5424. struct ggml_tensor * k,
  5425. struct ggml_tensor * v,
  5426. struct ggml_tensor * d,
  5427. bool masked) {
  5428. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5429. // TODO: check if vT can be multiplied by (k*qT)
  5430. // d shape [D,N,ne2,ne3]
  5431. // q shape [D,N,ne2,ne3]
  5432. // k shape [D,M,kvne2,ne3]
  5433. // v shape [M,D,kvne2,ne3]
  5434. const int64_t D = q->ne[0];
  5435. const int64_t N = q->ne[1];
  5436. const int64_t M = k->ne[1];
  5437. const int64_t ne2 = q->ne[2];
  5438. const int64_t ne3 = q->ne[3];
  5439. const int64_t kvne2 = k->ne[2];
  5440. GGML_ASSERT(k->ne[0] == D);
  5441. GGML_ASSERT(v->ne[0] == M);
  5442. GGML_ASSERT(v->ne[1] == D);
  5443. GGML_ASSERT(d->ne[0] == D);
  5444. GGML_ASSERT(d->ne[1] == N);
  5445. GGML_ASSERT(k->ne[2] == kvne2);
  5446. GGML_ASSERT(k->ne[3] == ne3);
  5447. GGML_ASSERT(v->ne[2] == kvne2);
  5448. GGML_ASSERT(v->ne[3] == ne3);
  5449. GGML_ASSERT(d->ne[2] == ne2);
  5450. GGML_ASSERT(d->ne[3] == ne3);
  5451. GGML_ASSERT(ne2 % kvne2 == 0);
  5452. bool is_node = false;
  5453. if (q->grad || k->grad || v->grad) {
  5454. // when using this operation (in backwards pass) these grads are set.
  5455. // we don't want to create (big) grad of our result, so is_node is false.
  5456. is_node = false;
  5457. }
  5458. // store gradients of q, k and v as continuous tensors concatenated in result.
  5459. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5460. const int64_t elem_q = ggml_nelements(q);
  5461. const int64_t elem_k = ggml_nelements(k);
  5462. const int64_t elem_v = ggml_nelements(v);
  5463. enum ggml_type result_type = GGML_TYPE_F32;
  5464. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5465. const size_t tsize = ggml_type_size(result_type);
  5466. const size_t offs_q = 0;
  5467. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5468. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5469. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5470. const size_t nelements = (end + tsize - 1)/tsize;
  5471. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5472. int32_t masked_i = masked ? 1 : 0;
  5473. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5474. result->op = GGML_OP_FLASH_ATTN_BACK;
  5475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5476. result->src[0] = q;
  5477. result->src[1] = k;
  5478. result->src[2] = v;
  5479. result->src[3] = d;
  5480. return result;
  5481. }
  5482. // ggml_ssm_conv
  5483. struct ggml_tensor * ggml_ssm_conv(
  5484. struct ggml_context * ctx,
  5485. struct ggml_tensor * s,
  5486. struct ggml_tensor * x,
  5487. struct ggml_tensor * c,
  5488. struct ggml_tensor * sq) {
  5489. GGML_ASSERT(ggml_is_3d(s));
  5490. GGML_ASSERT(ggml_is_matrix(x));
  5491. GGML_ASSERT(ggml_is_matrix(c));
  5492. GGML_ASSERT(ggml_is_matrix(sq));
  5493. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5494. const int64_t d_conv = c->ne[0];
  5495. const int64_t d_inner = c->ne[1];
  5496. const int64_t n_tokens = x->ne[1];
  5497. const int64_t n_kv = s->ne[2];
  5498. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5499. GGML_ASSERT( s->ne[1] == d_inner);
  5500. GGML_ASSERT( x->ne[0] == d_inner);
  5501. GGML_ASSERT(sq->ne[0] == n_kv);
  5502. GGML_ASSERT(sq->ne[1] == n_tokens);
  5503. bool is_node = false;
  5504. if (s->grad || x->grad || c->grad || sq->grad) {
  5505. GGML_ASSERT(false); // TODO: implement
  5506. is_node = true;
  5507. }
  5508. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5509. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5510. result->op = GGML_OP_SSM_CONV;
  5511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5512. result->src[0] = s;
  5513. result->src[1] = x;
  5514. result->src[2] = c;
  5515. result->src[3] = sq;
  5516. return result;
  5517. }
  5518. // ggml_ssm_scan
  5519. struct ggml_tensor * ggml_ssm_scan(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * s,
  5522. struct ggml_tensor * x,
  5523. struct ggml_tensor * dt,
  5524. struct ggml_tensor * A,
  5525. struct ggml_tensor * B,
  5526. struct ggml_tensor * C,
  5527. struct ggml_tensor * sq) {
  5528. GGML_ASSERT(ggml_is_contiguous(s));
  5529. GGML_ASSERT(ggml_is_contiguous(x));
  5530. GGML_ASSERT(ggml_is_contiguous(dt));
  5531. GGML_ASSERT(ggml_is_contiguous(A));
  5532. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5533. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5534. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5535. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5536. {
  5537. const int64_t d_state = s->ne[0];
  5538. const int64_t d_inner = s->ne[1];
  5539. const int64_t n_tokens = x->ne[1];
  5540. GGML_ASSERT(x->ne[0] == d_inner);
  5541. GGML_ASSERT(A->ne[0] == d_state);
  5542. GGML_ASSERT(A->ne[1] == d_inner);
  5543. GGML_ASSERT(B->ne[0] == d_state);
  5544. GGML_ASSERT(B->ne[1] == n_tokens);
  5545. GGML_ASSERT(C->ne[0] == d_state);
  5546. GGML_ASSERT(C->ne[1] == n_tokens);
  5547. }
  5548. bool is_node = false;
  5549. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5550. GGML_ASSERT(false); // TODO: implement
  5551. is_node = true;
  5552. }
  5553. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5554. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5555. result->op = GGML_OP_SSM_SCAN;
  5556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5557. result->src[0] = s;
  5558. result->src[1] = x;
  5559. result->src[2] = dt;
  5560. result->src[3] = A;
  5561. result->src[4] = B;
  5562. result->src[5] = C;
  5563. result->src[6] = sq;
  5564. return result;
  5565. }
  5566. // ggml_win_part
  5567. struct ggml_tensor * ggml_win_part(
  5568. struct ggml_context * ctx,
  5569. struct ggml_tensor * a,
  5570. int w) {
  5571. GGML_ASSERT(a->ne[3] == 1);
  5572. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5573. bool is_node = false;
  5574. if (a->grad) {
  5575. GGML_ASSERT(false); // TODO: implement backward
  5576. is_node = true;
  5577. }
  5578. // padding
  5579. const int px = (w - a->ne[1]%w)%w;
  5580. const int py = (w - a->ne[2]%w)%w;
  5581. const int npx = (px + a->ne[1])/w;
  5582. const int npy = (py + a->ne[2])/w;
  5583. const int np = npx*npy;
  5584. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5585. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5586. int32_t params[] = { npx, npy, w };
  5587. ggml_set_op_params(result, params, sizeof(params));
  5588. result->op = GGML_OP_WIN_PART;
  5589. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5590. result->src[0] = a;
  5591. return result;
  5592. }
  5593. // ggml_win_unpart
  5594. struct ggml_tensor * ggml_win_unpart(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. int w0,
  5598. int h0,
  5599. int w) {
  5600. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5601. bool is_node = false;
  5602. if (a->grad) {
  5603. GGML_ASSERT(false); // TODO: implement backward
  5604. is_node = true;
  5605. }
  5606. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5607. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5608. int32_t params[] = { w };
  5609. ggml_set_op_params(result, params, sizeof(params));
  5610. result->op = GGML_OP_WIN_UNPART;
  5611. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5612. result->src[0] = a;
  5613. return result;
  5614. }
  5615. // ggml_get_rel_pos
  5616. struct ggml_tensor * ggml_get_rel_pos(
  5617. struct ggml_context * ctx,
  5618. struct ggml_tensor * a,
  5619. int qh,
  5620. int kh) {
  5621. GGML_ASSERT(qh == kh);
  5622. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5623. bool is_node = false;
  5624. if (a->grad) {
  5625. GGML_ASSERT(false); // TODO: implement backward
  5626. is_node = true;
  5627. }
  5628. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5629. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5630. result->op = GGML_OP_GET_REL_POS;
  5631. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5632. result->src[0] = a;
  5633. return result;
  5634. }
  5635. // ggml_add_rel_pos
  5636. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5637. struct ggml_context * ctx,
  5638. struct ggml_tensor * a,
  5639. struct ggml_tensor * pw,
  5640. struct ggml_tensor * ph,
  5641. bool inplace) {
  5642. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5643. GGML_ASSERT(ggml_is_contiguous(a));
  5644. GGML_ASSERT(ggml_is_contiguous(pw));
  5645. GGML_ASSERT(ggml_is_contiguous(ph));
  5646. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5647. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5648. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5649. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5650. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5651. bool is_node = false;
  5652. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5653. is_node = true;
  5654. }
  5655. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5656. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5657. result->op = GGML_OP_ADD_REL_POS;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. result->src[1] = pw;
  5661. result->src[2] = ph;
  5662. return result;
  5663. }
  5664. struct ggml_tensor * ggml_add_rel_pos(
  5665. struct ggml_context * ctx,
  5666. struct ggml_tensor * a,
  5667. struct ggml_tensor * pw,
  5668. struct ggml_tensor * ph) {
  5669. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5670. }
  5671. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. struct ggml_tensor * pw,
  5675. struct ggml_tensor * ph) {
  5676. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5677. }
  5678. // gmml_unary
  5679. static struct ggml_tensor * ggml_unary_impl(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a,
  5682. enum ggml_unary_op op,
  5683. bool inplace) {
  5684. bool is_node = false;
  5685. if (!inplace && (a->grad)) {
  5686. is_node = true;
  5687. }
  5688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5689. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5690. result->op = GGML_OP_UNARY;
  5691. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5692. result->src[0] = a;
  5693. return result;
  5694. }
  5695. struct ggml_tensor * ggml_unary(
  5696. struct ggml_context * ctx,
  5697. struct ggml_tensor * a,
  5698. enum ggml_unary_op op) {
  5699. return ggml_unary_impl(ctx, a, op, false);
  5700. }
  5701. struct ggml_tensor * ggml_unary_inplace(
  5702. struct ggml_context * ctx,
  5703. struct ggml_tensor * a,
  5704. enum ggml_unary_op op) {
  5705. return ggml_unary_impl(ctx, a, op, true);
  5706. }
  5707. // ggml_map_unary
  5708. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5709. struct ggml_context * ctx,
  5710. struct ggml_tensor * a,
  5711. const ggml_unary_op_f32_t fun,
  5712. bool inplace) {
  5713. bool is_node = false;
  5714. if (!inplace && a->grad) {
  5715. is_node = true;
  5716. }
  5717. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5718. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5719. result->op = GGML_OP_MAP_UNARY;
  5720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5721. result->src[0] = a;
  5722. return result;
  5723. }
  5724. struct ggml_tensor * ggml_map_unary_f32(
  5725. struct ggml_context * ctx,
  5726. struct ggml_tensor * a,
  5727. const ggml_unary_op_f32_t fun) {
  5728. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5729. }
  5730. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5731. struct ggml_context * ctx,
  5732. struct ggml_tensor * a,
  5733. const ggml_unary_op_f32_t fun) {
  5734. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5735. }
  5736. // ggml_map_binary
  5737. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5738. struct ggml_context * ctx,
  5739. struct ggml_tensor * a,
  5740. struct ggml_tensor * b,
  5741. const ggml_binary_op_f32_t fun,
  5742. bool inplace) {
  5743. GGML_ASSERT(ggml_are_same_shape(a, b));
  5744. bool is_node = false;
  5745. if (!inplace && (a->grad || b->grad)) {
  5746. is_node = true;
  5747. }
  5748. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5749. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5750. result->op = GGML_OP_MAP_BINARY;
  5751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5752. result->src[0] = a;
  5753. result->src[1] = b;
  5754. return result;
  5755. }
  5756. struct ggml_tensor * ggml_map_binary_f32(
  5757. struct ggml_context * ctx,
  5758. struct ggml_tensor * a,
  5759. struct ggml_tensor * b,
  5760. const ggml_binary_op_f32_t fun) {
  5761. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5762. }
  5763. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. struct ggml_tensor * b,
  5767. const ggml_binary_op_f32_t fun) {
  5768. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5769. }
  5770. // ggml_map_custom1_f32
  5771. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5772. struct ggml_context * ctx,
  5773. struct ggml_tensor * a,
  5774. const ggml_custom1_op_f32_t fun,
  5775. bool inplace) {
  5776. bool is_node = false;
  5777. if (!inplace && a->grad) {
  5778. is_node = true;
  5779. }
  5780. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5781. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5782. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5784. result->src[0] = a;
  5785. return result;
  5786. }
  5787. struct ggml_tensor * ggml_map_custom1_f32(
  5788. struct ggml_context * ctx,
  5789. struct ggml_tensor * a,
  5790. const ggml_custom1_op_f32_t fun) {
  5791. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5792. }
  5793. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5794. struct ggml_context * ctx,
  5795. struct ggml_tensor * a,
  5796. const ggml_custom1_op_f32_t fun) {
  5797. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5798. }
  5799. // ggml_map_custom2_f32
  5800. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5801. struct ggml_context * ctx,
  5802. struct ggml_tensor * a,
  5803. struct ggml_tensor * b,
  5804. const ggml_custom2_op_f32_t fun,
  5805. bool inplace) {
  5806. bool is_node = false;
  5807. if (!inplace && (a->grad || b->grad)) {
  5808. is_node = true;
  5809. }
  5810. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5811. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5812. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5814. result->src[0] = a;
  5815. result->src[1] = b;
  5816. return result;
  5817. }
  5818. struct ggml_tensor * ggml_map_custom2_f32(
  5819. struct ggml_context * ctx,
  5820. struct ggml_tensor * a,
  5821. struct ggml_tensor * b,
  5822. const ggml_custom2_op_f32_t fun) {
  5823. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5824. }
  5825. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5826. struct ggml_context * ctx,
  5827. struct ggml_tensor * a,
  5828. struct ggml_tensor * b,
  5829. const ggml_custom2_op_f32_t fun) {
  5830. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5831. }
  5832. // ggml_map_custom3_f32
  5833. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5834. struct ggml_context * ctx,
  5835. struct ggml_tensor * a,
  5836. struct ggml_tensor * b,
  5837. struct ggml_tensor * c,
  5838. const ggml_custom3_op_f32_t fun,
  5839. bool inplace) {
  5840. bool is_node = false;
  5841. if (!inplace && (a->grad || b->grad || c->grad)) {
  5842. is_node = true;
  5843. }
  5844. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5845. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5846. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5848. result->src[0] = a;
  5849. result->src[1] = b;
  5850. result->src[2] = c;
  5851. return result;
  5852. }
  5853. struct ggml_tensor * ggml_map_custom3_f32(
  5854. struct ggml_context * ctx,
  5855. struct ggml_tensor * a,
  5856. struct ggml_tensor * b,
  5857. struct ggml_tensor * c,
  5858. const ggml_custom3_op_f32_t fun) {
  5859. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5860. }
  5861. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5862. struct ggml_context * ctx,
  5863. struct ggml_tensor * a,
  5864. struct ggml_tensor * b,
  5865. struct ggml_tensor * c,
  5866. const ggml_custom3_op_f32_t fun) {
  5867. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5868. }
  5869. // ggml_map_custom1
  5870. struct ggml_map_custom1_op_params {
  5871. ggml_custom1_op_t fun;
  5872. int n_tasks;
  5873. void * userdata;
  5874. };
  5875. static struct ggml_tensor * ggml_map_custom1_impl(
  5876. struct ggml_context * ctx,
  5877. struct ggml_tensor * a,
  5878. const ggml_custom1_op_t fun,
  5879. int n_tasks,
  5880. void * userdata,
  5881. bool inplace) {
  5882. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5883. bool is_node = false;
  5884. if (!inplace && a->grad) {
  5885. is_node = true;
  5886. }
  5887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5888. struct ggml_map_custom1_op_params params = {
  5889. /*.fun =*/ fun,
  5890. /*.n_tasks =*/ n_tasks,
  5891. /*.userdata =*/ userdata
  5892. };
  5893. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5894. result->op = GGML_OP_MAP_CUSTOM1;
  5895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5896. result->src[0] = a;
  5897. return result;
  5898. }
  5899. struct ggml_tensor * ggml_map_custom1(
  5900. struct ggml_context * ctx,
  5901. struct ggml_tensor * a,
  5902. const ggml_custom1_op_t fun,
  5903. int n_tasks,
  5904. void * userdata) {
  5905. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5906. }
  5907. struct ggml_tensor * ggml_map_custom1_inplace(
  5908. struct ggml_context * ctx,
  5909. struct ggml_tensor * a,
  5910. const ggml_custom1_op_t fun,
  5911. int n_tasks,
  5912. void * userdata) {
  5913. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5914. }
  5915. // ggml_map_custom2
  5916. struct ggml_map_custom2_op_params {
  5917. ggml_custom2_op_t fun;
  5918. int n_tasks;
  5919. void * userdata;
  5920. };
  5921. static struct ggml_tensor * ggml_map_custom2_impl(
  5922. struct ggml_context * ctx,
  5923. struct ggml_tensor * a,
  5924. struct ggml_tensor * b,
  5925. const ggml_custom2_op_t fun,
  5926. int n_tasks,
  5927. void * userdata,
  5928. bool inplace) {
  5929. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5930. bool is_node = false;
  5931. if (!inplace && (a->grad || b->grad)) {
  5932. is_node = true;
  5933. }
  5934. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5935. struct ggml_map_custom2_op_params params = {
  5936. /*.fun =*/ fun,
  5937. /*.n_tasks =*/ n_tasks,
  5938. /*.userdata =*/ userdata
  5939. };
  5940. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5941. result->op = GGML_OP_MAP_CUSTOM2;
  5942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5943. result->src[0] = a;
  5944. result->src[1] = b;
  5945. return result;
  5946. }
  5947. struct ggml_tensor * ggml_map_custom2(
  5948. struct ggml_context * ctx,
  5949. struct ggml_tensor * a,
  5950. struct ggml_tensor * b,
  5951. const ggml_custom2_op_t fun,
  5952. int n_tasks,
  5953. void * userdata) {
  5954. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5955. }
  5956. struct ggml_tensor * ggml_map_custom2_inplace(
  5957. struct ggml_context * ctx,
  5958. struct ggml_tensor * a,
  5959. struct ggml_tensor * b,
  5960. const ggml_custom2_op_t fun,
  5961. int n_tasks,
  5962. void * userdata) {
  5963. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5964. }
  5965. // ggml_map_custom3
  5966. struct ggml_map_custom3_op_params {
  5967. ggml_custom3_op_t fun;
  5968. int n_tasks;
  5969. void * userdata;
  5970. };
  5971. static struct ggml_tensor * ggml_map_custom3_impl(
  5972. struct ggml_context * ctx,
  5973. struct ggml_tensor * a,
  5974. struct ggml_tensor * b,
  5975. struct ggml_tensor * c,
  5976. const ggml_custom3_op_t fun,
  5977. int n_tasks,
  5978. void * userdata,
  5979. bool inplace) {
  5980. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5981. bool is_node = false;
  5982. if (!inplace && (a->grad || b->grad || c->grad)) {
  5983. is_node = true;
  5984. }
  5985. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5986. struct ggml_map_custom3_op_params params = {
  5987. /*.fun =*/ fun,
  5988. /*.n_tasks =*/ n_tasks,
  5989. /*.userdata =*/ userdata
  5990. };
  5991. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5992. result->op = GGML_OP_MAP_CUSTOM3;
  5993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5994. result->src[0] = a;
  5995. result->src[1] = b;
  5996. result->src[2] = c;
  5997. return result;
  5998. }
  5999. struct ggml_tensor * ggml_map_custom3(
  6000. struct ggml_context * ctx,
  6001. struct ggml_tensor * a,
  6002. struct ggml_tensor * b,
  6003. struct ggml_tensor * c,
  6004. const ggml_custom3_op_t fun,
  6005. int n_tasks,
  6006. void * userdata) {
  6007. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6008. }
  6009. struct ggml_tensor * ggml_map_custom3_inplace(
  6010. struct ggml_context * ctx,
  6011. struct ggml_tensor * a,
  6012. struct ggml_tensor * b,
  6013. struct ggml_tensor * c,
  6014. const ggml_custom3_op_t fun,
  6015. int n_tasks,
  6016. void * userdata) {
  6017. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6018. }
  6019. // ggml_cross_entropy_loss
  6020. struct ggml_tensor * ggml_cross_entropy_loss(
  6021. struct ggml_context * ctx,
  6022. struct ggml_tensor * a,
  6023. struct ggml_tensor * b) {
  6024. GGML_ASSERT(ggml_are_same_shape(a, b));
  6025. bool is_node = false;
  6026. if (a->grad || b->grad) {
  6027. is_node = true;
  6028. }
  6029. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6030. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6032. result->src[0] = a;
  6033. result->src[1] = b;
  6034. return result;
  6035. }
  6036. // ggml_cross_entropy_loss_back
  6037. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6038. struct ggml_context * ctx,
  6039. struct ggml_tensor * a,
  6040. struct ggml_tensor * b,
  6041. struct ggml_tensor * c) {
  6042. GGML_ASSERT(ggml_are_same_shape(a, b));
  6043. GGML_ASSERT(ggml_is_scalar(c));
  6044. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6045. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6046. result->grad = NULL;
  6047. result->src[0] = a;
  6048. result->src[1] = b;
  6049. result->src[2] = c;
  6050. return result;
  6051. }
  6052. ////////////////////////////////////////////////////////////////////////////////
  6053. void ggml_set_param(
  6054. struct ggml_context * ctx,
  6055. struct ggml_tensor * tensor) {
  6056. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6057. GGML_ASSERT(tensor->grad == NULL);
  6058. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6059. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6060. }
  6061. // ggml_compute_forward_dup
  6062. static void ggml_compute_forward_dup_same_cont(
  6063. const struct ggml_compute_params * params,
  6064. struct ggml_tensor * dst) {
  6065. const struct ggml_tensor * src0 = dst->src[0];
  6066. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6067. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6068. GGML_ASSERT(src0->type == dst->type);
  6069. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6070. return;
  6071. }
  6072. const size_t nb00 = src0->nb[0];
  6073. const size_t nb0 = dst->nb[0];
  6074. const int ith = params->ith; // thread index
  6075. const int nth = params->nth; // number of threads
  6076. // parallelize by elements
  6077. const int ne = ggml_nelements(dst);
  6078. const int dr = (ne + nth - 1) / nth;
  6079. const int ie0 = dr * ith;
  6080. const int ie1 = MIN(ie0 + dr, ne);
  6081. if (ie0 < ie1) {
  6082. memcpy(
  6083. ((char *) dst->data + ie0*nb0),
  6084. ((char *) src0->data + ie0*nb00),
  6085. (ie1 - ie0) * ggml_type_size(src0->type));
  6086. }
  6087. }
  6088. static void ggml_compute_forward_dup_f16(
  6089. const struct ggml_compute_params * params,
  6090. struct ggml_tensor * dst) {
  6091. const struct ggml_tensor * src0 = dst->src[0];
  6092. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6093. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6094. return;
  6095. }
  6096. GGML_TENSOR_UNARY_OP_LOCALS
  6097. const int ith = params->ith; // thread index
  6098. const int nth = params->nth; // number of threads
  6099. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6100. ggml_compute_forward_dup_same_cont(params, dst);
  6101. return;
  6102. }
  6103. // parallelize by rows
  6104. const int nr = ne01;
  6105. // number of rows per thread
  6106. const int dr = (nr + nth - 1) / nth;
  6107. // row range for this thread
  6108. const int ir0 = dr * ith;
  6109. const int ir1 = MIN(ir0 + dr, nr);
  6110. if (src0->type == dst->type &&
  6111. ne00 == ne0 &&
  6112. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6113. // copy by rows
  6114. const size_t rs = ne00*nb00;
  6115. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6116. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6117. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6118. memcpy(
  6119. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6120. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6121. rs);
  6122. }
  6123. }
  6124. }
  6125. return;
  6126. }
  6127. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6128. if (ggml_is_contiguous(dst)) {
  6129. if (nb00 == sizeof(ggml_fp16_t)) {
  6130. if (dst->type == GGML_TYPE_F16) {
  6131. size_t id = 0;
  6132. const size_t rs = ne00 * nb00;
  6133. char * dst_ptr = (char *) dst->data;
  6134. for (int i03 = 0; i03 < ne03; i03++) {
  6135. for (int i02 = 0; i02 < ne02; i02++) {
  6136. id += rs * ir0;
  6137. for (int i01 = ir0; i01 < ir1; i01++) {
  6138. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6139. memcpy(dst_ptr + id, src0_ptr, rs);
  6140. id += rs;
  6141. }
  6142. id += rs * (ne01 - ir1);
  6143. }
  6144. }
  6145. } else if (dst->type == GGML_TYPE_F32) {
  6146. size_t id = 0;
  6147. float * dst_ptr = (float *) dst->data;
  6148. for (int i03 = 0; i03 < ne03; i03++) {
  6149. for (int i02 = 0; i02 < ne02; i02++) {
  6150. id += ne00 * ir0;
  6151. for (int i01 = ir0; i01 < ir1; i01++) {
  6152. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6153. for (int i00 = 0; i00 < ne00; i00++) {
  6154. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6155. id++;
  6156. }
  6157. }
  6158. id += ne00 * (ne01 - ir1);
  6159. }
  6160. }
  6161. } else if (type_traits[dst->type].from_float) {
  6162. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6163. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6164. size_t id = 0;
  6165. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6166. char * dst_ptr = (char *) dst->data;
  6167. for (int i03 = 0; i03 < ne03; i03++) {
  6168. for (int i02 = 0; i02 < ne02; i02++) {
  6169. id += rs * ir0;
  6170. for (int i01 = ir0; i01 < ir1; i01++) {
  6171. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6172. for (int i00 = 0; i00 < ne00; i00++) {
  6173. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6174. }
  6175. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6176. id += rs;
  6177. }
  6178. id += rs * (ne01 - ir1);
  6179. }
  6180. }
  6181. } else {
  6182. GGML_ASSERT(false); // TODO: implement
  6183. }
  6184. } else {
  6185. //printf("%s: this is not optimal - fix me\n", __func__);
  6186. if (dst->type == GGML_TYPE_F32) {
  6187. size_t id = 0;
  6188. float * dst_ptr = (float *) dst->data;
  6189. for (int i03 = 0; i03 < ne03; i03++) {
  6190. for (int i02 = 0; i02 < ne02; i02++) {
  6191. id += ne00 * ir0;
  6192. for (int i01 = ir0; i01 < ir1; i01++) {
  6193. for (int i00 = 0; i00 < ne00; i00++) {
  6194. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6195. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6196. id++;
  6197. }
  6198. }
  6199. id += ne00 * (ne01 - ir1);
  6200. }
  6201. }
  6202. } else if (dst->type == GGML_TYPE_F16) {
  6203. size_t id = 0;
  6204. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6205. for (int i03 = 0; i03 < ne03; i03++) {
  6206. for (int i02 = 0; i02 < ne02; i02++) {
  6207. id += ne00 * ir0;
  6208. for (int i01 = ir0; i01 < ir1; i01++) {
  6209. for (int i00 = 0; i00 < ne00; i00++) {
  6210. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6211. dst_ptr[id] = *src0_ptr;
  6212. id++;
  6213. }
  6214. }
  6215. id += ne00 * (ne01 - ir1);
  6216. }
  6217. }
  6218. } else {
  6219. GGML_ASSERT(false); // TODO: implement
  6220. }
  6221. }
  6222. return;
  6223. }
  6224. // dst counters
  6225. int64_t i10 = 0;
  6226. int64_t i11 = 0;
  6227. int64_t i12 = 0;
  6228. int64_t i13 = 0;
  6229. if (dst->type == GGML_TYPE_F16) {
  6230. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6231. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6232. i10 += ne00 * ir0;
  6233. while (i10 >= ne0) {
  6234. i10 -= ne0;
  6235. if (++i11 == ne1) {
  6236. i11 = 0;
  6237. if (++i12 == ne2) {
  6238. i12 = 0;
  6239. if (++i13 == ne3) {
  6240. i13 = 0;
  6241. }
  6242. }
  6243. }
  6244. }
  6245. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6246. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6247. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6248. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6249. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6250. if (++i10 == ne00) {
  6251. i10 = 0;
  6252. if (++i11 == ne01) {
  6253. i11 = 0;
  6254. if (++i12 == ne02) {
  6255. i12 = 0;
  6256. if (++i13 == ne03) {
  6257. i13 = 0;
  6258. }
  6259. }
  6260. }
  6261. }
  6262. }
  6263. }
  6264. i10 += ne00 * (ne01 - ir1);
  6265. while (i10 >= ne0) {
  6266. i10 -= ne0;
  6267. if (++i11 == ne1) {
  6268. i11 = 0;
  6269. if (++i12 == ne2) {
  6270. i12 = 0;
  6271. if (++i13 == ne3) {
  6272. i13 = 0;
  6273. }
  6274. }
  6275. }
  6276. }
  6277. }
  6278. }
  6279. } else if (dst->type == GGML_TYPE_F32) {
  6280. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6281. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6282. i10 += ne00 * ir0;
  6283. while (i10 >= ne0) {
  6284. i10 -= ne0;
  6285. if (++i11 == ne1) {
  6286. i11 = 0;
  6287. if (++i12 == ne2) {
  6288. i12 = 0;
  6289. if (++i13 == ne3) {
  6290. i13 = 0;
  6291. }
  6292. }
  6293. }
  6294. }
  6295. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6296. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6297. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6298. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6299. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6300. if (++i10 == ne0) {
  6301. i10 = 0;
  6302. if (++i11 == ne1) {
  6303. i11 = 0;
  6304. if (++i12 == ne2) {
  6305. i12 = 0;
  6306. if (++i13 == ne3) {
  6307. i13 = 0;
  6308. }
  6309. }
  6310. }
  6311. }
  6312. }
  6313. }
  6314. i10 += ne00 * (ne01 - ir1);
  6315. while (i10 >= ne0) {
  6316. i10 -= ne0;
  6317. if (++i11 == ne1) {
  6318. i11 = 0;
  6319. if (++i12 == ne2) {
  6320. i12 = 0;
  6321. if (++i13 == ne3) {
  6322. i13 = 0;
  6323. }
  6324. }
  6325. }
  6326. }
  6327. }
  6328. }
  6329. } else {
  6330. GGML_ASSERT(false); // TODO: implement
  6331. }
  6332. }
  6333. static void ggml_compute_forward_dup_bf16(
  6334. const struct ggml_compute_params * params,
  6335. struct ggml_tensor * dst) {
  6336. const struct ggml_tensor * src0 = dst->src[0];
  6337. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6339. return;
  6340. }
  6341. GGML_TENSOR_UNARY_OP_LOCALS
  6342. const int ith = params->ith; // thread index
  6343. const int nth = params->nth; // number of threads
  6344. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6345. ggml_compute_forward_dup_same_cont(params, dst);
  6346. return;
  6347. }
  6348. // parallelize by rows
  6349. const int nr = ne01;
  6350. // number of rows per thread
  6351. const int dr = (nr + nth - 1) / nth;
  6352. // row range for this thread
  6353. const int ir0 = dr * ith;
  6354. const int ir1 = MIN(ir0 + dr, nr);
  6355. if (src0->type == dst->type &&
  6356. ne00 == ne0 &&
  6357. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6358. // copy by rows
  6359. const size_t rs = ne00*nb00;
  6360. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6361. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6362. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6363. memcpy(
  6364. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6365. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6366. rs);
  6367. }
  6368. }
  6369. }
  6370. return;
  6371. }
  6372. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6373. if (ggml_is_contiguous(dst)) {
  6374. if (nb00 == sizeof(ggml_bf16_t)) {
  6375. if (dst->type == GGML_TYPE_BF16) {
  6376. size_t id = 0;
  6377. const size_t rs = ne00 * nb00;
  6378. char * dst_ptr = (char *) dst->data;
  6379. for (int i03 = 0; i03 < ne03; i03++) {
  6380. for (int i02 = 0; i02 < ne02; i02++) {
  6381. id += rs * ir0;
  6382. for (int i01 = ir0; i01 < ir1; i01++) {
  6383. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6384. memcpy(dst_ptr + id, src0_ptr, rs);
  6385. id += rs;
  6386. }
  6387. id += rs * (ne01 - ir1);
  6388. }
  6389. }
  6390. } else if (dst->type == GGML_TYPE_F16) {
  6391. size_t id = 0;
  6392. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6393. for (int i03 = 0; i03 < ne03; i03++) {
  6394. for (int i02 = 0; i02 < ne02; i02++) {
  6395. id += ne00 * ir0;
  6396. for (int i01 = ir0; i01 < ir1; i01++) {
  6397. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6398. for (int i00 = 0; i00 < ne00; i00++) {
  6399. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6400. id++;
  6401. }
  6402. }
  6403. id += ne00 * (ne01 - ir1);
  6404. }
  6405. }
  6406. } else if (dst->type == GGML_TYPE_F32) {
  6407. size_t id = 0;
  6408. float * dst_ptr = (float *) dst->data;
  6409. for (int i03 = 0; i03 < ne03; i03++) {
  6410. for (int i02 = 0; i02 < ne02; i02++) {
  6411. id += ne00 * ir0;
  6412. for (int i01 = ir0; i01 < ir1; i01++) {
  6413. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6414. for (int i00 = 0; i00 < ne00; i00++) {
  6415. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6416. id++;
  6417. }
  6418. }
  6419. id += ne00 * (ne01 - ir1);
  6420. }
  6421. }
  6422. } else if (type_traits[dst->type].from_float) {
  6423. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6424. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6425. size_t id = 0;
  6426. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6427. char * dst_ptr = (char *) dst->data;
  6428. for (int i03 = 0; i03 < ne03; i03++) {
  6429. for (int i02 = 0; i02 < ne02; i02++) {
  6430. id += rs * ir0;
  6431. for (int i01 = ir0; i01 < ir1; i01++) {
  6432. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6433. for (int i00 = 0; i00 < ne00; i00++) {
  6434. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6435. }
  6436. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6437. id += rs;
  6438. }
  6439. id += rs * (ne01 - ir1);
  6440. }
  6441. }
  6442. } else {
  6443. GGML_ASSERT(false); // TODO: implement
  6444. }
  6445. } else {
  6446. //printf("%s: this is not optimal - fix me\n", __func__);
  6447. if (dst->type == GGML_TYPE_F32) {
  6448. size_t id = 0;
  6449. float * dst_ptr = (float *) dst->data;
  6450. for (int i03 = 0; i03 < ne03; i03++) {
  6451. for (int i02 = 0; i02 < ne02; i02++) {
  6452. id += ne00 * ir0;
  6453. for (int i01 = ir0; i01 < ir1; i01++) {
  6454. for (int i00 = 0; i00 < ne00; i00++) {
  6455. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6456. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6457. id++;
  6458. }
  6459. }
  6460. id += ne00 * (ne01 - ir1);
  6461. }
  6462. }
  6463. } else if (dst->type == GGML_TYPE_BF16) {
  6464. size_t id = 0;
  6465. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6466. for (int i03 = 0; i03 < ne03; i03++) {
  6467. for (int i02 = 0; i02 < ne02; i02++) {
  6468. id += ne00 * ir0;
  6469. for (int i01 = ir0; i01 < ir1; i01++) {
  6470. for (int i00 = 0; i00 < ne00; i00++) {
  6471. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6472. dst_ptr[id] = *src0_ptr;
  6473. id++;
  6474. }
  6475. }
  6476. id += ne00 * (ne01 - ir1);
  6477. }
  6478. }
  6479. } else if (dst->type == GGML_TYPE_F16) {
  6480. size_t id = 0;
  6481. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6482. for (int i03 = 0; i03 < ne03; i03++) {
  6483. for (int i02 = 0; i02 < ne02; i02++) {
  6484. id += ne00 * ir0;
  6485. for (int i01 = ir0; i01 < ir1; i01++) {
  6486. for (int i00 = 0; i00 < ne00; i00++) {
  6487. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6488. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6489. id++;
  6490. }
  6491. }
  6492. id += ne00 * (ne01 - ir1);
  6493. }
  6494. }
  6495. } else {
  6496. GGML_ASSERT(false); // TODO: implement
  6497. }
  6498. }
  6499. return;
  6500. }
  6501. // dst counters
  6502. int64_t i10 = 0;
  6503. int64_t i11 = 0;
  6504. int64_t i12 = 0;
  6505. int64_t i13 = 0;
  6506. if (dst->type == GGML_TYPE_BF16) {
  6507. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6508. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6509. i10 += ne00 * ir0;
  6510. while (i10 >= ne0) {
  6511. i10 -= ne0;
  6512. if (++i11 == ne1) {
  6513. i11 = 0;
  6514. if (++i12 == ne2) {
  6515. i12 = 0;
  6516. if (++i13 == ne3) {
  6517. i13 = 0;
  6518. }
  6519. }
  6520. }
  6521. }
  6522. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6523. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6524. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6525. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6526. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6527. if (++i10 == ne00) {
  6528. i10 = 0;
  6529. if (++i11 == ne01) {
  6530. i11 = 0;
  6531. if (++i12 == ne02) {
  6532. i12 = 0;
  6533. if (++i13 == ne03) {
  6534. i13 = 0;
  6535. }
  6536. }
  6537. }
  6538. }
  6539. }
  6540. }
  6541. i10 += ne00 * (ne01 - ir1);
  6542. while (i10 >= ne0) {
  6543. i10 -= ne0;
  6544. if (++i11 == ne1) {
  6545. i11 = 0;
  6546. if (++i12 == ne2) {
  6547. i12 = 0;
  6548. if (++i13 == ne3) {
  6549. i13 = 0;
  6550. }
  6551. }
  6552. }
  6553. }
  6554. }
  6555. }
  6556. } else if (dst->type == GGML_TYPE_F16) {
  6557. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6558. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6559. i10 += ne00 * ir0;
  6560. while (i10 >= ne0) {
  6561. i10 -= ne0;
  6562. if (++i11 == ne1) {
  6563. i11 = 0;
  6564. if (++i12 == ne2) {
  6565. i12 = 0;
  6566. if (++i13 == ne3) {
  6567. i13 = 0;
  6568. }
  6569. }
  6570. }
  6571. }
  6572. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6573. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6574. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6575. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6576. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6577. if (++i10 == ne0) {
  6578. i10 = 0;
  6579. if (++i11 == ne1) {
  6580. i11 = 0;
  6581. if (++i12 == ne2) {
  6582. i12 = 0;
  6583. if (++i13 == ne3) {
  6584. i13 = 0;
  6585. }
  6586. }
  6587. }
  6588. }
  6589. }
  6590. }
  6591. i10 += ne00 * (ne01 - ir1);
  6592. while (i10 >= ne0) {
  6593. i10 -= ne0;
  6594. if (++i11 == ne1) {
  6595. i11 = 0;
  6596. if (++i12 == ne2) {
  6597. i12 = 0;
  6598. if (++i13 == ne3) {
  6599. i13 = 0;
  6600. }
  6601. }
  6602. }
  6603. }
  6604. }
  6605. }
  6606. } else if (dst->type == GGML_TYPE_F32) {
  6607. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6608. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6609. i10 += ne00 * ir0;
  6610. while (i10 >= ne0) {
  6611. i10 -= ne0;
  6612. if (++i11 == ne1) {
  6613. i11 = 0;
  6614. if (++i12 == ne2) {
  6615. i12 = 0;
  6616. if (++i13 == ne3) {
  6617. i13 = 0;
  6618. }
  6619. }
  6620. }
  6621. }
  6622. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6623. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6624. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6625. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6626. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6627. if (++i10 == ne0) {
  6628. i10 = 0;
  6629. if (++i11 == ne1) {
  6630. i11 = 0;
  6631. if (++i12 == ne2) {
  6632. i12 = 0;
  6633. if (++i13 == ne3) {
  6634. i13 = 0;
  6635. }
  6636. }
  6637. }
  6638. }
  6639. }
  6640. }
  6641. i10 += ne00 * (ne01 - ir1);
  6642. while (i10 >= ne0) {
  6643. i10 -= ne0;
  6644. if (++i11 == ne1) {
  6645. i11 = 0;
  6646. if (++i12 == ne2) {
  6647. i12 = 0;
  6648. if (++i13 == ne3) {
  6649. i13 = 0;
  6650. }
  6651. }
  6652. }
  6653. }
  6654. }
  6655. }
  6656. } else {
  6657. GGML_ASSERT(false); // TODO: implement
  6658. }
  6659. }
  6660. static void ggml_compute_forward_dup_f32(
  6661. const struct ggml_compute_params * params,
  6662. struct ggml_tensor * dst) {
  6663. const struct ggml_tensor * src0 = dst->src[0];
  6664. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6665. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6666. return;
  6667. }
  6668. GGML_TENSOR_UNARY_OP_LOCALS
  6669. const int ith = params->ith; // thread index
  6670. const int nth = params->nth; // number of threads
  6671. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6672. ggml_compute_forward_dup_same_cont(params, dst);
  6673. return;
  6674. }
  6675. // parallelize by rows
  6676. const int nr = ne01;
  6677. // number of rows per thread
  6678. const int dr = (nr + nth - 1) / nth;
  6679. // row range for this thread
  6680. const int ir0 = dr * ith;
  6681. const int ir1 = MIN(ir0 + dr, nr);
  6682. if (src0->type == dst->type &&
  6683. ne00 == ne0 &&
  6684. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6685. // copy by rows
  6686. const size_t rs = ne00*nb00;
  6687. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6688. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6689. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6690. memcpy(
  6691. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6692. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6693. rs);
  6694. }
  6695. }
  6696. }
  6697. return;
  6698. }
  6699. if (ggml_is_contiguous(dst)) {
  6700. // TODO: simplify
  6701. if (nb00 == sizeof(float)) {
  6702. if (dst->type == GGML_TYPE_F32) {
  6703. size_t id = 0;
  6704. const size_t rs = ne00 * nb00;
  6705. char * dst_ptr = (char *) dst->data;
  6706. for (int i03 = 0; i03 < ne03; i03++) {
  6707. for (int i02 = 0; i02 < ne02; i02++) {
  6708. id += rs * ir0;
  6709. for (int i01 = ir0; i01 < ir1; i01++) {
  6710. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6711. memcpy(dst_ptr + id, src0_ptr, rs);
  6712. id += rs;
  6713. }
  6714. id += rs * (ne01 - ir1);
  6715. }
  6716. }
  6717. } else if (type_traits[dst->type].from_float) {
  6718. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6719. size_t id = 0;
  6720. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6721. char * dst_ptr = (char *) dst->data;
  6722. for (int i03 = 0; i03 < ne03; i03++) {
  6723. for (int i02 = 0; i02 < ne02; i02++) {
  6724. id += rs * ir0;
  6725. for (int i01 = ir0; i01 < ir1; i01++) {
  6726. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6727. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6728. id += rs;
  6729. }
  6730. id += rs * (ne01 - ir1);
  6731. }
  6732. }
  6733. } else {
  6734. GGML_ASSERT(false); // TODO: implement
  6735. }
  6736. } else {
  6737. //printf("%s: this is not optimal - fix me\n", __func__);
  6738. if (dst->type == GGML_TYPE_F32) {
  6739. size_t id = 0;
  6740. float * dst_ptr = (float *) dst->data;
  6741. for (int i03 = 0; i03 < ne03; i03++) {
  6742. for (int i02 = 0; i02 < ne02; i02++) {
  6743. id += ne00 * ir0;
  6744. for (int i01 = ir0; i01 < ir1; i01++) {
  6745. for (int i00 = 0; i00 < ne00; i00++) {
  6746. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6747. dst_ptr[id] = *src0_ptr;
  6748. id++;
  6749. }
  6750. }
  6751. id += ne00 * (ne01 - ir1);
  6752. }
  6753. }
  6754. } else if (dst->type == GGML_TYPE_F16) {
  6755. size_t id = 0;
  6756. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6757. for (int i03 = 0; i03 < ne03; i03++) {
  6758. for (int i02 = 0; i02 < ne02; i02++) {
  6759. id += ne00 * ir0;
  6760. for (int i01 = ir0; i01 < ir1; i01++) {
  6761. for (int i00 = 0; i00 < ne00; i00++) {
  6762. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6763. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6764. id++;
  6765. }
  6766. }
  6767. id += ne00 * (ne01 - ir1);
  6768. }
  6769. }
  6770. } else if (dst->type == GGML_TYPE_BF16) {
  6771. size_t id = 0;
  6772. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6773. for (int i03 = 0; i03 < ne03; i03++) {
  6774. for (int i02 = 0; i02 < ne02; i02++) {
  6775. id += ne00 * ir0;
  6776. for (int i01 = ir0; i01 < ir1; i01++) {
  6777. for (int i00 = 0; i00 < ne00; i00++) {
  6778. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6779. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  6780. id++;
  6781. }
  6782. }
  6783. id += ne00 * (ne01 - ir1);
  6784. }
  6785. }
  6786. } else {
  6787. GGML_ASSERT(false); // TODO: implement
  6788. }
  6789. }
  6790. return;
  6791. }
  6792. // dst counters
  6793. int64_t i10 = 0;
  6794. int64_t i11 = 0;
  6795. int64_t i12 = 0;
  6796. int64_t i13 = 0;
  6797. if (dst->type == GGML_TYPE_F32) {
  6798. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6799. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6800. i10 += ne00 * ir0;
  6801. while (i10 >= ne0) {
  6802. i10 -= ne0;
  6803. if (++i11 == ne1) {
  6804. i11 = 0;
  6805. if (++i12 == ne2) {
  6806. i12 = 0;
  6807. if (++i13 == ne3) {
  6808. i13 = 0;
  6809. }
  6810. }
  6811. }
  6812. }
  6813. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6814. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6815. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6816. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6817. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6818. if (++i10 == ne0) {
  6819. i10 = 0;
  6820. if (++i11 == ne1) {
  6821. i11 = 0;
  6822. if (++i12 == ne2) {
  6823. i12 = 0;
  6824. if (++i13 == ne3) {
  6825. i13 = 0;
  6826. }
  6827. }
  6828. }
  6829. }
  6830. }
  6831. }
  6832. i10 += ne00 * (ne01 - ir1);
  6833. while (i10 >= ne0) {
  6834. i10 -= ne0;
  6835. if (++i11 == ne1) {
  6836. i11 = 0;
  6837. if (++i12 == ne2) {
  6838. i12 = 0;
  6839. if (++i13 == ne3) {
  6840. i13 = 0;
  6841. }
  6842. }
  6843. }
  6844. }
  6845. }
  6846. }
  6847. } else if (dst->type == GGML_TYPE_F16) {
  6848. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6849. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6850. i10 += ne00 * ir0;
  6851. while (i10 >= ne0) {
  6852. i10 -= ne0;
  6853. if (++i11 == ne1) {
  6854. i11 = 0;
  6855. if (++i12 == ne2) {
  6856. i12 = 0;
  6857. if (++i13 == ne3) {
  6858. i13 = 0;
  6859. }
  6860. }
  6861. }
  6862. }
  6863. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6864. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6865. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6866. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6867. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6868. if (++i10 == ne0) {
  6869. i10 = 0;
  6870. if (++i11 == ne1) {
  6871. i11 = 0;
  6872. if (++i12 == ne2) {
  6873. i12 = 0;
  6874. if (++i13 == ne3) {
  6875. i13 = 0;
  6876. }
  6877. }
  6878. }
  6879. }
  6880. }
  6881. }
  6882. i10 += ne00 * (ne01 - ir1);
  6883. while (i10 >= ne0) {
  6884. i10 -= ne0;
  6885. if (++i11 == ne1) {
  6886. i11 = 0;
  6887. if (++i12 == ne2) {
  6888. i12 = 0;
  6889. if (++i13 == ne3) {
  6890. i13 = 0;
  6891. }
  6892. }
  6893. }
  6894. }
  6895. }
  6896. }
  6897. } else if (dst->type == GGML_TYPE_BF16) {
  6898. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6899. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6900. i10 += ne00 * ir0;
  6901. while (i10 >= ne0) {
  6902. i10 -= ne0;
  6903. if (++i11 == ne1) {
  6904. i11 = 0;
  6905. if (++i12 == ne2) {
  6906. i12 = 0;
  6907. if (++i13 == ne3) {
  6908. i13 = 0;
  6909. }
  6910. }
  6911. }
  6912. }
  6913. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6914. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6915. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6916. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6917. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  6918. if (++i10 == ne0) {
  6919. i10 = 0;
  6920. if (++i11 == ne1) {
  6921. i11 = 0;
  6922. if (++i12 == ne2) {
  6923. i12 = 0;
  6924. if (++i13 == ne3) {
  6925. i13 = 0;
  6926. }
  6927. }
  6928. }
  6929. }
  6930. }
  6931. }
  6932. i10 += ne00 * (ne01 - ir1);
  6933. while (i10 >= ne0) {
  6934. i10 -= ne0;
  6935. if (++i11 == ne1) {
  6936. i11 = 0;
  6937. if (++i12 == ne2) {
  6938. i12 = 0;
  6939. if (++i13 == ne3) {
  6940. i13 = 0;
  6941. }
  6942. }
  6943. }
  6944. }
  6945. }
  6946. }
  6947. } else {
  6948. GGML_ASSERT(false); // TODO: implement
  6949. }
  6950. }
  6951. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6952. static void ggml_compute_forward_dup_bytes(
  6953. const struct ggml_compute_params * params,
  6954. struct ggml_tensor * dst) {
  6955. const struct ggml_tensor * src0 = dst->src[0];
  6956. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6957. GGML_ASSERT(src0->type == dst->type);
  6958. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6959. return;
  6960. }
  6961. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6962. ggml_compute_forward_dup_same_cont(params, dst);
  6963. return;
  6964. }
  6965. GGML_TENSOR_UNARY_OP_LOCALS;
  6966. const size_t type_size = ggml_type_size(src0->type);
  6967. const int ith = params->ith; // thread index
  6968. const int nth = params->nth; // number of threads
  6969. // parallelize by rows
  6970. const int nr = ne01;
  6971. // number of rows per thread
  6972. const int dr = (nr + nth - 1) / nth;
  6973. // row range for this thread
  6974. const int ir0 = dr * ith;
  6975. const int ir1 = MIN(ir0 + dr, nr);
  6976. if (src0->type == dst->type &&
  6977. ne00 == ne0 &&
  6978. nb00 == type_size && nb0 == type_size) {
  6979. // copy by rows
  6980. const size_t rs = ne00 * type_size;
  6981. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6982. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6983. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6984. memcpy(
  6985. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6986. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6987. rs);
  6988. }
  6989. }
  6990. }
  6991. return;
  6992. }
  6993. if (ggml_is_contiguous(dst)) {
  6994. size_t id = 0;
  6995. char * dst_ptr = (char *) dst->data;
  6996. const size_t rs = ne00 * type_size;
  6997. if (nb00 == type_size) {
  6998. // src0 is contigous on first dimension, copy by rows
  6999. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7000. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7001. id += rs * ir0;
  7002. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7003. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7004. memcpy(dst_ptr + id, src0_ptr, rs);
  7005. id += rs;
  7006. }
  7007. id += rs * (ne01 - ir1);
  7008. }
  7009. }
  7010. } else {
  7011. //printf("%s: this is not optimal - fix me\n", __func__);
  7012. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7013. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7014. id += rs * ir0;
  7015. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7016. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7017. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7018. memcpy(dst_ptr + id, src0_ptr, type_size);
  7019. id += type_size;
  7020. }
  7021. }
  7022. id += rs * (ne01 - ir1);
  7023. }
  7024. }
  7025. }
  7026. return;
  7027. }
  7028. // dst counters
  7029. int64_t i10 = 0;
  7030. int64_t i11 = 0;
  7031. int64_t i12 = 0;
  7032. int64_t i13 = 0;
  7033. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7034. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7035. i10 += ne00 * ir0;
  7036. while (i10 >= ne0) {
  7037. i10 -= ne0;
  7038. if (++i11 == ne1) {
  7039. i11 = 0;
  7040. if (++i12 == ne2) {
  7041. i12 = 0;
  7042. if (++i13 == ne3) {
  7043. i13 = 0;
  7044. }
  7045. }
  7046. }
  7047. }
  7048. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7049. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7050. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7051. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7052. memcpy(dst_ptr, src0_ptr, type_size);
  7053. if (++i10 == ne0) {
  7054. i10 = 0;
  7055. if (++i11 == ne1) {
  7056. i11 = 0;
  7057. if (++i12 == ne2) {
  7058. i12 = 0;
  7059. if (++i13 == ne3) {
  7060. i13 = 0;
  7061. }
  7062. }
  7063. }
  7064. }
  7065. }
  7066. }
  7067. i10 += ne00 * (ne01 - ir1);
  7068. while (i10 >= ne0) {
  7069. i10 -= ne0;
  7070. if (++i11 == ne1) {
  7071. i11 = 0;
  7072. if (++i12 == ne2) {
  7073. i12 = 0;
  7074. if (++i13 == ne3) {
  7075. i13 = 0;
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. }
  7082. }
  7083. static void ggml_compute_forward_dup(
  7084. const struct ggml_compute_params * params,
  7085. struct ggml_tensor * dst) {
  7086. const struct ggml_tensor * src0 = dst->src[0];
  7087. if (src0->type == dst->type) {
  7088. ggml_compute_forward_dup_bytes(params, dst);
  7089. return;
  7090. }
  7091. switch (src0->type) {
  7092. case GGML_TYPE_F16:
  7093. {
  7094. ggml_compute_forward_dup_f16(params, dst);
  7095. } break;
  7096. case GGML_TYPE_BF16:
  7097. {
  7098. ggml_compute_forward_dup_bf16(params, dst);
  7099. } break;
  7100. case GGML_TYPE_F32:
  7101. {
  7102. ggml_compute_forward_dup_f32(params, dst);
  7103. } break;
  7104. default:
  7105. {
  7106. GGML_ASSERT(false);
  7107. } break;
  7108. }
  7109. }
  7110. // ggml_compute_forward_add
  7111. static void ggml_compute_forward_add_f32(
  7112. const struct ggml_compute_params * params,
  7113. struct ggml_tensor * dst) {
  7114. const struct ggml_tensor * src0 = dst->src[0];
  7115. const struct ggml_tensor * src1 = dst->src[1];
  7116. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7117. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7118. return;
  7119. }
  7120. const int ith = params->ith;
  7121. const int nth = params->nth;
  7122. #ifdef GGML_USE_CLBLAST
  7123. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7124. // TODO: OpenCL kernel support full broadcast
  7125. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7126. if (ith == 0) {
  7127. ggml_cl_add(src0, src1, dst);
  7128. }
  7129. return;
  7130. }
  7131. #endif
  7132. const int nr = ggml_nrows(src0);
  7133. GGML_TENSOR_BINARY_OP_LOCALS
  7134. GGML_ASSERT( nb0 == sizeof(float));
  7135. GGML_ASSERT(nb00 == sizeof(float));
  7136. // rows per thread
  7137. const int dr = (nr + nth - 1)/nth;
  7138. // row range for this thread
  7139. const int ir0 = dr*ith;
  7140. const int ir1 = MIN(ir0 + dr, nr);
  7141. if (nb10 == sizeof(float)) {
  7142. for (int ir = ir0; ir < ir1; ++ir) {
  7143. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7144. const int64_t i03 = ir/(ne02*ne01);
  7145. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7146. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7147. const int64_t i13 = i03 % ne13;
  7148. const int64_t i12 = i02 % ne12;
  7149. const int64_t i11 = i01 % ne11;
  7150. const int64_t nr0 = ne00 / ne10;
  7151. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7152. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7153. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7154. for (int64_t r = 0; r < nr0; ++r) {
  7155. #ifdef GGML_USE_ACCELERATE
  7156. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7157. #else
  7158. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7159. #endif
  7160. }
  7161. }
  7162. } else {
  7163. // src1 is not contiguous
  7164. for (int ir = ir0; ir < ir1; ++ir) {
  7165. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7166. const int64_t i03 = ir/(ne02*ne01);
  7167. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7168. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7169. const int64_t i13 = i03 % ne13;
  7170. const int64_t i12 = i02 % ne12;
  7171. const int64_t i11 = i01 % ne11;
  7172. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7173. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7174. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7175. const int64_t i10 = i0 % ne10;
  7176. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7177. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7178. }
  7179. }
  7180. }
  7181. }
  7182. static void ggml_compute_forward_add_f16_f32(
  7183. const struct ggml_compute_params * params,
  7184. struct ggml_tensor * dst) {
  7185. const struct ggml_tensor * src0 = dst->src[0];
  7186. const struct ggml_tensor * src1 = dst->src[1];
  7187. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7188. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7189. return;
  7190. }
  7191. const int ith = params->ith;
  7192. const int nth = params->nth;
  7193. const int nr = ggml_nrows(src0);
  7194. GGML_TENSOR_BINARY_OP_LOCALS
  7195. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7196. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7197. if (dst->type == GGML_TYPE_F32) {
  7198. GGML_ASSERT( nb0 == sizeof(float));
  7199. }
  7200. else {
  7201. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7202. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7203. }
  7204. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7205. // rows per thread
  7206. const int dr = (nr + nth - 1)/nth;
  7207. // row range for this thread
  7208. const int ir0 = dr*ith;
  7209. const int ir1 = MIN(ir0 + dr, nr);
  7210. if (nb10 == sizeof(float)) {
  7211. if (dst->type == GGML_TYPE_F16) {
  7212. for (int ir = ir0; ir < ir1; ++ir) {
  7213. // src0, src1 and dst are same shape => same indices
  7214. const int i3 = ir/(ne2*ne1);
  7215. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7216. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7217. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7218. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7219. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7220. for (int i = 0; i < ne0; i++) {
  7221. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7222. }
  7223. }
  7224. } else {
  7225. for (int ir = ir0; ir < ir1; ++ir) {
  7226. // src0, src1 and dst are same shape => same indices
  7227. const int i3 = ir/(ne2*ne1);
  7228. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7229. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7230. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7231. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7232. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7233. for (int i = 0; i < ne0; i++) {
  7234. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7235. }
  7236. }
  7237. }
  7238. }
  7239. else {
  7240. // src1 is not contiguous
  7241. GGML_ASSERT(false);
  7242. }
  7243. }
  7244. static void ggml_compute_forward_add_bf16_f32(
  7245. const struct ggml_compute_params * params,
  7246. struct ggml_tensor * dst) {
  7247. const struct ggml_tensor * src0 = dst->src[0];
  7248. const struct ggml_tensor * src1 = dst->src[1];
  7249. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7250. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7251. return;
  7252. }
  7253. const int ith = params->ith;
  7254. const int nth = params->nth;
  7255. const int nr = ggml_nrows(src0);
  7256. GGML_TENSOR_BINARY_OP_LOCALS
  7257. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7258. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7259. if (dst->type == GGML_TYPE_F32) {
  7260. GGML_ASSERT( nb0 == sizeof(float));
  7261. }
  7262. else {
  7263. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7264. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7265. }
  7266. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7267. // rows per thread
  7268. const int dr = (nr + nth - 1)/nth;
  7269. // row range for this thread
  7270. const int ir0 = dr*ith;
  7271. const int ir1 = MIN(ir0 + dr, nr);
  7272. if (nb10 == sizeof(float)) {
  7273. if (dst->type == GGML_TYPE_BF16) {
  7274. for (int ir = ir0; ir < ir1; ++ir) {
  7275. // src0, src1 and dst are same shape => same indices
  7276. const int i3 = ir/(ne2*ne1);
  7277. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7278. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7279. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7280. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7281. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7282. for (int i = 0; i < ne0; i++) {
  7283. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7284. }
  7285. }
  7286. } else {
  7287. for (int ir = ir0; ir < ir1; ++ir) {
  7288. // src0, src1 and dst are same shape => same indices
  7289. const int i3 = ir/(ne2*ne1);
  7290. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7291. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7292. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7293. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7294. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7295. for (int i = 0; i < ne0; i++) {
  7296. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7297. }
  7298. }
  7299. }
  7300. }
  7301. else {
  7302. // src1 is not contiguous
  7303. GGML_ASSERT(false);
  7304. }
  7305. }
  7306. static void ggml_compute_forward_add_f16_f16(
  7307. const struct ggml_compute_params * params,
  7308. struct ggml_tensor * dst) {
  7309. const struct ggml_tensor * src0 = dst->src[0];
  7310. const struct ggml_tensor * src1 = dst->src[1];
  7311. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7312. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7313. return;
  7314. }
  7315. const int ith = params->ith;
  7316. const int nth = params->nth;
  7317. const int nr = ggml_nrows(src0);
  7318. GGML_TENSOR_BINARY_OP_LOCALS
  7319. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7320. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7321. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7322. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7323. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7324. // rows per thread
  7325. const int dr = (nr + nth - 1)/nth;
  7326. // row range for this thread
  7327. const int ir0 = dr*ith;
  7328. const int ir1 = MIN(ir0 + dr, nr);
  7329. if (nb10 == sizeof(ggml_fp16_t)) {
  7330. for (int ir = ir0; ir < ir1; ++ir) {
  7331. // src0, src1 and dst are same shape => same indices
  7332. const int i3 = ir/(ne2*ne1);
  7333. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7334. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7335. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7336. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7337. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7338. for (int i = 0; i < ne0; i++) {
  7339. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7340. }
  7341. }
  7342. }
  7343. else {
  7344. // src1 is not contiguous
  7345. GGML_ASSERT(false);
  7346. }
  7347. }
  7348. static void ggml_compute_forward_add_bf16_bf16(
  7349. const struct ggml_compute_params * params,
  7350. struct ggml_tensor * dst) {
  7351. const struct ggml_tensor * src0 = dst->src[0];
  7352. const struct ggml_tensor * src1 = dst->src[1];
  7353. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7354. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7355. return;
  7356. }
  7357. const int ith = params->ith;
  7358. const int nth = params->nth;
  7359. const int nr = ggml_nrows(src0);
  7360. GGML_TENSOR_BINARY_OP_LOCALS
  7361. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7362. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7363. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7364. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7365. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7366. // rows per thread
  7367. const int dr = (nr + nth - 1)/nth;
  7368. // row range for this thread
  7369. const int ir0 = dr*ith;
  7370. const int ir1 = MIN(ir0 + dr, nr);
  7371. if (nb10 == sizeof(ggml_bf16_t)) {
  7372. for (int ir = ir0; ir < ir1; ++ir) {
  7373. // src0, src1 and dst are same shape => same indices
  7374. const int i3 = ir/(ne2*ne1);
  7375. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7376. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7377. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7378. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7379. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7380. for (int i = 0; i < ne0; i++) {
  7381. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7382. }
  7383. }
  7384. }
  7385. else {
  7386. // src1 is not contiguous
  7387. GGML_ASSERT(false);
  7388. }
  7389. }
  7390. static void ggml_compute_forward_add_q_f32(
  7391. const struct ggml_compute_params * params,
  7392. struct ggml_tensor * dst) {
  7393. const struct ggml_tensor * src0 = dst->src[0];
  7394. const struct ggml_tensor * src1 = dst->src[1];
  7395. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7397. return;
  7398. }
  7399. const int nr = ggml_nrows(src0);
  7400. GGML_TENSOR_BINARY_OP_LOCALS
  7401. const int ith = params->ith;
  7402. const int nth = params->nth;
  7403. const enum ggml_type type = src0->type;
  7404. const enum ggml_type dtype = dst->type;
  7405. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7406. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7407. // we don't support permuted src0 or src1
  7408. GGML_ASSERT(nb00 == ggml_type_size(type));
  7409. GGML_ASSERT(nb10 == sizeof(float));
  7410. // dst cannot be transposed or permuted
  7411. GGML_ASSERT(nb0 <= nb1);
  7412. GGML_ASSERT(nb1 <= nb2);
  7413. GGML_ASSERT(nb2 <= nb3);
  7414. GGML_ASSERT(ggml_is_quantized(src0->type));
  7415. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7416. // rows per thread
  7417. const int dr = (nr + nth - 1)/nth;
  7418. // row range for this thread
  7419. const int ir0 = dr*ith;
  7420. const int ir1 = MIN(ir0 + dr, nr);
  7421. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7422. for (int ir = ir0; ir < ir1; ++ir) {
  7423. // src0 indices
  7424. const int i03 = ir/(ne02*ne01);
  7425. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7426. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7427. // src1 and dst are same shape as src0 => same indices
  7428. const int i13 = i03;
  7429. const int i12 = i02;
  7430. const int i11 = i01;
  7431. const int i3 = i03;
  7432. const int i2 = i02;
  7433. const int i1 = i01;
  7434. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7435. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7436. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7437. assert(ne00 % 32 == 0);
  7438. // unquantize row from src0 to temp buffer
  7439. dequantize_row_q(src0_row, wdata, ne00);
  7440. // add src1
  7441. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7442. // quantize row to dst
  7443. if (quantize_row_q != NULL) {
  7444. quantize_row_q(wdata, dst_row, ne00);
  7445. } else {
  7446. memcpy(dst_row, wdata, ne0*nb0);
  7447. }
  7448. }
  7449. }
  7450. static void ggml_compute_forward_add(
  7451. const struct ggml_compute_params * params,
  7452. struct ggml_tensor * dst) {
  7453. const struct ggml_tensor * src0 = dst->src[0];
  7454. const struct ggml_tensor * src1 = dst->src[1];
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. {
  7458. if (src1->type == GGML_TYPE_F32) {
  7459. ggml_compute_forward_add_f32(params, dst);
  7460. }
  7461. else {
  7462. GGML_ASSERT(false);
  7463. }
  7464. } break;
  7465. case GGML_TYPE_F16:
  7466. {
  7467. if (src1->type == GGML_TYPE_F16) {
  7468. ggml_compute_forward_add_f16_f16(params, dst);
  7469. }
  7470. else if (src1->type == GGML_TYPE_F32) {
  7471. ggml_compute_forward_add_f16_f32(params, dst);
  7472. }
  7473. else {
  7474. GGML_ASSERT(false);
  7475. }
  7476. } break;
  7477. case GGML_TYPE_BF16:
  7478. {
  7479. if (src1->type == GGML_TYPE_BF16) {
  7480. ggml_compute_forward_add_bf16_bf16(params, dst);
  7481. }
  7482. else if (src1->type == GGML_TYPE_F32) {
  7483. ggml_compute_forward_add_bf16_f32(params, dst);
  7484. }
  7485. else {
  7486. GGML_ASSERT(false);
  7487. }
  7488. } break;
  7489. case GGML_TYPE_Q4_0:
  7490. case GGML_TYPE_Q4_1:
  7491. case GGML_TYPE_Q5_0:
  7492. case GGML_TYPE_Q5_1:
  7493. case GGML_TYPE_Q8_0:
  7494. case GGML_TYPE_Q2_K:
  7495. case GGML_TYPE_Q3_K:
  7496. case GGML_TYPE_Q4_K:
  7497. case GGML_TYPE_Q5_K:
  7498. case GGML_TYPE_Q6_K:
  7499. case GGML_TYPE_IQ2_XXS:
  7500. case GGML_TYPE_IQ2_XS:
  7501. case GGML_TYPE_IQ3_XXS:
  7502. case GGML_TYPE_IQ1_S:
  7503. case GGML_TYPE_IQ1_M:
  7504. case GGML_TYPE_IQ4_NL:
  7505. case GGML_TYPE_IQ4_XS:
  7506. case GGML_TYPE_IQ3_S:
  7507. case GGML_TYPE_IQ2_S:
  7508. {
  7509. ggml_compute_forward_add_q_f32(params, dst);
  7510. } break;
  7511. default:
  7512. {
  7513. GGML_ASSERT(false);
  7514. } break;
  7515. }
  7516. }
  7517. // ggml_compute_forward_add1
  7518. static void ggml_compute_forward_add1_f32(
  7519. const struct ggml_compute_params * params,
  7520. struct ggml_tensor * dst) {
  7521. const struct ggml_tensor * src0 = dst->src[0];
  7522. const struct ggml_tensor * src1 = dst->src[1];
  7523. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7524. GGML_ASSERT(ggml_is_scalar(src1));
  7525. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7526. return;
  7527. }
  7528. const int ith = params->ith;
  7529. const int nth = params->nth;
  7530. const int nr = ggml_nrows(src0);
  7531. GGML_TENSOR_UNARY_OP_LOCALS
  7532. GGML_ASSERT( nb0 == sizeof(float));
  7533. GGML_ASSERT(nb00 == sizeof(float));
  7534. // rows per thread
  7535. const int dr = (nr + nth - 1)/nth;
  7536. // row range for this thread
  7537. const int ir0 = dr*ith;
  7538. const int ir1 = MIN(ir0 + dr, nr);
  7539. for (int ir = ir0; ir < ir1; ++ir) {
  7540. // src0 and dst are same shape => same indices
  7541. const int i3 = ir/(ne2*ne1);
  7542. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7543. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7544. #ifdef GGML_USE_ACCELERATE
  7545. UNUSED(ggml_vec_add1_f32);
  7546. vDSP_vadd(
  7547. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7548. (float *) ((char *) src1->data), 0,
  7549. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7550. ne0);
  7551. #else
  7552. ggml_vec_add1_f32(ne0,
  7553. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7554. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7555. *(float *) src1->data);
  7556. #endif
  7557. }
  7558. }
  7559. static void ggml_compute_forward_add1_f16_f32(
  7560. const struct ggml_compute_params * params,
  7561. struct ggml_tensor * dst) {
  7562. const struct ggml_tensor * src0 = dst->src[0];
  7563. const struct ggml_tensor * src1 = dst->src[1];
  7564. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7565. GGML_ASSERT(ggml_is_scalar(src1));
  7566. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7567. return;
  7568. }
  7569. // scalar to add
  7570. const float v = *(float *) src1->data;
  7571. const int ith = params->ith;
  7572. const int nth = params->nth;
  7573. const int nr = ggml_nrows(src0);
  7574. GGML_TENSOR_UNARY_OP_LOCALS
  7575. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7576. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7577. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7578. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7579. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7580. // rows per thread
  7581. const int dr = (nr + nth - 1)/nth;
  7582. // row range for this thread
  7583. const int ir0 = dr*ith;
  7584. const int ir1 = MIN(ir0 + dr, nr);
  7585. for (int ir = ir0; ir < ir1; ++ir) {
  7586. // src0 and dst are same shape => same indices
  7587. const int i3 = ir/(ne2*ne1);
  7588. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7589. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7590. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7591. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7592. for (int i = 0; i < ne0; i++) {
  7593. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7594. }
  7595. }
  7596. }
  7597. static void ggml_compute_forward_add1_f16_f16(
  7598. const struct ggml_compute_params * params,
  7599. struct ggml_tensor * dst) {
  7600. const struct ggml_tensor * src0 = dst->src[0];
  7601. const struct ggml_tensor * src1 = dst->src[1];
  7602. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7603. GGML_ASSERT(ggml_is_scalar(src1));
  7604. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7605. return;
  7606. }
  7607. // scalar to add
  7608. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7609. const int ith = params->ith;
  7610. const int nth = params->nth;
  7611. const int nr = ggml_nrows(src0);
  7612. GGML_TENSOR_UNARY_OP_LOCALS
  7613. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7614. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7615. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7616. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7617. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7618. // rows per thread
  7619. const int dr = (nr + nth - 1)/nth;
  7620. // row range for this thread
  7621. const int ir0 = dr*ith;
  7622. const int ir1 = MIN(ir0 + dr, nr);
  7623. for (int ir = ir0; ir < ir1; ++ir) {
  7624. // src0 and dst are same shape => same indices
  7625. const int i3 = ir/(ne2*ne1);
  7626. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7627. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7628. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7629. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7630. for (int i = 0; i < ne0; i++) {
  7631. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7632. }
  7633. }
  7634. }
  7635. static void ggml_compute_forward_add1_q_f32(
  7636. const struct ggml_compute_params * params,
  7637. struct ggml_tensor * dst) {
  7638. const struct ggml_tensor * src0 = dst->src[0];
  7639. const struct ggml_tensor * src1 = dst->src[1];
  7640. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7641. GGML_ASSERT(ggml_is_scalar(src1));
  7642. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7643. return;
  7644. }
  7645. // scalar to add
  7646. const float v = *(float *) src1->data;
  7647. const int ith = params->ith;
  7648. const int nth = params->nth;
  7649. const int nr = ggml_nrows(src0);
  7650. GGML_TENSOR_UNARY_OP_LOCALS
  7651. const enum ggml_type type = src0->type;
  7652. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7653. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7654. // we don't support permuted src0
  7655. GGML_ASSERT(nb00 == ggml_type_size(type));
  7656. // dst cannot be transposed or permuted
  7657. GGML_ASSERT(nb0 <= nb1);
  7658. GGML_ASSERT(nb1 <= nb2);
  7659. GGML_ASSERT(nb2 <= nb3);
  7660. GGML_ASSERT(ggml_is_quantized(src0->type));
  7661. GGML_ASSERT(dst->type == src0->type);
  7662. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7663. // rows per thread
  7664. const int dr = (nr + nth - 1)/nth;
  7665. // row range for this thread
  7666. const int ir0 = dr*ith;
  7667. const int ir1 = MIN(ir0 + dr, nr);
  7668. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7669. for (int ir = ir0; ir < ir1; ++ir) {
  7670. // src0 and dst are same shape => same indices
  7671. const int i3 = ir/(ne2*ne1);
  7672. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7673. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7674. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7675. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7676. assert(ne0 % 32 == 0);
  7677. // unquantize row from src0 to temp buffer
  7678. dequantize_row_q(src0_row, wdata, ne0);
  7679. // add src1
  7680. ggml_vec_acc1_f32(ne0, wdata, v);
  7681. // quantize row to dst
  7682. quantize_row_q(wdata, dst_row, ne0);
  7683. }
  7684. }
  7685. static void ggml_compute_forward_add1_bf16_f32(
  7686. const struct ggml_compute_params * params,
  7687. struct ggml_tensor * dst) {
  7688. const struct ggml_tensor * src0 = dst->src[0];
  7689. const struct ggml_tensor * src1 = dst->src[1];
  7690. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7691. GGML_ASSERT(ggml_is_scalar(src1));
  7692. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7693. return;
  7694. }
  7695. // scalar to add
  7696. const float v = *(float *) src1->data;
  7697. const int ith = params->ith;
  7698. const int nth = params->nth;
  7699. const int nr = ggml_nrows(src0);
  7700. GGML_TENSOR_UNARY_OP_LOCALS
  7701. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7702. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7703. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7704. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7705. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7706. // rows per thread
  7707. const int dr = (nr + nth - 1)/nth;
  7708. // row range for this thread
  7709. const int ir0 = dr*ith;
  7710. const int ir1 = MIN(ir0 + dr, nr);
  7711. for (int ir = ir0; ir < ir1; ++ir) {
  7712. // src0 and dst are same shape => same indices
  7713. const int i3 = ir/(ne2*ne1);
  7714. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7715. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7716. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7717. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7718. for (int i = 0; i < ne0; i++) {
  7719. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7720. }
  7721. }
  7722. }
  7723. static void ggml_compute_forward_add1_bf16_bf16(
  7724. const struct ggml_compute_params * params,
  7725. struct ggml_tensor * dst) {
  7726. const struct ggml_tensor * src0 = dst->src[0];
  7727. const struct ggml_tensor * src1 = dst->src[1];
  7728. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7729. GGML_ASSERT(ggml_is_scalar(src1));
  7730. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7731. return;
  7732. }
  7733. // scalar to add
  7734. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  7735. const int ith = params->ith;
  7736. const int nth = params->nth;
  7737. const int nr = ggml_nrows(src0);
  7738. GGML_TENSOR_UNARY_OP_LOCALS
  7739. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7740. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7741. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7742. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7743. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7744. // rows per thread
  7745. const int dr = (nr + nth - 1)/nth;
  7746. // row range for this thread
  7747. const int ir0 = dr*ith;
  7748. const int ir1 = MIN(ir0 + dr, nr);
  7749. for (int ir = ir0; ir < ir1; ++ir) {
  7750. // src0 and dst are same shape => same indices
  7751. const int i3 = ir/(ne2*ne1);
  7752. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7753. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7754. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7755. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7756. for (int i = 0; i < ne0; i++) {
  7757. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  7758. }
  7759. }
  7760. }
  7761. static void ggml_compute_forward_add1(
  7762. const struct ggml_compute_params * params,
  7763. struct ggml_tensor * dst) {
  7764. const struct ggml_tensor * src0 = dst->src[0];
  7765. const struct ggml_tensor * src1 = dst->src[1];
  7766. switch (src0->type) {
  7767. case GGML_TYPE_F32:
  7768. {
  7769. ggml_compute_forward_add1_f32(params, dst);
  7770. } break;
  7771. case GGML_TYPE_F16:
  7772. {
  7773. if (src1->type == GGML_TYPE_F16) {
  7774. ggml_compute_forward_add1_f16_f16(params, dst);
  7775. }
  7776. else if (src1->type == GGML_TYPE_F32) {
  7777. ggml_compute_forward_add1_f16_f32(params, dst);
  7778. }
  7779. else {
  7780. GGML_ASSERT(false);
  7781. }
  7782. } break;
  7783. case GGML_TYPE_BF16:
  7784. {
  7785. if (src1->type == GGML_TYPE_BF16) {
  7786. ggml_compute_forward_add1_bf16_bf16(params, dst);
  7787. }
  7788. else if (src1->type == GGML_TYPE_F32) {
  7789. ggml_compute_forward_add1_bf16_f32(params, dst);
  7790. }
  7791. else {
  7792. GGML_ASSERT(false);
  7793. }
  7794. } break;
  7795. case GGML_TYPE_Q4_0:
  7796. case GGML_TYPE_Q4_1:
  7797. case GGML_TYPE_Q5_0:
  7798. case GGML_TYPE_Q5_1:
  7799. case GGML_TYPE_Q8_0:
  7800. case GGML_TYPE_Q8_1:
  7801. case GGML_TYPE_Q2_K:
  7802. case GGML_TYPE_Q3_K:
  7803. case GGML_TYPE_Q4_K:
  7804. case GGML_TYPE_Q5_K:
  7805. case GGML_TYPE_Q6_K:
  7806. case GGML_TYPE_IQ2_XXS:
  7807. case GGML_TYPE_IQ2_XS:
  7808. case GGML_TYPE_IQ3_XXS:
  7809. case GGML_TYPE_IQ1_S:
  7810. case GGML_TYPE_IQ1_M:
  7811. case GGML_TYPE_IQ4_NL:
  7812. case GGML_TYPE_IQ4_XS:
  7813. case GGML_TYPE_IQ3_S:
  7814. case GGML_TYPE_IQ2_S:
  7815. {
  7816. ggml_compute_forward_add1_q_f32(params, dst);
  7817. } break;
  7818. default:
  7819. {
  7820. GGML_ASSERT(false);
  7821. } break;
  7822. }
  7823. }
  7824. // ggml_compute_forward_acc
  7825. static void ggml_compute_forward_acc_f32(
  7826. const struct ggml_compute_params * params,
  7827. struct ggml_tensor * dst) {
  7828. const struct ggml_tensor * src0 = dst->src[0];
  7829. const struct ggml_tensor * src1 = dst->src[1];
  7830. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7831. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7832. // view src0 and dst with these strides and data offset inbytes during acc
  7833. // nb0 is implicitly element_size because src0 and dst are contiguous
  7834. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7835. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7836. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7837. size_t offset = ((int32_t *) dst->op_params)[3];
  7838. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7839. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  7840. if (params->ith != 0) {
  7841. return;
  7842. }
  7843. // memcpy needs to be synchronized across threads to avoid race conditions.
  7844. // => do it in INIT phase
  7845. memcpy(
  7846. ((char *) dst->data),
  7847. ((char *) src0->data),
  7848. ggml_nbytes(dst));
  7849. }
  7850. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7851. return;
  7852. }
  7853. const int ith = params->ith;
  7854. const int nth = params->nth;
  7855. const int nr = ggml_nrows(src1);
  7856. const int nc = src1->ne[0];
  7857. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7858. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7859. // src0 and dst as viewed during acc
  7860. const size_t nb0 = ggml_element_size(src0);
  7861. const size_t nb00 = nb0;
  7862. const size_t nb01 = nb1;
  7863. const size_t nb02 = nb2;
  7864. const size_t nb03 = nb3;
  7865. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7866. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7867. GGML_ASSERT(nb10 == sizeof(float));
  7868. // rows per thread
  7869. const int dr = (nr + nth - 1)/nth;
  7870. // row range for this thread
  7871. const int ir0 = dr*ith;
  7872. const int ir1 = MIN(ir0 + dr, nr);
  7873. for (int ir = ir0; ir < ir1; ++ir) {
  7874. // src0 and dst are viewed with shape of src1 and offset
  7875. // => same indices
  7876. const int i3 = ir/(ne12*ne11);
  7877. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7878. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7879. #ifdef GGML_USE_ACCELERATE
  7880. vDSP_vadd(
  7881. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7882. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7883. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7884. #else
  7885. ggml_vec_add_f32(nc,
  7886. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7887. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7888. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7889. #endif
  7890. }
  7891. }
  7892. static void ggml_compute_forward_acc(
  7893. const struct ggml_compute_params * params,
  7894. struct ggml_tensor * dst) {
  7895. const struct ggml_tensor * src0 = dst->src[0];
  7896. switch (src0->type) {
  7897. case GGML_TYPE_F32:
  7898. {
  7899. ggml_compute_forward_acc_f32(params, dst);
  7900. } break;
  7901. case GGML_TYPE_F16:
  7902. case GGML_TYPE_BF16:
  7903. case GGML_TYPE_Q4_0:
  7904. case GGML_TYPE_Q4_1:
  7905. case GGML_TYPE_Q5_0:
  7906. case GGML_TYPE_Q5_1:
  7907. case GGML_TYPE_Q8_0:
  7908. case GGML_TYPE_Q8_1:
  7909. case GGML_TYPE_Q2_K:
  7910. case GGML_TYPE_Q3_K:
  7911. case GGML_TYPE_Q4_K:
  7912. case GGML_TYPE_Q5_K:
  7913. case GGML_TYPE_Q6_K:
  7914. case GGML_TYPE_IQ2_XXS:
  7915. case GGML_TYPE_IQ2_XS:
  7916. case GGML_TYPE_IQ3_XXS:
  7917. case GGML_TYPE_IQ1_S:
  7918. case GGML_TYPE_IQ1_M:
  7919. case GGML_TYPE_IQ4_NL:
  7920. case GGML_TYPE_IQ4_XS:
  7921. case GGML_TYPE_IQ3_S:
  7922. case GGML_TYPE_IQ2_S:
  7923. default:
  7924. {
  7925. GGML_ASSERT(false);
  7926. } break;
  7927. }
  7928. }
  7929. // ggml_compute_forward_sub
  7930. static void ggml_compute_forward_sub_f32(
  7931. const struct ggml_compute_params * params,
  7932. struct ggml_tensor * dst) {
  7933. const struct ggml_tensor * src0 = dst->src[0];
  7934. const struct ggml_tensor * src1 = dst->src[1];
  7935. assert(params->ith == 0);
  7936. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7937. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7938. return;
  7939. }
  7940. const int nr = ggml_nrows(src0);
  7941. GGML_TENSOR_BINARY_OP_LOCALS
  7942. GGML_ASSERT( nb0 == sizeof(float));
  7943. GGML_ASSERT(nb00 == sizeof(float));
  7944. if (nb10 == sizeof(float)) {
  7945. for (int ir = 0; ir < nr; ++ir) {
  7946. // src0, src1 and dst are same shape => same indices
  7947. const int i3 = ir/(ne2*ne1);
  7948. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7949. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7950. #ifdef GGML_USE_ACCELERATE
  7951. vDSP_vsub(
  7952. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7953. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7954. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7955. ne0);
  7956. #else
  7957. ggml_vec_sub_f32(ne0,
  7958. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7959. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7960. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7961. #endif
  7962. // }
  7963. // }
  7964. }
  7965. } else {
  7966. // src1 is not contiguous
  7967. for (int ir = 0; ir < nr; ++ir) {
  7968. // src0, src1 and dst are same shape => same indices
  7969. const int i3 = ir/(ne2*ne1);
  7970. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7971. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7972. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7973. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7974. for (int i0 = 0; i0 < ne0; i0++) {
  7975. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7976. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7977. }
  7978. }
  7979. }
  7980. }
  7981. static void ggml_compute_forward_sub(
  7982. const struct ggml_compute_params * params,
  7983. struct ggml_tensor * dst) {
  7984. const struct ggml_tensor * src0 = dst->src[0];
  7985. switch (src0->type) {
  7986. case GGML_TYPE_F32:
  7987. {
  7988. ggml_compute_forward_sub_f32(params, dst);
  7989. } break;
  7990. default:
  7991. {
  7992. GGML_ASSERT(false);
  7993. } break;
  7994. }
  7995. }
  7996. // ggml_compute_forward_mul
  7997. static void ggml_compute_forward_mul_f32(
  7998. const struct ggml_compute_params * params,
  7999. struct ggml_tensor * dst) {
  8000. const struct ggml_tensor * src0 = dst->src[0];
  8001. const struct ggml_tensor * src1 = dst->src[1];
  8002. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8003. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8004. return;
  8005. }
  8006. const int ith = params->ith;
  8007. const int nth = params->nth;
  8008. #if defined(GGML_USE_CLBLAST)
  8009. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  8010. // TODO: OpenCL kernel support full broadcast
  8011. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  8012. if (ith == 0) {
  8013. ggml_cl_mul(src0, src1, dst);
  8014. }
  8015. return;
  8016. }
  8017. #endif
  8018. const int64_t nr = ggml_nrows(src0);
  8019. GGML_TENSOR_BINARY_OP_LOCALS
  8020. GGML_ASSERT( nb0 == sizeof(float));
  8021. GGML_ASSERT(nb00 == sizeof(float));
  8022. if (nb10 == sizeof(float)) {
  8023. for (int64_t ir = ith; ir < nr; ir += nth) {
  8024. // src0 and dst are same shape => same indices
  8025. const int64_t i03 = ir/(ne02*ne01);
  8026. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8027. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8028. const int64_t i13 = i03 % ne13;
  8029. const int64_t i12 = i02 % ne12;
  8030. const int64_t i11 = i01 % ne11;
  8031. const int64_t nr0 = ne00 / ne10;
  8032. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8033. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8034. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8035. for (int64_t r = 0 ; r < nr0; ++r) {
  8036. #ifdef GGML_USE_ACCELERATE
  8037. UNUSED(ggml_vec_mul_f32);
  8038. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8039. #else
  8040. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8041. #endif
  8042. }
  8043. }
  8044. } else {
  8045. // src1 is not contiguous
  8046. for (int64_t ir = ith; ir < nr; ir += nth) {
  8047. // src0 and dst are same shape => same indices
  8048. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8049. const int64_t i03 = ir/(ne02*ne01);
  8050. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8051. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8052. const int64_t i13 = i03 % ne13;
  8053. const int64_t i12 = i02 % ne12;
  8054. const int64_t i11 = i01 % ne11;
  8055. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8056. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8057. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8058. const int64_t i10 = i0 % ne10;
  8059. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8060. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8061. }
  8062. }
  8063. }
  8064. }
  8065. static void ggml_compute_forward_mul(
  8066. const struct ggml_compute_params * params,
  8067. struct ggml_tensor * dst) {
  8068. const struct ggml_tensor * src0 = dst->src[0];
  8069. const struct ggml_tensor * src1 = dst->src[1];
  8070. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8071. switch (src0->type) {
  8072. case GGML_TYPE_F32:
  8073. {
  8074. ggml_compute_forward_mul_f32(params, dst);
  8075. } break;
  8076. default:
  8077. {
  8078. GGML_ASSERT(false);
  8079. } break;
  8080. }
  8081. }
  8082. // ggml_compute_forward_div
  8083. static void ggml_compute_forward_div_f32(
  8084. const struct ggml_compute_params * params,
  8085. struct ggml_tensor * dst) {
  8086. const struct ggml_tensor * src0 = dst->src[0];
  8087. const struct ggml_tensor * src1 = dst->src[1];
  8088. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8089. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8090. return;
  8091. }
  8092. const int ith = params->ith;
  8093. const int nth = params->nth;
  8094. const int64_t nr = ggml_nrows(src0);
  8095. GGML_TENSOR_BINARY_OP_LOCALS
  8096. GGML_ASSERT( nb0 == sizeof(float));
  8097. GGML_ASSERT(nb00 == sizeof(float));
  8098. if (nb10 == sizeof(float)) {
  8099. for (int64_t ir = ith; ir < nr; ir += nth) {
  8100. // src0 and dst are same shape => same indices
  8101. const int64_t i03 = ir/(ne02*ne01);
  8102. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8103. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8104. const int64_t i13 = i03 % ne13;
  8105. const int64_t i12 = i02 % ne12;
  8106. const int64_t i11 = i01 % ne11;
  8107. const int64_t nr0 = ne00 / ne10;
  8108. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8109. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8110. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8111. for (int64_t r = 0; r < nr0; ++r) {
  8112. #ifdef GGML_USE_ACCELERATE
  8113. UNUSED(ggml_vec_div_f32);
  8114. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8115. #else
  8116. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8117. #endif
  8118. }
  8119. }
  8120. } else {
  8121. // src1 is not contiguous
  8122. for (int64_t ir = ith; ir < nr; ir += nth) {
  8123. // src0 and dst are same shape => same indices
  8124. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8125. const int64_t i03 = ir/(ne02*ne01);
  8126. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8127. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8128. const int64_t i13 = i03 % ne13;
  8129. const int64_t i12 = i02 % ne12;
  8130. const int64_t i11 = i01 % ne11;
  8131. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8132. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8133. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8134. const int64_t i10 = i0 % ne10;
  8135. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8136. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8137. }
  8138. }
  8139. }
  8140. }
  8141. static void ggml_compute_forward_div(
  8142. const struct ggml_compute_params * params,
  8143. struct ggml_tensor * dst) {
  8144. const struct ggml_tensor * src0 = dst->src[0];
  8145. switch (src0->type) {
  8146. case GGML_TYPE_F32:
  8147. {
  8148. ggml_compute_forward_div_f32(params, dst);
  8149. } break;
  8150. default:
  8151. {
  8152. GGML_ASSERT(false);
  8153. } break;
  8154. }
  8155. }
  8156. // ggml_compute_forward_sqr
  8157. static void ggml_compute_forward_sqr_f32(
  8158. const struct ggml_compute_params * params,
  8159. struct ggml_tensor * dst) {
  8160. const struct ggml_tensor * src0 = dst->src[0];
  8161. assert(params->ith == 0);
  8162. assert(ggml_are_same_shape(src0, dst));
  8163. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8164. return;
  8165. }
  8166. const int n = ggml_nrows(src0);
  8167. const int nc = src0->ne[0];
  8168. assert( dst->nb[0] == sizeof(float));
  8169. assert(src0->nb[0] == sizeof(float));
  8170. for (int i = 0; i < n; i++) {
  8171. ggml_vec_sqr_f32(nc,
  8172. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8173. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8174. }
  8175. }
  8176. static void ggml_compute_forward_sqr(
  8177. const struct ggml_compute_params * params,
  8178. struct ggml_tensor * dst) {
  8179. const struct ggml_tensor * src0 = dst->src[0];
  8180. switch (src0->type) {
  8181. case GGML_TYPE_F32:
  8182. {
  8183. ggml_compute_forward_sqr_f32(params, dst);
  8184. } break;
  8185. default:
  8186. {
  8187. GGML_ASSERT(false);
  8188. } break;
  8189. }
  8190. }
  8191. // ggml_compute_forward_sqrt
  8192. static void ggml_compute_forward_sqrt_f32(
  8193. const struct ggml_compute_params * params,
  8194. struct ggml_tensor * dst) {
  8195. const struct ggml_tensor * src0 = dst->src[0];
  8196. assert(params->ith == 0);
  8197. assert(ggml_are_same_shape(src0, dst));
  8198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8199. return;
  8200. }
  8201. const int n = ggml_nrows(src0);
  8202. const int nc = src0->ne[0];
  8203. assert( dst->nb[0] == sizeof(float));
  8204. assert(src0->nb[0] == sizeof(float));
  8205. for (int i = 0; i < n; i++) {
  8206. ggml_vec_sqrt_f32(nc,
  8207. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8208. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8209. }
  8210. }
  8211. static void ggml_compute_forward_sqrt(
  8212. const struct ggml_compute_params * params,
  8213. struct ggml_tensor * dst) {
  8214. const struct ggml_tensor * src0 = dst->src[0];
  8215. switch (src0->type) {
  8216. case GGML_TYPE_F32:
  8217. {
  8218. ggml_compute_forward_sqrt_f32(params, dst);
  8219. } break;
  8220. default:
  8221. {
  8222. GGML_ASSERT(false);
  8223. } break;
  8224. }
  8225. }
  8226. // ggml_compute_forward_log
  8227. static void ggml_compute_forward_log_f32(
  8228. const struct ggml_compute_params * params,
  8229. struct ggml_tensor * dst) {
  8230. const struct ggml_tensor * src0 = dst->src[0];
  8231. GGML_ASSERT(params->ith == 0);
  8232. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8233. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8234. return;
  8235. }
  8236. const int n = ggml_nrows(src0);
  8237. const int nc = src0->ne[0];
  8238. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8239. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8240. for (int i = 0; i < n; i++) {
  8241. ggml_vec_log_f32(nc,
  8242. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8243. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8244. }
  8245. }
  8246. static void ggml_compute_forward_log(
  8247. const struct ggml_compute_params * params,
  8248. struct ggml_tensor * dst) {
  8249. const struct ggml_tensor * src0 = dst->src[0];
  8250. switch (src0->type) {
  8251. case GGML_TYPE_F32:
  8252. {
  8253. ggml_compute_forward_log_f32(params, dst);
  8254. } break;
  8255. default:
  8256. {
  8257. GGML_ASSERT(false);
  8258. } break;
  8259. }
  8260. }
  8261. // ggml_compute_forward_sum
  8262. static void ggml_compute_forward_sum_f32(
  8263. const struct ggml_compute_params * params,
  8264. struct ggml_tensor * dst) {
  8265. const struct ggml_tensor * src0 = dst->src[0];
  8266. assert(params->ith == 0);
  8267. assert(ggml_is_scalar(dst));
  8268. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8269. return;
  8270. }
  8271. assert(ggml_is_scalar(dst));
  8272. assert(src0->nb[0] == sizeof(float));
  8273. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8274. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8275. ggml_float sum = 0;
  8276. ggml_float row_sum = 0;
  8277. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8278. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8279. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8280. ggml_vec_sum_f32_ggf(ne00,
  8281. &row_sum,
  8282. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8283. sum += row_sum;
  8284. }
  8285. }
  8286. }
  8287. ((float *) dst->data)[0] = sum;
  8288. }
  8289. static void ggml_compute_forward_sum_f16(
  8290. const struct ggml_compute_params * params,
  8291. struct ggml_tensor * dst) {
  8292. const struct ggml_tensor * src0 = dst->src[0];
  8293. assert(params->ith == 0);
  8294. assert(ggml_is_scalar(dst));
  8295. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8296. return;
  8297. }
  8298. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8299. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8300. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8301. float sum = 0;
  8302. float row_sum = 0;
  8303. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8304. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8305. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8306. ggml_vec_sum_f16_ggf(ne00,
  8307. &row_sum,
  8308. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8309. sum += row_sum;
  8310. }
  8311. }
  8312. }
  8313. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8314. }
  8315. static void ggml_compute_forward_sum_bf16(
  8316. const struct ggml_compute_params * params,
  8317. struct ggml_tensor * dst) {
  8318. const struct ggml_tensor * src0 = dst->src[0];
  8319. assert(params->ith == 0);
  8320. assert(ggml_is_scalar(dst));
  8321. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8322. return;
  8323. }
  8324. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8325. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8326. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8327. float sum = 0;
  8328. float row_sum = 0;
  8329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8331. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8332. ggml_vec_sum_bf16_ggf(ne00,
  8333. &row_sum,
  8334. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8335. sum += row_sum;
  8336. }
  8337. }
  8338. }
  8339. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8340. }
  8341. static void ggml_compute_forward_sum(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. switch (src0->type) {
  8346. case GGML_TYPE_F32:
  8347. {
  8348. ggml_compute_forward_sum_f32(params, dst);
  8349. } break;
  8350. case GGML_TYPE_F16:
  8351. {
  8352. ggml_compute_forward_sum_f16(params, dst);
  8353. } break;
  8354. case GGML_TYPE_BF16:
  8355. {
  8356. ggml_compute_forward_sum_bf16(params, dst);
  8357. } break;
  8358. default:
  8359. {
  8360. GGML_ASSERT(false);
  8361. } break;
  8362. }
  8363. }
  8364. // ggml_compute_forward_sum_rows
  8365. static void ggml_compute_forward_sum_rows_f32(
  8366. const struct ggml_compute_params * params,
  8367. struct ggml_tensor * dst) {
  8368. const struct ggml_tensor * src0 = dst->src[0];
  8369. GGML_ASSERT(params->ith == 0);
  8370. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8371. return;
  8372. }
  8373. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8374. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8375. GGML_TENSOR_UNARY_OP_LOCALS
  8376. GGML_ASSERT(ne0 == 1);
  8377. GGML_ASSERT(ne1 == ne01);
  8378. GGML_ASSERT(ne2 == ne02);
  8379. GGML_ASSERT(ne3 == ne03);
  8380. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8381. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8382. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8383. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8384. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8385. float row_sum = 0;
  8386. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8387. dst_row[0] = row_sum;
  8388. }
  8389. }
  8390. }
  8391. }
  8392. static void ggml_compute_forward_sum_rows(
  8393. const struct ggml_compute_params * params,
  8394. struct ggml_tensor * dst) {
  8395. const struct ggml_tensor * src0 = dst->src[0];
  8396. switch (src0->type) {
  8397. case GGML_TYPE_F32:
  8398. {
  8399. ggml_compute_forward_sum_rows_f32(params, dst);
  8400. } break;
  8401. default:
  8402. {
  8403. GGML_ASSERT(false);
  8404. } break;
  8405. }
  8406. }
  8407. // ggml_compute_forward_mean
  8408. static void ggml_compute_forward_mean_f32(
  8409. const struct ggml_compute_params * params,
  8410. struct ggml_tensor * dst) {
  8411. const struct ggml_tensor * src0 = dst->src[0];
  8412. assert(params->ith == 0);
  8413. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8414. return;
  8415. }
  8416. assert(src0->nb[0] == sizeof(float));
  8417. GGML_TENSOR_UNARY_OP_LOCALS
  8418. assert(ne0 == 1);
  8419. assert(ne1 == ne01);
  8420. assert(ne2 == ne02);
  8421. assert(ne3 == ne03);
  8422. UNUSED(ne0);
  8423. UNUSED(ne1);
  8424. UNUSED(ne2);
  8425. UNUSED(ne3);
  8426. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8428. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8429. ggml_vec_sum_f32(ne00,
  8430. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8431. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8432. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8433. }
  8434. }
  8435. }
  8436. }
  8437. static void ggml_compute_forward_mean(
  8438. const struct ggml_compute_params * params,
  8439. struct ggml_tensor * dst) {
  8440. const struct ggml_tensor * src0 = dst->src[0];
  8441. switch (src0->type) {
  8442. case GGML_TYPE_F32:
  8443. {
  8444. ggml_compute_forward_mean_f32(params, dst);
  8445. } break;
  8446. default:
  8447. {
  8448. GGML_ASSERT(false);
  8449. } break;
  8450. }
  8451. }
  8452. // ggml_compute_forward_argmax
  8453. static void ggml_compute_forward_argmax_f32(
  8454. const struct ggml_compute_params * params,
  8455. struct ggml_tensor * dst) {
  8456. const struct ggml_tensor * src0 = dst->src[0];
  8457. assert(params->ith == 0);
  8458. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8459. return;
  8460. }
  8461. assert(src0->nb[0] == sizeof(float));
  8462. assert(dst->nb[0] == sizeof(float));
  8463. const int64_t ne00 = src0->ne[0];
  8464. const int64_t ne01 = src0->ne[1];
  8465. const size_t nb01 = src0->nb[1];
  8466. const size_t nb0 = dst->nb[0];
  8467. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8468. float * src = (float *) ((char *) src0->data + i1*nb01);
  8469. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8470. int v = 0;
  8471. ggml_vec_argmax_f32(ne00, &v, src);
  8472. dst_[0] = v;
  8473. }
  8474. }
  8475. static void ggml_compute_forward_argmax(
  8476. const struct ggml_compute_params * params,
  8477. struct ggml_tensor * dst) {
  8478. const struct ggml_tensor * src0 = dst->src[0];
  8479. switch (src0->type) {
  8480. case GGML_TYPE_F32:
  8481. {
  8482. ggml_compute_forward_argmax_f32(params, dst);
  8483. } break;
  8484. default:
  8485. {
  8486. GGML_ASSERT(false);
  8487. } break;
  8488. }
  8489. }
  8490. // ggml_compute_forward_repeat
  8491. static void ggml_compute_forward_repeat_f32(
  8492. const struct ggml_compute_params * params,
  8493. struct ggml_tensor * dst) {
  8494. const struct ggml_tensor * src0 = dst->src[0];
  8495. GGML_ASSERT(params->ith == 0);
  8496. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8497. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8498. return;
  8499. }
  8500. GGML_TENSOR_UNARY_OP_LOCALS
  8501. // guaranteed to be an integer due to the check in ggml_can_repeat
  8502. const int nr0 = (int)(ne0/ne00);
  8503. const int nr1 = (int)(ne1/ne01);
  8504. const int nr2 = (int)(ne2/ne02);
  8505. const int nr3 = (int)(ne3/ne03);
  8506. // TODO: support for transposed / permuted tensors
  8507. GGML_ASSERT(nb0 == sizeof(float));
  8508. GGML_ASSERT(nb00 == sizeof(float));
  8509. // TODO: maybe this is not optimal?
  8510. for (int i3 = 0; i3 < nr3; i3++) {
  8511. for (int k3 = 0; k3 < ne03; k3++) {
  8512. for (int i2 = 0; i2 < nr2; i2++) {
  8513. for (int k2 = 0; k2 < ne02; k2++) {
  8514. for (int i1 = 0; i1 < nr1; i1++) {
  8515. for (int k1 = 0; k1 < ne01; k1++) {
  8516. for (int i0 = 0; i0 < nr0; i0++) {
  8517. ggml_vec_cpy_f32(ne00,
  8518. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8519. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8520. }
  8521. }
  8522. }
  8523. }
  8524. }
  8525. }
  8526. }
  8527. }
  8528. static void ggml_compute_forward_repeat_f16(
  8529. const struct ggml_compute_params * params,
  8530. struct ggml_tensor * dst) {
  8531. const struct ggml_tensor * src0 = dst->src[0];
  8532. GGML_ASSERT(params->ith == 0);
  8533. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8534. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8535. return;
  8536. }
  8537. GGML_TENSOR_UNARY_OP_LOCALS
  8538. // guaranteed to be an integer due to the check in ggml_can_repeat
  8539. const int nr0 = (int)(ne0/ne00);
  8540. const int nr1 = (int)(ne1/ne01);
  8541. const int nr2 = (int)(ne2/ne02);
  8542. const int nr3 = (int)(ne3/ne03);
  8543. // TODO: support for transposed / permuted tensors
  8544. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8545. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8546. // TODO: maybe this is not optimal?
  8547. for (int i3 = 0; i3 < nr3; i3++) {
  8548. for (int k3 = 0; k3 < ne03; k3++) {
  8549. for (int i2 = 0; i2 < nr2; i2++) {
  8550. for (int k2 = 0; k2 < ne02; k2++) {
  8551. for (int i1 = 0; i1 < nr1; i1++) {
  8552. for (int k1 = 0; k1 < ne01; k1++) {
  8553. for (int i0 = 0; i0 < nr0; i0++) {
  8554. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8555. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8556. // ggml_vec_cpy_f16(ne00, y, x)
  8557. for (int i = 0; i < ne00; ++i) {
  8558. y[i] = x[i];
  8559. }
  8560. }
  8561. }
  8562. }
  8563. }
  8564. }
  8565. }
  8566. }
  8567. }
  8568. static void ggml_compute_forward_repeat(
  8569. const struct ggml_compute_params * params,
  8570. struct ggml_tensor * dst) {
  8571. const struct ggml_tensor * src0 = dst->src[0];
  8572. switch (src0->type) {
  8573. case GGML_TYPE_F16:
  8574. case GGML_TYPE_BF16:
  8575. case GGML_TYPE_I16:
  8576. {
  8577. ggml_compute_forward_repeat_f16(params, dst);
  8578. } break;
  8579. case GGML_TYPE_F32:
  8580. case GGML_TYPE_I32:
  8581. {
  8582. ggml_compute_forward_repeat_f32(params, dst);
  8583. } break;
  8584. default:
  8585. {
  8586. GGML_ASSERT(false);
  8587. } break;
  8588. }
  8589. }
  8590. // ggml_compute_forward_repeat_back
  8591. static void ggml_compute_forward_repeat_back_f32(
  8592. const struct ggml_compute_params * params,
  8593. struct ggml_tensor * dst) {
  8594. const struct ggml_tensor * src0 = dst->src[0];
  8595. GGML_ASSERT(params->ith == 0);
  8596. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8597. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8598. return;
  8599. }
  8600. GGML_TENSOR_UNARY_OP_LOCALS
  8601. // guaranteed to be an integer due to the check in ggml_can_repeat
  8602. const int nr0 = (int)(ne00/ne0);
  8603. const int nr1 = (int)(ne01/ne1);
  8604. const int nr2 = (int)(ne02/ne2);
  8605. const int nr3 = (int)(ne03/ne3);
  8606. // TODO: support for transposed / permuted tensors
  8607. GGML_ASSERT(nb0 == sizeof(float));
  8608. GGML_ASSERT(nb00 == sizeof(float));
  8609. if (ggml_is_contiguous(dst)) {
  8610. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8611. } else {
  8612. for (int k3 = 0; k3 < ne3; k3++) {
  8613. for (int k2 = 0; k2 < ne2; k2++) {
  8614. for (int k1 = 0; k1 < ne1; k1++) {
  8615. ggml_vec_set_f32(ne0,
  8616. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8617. 0);
  8618. }
  8619. }
  8620. }
  8621. }
  8622. // TODO: maybe this is not optimal?
  8623. for (int i3 = 0; i3 < nr3; i3++) {
  8624. for (int k3 = 0; k3 < ne3; k3++) {
  8625. for (int i2 = 0; i2 < nr2; i2++) {
  8626. for (int k2 = 0; k2 < ne2; k2++) {
  8627. for (int i1 = 0; i1 < nr1; i1++) {
  8628. for (int k1 = 0; k1 < ne1; k1++) {
  8629. for (int i0 = 0; i0 < nr0; i0++) {
  8630. ggml_vec_acc_f32(ne0,
  8631. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8632. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8633. }
  8634. }
  8635. }
  8636. }
  8637. }
  8638. }
  8639. }
  8640. }
  8641. static void ggml_compute_forward_repeat_back(
  8642. const struct ggml_compute_params * params,
  8643. struct ggml_tensor * dst) {
  8644. const struct ggml_tensor * src0 = dst->src[0];
  8645. switch (src0->type) {
  8646. case GGML_TYPE_F32:
  8647. {
  8648. ggml_compute_forward_repeat_back_f32(params, dst);
  8649. } break;
  8650. default:
  8651. {
  8652. GGML_ASSERT(false);
  8653. } break;
  8654. }
  8655. }
  8656. // ggml_compute_forward_concat
  8657. static void ggml_compute_forward_concat_f32(
  8658. const struct ggml_compute_params * params,
  8659. struct ggml_tensor * dst) {
  8660. const struct ggml_tensor * src0 = dst->src[0];
  8661. const struct ggml_tensor * src1 = dst->src[1];
  8662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8663. return;
  8664. }
  8665. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8666. const int ith = params->ith;
  8667. const int nth = params->nth;
  8668. GGML_TENSOR_BINARY_OP_LOCALS
  8669. // TODO: support for transposed / permuted tensors
  8670. GGML_ASSERT(nb0 == sizeof(float));
  8671. GGML_ASSERT(nb00 == sizeof(float));
  8672. GGML_ASSERT(nb10 == sizeof(float));
  8673. for (int i3 = 0; i3 < ne3; i3++) {
  8674. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8675. if (i2 < ne02) { // src0
  8676. for (int i1 = 0; i1 < ne1; i1++) {
  8677. for (int i0 = 0; i0 < ne0; i0++) {
  8678. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8679. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8680. *y = *x;
  8681. }
  8682. }
  8683. } // src1
  8684. else {
  8685. for (int i1 = 0; i1 < ne1; i1++) {
  8686. for (int i0 = 0; i0 < ne0; i0++) {
  8687. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8688. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8689. *y = *x;
  8690. }
  8691. }
  8692. }
  8693. }
  8694. }
  8695. }
  8696. static void ggml_compute_forward_concat(
  8697. const struct ggml_compute_params* params,
  8698. struct ggml_tensor* dst) {
  8699. const struct ggml_tensor * src0 = dst->src[0];
  8700. switch (src0->type) {
  8701. case GGML_TYPE_F32:
  8702. case GGML_TYPE_I32:
  8703. {
  8704. ggml_compute_forward_concat_f32(params, dst);
  8705. } break;
  8706. default:
  8707. {
  8708. GGML_ASSERT(false);
  8709. } break;
  8710. }
  8711. }
  8712. // ggml_compute_forward_abs
  8713. static void ggml_compute_forward_abs_f32(
  8714. const struct ggml_compute_params * params,
  8715. struct ggml_tensor * dst) {
  8716. const struct ggml_tensor * src0 = dst->src[0];
  8717. assert(params->ith == 0);
  8718. assert(ggml_are_same_shape(src0, dst));
  8719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8720. return;
  8721. }
  8722. const int n = ggml_nrows(src0);
  8723. const int nc = src0->ne[0];
  8724. assert(dst->nb[0] == sizeof(float));
  8725. assert(src0->nb[0] == sizeof(float));
  8726. for (int i = 0; i < n; i++) {
  8727. ggml_vec_abs_f32(nc,
  8728. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8729. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8730. }
  8731. }
  8732. static void ggml_compute_forward_abs(
  8733. const struct ggml_compute_params * params,
  8734. struct ggml_tensor * dst) {
  8735. const struct ggml_tensor * src0 = dst->src[0];
  8736. switch (src0->type) {
  8737. case GGML_TYPE_F32:
  8738. {
  8739. ggml_compute_forward_abs_f32(params, dst);
  8740. } break;
  8741. default:
  8742. {
  8743. GGML_ASSERT(false);
  8744. } break;
  8745. }
  8746. }
  8747. // ggml_compute_forward_sgn
  8748. static void ggml_compute_forward_sgn_f32(
  8749. const struct ggml_compute_params * params,
  8750. struct ggml_tensor * dst) {
  8751. const struct ggml_tensor * src0 = dst->src[0];
  8752. assert(params->ith == 0);
  8753. assert(ggml_are_same_shape(src0, dst));
  8754. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8755. return;
  8756. }
  8757. const int n = ggml_nrows(src0);
  8758. const int nc = src0->ne[0];
  8759. assert(dst->nb[0] == sizeof(float));
  8760. assert(src0->nb[0] == sizeof(float));
  8761. for (int i = 0; i < n; i++) {
  8762. ggml_vec_sgn_f32(nc,
  8763. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8764. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8765. }
  8766. }
  8767. static void ggml_compute_forward_sgn(
  8768. const struct ggml_compute_params * params,
  8769. struct ggml_tensor * dst) {
  8770. const struct ggml_tensor * src0 = dst->src[0];
  8771. switch (src0->type) {
  8772. case GGML_TYPE_F32:
  8773. {
  8774. ggml_compute_forward_sgn_f32(params, dst);
  8775. } break;
  8776. default:
  8777. {
  8778. GGML_ASSERT(false);
  8779. } break;
  8780. }
  8781. }
  8782. // ggml_compute_forward_neg
  8783. static void ggml_compute_forward_neg_f32(
  8784. const struct ggml_compute_params * params,
  8785. struct ggml_tensor * dst) {
  8786. const struct ggml_tensor * src0 = dst->src[0];
  8787. assert(params->ith == 0);
  8788. assert(ggml_are_same_shape(src0, dst));
  8789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8790. return;
  8791. }
  8792. const int n = ggml_nrows(src0);
  8793. const int nc = src0->ne[0];
  8794. assert(dst->nb[0] == sizeof(float));
  8795. assert(src0->nb[0] == sizeof(float));
  8796. for (int i = 0; i < n; i++) {
  8797. ggml_vec_neg_f32(nc,
  8798. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8799. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8800. }
  8801. }
  8802. static void ggml_compute_forward_neg(
  8803. const struct ggml_compute_params * params,
  8804. struct ggml_tensor * dst) {
  8805. const struct ggml_tensor * src0 = dst->src[0];
  8806. switch (src0->type) {
  8807. case GGML_TYPE_F32:
  8808. {
  8809. ggml_compute_forward_neg_f32(params, dst);
  8810. } break;
  8811. default:
  8812. {
  8813. GGML_ASSERT(false);
  8814. } break;
  8815. }
  8816. }
  8817. // ggml_compute_forward_step
  8818. static void ggml_compute_forward_step_f32(
  8819. const struct ggml_compute_params * params,
  8820. struct ggml_tensor * dst) {
  8821. const struct ggml_tensor * src0 = dst->src[0];
  8822. assert(params->ith == 0);
  8823. assert(ggml_are_same_shape(src0, dst));
  8824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8825. return;
  8826. }
  8827. const int n = ggml_nrows(src0);
  8828. const int nc = src0->ne[0];
  8829. assert(dst->nb[0] == sizeof(float));
  8830. assert(src0->nb[0] == sizeof(float));
  8831. for (int i = 0; i < n; i++) {
  8832. ggml_vec_step_f32(nc,
  8833. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8834. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8835. }
  8836. }
  8837. static void ggml_compute_forward_step(
  8838. const struct ggml_compute_params * params,
  8839. struct ggml_tensor * dst) {
  8840. const struct ggml_tensor * src0 = dst->src[0];
  8841. switch (src0->type) {
  8842. case GGML_TYPE_F32:
  8843. {
  8844. ggml_compute_forward_step_f32(params, dst);
  8845. } break;
  8846. default:
  8847. {
  8848. GGML_ASSERT(false);
  8849. } break;
  8850. }
  8851. }
  8852. // ggml_compute_forward_tanh
  8853. static void ggml_compute_forward_tanh_f32(
  8854. const struct ggml_compute_params * params,
  8855. struct ggml_tensor * dst) {
  8856. const struct ggml_tensor * src0 = dst->src[0];
  8857. assert(params->ith == 0);
  8858. assert(ggml_are_same_shape(src0, dst));
  8859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8860. return;
  8861. }
  8862. const int n = ggml_nrows(src0);
  8863. const int nc = src0->ne[0];
  8864. assert(dst->nb[0] == sizeof(float));
  8865. assert(src0->nb[0] == sizeof(float));
  8866. for (int i = 0; i < n; i++) {
  8867. ggml_vec_tanh_f32(nc,
  8868. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8869. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8870. }
  8871. }
  8872. static void ggml_compute_forward_tanh(
  8873. const struct ggml_compute_params * params,
  8874. struct ggml_tensor * dst) {
  8875. const struct ggml_tensor * src0 = dst->src[0];
  8876. switch (src0->type) {
  8877. case GGML_TYPE_F32:
  8878. {
  8879. ggml_compute_forward_tanh_f32(params, dst);
  8880. } break;
  8881. default:
  8882. {
  8883. GGML_ASSERT(false);
  8884. } break;
  8885. }
  8886. }
  8887. // ggml_compute_forward_elu
  8888. static void ggml_compute_forward_elu_f32(
  8889. const struct ggml_compute_params * params,
  8890. struct ggml_tensor * dst) {
  8891. const struct ggml_tensor * src0 = dst->src[0];
  8892. assert(params->ith == 0);
  8893. assert(ggml_are_same_shape(src0, dst));
  8894. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8895. return;
  8896. }
  8897. const int n = ggml_nrows(src0);
  8898. const int nc = src0->ne[0];
  8899. assert(dst->nb[0] == sizeof(float));
  8900. assert(src0->nb[0] == sizeof(float));
  8901. for (int i = 0; i < n; i++) {
  8902. ggml_vec_elu_f32(nc,
  8903. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8904. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8905. }
  8906. }
  8907. static void ggml_compute_forward_elu(
  8908. const struct ggml_compute_params * params,
  8909. struct ggml_tensor * dst) {
  8910. const struct ggml_tensor * src0 = dst->src[0];
  8911. switch (src0->type) {
  8912. case GGML_TYPE_F32:
  8913. {
  8914. ggml_compute_forward_elu_f32(params, dst);
  8915. } break;
  8916. default:
  8917. {
  8918. GGML_ASSERT(false);
  8919. } break;
  8920. }
  8921. }
  8922. // ggml_compute_forward_relu
  8923. static void ggml_compute_forward_relu_f32(
  8924. const struct ggml_compute_params * params,
  8925. struct ggml_tensor * dst) {
  8926. const struct ggml_tensor * src0 = dst->src[0];
  8927. assert(params->ith == 0);
  8928. assert(ggml_are_same_shape(src0, dst));
  8929. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8930. return;
  8931. }
  8932. const int n = ggml_nrows(src0);
  8933. const int nc = src0->ne[0];
  8934. assert(dst->nb[0] == sizeof(float));
  8935. assert(src0->nb[0] == sizeof(float));
  8936. for (int i = 0; i < n; i++) {
  8937. ggml_vec_relu_f32(nc,
  8938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8940. }
  8941. }
  8942. static void ggml_compute_forward_relu(
  8943. const struct ggml_compute_params * params,
  8944. struct ggml_tensor * dst) {
  8945. const struct ggml_tensor * src0 = dst->src[0];
  8946. switch (src0->type) {
  8947. case GGML_TYPE_F32:
  8948. {
  8949. ggml_compute_forward_relu_f32(params, dst);
  8950. } break;
  8951. default:
  8952. {
  8953. GGML_ASSERT(false);
  8954. } break;
  8955. }
  8956. }
  8957. // ggml_compute_forward_sigmoid
  8958. static void ggml_compute_forward_sigmoid_f32(
  8959. const struct ggml_compute_params * params,
  8960. struct ggml_tensor * dst) {
  8961. const struct ggml_tensor * src0 = dst->src[0];
  8962. assert(params->ith == 0);
  8963. assert(ggml_are_same_shape(src0, dst));
  8964. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8965. return;
  8966. }
  8967. const int n = ggml_nrows(src0);
  8968. const int nc = src0->ne[0];
  8969. assert(dst->nb[0] == sizeof(float));
  8970. assert(src0->nb[0] == sizeof(float));
  8971. for (int i = 0; i < n; i++) {
  8972. ggml_vec_sigmoid_f32(nc,
  8973. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8974. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8975. }
  8976. }
  8977. static void ggml_compute_forward_sigmoid(
  8978. const struct ggml_compute_params * params,
  8979. struct ggml_tensor * dst) {
  8980. const struct ggml_tensor * src0 = dst->src[0];
  8981. switch (src0->type) {
  8982. case GGML_TYPE_F32:
  8983. {
  8984. ggml_compute_forward_sigmoid_f32(params, dst);
  8985. } break;
  8986. default:
  8987. {
  8988. GGML_ASSERT(false);
  8989. } break;
  8990. }
  8991. }
  8992. // ggml_compute_forward_gelu
  8993. static void ggml_compute_forward_gelu_f32(
  8994. const struct ggml_compute_params * params,
  8995. struct ggml_tensor * dst) {
  8996. const struct ggml_tensor * src0 = dst->src[0];
  8997. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8998. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8999. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9001. return;
  9002. }
  9003. const int ith = params->ith;
  9004. const int nth = params->nth;
  9005. const int nc = src0->ne[0];
  9006. const int nr = ggml_nrows(src0);
  9007. // rows per thread
  9008. const int dr = (nr + nth - 1)/nth;
  9009. // row range for this thread
  9010. const int ir0 = dr*ith;
  9011. const int ir1 = MIN(ir0 + dr, nr);
  9012. for (int i1 = ir0; i1 < ir1; i1++) {
  9013. ggml_vec_gelu_f32(nc,
  9014. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9015. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9016. #ifndef NDEBUG
  9017. for (int k = 0; k < nc; k++) {
  9018. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9019. UNUSED(x);
  9020. assert(!isnan(x));
  9021. assert(!isinf(x));
  9022. }
  9023. #endif
  9024. }
  9025. }
  9026. static void ggml_compute_forward_gelu(
  9027. const struct ggml_compute_params * params,
  9028. struct ggml_tensor * dst) {
  9029. const struct ggml_tensor * src0 = dst->src[0];
  9030. switch (src0->type) {
  9031. case GGML_TYPE_F32:
  9032. {
  9033. ggml_compute_forward_gelu_f32(params, dst);
  9034. } break;
  9035. default:
  9036. {
  9037. GGML_ASSERT(false);
  9038. } break;
  9039. }
  9040. }
  9041. // ggml_compute_forward_gelu_quick
  9042. static void ggml_compute_forward_gelu_quick_f32(
  9043. const struct ggml_compute_params * params,
  9044. struct ggml_tensor * dst) {
  9045. const struct ggml_tensor * src0 = dst->src[0];
  9046. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9047. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9048. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9050. return;
  9051. }
  9052. const int ith = params->ith;
  9053. const int nth = params->nth;
  9054. const int nc = src0->ne[0];
  9055. const int nr = ggml_nrows(src0);
  9056. // rows per thread
  9057. const int dr = (nr + nth - 1)/nth;
  9058. // row range for this thread
  9059. const int ir0 = dr*ith;
  9060. const int ir1 = MIN(ir0 + dr, nr);
  9061. for (int i1 = ir0; i1 < ir1; i1++) {
  9062. ggml_vec_gelu_quick_f32(nc,
  9063. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9064. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9065. #ifndef NDEBUG
  9066. for (int k = 0; k < nc; k++) {
  9067. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9068. UNUSED(x);
  9069. assert(!isnan(x));
  9070. assert(!isinf(x));
  9071. }
  9072. #endif
  9073. }
  9074. }
  9075. static void ggml_compute_forward_gelu_quick(
  9076. const struct ggml_compute_params * params,
  9077. struct ggml_tensor * dst) {
  9078. const struct ggml_tensor * src0 = dst->src[0];
  9079. switch (src0->type) {
  9080. case GGML_TYPE_F32:
  9081. {
  9082. ggml_compute_forward_gelu_quick_f32(params, dst);
  9083. } break;
  9084. default:
  9085. {
  9086. GGML_ASSERT(false);
  9087. } break;
  9088. }
  9089. }
  9090. // ggml_compute_forward_silu
  9091. static void ggml_compute_forward_silu_f32(
  9092. const struct ggml_compute_params * params,
  9093. struct ggml_tensor * dst) {
  9094. const struct ggml_tensor * src0 = dst->src[0];
  9095. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9096. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9097. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9098. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9099. return;
  9100. }
  9101. const int ith = params->ith;
  9102. const int nth = params->nth;
  9103. const int nc = src0->ne[0];
  9104. const int nr = ggml_nrows(src0);
  9105. // rows per thread
  9106. const int dr = (nr + nth - 1)/nth;
  9107. // row range for this thread
  9108. const int ir0 = dr*ith;
  9109. const int ir1 = MIN(ir0 + dr, nr);
  9110. for (int i1 = ir0; i1 < ir1; i1++) {
  9111. ggml_vec_silu_f32(nc,
  9112. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9113. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9114. #ifndef NDEBUG
  9115. for (int k = 0; k < nc; k++) {
  9116. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9117. UNUSED(x);
  9118. assert(!isnan(x));
  9119. assert(!isinf(x));
  9120. }
  9121. #endif
  9122. }
  9123. }
  9124. static void ggml_compute_forward_silu(
  9125. const struct ggml_compute_params * params,
  9126. struct ggml_tensor * dst) {
  9127. const struct ggml_tensor * src0 = dst->src[0];
  9128. switch (src0->type) {
  9129. case GGML_TYPE_F32:
  9130. {
  9131. ggml_compute_forward_silu_f32(params, dst);
  9132. } break;
  9133. default:
  9134. {
  9135. GGML_ASSERT(false);
  9136. } break;
  9137. }
  9138. }
  9139. // ggml_compute_forward_leaky_relu
  9140. static void ggml_compute_forward_leaky_relu_f32(
  9141. const struct ggml_compute_params * params,
  9142. struct ggml_tensor * dst) {
  9143. const struct ggml_tensor * src0 = dst->src[0];
  9144. assert(params->ith == 0);
  9145. assert(ggml_are_same_shape(src0, dst));
  9146. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9147. return;
  9148. }
  9149. const int n = ggml_nrows(src0);
  9150. const int nc = src0->ne[0];
  9151. float negative_slope;
  9152. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9153. assert(dst->nb[0] == sizeof(float));
  9154. assert(src0->nb[0] == sizeof(float));
  9155. for (int i = 0; i < n; i++) {
  9156. ggml_vec_leaky_relu_f32(nc,
  9157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9158. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9159. }
  9160. }
  9161. static void ggml_compute_forward_leaky_relu(
  9162. const struct ggml_compute_params * params,
  9163. struct ggml_tensor * dst) {
  9164. const struct ggml_tensor * src0 = dst->src[0];
  9165. switch (src0->type) {
  9166. case GGML_TYPE_F32:
  9167. {
  9168. ggml_compute_forward_leaky_relu_f32(params, dst);
  9169. } break;
  9170. default:
  9171. {
  9172. GGML_ASSERT(false);
  9173. } break;
  9174. }
  9175. }
  9176. // ggml_compute_forward_silu_back
  9177. static void ggml_compute_forward_silu_back_f32(
  9178. const struct ggml_compute_params * params,
  9179. struct ggml_tensor * dst) {
  9180. const struct ggml_tensor * src0 = dst->src[0];
  9181. const struct ggml_tensor * grad = dst->src[1];
  9182. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9183. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9184. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9185. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9186. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9187. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9188. return;
  9189. }
  9190. const int ith = params->ith;
  9191. const int nth = params->nth;
  9192. const int nc = src0->ne[0];
  9193. const int nr = ggml_nrows(src0);
  9194. // rows per thread
  9195. const int dr = (nr + nth - 1)/nth;
  9196. // row range for this thread
  9197. const int ir0 = dr*ith;
  9198. const int ir1 = MIN(ir0 + dr, nr);
  9199. for (int i1 = ir0; i1 < ir1; i1++) {
  9200. ggml_vec_silu_backward_f32(nc,
  9201. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9202. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9203. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9204. #ifndef NDEBUG
  9205. for (int k = 0; k < nc; k++) {
  9206. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9207. UNUSED(x);
  9208. assert(!isnan(x));
  9209. assert(!isinf(x));
  9210. }
  9211. #endif
  9212. }
  9213. }
  9214. static void ggml_compute_forward_silu_back(
  9215. const struct ggml_compute_params * params,
  9216. struct ggml_tensor * dst) {
  9217. const struct ggml_tensor * src0 = dst->src[0];
  9218. switch (src0->type) {
  9219. case GGML_TYPE_F32:
  9220. {
  9221. ggml_compute_forward_silu_back_f32(params, dst);
  9222. } break;
  9223. default:
  9224. {
  9225. GGML_ASSERT(false);
  9226. } break;
  9227. }
  9228. }
  9229. static void ggml_compute_forward_hardswish_f32(
  9230. const struct ggml_compute_params * params,
  9231. struct ggml_tensor * dst) {
  9232. const struct ggml_tensor * src0 = dst->src[0];
  9233. assert(params->ith == 0);
  9234. assert(ggml_are_same_shape(src0, dst));
  9235. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9236. return;
  9237. }
  9238. const int n = ggml_nrows(src0);
  9239. const int nc = src0->ne[0];
  9240. assert(dst->nb[0] == sizeof(float));
  9241. assert(src0->nb[0] == sizeof(float));
  9242. for (int i = 0; i < n; i++) {
  9243. ggml_vec_hardswish_f32(nc,
  9244. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9245. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9246. }
  9247. }
  9248. static void ggml_compute_forward_hardswish(
  9249. const struct ggml_compute_params * params,
  9250. struct ggml_tensor * dst) {
  9251. const struct ggml_tensor * src0 = dst->src[0];
  9252. switch (src0->type) {
  9253. case GGML_TYPE_F32:
  9254. {
  9255. ggml_compute_forward_hardswish_f32(params, dst);
  9256. } break;
  9257. default:
  9258. {
  9259. GGML_ASSERT(false);
  9260. } break;
  9261. }
  9262. }
  9263. static void ggml_compute_forward_hardsigmoid_f32(
  9264. const struct ggml_compute_params * params,
  9265. struct ggml_tensor * dst) {
  9266. const struct ggml_tensor * src0 = dst->src[0];
  9267. assert(params->ith == 0);
  9268. assert(ggml_are_same_shape(src0, dst));
  9269. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9270. return;
  9271. }
  9272. const int n = ggml_nrows(src0);
  9273. const int nc = src0->ne[0];
  9274. assert(dst->nb[0] == sizeof(float));
  9275. assert(src0->nb[0] == sizeof(float));
  9276. for (int i = 0; i < n; i++) {
  9277. ggml_vec_hardsigmoid_f32(nc,
  9278. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9279. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9280. }
  9281. }
  9282. static void ggml_compute_forward_hardsigmoid(
  9283. const struct ggml_compute_params * params,
  9284. struct ggml_tensor * dst) {
  9285. const struct ggml_tensor * src0 = dst->src[0];
  9286. switch (src0->type) {
  9287. case GGML_TYPE_F32:
  9288. {
  9289. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9290. } break;
  9291. default:
  9292. {
  9293. GGML_ASSERT(false);
  9294. } break;
  9295. }
  9296. }
  9297. // ggml_compute_forward_norm
  9298. static void ggml_compute_forward_norm_f32(
  9299. const struct ggml_compute_params * params,
  9300. struct ggml_tensor * dst) {
  9301. const struct ggml_tensor * src0 = dst->src[0];
  9302. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9303. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9304. return;
  9305. }
  9306. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9307. const int ith = params->ith;
  9308. const int nth = params->nth;
  9309. GGML_TENSOR_UNARY_OP_LOCALS
  9310. float eps;
  9311. memcpy(&eps, dst->op_params, sizeof(float));
  9312. GGML_ASSERT(eps > 0.0f);
  9313. // TODO: optimize
  9314. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9315. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9316. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9317. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9318. ggml_float sum = 0.0;
  9319. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9320. sum += (ggml_float)x[i00];
  9321. }
  9322. float mean = sum/ne00;
  9323. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9324. ggml_float sum2 = 0.0;
  9325. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9326. float v = x[i00] - mean;
  9327. y[i00] = v;
  9328. sum2 += (ggml_float)(v*v);
  9329. }
  9330. float variance = sum2/ne00;
  9331. const float scale = 1.0f/sqrtf(variance + eps);
  9332. ggml_vec_scale_f32(ne00, y, scale);
  9333. }
  9334. }
  9335. }
  9336. }
  9337. static void ggml_compute_forward_norm(
  9338. const struct ggml_compute_params * params,
  9339. struct ggml_tensor * dst) {
  9340. const struct ggml_tensor * src0 = dst->src[0];
  9341. switch (src0->type) {
  9342. case GGML_TYPE_F32:
  9343. {
  9344. ggml_compute_forward_norm_f32(params, dst);
  9345. } break;
  9346. default:
  9347. {
  9348. GGML_ASSERT(false);
  9349. } break;
  9350. }
  9351. }
  9352. // ggml_compute_forward_group_rms_norm
  9353. static void ggml_compute_forward_rms_norm_f32(
  9354. const struct ggml_compute_params * params,
  9355. struct ggml_tensor * dst) {
  9356. const struct ggml_tensor * src0 = dst->src[0];
  9357. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9358. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9359. return;
  9360. }
  9361. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9362. const int ith = params->ith;
  9363. const int nth = params->nth;
  9364. GGML_TENSOR_UNARY_OP_LOCALS
  9365. float eps;
  9366. memcpy(&eps, dst->op_params, sizeof(float));
  9367. GGML_ASSERT(eps > 0.0f);
  9368. // TODO: optimize
  9369. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9370. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9371. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9372. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9373. ggml_float sum = 0.0;
  9374. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9375. sum += (ggml_float)(x[i00] * x[i00]);
  9376. }
  9377. const float mean = sum/ne00;
  9378. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9379. memcpy(y, x, ne00 * sizeof(float));
  9380. // for (int i00 = 0; i00 < ne00; i00++) {
  9381. // y[i00] = x[i00];
  9382. // }
  9383. const float scale = 1.0f/sqrtf(mean + eps);
  9384. ggml_vec_scale_f32(ne00, y, scale);
  9385. }
  9386. }
  9387. }
  9388. }
  9389. static void ggml_compute_forward_rms_norm(
  9390. const struct ggml_compute_params * params,
  9391. struct ggml_tensor * dst) {
  9392. const struct ggml_tensor * src0 = dst->src[0];
  9393. switch (src0->type) {
  9394. case GGML_TYPE_F32:
  9395. {
  9396. ggml_compute_forward_rms_norm_f32(params, dst);
  9397. } break;
  9398. default:
  9399. {
  9400. GGML_ASSERT(false);
  9401. } break;
  9402. }
  9403. }
  9404. static void ggml_compute_forward_rms_norm_back_f32(
  9405. const struct ggml_compute_params * params,
  9406. struct ggml_tensor * dst) {
  9407. const struct ggml_tensor * src0 = dst->src[0];
  9408. const struct ggml_tensor * src1 = dst->src[1];
  9409. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9410. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9411. return;
  9412. }
  9413. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9414. const int ith = params->ith;
  9415. const int nth = params->nth;
  9416. GGML_TENSOR_BINARY_OP_LOCALS
  9417. float eps;
  9418. memcpy(&eps, dst->op_params, sizeof(float));
  9419. // TODO: optimize
  9420. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9421. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9422. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9423. // src1 is same shape as src0 => same indices
  9424. const int64_t i11 = i01;
  9425. const int64_t i12 = i02;
  9426. const int64_t i13 = i03;
  9427. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9428. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9429. ggml_float sum_xx = 0.0;
  9430. ggml_float sum_xdz = 0.0;
  9431. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9432. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9433. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9434. }
  9435. //const float mean = (float)(sum_xx)/ne00;
  9436. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9437. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9438. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9439. // we could cache rms from forward pass to improve performance.
  9440. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9441. //const float rms = sqrtf(mean_eps);
  9442. const float rrms = 1.0f / sqrtf(mean_eps);
  9443. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9444. {
  9445. // z = rms_norm(x)
  9446. //
  9447. // rms_norm(src0) =
  9448. // scale(
  9449. // src0,
  9450. // div(
  9451. // 1,
  9452. // sqrt(
  9453. // add(
  9454. // scale(
  9455. // sum(
  9456. // sqr(
  9457. // src0)),
  9458. // (1.0/N)),
  9459. // eps))));
  9460. // postorder:
  9461. // ## op args grad
  9462. // 00 param src0 grad[#00]
  9463. // 01 const 1
  9464. // 02 sqr (#00) grad[#02]
  9465. // 03 sum (#02) grad[#03]
  9466. // 04 const 1/N
  9467. // 05 scale (#03, #04) grad[#05]
  9468. // 06 const eps
  9469. // 07 add (#05, #06) grad[#07]
  9470. // 08 sqrt (#07) grad[#08]
  9471. // 09 div (#01,#08) grad[#09]
  9472. // 10 scale (#00,#09) grad[#10]
  9473. //
  9474. // backward pass, given grad[#10]
  9475. // #10: scale
  9476. // grad[#00] += scale(grad[#10],#09)
  9477. // grad[#09] += sum(mul(grad[#10],#00))
  9478. // #09: div
  9479. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9480. // #08: sqrt
  9481. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9482. // #07: add
  9483. // grad[#05] += grad[#07]
  9484. // #05: scale
  9485. // grad[#03] += scale(grad[#05],#04)
  9486. // #03: sum
  9487. // grad[#02] += repeat(grad[#03], #02)
  9488. // #02:
  9489. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9490. //
  9491. // substitute and simplify:
  9492. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9493. // grad[#02] = repeat(grad[#03], #02)
  9494. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9495. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9496. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9497. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9498. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9499. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9500. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9501. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9502. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9503. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9504. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9505. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9506. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9507. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9508. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9509. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9510. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9511. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9512. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9513. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9514. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9515. // a = b*c + d*e
  9516. // a = b*c*f/f + d*e*f/f
  9517. // a = (b*c*f + d*e*f)*(1/f)
  9518. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9519. // a = (b + d*e/c)*c
  9520. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9521. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9522. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9523. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9524. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9525. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9526. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9527. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9528. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9529. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9530. }
  9531. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9532. // post-order:
  9533. // dx := x
  9534. // dx := scale(dx,-mean_xdz/mean_eps)
  9535. // dx := add(dx, dz)
  9536. // dx := scale(dx, rrms)
  9537. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9538. ggml_vec_cpy_f32 (ne00, dx, x);
  9539. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9540. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9541. ggml_vec_acc_f32 (ne00, dx, dz);
  9542. ggml_vec_scale_f32(ne00, dx, rrms);
  9543. }
  9544. }
  9545. }
  9546. }
  9547. static void ggml_compute_forward_rms_norm_back(
  9548. const struct ggml_compute_params * params,
  9549. struct ggml_tensor * dst) {
  9550. const struct ggml_tensor * src0 = dst->src[0];
  9551. switch (src0->type) {
  9552. case GGML_TYPE_F32:
  9553. {
  9554. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9555. } break;
  9556. default:
  9557. {
  9558. GGML_ASSERT(false);
  9559. } break;
  9560. }
  9561. }
  9562. // ggml_compute_forward_group_norm
  9563. static void ggml_compute_forward_group_norm_f32(
  9564. const struct ggml_compute_params * params,
  9565. struct ggml_tensor * dst) {
  9566. const struct ggml_tensor * src0 = dst->src[0];
  9567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9568. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9569. return;
  9570. }
  9571. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9572. const int ith = params->ith;
  9573. const int nth = params->nth;
  9574. GGML_TENSOR_UNARY_OP_LOCALS
  9575. const float eps = 1e-6f; // TODO: make this a parameter
  9576. // TODO: optimize
  9577. int n_channels = src0->ne[2];
  9578. int n_groups = dst->op_params[0];
  9579. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9580. for (int i = ith; i < n_groups; i += nth) {
  9581. int start = i * n_channels_per_group;
  9582. int end = start + n_channels_per_group;
  9583. if (end > n_channels) {
  9584. end = n_channels;
  9585. }
  9586. int step = end - start;
  9587. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9588. ggml_float sum = 0.0;
  9589. for (int64_t i02 = start; i02 < end; i02++) {
  9590. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9591. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9592. ggml_float sumr = 0.0;
  9593. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9594. sumr += (ggml_float)x[i00];
  9595. }
  9596. sum += sumr;
  9597. }
  9598. }
  9599. const float mean = sum / (ne00 * ne01 * step);
  9600. ggml_float sum2 = 0.0;
  9601. for (int64_t i02 = start; i02 < end; i02++) {
  9602. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9603. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9604. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9605. ggml_float sumr = 0.0;
  9606. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9607. float v = x[i00] - mean;
  9608. y[i00] = v;
  9609. sumr += (ggml_float)(v * v);
  9610. }
  9611. sum2 += sumr;
  9612. }
  9613. }
  9614. const float variance = sum2 / (ne00 * ne01 * step);
  9615. const float scale = 1.0f / sqrtf(variance + eps);
  9616. for (int64_t i02 = start; i02 < end; i02++) {
  9617. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9618. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9619. ggml_vec_scale_f32(ne00, y, scale);
  9620. }
  9621. }
  9622. }
  9623. }
  9624. }
  9625. static void ggml_compute_forward_group_norm(
  9626. const struct ggml_compute_params * params,
  9627. struct ggml_tensor * dst) {
  9628. const struct ggml_tensor * src0 = dst->src[0];
  9629. switch (src0->type) {
  9630. case GGML_TYPE_F32:
  9631. {
  9632. ggml_compute_forward_group_norm_f32(params, dst);
  9633. } break;
  9634. default:
  9635. {
  9636. GGML_ASSERT(false);
  9637. } break;
  9638. }
  9639. }
  9640. // ggml_compute_forward_mul_mat
  9641. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9642. // helper function to determine if it is better to use BLAS or not
  9643. // for large matrices, BLAS is faster
  9644. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. const struct ggml_tensor * src1 = dst->src[1];
  9647. //const int64_t ne00 = src0->ne[0];
  9648. //const int64_t ne01 = src0->ne[1];
  9649. const int64_t ne10 = src1->ne[0];
  9650. const int64_t ne0 = dst->ne[0];
  9651. const int64_t ne1 = dst->ne[1];
  9652. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  9653. // all the experts for each batch element and the processing would become incredibly slow
  9654. // TODO: find the optimal values for these
  9655. if (dst->op != GGML_OP_MUL_MAT_ID &&
  9656. ggml_is_contiguous(src0) &&
  9657. ggml_is_contiguous(src1) &&
  9658. //src0->type == GGML_TYPE_F32 &&
  9659. src1->type == GGML_TYPE_F32 &&
  9660. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9661. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9662. return true;
  9663. }
  9664. return false;
  9665. }
  9666. #endif
  9667. static void ggml_compute_forward_mul_mat(
  9668. const struct ggml_compute_params * params,
  9669. struct ggml_tensor * dst) {
  9670. const struct ggml_tensor * src0 = dst->src[0];
  9671. const struct ggml_tensor * src1 = dst->src[1];
  9672. int64_t t0 = ggml_perf_time_us();
  9673. UNUSED(t0);
  9674. GGML_TENSOR_BINARY_OP_LOCALS
  9675. const int ith = params->ith;
  9676. const int nth = params->nth;
  9677. const enum ggml_type type = src0->type;
  9678. const bool src1_cont = ggml_is_contiguous(src1);
  9679. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9680. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9681. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9682. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9683. GGML_ASSERT(ne0 == ne01);
  9684. GGML_ASSERT(ne1 == ne11);
  9685. GGML_ASSERT(ne2 == ne12);
  9686. GGML_ASSERT(ne3 == ne13);
  9687. // we don't support permuted src0 or src1
  9688. GGML_ASSERT(nb00 == ggml_type_size(type));
  9689. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9690. // dst cannot be transposed or permuted
  9691. GGML_ASSERT(nb0 == sizeof(float));
  9692. GGML_ASSERT(nb0 <= nb1);
  9693. GGML_ASSERT(nb1 <= nb2);
  9694. GGML_ASSERT(nb2 <= nb3);
  9695. // broadcast factors
  9696. const int64_t r2 = ne12/ne02;
  9697. const int64_t r3 = ne13/ne03;
  9698. // nb01 >= nb00 - src0 is not transposed
  9699. // compute by src0 rows
  9700. #if defined(GGML_USE_CLBLAST)
  9701. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9702. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  9703. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9704. }
  9705. return;
  9706. }
  9707. #endif
  9708. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9709. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  9710. const int64_t ne_plane = ne01*ne00;
  9711. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  9712. UNUSED(desired_wsize);
  9713. if (params->type == GGML_TASK_TYPE_INIT) {
  9714. if (type != GGML_TYPE_F32) {
  9715. assert(params->wsize >= desired_wsize);
  9716. // parallelize by src0 rows
  9717. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9718. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9719. // broadcast src0 into src1 across 2nd,3rd dimension
  9720. const int64_t i03 = i13/r3;
  9721. const int64_t i02 = i12/r2;
  9722. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9723. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9724. ggml_to_float_t const to_float = type_traits[type].to_float;
  9725. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9726. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  9727. }
  9728. }
  9729. }
  9730. }
  9731. return;
  9732. }
  9733. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9734. return;
  9735. }
  9736. // perform sgemm, parallelization controlled by blas lib
  9737. if (ith != 0) {
  9738. return;
  9739. }
  9740. //const int64_t tgemm0 = ggml_perf_time_us();
  9741. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9742. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9743. const int64_t i03 = i13/r3;
  9744. const int64_t i02 = i12/r2;
  9745. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9746. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9747. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9748. if (type != GGML_TYPE_F32) {
  9749. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  9750. }
  9751. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9752. ne1, ne01, ne10,
  9753. 1.0f, y, ne10,
  9754. x, ne00,
  9755. 0.0f, d, ne01);
  9756. }
  9757. }
  9758. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  9759. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9760. return;
  9761. }
  9762. #endif
  9763. #if GGML_USE_LLAMAFILE
  9764. if (src1_cont) {
  9765. for (int64_t i13 = 0; i13 < ne13; i13++)
  9766. for (int64_t i12 = 0; i12 < ne12; i12++)
  9767. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9768. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9769. nb01/ggml_type_size(src0->type),
  9770. (const char *)src1->data + i12*nb12 + i13*nb13,
  9771. nb11/ggml_type_size(src1->type),
  9772. (char *)dst->data + i12*nb2 + i13*nb3,
  9773. nb1/ggml_type_size(dst->type),
  9774. ith, nth,
  9775. params->type,
  9776. src0->type,
  9777. src1->type,
  9778. dst->type))
  9779. goto UseGgmlGemm1;
  9780. return;
  9781. }
  9782. UseGgmlGemm1:;
  9783. #endif
  9784. if (params->type == GGML_TASK_TYPE_INIT) {
  9785. if (ith != 0) {
  9786. return;
  9787. }
  9788. if (src1->type != vec_dot_type) {
  9789. char * wdata = params->wdata;
  9790. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9791. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9792. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9793. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9794. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9795. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9796. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9797. wdata += row_size;
  9798. }
  9799. }
  9800. }
  9801. }
  9802. return;
  9803. }
  9804. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9805. return;
  9806. }
  9807. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9808. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9809. #if GGML_USE_LLAMAFILE
  9810. if (src1->type != vec_dot_type) {
  9811. for (int64_t i13 = 0; i13 < ne13; i13++)
  9812. for (int64_t i12 = 0; i12 < ne12; i12++)
  9813. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9814. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9815. nb01/ggml_type_size(src0->type),
  9816. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  9817. row_size/ggml_type_size(vec_dot_type),
  9818. (char *)dst->data + i12*nb2 + i13*nb3,
  9819. nb1/ggml_type_size(dst->type),
  9820. ith, nth,
  9821. params->type,
  9822. src0->type,
  9823. vec_dot_type,
  9824. dst->type))
  9825. goto UseGgmlGemm2;
  9826. return;
  9827. }
  9828. UseGgmlGemm2:;
  9829. #endif
  9830. const int64_t nr0 = ne01; // src0 rows
  9831. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  9832. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9833. // distribute the thread work across the inner or outer loop based on which one is larger
  9834. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9835. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9836. const int64_t ith0 = ith % nth0;
  9837. const int64_t ith1 = ith / nth0;
  9838. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9839. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9840. const int64_t ir010 = dr0*ith0;
  9841. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9842. const int64_t ir110 = dr1*ith1;
  9843. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9844. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9845. // threads with no work simply yield (not sure if it helps)
  9846. if (ir010 >= ir011 || ir110 >= ir111) {
  9847. sched_yield();
  9848. return;
  9849. }
  9850. assert(ne12 % ne02 == 0);
  9851. assert(ne13 % ne03 == 0);
  9852. // block-tiling attempt
  9853. const int64_t blck_0 = 16;
  9854. const int64_t blck_1 = 16;
  9855. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  9856. int64_t nrc = vec_dot_num_rows;
  9857. // TODO: currently the mmla kernels support only even numbered rows/cols.
  9858. // this check can be removed once they are extended to support odd numbered rows/cols too
  9859. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  9860. nrc = 1;
  9861. }
  9862. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9863. // attempt to reduce false-sharing (does not seem to make a difference)
  9864. // 16 * 2, accounting for mmla kernels
  9865. float tmp[32];
  9866. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9867. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9868. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  9869. const int64_t i13 = (ir1/(ne12*ne1));
  9870. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  9871. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  9872. // broadcast src0 into src1
  9873. const int64_t i03 = i13/r3;
  9874. const int64_t i02 = i12/r2;
  9875. const int64_t i1 = i11;
  9876. const int64_t i2 = i12;
  9877. const int64_t i3 = i13;
  9878. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9879. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9880. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9881. // the original src1 data pointer, so we should index using the indices directly
  9882. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9883. const char * src1_col = (const char *) wdata +
  9884. (src1_cont || src1->type != vec_dot_type
  9885. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9886. : (i11*nb11 + i12*nb12 + i13*nb13));
  9887. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9888. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9889. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9890. //}
  9891. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  9892. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  9893. }
  9894. for (int cn = 0; cn < nrc; ++cn) {
  9895. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9896. }
  9897. }
  9898. }
  9899. }
  9900. }
  9901. // ggml_compute_forward_mul_mat_id
  9902. static void ggml_compute_forward_mul_mat_id(
  9903. const struct ggml_compute_params * params,
  9904. struct ggml_tensor * dst) {
  9905. const struct ggml_tensor * src0 = dst->src[0];
  9906. const struct ggml_tensor * src1 = dst->src[1];
  9907. const struct ggml_tensor * ids = dst->src[2];
  9908. GGML_TENSOR_BINARY_OP_LOCALS
  9909. const int ith = params->ith;
  9910. const int nth = params->nth;
  9911. const enum ggml_type type = src0->type;
  9912. const bool src1_cont = ggml_is_contiguous(src1);
  9913. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9914. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9915. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9916. // we don't support permuted src0 or src1
  9917. GGML_ASSERT(nb00 == ggml_type_size(type));
  9918. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9919. // dst cannot be transposed or permuted
  9920. GGML_ASSERT(nb0 == sizeof(float));
  9921. GGML_ASSERT(nb0 <= nb1);
  9922. GGML_ASSERT(nb1 <= nb2);
  9923. GGML_ASSERT(nb2 <= nb3);
  9924. // row groups
  9925. const int n_ids = ids->ne[0]; // n_expert_used
  9926. const int n_as = ne02; // n_expert
  9927. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  9928. (char *) params->wdata :
  9929. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  9930. struct mmid_row_mapping {
  9931. int32_t i1;
  9932. int32_t i2;
  9933. };
  9934. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  9935. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  9936. if (params->type == GGML_TASK_TYPE_INIT) {
  9937. if (ith != 0) {
  9938. return;
  9939. }
  9940. char * wdata = params->wdata;
  9941. if (src1->type != vec_dot_type) {
  9942. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9943. assert(params->wsize >= ne11*ne12*ne13*row_size);
  9944. assert(src1->type == GGML_TYPE_F32);
  9945. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9946. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9947. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9948. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9949. wdata += row_size;
  9950. }
  9951. }
  9952. }
  9953. }
  9954. // initialize matrix_row_counts
  9955. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  9956. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  9957. // group rows by src0 matrix
  9958. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  9959. for (int id = 0; id < n_ids; ++id) {
  9960. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  9961. assert(i02 >= 0 && i02 < n_as);
  9962. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  9963. matrix_row_counts[i02] += 1;
  9964. }
  9965. }
  9966. return;
  9967. }
  9968. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9969. return;
  9970. }
  9971. // compute each matrix multiplication in sequence
  9972. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  9973. const int64_t cne1 = matrix_row_counts[cur_a];
  9974. if (cne1 == 0) {
  9975. continue;
  9976. }
  9977. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  9978. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9979. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9980. const int64_t nr0 = ne01; // src0 rows
  9981. const int64_t nr1 = cne1; // src1 rows
  9982. // distribute the thread work across the inner or outer loop based on which one is larger
  9983. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9984. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9985. const int64_t ith0 = ith % nth0;
  9986. const int64_t ith1 = ith / nth0;
  9987. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9988. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9989. const int64_t ir010 = dr0*ith0;
  9990. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9991. const int64_t ir110 = dr1*ith1;
  9992. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9993. // threads with no work simply yield (not sure if it helps)
  9994. //if (ir010 >= ir011 || ir110 >= ir111) {
  9995. // sched_yield();
  9996. // continue;
  9997. //}
  9998. // block-tiling attempt
  9999. const int64_t blck_0 = 16;
  10000. const int64_t blck_1 = 16;
  10001. // attempt to reduce false-sharing (does not seem to make a difference)
  10002. float tmp[16];
  10003. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10004. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10005. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10006. const int64_t _i12 = ir1; // logical row index for this expert
  10007. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10008. const int id = row_mapping.i1; // selected expert index
  10009. const int64_t i11 = id % ne11;
  10010. const int64_t i12 = row_mapping.i2; // row index in src1
  10011. const int64_t i1 = id; // selected expert index
  10012. const int64_t i2 = i12; // row
  10013. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10014. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10015. // the original src1 data pointer, so we should index using the indices directly
  10016. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10017. const char * src1_col = (const char *) wdata +
  10018. (src1_cont || src1->type != vec_dot_type
  10019. ? (i11 + i12*ne11)*row_size
  10020. : (i11*nb11 + i12*nb12));
  10021. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10022. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10023. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10024. //}
  10025. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10026. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10027. }
  10028. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10029. }
  10030. }
  10031. }
  10032. }
  10033. #undef MMID_MATRIX_ROW
  10034. }
  10035. // ggml_compute_forward_out_prod
  10036. static void ggml_compute_forward_out_prod_f32(
  10037. const struct ggml_compute_params * params,
  10038. struct ggml_tensor * dst) {
  10039. const struct ggml_tensor * src0 = dst->src[0];
  10040. const struct ggml_tensor * src1 = dst->src[1];
  10041. // int64_t t0 = ggml_perf_time_us();
  10042. // UNUSED(t0);
  10043. GGML_TENSOR_BINARY_OP_LOCALS
  10044. const int ith = params->ith;
  10045. const int nth = params->nth;
  10046. GGML_ASSERT(ne0 == ne00);
  10047. GGML_ASSERT(ne1 == ne10);
  10048. GGML_ASSERT(ne2 == ne02);
  10049. GGML_ASSERT(ne02 == ne12);
  10050. GGML_ASSERT(ne3 == ne13);
  10051. GGML_ASSERT(ne03 == ne13);
  10052. // we don't support permuted src0 or src1
  10053. GGML_ASSERT(nb00 == sizeof(float));
  10054. // dst cannot be transposed or permuted
  10055. GGML_ASSERT(nb0 == sizeof(float));
  10056. // GGML_ASSERT(nb0 <= nb1);
  10057. // GGML_ASSERT(nb1 <= nb2);
  10058. // GGML_ASSERT(nb2 <= nb3);
  10059. // nb01 >= nb00 - src0 is not transposed
  10060. // compute by src0 rows
  10061. // TODO: #if defined(GGML_USE_CLBLAST)
  10062. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10063. bool use_blas = ggml_is_matrix(src0) &&
  10064. ggml_is_matrix(src1) &&
  10065. ggml_is_contiguous(src0) &&
  10066. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10067. #endif
  10068. if (params->type == GGML_TASK_TYPE_INIT) {
  10069. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10070. if (use_blas) {
  10071. return;
  10072. }
  10073. #endif
  10074. if (ith != 0) {
  10075. return;
  10076. }
  10077. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10078. return;
  10079. }
  10080. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10081. return;
  10082. }
  10083. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10084. if (use_blas) {
  10085. if (params->ith != 0) { // All threads other than the first do no work.
  10086. return;
  10087. }
  10088. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10089. // src0: (k,n)
  10090. // src1: (k,m)
  10091. // dst: (m,n)
  10092. //
  10093. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10094. // Also expressed as (major,minor)
  10095. // a: (m,k): so src1 transposed
  10096. // b: (k,n): so src0
  10097. // c: (m,n)
  10098. //
  10099. // However, if ggml_is_transposed(src1) is true, then
  10100. // src1->data already contains a transposed version, so sgemm mustn't
  10101. // transpose it further.
  10102. int n = src0->ne[0];
  10103. int k = src0->ne[1];
  10104. int m = src1->ne[0];
  10105. int transposeA, lda;
  10106. if (!ggml_is_transposed(src1)) {
  10107. transposeA = CblasTrans;
  10108. lda = m;
  10109. } else {
  10110. transposeA = CblasNoTrans;
  10111. lda = k;
  10112. }
  10113. float * a = (float *) ((char *) src1->data);
  10114. float * b = (float *) ((char *) src0->data);
  10115. float * c = (float *) ((char *) dst->data);
  10116. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10117. return;
  10118. }
  10119. #endif
  10120. // dst[:,:,:,:] = 0
  10121. // for i2,i3:
  10122. // for i1:
  10123. // for i01:
  10124. // for i0:
  10125. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10126. // parallelize by last three dimensions
  10127. // total rows in dst
  10128. const int64_t nr = ne1*ne2*ne3;
  10129. // rows per thread
  10130. const int64_t dr = (nr + nth - 1)/nth;
  10131. // row range for this thread
  10132. const int64_t ir0 = dr*ith;
  10133. const int64_t ir1 = MIN(ir0 + dr, nr);
  10134. // block-tiling attempt
  10135. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10136. const int64_t blck_1 = 16;
  10137. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10138. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10139. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10140. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10141. for (int64_t ir = bir; ir < bir1; ++ir) {
  10142. // dst indices
  10143. const int64_t i3 = ir/(ne2*ne1);
  10144. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10145. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10146. const int64_t i02 = i2;
  10147. const int64_t i03 = i3;
  10148. //const int64_t i10 = i1;
  10149. const int64_t i12 = i2;
  10150. const int64_t i13 = i3;
  10151. #if GGML_VEC_MAD_UNROLL > 2
  10152. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10153. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10154. const int64_t i11 = i01;
  10155. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10156. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10157. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10158. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10159. }
  10160. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10161. const int64_t i11 = i01;
  10162. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10163. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10164. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10165. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10166. }
  10167. #else
  10168. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10169. const int64_t i11 = i01;
  10170. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10171. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10172. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10173. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10174. }
  10175. #endif
  10176. }
  10177. }
  10178. }
  10179. //int64_t t1 = ggml_perf_time_us();
  10180. //static int64_t acc = 0;
  10181. //acc += t1 - t0;
  10182. //if (t1 - t0 > 10) {
  10183. // printf("\n");
  10184. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10185. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10186. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10187. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10188. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10189. //}
  10190. }
  10191. static void ggml_compute_forward_out_prod_q_f32(
  10192. const struct ggml_compute_params * params,
  10193. struct ggml_tensor * dst) {
  10194. const struct ggml_tensor * src0 = dst->src[0];
  10195. const struct ggml_tensor * src1 = dst->src[1];
  10196. // int64_t t0 = ggml_perf_time_us();
  10197. // UNUSED(t0);
  10198. GGML_TENSOR_BINARY_OP_LOCALS;
  10199. const int ith = params->ith;
  10200. const int nth = params->nth;
  10201. const enum ggml_type type = src0->type;
  10202. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10203. GGML_ASSERT(ne02 == ne12);
  10204. GGML_ASSERT(ne03 == ne13);
  10205. GGML_ASSERT(ne2 == ne12);
  10206. GGML_ASSERT(ne3 == ne13);
  10207. // we don't support permuted src0 dim0
  10208. GGML_ASSERT(nb00 == ggml_type_size(type));
  10209. // dst dim0 cannot be transposed or permuted
  10210. GGML_ASSERT(nb0 == sizeof(float));
  10211. // GGML_ASSERT(nb0 <= nb1);
  10212. // GGML_ASSERT(nb1 <= nb2);
  10213. // GGML_ASSERT(nb2 <= nb3);
  10214. GGML_ASSERT(ne0 == ne00);
  10215. GGML_ASSERT(ne1 == ne10);
  10216. GGML_ASSERT(ne2 == ne02);
  10217. GGML_ASSERT(ne3 == ne03);
  10218. // nb01 >= nb00 - src0 is not transposed
  10219. // compute by src0 rows
  10220. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  10221. if (params->type == GGML_TASK_TYPE_INIT) {
  10222. if (ith != 0) {
  10223. return;
  10224. }
  10225. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10226. return;
  10227. }
  10228. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10229. return;
  10230. }
  10231. // parallelize by last three dimensions
  10232. // total rows in dst
  10233. const int64_t nr = ne1*ne2*ne3;
  10234. // rows per thread
  10235. const int64_t dr = (nr + nth - 1)/nth;
  10236. // row range for this thread
  10237. const int64_t ir0 = dr*ith;
  10238. const int64_t ir1 = MIN(ir0 + dr, nr);
  10239. // dst[:,:,:,:] = 0
  10240. // for i2,i3:
  10241. // for i1:
  10242. // for i01:
  10243. // for i0:
  10244. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10245. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10246. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10247. // dst indices
  10248. const int64_t i3 = ir/(ne2*ne1);
  10249. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10250. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10251. const int64_t i02 = i2;
  10252. const int64_t i03 = i3;
  10253. //const int64_t i10 = i1;
  10254. const int64_t i12 = i2;
  10255. const int64_t i13 = i3;
  10256. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10257. const int64_t i11 = i01;
  10258. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10259. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10260. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10261. dequantize_row_q(s0, wdata, ne0);
  10262. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10263. }
  10264. }
  10265. //int64_t t1 = ggml_perf_time_us();
  10266. //static int64_t acc = 0;
  10267. //acc += t1 - t0;
  10268. //if (t1 - t0 > 10) {
  10269. // printf("\n");
  10270. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10271. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10272. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10273. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10274. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10275. //}
  10276. }
  10277. static void ggml_compute_forward_out_prod(
  10278. const struct ggml_compute_params * params,
  10279. struct ggml_tensor * dst) {
  10280. const struct ggml_tensor * src0 = dst->src[0];
  10281. switch (src0->type) {
  10282. case GGML_TYPE_Q4_0:
  10283. case GGML_TYPE_Q4_1:
  10284. case GGML_TYPE_Q5_0:
  10285. case GGML_TYPE_Q5_1:
  10286. case GGML_TYPE_Q8_0:
  10287. case GGML_TYPE_Q2_K:
  10288. case GGML_TYPE_Q3_K:
  10289. case GGML_TYPE_Q4_K:
  10290. case GGML_TYPE_Q5_K:
  10291. case GGML_TYPE_Q6_K:
  10292. case GGML_TYPE_IQ2_XXS:
  10293. case GGML_TYPE_IQ2_XS:
  10294. case GGML_TYPE_IQ3_XXS:
  10295. case GGML_TYPE_IQ1_S:
  10296. case GGML_TYPE_IQ1_M:
  10297. case GGML_TYPE_IQ4_NL:
  10298. case GGML_TYPE_IQ4_XS:
  10299. case GGML_TYPE_IQ3_S:
  10300. case GGML_TYPE_IQ2_S:
  10301. {
  10302. ggml_compute_forward_out_prod_q_f32(params, dst);
  10303. } break;
  10304. case GGML_TYPE_F16:
  10305. {
  10306. GGML_ASSERT(false); // todo
  10307. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10308. } break;
  10309. case GGML_TYPE_F32:
  10310. {
  10311. ggml_compute_forward_out_prod_f32(params, dst);
  10312. } break;
  10313. default:
  10314. {
  10315. GGML_ASSERT(false);
  10316. } break;
  10317. }
  10318. }
  10319. // ggml_compute_forward_scale
  10320. static void ggml_compute_forward_scale_f32(
  10321. const struct ggml_compute_params * params,
  10322. struct ggml_tensor * dst) {
  10323. const struct ggml_tensor * src0 = dst->src[0];
  10324. GGML_ASSERT(ggml_is_contiguous(src0));
  10325. GGML_ASSERT(ggml_is_contiguous(dst));
  10326. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10327. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10328. return;
  10329. }
  10330. // scale factor
  10331. float v;
  10332. memcpy(&v, dst->op_params, sizeof(float));
  10333. const int ith = params->ith;
  10334. const int nth = params->nth;
  10335. const int nc = src0->ne[0];
  10336. const int nr = ggml_nrows(src0);
  10337. // rows per thread
  10338. const int dr = (nr + nth - 1)/nth;
  10339. // row range for this thread
  10340. const int ir0 = dr*ith;
  10341. const int ir1 = MIN(ir0 + dr, nr);
  10342. const size_t nb01 = src0->nb[1];
  10343. const size_t nb1 = dst->nb[1];
  10344. for (int i1 = ir0; i1 < ir1; i1++) {
  10345. if (dst->data != src0->data) {
  10346. // src0 is same shape as dst => same indices
  10347. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10348. }
  10349. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10350. }
  10351. }
  10352. static void ggml_compute_forward_scale(
  10353. const struct ggml_compute_params * params,
  10354. struct ggml_tensor * dst) {
  10355. const struct ggml_tensor * src0 = dst->src[0];
  10356. switch (src0->type) {
  10357. case GGML_TYPE_F32:
  10358. {
  10359. ggml_compute_forward_scale_f32(params, dst);
  10360. } break;
  10361. default:
  10362. {
  10363. GGML_ASSERT(false);
  10364. } break;
  10365. }
  10366. }
  10367. // ggml_compute_forward_set
  10368. static void ggml_compute_forward_set_f32(
  10369. const struct ggml_compute_params * params,
  10370. struct ggml_tensor * dst) {
  10371. const struct ggml_tensor * src0 = dst->src[0];
  10372. const struct ggml_tensor * src1 = dst->src[1];
  10373. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10374. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10375. // view src0 and dst with these strides and data offset inbytes during set
  10376. // nb0 is implicitly element_size because src0 and dst are contiguous
  10377. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10378. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10379. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10380. size_t offset = ((int32_t *) dst->op_params)[3];
  10381. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10382. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10383. if (params->ith != 0) {
  10384. return;
  10385. }
  10386. // memcpy needs to be synchronized across threads to avoid race conditions.
  10387. // => do it in INIT phase
  10388. memcpy(
  10389. ((char *) dst->data),
  10390. ((char *) src0->data),
  10391. ggml_nbytes(dst));
  10392. }
  10393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10394. return;
  10395. }
  10396. const int ith = params->ith;
  10397. const int nth = params->nth;
  10398. const int nr = ggml_nrows(src1);
  10399. const int nc = src1->ne[0];
  10400. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10401. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10402. // src0 and dst as viewed during set
  10403. const size_t nb0 = ggml_element_size(src0);
  10404. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10405. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10406. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10407. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10408. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10409. GGML_ASSERT(nb10 == sizeof(float));
  10410. // rows per thread
  10411. const int dr = (nr + nth - 1)/nth;
  10412. // row range for this thread
  10413. const int ir0 = dr*ith;
  10414. const int ir1 = MIN(ir0 + dr, nr);
  10415. for (int ir = ir0; ir < ir1; ++ir) {
  10416. // src0 and dst are viewed with shape of src1 and offset
  10417. // => same indices
  10418. const int i3 = ir/(ne12*ne11);
  10419. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10420. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10421. ggml_vec_cpy_f32(nc,
  10422. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10423. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10424. }
  10425. }
  10426. static void ggml_compute_forward_set(
  10427. const struct ggml_compute_params * params,
  10428. struct ggml_tensor * dst) {
  10429. const struct ggml_tensor * src0 = dst->src[0];
  10430. switch (src0->type) {
  10431. case GGML_TYPE_F32:
  10432. {
  10433. ggml_compute_forward_set_f32(params, dst);
  10434. } break;
  10435. case GGML_TYPE_F16:
  10436. case GGML_TYPE_BF16:
  10437. case GGML_TYPE_Q4_0:
  10438. case GGML_TYPE_Q4_1:
  10439. case GGML_TYPE_Q5_0:
  10440. case GGML_TYPE_Q5_1:
  10441. case GGML_TYPE_Q8_0:
  10442. case GGML_TYPE_Q8_1:
  10443. case GGML_TYPE_Q2_K:
  10444. case GGML_TYPE_Q3_K:
  10445. case GGML_TYPE_Q4_K:
  10446. case GGML_TYPE_Q5_K:
  10447. case GGML_TYPE_Q6_K:
  10448. case GGML_TYPE_IQ2_XXS:
  10449. case GGML_TYPE_IQ2_XS:
  10450. case GGML_TYPE_IQ3_XXS:
  10451. case GGML_TYPE_IQ1_S:
  10452. case GGML_TYPE_IQ1_M:
  10453. case GGML_TYPE_IQ4_NL:
  10454. case GGML_TYPE_IQ4_XS:
  10455. case GGML_TYPE_IQ3_S:
  10456. case GGML_TYPE_IQ2_S:
  10457. default:
  10458. {
  10459. GGML_ASSERT(false);
  10460. } break;
  10461. }
  10462. }
  10463. // ggml_compute_forward_cpy
  10464. static void ggml_compute_forward_cpy(
  10465. const struct ggml_compute_params * params,
  10466. struct ggml_tensor * dst) {
  10467. ggml_compute_forward_dup(params, dst);
  10468. }
  10469. // ggml_compute_forward_cont
  10470. static void ggml_compute_forward_cont(
  10471. const struct ggml_compute_params * params,
  10472. struct ggml_tensor * dst) {
  10473. ggml_compute_forward_dup(params, dst);
  10474. }
  10475. // ggml_compute_forward_reshape
  10476. static void ggml_compute_forward_reshape(
  10477. const struct ggml_compute_params * params,
  10478. struct ggml_tensor * dst) {
  10479. // NOP
  10480. UNUSED(params);
  10481. UNUSED(dst);
  10482. }
  10483. // ggml_compute_forward_view
  10484. static void ggml_compute_forward_view(
  10485. const struct ggml_compute_params * params,
  10486. const struct ggml_tensor * dst) {
  10487. // NOP
  10488. UNUSED(params);
  10489. UNUSED(dst);
  10490. }
  10491. // ggml_compute_forward_permute
  10492. static void ggml_compute_forward_permute(
  10493. const struct ggml_compute_params * params,
  10494. const struct ggml_tensor * dst) {
  10495. // NOP
  10496. UNUSED(params);
  10497. UNUSED(dst);
  10498. }
  10499. // ggml_compute_forward_transpose
  10500. static void ggml_compute_forward_transpose(
  10501. const struct ggml_compute_params * params,
  10502. const struct ggml_tensor * dst) {
  10503. // NOP
  10504. UNUSED(params);
  10505. UNUSED(dst);
  10506. }
  10507. // ggml_compute_forward_get_rows
  10508. static void ggml_compute_forward_get_rows_q(
  10509. const struct ggml_compute_params * params,
  10510. struct ggml_tensor * dst) {
  10511. const struct ggml_tensor * src0 = dst->src[0];
  10512. const struct ggml_tensor * src1 = dst->src[1];
  10513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10514. return;
  10515. }
  10516. GGML_TENSOR_BINARY_OP_LOCALS
  10517. const int64_t nc = ne00;
  10518. const int64_t nr = ggml_nelements(src1);
  10519. const enum ggml_type type = src0->type;
  10520. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10521. assert(ne0 == nc);
  10522. assert(ne02 == ne11);
  10523. assert(nb00 == ggml_type_size(type));
  10524. assert(ggml_nrows(dst) == nr);
  10525. const int ith = params->ith;
  10526. const int nth = params->nth;
  10527. // rows per thread
  10528. const int dr = (nr + nth - 1)/nth;
  10529. // row range for this thread
  10530. const int ir0 = dr*ith;
  10531. const int ir1 = MIN(ir0 + dr, nr);
  10532. for (int64_t i = ir0; i < ir1; ++i) {
  10533. const int64_t i12 = i/(ne11*ne10);
  10534. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10535. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10536. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10537. dequantize_row_q(
  10538. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10539. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10540. }
  10541. }
  10542. static void ggml_compute_forward_get_rows_f16(
  10543. const struct ggml_compute_params * params,
  10544. struct ggml_tensor * dst) {
  10545. const struct ggml_tensor * src0 = dst->src[0];
  10546. const struct ggml_tensor * src1 = dst->src[1];
  10547. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10548. return;
  10549. }
  10550. GGML_TENSOR_BINARY_OP_LOCALS
  10551. const int64_t nc = ne00;
  10552. const int64_t nr = ggml_nelements(src1);
  10553. assert(ne0 == nc);
  10554. assert(ne02 == ne11);
  10555. assert(nb00 == sizeof(ggml_fp16_t));
  10556. assert(ggml_nrows(dst) == nr);
  10557. const int ith = params->ith;
  10558. const int nth = params->nth;
  10559. // rows per thread
  10560. const int dr = (nr + nth - 1)/nth;
  10561. // row range for this thread
  10562. const int ir0 = dr*ith;
  10563. const int ir1 = MIN(ir0 + dr, nr);
  10564. for (int64_t i = ir0; i < ir1; ++i) {
  10565. const int64_t i12 = i/(ne11*ne10);
  10566. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10567. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10568. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10569. ggml_fp16_to_fp32_row(
  10570. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10571. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10572. }
  10573. }
  10574. static void ggml_compute_forward_get_rows_bf16(
  10575. const struct ggml_compute_params * params,
  10576. struct ggml_tensor * dst) {
  10577. const struct ggml_tensor * src0 = dst->src[0];
  10578. const struct ggml_tensor * src1 = dst->src[1];
  10579. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10580. return;
  10581. }
  10582. GGML_TENSOR_BINARY_OP_LOCALS
  10583. const int64_t nc = ne00;
  10584. const int64_t nr = ggml_nelements(src1);
  10585. assert(ne0 == nc);
  10586. assert(ne02 == ne11);
  10587. assert(nb00 == sizeof(ggml_bf16_t));
  10588. assert(ggml_nrows(dst) == nr);
  10589. const int ith = params->ith;
  10590. const int nth = params->nth;
  10591. // rows per thread
  10592. const int dr = (nr + nth - 1)/nth;
  10593. // row range for this thread
  10594. const int ir0 = dr*ith;
  10595. const int ir1 = MIN(ir0 + dr, nr);
  10596. for (int64_t i = ir0; i < ir1; ++i) {
  10597. const int64_t i12 = i/(ne11*ne10);
  10598. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10599. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10600. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10601. ggml_bf16_to_fp32_row(
  10602. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10603. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10604. }
  10605. }
  10606. static void ggml_compute_forward_get_rows_f32(
  10607. const struct ggml_compute_params * params,
  10608. struct ggml_tensor * dst) {
  10609. const struct ggml_tensor * src0 = dst->src[0];
  10610. const struct ggml_tensor * src1 = dst->src[1];
  10611. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10612. return;
  10613. }
  10614. GGML_TENSOR_BINARY_OP_LOCALS
  10615. const int64_t nc = ne00;
  10616. const int64_t nr = ggml_nelements(src1);
  10617. assert(ne0 == nc);
  10618. assert(ne02 == ne11);
  10619. assert(nb00 == sizeof(float));
  10620. assert(ggml_nrows(dst) == nr);
  10621. const int ith = params->ith;
  10622. const int nth = params->nth;
  10623. // rows per thread
  10624. const int dr = (nr + nth - 1)/nth;
  10625. // row range for this thread
  10626. const int ir0 = dr*ith;
  10627. const int ir1 = MIN(ir0 + dr, nr);
  10628. for (int64_t i = ir0; i < ir1; ++i) {
  10629. const int64_t i12 = i/(ne11*ne10);
  10630. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10631. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10632. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10633. ggml_vec_cpy_f32(nc,
  10634. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10635. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10636. }
  10637. }
  10638. static void ggml_compute_forward_get_rows(
  10639. const struct ggml_compute_params * params,
  10640. struct ggml_tensor * dst) {
  10641. const struct ggml_tensor * src0 = dst->src[0];
  10642. switch (src0->type) {
  10643. case GGML_TYPE_Q4_0:
  10644. case GGML_TYPE_Q4_1:
  10645. case GGML_TYPE_Q5_0:
  10646. case GGML_TYPE_Q5_1:
  10647. case GGML_TYPE_Q8_0:
  10648. case GGML_TYPE_Q8_1:
  10649. case GGML_TYPE_Q2_K:
  10650. case GGML_TYPE_Q3_K:
  10651. case GGML_TYPE_Q4_K:
  10652. case GGML_TYPE_Q5_K:
  10653. case GGML_TYPE_Q6_K:
  10654. case GGML_TYPE_IQ2_XXS:
  10655. case GGML_TYPE_IQ2_XS:
  10656. case GGML_TYPE_IQ3_XXS:
  10657. case GGML_TYPE_IQ1_S:
  10658. case GGML_TYPE_IQ1_M:
  10659. case GGML_TYPE_IQ4_NL:
  10660. case GGML_TYPE_IQ4_XS:
  10661. case GGML_TYPE_IQ3_S:
  10662. case GGML_TYPE_IQ2_S:
  10663. {
  10664. ggml_compute_forward_get_rows_q(params, dst);
  10665. } break;
  10666. case GGML_TYPE_F16:
  10667. {
  10668. ggml_compute_forward_get_rows_f16(params, dst);
  10669. } break;
  10670. case GGML_TYPE_BF16:
  10671. {
  10672. ggml_compute_forward_get_rows_bf16(params, dst);
  10673. } break;
  10674. case GGML_TYPE_F32:
  10675. case GGML_TYPE_I32:
  10676. {
  10677. ggml_compute_forward_get_rows_f32(params, dst);
  10678. } break;
  10679. default:
  10680. {
  10681. GGML_ASSERT(false);
  10682. } break;
  10683. }
  10684. //static bool first = true;
  10685. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10686. //if (first) {
  10687. // first = false;
  10688. //} else {
  10689. // for (int k = 0; k < dst->ne[1]; ++k) {
  10690. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10691. // for (int i = 0; i < 16; ++i) {
  10692. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10693. // }
  10694. // printf("\n");
  10695. // }
  10696. // printf("\n");
  10697. // }
  10698. // printf("\n");
  10699. // exit(0);
  10700. //}
  10701. }
  10702. // ggml_compute_forward_get_rows_back
  10703. static void ggml_compute_forward_get_rows_back_f32_f16(
  10704. const struct ggml_compute_params * params,
  10705. struct ggml_tensor * dst) {
  10706. const struct ggml_tensor * src0 = dst->src[0];
  10707. const struct ggml_tensor * src1 = dst->src[1];
  10708. GGML_ASSERT(params->ith == 0);
  10709. GGML_ASSERT(ggml_is_contiguous(dst));
  10710. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10711. if (params->type == GGML_TASK_TYPE_INIT) {
  10712. if (params->ith != 0) {
  10713. return;
  10714. }
  10715. memset(dst->data, 0, ggml_nbytes(dst));
  10716. }
  10717. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10718. return;
  10719. }
  10720. const int nc = src0->ne[0];
  10721. const int nr = ggml_nelements(src1);
  10722. GGML_ASSERT( dst->ne[0] == nc);
  10723. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10724. for (int i = 0; i < nr; ++i) {
  10725. const int r = ((int32_t *) src1->data)[i];
  10726. for (int j = 0; j < nc; ++j) {
  10727. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10728. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10729. }
  10730. }
  10731. }
  10732. static void ggml_compute_forward_get_rows_back_f32(
  10733. const struct ggml_compute_params * params,
  10734. struct ggml_tensor * dst) {
  10735. const struct ggml_tensor * src0 = dst->src[0];
  10736. const struct ggml_tensor * src1 = dst->src[1];
  10737. GGML_ASSERT(params->ith == 0);
  10738. GGML_ASSERT(ggml_is_contiguous(dst));
  10739. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10740. if (params->type == GGML_TASK_TYPE_INIT) {
  10741. if (params->ith != 0) {
  10742. return;
  10743. }
  10744. memset(dst->data, 0, ggml_nbytes(dst));
  10745. }
  10746. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10747. return;
  10748. }
  10749. const int nc = src0->ne[0];
  10750. const int nr = ggml_nelements(src1);
  10751. GGML_ASSERT( dst->ne[0] == nc);
  10752. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10753. for (int i = 0; i < nr; ++i) {
  10754. const int r = ((int32_t *) src1->data)[i];
  10755. ggml_vec_add_f32(nc,
  10756. (float *) ((char *) dst->data + r*dst->nb[1]),
  10757. (float *) ((char *) dst->data + r*dst->nb[1]),
  10758. (float *) ((char *) src0->data + i*src0->nb[1]));
  10759. }
  10760. }
  10761. static void ggml_compute_forward_get_rows_back(
  10762. const struct ggml_compute_params * params,
  10763. struct ggml_tensor * dst) {
  10764. const struct ggml_tensor * src0 = dst->src[0];
  10765. switch (src0->type) {
  10766. case GGML_TYPE_F16:
  10767. {
  10768. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10769. } break;
  10770. case GGML_TYPE_F32:
  10771. {
  10772. ggml_compute_forward_get_rows_back_f32(params, dst);
  10773. } break;
  10774. default:
  10775. {
  10776. GGML_ASSERT(false);
  10777. } break;
  10778. }
  10779. //static bool first = true;
  10780. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10781. //if (first) {
  10782. // first = false;
  10783. //} else {
  10784. // for (int k = 0; k < dst->ne[1]; ++k) {
  10785. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10786. // for (int i = 0; i < 16; ++i) {
  10787. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10788. // }
  10789. // printf("\n");
  10790. // }
  10791. // printf("\n");
  10792. // }
  10793. // printf("\n");
  10794. // exit(0);
  10795. //}
  10796. }
  10797. // ggml_compute_forward_diag
  10798. static void ggml_compute_forward_diag_f32(
  10799. const struct ggml_compute_params * params,
  10800. struct ggml_tensor * dst) {
  10801. const struct ggml_tensor * src0 = dst->src[0];
  10802. GGML_ASSERT(params->ith == 0);
  10803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10804. return;
  10805. }
  10806. // TODO: handle transposed/permuted matrices
  10807. GGML_TENSOR_UNARY_OP_LOCALS
  10808. GGML_ASSERT(ne00 == ne0);
  10809. GGML_ASSERT(ne00 == ne1);
  10810. GGML_ASSERT(ne01 == 1);
  10811. GGML_ASSERT(ne02 == ne2);
  10812. GGML_ASSERT(ne03 == ne3);
  10813. GGML_ASSERT(nb00 == sizeof(float));
  10814. GGML_ASSERT(nb0 == sizeof(float));
  10815. for (int i3 = 0; i3 < ne3; i3++) {
  10816. for (int i2 = 0; i2 < ne2; i2++) {
  10817. for (int i1 = 0; i1 < ne1; i1++) {
  10818. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10819. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10820. for (int i0 = 0; i0 < i1; i0++) {
  10821. d[i0] = 0;
  10822. }
  10823. d[i1] = s[i1];
  10824. for (int i0 = i1+1; i0 < ne0; i0++) {
  10825. d[i0] = 0;
  10826. }
  10827. }
  10828. }
  10829. }
  10830. }
  10831. static void ggml_compute_forward_diag(
  10832. const struct ggml_compute_params * params,
  10833. struct ggml_tensor * dst) {
  10834. const struct ggml_tensor * src0 = dst->src[0];
  10835. switch (src0->type) {
  10836. case GGML_TYPE_F32:
  10837. {
  10838. ggml_compute_forward_diag_f32(params, dst);
  10839. } break;
  10840. default:
  10841. {
  10842. GGML_ASSERT(false);
  10843. } break;
  10844. }
  10845. }
  10846. // ggml_compute_forward_diag_mask_inf
  10847. static void ggml_compute_forward_diag_mask_f32(
  10848. const struct ggml_compute_params * params,
  10849. struct ggml_tensor * dst,
  10850. const float value) {
  10851. const struct ggml_tensor * src0 = dst->src[0];
  10852. const int ith = params->ith;
  10853. const int nth = params->nth;
  10854. const int n_past = ((int32_t *) dst->op_params)[0];
  10855. const bool inplace = src0->data == dst->data;
  10856. GGML_ASSERT(n_past >= 0);
  10857. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10858. if (ith != 0) {
  10859. return;
  10860. }
  10861. // memcpy needs to be synchronized across threads to avoid race conditions.
  10862. // => do it in INIT phase
  10863. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10864. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10865. memcpy(
  10866. ((char *) dst->data),
  10867. ((char *) src0->data),
  10868. ggml_nbytes(dst));
  10869. }
  10870. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10871. return;
  10872. }
  10873. // TODO: handle transposed/permuted matrices
  10874. const int n = ggml_nrows(src0);
  10875. const int nc = src0->ne[0];
  10876. const int nr = src0->ne[1];
  10877. const int nz = n/nr;
  10878. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10879. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10880. for (int k = 0; k < nz; k++) {
  10881. for (int j = ith; j < nr; j += nth) {
  10882. for (int i = n_past; i < nc; i++) {
  10883. if (i > n_past + j) {
  10884. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10885. }
  10886. }
  10887. }
  10888. }
  10889. }
  10890. static void ggml_compute_forward_diag_mask_inf(
  10891. const struct ggml_compute_params * params,
  10892. struct ggml_tensor * dst) {
  10893. const struct ggml_tensor * src0 = dst->src[0];
  10894. switch (src0->type) {
  10895. case GGML_TYPE_F32:
  10896. {
  10897. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10898. } break;
  10899. default:
  10900. {
  10901. GGML_ASSERT(false);
  10902. } break;
  10903. }
  10904. }
  10905. static void ggml_compute_forward_diag_mask_zero(
  10906. const struct ggml_compute_params * params,
  10907. struct ggml_tensor * dst) {
  10908. const struct ggml_tensor * src0 = dst->src[0];
  10909. switch (src0->type) {
  10910. case GGML_TYPE_F32:
  10911. {
  10912. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10913. } break;
  10914. default:
  10915. {
  10916. GGML_ASSERT(false);
  10917. } break;
  10918. }
  10919. }
  10920. // ggml_compute_forward_soft_max
  10921. static void ggml_compute_forward_soft_max_f32(
  10922. const struct ggml_compute_params * params,
  10923. struct ggml_tensor * dst) {
  10924. const struct ggml_tensor * src0 = dst->src[0];
  10925. const struct ggml_tensor * src1 = dst->src[1];
  10926. assert(ggml_is_contiguous(dst));
  10927. assert(ggml_are_same_shape(src0, dst));
  10928. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10929. return;
  10930. }
  10931. float scale = 1.0f;
  10932. float max_bias = 0.0f;
  10933. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10934. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10935. // TODO: handle transposed/permuted matrices
  10936. const int ith = params->ith;
  10937. const int nth = params->nth;
  10938. GGML_TENSOR_UNARY_OP_LOCALS
  10939. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  10940. // TODO: is this supposed to be ceil instead of floor?
  10941. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  10942. const uint32_t n_head = ne02;
  10943. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  10944. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  10945. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  10946. const int nc = src0->ne[0];
  10947. const int nr = ggml_nrows(src0);
  10948. // rows per thread
  10949. const int dr = (nr + nth - 1)/nth;
  10950. // row range for this thread
  10951. const int ir0 = dr*ith;
  10952. const int ir1 = MIN(ir0 + dr, nr);
  10953. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  10954. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  10955. for (int i1 = ir0; i1 < ir1; i1++) {
  10956. // ALiBi
  10957. const uint32_t h = (i1/ne01)%ne02; // head
  10958. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  10959. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10960. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10961. // broadcast the mask across rows
  10962. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10963. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  10964. ggml_vec_cpy_f32 (nc, wp, sp);
  10965. ggml_vec_scale_f32(nc, wp, scale);
  10966. if (mp_f32) {
  10967. if (use_f16) {
  10968. for (int i = 0; i < nc; ++i) {
  10969. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  10970. }
  10971. } else {
  10972. for (int i = 0; i < nc; ++i) {
  10973. wp[i] += slope*mp_f32[i];
  10974. }
  10975. }
  10976. }
  10977. #ifndef NDEBUG
  10978. for (int i = 0; i < nc; ++i) {
  10979. //printf("p[%d] = %f\n", i, p[i]);
  10980. assert(!isnan(wp[i]));
  10981. }
  10982. #endif
  10983. float max = -INFINITY;
  10984. ggml_vec_max_f32(nc, &max, wp);
  10985. ggml_float sum = 0.0;
  10986. uint16_t scvt;
  10987. for (int i = 0; i < nc; i++) {
  10988. if (wp[i] == -INFINITY) {
  10989. dp[i] = 0.0f;
  10990. } else {
  10991. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  10992. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  10993. memcpy(&scvt, &s, sizeof(scvt));
  10994. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  10995. sum += (ggml_float)val;
  10996. dp[i] = val;
  10997. }
  10998. }
  10999. assert(sum > 0.0);
  11000. sum = 1.0/sum;
  11001. ggml_vec_scale_f32(nc, dp, sum);
  11002. #ifndef NDEBUG
  11003. for (int i = 0; i < nc; ++i) {
  11004. assert(!isnan(dp[i]));
  11005. assert(!isinf(dp[i]));
  11006. }
  11007. #endif
  11008. }
  11009. }
  11010. static void ggml_compute_forward_soft_max(
  11011. const struct ggml_compute_params * params,
  11012. struct ggml_tensor * dst) {
  11013. const struct ggml_tensor * src0 = dst->src[0];
  11014. switch (src0->type) {
  11015. case GGML_TYPE_F32:
  11016. {
  11017. ggml_compute_forward_soft_max_f32(params, dst);
  11018. } break;
  11019. default:
  11020. {
  11021. GGML_ASSERT(false);
  11022. } break;
  11023. }
  11024. }
  11025. // ggml_compute_forward_soft_max_back
  11026. static void ggml_compute_forward_soft_max_back_f32(
  11027. const struct ggml_compute_params * params,
  11028. struct ggml_tensor * dst) {
  11029. const struct ggml_tensor * src0 = dst->src[0];
  11030. const struct ggml_tensor * src1 = dst->src[1];
  11031. GGML_ASSERT(ggml_is_contiguous(src0));
  11032. GGML_ASSERT(ggml_is_contiguous(src1));
  11033. GGML_ASSERT(ggml_is_contiguous(dst));
  11034. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11035. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11036. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11037. return;
  11038. }
  11039. // TODO: handle transposed/permuted matrices
  11040. const int ith = params->ith;
  11041. const int nth = params->nth;
  11042. const int nc = src0->ne[0];
  11043. const int nr = ggml_nrows(src0);
  11044. // rows per thread
  11045. const int dr = (nr + nth - 1)/nth;
  11046. // row range for this thread
  11047. const int ir0 = dr*ith;
  11048. const int ir1 = MIN(ir0 + dr, nr);
  11049. for (int i1 = ir0; i1 < ir1; i1++) {
  11050. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11051. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11052. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11053. #ifndef NDEBUG
  11054. for (int i = 0; i < nc; ++i) {
  11055. //printf("p[%d] = %f\n", i, p[i]);
  11056. assert(!isnan(dy[i]));
  11057. assert(!isnan(y[i]));
  11058. }
  11059. #endif
  11060. // Jii = yi - yi*yi
  11061. // Jij = -yi*yj
  11062. // J = diag(y)-y.T*y
  11063. // dx = J * dy
  11064. // dxk = sum_i(Jki * dyi)
  11065. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11066. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11067. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11068. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11069. // dxk = -yk * dot(y, dy) + yk*dyk
  11070. // dxk = yk * (- dot(y, dy) + dyk)
  11071. // dxk = yk * (dyk - dot(y, dy))
  11072. //
  11073. // post-order:
  11074. // dot_y_dy := dot(y, dy)
  11075. // dx := dy
  11076. // dx := dx - dot_y_dy
  11077. // dx := dx * y
  11078. // linear runtime, no additional memory
  11079. float dot_y_dy = 0;
  11080. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11081. ggml_vec_cpy_f32 (nc, dx, dy);
  11082. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11083. ggml_vec_mul_f32 (nc, dx, dx, y);
  11084. #ifndef NDEBUG
  11085. for (int i = 0; i < nc; ++i) {
  11086. assert(!isnan(dx[i]));
  11087. assert(!isinf(dx[i]));
  11088. }
  11089. #endif
  11090. }
  11091. }
  11092. static void ggml_compute_forward_soft_max_back(
  11093. const struct ggml_compute_params * params,
  11094. struct ggml_tensor * dst) {
  11095. const struct ggml_tensor * src0 = dst->src[0];
  11096. switch (src0->type) {
  11097. case GGML_TYPE_F32:
  11098. {
  11099. ggml_compute_forward_soft_max_back_f32(params, dst);
  11100. } break;
  11101. default:
  11102. {
  11103. GGML_ASSERT(false);
  11104. } break;
  11105. }
  11106. }
  11107. // ggml_compute_forward_clamp
  11108. static void ggml_compute_forward_clamp_f32(
  11109. const struct ggml_compute_params * params,
  11110. struct ggml_tensor * dst) {
  11111. const struct ggml_tensor * src0 = dst->src[0];
  11112. assert(params->ith == 0);
  11113. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11114. return;
  11115. }
  11116. float min;
  11117. float max;
  11118. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11119. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11120. const int ith = params->ith;
  11121. const int nth = params->nth;
  11122. const int n = ggml_nrows(src0);
  11123. const int nc = src0->ne[0];
  11124. const size_t nb00 = src0->nb[0];
  11125. const size_t nb01 = src0->nb[1];
  11126. const size_t nb0 = dst->nb[0];
  11127. const size_t nb1 = dst->nb[1];
  11128. GGML_ASSERT( nb0 == sizeof(float));
  11129. GGML_ASSERT(nb00 == sizeof(float));
  11130. for (int j = ith; j < n; j += nth) {
  11131. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11132. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11133. for (int i = 0; i < nc; i++) {
  11134. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11135. }
  11136. }
  11137. }
  11138. static void ggml_compute_forward_clamp(
  11139. const struct ggml_compute_params * params,
  11140. struct ggml_tensor * dst) {
  11141. const struct ggml_tensor * src0 = dst->src[0];
  11142. switch (src0->type) {
  11143. case GGML_TYPE_F32:
  11144. {
  11145. ggml_compute_forward_clamp_f32(params, dst);
  11146. } break;
  11147. case GGML_TYPE_F16:
  11148. case GGML_TYPE_BF16:
  11149. case GGML_TYPE_Q4_0:
  11150. case GGML_TYPE_Q4_1:
  11151. case GGML_TYPE_Q5_0:
  11152. case GGML_TYPE_Q5_1:
  11153. case GGML_TYPE_Q8_0:
  11154. case GGML_TYPE_Q8_1:
  11155. case GGML_TYPE_Q2_K:
  11156. case GGML_TYPE_Q3_K:
  11157. case GGML_TYPE_Q4_K:
  11158. case GGML_TYPE_Q5_K:
  11159. case GGML_TYPE_Q6_K:
  11160. case GGML_TYPE_IQ2_XXS:
  11161. case GGML_TYPE_IQ2_XS:
  11162. case GGML_TYPE_IQ3_XXS:
  11163. case GGML_TYPE_IQ1_S:
  11164. case GGML_TYPE_IQ1_M:
  11165. case GGML_TYPE_IQ4_NL:
  11166. case GGML_TYPE_IQ4_XS:
  11167. case GGML_TYPE_IQ3_S:
  11168. case GGML_TYPE_IQ2_S:
  11169. case GGML_TYPE_Q8_K:
  11170. case GGML_TYPE_I8:
  11171. case GGML_TYPE_I16:
  11172. case GGML_TYPE_I32:
  11173. case GGML_TYPE_I64:
  11174. case GGML_TYPE_F64:
  11175. case GGML_TYPE_COUNT:
  11176. {
  11177. GGML_ASSERT(false);
  11178. } break;
  11179. }
  11180. }
  11181. // ggml_compute_forward_rope
  11182. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11183. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11184. return 1 - MIN(1, MAX(0, y));
  11185. }
  11186. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11187. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11188. static void rope_yarn(
  11189. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11190. float * cos_theta, float * sin_theta
  11191. ) {
  11192. // Get n-d rotational scaling corrected for extrapolation
  11193. float theta_interp = freq_scale * theta_extrap;
  11194. float theta = theta_interp;
  11195. if (ext_factor != 0.0f) {
  11196. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11197. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11198. // Get n-d magnitude scaling corrected for interpolation
  11199. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11200. }
  11201. *cos_theta = cosf(theta) * mscale;
  11202. *sin_theta = sinf(theta) * mscale;
  11203. }
  11204. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11205. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11206. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11207. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11208. }
  11209. static void ggml_rope_cache_init(
  11210. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11211. float * cache, float sin_sign, float theta_scale
  11212. ) {
  11213. float theta = theta_base;
  11214. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11215. rope_yarn(
  11216. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11217. );
  11218. cache[i0 + 1] *= sin_sign;
  11219. theta *= theta_scale;
  11220. }
  11221. }
  11222. GGML_CALL void ggml_rope_yarn_corr_dims(
  11223. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11224. ) {
  11225. // start and end correction dims
  11226. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11227. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11228. dims[0] = MAX(0, start);
  11229. dims[1] = MIN(n_dims - 1, end);
  11230. }
  11231. static void ggml_compute_forward_rope_f32(
  11232. const struct ggml_compute_params * params,
  11233. struct ggml_tensor * dst,
  11234. const bool forward) {
  11235. const struct ggml_tensor * src0 = dst->src[0];
  11236. const struct ggml_tensor * src1 = dst->src[1];
  11237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11238. return;
  11239. }
  11240. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11241. // these two only relevant for xPos RoPE:
  11242. float xpos_base;
  11243. bool xpos_down;
  11244. //const int n_past = ((int32_t *) dst->op_params)[0];
  11245. const int n_dims = ((int32_t *) dst->op_params)[1];
  11246. const int mode = ((int32_t *) dst->op_params)[2];
  11247. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11248. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11249. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11250. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11251. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11252. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11253. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11254. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11255. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11256. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11257. GGML_TENSOR_UNARY_OP_LOCALS
  11258. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11259. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11260. GGML_ASSERT(nb00 == sizeof(float));
  11261. const int ith = params->ith;
  11262. const int nth = params->nth;
  11263. const int nr = ggml_nrows(dst);
  11264. GGML_ASSERT(n_dims <= ne0);
  11265. GGML_ASSERT(n_dims % 2 == 0);
  11266. // rows per thread
  11267. const int dr = (nr + nth - 1)/nth;
  11268. // row range for this thread
  11269. const int ir0 = dr*ith;
  11270. const int ir1 = MIN(ir0 + dr, nr);
  11271. // row index used to determine which thread to use
  11272. int ir = 0;
  11273. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11274. const float inv_ndims = -1.f/n_dims;
  11275. float corr_dims[2];
  11276. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11277. const bool is_neox = mode & 2;
  11278. const bool is_glm = mode & 4;
  11279. // backward process uses inverse rotation by cos and sin.
  11280. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11281. // this essentially just switches the sign of sin.
  11282. const float sin_sign = forward ? 1.0f : -1.0f;
  11283. const int32_t * pos = (const int32_t *) src1->data;
  11284. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11285. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11286. const int64_t p = pos[i2];
  11287. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11288. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11289. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11290. }
  11291. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11292. if (ir++ < ir0) continue;
  11293. if (ir > ir1) break;
  11294. float theta_base = (float)p;
  11295. if (is_glm) {
  11296. theta_base = MIN(p, n_ctx - 2);
  11297. float block_theta = MAX(p - (n_ctx - 2), 0);
  11298. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11299. const float cos_theta = cosf(theta_base);
  11300. const float sin_theta = sinf(theta_base) * sin_sign;
  11301. const float cos_block_theta = cosf(block_theta);
  11302. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11303. theta_base *= theta_scale;
  11304. block_theta *= theta_scale;
  11305. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11306. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11307. const float x0 = src[0];
  11308. const float x1 = src[n_dims/2];
  11309. const float x2 = src[n_dims];
  11310. const float x3 = src[n_dims/2*3];
  11311. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11312. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11313. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11314. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11315. }
  11316. } else if (!is_neox) {
  11317. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11318. const float cos_theta = cache[i0 + 0];
  11319. const float sin_theta = cache[i0 + 1];
  11320. // zeta scaling for xPos only:
  11321. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11322. if (xpos_down) zeta = 1.0f / zeta;
  11323. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11324. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11325. const float x0 = src[0];
  11326. const float x1 = src[1];
  11327. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11328. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11329. }
  11330. } else {
  11331. // TODO: this might be wrong for ne0 != n_dims - need double check
  11332. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11333. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11334. theta_base *= freq_scale;
  11335. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11336. if (ic < n_dims) {
  11337. const int64_t ib = 0;
  11338. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11339. float cur_rot = inv_ndims * ic - ib;
  11340. float cos_theta, sin_theta;
  11341. rope_yarn(
  11342. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11343. &cos_theta, &sin_theta
  11344. );
  11345. sin_theta *= sin_sign;
  11346. theta_base *= theta_scale;
  11347. const int64_t i0 = ib*n_dims + ic/2;
  11348. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11349. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11350. const float x0 = src[0];
  11351. const float x1 = src[n_dims/2];
  11352. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11353. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11354. } else {
  11355. const int64_t i0 = ic;
  11356. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11357. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11358. dst_data[0] = src[0];
  11359. dst_data[1] = src[1];
  11360. }
  11361. }
  11362. }
  11363. }
  11364. }
  11365. }
  11366. }
  11367. static void ggml_compute_forward_rope_f16(
  11368. const struct ggml_compute_params * params,
  11369. struct ggml_tensor * dst,
  11370. const bool forward) {
  11371. const struct ggml_tensor * src0 = dst->src[0];
  11372. const struct ggml_tensor * src1 = dst->src[1];
  11373. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11374. return;
  11375. }
  11376. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11377. //const int n_past = ((int32_t *) dst->op_params)[0];
  11378. const int n_dims = ((int32_t *) dst->op_params)[1];
  11379. const int mode = ((int32_t *) dst->op_params)[2];
  11380. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11381. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11382. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11383. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11384. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11385. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11386. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11387. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11388. GGML_TENSOR_UNARY_OP_LOCALS
  11389. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11390. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11391. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11392. const int ith = params->ith;
  11393. const int nth = params->nth;
  11394. const int nr = ggml_nrows(dst);
  11395. GGML_ASSERT(n_dims <= ne0);
  11396. GGML_ASSERT(n_dims % 2 == 0);
  11397. // rows per thread
  11398. const int dr = (nr + nth - 1)/nth;
  11399. // row range for this thread
  11400. const int ir0 = dr*ith;
  11401. const int ir1 = MIN(ir0 + dr, nr);
  11402. // row index used to determine which thread to use
  11403. int ir = 0;
  11404. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11405. const float inv_ndims = -1.f/n_dims;
  11406. float corr_dims[2];
  11407. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11408. const bool is_neox = mode & 2;
  11409. const bool is_glm = mode & 4;
  11410. // backward process uses inverse rotation by cos and sin.
  11411. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11412. // this essentially just switches the sign of sin.
  11413. const float sin_sign = forward ? 1.0f : -1.0f;
  11414. const int32_t * pos = (const int32_t *) src1->data;
  11415. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11416. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11417. const int64_t p = pos[i2];
  11418. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11419. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11420. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11421. }
  11422. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11423. if (ir++ < ir0) continue;
  11424. if (ir > ir1) break;
  11425. float theta_base = (float)p;
  11426. if (is_glm) {
  11427. theta_base = MIN(p, n_ctx - 2);
  11428. float block_theta = MAX(p - (n_ctx - 2), 0);
  11429. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11430. const float cos_theta = cosf(theta_base);
  11431. const float sin_theta = sinf(theta_base) * sin_sign;
  11432. const float cos_block_theta = cosf(block_theta);
  11433. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11434. theta_base *= theta_scale;
  11435. block_theta *= theta_scale;
  11436. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11437. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11438. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11439. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11440. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11441. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11442. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11443. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11444. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11445. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11446. }
  11447. } else if (!is_neox) {
  11448. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11449. const float cos_theta = cache[i0 + 0];
  11450. const float sin_theta = cache[i0 + 1];
  11451. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11452. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11453. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11454. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11455. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11456. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11457. }
  11458. } else {
  11459. // TODO: this might be wrong for ne0 != n_dims - need double check
  11460. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  11461. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  11462. theta_base *= freq_scale;
  11463. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11464. if (ic < n_dims) {
  11465. const int64_t ib = 0;
  11466. // simplified from `(ib * n_dims + ic) * inv_ndims`
  11467. float cur_rot = inv_ndims * ic - ib;
  11468. float cos_theta, sin_theta;
  11469. rope_yarn(
  11470. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  11471. &cos_theta, &sin_theta
  11472. );
  11473. sin_theta *= sin_sign;
  11474. theta_base *= theta_scale;
  11475. const int64_t i0 = ib*n_dims + ic/2;
  11476. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11477. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11478. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11479. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11480. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11481. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11482. } else {
  11483. const int64_t i0 = ic;
  11484. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11485. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11486. dst_data[0] = src[0];
  11487. dst_data[1] = src[1];
  11488. }
  11489. }
  11490. }
  11491. }
  11492. }
  11493. }
  11494. }
  11495. static void ggml_compute_forward_rope(
  11496. const struct ggml_compute_params * params,
  11497. struct ggml_tensor * dst) {
  11498. const struct ggml_tensor * src0 = dst->src[0];
  11499. switch (src0->type) {
  11500. case GGML_TYPE_F16:
  11501. {
  11502. ggml_compute_forward_rope_f16(params, dst, true);
  11503. } break;
  11504. case GGML_TYPE_F32:
  11505. {
  11506. ggml_compute_forward_rope_f32(params, dst, true);
  11507. } break;
  11508. default:
  11509. {
  11510. GGML_ASSERT(false);
  11511. } break;
  11512. }
  11513. }
  11514. // ggml_compute_forward_rope_back
  11515. static void ggml_compute_forward_rope_back(
  11516. const struct ggml_compute_params * params,
  11517. struct ggml_tensor * dst) {
  11518. const struct ggml_tensor * src0 = dst->src[0];
  11519. switch (src0->type) {
  11520. case GGML_TYPE_F16:
  11521. {
  11522. ggml_compute_forward_rope_f16(params, dst, false);
  11523. } break;
  11524. case GGML_TYPE_F32:
  11525. {
  11526. ggml_compute_forward_rope_f32(params, dst, false);
  11527. } break;
  11528. default:
  11529. {
  11530. GGML_ASSERT(false);
  11531. } break;
  11532. }
  11533. }
  11534. // ggml_compute_forward_conv_transpose_1d
  11535. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11536. const struct ggml_compute_params * params,
  11537. struct ggml_tensor * dst) {
  11538. const struct ggml_tensor * src0 = dst->src[0];
  11539. const struct ggml_tensor * src1 = dst->src[1];
  11540. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11541. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11542. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11543. int64_t t0 = ggml_perf_time_us();
  11544. UNUSED(t0);
  11545. GGML_TENSOR_BINARY_OP_LOCALS
  11546. const int ith = params->ith;
  11547. const int nth = params->nth;
  11548. const int nk = ne00*ne01*ne02;
  11549. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11550. GGML_ASSERT(nb10 == sizeof(float));
  11551. if (params->type == GGML_TASK_TYPE_INIT) {
  11552. if (ith != 0) {
  11553. return;
  11554. }
  11555. memset(params->wdata, 0, params->wsize);
  11556. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11557. {
  11558. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11559. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11560. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11561. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11562. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11563. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11564. dst_data[i00*ne02 + i02] = src[i00];
  11565. }
  11566. }
  11567. }
  11568. }
  11569. // permute source data (src1) from (L x Cin) to (Cin x L)
  11570. {
  11571. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11572. ggml_fp16_t * dst_data = wdata;
  11573. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11574. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11575. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11576. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11577. }
  11578. }
  11579. }
  11580. // need to zero dst since we are accumulating into it
  11581. memset(dst->data, 0, ggml_nbytes(dst));
  11582. return;
  11583. }
  11584. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11585. return;
  11586. }
  11587. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11588. // total rows in dst
  11589. const int nr = ne1;
  11590. // rows per thread
  11591. const int dr = (nr + nth - 1)/nth;
  11592. // row range for this thread
  11593. const int ir0 = dr*ith;
  11594. const int ir1 = MIN(ir0 + dr, nr);
  11595. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11596. ggml_fp16_t * const wdata_src = wdata + nk;
  11597. for (int i1 = ir0; i1 < ir1; i1++) {
  11598. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11599. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11600. for (int i10 = 0; i10 < ne10; i10++) {
  11601. const int i1n = i10*ne11;
  11602. for (int i00 = 0; i00 < ne00; i00++) {
  11603. float v = 0;
  11604. ggml_vec_dot_f16(ne02, &v, 0,
  11605. (ggml_fp16_t *) wdata_src + i1n, 0,
  11606. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11607. dst_data[i10*s0 + i00] += v;
  11608. }
  11609. }
  11610. }
  11611. }
  11612. static void ggml_compute_forward_conv_transpose_1d_f32(
  11613. const struct ggml_compute_params * params,
  11614. struct ggml_tensor * dst) {
  11615. const struct ggml_tensor * src0 = dst->src[0];
  11616. const struct ggml_tensor * src1 = dst->src[1];
  11617. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11618. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11619. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11620. int64_t t0 = ggml_perf_time_us();
  11621. UNUSED(t0);
  11622. GGML_TENSOR_BINARY_OP_LOCALS
  11623. const int ith = params->ith;
  11624. const int nth = params->nth;
  11625. const int nk = ne00*ne01*ne02;
  11626. GGML_ASSERT(nb00 == sizeof(float));
  11627. GGML_ASSERT(nb10 == sizeof(float));
  11628. if (params->type == GGML_TASK_TYPE_INIT) {
  11629. if (ith != 0) {
  11630. return;
  11631. }
  11632. memset(params->wdata, 0, params->wsize);
  11633. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11634. {
  11635. float * const wdata = (float *) params->wdata + 0;
  11636. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11637. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11638. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11639. float * dst_data = wdata + i01*ne00*ne02;
  11640. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11641. dst_data[i00*ne02 + i02] = src[i00];
  11642. }
  11643. }
  11644. }
  11645. }
  11646. // prepare source data (src1)
  11647. {
  11648. float * const wdata = (float *) params->wdata + nk;
  11649. float * dst_data = wdata;
  11650. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11651. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11652. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11653. dst_data[i10*ne11 + i11] = src[i10];
  11654. }
  11655. }
  11656. }
  11657. // need to zero dst since we are accumulating into it
  11658. memset(dst->data, 0, ggml_nbytes(dst));
  11659. return;
  11660. }
  11661. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11662. return;
  11663. }
  11664. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11665. // total rows in dst
  11666. const int nr = ne1;
  11667. // rows per thread
  11668. const int dr = (nr + nth - 1)/nth;
  11669. // row range for this thread
  11670. const int ir0 = dr*ith;
  11671. const int ir1 = MIN(ir0 + dr, nr);
  11672. float * const wdata = (float *) params->wdata + 0;
  11673. float * const wdata_src = wdata + nk;
  11674. for (int i1 = ir0; i1 < ir1; i1++) {
  11675. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11676. float * wdata_kernel = wdata + i1*ne02*ne00;
  11677. for (int i10 = 0; i10 < ne10; i10++) {
  11678. const int i1n = i10*ne11;
  11679. for (int i00 = 0; i00 < ne00; i00++) {
  11680. float v = 0;
  11681. ggml_vec_dot_f32(ne02, &v, 0,
  11682. wdata_src + i1n, 0,
  11683. wdata_kernel + i00*ne02, 0, 1);
  11684. dst_data[i10*s0 + i00] += v;
  11685. }
  11686. }
  11687. }
  11688. }
  11689. static void ggml_compute_forward_conv_transpose_1d(
  11690. const struct ggml_compute_params * params,
  11691. struct ggml_tensor * dst) {
  11692. const struct ggml_tensor * src0 = dst->src[0];
  11693. switch (src0->type) {
  11694. case GGML_TYPE_F16:
  11695. {
  11696. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11697. } break;
  11698. case GGML_TYPE_F32:
  11699. {
  11700. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11701. } break;
  11702. default:
  11703. {
  11704. GGML_ASSERT(false);
  11705. } break;
  11706. }
  11707. }
  11708. // src0: kernel [OC, IC, KH, KW]
  11709. // src1: image [N, IC, IH, IW]
  11710. // dst: result [N, OH, OW, IC*KH*KW]
  11711. static void ggml_compute_forward_im2col_f32(
  11712. const struct ggml_compute_params * params,
  11713. struct ggml_tensor * dst) {
  11714. const struct ggml_tensor * src0 = dst->src[0];
  11715. const struct ggml_tensor * src1 = dst->src[1];
  11716. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11717. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11718. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11719. int64_t t0 = ggml_perf_time_us();
  11720. UNUSED(t0);
  11721. GGML_TENSOR_BINARY_OP_LOCALS;
  11722. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11723. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11724. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11725. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11726. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11727. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11728. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11729. const int ith = params->ith;
  11730. const int nth = params->nth;
  11731. const int64_t N = is_2D ? ne13 : ne12;
  11732. const int64_t IC = is_2D ? ne12 : ne11;
  11733. const int64_t IH = is_2D ? ne11 : 1;
  11734. const int64_t IW = ne10;
  11735. const int64_t KH = is_2D ? ne01 : 1;
  11736. const int64_t KW = ne00;
  11737. const int64_t OH = is_2D ? ne2 : 1;
  11738. const int64_t OW = ne1;
  11739. int ofs0 = is_2D ? nb13 : nb12;
  11740. int ofs1 = is_2D ? nb12 : nb11;
  11741. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11742. GGML_ASSERT(nb10 == sizeof(float));
  11743. if (params->type == GGML_TASK_TYPE_INIT) {
  11744. return;
  11745. }
  11746. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11747. return;
  11748. }
  11749. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11750. {
  11751. float * const wdata = (float *) dst->data;
  11752. for (int64_t in = 0; in < N; in++) {
  11753. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11754. for (int64_t iow = 0; iow < OW; iow++) {
  11755. for (int64_t iic = ith; iic < IC; iic += nth) {
  11756. // micro kernel
  11757. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11758. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11759. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11760. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11761. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11762. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11763. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11764. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11765. } else {
  11766. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11767. }
  11768. }
  11769. }
  11770. }
  11771. }
  11772. }
  11773. }
  11774. }
  11775. }
  11776. // src0: kernel [OC, IC, KH, KW]
  11777. // src1: image [N, IC, IH, IW]
  11778. // dst: result [N, OH, OW, IC*KH*KW]
  11779. static void ggml_compute_forward_im2col_f16(
  11780. const struct ggml_compute_params * params,
  11781. struct ggml_tensor * dst) {
  11782. const struct ggml_tensor * src0 = dst->src[0];
  11783. const struct ggml_tensor * src1 = dst->src[1];
  11784. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11785. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11786. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11787. int64_t t0 = ggml_perf_time_us();
  11788. UNUSED(t0);
  11789. GGML_TENSOR_BINARY_OP_LOCALS;
  11790. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11791. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11792. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11793. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11794. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11795. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11796. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11797. const int ith = params->ith;
  11798. const int nth = params->nth;
  11799. const int64_t N = is_2D ? ne13 : ne12;
  11800. const int64_t IC = is_2D ? ne12 : ne11;
  11801. const int64_t IH = is_2D ? ne11 : 1;
  11802. const int64_t IW = ne10;
  11803. const int64_t KH = is_2D ? ne01 : 1;
  11804. const int64_t KW = ne00;
  11805. const int64_t OH = is_2D ? ne2 : 1;
  11806. const int64_t OW = ne1;
  11807. int ofs0 = is_2D ? nb13 : nb12;
  11808. int ofs1 = is_2D ? nb12 : nb11;
  11809. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11810. GGML_ASSERT(nb10 == sizeof(float));
  11811. if (params->type == GGML_TASK_TYPE_INIT) {
  11812. return;
  11813. }
  11814. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11815. return;
  11816. }
  11817. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11818. {
  11819. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11820. for (int64_t in = 0; in < N; in++) {
  11821. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11822. for (int64_t iow = 0; iow < OW; iow++) {
  11823. for (int64_t iic = ith; iic < IC; iic += nth) {
  11824. // micro kernel
  11825. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11826. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11827. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11828. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11829. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11830. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11831. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11832. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11833. } else {
  11834. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11835. }
  11836. }
  11837. }
  11838. }
  11839. }
  11840. }
  11841. }
  11842. }
  11843. }
  11844. static void ggml_compute_forward_im2col(
  11845. const struct ggml_compute_params * params,
  11846. struct ggml_tensor * dst) {
  11847. switch (dst->type) {
  11848. case GGML_TYPE_F16:
  11849. {
  11850. ggml_compute_forward_im2col_f16(params, dst);
  11851. } break;
  11852. case GGML_TYPE_F32:
  11853. {
  11854. ggml_compute_forward_im2col_f32(params, dst);
  11855. } break;
  11856. default:
  11857. {
  11858. GGML_ASSERT(false);
  11859. } break;
  11860. }
  11861. }
  11862. // ggml_compute_forward_conv_transpose_2d
  11863. static void ggml_compute_forward_conv_transpose_2d(
  11864. const struct ggml_compute_params * params,
  11865. struct ggml_tensor * dst) {
  11866. const struct ggml_tensor * src0 = dst->src[0];
  11867. const struct ggml_tensor * src1 = dst->src[1];
  11868. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11869. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11870. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11871. int64_t t0 = ggml_perf_time_us();
  11872. UNUSED(t0);
  11873. GGML_TENSOR_BINARY_OP_LOCALS
  11874. const int ith = params->ith;
  11875. const int nth = params->nth;
  11876. const int nk = ne00*ne01*ne02*ne03;
  11877. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11878. GGML_ASSERT(nb10 == sizeof(float));
  11879. if (params->type == GGML_TASK_TYPE_INIT) {
  11880. if (ith != 0) {
  11881. return;
  11882. }
  11883. memset(params->wdata, 0, params->wsize);
  11884. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11885. {
  11886. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11887. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11888. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11889. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11890. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11891. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11892. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11893. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11894. }
  11895. }
  11896. }
  11897. }
  11898. }
  11899. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11900. {
  11901. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11902. for (int i12 = 0; i12 < ne12; i12++) {
  11903. for (int i11 = 0; i11 < ne11; i11++) {
  11904. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11905. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11906. for (int i10 = 0; i10 < ne10; i10++) {
  11907. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11908. }
  11909. }
  11910. }
  11911. }
  11912. memset(dst->data, 0, ggml_nbytes(dst));
  11913. return;
  11914. }
  11915. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11916. return;
  11917. }
  11918. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11919. // total patches in dst
  11920. const int np = ne2;
  11921. // patches per thread
  11922. const int dp = (np + nth - 1)/nth;
  11923. // patch range for this thread
  11924. const int ip0 = dp*ith;
  11925. const int ip1 = MIN(ip0 + dp, np);
  11926. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11927. ggml_fp16_t * const wdata_src = wdata + nk;
  11928. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11929. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11930. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11931. for (int i11 = 0; i11 < ne11; i11++) {
  11932. for (int i10 = 0; i10 < ne10; i10++) {
  11933. const int i1n = i11*ne10*ne12 + i10*ne12;
  11934. for (int i01 = 0; i01 < ne01; i01++) {
  11935. for (int i00 = 0; i00 < ne00; i00++) {
  11936. float v = 0;
  11937. ggml_vec_dot_f16(ne03, &v, 0,
  11938. wdata_src + i1n, 0,
  11939. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11940. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11941. }
  11942. }
  11943. }
  11944. }
  11945. }
  11946. }
  11947. // ggml_compute_forward_pool_1d_sk_p0
  11948. static void ggml_compute_forward_pool_1d_sk_p0(
  11949. const struct ggml_compute_params * params,
  11950. const enum ggml_op_pool op,
  11951. const int k,
  11952. struct ggml_tensor * dst) {
  11953. const struct ggml_tensor * src = dst->src[0];
  11954. assert(src->type == GGML_TYPE_F32);
  11955. assert(params->ith == 0);
  11956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11957. return;
  11958. }
  11959. const char * cdata = (const char *)src->data;
  11960. const char * const data_end = cdata + ggml_nbytes(src);
  11961. float * drow = (float *)dst->data;
  11962. const int64_t rs = dst->ne[0];
  11963. while (cdata < data_end) {
  11964. const float * const srow = (const float *)cdata;
  11965. int j = 0;
  11966. for (int64_t i = 0; i < rs; ++i) {
  11967. switch (op) {
  11968. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11969. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11970. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11971. }
  11972. for (int ki = 0; ki < k; ++ki) {
  11973. switch (op) {
  11974. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11975. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11976. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11977. }
  11978. ++j;
  11979. }
  11980. switch (op) {
  11981. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11982. case GGML_OP_POOL_MAX: break;
  11983. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11984. }
  11985. }
  11986. cdata += src->nb[1];
  11987. drow += rs;
  11988. }
  11989. }
  11990. // ggml_compute_forward_pool_1d
  11991. static void ggml_compute_forward_pool_1d(
  11992. const struct ggml_compute_params * params,
  11993. struct ggml_tensor * dst) {
  11994. const int32_t * opts = (const int32_t *)dst->op_params;
  11995. enum ggml_op_pool op = opts[0];
  11996. const int k0 = opts[1];
  11997. const int s0 = opts[2];
  11998. const int p0 = opts[3];
  11999. GGML_ASSERT(p0 == 0); // padding not supported
  12000. GGML_ASSERT(k0 == s0); // only s = k supported
  12001. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12002. }
  12003. // ggml_compute_forward_pool_2d
  12004. static void ggml_compute_forward_pool_2d(
  12005. const struct ggml_compute_params * params,
  12006. struct ggml_tensor * dst) {
  12007. const struct ggml_tensor * src = dst->src[0];
  12008. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12009. GGML_ASSERT(params->ith == 0);
  12010. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12011. return;
  12012. }
  12013. const int32_t * opts = (const int32_t *)dst->op_params;
  12014. enum ggml_op_pool op = opts[0];
  12015. const int k0 = opts[1];
  12016. const int k1 = opts[2];
  12017. const int s0 = opts[3];
  12018. const int s1 = opts[4];
  12019. const int p0 = opts[5];
  12020. const int p1 = opts[6];
  12021. const char * cdata = (const char*)src->data;
  12022. const char * const data_end = cdata + ggml_nbytes(src);
  12023. const int64_t px = dst->ne[0];
  12024. const int64_t py = dst->ne[1];
  12025. const int64_t pa = px * py;
  12026. float * dplane = (float *)dst->data;
  12027. const int ka = k0 * k1;
  12028. const int offset0 = -p0;
  12029. const int offset1 = -p1;
  12030. while (cdata < data_end) {
  12031. for (int oy = 0; oy < py; ++oy) {
  12032. float * const drow = dplane + oy * px;
  12033. for (int ox = 0; ox < px; ++ox) {
  12034. float * const out = drow + ox;
  12035. switch (op) {
  12036. case GGML_OP_POOL_AVG: *out = 0; break;
  12037. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12038. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12039. }
  12040. const int ix = offset0 + ox * s0;
  12041. const int iy = offset1 + oy * s1;
  12042. for (int ky = 0; ky < k1; ++ky) {
  12043. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12044. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12045. for (int kx = 0; kx < k0; ++kx) {
  12046. int j = ix + kx;
  12047. if (j < 0 || j >= src->ne[0]) continue;
  12048. switch (op) {
  12049. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12050. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12051. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12052. }
  12053. }
  12054. }
  12055. switch (op) {
  12056. case GGML_OP_POOL_AVG: *out /= ka; break;
  12057. case GGML_OP_POOL_MAX: break;
  12058. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12059. }
  12060. }
  12061. }
  12062. cdata += src->nb[2];
  12063. dplane += pa;
  12064. }
  12065. }
  12066. // ggml_compute_forward_upscale
  12067. static void ggml_compute_forward_upscale_f32(
  12068. const struct ggml_compute_params * params,
  12069. struct ggml_tensor * dst) {
  12070. const struct ggml_tensor * src0 = dst->src[0];
  12071. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12072. return;
  12073. }
  12074. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12075. const int ith = params->ith;
  12076. const int nth = params->nth;
  12077. GGML_TENSOR_UNARY_OP_LOCALS
  12078. const float sf0 = (float)ne0/src0->ne[0];
  12079. const float sf1 = (float)ne1/src0->ne[1];
  12080. const float sf2 = (float)ne2/src0->ne[2];
  12081. const float sf3 = (float)ne3/src0->ne[3];
  12082. // TODO: optimize
  12083. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12084. const int64_t i03 = i3 / sf3;
  12085. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12086. const int64_t i02 = i2 / sf2;
  12087. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12088. const int64_t i01 = i1 / sf1;
  12089. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12090. const int64_t i00 = i0 / sf0;
  12091. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12092. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12093. *y = *x;
  12094. }
  12095. }
  12096. }
  12097. }
  12098. }
  12099. static void ggml_compute_forward_upscale(
  12100. const struct ggml_compute_params * params,
  12101. struct ggml_tensor * dst) {
  12102. const struct ggml_tensor * src0 = dst->src[0];
  12103. switch (src0->type) {
  12104. case GGML_TYPE_F32:
  12105. {
  12106. ggml_compute_forward_upscale_f32(params, dst);
  12107. } break;
  12108. default:
  12109. {
  12110. GGML_ASSERT(false);
  12111. } break;
  12112. }
  12113. }
  12114. // ggml_compute_forward_pad
  12115. static void ggml_compute_forward_pad_f32(
  12116. const struct ggml_compute_params * params,
  12117. struct ggml_tensor * dst) {
  12118. const struct ggml_tensor * src0 = dst->src[0];
  12119. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12120. return;
  12121. }
  12122. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12123. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12124. const int ith = params->ith;
  12125. const int nth = params->nth;
  12126. GGML_TENSOR_UNARY_OP_LOCALS
  12127. float * dst_ptr = (float *) dst->data;
  12128. // TODO: optimize
  12129. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12130. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12131. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12132. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12133. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12134. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12135. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12136. dst_ptr[dst_idx] = *src_ptr;
  12137. } else {
  12138. dst_ptr[dst_idx] = 0;
  12139. }
  12140. }
  12141. }
  12142. }
  12143. }
  12144. }
  12145. static void ggml_compute_forward_pad(
  12146. const struct ggml_compute_params * params,
  12147. struct ggml_tensor * dst) {
  12148. const struct ggml_tensor * src0 = dst->src[0];
  12149. switch (src0->type) {
  12150. case GGML_TYPE_F32:
  12151. {
  12152. ggml_compute_forward_pad_f32(params, dst);
  12153. } break;
  12154. default:
  12155. {
  12156. GGML_ASSERT(false);
  12157. } break;
  12158. }
  12159. }
  12160. // ggml_compute_forward_arange
  12161. static void ggml_compute_forward_arange_f32(
  12162. const struct ggml_compute_params * params,
  12163. struct ggml_tensor * dst) {
  12164. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12165. return;
  12166. }
  12167. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12168. const int ith = params->ith;
  12169. const int nth = params->nth;
  12170. const float start = ggml_get_op_params_f32(dst, 0);
  12171. const float stop = ggml_get_op_params_f32(dst, 1);
  12172. const float step = ggml_get_op_params_f32(dst, 2);
  12173. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12174. GGML_ASSERT(ggml_nelements(dst) == steps);
  12175. for (int64_t i = ith; i < steps; i+= nth) {
  12176. float value = start + step * i;
  12177. ((float *)dst->data)[i] = value;
  12178. }
  12179. }
  12180. static void ggml_compute_forward_arange(
  12181. const struct ggml_compute_params * params,
  12182. struct ggml_tensor * dst) {
  12183. switch (dst->type) {
  12184. case GGML_TYPE_F32:
  12185. {
  12186. ggml_compute_forward_arange_f32(params, dst);
  12187. } break;
  12188. default:
  12189. {
  12190. GGML_ASSERT(false);
  12191. } break;
  12192. }
  12193. }
  12194. static void ggml_compute_forward_timestep_embedding_f32(
  12195. const struct ggml_compute_params * params,
  12196. struct ggml_tensor * dst) {
  12197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12198. return;
  12199. }
  12200. const struct ggml_tensor * src0 = dst->src[0];
  12201. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12202. const int ith = params->ith;
  12203. const int nth = params->nth;
  12204. GGML_TENSOR_UNARY_OP_LOCALS
  12205. const int dim = ggml_get_op_params_i32(dst, 0);
  12206. const int max_period = ggml_get_op_params_i32(dst, 1);
  12207. int half = dim / 2;
  12208. for (int64_t i = 0; i < ne00; i++) {
  12209. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12210. for (int64_t j = ith; j < half; j += nth) {
  12211. float timestep = ((float *)src0->data)[i];
  12212. float freq = (float)expf(-logf(max_period) * j / half);
  12213. float arg = timestep * freq;
  12214. embed_data[j] = cosf(arg);
  12215. embed_data[j + half] = sinf(arg);
  12216. }
  12217. if (dim % 2 != 0 && ith == 0) {
  12218. embed_data[dim] = 0.f;
  12219. }
  12220. }
  12221. }
  12222. static void ggml_compute_forward_timestep_embedding(
  12223. const struct ggml_compute_params * params,
  12224. struct ggml_tensor * dst) {
  12225. const struct ggml_tensor * src0 = dst->src[0];
  12226. switch (src0->type) {
  12227. case GGML_TYPE_F32:
  12228. {
  12229. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12230. } break;
  12231. default:
  12232. {
  12233. GGML_ASSERT(false);
  12234. } break;
  12235. }
  12236. }
  12237. // ggml_compute_forward_argsort
  12238. static void ggml_compute_forward_argsort_f32(
  12239. const struct ggml_compute_params * params,
  12240. struct ggml_tensor * dst) {
  12241. const struct ggml_tensor * src0 = dst->src[0];
  12242. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12243. return;
  12244. }
  12245. GGML_TENSOR_UNARY_OP_LOCALS
  12246. GGML_ASSERT(nb0 == sizeof(float));
  12247. const int ith = params->ith;
  12248. const int nth = params->nth;
  12249. const int64_t nr = ggml_nrows(src0);
  12250. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12251. for (int64_t i = ith; i < nr; i += nth) {
  12252. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12253. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12254. for (int64_t j = 0; j < ne0; j++) {
  12255. dst_data[j] = j;
  12256. }
  12257. // C doesn't have a functional sort, so we do a bubble sort instead
  12258. for (int64_t j = 0; j < ne0; j++) {
  12259. for (int64_t k = j + 1; k < ne0; k++) {
  12260. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12261. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12262. int32_t tmp = dst_data[j];
  12263. dst_data[j] = dst_data[k];
  12264. dst_data[k] = tmp;
  12265. }
  12266. }
  12267. }
  12268. }
  12269. }
  12270. static void ggml_compute_forward_argsort(
  12271. const struct ggml_compute_params * params,
  12272. struct ggml_tensor * dst) {
  12273. const struct ggml_tensor * src0 = dst->src[0];
  12274. switch (src0->type) {
  12275. case GGML_TYPE_F32:
  12276. {
  12277. ggml_compute_forward_argsort_f32(params, dst);
  12278. } break;
  12279. default:
  12280. {
  12281. GGML_ASSERT(false);
  12282. } break;
  12283. }
  12284. }
  12285. // ggml_compute_forward_flash_attn
  12286. static void ggml_compute_forward_flash_attn_f32(
  12287. const struct ggml_compute_params * params,
  12288. const bool masked,
  12289. struct ggml_tensor * dst) {
  12290. const struct ggml_tensor * q = dst->src[0];
  12291. const struct ggml_tensor * k = dst->src[1];
  12292. const struct ggml_tensor * v = dst->src[2];
  12293. int64_t t0 = ggml_perf_time_us();
  12294. UNUSED(t0);
  12295. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12296. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12297. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12298. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12299. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12300. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12301. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12302. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12303. const int ith = params->ith;
  12304. const int nth = params->nth;
  12305. const int64_t D = neq0;
  12306. const int64_t N = neq1;
  12307. const int64_t P = nek1 - N;
  12308. const int64_t M = P + N;
  12309. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12310. GGML_ASSERT(ne0 == D);
  12311. GGML_ASSERT(ne1 == N);
  12312. GGML_ASSERT(P >= 0);
  12313. GGML_ASSERT(nbq0 == sizeof(float));
  12314. GGML_ASSERT(nbk0 == sizeof(float));
  12315. GGML_ASSERT(nbv0 == sizeof(float));
  12316. GGML_ASSERT(neq0 == D);
  12317. GGML_ASSERT(nek0 == D);
  12318. GGML_ASSERT(nev1 == D);
  12319. GGML_ASSERT(neq1 == N);
  12320. GGML_ASSERT(nek1 == N + P);
  12321. GGML_ASSERT(nev1 == D);
  12322. // dst cannot be transposed or permuted
  12323. GGML_ASSERT(nb0 == sizeof(float));
  12324. GGML_ASSERT(nb0 <= nb1);
  12325. GGML_ASSERT(nb1 <= nb2);
  12326. GGML_ASSERT(nb2 <= nb3);
  12327. if (params->type == GGML_TASK_TYPE_INIT) {
  12328. return;
  12329. }
  12330. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12331. return;
  12332. }
  12333. // parallelize by q rows using ggml_vec_dot_f32
  12334. // total rows in q
  12335. const int nr = neq1*neq2*neq3;
  12336. // rows per thread
  12337. const int dr = (nr + nth - 1)/nth;
  12338. // row range for this thread
  12339. const int ir0 = dr*ith;
  12340. const int ir1 = MIN(ir0 + dr, nr);
  12341. const float scale = 1.0f/sqrtf(D);
  12342. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12343. for (int ir = ir0; ir < ir1; ++ir) {
  12344. // q indices
  12345. const int iq3 = ir/(neq2*neq1);
  12346. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12347. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12348. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12349. for (int i = M; i < Mup; ++i) {
  12350. S[i] = -INFINITY;
  12351. }
  12352. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12353. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12354. // k indices
  12355. const int ik3 = iq3;
  12356. const int ik2 = iq2 % nek2;
  12357. const int ik1 = ic;
  12358. // S indices
  12359. const int i1 = ik1;
  12360. ggml_vec_dot_f32(neq0,
  12361. S + i1, 0,
  12362. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12363. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12364. }
  12365. // scale
  12366. ggml_vec_scale_f32(masked_begin, S, scale);
  12367. for (int64_t i = masked_begin; i < M; i++) {
  12368. S[i] = -INFINITY;
  12369. }
  12370. // softmax
  12371. // exclude known -INF S[..] values from max and loop
  12372. // dont forget to set their SW values to zero
  12373. {
  12374. float max = -INFINITY;
  12375. ggml_vec_max_f32(masked_begin, &max, S);
  12376. ggml_float sum = 0.0;
  12377. {
  12378. #ifdef GGML_SOFT_MAX_ACCELERATE
  12379. max = -max;
  12380. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12381. vvexpf(S, S, &Mup);
  12382. ggml_vec_sum_f32(Mup, &sum, S);
  12383. #else
  12384. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12385. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12386. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12387. if (i >= masked_begin) {
  12388. break;
  12389. }
  12390. float * SS = S + i;
  12391. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12392. if (i + j >= masked_begin) {
  12393. break;
  12394. } else if (SS[j] == -INFINITY) {
  12395. SS[j] = 0.0f;
  12396. } else {
  12397. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12398. const float val = expf(SS[j] - max);
  12399. #else
  12400. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12401. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12402. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12403. #endif
  12404. sump[j] += (ggml_float)val;
  12405. SS[j] = val;
  12406. }
  12407. }
  12408. }
  12409. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12410. sum += sump[i];
  12411. }
  12412. #endif
  12413. }
  12414. assert(sum > 0.0);
  12415. sum = 1.0/sum;
  12416. ggml_vec_scale_f32(masked_begin, S, sum);
  12417. #ifndef NDEBUG
  12418. for (int i = 0; i < masked_begin; ++i) {
  12419. assert(!isnan(S[i]));
  12420. assert(!isinf(S[i]));
  12421. }
  12422. #endif
  12423. }
  12424. for (int64_t ic = 0; ic < nev1; ++ic) {
  12425. // dst indices
  12426. const int i1 = iq1;
  12427. const int i2 = iq2;
  12428. const int i3 = iq3;
  12429. // v indices
  12430. const int iv2 = iq2 % nev2;
  12431. const int iv3 = iq3;
  12432. ggml_vec_dot_f32(masked_begin,
  12433. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12434. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12435. S, 0, 1);
  12436. }
  12437. }
  12438. }
  12439. static void ggml_compute_forward_flash_attn_f16(
  12440. const struct ggml_compute_params * params,
  12441. const bool masked,
  12442. struct ggml_tensor * dst) {
  12443. const struct ggml_tensor * q = dst->src[0];
  12444. const struct ggml_tensor * k = dst->src[1];
  12445. const struct ggml_tensor * v = dst->src[2];
  12446. int64_t t0 = ggml_perf_time_us();
  12447. UNUSED(t0);
  12448. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12449. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12450. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12451. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12452. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12453. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12454. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12455. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12456. const int ith = params->ith;
  12457. const int nth = params->nth;
  12458. const int64_t D = neq0;
  12459. const int64_t N = neq1;
  12460. const int64_t P = nek1 - N;
  12461. const int64_t M = P + N;
  12462. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12463. GGML_ASSERT(ne0 == D);
  12464. GGML_ASSERT(ne1 == N);
  12465. GGML_ASSERT(P >= 0);
  12466. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12467. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12468. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12469. GGML_ASSERT(neq0 == D);
  12470. GGML_ASSERT(nek0 == D);
  12471. GGML_ASSERT(nev1 == D);
  12472. GGML_ASSERT(neq1 == N);
  12473. GGML_ASSERT(nek1 == N + P);
  12474. GGML_ASSERT(nev1 == D);
  12475. // dst cannot be transposed or permuted
  12476. GGML_ASSERT(nb0 == sizeof(float));
  12477. GGML_ASSERT(nb0 <= nb1);
  12478. GGML_ASSERT(nb1 <= nb2);
  12479. GGML_ASSERT(nb2 <= nb3);
  12480. if (params->type == GGML_TASK_TYPE_INIT) {
  12481. return;
  12482. }
  12483. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12484. return;
  12485. }
  12486. // parallelize by q rows using ggml_vec_dot_f32
  12487. // total rows in q
  12488. const int nr = neq1*neq2*neq3;
  12489. // rows per thread
  12490. const int dr = (nr + nth - 1)/nth;
  12491. // row range for this thread
  12492. const int ir0 = dr*ith;
  12493. const int ir1 = MIN(ir0 + dr, nr);
  12494. const float scale = 1.0f/sqrtf(D);
  12495. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12496. for (int ir = ir0; ir < ir1; ++ir) {
  12497. // q indices
  12498. const int iq3 = ir/(neq2*neq1);
  12499. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12500. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12501. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12502. for (int i = M; i < Mup; ++i) {
  12503. S[i] = -INFINITY;
  12504. }
  12505. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12506. for (int64_t ic = 0; ic < nek1; ++ic) {
  12507. // k indices
  12508. const int ik3 = iq3;
  12509. const int ik2 = iq2 % nek2;
  12510. const int ik1 = ic;
  12511. // S indices
  12512. const int i1 = ik1;
  12513. ggml_vec_dot_f16(neq0,
  12514. S + i1, 0,
  12515. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12516. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12517. }
  12518. } else {
  12519. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12520. // k indices
  12521. const int ik3 = iq3;
  12522. const int ik2 = iq2 % nek2;
  12523. const int ik1 = ic;
  12524. // S indices
  12525. const int i1 = ik1;
  12526. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12527. S + i1,
  12528. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12529. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12530. }
  12531. }
  12532. // scale
  12533. ggml_vec_scale_f32(nek1, S, scale);
  12534. if (masked) {
  12535. for (int64_t i = P; i < M; i++) {
  12536. if (i > P + iq1) {
  12537. S[i] = -INFINITY;
  12538. }
  12539. }
  12540. }
  12541. // softmax
  12542. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12543. // dont forget to set their S values to zero
  12544. {
  12545. float max = -INFINITY;
  12546. ggml_vec_max_f32(M, &max, S);
  12547. ggml_float sum = 0.0;
  12548. {
  12549. #ifdef GGML_SOFT_MAX_ACCELERATE
  12550. max = -max;
  12551. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12552. vvexpf(S, S, &Mup);
  12553. ggml_vec_sum_f32(Mup, &sum, S);
  12554. #else
  12555. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12556. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12557. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12558. float * SS = S + i;
  12559. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12560. if (SS[j] == -INFINITY) {
  12561. SS[j] = 0.0f;
  12562. } else {
  12563. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12564. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12565. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  12566. sump[j] += (ggml_float)val;
  12567. SS[j] = val;
  12568. }
  12569. }
  12570. }
  12571. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12572. sum += sump[i];
  12573. }
  12574. #endif
  12575. }
  12576. assert(sum > 0.0);
  12577. sum = 1.0/sum;
  12578. ggml_vec_scale_f32(M, S, sum);
  12579. #ifndef NDEBUG
  12580. for (int i = 0; i < M; ++i) {
  12581. assert(!isnan(S[i]));
  12582. assert(!isinf(S[i]));
  12583. }
  12584. #endif
  12585. }
  12586. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12587. for (int64_t i = 0; i < M; i++) {
  12588. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12589. }
  12590. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12591. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12592. for (int64_t ic = 0; ic < nev1; ++ic) {
  12593. // dst indices
  12594. const int i1 = iq1;
  12595. const int i2 = iq2;
  12596. const int i3 = iq3;
  12597. // v indices
  12598. const int iv2 = iq2 % nev2;
  12599. const int iv3 = iq3;
  12600. ggml_vec_dot_f16(nev0,
  12601. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12602. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  12603. S16, 0, 1);
  12604. }
  12605. } else {
  12606. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12607. // dst indices
  12608. const int i1 = iq1;
  12609. const int i2 = iq2;
  12610. const int i3 = iq3;
  12611. // v indices
  12612. const int iv2 = iq2 % nev2;
  12613. const int iv3 = iq3;
  12614. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12615. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12616. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12617. S16);
  12618. }
  12619. }
  12620. }
  12621. }
  12622. static void ggml_compute_forward_flash_attn(
  12623. const struct ggml_compute_params * params,
  12624. const bool masked,
  12625. struct ggml_tensor * dst) {
  12626. const struct ggml_tensor * q = dst->src[0];
  12627. switch (q->type) {
  12628. case GGML_TYPE_F16:
  12629. {
  12630. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  12631. } break;
  12632. case GGML_TYPE_F32:
  12633. {
  12634. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  12635. } break;
  12636. default:
  12637. {
  12638. GGML_ASSERT(false);
  12639. } break;
  12640. }
  12641. }
  12642. // ggml_compute_forward_flash_attn_ext
  12643. static void ggml_compute_forward_flash_attn_ext_f16(
  12644. const struct ggml_compute_params * params,
  12645. const struct ggml_tensor * q,
  12646. const struct ggml_tensor * k,
  12647. const struct ggml_tensor * v,
  12648. const struct ggml_tensor * mask,
  12649. struct ggml_tensor * dst) {
  12650. int64_t t0 = ggml_perf_time_us();
  12651. UNUSED(t0);
  12652. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12653. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12654. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12655. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12656. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12657. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12658. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12659. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12660. const int ith = params->ith;
  12661. const int nth = params->nth;
  12662. const int64_t D = neq0;
  12663. const int64_t N = neq1;
  12664. GGML_ASSERT(ne0 == D);
  12665. GGML_ASSERT(ne2 == N);
  12666. GGML_ASSERT(nbq0 == sizeof(float));
  12667. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12668. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12669. GGML_ASSERT(neq0 == D);
  12670. GGML_ASSERT(nek0 == D);
  12671. GGML_ASSERT(nev0 == D);
  12672. GGML_ASSERT(neq1 == N);
  12673. GGML_ASSERT(nev0 == D);
  12674. // dst cannot be transposed or permuted
  12675. GGML_ASSERT(nb0 == sizeof(float));
  12676. GGML_ASSERT(nb0 <= nb1);
  12677. GGML_ASSERT(nb1 <= nb2);
  12678. GGML_ASSERT(nb2 <= nb3);
  12679. // broadcast factors
  12680. const int64_t rk2 = neq2/nek2;
  12681. const int64_t rk3 = neq3/nek3;
  12682. const int64_t rv2 = neq2/nev2;
  12683. const int64_t rv3 = neq3/nev3;
  12684. if (params->type == GGML_TASK_TYPE_INIT) {
  12685. return;
  12686. }
  12687. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12688. return;
  12689. }
  12690. // parallelize by q rows using ggml_vec_dot_f32
  12691. // total rows in q
  12692. const int nr = neq1*neq2*neq3;
  12693. // rows per thread
  12694. const int dr = (nr + nth - 1)/nth;
  12695. // row range for this thread
  12696. const int ir0 = dr*ith;
  12697. const int ir1 = MIN(ir0 + dr, nr);
  12698. float scale = 1.0f;
  12699. float max_bias = 0.0f;
  12700. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12701. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12702. const uint32_t n_head = neq2;
  12703. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12704. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12705. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12706. // loop over n_batch and n_head
  12707. for (int ir = ir0; ir < ir1; ++ir) {
  12708. // q indices
  12709. const int iq3 = ir/(neq2*neq1);
  12710. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12711. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12712. const uint32_t h = iq2; // head
  12713. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12714. float S = 0.0f;
  12715. float M = -INFINITY;
  12716. float * V32 = (float *) params->wdata + ith*(2*D + CACHE_LINE_SIZE_F32);
  12717. ggml_fp16_t * Q16 = (ggml_fp16_t *) (V32); // reuse memory
  12718. ggml_fp16_t * V16 = (ggml_fp16_t *) (V32 + D);
  12719. memset(V16, 0, D*sizeof(ggml_fp16_t));
  12720. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12721. // k indices
  12722. const int ik3 = iq3 / rk3;
  12723. const int ik2 = iq2 / rk2;
  12724. // v indices
  12725. const int iv3 = iq3 / rv3;
  12726. const int iv2 = iq2 / rv2;
  12727. // online softmax / attention
  12728. // loop over n_kv and n_head_kv
  12729. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12730. for (int64_t ic = 0; ic < nek1; ++ic) {
  12731. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12732. if (mv == -INFINITY) {
  12733. continue;
  12734. }
  12735. float s;
  12736. // convert Q to F16 in V32
  12737. {
  12738. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12739. for (int64_t d = 0; d < D; ++d) {
  12740. Q16[d] = GGML_FP32_TO_FP16(pq[d]);
  12741. }
  12742. }
  12743. ggml_vec_dot_f16(D,
  12744. &s, 0,
  12745. (ggml_fp16_t *) ((char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12746. Q16, 0, 1);
  12747. s = s*scale + mv;
  12748. const float Mold = M;
  12749. float ms = 1.0f;
  12750. float vs = 1.0f;
  12751. if (s > M) {
  12752. M = s;
  12753. ms = expf(Mold - M);
  12754. // V = V*expf(Mold - M)
  12755. ggml_vec_scale_f16(D, V16, ms);
  12756. } else {
  12757. vs = expf(s - M);
  12758. }
  12759. const ggml_fp16_t * v16 = (const ggml_fp16_t *) ((char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12760. // V += v*expf(s - M)
  12761. ggml_vec_mad_f16(D, V16, v16, vs);
  12762. S = S*ms + vs;
  12763. }
  12764. // V /= S
  12765. for (int64_t d = 0; d < D; ++d) {
  12766. V32[d] = GGML_FP16_TO_FP32(V16[d])/S;
  12767. }
  12768. // dst indices
  12769. const int i1 = iq1;
  12770. const int i2 = iq2;
  12771. const int i3 = iq3;
  12772. // original
  12773. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12774. // permute(0, 2, 1, 3)
  12775. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, V32, nb1);
  12776. }
  12777. }
  12778. static void ggml_compute_forward_flash_attn_ext(
  12779. const struct ggml_compute_params * params,
  12780. const struct ggml_tensor * q,
  12781. const struct ggml_tensor * k,
  12782. const struct ggml_tensor * v,
  12783. const struct ggml_tensor * mask,
  12784. struct ggml_tensor * dst) {
  12785. switch (dst->op_params[2]) {
  12786. case GGML_PREC_DEFAULT:
  12787. case GGML_PREC_F32:
  12788. {
  12789. // uses F32 accumulators
  12790. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12791. } break;
  12792. default:
  12793. {
  12794. GGML_ASSERT(false);
  12795. } break;
  12796. }
  12797. }
  12798. // ggml_compute_forward_flash_ff
  12799. static void ggml_compute_forward_flash_ff_f16(
  12800. const struct ggml_compute_params * params,
  12801. struct ggml_tensor * dst) {
  12802. const struct ggml_tensor * a = dst->src[0]; // F16
  12803. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  12804. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  12805. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  12806. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  12807. int64_t t0 = ggml_perf_time_us();
  12808. UNUSED(t0);
  12809. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12810. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12811. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12812. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12813. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12814. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12815. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12816. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12817. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12818. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12819. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12820. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12821. const int ith = params->ith;
  12822. const int nth = params->nth;
  12823. const int64_t D = nea0;
  12824. //const int64_t N = nea1;
  12825. const int64_t M = neb01;
  12826. GGML_ASSERT(ne0 == nea0);
  12827. GGML_ASSERT(ne1 == nea1);
  12828. GGML_ASSERT(ne2 == nea2);
  12829. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12830. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12831. GGML_ASSERT(nbb10 == sizeof(float));
  12832. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12833. GGML_ASSERT(nbc10 == sizeof(float));
  12834. GGML_ASSERT(neb00 == D);
  12835. GGML_ASSERT(neb01 == M);
  12836. GGML_ASSERT(neb10 == M);
  12837. GGML_ASSERT(neb11 == 1);
  12838. GGML_ASSERT(nec00 == M);
  12839. GGML_ASSERT(nec01 == D);
  12840. GGML_ASSERT(nec10 == D);
  12841. GGML_ASSERT(nec11 == 1);
  12842. // dst cannot be transposed or permuted
  12843. GGML_ASSERT(nb0 == sizeof(float));
  12844. GGML_ASSERT(nb0 <= nb1);
  12845. GGML_ASSERT(nb1 <= nb2);
  12846. GGML_ASSERT(nb2 <= nb3);
  12847. if (params->type == GGML_TASK_TYPE_INIT) {
  12848. return;
  12849. }
  12850. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12851. return;
  12852. }
  12853. // parallelize by a rows using ggml_vec_dot_f32
  12854. // total rows in a
  12855. const int nr = nea1*nea2*nea3;
  12856. // rows per thread
  12857. const int dr = (nr + nth - 1)/nth;
  12858. // row range for this thread
  12859. const int ir0 = dr*ith;
  12860. const int ir1 = MIN(ir0 + dr, nr);
  12861. for (int ir = ir0; ir < ir1; ++ir) {
  12862. // a indices
  12863. const int ia3 = ir/(nea2*nea1);
  12864. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12865. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12866. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12867. for (int64_t ic = 0; ic < neb01; ++ic) {
  12868. // b0 indices
  12869. const int ib03 = ia3;
  12870. const int ib02 = ia2;
  12871. const int ib01 = ic;
  12872. // S indices
  12873. const int i1 = ib01;
  12874. ggml_vec_dot_f16(nea0,
  12875. S + i1, 0,
  12876. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  12877. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  12878. }
  12879. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12880. //ggml_vec_gelu_f32(neb01, S, S);
  12881. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12882. for (int64_t i = 0; i < M; i++) {
  12883. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12884. }
  12885. ggml_vec_gelu_f16(neb01, S16, S16);
  12886. {
  12887. // dst indices
  12888. const int i1 = ia1;
  12889. const int i2 = ia2;
  12890. const int i3 = ia3;
  12891. for (int64_t ic = 0; ic < nec01; ++ic) {
  12892. ggml_vec_dot_f16(neb01,
  12893. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  12894. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  12895. S16, 0, 1);
  12896. }
  12897. ggml_vec_add_f32(nec01,
  12898. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12899. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12900. (float *) c1->data);
  12901. }
  12902. }
  12903. }
  12904. static void ggml_compute_forward_flash_ff(
  12905. const struct ggml_compute_params * params,
  12906. struct ggml_tensor * dst) {
  12907. const struct ggml_tensor * b0 = dst->src[1];
  12908. switch (b0->type) {
  12909. case GGML_TYPE_F16:
  12910. {
  12911. ggml_compute_forward_flash_ff_f16(params, dst);
  12912. } break;
  12913. case GGML_TYPE_F32:
  12914. {
  12915. GGML_ASSERT(false); // TODO
  12916. } break;
  12917. default:
  12918. {
  12919. GGML_ASSERT(false);
  12920. } break;
  12921. }
  12922. }
  12923. // ggml_compute_forward_flash_attn_back
  12924. static void ggml_compute_forward_flash_attn_back_f32(
  12925. const struct ggml_compute_params * params,
  12926. const bool masked,
  12927. struct ggml_tensor * dst) {
  12928. const struct ggml_tensor * q = dst->src[0];
  12929. const struct ggml_tensor * k = dst->src[1];
  12930. const struct ggml_tensor * v = dst->src[2];
  12931. const struct ggml_tensor * d = dst->src[3];
  12932. int64_t t0 = ggml_perf_time_us();
  12933. UNUSED(t0);
  12934. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12935. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12936. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12937. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12938. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12939. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12940. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12941. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12942. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12943. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12944. const int ith = params->ith;
  12945. const int nth = params->nth;
  12946. const int64_t D = neq0;
  12947. const int64_t N = neq1;
  12948. const int64_t P = nek1 - N;
  12949. const int64_t M = P + N;
  12950. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12951. const int mxDM = MAX(D, Mup);
  12952. // GGML_ASSERT(ne0 == D);
  12953. // GGML_ASSERT(ne1 == N);
  12954. GGML_ASSERT(P >= 0);
  12955. GGML_ASSERT(nbq0 == sizeof(float));
  12956. GGML_ASSERT(nbk0 == sizeof(float));
  12957. GGML_ASSERT(nbv0 == sizeof(float));
  12958. GGML_ASSERT(neq0 == D);
  12959. GGML_ASSERT(nek0 == D);
  12960. GGML_ASSERT(nev1 == D);
  12961. GGML_ASSERT(ned0 == D);
  12962. GGML_ASSERT(neq1 == N);
  12963. GGML_ASSERT(nek1 == N + P);
  12964. GGML_ASSERT(nev1 == D);
  12965. GGML_ASSERT(ned1 == N);
  12966. // dst cannot be transposed or permuted
  12967. GGML_ASSERT(nb0 == sizeof(float));
  12968. GGML_ASSERT(nb0 <= nb1);
  12969. GGML_ASSERT(nb1 <= nb2);
  12970. GGML_ASSERT(nb2 <= nb3);
  12971. if (params->type == GGML_TASK_TYPE_INIT) {
  12972. if (ith == 0) {
  12973. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12974. }
  12975. return;
  12976. }
  12977. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12978. return;
  12979. }
  12980. const int64_t elem_q = ggml_nelements(q);
  12981. const int64_t elem_k = ggml_nelements(k);
  12982. enum ggml_type result_type = dst->type;
  12983. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12984. const size_t tsize = ggml_type_size(result_type);
  12985. const size_t offs_q = 0;
  12986. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12987. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12988. void * grad_q = (char *) dst->data;
  12989. void * grad_k = (char *) dst->data + offs_k;
  12990. void * grad_v = (char *) dst->data + offs_v;
  12991. const size_t nbgq1 = nb0*neq0;
  12992. const size_t nbgq2 = nb0*neq0*neq1;
  12993. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12994. const size_t nbgk1 = nb0*nek0;
  12995. const size_t nbgk2 = nb0*nek0*nek1;
  12996. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12997. const size_t nbgv1 = nb0*nev0;
  12998. const size_t nbgv2 = nb0*nev0*nev1;
  12999. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  13000. // parallelize by k rows using ggml_vec_dot_f32
  13001. // total rows in k
  13002. const int nr = nek2*nek3;
  13003. // rows per thread
  13004. const int dr = (nr + nth - 1)/nth;
  13005. // row range for this thread
  13006. const int ir0 = dr*ith;
  13007. const int ir1 = MIN(ir0 + dr, nr);
  13008. const float scale = 1.0f/sqrtf(D);
  13009. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  13010. // how often k2 (and v2) is repeated in q2
  13011. int nrep = neq2/nek2;
  13012. for (int ir = ir0; ir < ir1; ++ir) {
  13013. // q indices
  13014. const int ik3 = ir/(nek2);
  13015. const int ik2 = ir - ik3*nek2;
  13016. const int iq3 = ik3;
  13017. const int id3 = ik3;
  13018. const int iv3 = ik3;
  13019. const int iv2 = ik2;
  13020. for (int irep = 0; irep < nrep; ++irep) {
  13021. const int iq2 = ik2 + irep*nek2;
  13022. const int id2 = iq2;
  13023. // (ik2 + irep*nek2) % nek2 == ik2
  13024. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13025. const int id1 = iq1;
  13026. // not sure about CACHE_LINE_SIZE_F32..
  13027. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13028. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13029. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13030. for (int i = M; i < Mup; ++i) {
  13031. S[i] = -INFINITY;
  13032. }
  13033. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13034. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13035. // k indices
  13036. const int ik1 = ic;
  13037. // S indices
  13038. const int i1 = ik1;
  13039. ggml_vec_dot_f32(neq0,
  13040. S + i1, 0,
  13041. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13042. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13043. }
  13044. // scale
  13045. ggml_vec_scale_f32(masked_begin, S, scale);
  13046. for (int64_t i = masked_begin; i < M; i++) {
  13047. S[i] = -INFINITY;
  13048. }
  13049. // softmax
  13050. // exclude known -INF S[..] values from max and loop
  13051. // dont forget to set their SM values to zero
  13052. {
  13053. float max = -INFINITY;
  13054. ggml_vec_max_f32(masked_begin, &max, S);
  13055. ggml_float sum = 0.0;
  13056. {
  13057. #ifdef GGML_SOFT_MAX_ACCELERATE
  13058. max = -max;
  13059. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13060. vvexpf(SM, SM, &Mup);
  13061. ggml_vec_sum_f32(Mup, &sum, SM);
  13062. #else
  13063. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  13064. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  13065. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  13066. if (i >= masked_begin) {
  13067. break;
  13068. }
  13069. float * SR = S + i;
  13070. float * SW = SM + i;
  13071. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  13072. if (i + j >= masked_begin) {
  13073. break;
  13074. } else if (SR[j] == -INFINITY) {
  13075. SW[j] = 0.0f;
  13076. } else {
  13077. #ifndef GGML_FLASH_ATTN_EXP_FP16
  13078. const float val = expf(SR[j] - max);
  13079. #else
  13080. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  13081. memcpy(&scvt[j], &s, sizeof(uint16_t));
  13082. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  13083. #endif
  13084. sump[j] += (ggml_float)val;
  13085. SW[j] = val;
  13086. }
  13087. }
  13088. }
  13089. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  13090. sum += sump[i];
  13091. }
  13092. #endif
  13093. }
  13094. assert(sum > 0.0);
  13095. sum = 1.0/sum;
  13096. ggml_vec_scale_f32(masked_begin, SM, sum);
  13097. }
  13098. // step-by-step explanation
  13099. {
  13100. // forward-process shape grads from backward process
  13101. // parallel_for ik2,ik3:
  13102. // for irep:
  13103. // iq2 = ik2 + irep*nek2
  13104. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13105. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13106. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13107. // for iq1:
  13108. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13109. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13110. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13111. // S0 = -Inf [D,1,1,1]
  13112. // ~S1[i] = dot(kcur[:D,i], qcur)
  13113. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13114. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13115. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13116. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13117. // ~S5[i] = dot(vcur[:,i], S4)
  13118. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13119. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13120. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13121. // dst backward-/ grad[dst] = d
  13122. //
  13123. // output gradients with their dependencies:
  13124. //
  13125. // grad[kcur] = grad[S1].T @ qcur
  13126. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13127. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13128. // grad[S4] = grad[S5] @ vcur
  13129. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13130. // grad[qcur] = grad[S1] @ kcur
  13131. // grad[vcur] = grad[S5].T @ S4
  13132. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13133. //
  13134. // in post-order:
  13135. //
  13136. // S1 = qcur @ kcur.T
  13137. // S2 = S1 * scale
  13138. // S3 = diag_mask_inf(S2, P)
  13139. // S4 = softmax(S3)
  13140. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13141. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13142. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13143. // grad[qcur] = grad[S1] @ kcur
  13144. // grad[kcur] = grad[S1].T @ qcur
  13145. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13146. //
  13147. // using less variables (SM=S4):
  13148. //
  13149. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13150. // SM = softmax(S)
  13151. // S = d[:D,iq1,iq2,iq3] @ vcur
  13152. // dot_SM_gradSM = dot(SM, S)
  13153. // S = SM * (S - dot(SM, S))
  13154. // S = diag_mask_zero(S, P) * scale
  13155. //
  13156. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13157. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13158. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13159. }
  13160. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13161. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13162. // for ic:
  13163. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13164. // exclude known future zero S[..] values from operation
  13165. ggml_vec_set_f32(masked_begin, S, 0);
  13166. for (int64_t ic = 0; ic < D; ++ic) {
  13167. ggml_vec_mad_f32(masked_begin,
  13168. S,
  13169. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13170. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13171. }
  13172. // S = SM * (S - dot(SM, S))
  13173. float dot_SM_gradSM = 0;
  13174. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13175. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13176. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13177. // S = diag_mask_zero(S, P) * scale
  13178. // already done by above ggml_vec_set_f32
  13179. // exclude known zero S[..] values from operation
  13180. ggml_vec_scale_f32(masked_begin, S, scale);
  13181. // S shape [M,1]
  13182. // SM shape [M,1]
  13183. // kcur shape [D,M]
  13184. // qcur shape [D,1]
  13185. // vcur shape [M,D]
  13186. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13187. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13188. // for ic:
  13189. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13190. // exclude known zero S[..] values from loop
  13191. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13192. ggml_vec_mad_f32(D,
  13193. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13194. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13195. S[ic]);
  13196. }
  13197. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13198. // for ic:
  13199. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13200. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13201. // exclude known zero S[..] values from loop
  13202. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13203. ggml_vec_mad_f32(D,
  13204. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13205. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13206. S[ic]);
  13207. }
  13208. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13209. // for ic:
  13210. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13211. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13212. // exclude known zero SM[..] values from mad
  13213. for (int64_t ic = 0; ic < D; ++ic) {
  13214. ggml_vec_mad_f32(masked_begin,
  13215. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13216. SM,
  13217. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13218. }
  13219. }
  13220. }
  13221. }
  13222. }
  13223. static void ggml_compute_forward_flash_attn_back(
  13224. const struct ggml_compute_params * params,
  13225. const bool masked,
  13226. struct ggml_tensor * dst) {
  13227. const struct ggml_tensor * q = dst->src[0];
  13228. switch (q->type) {
  13229. case GGML_TYPE_F32:
  13230. {
  13231. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13232. } break;
  13233. default:
  13234. {
  13235. GGML_ASSERT(false);
  13236. } break;
  13237. }
  13238. }
  13239. // ggml_compute_forward_ssm_conv
  13240. static void ggml_compute_forward_ssm_conv_f32(
  13241. const struct ggml_compute_params * params,
  13242. struct ggml_tensor * dst) {
  13243. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13244. return;
  13245. }
  13246. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13247. const struct ggml_tensor * src1 = dst->src[1]; // x
  13248. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13249. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13250. const int ith = params->ith;
  13251. const int nth = params->nth;
  13252. const int nc = src2->ne[0]; // d_conv
  13253. const int nr = src0->ne[1]; // d_inner
  13254. const int n_t = src1->ne[1]; // n_tokens
  13255. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13256. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13257. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13258. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13259. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13260. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13261. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13262. // for use with the destination state offset between sequences
  13263. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13264. // rows per thread
  13265. const int dr = (nr + nth - 1)/nth;
  13266. // row range for this thread
  13267. const int ir0 = dr*ith;
  13268. const int ir1 = MIN(ir0 + dr, nr);
  13269. const int ir = ir1 - ir0;
  13270. if (n_kv > 1) {
  13271. // multiple sequences means it's hard to know when it's the first time a state is read,
  13272. // so copy them all over to the destination, just to be sure.
  13273. for (int i3 = 0; i3 < n_kv; ++i3) {
  13274. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13275. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13276. // can't use memcpy because of d_conv vs d_conv - 1
  13277. for (int i1 = 0; i1 < ir; ++i1) {
  13278. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13279. // copy s0 to last (d_conv - 1) columns of s
  13280. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13281. }
  13282. }
  13283. }
  13284. }
  13285. for (int i2 = 0; i2 < n_t; ++i2) {
  13286. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13287. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13288. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13289. float * s0; // {d_conv - 1, d_inner, n_kv}
  13290. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13291. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13292. int ne0s0;
  13293. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13294. // avoid needing to copy the state for the first token
  13295. if (i2 == 0) {
  13296. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13297. ne0s0 = src0->ne[0];
  13298. } else {
  13299. // the source is the last (d_conv - 1) columns of the destination
  13300. s0 = s + 1;
  13301. ne0s0 = nc;
  13302. }
  13303. // d_inner
  13304. for (int i1 = 0; i1 < ir; ++i1) {
  13305. // shift state left
  13306. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13307. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13308. }
  13309. // insert x on the last column
  13310. s[(nc - 1) + i1*nc] = x0[i1];
  13311. }
  13312. // handle copies when there are multiple output states
  13313. for (int i3 = 1; i3 < n_kv; ++i3) {
  13314. int32_t seq = sq[i3];
  13315. if (0 <= seq && seq < n_kv) {
  13316. float * s1 = s + (seq - sq[0])*nc*nr;
  13317. memcpy(s1, s, nc*ir*sizeof(float));
  13318. } else {
  13319. // stop at negative or too big seq_ids
  13320. break;
  13321. }
  13322. }
  13323. // it seems a little faster when this is separate from the state shift
  13324. for (int i1 = 0; i1 < ir; ++i1) {
  13325. // rowwise dot product
  13326. float sumf = 0.0f;
  13327. for (int i0 = 0; i0 < nc; ++i0) {
  13328. int i = i0 + i1*nc;
  13329. sumf += s[i] * c[i];
  13330. }
  13331. x[i1] = sumf;
  13332. }
  13333. }
  13334. }
  13335. static void ggml_compute_forward_ssm_conv(
  13336. const struct ggml_compute_params * params,
  13337. struct ggml_tensor * dst) {
  13338. switch (dst->src[0]->type) {
  13339. case GGML_TYPE_F32:
  13340. {
  13341. ggml_compute_forward_ssm_conv_f32(params, dst);
  13342. } break;
  13343. default:
  13344. {
  13345. GGML_ASSERT(false);
  13346. } break;
  13347. }
  13348. }
  13349. // ggml_compute_forward_ssm_scan
  13350. static void ggml_compute_forward_ssm_scan_f32(
  13351. const struct ggml_compute_params * params,
  13352. struct ggml_tensor * dst) {
  13353. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13354. return;
  13355. }
  13356. const struct ggml_tensor * src0 = dst->src[0]; // s
  13357. const struct ggml_tensor * src1 = dst->src[1]; // x
  13358. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13359. const struct ggml_tensor * src3 = dst->src[3]; // A
  13360. const struct ggml_tensor * src4 = dst->src[4]; // B
  13361. const struct ggml_tensor * src5 = dst->src[5]; // C
  13362. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13363. const int ith = params->ith;
  13364. const int nth = params->nth;
  13365. const int64_t nc = src0->ne[0]; // d_state
  13366. const int64_t nr = src0->ne[1]; // d_inner
  13367. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13368. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13369. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13370. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13371. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13372. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13373. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13374. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13375. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13376. // required for the dot product between s and C, and when copying the states
  13377. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13378. // required for per-sequence offsets for states
  13379. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13380. // required to get correct offset for state destination (i.e. src1->nb[2])
  13381. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13382. // rows per thread
  13383. const int dr = (nr + nth - 1)/nth;
  13384. // row range for this thread
  13385. const int ir0 = dr*ith;
  13386. const int ir1 = MIN(ir0 + dr, nr);
  13387. const int ir = ir1 - ir0;
  13388. if (n_kv > 1) {
  13389. // it's hard to know if the source states have already been copied
  13390. // when there are multiple, so copy them already.
  13391. for (int i3 = 0; i3 < n_kv; ++i3) {
  13392. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13393. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13394. memcpy(s, s0, nc*ir*sizeof(float));
  13395. }
  13396. }
  13397. for (int i2 = 0; i2 < n_t; ++i2) {
  13398. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13399. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13400. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13401. float * s0;
  13402. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13403. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13404. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13405. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13406. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13407. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13408. // avoid needing to copy the state for the first token
  13409. if (i2 == 0) {
  13410. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13411. } else {
  13412. // otherwise the source is the same as the destination
  13413. s0 = s;
  13414. }
  13415. // d_inner
  13416. for (int i1 = 0; i1 < ir; ++i1) {
  13417. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13418. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13419. float x_dt = x[i1] * dt_soft_plus;
  13420. float sumf = 0.0f;
  13421. // d_state
  13422. for (int i0 = 0; i0 < nc; ++i0) {
  13423. int i = i0 + i1*nc;
  13424. // state = prev_state * dA + dB * x
  13425. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13426. // y = rowwise_dotprod(state, C)
  13427. sumf += state * C[i0];
  13428. s[i] = state;
  13429. }
  13430. y[i1] = sumf;
  13431. }
  13432. // handle copies when there are multiple output states
  13433. for (int i3 = 1; i3 < n_kv; ++i3) {
  13434. int32_t seq = sq[i3];
  13435. if (0 <= seq && seq < n_kv) {
  13436. float * s1 = s + (seq - sq[0])*nc*nr;
  13437. memcpy(s1, s, nc*ir*sizeof(float));
  13438. } else {
  13439. // stop at negative or too big seq_ids
  13440. break;
  13441. }
  13442. }
  13443. }
  13444. }
  13445. static void ggml_compute_forward_ssm_scan(
  13446. const struct ggml_compute_params * params,
  13447. struct ggml_tensor * dst) {
  13448. switch (dst->src[0]->type) {
  13449. case GGML_TYPE_F32:
  13450. {
  13451. ggml_compute_forward_ssm_scan_f32(params, dst);
  13452. } break;
  13453. default:
  13454. {
  13455. GGML_ASSERT(false);
  13456. } break;
  13457. }
  13458. }
  13459. // ggml_compute_forward_win_part
  13460. static void ggml_compute_forward_win_part_f32(
  13461. const struct ggml_compute_params * params,
  13462. struct ggml_tensor * dst) {
  13463. const struct ggml_tensor * src0 = dst->src[0];
  13464. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13465. return;
  13466. }
  13467. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13468. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13469. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13470. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13471. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13472. assert(ne00 == ne0);
  13473. assert(ne3 == nep0*nep1);
  13474. // TODO: optimize / multi-thread
  13475. for (int py = 0; py < nep1; ++py) {
  13476. for (int px = 0; px < nep0; ++px) {
  13477. const int64_t i3 = py*nep0 + px;
  13478. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13479. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13480. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13481. const int64_t i02 = py*w + i2;
  13482. const int64_t i01 = px*w + i1;
  13483. const int64_t i00 = i0;
  13484. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13485. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13486. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13487. ((float *) dst->data)[i] = 0.0f;
  13488. } else {
  13489. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13490. }
  13491. }
  13492. }
  13493. }
  13494. }
  13495. }
  13496. }
  13497. static void ggml_compute_forward_win_part(
  13498. const struct ggml_compute_params * params,
  13499. struct ggml_tensor * dst) {
  13500. const struct ggml_tensor * src0 = dst->src[0];
  13501. switch (src0->type) {
  13502. case GGML_TYPE_F32:
  13503. {
  13504. ggml_compute_forward_win_part_f32(params, dst);
  13505. } break;
  13506. default:
  13507. {
  13508. GGML_ASSERT(false);
  13509. } break;
  13510. }
  13511. }
  13512. // ggml_compute_forward_win_unpart
  13513. static void ggml_compute_forward_win_unpart_f32(
  13514. const struct ggml_compute_params * params,
  13515. struct ggml_tensor * dst) {
  13516. const struct ggml_tensor * src0 = dst->src[0];
  13517. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13518. return;
  13519. }
  13520. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13521. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13522. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13523. // padding
  13524. const int px = (w - ne1%w)%w;
  13525. //const int py = (w - ne2%w)%w;
  13526. const int npx = (px + ne1)/w;
  13527. //const int npy = (py + ne2)/w;
  13528. assert(ne0 == ne00);
  13529. // TODO: optimize / multi-thread
  13530. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13531. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13532. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13533. const int ip2 = i2/w;
  13534. const int ip1 = i1/w;
  13535. const int64_t i02 = i2%w;
  13536. const int64_t i01 = i1%w;
  13537. const int64_t i00 = i0;
  13538. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13539. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13540. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13541. }
  13542. }
  13543. }
  13544. }
  13545. static void ggml_compute_forward_win_unpart(
  13546. const struct ggml_compute_params * params,
  13547. struct ggml_tensor * dst) {
  13548. const struct ggml_tensor * src0 = dst->src[0];
  13549. switch (src0->type) {
  13550. case GGML_TYPE_F32:
  13551. {
  13552. ggml_compute_forward_win_unpart_f32(params, dst);
  13553. } break;
  13554. default:
  13555. {
  13556. GGML_ASSERT(false);
  13557. } break;
  13558. }
  13559. }
  13560. //gmml_compute_forward_unary
  13561. static void ggml_compute_forward_unary(
  13562. const struct ggml_compute_params * params,
  13563. struct ggml_tensor * dst) {
  13564. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13565. switch (op) {
  13566. case GGML_UNARY_OP_ABS:
  13567. {
  13568. ggml_compute_forward_abs(params, dst);
  13569. } break;
  13570. case GGML_UNARY_OP_SGN:
  13571. {
  13572. ggml_compute_forward_sgn(params, dst);
  13573. } break;
  13574. case GGML_UNARY_OP_NEG:
  13575. {
  13576. ggml_compute_forward_neg(params, dst);
  13577. } break;
  13578. case GGML_UNARY_OP_STEP:
  13579. {
  13580. ggml_compute_forward_step(params, dst);
  13581. } break;
  13582. case GGML_UNARY_OP_TANH:
  13583. {
  13584. ggml_compute_forward_tanh(params, dst);
  13585. } break;
  13586. case GGML_UNARY_OP_ELU:
  13587. {
  13588. ggml_compute_forward_elu(params, dst);
  13589. } break;
  13590. case GGML_UNARY_OP_RELU:
  13591. {
  13592. ggml_compute_forward_relu(params, dst);
  13593. } break;
  13594. case GGML_UNARY_OP_SIGMOID:
  13595. {
  13596. ggml_compute_forward_sigmoid(params, dst);
  13597. } break;
  13598. case GGML_UNARY_OP_GELU:
  13599. {
  13600. ggml_compute_forward_gelu(params, dst);
  13601. } break;
  13602. case GGML_UNARY_OP_GELU_QUICK:
  13603. {
  13604. ggml_compute_forward_gelu_quick(params, dst);
  13605. } break;
  13606. case GGML_UNARY_OP_SILU:
  13607. {
  13608. ggml_compute_forward_silu(params, dst);
  13609. } break;
  13610. case GGML_UNARY_OP_HARDSWISH:
  13611. {
  13612. ggml_compute_forward_hardswish(params, dst);
  13613. } break;
  13614. case GGML_UNARY_OP_HARDSIGMOID:
  13615. {
  13616. ggml_compute_forward_hardsigmoid(params, dst);
  13617. } break;
  13618. default:
  13619. {
  13620. GGML_ASSERT(false);
  13621. } break;
  13622. }
  13623. }
  13624. // ggml_compute_forward_get_rel_pos
  13625. static void ggml_compute_forward_get_rel_pos_f16(
  13626. const struct ggml_compute_params * params,
  13627. struct ggml_tensor * dst) {
  13628. const struct ggml_tensor * src0 = dst->src[0];
  13629. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13630. return;
  13631. }
  13632. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13633. GGML_TENSOR_UNARY_OP_LOCALS
  13634. const int64_t w = ne1;
  13635. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13636. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13637. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13638. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13639. const int64_t pos = (w - i1 - 1) + i2;
  13640. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13641. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13642. }
  13643. }
  13644. }
  13645. }
  13646. static void ggml_compute_forward_get_rel_pos(
  13647. const struct ggml_compute_params * params,
  13648. struct ggml_tensor * dst) {
  13649. const struct ggml_tensor * src0 = dst->src[0];
  13650. switch (src0->type) {
  13651. case GGML_TYPE_F16:
  13652. case GGML_TYPE_BF16:
  13653. {
  13654. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13655. } break;
  13656. default:
  13657. {
  13658. GGML_ASSERT(false);
  13659. } break;
  13660. }
  13661. }
  13662. // ggml_compute_forward_add_rel_pos
  13663. static void ggml_compute_forward_add_rel_pos_f32(
  13664. const struct ggml_compute_params * params,
  13665. struct ggml_tensor * dst) {
  13666. const struct ggml_tensor * src0 = dst->src[0];
  13667. const struct ggml_tensor * src1 = dst->src[1];
  13668. const struct ggml_tensor * src2 = dst->src[2];
  13669. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13670. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13671. if (params->ith != 0) {
  13672. return;
  13673. }
  13674. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13675. return;
  13676. }
  13677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13678. return;
  13679. }
  13680. int64_t t0 = ggml_perf_time_us();
  13681. UNUSED(t0);
  13682. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13683. float * src1_data = (float *) src1->data;
  13684. float * src2_data = (float *) src2->data;
  13685. float * dst_data = (float *) dst->data;
  13686. const int64_t ne10 = src1->ne[0];
  13687. const int64_t ne11 = src1->ne[1];
  13688. const int64_t ne12 = src1->ne[2];
  13689. const int64_t ne13 = src1->ne[3];
  13690. const int ith = params->ith;
  13691. const int nth = params->nth;
  13692. // total patches in dst
  13693. const int np = ne13;
  13694. // patches per thread
  13695. const int dp = (np + nth - 1)/nth;
  13696. // patch range for this thread
  13697. const int ip0 = dp*ith;
  13698. const int ip1 = MIN(ip0 + dp, np);
  13699. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13700. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13701. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13702. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13703. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13704. const int64_t jp0 = jp1 + i10;
  13705. const float src1_e = src1_data[jp0];
  13706. const float src2_e = src2_data[jp0];
  13707. const int64_t jdh = jp0 * ne10;
  13708. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13709. for (int64_t j = 0; j < ne10; ++j) {
  13710. dst_data[jdh + j ] += src2_e;
  13711. dst_data[jdw + j*ne10] += src1_e;
  13712. }
  13713. }
  13714. }
  13715. }
  13716. }
  13717. }
  13718. static void ggml_compute_forward_add_rel_pos(
  13719. const struct ggml_compute_params * params,
  13720. struct ggml_tensor * dst) {
  13721. const struct ggml_tensor * src0 = dst->src[0];
  13722. switch (src0->type) {
  13723. case GGML_TYPE_F32:
  13724. {
  13725. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13726. } break;
  13727. default:
  13728. {
  13729. GGML_ASSERT(false);
  13730. } break;
  13731. }
  13732. }
  13733. // ggml_compute_forward_map_unary
  13734. static void ggml_compute_forward_map_unary_f32(
  13735. const struct ggml_compute_params * params,
  13736. struct ggml_tensor * dst,
  13737. const ggml_unary_op_f32_t fun) {
  13738. const struct ggml_tensor * src0 = dst->src[0];
  13739. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13741. return;
  13742. }
  13743. const int n = ggml_nrows(src0);
  13744. const int nc = src0->ne[0];
  13745. assert( dst->nb[0] == sizeof(float));
  13746. assert(src0->nb[0] == sizeof(float));
  13747. for (int i = 0; i < n; i++) {
  13748. fun(nc,
  13749. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13750. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13751. }
  13752. }
  13753. static void ggml_compute_forward_map_unary(
  13754. const struct ggml_compute_params * params,
  13755. struct ggml_tensor * dst,
  13756. const ggml_unary_op_f32_t fun) {
  13757. const struct ggml_tensor * src0 = dst->src[0];
  13758. switch (src0->type) {
  13759. case GGML_TYPE_F32:
  13760. {
  13761. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13762. } break;
  13763. default:
  13764. {
  13765. GGML_ASSERT(false);
  13766. } break;
  13767. }
  13768. }
  13769. // ggml_compute_forward_map_binary
  13770. static void ggml_compute_forward_map_binary_f32(
  13771. const struct ggml_compute_params * params,
  13772. struct ggml_tensor * dst,
  13773. const ggml_binary_op_f32_t fun) {
  13774. const struct ggml_tensor * src0 = dst->src[0];
  13775. const struct ggml_tensor * src1 = dst->src[1];
  13776. assert(params->ith == 0);
  13777. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13778. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13779. return;
  13780. }
  13781. const int n = ggml_nrows(src0);
  13782. const int nc = src0->ne[0];
  13783. assert( dst->nb[0] == sizeof(float));
  13784. assert(src0->nb[0] == sizeof(float));
  13785. assert(src1->nb[0] == sizeof(float));
  13786. for (int i = 0; i < n; i++) {
  13787. fun(nc,
  13788. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13789. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13790. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13791. }
  13792. }
  13793. static void ggml_compute_forward_map_binary(
  13794. const struct ggml_compute_params * params,
  13795. struct ggml_tensor * dst,
  13796. const ggml_binary_op_f32_t fun) {
  13797. const struct ggml_tensor * src0 = dst->src[0];
  13798. switch (src0->type) {
  13799. case GGML_TYPE_F32:
  13800. {
  13801. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13802. } break;
  13803. default:
  13804. {
  13805. GGML_ASSERT(false);
  13806. } break;
  13807. }
  13808. }
  13809. // ggml_compute_forward_map_custom1
  13810. static void ggml_compute_forward_map_custom1_f32(
  13811. const struct ggml_compute_params * params,
  13812. struct ggml_tensor * dst,
  13813. const ggml_custom1_op_f32_t fun) {
  13814. const struct ggml_tensor * a = dst->src[0];
  13815. assert(params->ith == 0);
  13816. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13817. return;
  13818. }
  13819. fun(dst, a);
  13820. }
  13821. // ggml_compute_forward_map_custom2
  13822. static void ggml_compute_forward_map_custom2_f32(
  13823. const struct ggml_compute_params * params,
  13824. struct ggml_tensor * dst,
  13825. const ggml_custom2_op_f32_t fun) {
  13826. const struct ggml_tensor * a = dst->src[0];
  13827. const struct ggml_tensor * b = dst->src[1];
  13828. assert(params->ith == 0);
  13829. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13830. return;
  13831. }
  13832. fun(dst, a, b);
  13833. }
  13834. // ggml_compute_forward_map_custom3
  13835. static void ggml_compute_forward_map_custom3_f32(
  13836. const struct ggml_compute_params * params,
  13837. struct ggml_tensor * dst,
  13838. const ggml_custom3_op_f32_t fun) {
  13839. const struct ggml_tensor * a = dst->src[0];
  13840. const struct ggml_tensor * b = dst->src[1];
  13841. const struct ggml_tensor * c = dst->src[1];
  13842. assert(params->ith == 0);
  13843. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13844. return;
  13845. }
  13846. fun(dst, a, b, c);
  13847. }
  13848. // ggml_compute_forward_map_custom1
  13849. static void ggml_compute_forward_map_custom1(
  13850. const struct ggml_compute_params * params,
  13851. struct ggml_tensor * dst) {
  13852. const struct ggml_tensor * a = dst->src[0];
  13853. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13854. return;
  13855. }
  13856. struct ggml_map_custom1_op_params p;
  13857. memcpy(&p, dst->op_params, sizeof(p));
  13858. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13859. }
  13860. // ggml_compute_forward_map_custom2
  13861. static void ggml_compute_forward_map_custom2(
  13862. const struct ggml_compute_params * params,
  13863. struct ggml_tensor * dst) {
  13864. const struct ggml_tensor * a = dst->src[0];
  13865. const struct ggml_tensor * b = dst->src[1];
  13866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13867. return;
  13868. }
  13869. struct ggml_map_custom2_op_params p;
  13870. memcpy(&p, dst->op_params, sizeof(p));
  13871. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13872. }
  13873. // ggml_compute_forward_map_custom3
  13874. static void ggml_compute_forward_map_custom3(
  13875. const struct ggml_compute_params * params,
  13876. struct ggml_tensor * dst) {
  13877. const struct ggml_tensor * a = dst->src[0];
  13878. const struct ggml_tensor * b = dst->src[1];
  13879. const struct ggml_tensor * c = dst->src[2];
  13880. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13881. return;
  13882. }
  13883. struct ggml_map_custom3_op_params p;
  13884. memcpy(&p, dst->op_params, sizeof(p));
  13885. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13886. }
  13887. // ggml_compute_forward_cross_entropy_loss
  13888. static void ggml_compute_forward_cross_entropy_loss_f32(
  13889. const struct ggml_compute_params * params,
  13890. struct ggml_tensor * dst) {
  13891. const struct ggml_tensor * src0 = dst->src[0];
  13892. const struct ggml_tensor * src1 = dst->src[1];
  13893. GGML_ASSERT(ggml_is_contiguous(src0));
  13894. GGML_ASSERT(ggml_is_contiguous(src1));
  13895. GGML_ASSERT(ggml_is_scalar(dst));
  13896. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13897. const int ith = params->ith;
  13898. const int nth = params->nth;
  13899. float * sums = (float *) params->wdata;
  13900. // TODO: handle transposed/permuted matrices
  13901. const int nc = src0->ne[0];
  13902. const int nr = ggml_nrows(src0);
  13903. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13904. if (params->type == GGML_TASK_TYPE_INIT) {
  13905. if (ith == 0) {
  13906. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13907. }
  13908. return;
  13909. }
  13910. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13911. if (ith == 0) {
  13912. float * dp = (float *) dst->data;
  13913. ggml_vec_sum_f32(nth, dp, sums);
  13914. dp[0] *= -1.0f / (float) nr;
  13915. }
  13916. return;
  13917. }
  13918. const double eps = 1e-9;
  13919. // rows per thread
  13920. const int dr = (nr + nth - 1)/nth;
  13921. // row range for this thread
  13922. const int ir0 = dr*ith;
  13923. const int ir1 = MIN(ir0 + dr, nr);
  13924. for (int i1 = ir0; i1 < ir1; i1++) {
  13925. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13926. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13927. float * st = ((float *) params->wdata) + nth + ith*nc;
  13928. #ifndef NDEBUG
  13929. for (int i = 0; i < nc; ++i) {
  13930. //printf("p[%d] = %f\n", i, p[i]);
  13931. assert(!isnan(s0[i]));
  13932. assert(!isnan(s1[i]));
  13933. }
  13934. #endif
  13935. // soft_max
  13936. ggml_float sum = 0.0;
  13937. {
  13938. float max = -INFINITY;
  13939. ggml_vec_max_f32(nc, &max, s0);
  13940. uint16_t scvt; UNUSED(scvt);
  13941. for (int i = 0; i < nc; i++) {
  13942. if (s0[i] == -INFINITY) {
  13943. st[i] = 0.0f;
  13944. } else {
  13945. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13946. const float s = s0[i] - max;
  13947. const float val = expf(s);
  13948. #else
  13949. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13950. memcpy(&scvt, &s, sizeof(scvt));
  13951. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  13952. #endif
  13953. sum += (ggml_float)val;
  13954. st[i] = val;
  13955. }
  13956. }
  13957. assert(sum > 0.0);
  13958. // sum = 1.0/sum;
  13959. }
  13960. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13961. sum = (1.0 - eps) / sum;
  13962. ggml_vec_scale_f32(nc, st, sum);
  13963. ggml_vec_add1_f32(nc, st, st, eps);
  13964. ggml_vec_log_f32(nc, st, st);
  13965. ggml_vec_mul_f32(nc, st, st, s1);
  13966. float st_sum = 0;
  13967. ggml_vec_sum_f32(nc, &st_sum, st);
  13968. sums[ith] += st_sum;
  13969. #ifndef NDEBUG
  13970. for (int i = 0; i < nc; ++i) {
  13971. assert(!isnan(st[i]));
  13972. assert(!isinf(st[i]));
  13973. }
  13974. #endif
  13975. }
  13976. }
  13977. static void ggml_compute_forward_cross_entropy_loss(
  13978. const struct ggml_compute_params * params,
  13979. struct ggml_tensor * dst) {
  13980. const struct ggml_tensor * src0 = dst->src[0];
  13981. switch (src0->type) {
  13982. case GGML_TYPE_F32:
  13983. {
  13984. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13985. } break;
  13986. default:
  13987. {
  13988. GGML_ASSERT(false);
  13989. } break;
  13990. }
  13991. }
  13992. // ggml_compute_forward_cross_entropy_loss_back
  13993. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13994. const struct ggml_compute_params * params,
  13995. struct ggml_tensor * dst) {
  13996. const struct ggml_tensor * src0 = dst->src[0];
  13997. const struct ggml_tensor * src1 = dst->src[1];
  13998. const struct ggml_tensor * opt0 = dst->src[2];
  13999. GGML_ASSERT(ggml_is_contiguous(dst));
  14000. GGML_ASSERT(ggml_is_contiguous(src0));
  14001. GGML_ASSERT(ggml_is_contiguous(src1));
  14002. GGML_ASSERT(ggml_is_contiguous(opt0));
  14003. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  14004. const int64_t ith = params->ith;
  14005. const int64_t nth = params->nth;
  14006. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  14007. return;
  14008. }
  14009. const double eps = 1e-9;
  14010. // TODO: handle transposed/permuted matrices
  14011. const int64_t nc = src0->ne[0];
  14012. const int64_t nr = ggml_nrows(src0);
  14013. // rows per thread
  14014. const int64_t dr = (nr + nth - 1)/nth;
  14015. // row range for this thread
  14016. const int64_t ir0 = dr*ith;
  14017. const int64_t ir1 = MIN(ir0 + dr, nr);
  14018. float * d = (float *) opt0->data;
  14019. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  14020. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  14021. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  14022. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  14023. #ifndef NDEBUG
  14024. for (int i = 0; i < nc; ++i) {
  14025. //printf("p[%d] = %f\n", i, p[i]);
  14026. assert(!isnan(s0[i]));
  14027. assert(!isnan(s1[i]));
  14028. }
  14029. #endif
  14030. // soft_max
  14031. ggml_float sum = 0.0;
  14032. {
  14033. float max = -INFINITY;
  14034. ggml_vec_max_f32(nc, &max, s0);
  14035. uint16_t scvt; UNUSED(scvt);
  14036. for (int i = 0; i < nc; i++) {
  14037. if (s0[i] == -INFINITY) {
  14038. ds0[i] = 0.0f;
  14039. } else {
  14040. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  14041. const float s = s0[i] - max;
  14042. const float val = expf(s);
  14043. #else
  14044. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  14045. memcpy(&scvt, &s, sizeof(scvt));
  14046. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  14047. #endif
  14048. sum += (ggml_float)val;
  14049. ds0[i] = val;
  14050. }
  14051. }
  14052. assert(sum > 0.0);
  14053. sum = (1.0 - eps)/sum;
  14054. }
  14055. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  14056. ggml_vec_scale_f32(nc, ds0, sum);
  14057. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  14058. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  14059. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  14060. #ifndef NDEBUG
  14061. for (int i = 0; i < nc; ++i) {
  14062. assert(!isnan(ds0[i]));
  14063. assert(!isinf(ds0[i]));
  14064. }
  14065. #endif
  14066. }
  14067. }
  14068. static void ggml_compute_forward_cross_entropy_loss_back(
  14069. const struct ggml_compute_params * params,
  14070. struct ggml_tensor * dst) {
  14071. const struct ggml_tensor * src0 = dst->src[0];
  14072. switch (src0->type) {
  14073. case GGML_TYPE_F32:
  14074. {
  14075. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  14076. } break;
  14077. default:
  14078. {
  14079. GGML_ASSERT(false);
  14080. } break;
  14081. }
  14082. }
  14083. /////////////////////////////////
  14084. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  14085. GGML_ASSERT(params);
  14086. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14087. return;
  14088. }
  14089. switch (tensor->op) {
  14090. case GGML_OP_DUP:
  14091. {
  14092. ggml_compute_forward_dup(params, tensor);
  14093. } break;
  14094. case GGML_OP_ADD:
  14095. {
  14096. ggml_compute_forward_add(params, tensor);
  14097. } break;
  14098. case GGML_OP_ADD1:
  14099. {
  14100. ggml_compute_forward_add1(params, tensor);
  14101. } break;
  14102. case GGML_OP_ACC:
  14103. {
  14104. ggml_compute_forward_acc(params, tensor);
  14105. } break;
  14106. case GGML_OP_SUB:
  14107. {
  14108. ggml_compute_forward_sub(params, tensor);
  14109. } break;
  14110. case GGML_OP_MUL:
  14111. {
  14112. ggml_compute_forward_mul(params, tensor);
  14113. } break;
  14114. case GGML_OP_DIV:
  14115. {
  14116. ggml_compute_forward_div(params, tensor);
  14117. } break;
  14118. case GGML_OP_SQR:
  14119. {
  14120. ggml_compute_forward_sqr(params, tensor);
  14121. } break;
  14122. case GGML_OP_SQRT:
  14123. {
  14124. ggml_compute_forward_sqrt(params, tensor);
  14125. } break;
  14126. case GGML_OP_LOG:
  14127. {
  14128. ggml_compute_forward_log(params, tensor);
  14129. } break;
  14130. case GGML_OP_SUM:
  14131. {
  14132. ggml_compute_forward_sum(params, tensor);
  14133. } break;
  14134. case GGML_OP_SUM_ROWS:
  14135. {
  14136. ggml_compute_forward_sum_rows(params, tensor);
  14137. } break;
  14138. case GGML_OP_MEAN:
  14139. {
  14140. ggml_compute_forward_mean(params, tensor);
  14141. } break;
  14142. case GGML_OP_ARGMAX:
  14143. {
  14144. ggml_compute_forward_argmax(params, tensor);
  14145. } break;
  14146. case GGML_OP_REPEAT:
  14147. {
  14148. ggml_compute_forward_repeat(params, tensor);
  14149. } break;
  14150. case GGML_OP_REPEAT_BACK:
  14151. {
  14152. ggml_compute_forward_repeat_back(params, tensor);
  14153. } break;
  14154. case GGML_OP_CONCAT:
  14155. {
  14156. ggml_compute_forward_concat(params, tensor);
  14157. } break;
  14158. case GGML_OP_SILU_BACK:
  14159. {
  14160. ggml_compute_forward_silu_back(params, tensor);
  14161. } break;
  14162. case GGML_OP_NORM:
  14163. {
  14164. ggml_compute_forward_norm(params, tensor);
  14165. } break;
  14166. case GGML_OP_RMS_NORM:
  14167. {
  14168. ggml_compute_forward_rms_norm(params, tensor);
  14169. } break;
  14170. case GGML_OP_RMS_NORM_BACK:
  14171. {
  14172. ggml_compute_forward_rms_norm_back(params, tensor);
  14173. } break;
  14174. case GGML_OP_GROUP_NORM:
  14175. {
  14176. ggml_compute_forward_group_norm(params, tensor);
  14177. } break;
  14178. case GGML_OP_MUL_MAT:
  14179. {
  14180. ggml_compute_forward_mul_mat(params, tensor);
  14181. } break;
  14182. case GGML_OP_MUL_MAT_ID:
  14183. {
  14184. ggml_compute_forward_mul_mat_id(params, tensor);
  14185. } break;
  14186. case GGML_OP_OUT_PROD:
  14187. {
  14188. ggml_compute_forward_out_prod(params, tensor);
  14189. } break;
  14190. case GGML_OP_SCALE:
  14191. {
  14192. ggml_compute_forward_scale(params, tensor);
  14193. } break;
  14194. case GGML_OP_SET:
  14195. {
  14196. ggml_compute_forward_set(params, tensor);
  14197. } break;
  14198. case GGML_OP_CPY:
  14199. {
  14200. ggml_compute_forward_cpy(params, tensor);
  14201. } break;
  14202. case GGML_OP_CONT:
  14203. {
  14204. ggml_compute_forward_cont(params, tensor);
  14205. } break;
  14206. case GGML_OP_RESHAPE:
  14207. {
  14208. ggml_compute_forward_reshape(params, tensor);
  14209. } break;
  14210. case GGML_OP_VIEW:
  14211. {
  14212. ggml_compute_forward_view(params, tensor);
  14213. } break;
  14214. case GGML_OP_PERMUTE:
  14215. {
  14216. ggml_compute_forward_permute(params, tensor);
  14217. } break;
  14218. case GGML_OP_TRANSPOSE:
  14219. {
  14220. ggml_compute_forward_transpose(params, tensor);
  14221. } break;
  14222. case GGML_OP_GET_ROWS:
  14223. {
  14224. ggml_compute_forward_get_rows(params, tensor);
  14225. } break;
  14226. case GGML_OP_GET_ROWS_BACK:
  14227. {
  14228. ggml_compute_forward_get_rows_back(params, tensor);
  14229. } break;
  14230. case GGML_OP_DIAG:
  14231. {
  14232. ggml_compute_forward_diag(params, tensor);
  14233. } break;
  14234. case GGML_OP_DIAG_MASK_INF:
  14235. {
  14236. ggml_compute_forward_diag_mask_inf(params, tensor);
  14237. } break;
  14238. case GGML_OP_DIAG_MASK_ZERO:
  14239. {
  14240. ggml_compute_forward_diag_mask_zero(params, tensor);
  14241. } break;
  14242. case GGML_OP_SOFT_MAX:
  14243. {
  14244. ggml_compute_forward_soft_max(params, tensor);
  14245. } break;
  14246. case GGML_OP_SOFT_MAX_BACK:
  14247. {
  14248. ggml_compute_forward_soft_max_back(params, tensor);
  14249. } break;
  14250. case GGML_OP_ROPE:
  14251. {
  14252. ggml_compute_forward_rope(params, tensor);
  14253. } break;
  14254. case GGML_OP_ROPE_BACK:
  14255. {
  14256. ggml_compute_forward_rope_back(params, tensor);
  14257. } break;
  14258. case GGML_OP_CLAMP:
  14259. {
  14260. ggml_compute_forward_clamp(params, tensor);
  14261. } break;
  14262. case GGML_OP_CONV_TRANSPOSE_1D:
  14263. {
  14264. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14265. } break;
  14266. case GGML_OP_IM2COL:
  14267. {
  14268. ggml_compute_forward_im2col(params, tensor);
  14269. } break;
  14270. case GGML_OP_CONV_TRANSPOSE_2D:
  14271. {
  14272. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14273. } break;
  14274. case GGML_OP_POOL_1D:
  14275. {
  14276. ggml_compute_forward_pool_1d(params, tensor);
  14277. } break;
  14278. case GGML_OP_POOL_2D:
  14279. {
  14280. ggml_compute_forward_pool_2d(params, tensor);
  14281. } break;
  14282. case GGML_OP_UPSCALE:
  14283. {
  14284. ggml_compute_forward_upscale(params, tensor);
  14285. } break;
  14286. case GGML_OP_PAD:
  14287. {
  14288. ggml_compute_forward_pad(params, tensor);
  14289. } break;
  14290. case GGML_OP_ARANGE:
  14291. {
  14292. ggml_compute_forward_arange(params, tensor);
  14293. } break;
  14294. case GGML_OP_TIMESTEP_EMBEDDING:
  14295. {
  14296. ggml_compute_forward_timestep_embedding(params, tensor);
  14297. } break;
  14298. case GGML_OP_ARGSORT:
  14299. {
  14300. ggml_compute_forward_argsort(params, tensor);
  14301. } break;
  14302. case GGML_OP_LEAKY_RELU:
  14303. {
  14304. ggml_compute_forward_leaky_relu(params, tensor);
  14305. } break;
  14306. case GGML_OP_FLASH_ATTN:
  14307. {
  14308. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  14309. GGML_ASSERT(t == 0 || t == 1);
  14310. const bool masked = t != 0;
  14311. ggml_compute_forward_flash_attn(params, masked, tensor);
  14312. } break;
  14313. case GGML_OP_FLASH_ATTN_EXT:
  14314. {
  14315. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14316. } break;
  14317. case GGML_OP_FLASH_FF:
  14318. {
  14319. ggml_compute_forward_flash_ff(params, tensor);
  14320. } break;
  14321. case GGML_OP_FLASH_ATTN_BACK:
  14322. {
  14323. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14324. GGML_ASSERT(t == 0 || t == 1);
  14325. bool masked = t != 0;
  14326. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14327. } break;
  14328. case GGML_OP_SSM_CONV:
  14329. {
  14330. ggml_compute_forward_ssm_conv(params, tensor);
  14331. } break;
  14332. case GGML_OP_SSM_SCAN:
  14333. {
  14334. ggml_compute_forward_ssm_scan(params, tensor);
  14335. } break;
  14336. case GGML_OP_WIN_PART:
  14337. {
  14338. ggml_compute_forward_win_part(params, tensor);
  14339. } break;
  14340. case GGML_OP_WIN_UNPART:
  14341. {
  14342. ggml_compute_forward_win_unpart(params, tensor);
  14343. } break;
  14344. case GGML_OP_UNARY:
  14345. {
  14346. ggml_compute_forward_unary(params, tensor);
  14347. } break;
  14348. case GGML_OP_GET_REL_POS:
  14349. {
  14350. ggml_compute_forward_get_rel_pos(params, tensor);
  14351. } break;
  14352. case GGML_OP_ADD_REL_POS:
  14353. {
  14354. ggml_compute_forward_add_rel_pos(params, tensor);
  14355. } break;
  14356. case GGML_OP_MAP_UNARY:
  14357. {
  14358. ggml_unary_op_f32_t fun;
  14359. memcpy(&fun, tensor->op_params, sizeof(fun));
  14360. ggml_compute_forward_map_unary(params, tensor, fun);
  14361. }
  14362. break;
  14363. case GGML_OP_MAP_BINARY:
  14364. {
  14365. ggml_binary_op_f32_t fun;
  14366. memcpy(&fun, tensor->op_params, sizeof(fun));
  14367. ggml_compute_forward_map_binary(params, tensor, fun);
  14368. }
  14369. break;
  14370. case GGML_OP_MAP_CUSTOM1_F32:
  14371. {
  14372. ggml_custom1_op_f32_t fun;
  14373. memcpy(&fun, tensor->op_params, sizeof(fun));
  14374. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14375. }
  14376. break;
  14377. case GGML_OP_MAP_CUSTOM2_F32:
  14378. {
  14379. ggml_custom2_op_f32_t fun;
  14380. memcpy(&fun, tensor->op_params, sizeof(fun));
  14381. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14382. }
  14383. break;
  14384. case GGML_OP_MAP_CUSTOM3_F32:
  14385. {
  14386. ggml_custom3_op_f32_t fun;
  14387. memcpy(&fun, tensor->op_params, sizeof(fun));
  14388. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14389. }
  14390. break;
  14391. case GGML_OP_MAP_CUSTOM1:
  14392. {
  14393. ggml_compute_forward_map_custom1(params, tensor);
  14394. }
  14395. break;
  14396. case GGML_OP_MAP_CUSTOM2:
  14397. {
  14398. ggml_compute_forward_map_custom2(params, tensor);
  14399. }
  14400. break;
  14401. case GGML_OP_MAP_CUSTOM3:
  14402. {
  14403. ggml_compute_forward_map_custom3(params, tensor);
  14404. }
  14405. break;
  14406. case GGML_OP_CROSS_ENTROPY_LOSS:
  14407. {
  14408. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14409. }
  14410. break;
  14411. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14412. {
  14413. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14414. }
  14415. break;
  14416. case GGML_OP_NONE:
  14417. {
  14418. // nop
  14419. } break;
  14420. case GGML_OP_COUNT:
  14421. {
  14422. GGML_ASSERT(false);
  14423. } break;
  14424. }
  14425. }
  14426. ////////////////////////////////////////////////////////////////////////////////
  14427. static size_t ggml_hash_size(size_t min_sz) {
  14428. // next primes after powers of two
  14429. static const size_t primes[] = {
  14430. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14431. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14432. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14433. 16777259, 33554467, 67108879, 134217757, 268435459,
  14434. 536870923, 1073741827, 2147483659
  14435. };
  14436. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14437. // find the smallest prime that is larger or equal to min_sz
  14438. size_t l = 0;
  14439. size_t r = n_primes;
  14440. while (l < r) {
  14441. size_t m = (l + r)/2;
  14442. if (primes[m] < min_sz) {
  14443. l = m + 1;
  14444. } else {
  14445. r = m;
  14446. }
  14447. }
  14448. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14449. return sz;
  14450. }
  14451. static size_t ggml_hash(const void * p) {
  14452. return (size_t)p;
  14453. }
  14454. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14455. size_t h = ggml_hash(key) % hash_set.size;
  14456. // linear probing
  14457. size_t i = h;
  14458. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14459. i = (i + 1) % hash_set.size;
  14460. if (i == h) {
  14461. // visited all hash table entries -> not found
  14462. return GGML_HASHTABLE_FULL;
  14463. }
  14464. }
  14465. return i;
  14466. }
  14467. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14468. size_t i = ggml_hash_find(hash_set, key);
  14469. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14470. }
  14471. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14472. size_t i = ggml_hash_find(hash_set, key);
  14473. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14474. if (hash_set.keys[i] == key) {
  14475. return GGML_HASHTABLE_ALREADY_EXISTS;
  14476. }
  14477. // insert
  14478. GGML_ASSERT(hash_set.keys[i] == NULL);
  14479. hash_set.keys[i] = key;
  14480. return i;
  14481. }
  14482. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14483. size_t i = ggml_hash_find(hash_set, key);
  14484. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14485. hash_set.keys[i] = key;
  14486. return i;
  14487. }
  14488. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14489. size = ggml_hash_size(size);
  14490. struct ggml_hash_set result;
  14491. result.size = size;
  14492. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14493. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14494. return result;
  14495. }
  14496. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14497. GGML_FREE(hash_set.keys);
  14498. }
  14499. struct hash_map {
  14500. struct ggml_hash_set set;
  14501. struct ggml_tensor ** vals;
  14502. };
  14503. static struct hash_map * ggml_new_hash_map(size_t size) {
  14504. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14505. result->set = ggml_hash_set_new(size);
  14506. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14507. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14508. return result;
  14509. }
  14510. static void ggml_hash_map_free(struct hash_map * map) {
  14511. ggml_hash_set_free(map->set);
  14512. GGML_FREE(map->vals);
  14513. GGML_FREE(map);
  14514. }
  14515. // gradient checkpointing
  14516. static struct ggml_tensor * ggml_recompute_graph_node(
  14517. struct ggml_context * ctx,
  14518. struct ggml_cgraph * graph,
  14519. struct hash_map * replacements,
  14520. struct ggml_tensor * node) {
  14521. if (node == NULL) {
  14522. return NULL;
  14523. }
  14524. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14525. return node;
  14526. }
  14527. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14528. return node;
  14529. }
  14530. int count_children = 0;
  14531. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14532. if (node->src[k]) {
  14533. ++count_children;
  14534. }
  14535. }
  14536. if (count_children == 0) {
  14537. return node;
  14538. }
  14539. size_t i = ggml_hash_find(replacements->set, node);
  14540. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14541. if (replacements->set.keys[i] == node) {
  14542. return replacements->vals[i];
  14543. }
  14544. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14545. // insert clone into replacements
  14546. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14547. replacements->set.keys[i] = node;
  14548. replacements->vals[i] = clone;
  14549. clone->op = node->op;
  14550. clone->grad = node->grad;
  14551. clone->flags = node->flags;
  14552. clone->extra = node->extra;
  14553. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14554. clone->nb[k] = node->nb[k];
  14555. }
  14556. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14557. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14558. }
  14559. if (node->view_src != NULL) {
  14560. clone->data = (node->view_src->data == NULL)
  14561. ? NULL // view_src not yet allocated
  14562. : (char *) node->view_src->data // view_src already allocated
  14563. + node->view_offs;
  14564. clone->view_src = node->view_src;
  14565. clone->view_offs = node->view_offs;
  14566. }
  14567. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14568. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14569. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14570. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14571. return clone;
  14572. }
  14573. void ggml_build_backward_gradient_checkpointing(
  14574. struct ggml_context * ctx,
  14575. struct ggml_cgraph * gf,
  14576. struct ggml_cgraph * gb,
  14577. struct ggml_cgraph * gb_tmp,
  14578. struct ggml_tensor * * checkpoints,
  14579. int n_checkpoints) {
  14580. ggml_graph_cpy(gf, gb_tmp);
  14581. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14582. if (n_checkpoints <= 0) {
  14583. ggml_graph_cpy(gb_tmp, gb);
  14584. return;
  14585. }
  14586. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14587. // insert checkpoints in replacements
  14588. for (int i = 0; i < n_checkpoints; ++i) {
  14589. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14590. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14591. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14592. replacements->set.keys[k] = checkpoints[i];
  14593. replacements->vals[k] = checkpoints[i];
  14594. }
  14595. ggml_graph_cpy(gf, gb);
  14596. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14597. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14598. // by recomputing them from checkpoints
  14599. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14600. struct ggml_tensor * node = gb_tmp->nodes[i];
  14601. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14602. // insert new tensors recomputing src, reusing already made replacements,
  14603. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14604. // recurse for input tensors,
  14605. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14606. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14607. }
  14608. // insert rewritten backward node with replacements made into resulting backward graph gb
  14609. ggml_build_forward_expand(gb, node);
  14610. }
  14611. ggml_hash_map_free(replacements);
  14612. }
  14613. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14614. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14615. if (ggml_hash_contains(zero_table, a)) {
  14616. return b;
  14617. } else {
  14618. return ggml_add_impl(ctx, a, b, false);
  14619. }
  14620. }
  14621. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14622. if (ggml_hash_contains(zero_table, a)) {
  14623. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14624. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14625. } else {
  14626. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14627. }
  14628. }
  14629. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14630. if (ggml_hash_contains(zero_table, a)) {
  14631. return ggml_repeat(ctx, b, a);
  14632. } else {
  14633. return ggml_add1_impl(ctx, a, b, false);
  14634. }
  14635. }
  14636. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14637. if (ggml_hash_contains(zero_table, a)) {
  14638. return ggml_neg(ctx, b);
  14639. } else {
  14640. return ggml_sub_impl(ctx, a, b, false);
  14641. }
  14642. }
  14643. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14644. struct ggml_tensor * src0 = tensor->src[0];
  14645. struct ggml_tensor * src1 = tensor->src[1];
  14646. switch (tensor->op) {
  14647. case GGML_OP_DUP:
  14648. {
  14649. if (src0->grad) {
  14650. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14651. }
  14652. } break;
  14653. case GGML_OP_ADD:
  14654. {
  14655. if (src0->grad) {
  14656. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14657. }
  14658. if (src1->grad) {
  14659. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14660. }
  14661. } break;
  14662. case GGML_OP_ADD1:
  14663. {
  14664. if (src0->grad) {
  14665. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14666. }
  14667. if (src1->grad) {
  14668. src1->grad = ggml_add_or_set(ctx,
  14669. src1->grad,
  14670. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14671. zero_table);
  14672. }
  14673. } break;
  14674. case GGML_OP_ACC:
  14675. {
  14676. if (src0->grad) {
  14677. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14678. }
  14679. if (src1->grad) {
  14680. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14681. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14682. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14683. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14684. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14685. tensor->grad,
  14686. src1->grad->ne[0],
  14687. src1->grad->ne[1],
  14688. src1->grad->ne[2],
  14689. src1->grad->ne[3],
  14690. nb1, nb2, nb3, offset);
  14691. src1->grad =
  14692. ggml_add_or_set(ctx,
  14693. src1->grad,
  14694. ggml_reshape(ctx,
  14695. ggml_cont(ctx, tensor_grad_view),
  14696. src1->grad),
  14697. zero_table);
  14698. }
  14699. } break;
  14700. case GGML_OP_SUB:
  14701. {
  14702. if (src0->grad) {
  14703. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14704. }
  14705. if (src1->grad) {
  14706. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14707. }
  14708. } break;
  14709. case GGML_OP_MUL:
  14710. {
  14711. if (src0->grad) {
  14712. src0->grad =
  14713. ggml_add_or_set(ctx,
  14714. src0->grad,
  14715. ggml_mul(ctx, src1, tensor->grad),
  14716. zero_table);
  14717. }
  14718. if (src1->grad) {
  14719. src1->grad =
  14720. ggml_add_or_set(ctx,
  14721. src1->grad,
  14722. ggml_mul(ctx, src0, tensor->grad),
  14723. zero_table);
  14724. }
  14725. } break;
  14726. case GGML_OP_DIV:
  14727. {
  14728. if (src0->grad) {
  14729. src0->grad =
  14730. ggml_add_or_set(ctx,
  14731. src0->grad,
  14732. ggml_div(ctx, tensor->grad, src1),
  14733. zero_table);
  14734. }
  14735. if (src1->grad) {
  14736. src1->grad =
  14737. ggml_sub_or_set(ctx,
  14738. src1->grad,
  14739. ggml_mul(ctx,
  14740. tensor->grad,
  14741. ggml_div(ctx, tensor, src1)),
  14742. zero_table);
  14743. }
  14744. } break;
  14745. case GGML_OP_SQR:
  14746. {
  14747. if (src0->grad) {
  14748. src0->grad =
  14749. ggml_add_or_set(ctx,
  14750. src0->grad,
  14751. ggml_scale(ctx,
  14752. ggml_mul(ctx, src0, tensor->grad),
  14753. 2.0f),
  14754. zero_table);
  14755. }
  14756. } break;
  14757. case GGML_OP_SQRT:
  14758. {
  14759. if (src0->grad) {
  14760. src0->grad =
  14761. ggml_add_or_set(ctx,
  14762. src0->grad,
  14763. ggml_scale(ctx,
  14764. ggml_div(ctx,
  14765. tensor->grad,
  14766. tensor),
  14767. 0.5f),
  14768. zero_table);
  14769. }
  14770. } break;
  14771. case GGML_OP_LOG:
  14772. {
  14773. if (src0->grad) {
  14774. src0->grad =
  14775. ggml_add_or_set(ctx,
  14776. src0->grad,
  14777. ggml_div(ctx,
  14778. tensor->grad,
  14779. src0),
  14780. zero_table);
  14781. }
  14782. } break;
  14783. case GGML_OP_SUM:
  14784. {
  14785. if (src0->grad) {
  14786. src0->grad =
  14787. ggml_add1_or_set(ctx,
  14788. src0->grad,
  14789. tensor->grad,
  14790. zero_table);
  14791. }
  14792. } break;
  14793. case GGML_OP_SUM_ROWS:
  14794. {
  14795. if (src0->grad) {
  14796. src0->grad =
  14797. ggml_add_or_set(ctx,
  14798. src0->grad,
  14799. ggml_repeat(ctx,
  14800. tensor->grad,
  14801. src0->grad),
  14802. zero_table);
  14803. }
  14804. } break;
  14805. case GGML_OP_MEAN:
  14806. case GGML_OP_ARGMAX:
  14807. {
  14808. GGML_ASSERT(false); // TODO: implement
  14809. } break;
  14810. case GGML_OP_REPEAT:
  14811. {
  14812. // necessary for llama
  14813. if (src0->grad) {
  14814. src0->grad = ggml_add_or_set(ctx,
  14815. src0->grad,
  14816. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14817. zero_table);
  14818. }
  14819. } break;
  14820. case GGML_OP_REPEAT_BACK:
  14821. {
  14822. if (src0->grad) {
  14823. // TODO: test this
  14824. src0->grad = ggml_add_or_set(ctx,
  14825. src0->grad,
  14826. ggml_repeat(ctx, tensor->grad, src0->grad),
  14827. zero_table);
  14828. }
  14829. } break;
  14830. case GGML_OP_CONCAT:
  14831. {
  14832. GGML_ASSERT(false); // TODO: implement
  14833. } break;
  14834. case GGML_OP_SILU_BACK:
  14835. {
  14836. GGML_ASSERT(false); // TODO: not implemented
  14837. } break;
  14838. case GGML_OP_NORM:
  14839. {
  14840. GGML_ASSERT(false); // TODO: not implemented
  14841. } break;
  14842. case GGML_OP_RMS_NORM:
  14843. {
  14844. // necessary for llama
  14845. if (src0->grad) {
  14846. float eps;
  14847. memcpy(&eps, tensor->op_params, sizeof(float));
  14848. src0->grad = ggml_add_or_set(ctx,
  14849. src0->grad,
  14850. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14851. zero_table);
  14852. }
  14853. } break;
  14854. case GGML_OP_RMS_NORM_BACK:
  14855. {
  14856. GGML_ASSERT(false); // TODO: not implemented
  14857. } break;
  14858. case GGML_OP_GROUP_NORM:
  14859. {
  14860. GGML_ASSERT(false); // TODO: not implemented
  14861. } break;
  14862. case GGML_OP_MUL_MAT:
  14863. {
  14864. // https://cs231n.github.io/optimization-2/#staged
  14865. // # forward pass
  14866. // s0 = np.random.randn(5, 10)
  14867. // s1 = np.random.randn(10, 3)
  14868. // t = s0.dot(s1)
  14869. // # now suppose we had the gradient on t from above in the circuit
  14870. // dt = np.random.randn(*t.shape) # same shape as t
  14871. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14872. // ds1 = t.T.dot(dt)
  14873. // tensor.shape [m,p,qq,rr]
  14874. // src0.shape [n,m,q1,r1]
  14875. // src1.shape [n,p,qq,rr]
  14876. // necessary for llama
  14877. if (src0->grad) {
  14878. struct ggml_tensor * s1_tg =
  14879. ggml_out_prod(ctx, // [n,m,qq,rr]
  14880. src1, // [n,p,qq,rr]
  14881. tensor->grad); // [m,p,qq,rr]
  14882. const int64_t qq = s1_tg->ne[2];
  14883. const int64_t rr = s1_tg->ne[3];
  14884. const int64_t q1 = src0->ne[2];
  14885. const int64_t r1 = src0->ne[3];
  14886. const bool ne2_broadcasted = qq > q1;
  14887. const bool ne3_broadcasted = rr > r1;
  14888. if (ne2_broadcasted || ne3_broadcasted) {
  14889. // sum broadcast repetitions of s1_tg into shape of src0
  14890. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14891. }
  14892. src0->grad =
  14893. ggml_add_or_set(ctx,
  14894. src0->grad, // [n,m,q1,r1]
  14895. s1_tg, // [n,m,q1,r1]
  14896. zero_table);
  14897. }
  14898. if (src1->grad) {
  14899. src1->grad =
  14900. ggml_add_or_set(ctx,
  14901. src1->grad, // [n,p,qq,rr]
  14902. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14903. // ggml_cont(ctx, // [m,n,q1,r1]
  14904. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14905. // tensor->grad), // [m,p,qq,rr]
  14906. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14907. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14908. // // and then use ggml_out_prod
  14909. ggml_out_prod(ctx, // [n,p,qq,rr]
  14910. src0, // [n,m,q1,r1]
  14911. ggml_transpose(ctx, // [p,m,qq,rr]
  14912. tensor->grad)), // [m,p,qq,rr]
  14913. zero_table);
  14914. }
  14915. } break;
  14916. case GGML_OP_MUL_MAT_ID:
  14917. {
  14918. GGML_ASSERT(false); // TODO: not implemented
  14919. } break;
  14920. case GGML_OP_OUT_PROD:
  14921. {
  14922. GGML_ASSERT(false); // TODO: not implemented
  14923. } break;
  14924. case GGML_OP_SCALE:
  14925. {
  14926. // necessary for llama
  14927. if (src0->grad) {
  14928. float s;
  14929. memcpy(&s, tensor->op_params, sizeof(float));
  14930. src0->grad =
  14931. ggml_add_or_set(ctx,
  14932. src0->grad,
  14933. ggml_scale_impl(ctx, tensor->grad, s, false),
  14934. zero_table);
  14935. }
  14936. } break;
  14937. case GGML_OP_SET:
  14938. {
  14939. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14940. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14941. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14942. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14943. struct ggml_tensor * tensor_grad_view = NULL;
  14944. if (src0->grad || src1->grad) {
  14945. GGML_ASSERT(src0->type == tensor->type);
  14946. GGML_ASSERT(tensor->grad->type == tensor->type);
  14947. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14948. tensor_grad_view = ggml_view_4d(ctx,
  14949. tensor->grad,
  14950. src1->grad->ne[0],
  14951. src1->grad->ne[1],
  14952. src1->grad->ne[2],
  14953. src1->grad->ne[3],
  14954. nb1, nb2, nb3, offset);
  14955. }
  14956. if (src0->grad) {
  14957. src0->grad = ggml_add_or_set(ctx,
  14958. src0->grad,
  14959. ggml_acc_impl(ctx,
  14960. tensor->grad,
  14961. ggml_neg(ctx, tensor_grad_view),
  14962. nb1, nb2, nb3, offset, false),
  14963. zero_table);
  14964. }
  14965. if (src1->grad) {
  14966. src1->grad =
  14967. ggml_add_or_set(ctx,
  14968. src1->grad,
  14969. ggml_reshape(ctx,
  14970. ggml_cont(ctx, tensor_grad_view),
  14971. src1->grad),
  14972. zero_table);
  14973. }
  14974. } break;
  14975. case GGML_OP_CPY:
  14976. {
  14977. // necessary for llama
  14978. // cpy overwrites value of src1 by src0 and returns view(src1)
  14979. // the overwriting is mathematically equivalent to:
  14980. // tensor = src0 * 1 + src1 * 0
  14981. if (src0->grad) {
  14982. // dsrc0 = dtensor * 1
  14983. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14984. }
  14985. if (src1->grad) {
  14986. // dsrc1 = dtensor * 0 -> noop
  14987. }
  14988. } break;
  14989. case GGML_OP_CONT:
  14990. {
  14991. // same as cpy
  14992. if (src0->grad) {
  14993. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14994. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14995. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14996. }
  14997. } break;
  14998. case GGML_OP_RESHAPE:
  14999. {
  15000. // necessary for llama
  15001. if (src0->grad) {
  15002. src0->grad =
  15003. ggml_add_or_set(ctx, src0->grad,
  15004. ggml_reshape(ctx,
  15005. ggml_is_contiguous(tensor->grad)
  15006. ? tensor->grad
  15007. : ggml_cont(ctx, tensor->grad),
  15008. src0->grad),
  15009. zero_table);
  15010. }
  15011. } break;
  15012. case GGML_OP_VIEW:
  15013. {
  15014. // necessary for llama
  15015. if (src0->grad) {
  15016. size_t offset;
  15017. memcpy(&offset, tensor->op_params, sizeof(offset));
  15018. size_t nb1 = tensor->nb[1];
  15019. size_t nb2 = tensor->nb[2];
  15020. size_t nb3 = tensor->nb[3];
  15021. if (src0->type != src0->grad->type) {
  15022. // gradient is typically F32, but src0 could be other type
  15023. size_t ng = ggml_element_size(src0->grad);
  15024. size_t n0 = ggml_element_size(src0);
  15025. GGML_ASSERT(offset % n0 == 0);
  15026. GGML_ASSERT(nb1 % n0 == 0);
  15027. GGML_ASSERT(nb2 % n0 == 0);
  15028. GGML_ASSERT(nb3 % n0 == 0);
  15029. offset = (offset / n0) * ng;
  15030. nb1 = (nb1 / n0) * ng;
  15031. nb2 = (nb2 / n0) * ng;
  15032. nb3 = (nb3 / n0) * ng;
  15033. }
  15034. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  15035. }
  15036. } break;
  15037. case GGML_OP_PERMUTE:
  15038. {
  15039. // necessary for llama
  15040. if (src0->grad) {
  15041. int32_t * axes = (int32_t *) tensor->op_params;
  15042. int axis0 = axes[0] & 0x3;
  15043. int axis1 = axes[1] & 0x3;
  15044. int axis2 = axes[2] & 0x3;
  15045. int axis3 = axes[3] & 0x3;
  15046. int axes_backward[4] = {0,0,0,0};
  15047. axes_backward[axis0] = 0;
  15048. axes_backward[axis1] = 1;
  15049. axes_backward[axis2] = 2;
  15050. axes_backward[axis3] = 3;
  15051. src0->grad =
  15052. ggml_add_or_set(ctx, src0->grad,
  15053. ggml_permute(ctx,
  15054. tensor->grad,
  15055. axes_backward[0],
  15056. axes_backward[1],
  15057. axes_backward[2],
  15058. axes_backward[3]),
  15059. zero_table);
  15060. }
  15061. } break;
  15062. case GGML_OP_TRANSPOSE:
  15063. {
  15064. // necessary for llama
  15065. if (src0->grad) {
  15066. src0->grad =
  15067. ggml_add_or_set(ctx, src0->grad,
  15068. ggml_transpose(ctx, tensor->grad),
  15069. zero_table);
  15070. }
  15071. } break;
  15072. case GGML_OP_GET_ROWS:
  15073. {
  15074. // necessary for llama (only for tokenizer)
  15075. if (src0->grad) {
  15076. src0->grad =
  15077. ggml_add_or_set(ctx, src0->grad,
  15078. // last ggml_get_rows_back argument src0->grad is only
  15079. // necessary to setup correct output shape
  15080. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  15081. zero_table);
  15082. }
  15083. if (src1->grad) {
  15084. // noop
  15085. }
  15086. } break;
  15087. case GGML_OP_GET_ROWS_BACK:
  15088. {
  15089. GGML_ASSERT(false); // TODO: not implemented
  15090. } break;
  15091. case GGML_OP_DIAG:
  15092. {
  15093. GGML_ASSERT(false); // TODO: not implemented
  15094. } break;
  15095. case GGML_OP_DIAG_MASK_INF:
  15096. {
  15097. // necessary for llama
  15098. if (src0->grad) {
  15099. const int n_past = ((int32_t *) tensor->op_params)[0];
  15100. src0->grad =
  15101. ggml_add_or_set(ctx, src0->grad,
  15102. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15103. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15104. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15105. zero_table);
  15106. }
  15107. } break;
  15108. case GGML_OP_DIAG_MASK_ZERO:
  15109. {
  15110. // necessary for llama
  15111. if (src0->grad) {
  15112. const int n_past = ((int32_t *) tensor->op_params)[0];
  15113. src0->grad =
  15114. ggml_add_or_set(ctx, src0->grad,
  15115. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15116. zero_table);
  15117. }
  15118. } break;
  15119. case GGML_OP_SOFT_MAX:
  15120. {
  15121. // necessary for llama
  15122. if (src0->grad) {
  15123. src0->grad =
  15124. ggml_add_or_set(ctx, src0->grad,
  15125. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15126. zero_table);
  15127. }
  15128. } break;
  15129. case GGML_OP_SOFT_MAX_BACK:
  15130. {
  15131. GGML_ASSERT(false); // TODO: not implemented
  15132. } break;
  15133. case GGML_OP_ROPE:
  15134. {
  15135. // necessary for llama
  15136. if (src0->grad) {
  15137. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15138. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15139. const int mode = ((int32_t *) tensor->op_params)[2];
  15140. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15141. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15142. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15143. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15144. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15145. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15146. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15147. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15148. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15149. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15150. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15151. src0->grad = ggml_add_or_set(ctx,
  15152. src0->grad,
  15153. ggml_rope_back(ctx,
  15154. tensor->grad,
  15155. src1,
  15156. n_dims,
  15157. mode,
  15158. n_ctx,
  15159. n_orig_ctx,
  15160. freq_base,
  15161. freq_scale,
  15162. ext_factor,
  15163. attn_factor,
  15164. beta_fast,
  15165. beta_slow,
  15166. xpos_base,
  15167. xpos_down),
  15168. zero_table);
  15169. }
  15170. } break;
  15171. case GGML_OP_ROPE_BACK:
  15172. {
  15173. if (src0->grad) {
  15174. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15175. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15176. const int mode = ((int32_t *) tensor->op_params)[2];
  15177. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15178. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15179. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15180. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15181. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15182. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15183. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15184. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15185. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15186. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15187. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15188. src0->grad = ggml_add_or_set(ctx,
  15189. src0->grad,
  15190. ggml_rope_impl(ctx,
  15191. tensor->grad,
  15192. src1,
  15193. n_dims,
  15194. mode,
  15195. n_ctx,
  15196. n_orig_ctx,
  15197. freq_base,
  15198. freq_scale,
  15199. ext_factor,
  15200. attn_factor,
  15201. beta_fast,
  15202. beta_slow,
  15203. xpos_base,
  15204. xpos_down,
  15205. false),
  15206. zero_table);
  15207. }
  15208. } break;
  15209. case GGML_OP_CLAMP:
  15210. {
  15211. GGML_ASSERT(false); // TODO: not implemented
  15212. } break;
  15213. case GGML_OP_CONV_TRANSPOSE_1D:
  15214. {
  15215. GGML_ASSERT(false); // TODO: not implemented
  15216. } break;
  15217. case GGML_OP_IM2COL:
  15218. {
  15219. GGML_ASSERT(false); // TODO: not implemented
  15220. } break;
  15221. case GGML_OP_CONV_TRANSPOSE_2D:
  15222. {
  15223. GGML_ASSERT(false); // TODO: not implemented
  15224. } break;
  15225. case GGML_OP_POOL_1D:
  15226. {
  15227. GGML_ASSERT(false); // TODO: not implemented
  15228. } break;
  15229. case GGML_OP_POOL_2D:
  15230. {
  15231. GGML_ASSERT(false); // TODO: not implemented
  15232. } break;
  15233. case GGML_OP_UPSCALE:
  15234. {
  15235. GGML_ASSERT(false); // TODO: not implemented
  15236. } break;
  15237. case GGML_OP_PAD:
  15238. {
  15239. GGML_ASSERT(false); // TODO: not implemented
  15240. } break;
  15241. case GGML_OP_ARANGE:
  15242. {
  15243. GGML_ASSERT(false); // TODO: not implemented
  15244. } break;
  15245. case GGML_OP_TIMESTEP_EMBEDDING:
  15246. {
  15247. GGML_ASSERT(false); // TODO: not implemented
  15248. } break;
  15249. case GGML_OP_ARGSORT:
  15250. {
  15251. GGML_ASSERT(false); // TODO: not implemented
  15252. } break;
  15253. case GGML_OP_LEAKY_RELU:
  15254. {
  15255. GGML_ASSERT(false); // TODO: not implemented
  15256. } break;
  15257. case GGML_OP_FLASH_ATTN:
  15258. case GGML_OP_FLASH_ATTN_EXT:
  15259. {
  15260. struct ggml_tensor * flash_grad = NULL;
  15261. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15262. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15263. GGML_ASSERT(t == 0 || t == 1);
  15264. bool masked = t != 0;
  15265. flash_grad =
  15266. ggml_flash_attn_back(ctx,
  15267. src0,
  15268. src1,
  15269. tensor->src[2],
  15270. tensor->grad,
  15271. masked);
  15272. }
  15273. struct ggml_tensor * src2 = tensor->src[2];
  15274. const int64_t elem_q = ggml_nelements(src0);
  15275. const int64_t elem_k = ggml_nelements(src1);
  15276. const int64_t elem_v = ggml_nelements(src2);
  15277. enum ggml_type result_type = flash_grad->type;
  15278. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15279. const size_t tsize = ggml_type_size(result_type);
  15280. const size_t offs_q = 0;
  15281. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15282. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15283. if (src0->grad) {
  15284. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15285. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15286. src0->grad = ggml_add_or_set(ctx,
  15287. src0->grad,
  15288. grad_q,
  15289. zero_table);
  15290. }
  15291. if (src1->grad) {
  15292. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15293. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15294. src1->grad = ggml_add_or_set(ctx,
  15295. src1->grad,
  15296. grad_k,
  15297. zero_table);
  15298. }
  15299. if (src2->grad) {
  15300. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15301. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15302. src2->grad = ggml_add_or_set(ctx,
  15303. src2->grad,
  15304. grad_v,
  15305. zero_table);
  15306. }
  15307. } break;
  15308. case GGML_OP_FLASH_FF:
  15309. {
  15310. GGML_ASSERT(false); // not supported
  15311. } break;
  15312. case GGML_OP_FLASH_ATTN_BACK:
  15313. {
  15314. GGML_ASSERT(false); // not supported
  15315. } break;
  15316. case GGML_OP_SSM_CONV:
  15317. case GGML_OP_SSM_SCAN:
  15318. {
  15319. GGML_ASSERT(false); // TODO: not implemented
  15320. } break;
  15321. case GGML_OP_WIN_PART:
  15322. case GGML_OP_WIN_UNPART:
  15323. case GGML_OP_UNARY:
  15324. {
  15325. switch (ggml_get_unary_op(tensor)) {
  15326. case GGML_UNARY_OP_ABS:
  15327. {
  15328. if (src0->grad) {
  15329. src0->grad =
  15330. ggml_add_or_set(ctx,
  15331. src0->grad,
  15332. ggml_mul(ctx,
  15333. ggml_sgn(ctx, src0),
  15334. tensor->grad),
  15335. zero_table);
  15336. }
  15337. } break;
  15338. case GGML_UNARY_OP_SGN:
  15339. {
  15340. if (src0->grad) {
  15341. // noop
  15342. }
  15343. } break;
  15344. case GGML_UNARY_OP_NEG:
  15345. {
  15346. if (src0->grad) {
  15347. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15348. }
  15349. } break;
  15350. case GGML_UNARY_OP_STEP:
  15351. {
  15352. if (src0->grad) {
  15353. // noop
  15354. }
  15355. } break;
  15356. case GGML_UNARY_OP_TANH:
  15357. {
  15358. GGML_ASSERT(false); // TODO: not implemented
  15359. } break;
  15360. case GGML_UNARY_OP_ELU:
  15361. {
  15362. GGML_ASSERT(false); // TODO: not implemented
  15363. } break;
  15364. case GGML_UNARY_OP_RELU:
  15365. {
  15366. if (src0->grad) {
  15367. src0->grad = ggml_add_or_set(ctx,
  15368. src0->grad,
  15369. ggml_mul(ctx,
  15370. ggml_step(ctx, src0),
  15371. tensor->grad),
  15372. zero_table);
  15373. }
  15374. } break;
  15375. case GGML_UNARY_OP_SIGMOID:
  15376. {
  15377. GGML_ASSERT(false); // TODO: not implemented
  15378. } break;
  15379. case GGML_UNARY_OP_GELU:
  15380. {
  15381. GGML_ASSERT(false); // TODO: not implemented
  15382. } break;
  15383. case GGML_UNARY_OP_GELU_QUICK:
  15384. {
  15385. GGML_ASSERT(false); // TODO: not implemented
  15386. } break;
  15387. case GGML_UNARY_OP_SILU:
  15388. {
  15389. // necessary for llama
  15390. if (src0->grad) {
  15391. src0->grad = ggml_add_or_set(ctx,
  15392. src0->grad,
  15393. ggml_silu_back(ctx, src0, tensor->grad),
  15394. zero_table);
  15395. }
  15396. } break;
  15397. default:
  15398. GGML_ASSERT(false);
  15399. }
  15400. } break;
  15401. case GGML_OP_GET_REL_POS:
  15402. case GGML_OP_ADD_REL_POS:
  15403. case GGML_OP_MAP_UNARY:
  15404. case GGML_OP_MAP_BINARY:
  15405. case GGML_OP_MAP_CUSTOM1_F32:
  15406. case GGML_OP_MAP_CUSTOM2_F32:
  15407. case GGML_OP_MAP_CUSTOM3_F32:
  15408. case GGML_OP_MAP_CUSTOM1:
  15409. case GGML_OP_MAP_CUSTOM2:
  15410. case GGML_OP_MAP_CUSTOM3:
  15411. {
  15412. GGML_ASSERT(false); // not supported
  15413. } break;
  15414. case GGML_OP_CROSS_ENTROPY_LOSS:
  15415. {
  15416. if (src0->grad) {
  15417. src0->grad = ggml_add_or_set(ctx,
  15418. src0->grad,
  15419. ggml_cross_entropy_loss_back(ctx,
  15420. src0,
  15421. src1,
  15422. tensor->grad),
  15423. zero_table);
  15424. }
  15425. } break;
  15426. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15427. {
  15428. GGML_ASSERT(false); // not supported
  15429. } break;
  15430. case GGML_OP_NONE:
  15431. {
  15432. // nop
  15433. } break;
  15434. case GGML_OP_COUNT:
  15435. {
  15436. GGML_ASSERT(false);
  15437. } break;
  15438. }
  15439. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15440. if (tensor->src[i] && tensor->src[i]->grad) {
  15441. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15442. }
  15443. }
  15444. }
  15445. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15446. if (node->grad == NULL) {
  15447. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15448. // it can also happen during forward pass, if the user performs computations with constants
  15449. if (node->op != GGML_OP_NONE) {
  15450. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15451. }
  15452. }
  15453. // check if already visited
  15454. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15455. return;
  15456. }
  15457. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15458. const int k =
  15459. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15460. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15461. /* unknown order, just fall back to using i*/ i;
  15462. if (node->src[k]) {
  15463. ggml_visit_parents(cgraph, node->src[k]);
  15464. }
  15465. }
  15466. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15467. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15468. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15469. if (strlen(node->name) == 0) {
  15470. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15471. }
  15472. cgraph->leafs[cgraph->n_leafs] = node;
  15473. cgraph->n_leafs++;
  15474. } else {
  15475. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15476. if (strlen(node->name) == 0) {
  15477. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15478. }
  15479. cgraph->nodes[cgraph->n_nodes] = node;
  15480. if (cgraph->grads) {
  15481. cgraph->grads[cgraph->n_nodes] = node->grad;
  15482. }
  15483. cgraph->n_nodes++;
  15484. }
  15485. }
  15486. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15487. if (!expand) {
  15488. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15489. ggml_graph_clear(cgraph);
  15490. }
  15491. const int n0 = cgraph->n_nodes;
  15492. UNUSED(n0);
  15493. ggml_visit_parents(cgraph, tensor);
  15494. const int n_new = cgraph->n_nodes - n0;
  15495. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15496. if (n_new > 0) {
  15497. // the last added node should always be starting point
  15498. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15499. }
  15500. }
  15501. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15502. ggml_build_forward_impl(cgraph, tensor, true);
  15503. }
  15504. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15505. GGML_ASSERT(gf->n_nodes > 0);
  15506. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15507. if (keep) {
  15508. for (int i = 0; i < gf->n_nodes; i++) {
  15509. struct ggml_tensor * node = gf->nodes[i];
  15510. if (node->grad) {
  15511. node->grad = ggml_dup_tensor(ctx, node);
  15512. gf->grads[i] = node->grad;
  15513. }
  15514. }
  15515. }
  15516. // remember original gradients which start with zero values
  15517. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15518. for (int i = 0; i < gf->n_nodes; i++) {
  15519. if (gf->grads[i]) {
  15520. ggml_hash_insert(zero_table, gf->grads[i]);
  15521. }
  15522. }
  15523. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15524. struct ggml_tensor * node = gf->nodes[i];
  15525. // inplace operations to add gradients are not created by ggml_compute_backward
  15526. // use allocator to automatically make inplace operations
  15527. if (node->grad) {
  15528. ggml_compute_backward(ctx, node, zero_table);
  15529. }
  15530. }
  15531. for (int i = 0; i < gf->n_nodes; i++) {
  15532. struct ggml_tensor * node = gf->nodes[i];
  15533. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15534. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15535. ggml_build_forward_expand(gb, node->grad);
  15536. }
  15537. }
  15538. ggml_hash_set_free(zero_table);
  15539. }
  15540. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15541. size_t nbytes = sizeof(struct ggml_cgraph);
  15542. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15543. if (grads) {
  15544. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15545. }
  15546. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15547. return nbytes;
  15548. }
  15549. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15550. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15551. }
  15552. size_t ggml_graph_overhead(void) {
  15553. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15554. }
  15555. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15556. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15557. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15558. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15559. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15560. size_t hash_size = ggml_hash_size(size * 2);
  15561. struct ggml_tensor ** nodes_ptr = data_start;
  15562. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15563. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15564. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15565. // check that we allocated the correct amount of memory
  15566. assert(obj_size == (size_t) (
  15567. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15568. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15569. *cgraph = (struct ggml_cgraph) {
  15570. /*.size =*/ size,
  15571. /*.n_nodes =*/ 0,
  15572. /*.n_leafs =*/ 0,
  15573. /*.nodes =*/ nodes_ptr,
  15574. /*.grads =*/ grads_ptr,
  15575. /*.leafs =*/ leafs_ptr,
  15576. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15577. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15578. /*.perf_runs =*/ 0,
  15579. /*.perf_cycles =*/ 0,
  15580. /*.perf_time_us =*/ 0,
  15581. };
  15582. return cgraph;
  15583. }
  15584. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15585. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15586. }
  15587. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15588. struct ggml_cgraph cgraph = {
  15589. /*.size =*/ 0,
  15590. /*.n_nodes =*/ i1 - i0,
  15591. /*.n_leafs =*/ 0,
  15592. /*.nodes =*/ cgraph0->nodes + i0,
  15593. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15594. /*.leafs =*/ NULL,
  15595. /*.hash_table =*/ { 0, NULL },
  15596. /*.order =*/ cgraph0->order,
  15597. /*.perf_runs =*/ 0,
  15598. /*.perf_cycles =*/ 0,
  15599. /*.perf_time_us =*/ 0,
  15600. };
  15601. return cgraph;
  15602. }
  15603. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15604. GGML_ASSERT(dst->size >= src->n_leafs);
  15605. GGML_ASSERT(dst->size >= src->n_nodes);
  15606. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15607. dst->n_leafs = src->n_leafs;
  15608. dst->n_nodes = src->n_nodes;
  15609. dst->order = src->order;
  15610. for (int i = 0; i < src->n_leafs; ++i) {
  15611. dst->leafs[i] = src->leafs[i];
  15612. }
  15613. for (int i = 0; i < src->n_nodes; ++i) {
  15614. dst->nodes[i] = src->nodes[i];
  15615. }
  15616. if (src->grads) {
  15617. GGML_ASSERT(dst->grads != NULL);
  15618. for (int i = 0; i < src->n_nodes; ++i) {
  15619. dst->grads[i] = src->grads[i];
  15620. }
  15621. }
  15622. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15623. if (src->visited_hash_table.keys[i]) {
  15624. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15625. }
  15626. }
  15627. }
  15628. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15629. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15630. ggml_graph_cpy(cgraph, result);
  15631. return result;
  15632. }
  15633. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15634. GGML_ASSERT(cgraph->grads != NULL);
  15635. for (int i = 0; i < cgraph->n_nodes; i++) {
  15636. struct ggml_tensor * grad = cgraph->grads[i];
  15637. if (grad) {
  15638. ggml_set_zero(grad);
  15639. }
  15640. }
  15641. }
  15642. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15643. cgraph->n_leafs = 0;
  15644. cgraph->n_nodes = 0;
  15645. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15646. }
  15647. //
  15648. // thread data
  15649. //
  15650. // synchronization is done via busy loops
  15651. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15652. //
  15653. #ifdef __APPLE__
  15654. //#include <os/lock.h>
  15655. //
  15656. //typedef os_unfair_lock ggml_lock_t;
  15657. //
  15658. //#define ggml_lock_init(x) UNUSED(x)
  15659. //#define ggml_lock_destroy(x) UNUSED(x)
  15660. //#define ggml_lock_lock os_unfair_lock_lock
  15661. //#define ggml_lock_unlock os_unfair_lock_unlock
  15662. //
  15663. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15664. typedef int ggml_lock_t;
  15665. #define ggml_lock_init(x) UNUSED(x)
  15666. #define ggml_lock_destroy(x) UNUSED(x)
  15667. #define ggml_lock_lock(x) UNUSED(x)
  15668. #define ggml_lock_unlock(x) UNUSED(x)
  15669. #define GGML_LOCK_INITIALIZER 0
  15670. typedef pthread_t ggml_thread_t;
  15671. #define ggml_thread_create pthread_create
  15672. #define ggml_thread_join pthread_join
  15673. #else
  15674. //typedef pthread_spinlock_t ggml_lock_t;
  15675. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15676. //#define ggml_lock_destroy pthread_spin_destroy
  15677. //#define ggml_lock_lock pthread_spin_lock
  15678. //#define ggml_lock_unlock pthread_spin_unlock
  15679. typedef int ggml_lock_t;
  15680. #define ggml_lock_init(x) UNUSED(x)
  15681. #define ggml_lock_destroy(x) UNUSED(x)
  15682. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15683. #define ggml_lock_lock(x) _mm_pause()
  15684. #else
  15685. #define ggml_lock_lock(x) UNUSED(x)
  15686. #endif
  15687. #define ggml_lock_unlock(x) UNUSED(x)
  15688. #define GGML_LOCK_INITIALIZER 0
  15689. typedef pthread_t ggml_thread_t;
  15690. #define ggml_thread_create pthread_create
  15691. #define ggml_thread_join pthread_join
  15692. #endif
  15693. // Android's libc implementation "bionic" does not support setting affinity
  15694. #if defined(__gnu_linux__)
  15695. static void set_numa_thread_affinity(int thread_n) {
  15696. if (!ggml_is_numa()) {
  15697. return;
  15698. }
  15699. int node_num;
  15700. int rv;
  15701. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15702. switch(g_state.numa.numa_strategy) {
  15703. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15704. // run thread on node_num thread_n / (threads per node)
  15705. node_num = thread_n % g_state.numa.n_nodes;
  15706. break;
  15707. case GGML_NUMA_STRATEGY_ISOLATE:
  15708. // run thread on current_node
  15709. node_num = g_state.numa.current_node;
  15710. break;
  15711. case GGML_NUMA_STRATEGY_NUMACTL:
  15712. // use the cpuset that numactl gave us
  15713. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15714. if (rv) {
  15715. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15716. }
  15717. return;
  15718. default:
  15719. return;
  15720. }
  15721. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15722. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15723. CPU_ZERO_S(setsize, cpus);
  15724. for (size_t i = 0; i < node->n_cpus; ++i) {
  15725. CPU_SET_S(node->cpus[i], setsize, cpus);
  15726. }
  15727. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15728. if (rv) {
  15729. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15730. }
  15731. CPU_FREE(cpus);
  15732. }
  15733. static void clear_numa_thread_affinity(void) {
  15734. if (!ggml_is_numa()) {
  15735. return;
  15736. }
  15737. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15738. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15739. CPU_ZERO_S(setsize, cpus);
  15740. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15741. CPU_SET_S(i, setsize, cpus);
  15742. }
  15743. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15744. if (rv) {
  15745. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15746. }
  15747. CPU_FREE(cpus);
  15748. }
  15749. #else
  15750. // TODO: Windows etc.
  15751. // (the linux implementation may also work on BSD, someone should test)
  15752. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15753. static void clear_numa_thread_affinity(void) {}
  15754. #endif
  15755. struct ggml_compute_state_shared {
  15756. const struct ggml_cgraph * cgraph;
  15757. const struct ggml_cplan * cplan;
  15758. int64_t perf_node_start_cycles;
  15759. int64_t perf_node_start_time_us;
  15760. const int n_threads;
  15761. // synchronization primitives
  15762. atomic_int n_active; // num active threads
  15763. atomic_int node_n; // active graph node
  15764. atomic_int node_task; // active graph node task phase
  15765. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  15766. void * abort_callback_data;
  15767. };
  15768. struct ggml_compute_state {
  15769. ggml_thread_t thrd;
  15770. int ith;
  15771. struct ggml_compute_state_shared * shared;
  15772. enum ggml_status ec;
  15773. };
  15774. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15775. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15776. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15777. node->perf_runs++;
  15778. node->perf_cycles += cycles_cur;
  15779. node->perf_time_us += time_us_cur;
  15780. }
  15781. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15782. int n_tasks = 0;
  15783. if (ggml_is_empty(node)) {
  15784. // no need to multi-thread a no-op
  15785. n_tasks = 1;
  15786. return n_tasks;
  15787. }
  15788. switch (node->op) {
  15789. case GGML_OP_CPY:
  15790. case GGML_OP_DUP:
  15791. case GGML_OP_ADD:
  15792. case GGML_OP_ADD1:
  15793. case GGML_OP_ACC:
  15794. {
  15795. n_tasks = n_threads;
  15796. } break;
  15797. case GGML_OP_SUB:
  15798. case GGML_OP_SQR:
  15799. case GGML_OP_SQRT:
  15800. case GGML_OP_LOG:
  15801. case GGML_OP_SUM:
  15802. case GGML_OP_SUM_ROWS:
  15803. case GGML_OP_MEAN:
  15804. case GGML_OP_ARGMAX:
  15805. case GGML_OP_REPEAT:
  15806. case GGML_OP_REPEAT_BACK:
  15807. case GGML_OP_LEAKY_RELU:
  15808. {
  15809. n_tasks = 1;
  15810. } break;
  15811. case GGML_OP_UNARY:
  15812. switch (ggml_get_unary_op(node)) {
  15813. case GGML_UNARY_OP_ABS:
  15814. case GGML_UNARY_OP_SGN:
  15815. case GGML_UNARY_OP_NEG:
  15816. case GGML_UNARY_OP_STEP:
  15817. case GGML_UNARY_OP_TANH:
  15818. case GGML_UNARY_OP_ELU:
  15819. case GGML_UNARY_OP_RELU:
  15820. case GGML_UNARY_OP_SIGMOID:
  15821. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15822. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15823. {
  15824. n_tasks = 1;
  15825. } break;
  15826. case GGML_UNARY_OP_GELU:
  15827. case GGML_UNARY_OP_GELU_QUICK:
  15828. case GGML_UNARY_OP_SILU:
  15829. {
  15830. n_tasks = n_threads;
  15831. } break;
  15832. default:
  15833. GGML_ASSERT(false);
  15834. }
  15835. break;
  15836. case GGML_OP_SILU_BACK:
  15837. case GGML_OP_MUL:
  15838. case GGML_OP_DIV:
  15839. case GGML_OP_NORM:
  15840. case GGML_OP_RMS_NORM:
  15841. case GGML_OP_RMS_NORM_BACK:
  15842. case GGML_OP_GROUP_NORM:
  15843. case GGML_OP_CONCAT:
  15844. {
  15845. n_tasks = n_threads;
  15846. } break;
  15847. case GGML_OP_MUL_MAT:
  15848. {
  15849. n_tasks = n_threads;
  15850. // TODO: use different scheduling for different matrix sizes
  15851. //const int nr0 = ggml_nrows(node->src[0]);
  15852. //const int nr1 = ggml_nrows(node->src[1]);
  15853. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15854. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15855. } break;
  15856. case GGML_OP_MUL_MAT_ID:
  15857. {
  15858. n_tasks = n_threads;
  15859. } break;
  15860. case GGML_OP_OUT_PROD:
  15861. {
  15862. n_tasks = n_threads;
  15863. } break;
  15864. case GGML_OP_GET_ROWS:
  15865. {
  15866. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15867. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15868. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15869. } break;
  15870. case GGML_OP_SCALE:
  15871. case GGML_OP_SET:
  15872. case GGML_OP_CONT:
  15873. case GGML_OP_RESHAPE:
  15874. case GGML_OP_VIEW:
  15875. case GGML_OP_PERMUTE:
  15876. case GGML_OP_TRANSPOSE:
  15877. case GGML_OP_GET_ROWS_BACK:
  15878. case GGML_OP_DIAG:
  15879. {
  15880. n_tasks = 1;
  15881. } break;
  15882. case GGML_OP_DIAG_MASK_ZERO:
  15883. case GGML_OP_DIAG_MASK_INF:
  15884. case GGML_OP_SOFT_MAX_BACK:
  15885. case GGML_OP_ROPE:
  15886. case GGML_OP_ROPE_BACK:
  15887. case GGML_OP_ADD_REL_POS:
  15888. {
  15889. n_tasks = n_threads;
  15890. } break;
  15891. case GGML_OP_CLAMP:
  15892. {
  15893. n_tasks = 1; //TODO
  15894. } break;
  15895. case GGML_OP_SOFT_MAX:
  15896. {
  15897. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15898. } break;
  15899. case GGML_OP_CONV_TRANSPOSE_1D:
  15900. {
  15901. n_tasks = n_threads;
  15902. } break;
  15903. case GGML_OP_IM2COL:
  15904. {
  15905. n_tasks = n_threads;
  15906. } break;
  15907. case GGML_OP_CONV_TRANSPOSE_2D:
  15908. {
  15909. n_tasks = n_threads;
  15910. } break;
  15911. case GGML_OP_POOL_1D:
  15912. case GGML_OP_POOL_2D:
  15913. {
  15914. n_tasks = 1;
  15915. } break;
  15916. case GGML_OP_UPSCALE:
  15917. {
  15918. n_tasks = n_threads;
  15919. } break;
  15920. case GGML_OP_PAD:
  15921. {
  15922. n_tasks = n_threads;
  15923. } break;
  15924. case GGML_OP_ARANGE:
  15925. {
  15926. n_tasks = n_threads;
  15927. } break;
  15928. case GGML_OP_TIMESTEP_EMBEDDING:
  15929. {
  15930. n_tasks = n_threads;
  15931. } break;
  15932. case GGML_OP_ARGSORT:
  15933. {
  15934. n_tasks = n_threads;
  15935. } break;
  15936. case GGML_OP_FLASH_ATTN:
  15937. case GGML_OP_FLASH_ATTN_EXT:
  15938. {
  15939. n_tasks = n_threads;
  15940. } break;
  15941. case GGML_OP_FLASH_FF:
  15942. {
  15943. n_tasks = n_threads;
  15944. } break;
  15945. case GGML_OP_FLASH_ATTN_BACK:
  15946. {
  15947. n_tasks = n_threads;
  15948. } break;
  15949. case GGML_OP_SSM_CONV:
  15950. case GGML_OP_SSM_SCAN:
  15951. {
  15952. n_tasks = n_threads;
  15953. } break;
  15954. case GGML_OP_WIN_PART:
  15955. case GGML_OP_WIN_UNPART:
  15956. case GGML_OP_GET_REL_POS:
  15957. case GGML_OP_MAP_UNARY:
  15958. case GGML_OP_MAP_BINARY:
  15959. case GGML_OP_MAP_CUSTOM1_F32:
  15960. case GGML_OP_MAP_CUSTOM2_F32:
  15961. case GGML_OP_MAP_CUSTOM3_F32:
  15962. {
  15963. n_tasks = 1;
  15964. } break;
  15965. case GGML_OP_MAP_CUSTOM1:
  15966. {
  15967. struct ggml_map_custom1_op_params p;
  15968. memcpy(&p, node->op_params, sizeof(p));
  15969. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15970. n_tasks = n_threads;
  15971. } else {
  15972. n_tasks = MIN(p.n_tasks, n_threads);
  15973. }
  15974. } break;
  15975. case GGML_OP_MAP_CUSTOM2:
  15976. {
  15977. struct ggml_map_custom2_op_params p;
  15978. memcpy(&p, node->op_params, sizeof(p));
  15979. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15980. n_tasks = n_threads;
  15981. } else {
  15982. n_tasks = MIN(p.n_tasks, n_threads);
  15983. }
  15984. } break;
  15985. case GGML_OP_MAP_CUSTOM3:
  15986. {
  15987. struct ggml_map_custom3_op_params p;
  15988. memcpy(&p, node->op_params, sizeof(p));
  15989. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15990. n_tasks = n_threads;
  15991. } else {
  15992. n_tasks = MIN(p.n_tasks, n_threads);
  15993. }
  15994. } break;
  15995. case GGML_OP_CROSS_ENTROPY_LOSS:
  15996. {
  15997. n_tasks = n_threads;
  15998. } break;
  15999. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  16000. {
  16001. n_tasks = n_threads;
  16002. } break;
  16003. case GGML_OP_NONE:
  16004. {
  16005. n_tasks = 1;
  16006. } break;
  16007. case GGML_OP_COUNT:
  16008. {
  16009. GGML_ASSERT(false);
  16010. } break;
  16011. default:
  16012. {
  16013. fprintf(stderr, "%s: op not implemented: ", __func__);
  16014. if (node->op < GGML_OP_COUNT) {
  16015. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  16016. } else {
  16017. fprintf(stderr, "%d\n", node->op);
  16018. }
  16019. GGML_ASSERT(false);
  16020. } break;
  16021. }
  16022. assert(n_tasks > 0);
  16023. return n_tasks;
  16024. }
  16025. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  16026. // wait for other threads to finish
  16027. const int last_node_n = * node_n;
  16028. while (true) {
  16029. if (do_yield) {
  16030. sched_yield();
  16031. }
  16032. * node_n = atomic_load(&state->shared->node_n);
  16033. if (* node_n != last_node_n) break;
  16034. }
  16035. }
  16036. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  16037. // wait for other threads to finish
  16038. const int last_task_phase = * task_phase;
  16039. while (true) {
  16040. if (do_yield) {
  16041. sched_yield();
  16042. }
  16043. * task_phase = atomic_load(&state->shared->node_task);
  16044. if (* task_phase != last_task_phase) break;
  16045. }
  16046. }
  16047. static thread_ret_t ggml_graph_compute_thread(void * data) {
  16048. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  16049. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  16050. const struct ggml_cplan * cplan = state->shared->cplan;
  16051. const int n_threads = state->shared->n_threads;
  16052. set_numa_thread_affinity(state->ith);
  16053. int node_n = -1;
  16054. int task_phase = GGML_TASK_TYPE_FINALIZE;
  16055. while (true) {
  16056. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16057. state->shared->node_n += 1;
  16058. state->ec = GGML_STATUS_ABORTED;
  16059. return 0;
  16060. }
  16061. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16062. // all other threads are finished and spinning
  16063. // do finalize and init here so we don't have synchronize again
  16064. struct ggml_compute_params params = {
  16065. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  16066. /*.ith =*/ 0,
  16067. /*.nth =*/ 0,
  16068. /*.wsize =*/ cplan->work_size,
  16069. /*.wdata =*/ cplan->work_data,
  16070. };
  16071. if (node_n != -1) {
  16072. /* FINALIZE */
  16073. struct ggml_tensor * node = cgraph->nodes[node_n];
  16074. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16075. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16076. ggml_compute_forward(&params, node);
  16077. }
  16078. ggml_graph_compute_perf_stats_node(node, state->shared);
  16079. }
  16080. // distribute new work or execute it direct if 1T
  16081. while (++node_n < cgraph->n_nodes) {
  16082. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  16083. struct ggml_tensor * node = cgraph->nodes[node_n];
  16084. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16085. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  16086. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  16087. params.nth = n_tasks;
  16088. if (n_tasks == 1) {
  16089. /* INIT */
  16090. if (GGML_OP_HAS_INIT[node->op]) {
  16091. params.type = GGML_TASK_TYPE_INIT;
  16092. ggml_compute_forward(&params, node);
  16093. }
  16094. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  16095. // they do something more efficient than spinning (?)
  16096. params.type = GGML_TASK_TYPE_COMPUTE;
  16097. ggml_compute_forward(&params, node);
  16098. if (GGML_OP_HAS_FINALIZE[node->op]) {
  16099. params.type = GGML_TASK_TYPE_FINALIZE;
  16100. ggml_compute_forward(&params, node);
  16101. }
  16102. ggml_graph_compute_perf_stats_node(node, state->shared);
  16103. } else {
  16104. break;
  16105. }
  16106. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  16107. break;
  16108. }
  16109. }
  16110. task_phase = GGML_TASK_TYPE_INIT;
  16111. atomic_store(&state->shared->n_active, n_threads);
  16112. atomic_store(&state->shared->node_n, node_n);
  16113. atomic_store(&state->shared->node_task, task_phase);
  16114. } else {
  16115. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  16116. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16117. }
  16118. // check if we should stop
  16119. if (node_n >= cgraph->n_nodes) break;
  16120. /* INIT & COMPUTE */
  16121. struct ggml_tensor * node = cgraph->nodes[node_n];
  16122. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16123. struct ggml_compute_params params = {
  16124. /*.type =*/ GGML_TASK_TYPE_INIT,
  16125. /*.ith =*/ state->ith,
  16126. /*.nth =*/ n_tasks,
  16127. /*.wsize =*/ cplan->work_size,
  16128. /*.wdata =*/ cplan->work_data,
  16129. };
  16130. if (state->ith < n_tasks) {
  16131. if (GGML_OP_HAS_INIT[node->op]) {
  16132. ggml_compute_forward(&params, node);
  16133. }
  16134. }
  16135. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16136. task_phase = GGML_TASK_TYPE_COMPUTE;
  16137. atomic_store(&state->shared->n_active, n_threads);
  16138. atomic_store(&state->shared->node_task, task_phase);
  16139. }
  16140. else {
  16141. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16142. // depending on the workload and the operating system.
  16143. // since it is not clear what is the best approach, it should potentially become user-configurable
  16144. // ref: https://github.com/ggerganov/ggml/issues/291
  16145. // UPD: adding the do_yield flag seems to resolve the issue universally
  16146. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16147. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16148. }
  16149. if (state->ith < n_tasks) {
  16150. params.type = GGML_TASK_TYPE_COMPUTE;
  16151. ggml_compute_forward(&params, node);
  16152. }
  16153. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16154. task_phase = GGML_TASK_TYPE_FINALIZE;
  16155. atomic_store(&state->shared->n_active, n_threads);
  16156. atomic_store(&state->shared->node_task, task_phase);
  16157. }
  16158. else {
  16159. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16160. }
  16161. }
  16162. return 0;
  16163. }
  16164. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16165. if (n_threads <= 0) {
  16166. n_threads = GGML_DEFAULT_N_THREADS;
  16167. }
  16168. size_t work_size = 0;
  16169. struct ggml_cplan cplan;
  16170. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16171. int max_tasks = 1;
  16172. // thread scheduling for the different operations + work buffer size estimation
  16173. for (int i = 0; i < cgraph->n_nodes; i++) {
  16174. struct ggml_tensor * node = cgraph->nodes[i];
  16175. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16176. max_tasks = MAX(max_tasks, n_tasks);
  16177. size_t cur = 0;
  16178. switch (node->op) {
  16179. case GGML_OP_CPY:
  16180. case GGML_OP_DUP:
  16181. {
  16182. if (ggml_is_quantized(node->type) ||
  16183. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16184. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16185. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16186. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16187. }
  16188. } break;
  16189. case GGML_OP_ADD:
  16190. case GGML_OP_ADD1:
  16191. {
  16192. if (ggml_is_quantized(node->src[0]->type)) {
  16193. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16194. }
  16195. } break;
  16196. case GGML_OP_ACC:
  16197. {
  16198. if (ggml_is_quantized(node->src[0]->type)) {
  16199. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16200. }
  16201. } break;
  16202. case GGML_OP_MUL_MAT:
  16203. {
  16204. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16205. #if defined(GGML_USE_CLBLAST)
  16206. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  16207. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  16208. } else
  16209. #endif
  16210. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16211. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16212. if (node->src[0]->type != GGML_TYPE_F32) {
  16213. // here we need memory for fully dequantized matrix from src0
  16214. // take into account that src0 can be broadcasted into src1[2,3]
  16215. cur = ggml_type_size(GGML_TYPE_F32)
  16216. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16217. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16218. }
  16219. } else
  16220. #endif
  16221. if (node->src[1]->type != vec_dot_type) {
  16222. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16223. }
  16224. } break;
  16225. case GGML_OP_MUL_MAT_ID:
  16226. {
  16227. cur = 0;
  16228. const struct ggml_tensor * src0 = node->src[0];
  16229. const struct ggml_tensor * src1 = node->src[1];
  16230. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16231. if (src1->type != vec_dot_type) {
  16232. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16233. }
  16234. const int n_as = src0->ne[2];
  16235. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16236. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16237. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16238. } break;
  16239. case GGML_OP_OUT_PROD:
  16240. {
  16241. if (ggml_is_quantized(node->src[0]->type)) {
  16242. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16243. }
  16244. } break;
  16245. case GGML_OP_SOFT_MAX:
  16246. case GGML_OP_ROPE:
  16247. {
  16248. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16249. } break;
  16250. case GGML_OP_CONV_TRANSPOSE_1D:
  16251. {
  16252. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16253. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16254. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16255. const int64_t ne00 = node->src[0]->ne[0]; // K
  16256. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16257. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16258. const int64_t ne10 = node->src[1]->ne[0]; // L
  16259. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16260. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16261. node->src[0]->type == GGML_TYPE_BF16) &&
  16262. node->src[1]->type == GGML_TYPE_F32) {
  16263. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16264. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16265. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16266. node->src[1]->type == GGML_TYPE_F32) {
  16267. cur += sizeof(float)*ne00*ne01*ne02;
  16268. cur += sizeof(float)*ne10*ne11;
  16269. } else {
  16270. GGML_ASSERT(false);
  16271. }
  16272. } break;
  16273. case GGML_OP_CONV_TRANSPOSE_2D:
  16274. {
  16275. const int64_t ne00 = node->src[0]->ne[0]; // W
  16276. const int64_t ne01 = node->src[0]->ne[1]; // H
  16277. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16278. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16279. const int64_t ne10 = node->src[1]->ne[0]; // W
  16280. const int64_t ne11 = node->src[1]->ne[1]; // H
  16281. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16282. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16283. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16284. } break;
  16285. case GGML_OP_FLASH_ATTN:
  16286. {
  16287. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16288. if (node->src[1]->type == GGML_TYPE_F32) {
  16289. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16290. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16291. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16292. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16293. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16294. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16295. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  16296. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  16297. }
  16298. } break;
  16299. case GGML_OP_FLASH_ATTN_EXT:
  16300. {
  16301. const int64_t ne00 = node->src[0]->ne[0]; // D
  16302. cur = 2*sizeof(float)*ne00*n_tasks; // 2x head size
  16303. } break;
  16304. case GGML_OP_FLASH_FF:
  16305. {
  16306. if (node->src[1]->type == GGML_TYPE_F32) {
  16307. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16308. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16309. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16310. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16311. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16312. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16313. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  16314. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  16315. }
  16316. } break;
  16317. case GGML_OP_FLASH_ATTN_BACK:
  16318. {
  16319. const int64_t D = node->src[0]->ne[0];
  16320. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16321. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16322. if (node->src[1]->type == GGML_TYPE_F32) {
  16323. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16324. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16325. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16326. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16327. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16328. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16329. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16330. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16331. }
  16332. } break;
  16333. case GGML_OP_CROSS_ENTROPY_LOSS:
  16334. {
  16335. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16336. } break;
  16337. case GGML_OP_COUNT:
  16338. {
  16339. GGML_ASSERT(false);
  16340. } break;
  16341. default:
  16342. break;
  16343. }
  16344. work_size = MAX(work_size, cur);
  16345. }
  16346. if (work_size > 0) {
  16347. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16348. }
  16349. cplan.n_threads = MIN(max_tasks, n_threads);
  16350. cplan.work_size = work_size;
  16351. cplan.work_data = NULL;
  16352. return cplan;
  16353. }
  16354. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16355. {
  16356. GGML_ASSERT(cplan);
  16357. GGML_ASSERT(cplan->n_threads > 0);
  16358. if (cplan->work_size > 0) {
  16359. GGML_ASSERT(cplan->work_data);
  16360. }
  16361. }
  16362. const int n_threads = cplan->n_threads;
  16363. struct ggml_compute_state_shared state_shared = {
  16364. /*.cgraph =*/ cgraph,
  16365. /*.cgraph_plan =*/ cplan,
  16366. /*.perf_node_start_cycles =*/ 0,
  16367. /*.perf_node_start_time_us =*/ 0,
  16368. /*.n_threads =*/ n_threads,
  16369. /*.n_active =*/ n_threads,
  16370. /*.node_n =*/ -1,
  16371. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16372. /*.abort_callback =*/ NULL,
  16373. /*.abort_callback_data =*/ NULL,
  16374. };
  16375. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16376. // create thread pool
  16377. if (n_threads > 1) {
  16378. for (int j = 1; j < n_threads; ++j) {
  16379. workers[j] = (struct ggml_compute_state) {
  16380. .thrd = 0,
  16381. .ith = j,
  16382. .shared = &state_shared,
  16383. .ec = GGML_STATUS_SUCCESS,
  16384. };
  16385. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16386. GGML_ASSERT(rc == 0);
  16387. UNUSED(rc);
  16388. }
  16389. }
  16390. workers[0].ith = 0;
  16391. workers[0].shared = &state_shared;
  16392. workers[0].ec = GGML_STATUS_SUCCESS;
  16393. const int64_t perf_start_cycles = ggml_perf_cycles();
  16394. const int64_t perf_start_time_us = ggml_perf_time_us();
  16395. // this is a work thread too
  16396. ggml_graph_compute_thread(&workers[0]);
  16397. enum ggml_status compute_status = workers[0].ec;
  16398. // don't leave affinity set on the main thread
  16399. clear_numa_thread_affinity();
  16400. // join or kill thread pool
  16401. if (n_threads > 1) {
  16402. for (int j = 1; j < n_threads; j++) {
  16403. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16404. GGML_ASSERT(rc == 0);
  16405. if (workers[j].ec != GGML_STATUS_SUCCESS)
  16406. compute_status = workers[j].ec;
  16407. }
  16408. }
  16409. // performance stats (graph)
  16410. {
  16411. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16412. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16413. cgraph->perf_runs++;
  16414. cgraph->perf_cycles += perf_cycles_cur;
  16415. cgraph->perf_time_us += perf_time_us_cur;
  16416. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16417. __func__, cgraph->perf_runs,
  16418. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16419. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16420. (double) perf_time_us_cur / 1000.0,
  16421. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16422. }
  16423. return compute_status;
  16424. }
  16425. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16426. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16427. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16428. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16429. return ggml_graph_compute(cgraph, &cplan);
  16430. }
  16431. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16432. for (int i = 0; i < cgraph->n_leafs; i++) {
  16433. struct ggml_tensor * leaf = cgraph->leafs[i];
  16434. if (strcmp(leaf->name, name) == 0) {
  16435. return leaf;
  16436. }
  16437. }
  16438. for (int i = 0; i < cgraph->n_nodes; i++) {
  16439. struct ggml_tensor * node = cgraph->nodes[i];
  16440. if (strcmp(node->name, name) == 0) {
  16441. return node;
  16442. }
  16443. }
  16444. return NULL;
  16445. }
  16446. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16447. const int64_t * ne = tensor->ne;
  16448. const size_t * nb = tensor->nb;
  16449. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16450. ggml_type_name(tensor->type),
  16451. ggml_op_name (tensor->op),
  16452. ggml_n_dims(tensor),
  16453. ne[0], ne[1], ne[2], ne[3],
  16454. nb[0], nb[1], nb[2], nb[3],
  16455. tensor->data,
  16456. tensor->name);
  16457. }
  16458. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16459. const int64_t * ne = tensor->ne;
  16460. const size_t * nb = tensor->nb;
  16461. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16462. arg,
  16463. ggml_type_name(tensor->type),
  16464. ggml_op_name (tensor->op),
  16465. ggml_n_dims(tensor),
  16466. ne[0], ne[1], ne[2], ne[3],
  16467. nb[0], nb[1], nb[2], nb[3],
  16468. tensor->data,
  16469. tensor->name);
  16470. }
  16471. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16472. uint64_t size_eval = 0;
  16473. // compute size of intermediate results
  16474. // TODO: does not take into account scratch buffers !!!!
  16475. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16476. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16477. }
  16478. // print
  16479. {
  16480. FILE * fout = stdout;
  16481. fprintf(fout, "\n");
  16482. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16483. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16484. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16485. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16486. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16487. // header
  16488. fprintf(fout, "\n");
  16489. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16490. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16491. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16492. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16493. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16494. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16495. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16496. }
  16497. // header
  16498. fprintf(fout, "\n");
  16499. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16500. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16501. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16502. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16503. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16504. if (cgraph->nodes[i]->src[j]) {
  16505. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16506. }
  16507. }
  16508. fprintf(fout, "\n");
  16509. }
  16510. fprintf(fout, "\n");
  16511. }
  16512. // write binary data
  16513. {
  16514. FILE * fout = ggml_fopen(fname, "wb");
  16515. if (!fout) {
  16516. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16517. return;
  16518. }
  16519. // header
  16520. {
  16521. const uint32_t magic = GGML_FILE_MAGIC;
  16522. const uint32_t version = GGML_FILE_VERSION;
  16523. const uint32_t n_leafs = cgraph->n_leafs;
  16524. const uint32_t n_nodes = cgraph->n_nodes;
  16525. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16526. fwrite(&version, sizeof(uint32_t), 1, fout);
  16527. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16528. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16529. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16530. }
  16531. // leafs
  16532. {
  16533. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16534. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16535. const uint32_t type = tensor->type;
  16536. const uint32_t op = tensor->op;
  16537. fwrite(&type, sizeof(uint32_t), 1, fout);
  16538. fwrite(&op, sizeof(uint32_t), 1, fout);
  16539. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16540. const uint64_t ne = tensor->ne[j];
  16541. const uint64_t nb = tensor->nb[j];
  16542. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16543. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16544. }
  16545. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16546. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16547. // dump the data
  16548. // TODO: pad this to 32 byte boundary
  16549. {
  16550. const size_t size = ggml_nbytes(tensor);
  16551. fwrite(tensor->data, sizeof(char), size, fout);
  16552. }
  16553. }
  16554. }
  16555. // nodes
  16556. {
  16557. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16558. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16559. const uint32_t type = tensor->type;
  16560. const uint32_t op = tensor->op;
  16561. fwrite(&type, sizeof(uint32_t), 1, fout);
  16562. fwrite(&op, sizeof(uint32_t), 1, fout);
  16563. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16564. const uint64_t ne = tensor->ne[j];
  16565. const uint64_t nb = tensor->nb[j];
  16566. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16567. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16568. }
  16569. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16570. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16571. // output the op arguments
  16572. {
  16573. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16574. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16575. args[j] = tensor->src[j];
  16576. }
  16577. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16578. if (args[j]) {
  16579. int32_t idx = -1;
  16580. // check if leaf
  16581. {
  16582. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16583. if (args[j] == cgraph->leafs[k]) {
  16584. idx = k;
  16585. break;
  16586. }
  16587. }
  16588. }
  16589. // check if node
  16590. if (idx == -1) {
  16591. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16592. if (args[j] == cgraph->nodes[k]) {
  16593. idx = cgraph->n_leafs + k;
  16594. break;
  16595. }
  16596. }
  16597. }
  16598. if (idx == -1) {
  16599. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16600. fclose(fout);
  16601. return;
  16602. }
  16603. fwrite(&idx, sizeof(int32_t), 1, fout);
  16604. } else {
  16605. const int32_t nul = -1;
  16606. fwrite(&nul, sizeof(int32_t), 1, fout);
  16607. }
  16608. }
  16609. }
  16610. }
  16611. }
  16612. fclose(fout);
  16613. }
  16614. }
  16615. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16616. assert(*ctx_data == NULL);
  16617. assert(*ctx_eval == NULL);
  16618. struct ggml_cgraph * result = NULL;
  16619. struct ggml_tensor * data = NULL;
  16620. // read file into data
  16621. {
  16622. FILE * fin = ggml_fopen(fname, "rb");
  16623. if (!fin) {
  16624. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16625. return result;
  16626. }
  16627. size_t fsize = 0;
  16628. fseek(fin, 0, SEEK_END);
  16629. fsize = ftell(fin);
  16630. fseek(fin, 0, SEEK_SET);
  16631. // create the data context
  16632. {
  16633. const size_t overhead = 1*ggml_tensor_overhead();
  16634. struct ggml_init_params params = {
  16635. .mem_size = fsize + overhead,
  16636. .mem_buffer = NULL,
  16637. .no_alloc = false,
  16638. };
  16639. *ctx_data = ggml_init(params);
  16640. if (!*ctx_data) {
  16641. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16642. fclose(fin);
  16643. return result;
  16644. }
  16645. }
  16646. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16647. {
  16648. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16649. if (ret != fsize) {
  16650. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16651. fclose(fin);
  16652. return result;
  16653. }
  16654. }
  16655. fclose(fin);
  16656. }
  16657. // populate result
  16658. {
  16659. char * ptr = (char *) data->data;
  16660. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16661. if (magic != GGML_FILE_MAGIC) {
  16662. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16663. return result;
  16664. }
  16665. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16666. if (version != GGML_FILE_VERSION) {
  16667. fprintf(stderr, "%s: invalid version number\n", __func__);
  16668. return result;
  16669. }
  16670. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16671. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16672. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16673. const int graph_size = MAX(n_leafs, n_nodes);
  16674. // create the data context
  16675. {
  16676. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16677. struct ggml_init_params params = {
  16678. .mem_size = size_eval + overhead,
  16679. .mem_buffer = NULL,
  16680. .no_alloc = true,
  16681. };
  16682. *ctx_eval = ggml_init(params);
  16683. if (!*ctx_eval) {
  16684. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16685. return result;
  16686. }
  16687. }
  16688. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16689. result->n_leafs = n_leafs;
  16690. result->n_nodes = n_nodes;
  16691. // leafs
  16692. {
  16693. uint32_t type;
  16694. uint32_t op;
  16695. for (uint32_t i = 0; i < n_leafs; ++i) {
  16696. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16697. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16698. int64_t ne[GGML_MAX_DIMS];
  16699. size_t nb[GGML_MAX_DIMS];
  16700. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16701. uint64_t ne_cur;
  16702. uint64_t nb_cur;
  16703. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16704. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16705. ne[j] = ne_cur;
  16706. nb[j] = nb_cur;
  16707. }
  16708. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16709. tensor->op = (enum ggml_op) op;
  16710. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16711. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16712. tensor->data = (void *) ptr;
  16713. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16714. tensor->nb[j] = nb[j];
  16715. }
  16716. result->leafs[i] = tensor;
  16717. ptr += ggml_nbytes(tensor);
  16718. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16719. }
  16720. }
  16721. ggml_set_no_alloc(*ctx_eval, false);
  16722. // nodes
  16723. {
  16724. uint32_t type;
  16725. uint32_t op;
  16726. for (uint32_t i = 0; i < n_nodes; ++i) {
  16727. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16728. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16729. enum ggml_op eop = (enum ggml_op) op;
  16730. int64_t ne[GGML_MAX_DIMS];
  16731. size_t nb[GGML_MAX_DIMS];
  16732. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16733. uint64_t ne_cur;
  16734. uint64_t nb_cur;
  16735. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16736. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16737. ne[j] = ne_cur;
  16738. nb[j] = nb_cur;
  16739. }
  16740. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16741. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16742. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16743. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16744. // parse args
  16745. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16746. const int32_t arg_idx = ptr_arg_idx[j];
  16747. if (arg_idx == -1) {
  16748. continue;
  16749. }
  16750. if (arg_idx < result->n_leafs) {
  16751. args[j] = result->leafs[arg_idx];
  16752. } else {
  16753. args[j] = result->nodes[arg_idx - result->n_leafs];
  16754. }
  16755. }
  16756. // create the tensor
  16757. // "view" operations are handled differently
  16758. // TODO: handle inplace ops - currently a copy is always made
  16759. struct ggml_tensor * tensor = NULL;
  16760. switch (eop) {
  16761. // TODO: implement other view ops
  16762. case GGML_OP_RESHAPE:
  16763. {
  16764. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16765. } break;
  16766. case GGML_OP_VIEW:
  16767. {
  16768. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16769. size_t offs;
  16770. memcpy(&offs, ptr_op_params, sizeof(offs));
  16771. tensor->data = ((char *) tensor->data) + offs;
  16772. } break;
  16773. case GGML_OP_TRANSPOSE:
  16774. {
  16775. tensor = ggml_transpose(*ctx_eval, args[0]);
  16776. } break;
  16777. case GGML_OP_PERMUTE:
  16778. {
  16779. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16780. } break;
  16781. default:
  16782. {
  16783. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16784. tensor->op = eop;
  16785. } break;
  16786. }
  16787. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16788. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16789. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16790. tensor->nb[j] = nb[j];
  16791. }
  16792. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16793. tensor->src[j] = args[j];
  16794. }
  16795. result->nodes[i] = tensor;
  16796. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16797. }
  16798. }
  16799. }
  16800. return result;
  16801. }
  16802. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16803. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16804. GGML_PRINT("=== GRAPH ===\n");
  16805. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16806. for (int i = 0; i < cgraph->n_nodes; i++) {
  16807. struct ggml_tensor * node = cgraph->nodes[i];
  16808. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16809. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16810. i,
  16811. node->ne[0], node->ne[1], node->ne[2],
  16812. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16813. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16814. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16815. (double) node->perf_time_us / 1000.0,
  16816. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16817. }
  16818. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16819. for (int i = 0; i < cgraph->n_leafs; i++) {
  16820. struct ggml_tensor * node = cgraph->leafs[i];
  16821. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16822. i,
  16823. node->ne[0], node->ne[1],
  16824. ggml_op_name(node->op),
  16825. ggml_get_name(node));
  16826. }
  16827. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16828. if (perf_total_per_op_us[i] == 0) {
  16829. continue;
  16830. }
  16831. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16832. }
  16833. GGML_PRINT("========================================\n");
  16834. }
  16835. // check if node is part of the graph
  16836. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16837. if (cgraph == NULL) {
  16838. return true;
  16839. }
  16840. for (int i = 0; i < cgraph->n_nodes; i++) {
  16841. if (cgraph->nodes[i] == node) {
  16842. return true;
  16843. }
  16844. }
  16845. return false;
  16846. }
  16847. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16848. for (int i = 0; i < cgraph->n_nodes; i++) {
  16849. struct ggml_tensor * parent = cgraph->nodes[i];
  16850. if (parent->grad == node) {
  16851. return parent;
  16852. }
  16853. }
  16854. return NULL;
  16855. }
  16856. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16857. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16858. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16859. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16860. gparent0 ? (void *) gparent0 : (void *) parent,
  16861. gparent0 ? "g" : "x",
  16862. gparent ? (void *) gparent : (void *) node,
  16863. gparent ? "g" : "x",
  16864. gparent ? "empty" : "vee",
  16865. gparent ? "dashed" : "solid",
  16866. label);
  16867. }
  16868. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16869. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16870. (void *) parent, "x",
  16871. (void *) node, "x",
  16872. label);
  16873. }
  16874. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16875. char color[16];
  16876. FILE * fp = ggml_fopen(filename, "w");
  16877. GGML_ASSERT(fp);
  16878. fprintf(fp, "digraph G {\n");
  16879. fprintf(fp, " newrank = true;\n");
  16880. fprintf(fp, " rankdir = LR;\n");
  16881. for (int i = 0; i < gb->n_nodes; i++) {
  16882. struct ggml_tensor * node = gb->nodes[i];
  16883. if (ggml_graph_get_parent(gb, node) != NULL) {
  16884. continue;
  16885. }
  16886. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16887. snprintf(color, sizeof(color), "yellow");
  16888. } else if (node->grad) {
  16889. if (ggml_graph_find(gf, node)) {
  16890. snprintf(color, sizeof(color), "green");
  16891. } else {
  16892. snprintf(color, sizeof(color), "lightblue");
  16893. }
  16894. } else {
  16895. snprintf(color, sizeof(color), "white");
  16896. }
  16897. fprintf(fp, " \"%p\" [ "
  16898. "style = filled; fillcolor = %s; shape = record; "
  16899. "label=\"",
  16900. (void *) node, color);
  16901. if (strlen(node->name) > 0) {
  16902. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16903. } else {
  16904. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16905. }
  16906. if (ggml_is_matrix(node)) {
  16907. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16908. } else {
  16909. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16910. }
  16911. if (node->grad) {
  16912. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16913. } else {
  16914. fprintf(fp, "\"; ]\n");
  16915. }
  16916. }
  16917. for (int i = 0; i < gb->n_leafs; i++) {
  16918. struct ggml_tensor * node = gb->leafs[i];
  16919. snprintf(color, sizeof(color), "pink");
  16920. fprintf(fp, " \"%p\" [ "
  16921. "style = filled; fillcolor = %s; shape = record; "
  16922. "label=\"<x>",
  16923. (void *) node, color);
  16924. if (strlen(node->name) > 0) {
  16925. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16926. } else {
  16927. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16928. }
  16929. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16930. if (ggml_nelements(node) < 5) {
  16931. fprintf(fp, " | (");
  16932. for (int j = 0; j < ggml_nelements(node); j++) {
  16933. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16934. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16935. }
  16936. else if (node->type == GGML_TYPE_F32 ||
  16937. node->type == GGML_TYPE_F16 ||
  16938. node->type == GGML_TYPE_BF16) {
  16939. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16940. }
  16941. else {
  16942. fprintf(fp, "#");
  16943. }
  16944. if (j < ggml_nelements(node) - 1) {
  16945. fprintf(fp, ", ");
  16946. }
  16947. }
  16948. fprintf(fp, ")");
  16949. }
  16950. fprintf(fp, "\"; ]\n");
  16951. }
  16952. for (int i = 0; i < gb->n_nodes; i++) {
  16953. struct ggml_tensor * node = gb->nodes[i];
  16954. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16955. if (node->src[j]) {
  16956. char label[16];
  16957. snprintf(label, sizeof(label), "src %d", j);
  16958. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16959. }
  16960. }
  16961. }
  16962. for (int i = 0; i < gb->n_leafs; i++) {
  16963. struct ggml_tensor * node = gb->leafs[i];
  16964. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16965. if (node->src[j]) {
  16966. char label[16];
  16967. snprintf(label, sizeof(label), "src %d", j);
  16968. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16969. }
  16970. }
  16971. }
  16972. fprintf(fp, "}\n");
  16973. fclose(fp);
  16974. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16975. }
  16976. ////////////////////////////////////////////////////////////////////////////////
  16977. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16978. int i = 0;
  16979. for (int p = 0; p < np; ++p) {
  16980. const int64_t ne = ggml_nelements(ps[p]) ;
  16981. // TODO: add function to set tensor from array
  16982. for (int64_t j = 0; j < ne; ++j) {
  16983. ggml_set_f32_1d(ps[p], j, x[i++]);
  16984. }
  16985. }
  16986. }
  16987. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16988. int i = 0;
  16989. for (int p = 0; p < np; ++p) {
  16990. const int64_t ne = ggml_nelements(ps[p]) ;
  16991. // TODO: add function to get all elements at once
  16992. for (int64_t j = 0; j < ne; ++j) {
  16993. x[i++] = ggml_get_f32_1d(ps[p], j);
  16994. }
  16995. }
  16996. }
  16997. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16998. int64_t i = 0;
  16999. for (int p = 0; p < np; ++p) {
  17000. const int64_t ne = ggml_nelements(ps[p]) ;
  17001. // TODO: add function to get all elements at once
  17002. for (int64_t j = 0; j < ne; ++j) {
  17003. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  17004. }
  17005. }
  17006. }
  17007. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  17008. int64_t i = 0;
  17009. for (int p = 0; p < np; ++p) {
  17010. const int64_t ne = ggml_nelements(ps[p]) ;
  17011. // TODO: add function to get all elements at once
  17012. for (int64_t j = 0; j < ne; ++j) {
  17013. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  17014. }
  17015. }
  17016. }
  17017. //
  17018. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  17019. //
  17020. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  17021. //
  17022. static enum ggml_opt_result ggml_opt_adam(
  17023. struct ggml_context * ctx,
  17024. struct ggml_opt_context * opt,
  17025. struct ggml_opt_params params,
  17026. struct ggml_tensor * f,
  17027. struct ggml_cgraph * gf,
  17028. struct ggml_cgraph * gb,
  17029. ggml_opt_callback callback,
  17030. void * callback_data) {
  17031. GGML_ASSERT(ggml_is_scalar(f));
  17032. // these will store the parameters we want to optimize
  17033. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17034. int np = 0;
  17035. int64_t nx = 0;
  17036. for (int i = 0; i < gf->n_nodes; ++i) {
  17037. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17038. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17039. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17040. ps[np++] = gf->nodes[i];
  17041. nx += ggml_nelements(gf->nodes[i]);
  17042. }
  17043. }
  17044. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  17045. int iter = opt->iter;
  17046. ggml_opt_init(opt->ctx, opt, params, nx);
  17047. opt->iter = iter;
  17048. }
  17049. // constants
  17050. float sched = params.adam.sched;
  17051. const float alpha = params.adam.alpha;
  17052. const float decay = params.adam.decay * alpha;
  17053. const float beta1 = params.adam.beta1;
  17054. const float beta2 = params.adam.beta2;
  17055. const float eps = params.adam.eps;
  17056. const float gclip = params.adam.gclip;
  17057. const int decay_min_ndim = params.adam.decay_min_ndim;
  17058. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17059. const float accum_norm = 1.0f / (float) n_accum;
  17060. float * g = opt->adam.g->data; // gradients
  17061. float * m = opt->adam.m->data; // first moment
  17062. float * v = opt->adam.v->data; // second moment
  17063. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  17064. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17065. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17066. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17067. bool cancel = false;
  17068. // compute the function value
  17069. float fx = 0;
  17070. ggml_set_zero(opt->adam.g);
  17071. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17072. if (callback) {
  17073. callback(callback_data, accum_step, &sched, &cancel);
  17074. if (cancel) {
  17075. return GGML_OPT_RESULT_CANCEL;
  17076. }
  17077. }
  17078. // ggml_graph_reset (gf);
  17079. ggml_set_f32 (f->grad, 1.0f);
  17080. ggml_graph_compute(gb, &cplan);
  17081. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17082. fx += ggml_get_f32_1d(f, 0);
  17083. }
  17084. fx *= accum_norm;
  17085. opt->adam.fx_prev = fx;
  17086. opt->adam.fx_best = opt->adam.fx_prev;
  17087. if (pf) {
  17088. pf[opt->iter % params.past] = opt->adam.fx_prev;
  17089. }
  17090. opt->loss_before = opt->adam.fx_prev;
  17091. opt->loss_after = opt->adam.fx_prev;
  17092. // initialize
  17093. if (opt->just_initialized) {
  17094. opt->adam.n_no_improvement = 0;
  17095. opt->just_initialized = false;
  17096. }
  17097. float * fx_best = &opt->adam.fx_best;
  17098. float * fx_prev = &opt->adam.fx_prev;
  17099. int * n_no_improvement = &opt->adam.n_no_improvement;
  17100. int iter0 = opt->iter;
  17101. // run the optimizer
  17102. for (int t = 0; t < params.adam.n_iter; ++t) {
  17103. opt->iter = iter0 + t + 1;
  17104. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  17105. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17106. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  17107. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  17108. for (int i = 0; i < np; ++i) {
  17109. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  17110. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  17111. }
  17112. const int64_t t_start_wall = ggml_time_us();
  17113. const int64_t t_start_cpu = ggml_cycles();
  17114. UNUSED(t_start_wall);
  17115. UNUSED(t_start_cpu);
  17116. {
  17117. float gnorm = 1.0f;
  17118. if (gclip > 0.0f) {
  17119. // gradient clipping
  17120. ggml_float sum = 0.0;
  17121. for (int64_t i = 0; i < nx; ++i) {
  17122. sum += (ggml_float)(g[i]*g[i]);
  17123. }
  17124. ggml_float norm = sqrt(sum);
  17125. if (norm > (ggml_float) gclip) {
  17126. gnorm = (float) ((ggml_float) gclip / norm);
  17127. }
  17128. }
  17129. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17130. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17131. int64_t i = 0;
  17132. for (int p = 0; p < np; ++p) {
  17133. const int64_t ne = ggml_nelements(ps[p]);
  17134. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17135. for (int64_t j = 0; j < ne; ++j) {
  17136. float x = ggml_get_f32_1d(ps[p], j);
  17137. float g_ = g[i]*gnorm;
  17138. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17139. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17140. float mh = m[i]*beta1h;
  17141. float vh = v[i]*beta2h;
  17142. vh = sqrtf(vh) + eps;
  17143. x = x*(1.0f - p_decay) - mh/vh;
  17144. ggml_set_f32_1d(ps[p], j, x);
  17145. ++i;
  17146. }
  17147. }
  17148. }
  17149. fx = 0;
  17150. ggml_set_zero(opt->adam.g);
  17151. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17152. if (callback) {
  17153. callback(callback_data, accum_step, &sched, &cancel);
  17154. if (cancel) {
  17155. return GGML_OPT_RESULT_CANCEL;;
  17156. }
  17157. }
  17158. // ggml_graph_reset (gf);
  17159. ggml_set_f32 (f->grad, 1.0f);
  17160. ggml_graph_compute(gb, &cplan);
  17161. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17162. fx += ggml_get_f32_1d(f, 0);
  17163. }
  17164. fx *= accum_norm;
  17165. opt->loss_after = fx;
  17166. // check convergence
  17167. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17168. GGML_PRINT_DEBUG("converged\n");
  17169. return GGML_OPT_RESULT_OK;
  17170. }
  17171. // delta-based convergence test
  17172. if (pf != NULL) {
  17173. // need at least params.past iterations to start checking for convergence
  17174. if (params.past <= iter0 + t) {
  17175. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17176. if (fabsf(rate) < params.delta) {
  17177. return GGML_OPT_RESULT_OK;
  17178. }
  17179. }
  17180. pf[(iter0 + t)%params.past] = fx;
  17181. }
  17182. // check for improvement
  17183. if (params.max_no_improvement > 0) {
  17184. if (fx_best[0] > fx) {
  17185. fx_best[0] = fx;
  17186. n_no_improvement[0] = 0;
  17187. } else {
  17188. ++n_no_improvement[0];
  17189. if (n_no_improvement[0] >= params.max_no_improvement) {
  17190. return GGML_OPT_RESULT_OK;
  17191. }
  17192. }
  17193. }
  17194. fx_prev[0] = fx;
  17195. {
  17196. const int64_t t_end_cpu = ggml_cycles();
  17197. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17198. UNUSED(t_end_cpu);
  17199. const int64_t t_end_wall = ggml_time_us();
  17200. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17201. UNUSED(t_end_wall);
  17202. }
  17203. }
  17204. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17205. }
  17206. //
  17207. // L-BFGS
  17208. //
  17209. // the L-BFGS implementation below is based on the following implementation:
  17210. //
  17211. // https://github.com/chokkan/liblbfgs
  17212. //
  17213. struct ggml_lbfgs_iteration_data {
  17214. float alpha;
  17215. float ys;
  17216. float * s;
  17217. float * y;
  17218. };
  17219. static enum ggml_opt_result linesearch_backtracking(
  17220. const struct ggml_opt_params * params,
  17221. int nx,
  17222. float * x,
  17223. float * fx,
  17224. float * g,
  17225. float * d,
  17226. float * step,
  17227. const float * xp,
  17228. struct ggml_tensor * f,
  17229. struct ggml_cgraph * gb,
  17230. struct ggml_cplan * cplan,
  17231. const int np,
  17232. struct ggml_tensor * ps[],
  17233. bool * cancel,
  17234. ggml_opt_callback callback,
  17235. void * callback_data) {
  17236. int count = 0;
  17237. float width = 0.0f;
  17238. float dg = 0.0f;
  17239. float finit = 0.0f;
  17240. float dginit = 0.0f;
  17241. float dgtest = 0.0f;
  17242. const float dec = 0.5f;
  17243. const float inc = 2.1f;
  17244. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17245. const float accum_norm = 1.0f / (float) n_accum;
  17246. if (*step <= 0.f) {
  17247. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17248. }
  17249. // compute the initial gradient in the search direction
  17250. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17251. // make sure that d points to a descent direction
  17252. if (0 < dginit) {
  17253. return GGML_LINESEARCH_FAIL;
  17254. }
  17255. // initialize local variables
  17256. finit = *fx;
  17257. dgtest = params->lbfgs.ftol*dginit;
  17258. while (true) {
  17259. ggml_vec_cpy_f32(nx, x, xp);
  17260. ggml_vec_mad_f32(nx, x, d, *step);
  17261. // evaluate the function and gradient values
  17262. {
  17263. ggml_opt_set_params(np, ps, x);
  17264. *fx = 0;
  17265. memset(g, 0, sizeof(float)*nx);
  17266. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17267. if (callback) {
  17268. // LBFG-S does not support learning rate -> ignore learning schedule
  17269. float sched = 0;
  17270. callback(callback_data, accum_step, &sched, cancel);
  17271. if (*cancel) {
  17272. return GGML_OPT_RESULT_CANCEL;
  17273. }
  17274. }
  17275. // ggml_graph_reset (gf);
  17276. ggml_set_f32 (f->grad, 1.0f);
  17277. ggml_graph_compute(gb, cplan);
  17278. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17279. *fx += ggml_get_f32_1d(f, 0);
  17280. }
  17281. *fx *= accum_norm;
  17282. }
  17283. ++count;
  17284. if (*fx > finit + (*step)*dgtest) {
  17285. width = dec;
  17286. } else {
  17287. // Armijo condition is satisfied
  17288. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17289. return count;
  17290. }
  17291. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17292. // check the Wolfe condition
  17293. if (dg < params->lbfgs.wolfe * dginit) {
  17294. width = inc;
  17295. } else {
  17296. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17297. // regular Wolfe conditions
  17298. return count;
  17299. }
  17300. if(dg > -params->lbfgs.wolfe*dginit) {
  17301. width = dec;
  17302. } else {
  17303. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17304. return count;
  17305. }
  17306. }
  17307. }
  17308. if (*step < params->lbfgs.min_step) {
  17309. return GGML_LINESEARCH_MINIMUM_STEP;
  17310. }
  17311. if (*step > params->lbfgs.max_step) {
  17312. return GGML_LINESEARCH_MAXIMUM_STEP;
  17313. }
  17314. if (params->lbfgs.max_linesearch <= count) {
  17315. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17316. }
  17317. (*step) *= width;
  17318. }
  17319. GGML_ASSERT(false && "line search failed");
  17320. return GGML_LINESEARCH_FAIL;
  17321. }
  17322. static enum ggml_opt_result ggml_opt_lbfgs(
  17323. struct ggml_context * ctx,
  17324. struct ggml_opt_context * opt,
  17325. struct ggml_opt_params params,
  17326. struct ggml_tensor * f,
  17327. struct ggml_cgraph * gf,
  17328. struct ggml_cgraph * gb,
  17329. ggml_opt_callback callback,
  17330. void * callback_data) {
  17331. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17332. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17333. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17334. return GGML_OPT_RESULT_INVALID_WOLFE;
  17335. }
  17336. }
  17337. const int m = params.lbfgs.m;
  17338. // these will store the parameters we want to optimize
  17339. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17340. int np = 0;
  17341. int nx = 0;
  17342. for (int i = 0; i < gf->n_nodes; ++i) {
  17343. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17344. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17345. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17346. ps[np++] = gf->nodes[i];
  17347. nx += ggml_nelements(gf->nodes[i]);
  17348. }
  17349. }
  17350. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17351. int iter = opt->iter;
  17352. ggml_opt_init(ctx, opt, params, nx);
  17353. opt->iter = iter;
  17354. }
  17355. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17356. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17357. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17358. float * x = opt->lbfgs.x->data; // current parameters
  17359. float * xp = opt->lbfgs.xp->data; // previous parameters
  17360. float * g = opt->lbfgs.g->data; // current gradient
  17361. float * gp = opt->lbfgs.gp->data; // previous gradient
  17362. float * d = opt->lbfgs.d->data; // search direction
  17363. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17364. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17365. const float accum_norm = 1.0f / (float) n_accum;
  17366. float fx = 0.0f; // cost function value
  17367. float xnorm = 0.0f; // ||x||
  17368. float gnorm = 0.0f; // ||g||
  17369. // initialize x from the graph nodes
  17370. ggml_opt_get_params(np, ps, x);
  17371. // the L-BFGS memory
  17372. float * lm_alpha = opt->lbfgs.lmal->data;
  17373. float * lm_ys = opt->lbfgs.lmys->data;
  17374. float * lm_s = opt->lbfgs.lms->data;
  17375. float * lm_y = opt->lbfgs.lmy->data;
  17376. bool cancel = false;
  17377. // evaluate the function value and its gradient
  17378. {
  17379. ggml_opt_set_params(np, ps, x);
  17380. fx = 0;
  17381. memset(g, 0, sizeof(float)*nx);
  17382. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17383. if (callback) {
  17384. // LBFG-S does not support learning rate -> ignore learning schedule
  17385. float sched = 0;
  17386. callback(callback_data, accum_step, &sched, &cancel);
  17387. if (cancel) {
  17388. return GGML_OPT_RESULT_CANCEL;
  17389. }
  17390. }
  17391. // ggml_graph_reset (gf);
  17392. ggml_set_f32 (f->grad, 1.0f);
  17393. ggml_graph_compute(gb, &cplan);
  17394. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17395. fx += ggml_get_f32_1d(f, 0);
  17396. }
  17397. fx *= accum_norm;
  17398. opt->loss_before = fx;
  17399. opt->loss_after = fx;
  17400. }
  17401. // search direction = -gradient
  17402. ggml_vec_neg_f32(nx, d, g);
  17403. // ||x||, ||g||
  17404. ggml_vec_norm_f32(nx, &xnorm, x);
  17405. ggml_vec_norm_f32(nx, &gnorm, g);
  17406. if (xnorm < 1.0f) {
  17407. xnorm = 1.0f;
  17408. }
  17409. // already optimized
  17410. if (gnorm/xnorm <= params.lbfgs.eps) {
  17411. return GGML_OPT_RESULT_OK;
  17412. }
  17413. if (opt->just_initialized) {
  17414. if (pf) {
  17415. pf[0] = fx;
  17416. }
  17417. opt->lbfgs.fx_best = fx;
  17418. // initial step
  17419. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17420. opt->lbfgs.j = 0;
  17421. opt->lbfgs.k = 1;
  17422. opt->lbfgs.end = 0;
  17423. opt->lbfgs.n_no_improvement = 0;
  17424. opt->just_initialized = false;
  17425. }
  17426. float * fx_best = &opt->lbfgs.fx_best;
  17427. float * step = &opt->lbfgs.step;
  17428. int * j = &opt->lbfgs.j;
  17429. int * k = &opt->lbfgs.k;
  17430. int * end = &opt->lbfgs.end;
  17431. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17432. int ls = 0;
  17433. int bound = 0;
  17434. float ys = 0.0f;
  17435. float yy = 0.0f;
  17436. float beta = 0.0f;
  17437. int it = 0;
  17438. while (true) {
  17439. // store the current position and gradient vectors
  17440. ggml_vec_cpy_f32(nx, xp, x);
  17441. ggml_vec_cpy_f32(nx, gp, g);
  17442. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17443. // to determine if the optimization should be cancelled
  17444. // this is a simple change, but not doing this atm, since I don't have a nice
  17445. // way to test and don't want to break something with so many changes lined up
  17446. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17447. if (cancel) {
  17448. return GGML_OPT_RESULT_CANCEL;
  17449. }
  17450. if (ls < 0) {
  17451. // linesearch failed - go back to the previous point and return
  17452. ggml_vec_cpy_f32(nx, x, xp);
  17453. ggml_vec_cpy_f32(nx, g, gp);
  17454. return ls;
  17455. }
  17456. opt->loss_after = fx;
  17457. ggml_vec_norm_f32(nx, &xnorm, x);
  17458. ggml_vec_norm_f32(nx, &gnorm, g);
  17459. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17460. if (xnorm < 1.0f) {
  17461. xnorm = 1.0f;
  17462. }
  17463. if (gnorm/xnorm <= params.lbfgs.eps) {
  17464. // converged
  17465. return GGML_OPT_RESULT_OK;
  17466. }
  17467. // delta-based convergence test
  17468. if (pf != NULL) {
  17469. // need at least params.past iterations to start checking for convergence
  17470. if (params.past <= k[0]) {
  17471. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17472. if (fabsf(rate) < params.delta) {
  17473. return GGML_OPT_RESULT_OK;
  17474. }
  17475. }
  17476. pf[k[0]%params.past] = fx;
  17477. }
  17478. // check for improvement
  17479. if (params.max_no_improvement > 0) {
  17480. if (fx < fx_best[0]) {
  17481. fx_best[0] = fx;
  17482. n_no_improvement[0] = 0;
  17483. } else {
  17484. n_no_improvement[0]++;
  17485. if (n_no_improvement[0] >= params.max_no_improvement) {
  17486. return GGML_OPT_RESULT_OK;
  17487. }
  17488. }
  17489. }
  17490. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17491. // reached the maximum number of iterations
  17492. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17493. }
  17494. // update vectors s and y:
  17495. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17496. // y_{k+1} = g_{k+1} - g_{k}.
  17497. //
  17498. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17499. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17500. // compute scalars ys and yy:
  17501. // ys = y^t \cdot s -> 1 / \rho.
  17502. // yy = y^t \cdot y.
  17503. //
  17504. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17505. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17506. lm_ys[end[0]] = ys;
  17507. // find new search direction
  17508. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17509. bound = (m <= k[0]) ? m : k[0];
  17510. k[0]++;
  17511. it++;
  17512. end[0] = (end[0] + 1)%m;
  17513. // initialize search direction with -g
  17514. ggml_vec_neg_f32(nx, d, g);
  17515. j[0] = end[0];
  17516. for (int i = 0; i < bound; ++i) {
  17517. j[0] = (j[0] + m - 1) % m;
  17518. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17519. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17520. lm_alpha[j[0]] /= lm_ys[j[0]];
  17521. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17522. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17523. }
  17524. ggml_vec_scale_f32(nx, d, ys/yy);
  17525. for (int i = 0; i < bound; ++i) {
  17526. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17527. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17528. beta /= lm_ys[j[0]];
  17529. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17530. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17531. j[0] = (j[0] + 1)%m;
  17532. }
  17533. step[0] = 1.0;
  17534. }
  17535. GGML_ASSERT(false && "lbfgs failed");
  17536. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17537. }
  17538. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17539. struct ggml_opt_params result;
  17540. switch (type) {
  17541. case GGML_OPT_TYPE_ADAM:
  17542. {
  17543. result = (struct ggml_opt_params) {
  17544. .type = GGML_OPT_TYPE_ADAM,
  17545. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17546. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17547. .past = 0,
  17548. .delta = 1e-5f,
  17549. .max_no_improvement = 100,
  17550. .print_forward_graph = true,
  17551. .print_backward_graph = true,
  17552. .n_gradient_accumulation = 1,
  17553. .adam = {
  17554. .n_iter = 10000,
  17555. .sched = 1.000f,
  17556. .decay = 0.0f,
  17557. .decay_min_ndim = 2,
  17558. .alpha = 0.001f,
  17559. .beta1 = 0.9f,
  17560. .beta2 = 0.999f,
  17561. .eps = 1e-8f,
  17562. .eps_f = 1e-5f,
  17563. .eps_g = 1e-3f,
  17564. .gclip = 0.0f,
  17565. },
  17566. };
  17567. } break;
  17568. case GGML_OPT_TYPE_LBFGS:
  17569. {
  17570. result = (struct ggml_opt_params) {
  17571. .type = GGML_OPT_TYPE_LBFGS,
  17572. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17573. .n_threads = 1,
  17574. .past = 0,
  17575. .delta = 1e-5f,
  17576. .max_no_improvement = 0,
  17577. .print_forward_graph = true,
  17578. .print_backward_graph = true,
  17579. .n_gradient_accumulation = 1,
  17580. .lbfgs = {
  17581. .m = 6,
  17582. .n_iter = 100,
  17583. .max_linesearch = 20,
  17584. .eps = 1e-5f,
  17585. .ftol = 1e-4f,
  17586. .wolfe = 0.9f,
  17587. .min_step = 1e-20f,
  17588. .max_step = 1e+20f,
  17589. .linesearch = GGML_LINESEARCH_DEFAULT,
  17590. },
  17591. };
  17592. } break;
  17593. }
  17594. return result;
  17595. }
  17596. GGML_API void ggml_opt_init(
  17597. struct ggml_context * ctx,
  17598. struct ggml_opt_context * opt,
  17599. struct ggml_opt_params params,
  17600. int64_t nx) {
  17601. opt->ctx = ctx;
  17602. opt->params = params;
  17603. opt->iter = 0;
  17604. opt->nx = nx;
  17605. opt->just_initialized = true;
  17606. if (opt->ctx == NULL) {
  17607. struct ggml_init_params ctx_opt_params;
  17608. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17609. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17610. if (opt->params.past > 0) {
  17611. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17612. }
  17613. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17614. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17615. if (opt->params.past > 0) {
  17616. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17617. }
  17618. }
  17619. ctx_opt_params.mem_buffer = NULL;
  17620. ctx_opt_params.no_alloc = false;
  17621. opt->ctx = ggml_init(ctx_opt_params);
  17622. }
  17623. switch (opt->params.type) {
  17624. case GGML_OPT_TYPE_ADAM:
  17625. {
  17626. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17627. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17628. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17629. opt->adam.pf = params.past > 0
  17630. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17631. : NULL;
  17632. ggml_set_zero(opt->adam.m);
  17633. ggml_set_zero(opt->adam.v);
  17634. if (opt->adam.pf) {
  17635. ggml_set_zero(opt->adam.pf);
  17636. }
  17637. } break;
  17638. case GGML_OPT_TYPE_LBFGS:
  17639. {
  17640. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17641. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17642. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17643. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17644. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17645. opt->lbfgs.pf = params.past > 0
  17646. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17647. : NULL;
  17648. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17649. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17650. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17651. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17652. ggml_set_zero(opt->lbfgs.x);
  17653. ggml_set_zero(opt->lbfgs.xp);
  17654. ggml_set_zero(opt->lbfgs.g);
  17655. ggml_set_zero(opt->lbfgs.gp);
  17656. ggml_set_zero(opt->lbfgs.d);
  17657. if (opt->lbfgs.pf) {
  17658. ggml_set_zero(opt->lbfgs.pf);
  17659. }
  17660. ggml_set_zero(opt->lbfgs.lmal);
  17661. ggml_set_zero(opt->lbfgs.lmys);
  17662. ggml_set_zero(opt->lbfgs.lms);
  17663. ggml_set_zero(opt->lbfgs.lmy);
  17664. } break;
  17665. }
  17666. }
  17667. enum ggml_opt_result ggml_opt(
  17668. struct ggml_context * ctx,
  17669. struct ggml_opt_params params,
  17670. struct ggml_tensor * f) {
  17671. bool free_ctx = false;
  17672. if (ctx == NULL) {
  17673. struct ggml_init_params params_ctx = {
  17674. .mem_size = 16*1024*1024,
  17675. .mem_buffer = NULL,
  17676. .no_alloc = false,
  17677. };
  17678. ctx = ggml_init(params_ctx);
  17679. if (ctx == NULL) {
  17680. return GGML_OPT_RESULT_NO_CONTEXT;
  17681. }
  17682. free_ctx = true;
  17683. }
  17684. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17685. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17686. ggml_opt_init(ctx, opt, params, 0);
  17687. result = ggml_opt_resume(ctx, opt, f);
  17688. if (free_ctx) {
  17689. ggml_free(ctx);
  17690. }
  17691. return result;
  17692. }
  17693. enum ggml_opt_result ggml_opt_resume(
  17694. struct ggml_context * ctx,
  17695. struct ggml_opt_context * opt,
  17696. struct ggml_tensor * f) {
  17697. // build forward + backward compute graphs
  17698. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17699. ggml_build_forward_expand(gf, f);
  17700. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17701. ggml_build_backward_expand(ctx, gf, gb, true);
  17702. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17703. }
  17704. enum ggml_opt_result ggml_opt_resume_g(
  17705. struct ggml_context * ctx,
  17706. struct ggml_opt_context * opt,
  17707. struct ggml_tensor * f,
  17708. struct ggml_cgraph * gf,
  17709. struct ggml_cgraph * gb,
  17710. ggml_opt_callback callback,
  17711. void * callback_data) {
  17712. // build forward + backward compute graphs
  17713. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17714. switch (opt->params.type) {
  17715. case GGML_OPT_TYPE_ADAM:
  17716. {
  17717. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17718. } break;
  17719. case GGML_OPT_TYPE_LBFGS:
  17720. {
  17721. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17722. } break;
  17723. }
  17724. if (opt->params.print_forward_graph) {
  17725. ggml_graph_print (gf);
  17726. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17727. }
  17728. if (opt->params.print_backward_graph) {
  17729. ggml_graph_print (gb);
  17730. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17731. }
  17732. return result;
  17733. }
  17734. ////////////////////////////////////////////////////////////////////////////////
  17735. void ggml_set_input(struct ggml_tensor * tensor) {
  17736. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17737. }
  17738. void ggml_set_output(struct ggml_tensor * tensor) {
  17739. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17740. }
  17741. ////////////////////////////////////////////////////////////////////////////////
  17742. void ggml_quantize_init(enum ggml_type type) {
  17743. ggml_critical_section_start();
  17744. switch (type) {
  17745. case GGML_TYPE_IQ2_XXS:
  17746. case GGML_TYPE_IQ2_XS:
  17747. case GGML_TYPE_IQ2_S:
  17748. case GGML_TYPE_IQ1_S:
  17749. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17750. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17751. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17752. default: // nothing
  17753. break;
  17754. }
  17755. ggml_critical_section_end();
  17756. }
  17757. void ggml_quantize_free(void) {
  17758. ggml_critical_section_start();
  17759. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17760. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17761. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17762. iq3xs_free_impl(256);
  17763. ggml_critical_section_end();
  17764. }
  17765. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17766. return
  17767. type == GGML_TYPE_IQ2_XXS ||
  17768. type == GGML_TYPE_IQ2_XS ||
  17769. type == GGML_TYPE_IQ1_S;// ||
  17770. //type == GGML_TYPE_IQ1_M;
  17771. }
  17772. size_t ggml_quantize_chunk(
  17773. enum ggml_type type,
  17774. const float * src,
  17775. void * dst,
  17776. int64_t start,
  17777. int64_t nrows,
  17778. int64_t n_per_row,
  17779. const float * imatrix) {
  17780. const int64_t n = (int64_t) nrows * n_per_row;
  17781. if (ggml_quantize_requires_imatrix(type)) {
  17782. GGML_ASSERT(imatrix != NULL);
  17783. }
  17784. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17785. GGML_ASSERT(start % n_per_row == 0);
  17786. ggml_quantize_init(type); // this is noop if already initialized
  17787. const size_t start_row = start / n_per_row;
  17788. const size_t row_size = ggml_row_size(type, n_per_row);
  17789. size_t result = 0;
  17790. switch (type) {
  17791. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17792. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17793. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17794. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17795. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17796. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17797. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17798. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17799. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17800. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17801. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17802. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17803. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17804. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17805. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17806. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17807. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17808. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17809. #if QK_K == 64
  17810. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17811. #else
  17812. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17813. #endif
  17814. case GGML_TYPE_F16:
  17815. {
  17816. size_t elemsize = sizeof(ggml_fp16_t);
  17817. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17818. result = n * elemsize;
  17819. } break;
  17820. case GGML_TYPE_BF16:
  17821. {
  17822. size_t elemsize = sizeof(ggml_bf16_t);
  17823. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17824. result = n * elemsize;
  17825. } break;
  17826. case GGML_TYPE_F32:
  17827. {
  17828. size_t elemsize = sizeof(float);
  17829. result = n * elemsize;
  17830. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17831. } break;
  17832. default:
  17833. assert(false);
  17834. }
  17835. GGML_ASSERT(result == nrows * row_size);
  17836. return result;
  17837. }
  17838. ////////////////////////////////////////////////////////////////////////////////
  17839. struct gguf_str {
  17840. uint64_t n; // GGUFv2
  17841. char * data;
  17842. };
  17843. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17844. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17845. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17846. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17847. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17848. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17849. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17850. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17851. [GGUF_TYPE_BOOL] = sizeof(bool),
  17852. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17853. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17854. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17855. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17856. [GGUF_TYPE_ARRAY] = 0, // undefined
  17857. };
  17858. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17859. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17860. [GGUF_TYPE_UINT8] = "u8",
  17861. [GGUF_TYPE_INT8] = "i8",
  17862. [GGUF_TYPE_UINT16] = "u16",
  17863. [GGUF_TYPE_INT16] = "i16",
  17864. [GGUF_TYPE_UINT32] = "u32",
  17865. [GGUF_TYPE_INT32] = "i32",
  17866. [GGUF_TYPE_FLOAT32] = "f32",
  17867. [GGUF_TYPE_BOOL] = "bool",
  17868. [GGUF_TYPE_STRING] = "str",
  17869. [GGUF_TYPE_ARRAY] = "arr",
  17870. [GGUF_TYPE_UINT64] = "u64",
  17871. [GGUF_TYPE_INT64] = "i64",
  17872. [GGUF_TYPE_FLOAT64] = "f64",
  17873. };
  17874. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17875. union gguf_value {
  17876. uint8_t uint8;
  17877. int8_t int8;
  17878. uint16_t uint16;
  17879. int16_t int16;
  17880. uint32_t uint32;
  17881. int32_t int32;
  17882. float float32;
  17883. uint64_t uint64;
  17884. int64_t int64;
  17885. double float64;
  17886. bool bool_;
  17887. struct gguf_str str;
  17888. struct {
  17889. enum gguf_type type;
  17890. uint64_t n; // GGUFv2
  17891. void * data;
  17892. } arr;
  17893. };
  17894. struct gguf_kv {
  17895. struct gguf_str key;
  17896. enum gguf_type type;
  17897. union gguf_value value;
  17898. };
  17899. struct gguf_header {
  17900. char magic[4];
  17901. uint32_t version;
  17902. uint64_t n_tensors; // GGUFv2
  17903. uint64_t n_kv; // GGUFv2
  17904. };
  17905. struct gguf_tensor_info {
  17906. struct gguf_str name;
  17907. uint32_t n_dims;
  17908. uint64_t ne[GGML_MAX_DIMS];
  17909. enum ggml_type type;
  17910. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17911. // for writing API
  17912. const void * data;
  17913. size_t size;
  17914. };
  17915. struct gguf_context {
  17916. struct gguf_header header;
  17917. struct gguf_kv * kv;
  17918. struct gguf_tensor_info * infos;
  17919. size_t alignment;
  17920. size_t offset; // offset of `data` from beginning of file
  17921. size_t size; // size of `data` in bytes
  17922. //uint8_t * padding;
  17923. void * data;
  17924. };
  17925. static size_t gguf_type_size(enum gguf_type type) {
  17926. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17927. return GGUF_TYPE_SIZE[type];
  17928. }
  17929. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17930. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17931. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17932. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17933. GGML_ASSERT(info->ne[i] > 0);
  17934. }
  17935. // prevent overflow for total number of elements
  17936. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17937. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17938. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17939. }
  17940. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17941. const size_t n = fread(dst, 1, size, file);
  17942. *offset += n;
  17943. return n == size;
  17944. }
  17945. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17946. p->n = 0;
  17947. p->data = NULL;
  17948. bool ok = true;
  17949. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17950. // early exit if string length is invalid, prevents from integer overflow
  17951. if (p->n == SIZE_MAX) {
  17952. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17953. return false;
  17954. }
  17955. p->data = GGML_CALLOC(p->n + 1, 1);
  17956. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17957. return ok;
  17958. }
  17959. static void gguf_free_kv(struct gguf_kv * kv) {
  17960. if (kv->key.data) {
  17961. GGML_FREE(kv->key.data);
  17962. }
  17963. if (kv->type == GGUF_TYPE_STRING) {
  17964. if (kv->value.str.data) {
  17965. GGML_FREE(kv->value.str.data);
  17966. }
  17967. }
  17968. if (kv->type == GGUF_TYPE_ARRAY) {
  17969. if (kv->value.arr.data) {
  17970. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17971. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17972. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17973. if (str->data) {
  17974. GGML_FREE(str->data);
  17975. }
  17976. }
  17977. }
  17978. GGML_FREE(kv->value.arr.data);
  17979. }
  17980. }
  17981. }
  17982. struct gguf_context * gguf_init_empty(void) {
  17983. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17984. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17985. ctx->header.version = GGUF_VERSION;
  17986. ctx->header.n_tensors = 0;
  17987. ctx->header.n_kv = 0;
  17988. ctx->kv = NULL;
  17989. ctx->infos = NULL;
  17990. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17991. ctx->offset = 0;
  17992. ctx->size = 0;
  17993. ctx->data = NULL;
  17994. return ctx;
  17995. }
  17996. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17997. FILE * file = ggml_fopen(fname, "rb");
  17998. if (!file) {
  17999. return NULL;
  18000. }
  18001. // offset from start of file
  18002. size_t offset = 0;
  18003. char magic[4];
  18004. // check the magic before making allocations
  18005. {
  18006. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  18007. for (uint32_t i = 0; i < sizeof(magic); i++) {
  18008. if (magic[i] != GGUF_MAGIC[i]) {
  18009. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  18010. fclose(file);
  18011. return NULL;
  18012. }
  18013. }
  18014. }
  18015. bool ok = true;
  18016. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  18017. // read the header
  18018. {
  18019. strncpy(ctx->header.magic, magic, 4);
  18020. ctx->kv = NULL;
  18021. ctx->infos = NULL;
  18022. ctx->data = NULL;
  18023. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  18024. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  18025. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  18026. if (ctx->header.version == 1) {
  18027. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  18028. fclose(file);
  18029. gguf_free(ctx);
  18030. return NULL;
  18031. }
  18032. // sanity-checks to prevent from integer/buffer overflows
  18033. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  18034. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  18035. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  18036. if (!ok) {
  18037. fprintf(stderr, "%s: failed to read header\n", __func__);
  18038. fclose(file);
  18039. gguf_free(ctx);
  18040. return NULL;
  18041. }
  18042. }
  18043. // read the kv pairs
  18044. {
  18045. const uint64_t n_kv = ctx->header.n_kv;
  18046. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  18047. ctx->header.n_kv = 0;
  18048. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  18049. for (uint64_t i = 0; i < n_kv; ++i) {
  18050. struct gguf_kv * kv = &ctx->kv[i];
  18051. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  18052. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  18053. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  18054. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  18055. switch (kv->type) {
  18056. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  18057. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  18058. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  18059. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  18060. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  18061. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  18062. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  18063. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  18064. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  18065. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  18066. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  18067. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  18068. case GGUF_TYPE_ARRAY:
  18069. {
  18070. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  18071. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  18072. switch (kv->value.arr.type) {
  18073. case GGUF_TYPE_UINT8:
  18074. case GGUF_TYPE_INT8:
  18075. case GGUF_TYPE_UINT16:
  18076. case GGUF_TYPE_INT16:
  18077. case GGUF_TYPE_UINT32:
  18078. case GGUF_TYPE_INT32:
  18079. case GGUF_TYPE_FLOAT32:
  18080. case GGUF_TYPE_UINT64:
  18081. case GGUF_TYPE_INT64:
  18082. case GGUF_TYPE_FLOAT64:
  18083. case GGUF_TYPE_BOOL:
  18084. {
  18085. // prevent from integer overflow in the malloc below
  18086. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  18087. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18088. fclose(file);
  18089. gguf_free(ctx);
  18090. return NULL;
  18091. }
  18092. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  18093. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  18094. } break;
  18095. case GGUF_TYPE_STRING:
  18096. {
  18097. // prevent from integer overflow in the malloc below
  18098. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  18099. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  18100. fclose(file);
  18101. gguf_free(ctx);
  18102. return NULL;
  18103. }
  18104. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  18105. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  18106. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  18107. }
  18108. } break;
  18109. case GGUF_TYPE_ARRAY:
  18110. default: GGML_ASSERT(false && "invalid type"); break;
  18111. }
  18112. } break;
  18113. default: GGML_ASSERT(false && "invalid type");
  18114. }
  18115. if (!ok) {
  18116. break;
  18117. }
  18118. ctx->header.n_kv++;
  18119. }
  18120. if (!ok) {
  18121. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  18122. fclose(file);
  18123. gguf_free(ctx);
  18124. return NULL;
  18125. }
  18126. }
  18127. // read the tensor infos
  18128. if (ctx->header.n_tensors > 0) {
  18129. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18130. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18131. struct gguf_tensor_info * info = &ctx->infos[i];
  18132. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18133. info->ne[j] = 1;
  18134. }
  18135. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18136. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18137. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18138. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18139. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18140. }
  18141. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18142. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18143. // TODO: return an error instead of crashing with GGML_ASSERT
  18144. gguf_tensor_info_sanitize(info);
  18145. // make sure there is no duplicated tensor names
  18146. for (uint64_t j = 0; j < i; ++j) {
  18147. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18148. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18149. ok = false;
  18150. }
  18151. }
  18152. if (!ok) {
  18153. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18154. fclose(file);
  18155. gguf_free(ctx);
  18156. return NULL;
  18157. }
  18158. }
  18159. }
  18160. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18161. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18162. if (alignment_idx != -1) {
  18163. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18164. }
  18165. // we require the data section to be aligned, so take into account any padding
  18166. {
  18167. const size_t offset_pad = offset % ctx->alignment;
  18168. if (offset_pad != 0) {
  18169. offset += ctx->alignment - offset_pad;
  18170. fseek(file, offset, SEEK_SET);
  18171. }
  18172. }
  18173. // store the current file offset - this is where the data section starts
  18174. ctx->offset = offset;
  18175. // compute the total size of the data section, taking into account the alignment
  18176. {
  18177. ctx->size = 0;
  18178. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18179. struct gguf_tensor_info * info = &ctx->infos[i];
  18180. const int64_t ne =
  18181. (int64_t) info->ne[0] *
  18182. (int64_t) info->ne[1] *
  18183. (int64_t) info->ne[2] *
  18184. (int64_t) info->ne[3];
  18185. if (ne % ggml_blck_size(info->type) != 0) {
  18186. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18187. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18188. fclose(file);
  18189. gguf_free(ctx);
  18190. return NULL;
  18191. }
  18192. const size_t size_cur = ggml_row_size(info->type, ne);
  18193. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18194. }
  18195. }
  18196. // load the tensor data only if requested
  18197. if (params.ctx != NULL) {
  18198. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18199. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18200. // the ggml_tensor structs to the appropriate locations in the binary blob
  18201. // compute the exact size needed for the new ggml_context
  18202. const size_t mem_size =
  18203. params.no_alloc ?
  18204. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18205. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18206. struct ggml_init_params pdata = {
  18207. .mem_size = mem_size,
  18208. .mem_buffer = NULL,
  18209. .no_alloc = params.no_alloc,
  18210. };
  18211. *params.ctx = ggml_init(pdata);
  18212. struct ggml_context * ctx_data = *params.ctx;
  18213. struct ggml_tensor * data = NULL;
  18214. if (!params.no_alloc) {
  18215. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18216. ok = ok && data != NULL;
  18217. // read the binary blob with the tensor data
  18218. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18219. if (!ok) {
  18220. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18221. fclose(file);
  18222. ggml_free(ctx_data);
  18223. gguf_free(ctx);
  18224. return NULL;
  18225. }
  18226. ctx->data = data->data;
  18227. }
  18228. ggml_set_no_alloc(ctx_data, true);
  18229. // create the tensors
  18230. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18231. const int64_t ne[GGML_MAX_DIMS] = {
  18232. ctx->infos[i].ne[0],
  18233. ctx->infos[i].ne[1],
  18234. ctx->infos[i].ne[2],
  18235. ctx->infos[i].ne[3],
  18236. };
  18237. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18238. ok = ok && cur != NULL;
  18239. if (!ok) {
  18240. break;
  18241. }
  18242. ggml_set_name(cur, ctx->infos[i].name.data);
  18243. // point the data member to the appropriate location in the binary blob using the tensor infos
  18244. if (!params.no_alloc) {
  18245. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18246. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18247. }
  18248. }
  18249. if (!ok) {
  18250. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18251. fclose(file);
  18252. ggml_free(ctx_data);
  18253. gguf_free(ctx);
  18254. return NULL;
  18255. }
  18256. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18257. }
  18258. fclose(file);
  18259. return ctx;
  18260. }
  18261. void gguf_free(struct gguf_context * ctx) {
  18262. if (ctx == NULL) {
  18263. return;
  18264. }
  18265. if (ctx->kv) {
  18266. // free string memory - not great..
  18267. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18268. gguf_free_kv(&ctx->kv[i]);
  18269. }
  18270. GGML_FREE(ctx->kv);
  18271. }
  18272. if (ctx->infos) {
  18273. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18274. struct gguf_tensor_info * info = &ctx->infos[i];
  18275. if (info->name.data) {
  18276. GGML_FREE(info->name.data);
  18277. }
  18278. }
  18279. GGML_FREE(ctx->infos);
  18280. }
  18281. GGML_FREE(ctx);
  18282. }
  18283. const char * gguf_type_name(enum gguf_type type) {
  18284. return GGUF_TYPE_NAME[type];
  18285. }
  18286. int gguf_get_version(const struct gguf_context * ctx) {
  18287. return ctx->header.version;
  18288. }
  18289. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18290. return ctx->alignment;
  18291. }
  18292. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18293. return ctx->offset;
  18294. }
  18295. void * gguf_get_data(const struct gguf_context * ctx) {
  18296. return ctx->data;
  18297. }
  18298. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18299. return ctx->header.n_kv;
  18300. }
  18301. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18302. // return -1 if key not found
  18303. int keyfound = -1;
  18304. const int n_kv = gguf_get_n_kv(ctx);
  18305. for (int i = 0; i < n_kv; ++i) {
  18306. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18307. keyfound = i;
  18308. break;
  18309. }
  18310. }
  18311. return keyfound;
  18312. }
  18313. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18314. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18315. return ctx->kv[key_id].key.data;
  18316. }
  18317. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18318. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18319. return ctx->kv[key_id].type;
  18320. }
  18321. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18322. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18323. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18324. return ctx->kv[key_id].value.arr.type;
  18325. }
  18326. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18327. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18328. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18329. return ctx->kv[key_id].value.arr.data;
  18330. }
  18331. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18332. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18333. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18334. struct gguf_kv * kv = &ctx->kv[key_id];
  18335. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18336. return str->data;
  18337. }
  18338. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18339. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18340. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18341. return ctx->kv[key_id].value.arr.n;
  18342. }
  18343. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18344. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18345. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18346. return ctx->kv[key_id].value.uint8;
  18347. }
  18348. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18349. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18350. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18351. return ctx->kv[key_id].value.int8;
  18352. }
  18353. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18354. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18355. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18356. return ctx->kv[key_id].value.uint16;
  18357. }
  18358. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18359. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18360. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18361. return ctx->kv[key_id].value.int16;
  18362. }
  18363. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18364. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18365. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18366. return ctx->kv[key_id].value.uint32;
  18367. }
  18368. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18369. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18370. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18371. return ctx->kv[key_id].value.int32;
  18372. }
  18373. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18374. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18375. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18376. return ctx->kv[key_id].value.float32;
  18377. }
  18378. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18379. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18380. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18381. return ctx->kv[key_id].value.uint64;
  18382. }
  18383. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18384. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18385. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18386. return ctx->kv[key_id].value.int64;
  18387. }
  18388. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18389. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18390. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18391. return ctx->kv[key_id].value.float64;
  18392. }
  18393. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18394. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18395. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18396. return ctx->kv[key_id].value.bool_;
  18397. }
  18398. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18399. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18400. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18401. return ctx->kv[key_id].value.str.data;
  18402. }
  18403. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18404. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18405. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18406. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18407. return &ctx->kv[key_id].value;
  18408. }
  18409. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18410. return ctx->header.n_tensors;
  18411. }
  18412. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18413. // return -1 if tensor not found
  18414. int tensorfound = -1;
  18415. const int n_tensors = gguf_get_n_tensors(ctx);
  18416. for (int i = 0; i < n_tensors; ++i) {
  18417. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18418. tensorfound = i;
  18419. break;
  18420. }
  18421. }
  18422. return tensorfound;
  18423. }
  18424. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18425. return ctx->infos[i].offset;
  18426. }
  18427. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18428. return ctx->infos[i].name.data;
  18429. }
  18430. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18431. return ctx->infos[i].type;
  18432. }
  18433. // returns the index
  18434. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18435. const int idx = gguf_find_key(ctx, key);
  18436. if (idx >= 0) {
  18437. return idx;
  18438. }
  18439. const int n_kv = gguf_get_n_kv(ctx);
  18440. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18441. ctx->kv[n_kv].key.n = strlen(key);
  18442. ctx->kv[n_kv].key.data = strdup(key);
  18443. ctx->header.n_kv++;
  18444. return n_kv;
  18445. }
  18446. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18447. const int idx = gguf_find_key(ctx, key);
  18448. if (idx >= 0) {
  18449. const int n_kv = gguf_get_n_kv(ctx);
  18450. gguf_free_kv(&ctx->kv[idx]);
  18451. for (int i = idx; i < n_kv-1; ++i) {
  18452. ctx->kv[i] = ctx->kv[i+1];
  18453. }
  18454. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18455. ctx->header.n_kv--;
  18456. }
  18457. }
  18458. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18459. const int idx = gguf_get_or_add_key(ctx, key);
  18460. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18461. ctx->kv[idx].value.uint8 = val;
  18462. }
  18463. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18464. const int idx = gguf_get_or_add_key(ctx, key);
  18465. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18466. ctx->kv[idx].value.int8 = val;
  18467. }
  18468. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18469. const int idx = gguf_get_or_add_key(ctx, key);
  18470. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18471. ctx->kv[idx].value.uint16 = val;
  18472. }
  18473. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18474. const int idx = gguf_get_or_add_key(ctx, key);
  18475. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18476. ctx->kv[idx].value.int16 = val;
  18477. }
  18478. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18479. const int idx = gguf_get_or_add_key(ctx, key);
  18480. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18481. ctx->kv[idx].value.uint32 = val;
  18482. }
  18483. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18484. const int idx = gguf_get_or_add_key(ctx, key);
  18485. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18486. ctx->kv[idx].value.int32 = val;
  18487. }
  18488. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18489. const int idx = gguf_get_or_add_key(ctx, key);
  18490. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18491. ctx->kv[idx].value.float32 = val;
  18492. }
  18493. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18494. const int idx = gguf_get_or_add_key(ctx, key);
  18495. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18496. ctx->kv[idx].value.uint64 = val;
  18497. }
  18498. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18499. const int idx = gguf_get_or_add_key(ctx, key);
  18500. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18501. ctx->kv[idx].value.int64 = val;
  18502. }
  18503. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18504. const int idx = gguf_get_or_add_key(ctx, key);
  18505. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18506. ctx->kv[idx].value.float64 = val;
  18507. }
  18508. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18509. const int idx = gguf_get_or_add_key(ctx, key);
  18510. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18511. ctx->kv[idx].value.bool_ = val;
  18512. }
  18513. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18514. const int idx = gguf_get_or_add_key(ctx, key);
  18515. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18516. ctx->kv[idx].value.str.n = strlen(val);
  18517. ctx->kv[idx].value.str.data = strdup(val);
  18518. }
  18519. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18520. const int idx = gguf_get_or_add_key(ctx, key);
  18521. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18522. ctx->kv[idx].value.arr.type = type;
  18523. ctx->kv[idx].value.arr.n = n;
  18524. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18525. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18526. }
  18527. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18528. const int idx = gguf_get_or_add_key(ctx, key);
  18529. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18530. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18531. ctx->kv[idx].value.arr.n = n;
  18532. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18533. for (int i = 0; i < n; i++) {
  18534. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18535. str->n = strlen(data[i]);
  18536. str->data = strdup(data[i]);
  18537. }
  18538. }
  18539. // set or add KV pairs from another context
  18540. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18541. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18542. switch (src->kv[i].type) {
  18543. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18544. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18545. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18546. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18547. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18548. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18549. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18550. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18551. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18552. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18553. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18554. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18555. case GGUF_TYPE_ARRAY:
  18556. {
  18557. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18558. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18559. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18560. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18561. }
  18562. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18563. GGML_FREE((void *)data);
  18564. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18565. GGML_ASSERT(false && "nested arrays not supported");
  18566. } else {
  18567. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18568. }
  18569. } break;
  18570. default: GGML_ASSERT(false && "invalid type"); break;
  18571. }
  18572. }
  18573. }
  18574. void gguf_add_tensor(
  18575. struct gguf_context * ctx,
  18576. const struct ggml_tensor * tensor) {
  18577. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18578. GGML_ASSERT(false && "duplicated tensor name");
  18579. }
  18580. const int idx = ctx->header.n_tensors;
  18581. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18582. ctx->infos[idx].name.n = strlen(tensor->name);
  18583. ctx->infos[idx].name.data = strdup(tensor->name);
  18584. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18585. ctx->infos[idx].ne[i] = 1;
  18586. }
  18587. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18588. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18589. ctx->infos[idx].ne[i] = tensor->ne[i];
  18590. }
  18591. ctx->infos[idx].type = tensor->type;
  18592. ctx->infos[idx].offset = 0;
  18593. ctx->infos[idx].data = tensor->data;
  18594. ctx->infos[idx].size = ggml_nbytes(tensor);
  18595. if (ctx->header.n_tensors > 0) {
  18596. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18597. }
  18598. ctx->header.n_tensors++;
  18599. }
  18600. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18601. const int idx = gguf_find_tensor(ctx, name);
  18602. if (idx < 0) {
  18603. GGML_ASSERT(false && "tensor not found");
  18604. }
  18605. ctx->infos[idx].type = type;
  18606. }
  18607. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18608. const int idx = gguf_find_tensor(ctx, name);
  18609. if (idx < 0) {
  18610. GGML_ASSERT(false && "tensor not found");
  18611. }
  18612. ctx->infos[idx].data = data;
  18613. ctx->infos[idx].size = size;
  18614. // update offsets
  18615. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18616. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18617. }
  18618. }
  18619. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18620. // fwrite(&val->n, sizeof(val->n), 1, file);
  18621. // fwrite(val->data, sizeof(char), val->n, file);
  18622. //}
  18623. //
  18624. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18625. // fwrite(val, sizeof(char), size, file);
  18626. //}
  18627. struct gguf_buf {
  18628. void * data;
  18629. size_t size;
  18630. size_t offset;
  18631. };
  18632. static struct gguf_buf gguf_buf_init(size_t size) {
  18633. struct gguf_buf buf = {
  18634. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18635. /*buf.size =*/ size,
  18636. /*buf.offset =*/ 0,
  18637. };
  18638. return buf;
  18639. }
  18640. static void gguf_buf_free(struct gguf_buf buf) {
  18641. if (buf.data) {
  18642. GGML_FREE(buf.data);
  18643. }
  18644. }
  18645. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18646. if (buf->offset + size > buf->size) {
  18647. buf->size = 1.5*(buf->offset + size);
  18648. if (buf->data) {
  18649. buf->data = realloc(buf->data, buf->size);
  18650. }
  18651. }
  18652. }
  18653. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18654. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18655. if (buf->data) {
  18656. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18657. }
  18658. buf->offset += sizeof(val->n);
  18659. if (buf->data) {
  18660. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18661. }
  18662. buf->offset += val->n;
  18663. }
  18664. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18665. gguf_buf_grow(buf, el_size);
  18666. if (buf->data) {
  18667. memcpy((char *) buf->data + buf->offset, val, el_size);
  18668. }
  18669. buf->offset += el_size;
  18670. }
  18671. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18672. // write header
  18673. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18674. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18675. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18676. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18677. // write key-value pairs
  18678. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18679. struct gguf_kv * kv = &ctx->kv[i];
  18680. gguf_bwrite_str(buf, &kv->key);
  18681. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18682. switch (kv->type) {
  18683. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18684. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18685. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18686. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18687. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18688. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18689. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18690. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18691. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18692. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18693. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18694. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18695. case GGUF_TYPE_ARRAY:
  18696. {
  18697. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18698. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18699. switch (kv->value.arr.type) {
  18700. case GGUF_TYPE_UINT8:
  18701. case GGUF_TYPE_INT8:
  18702. case GGUF_TYPE_UINT16:
  18703. case GGUF_TYPE_INT16:
  18704. case GGUF_TYPE_UINT32:
  18705. case GGUF_TYPE_INT32:
  18706. case GGUF_TYPE_FLOAT32:
  18707. case GGUF_TYPE_UINT64:
  18708. case GGUF_TYPE_INT64:
  18709. case GGUF_TYPE_FLOAT64:
  18710. case GGUF_TYPE_BOOL:
  18711. {
  18712. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18713. } break;
  18714. case GGUF_TYPE_STRING:
  18715. {
  18716. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18717. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18718. }
  18719. } break;
  18720. case GGUF_TYPE_ARRAY:
  18721. default: GGML_ASSERT(false && "invalid type"); break;
  18722. }
  18723. } break;
  18724. default: GGML_ASSERT(false && "invalid type");
  18725. }
  18726. }
  18727. // write tensor infos
  18728. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18729. struct gguf_tensor_info * info = &ctx->infos[i];
  18730. gguf_bwrite_str(buf, &info->name);
  18731. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18732. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18733. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18734. }
  18735. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18736. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18737. }
  18738. // we require the data section to be aligned, so take into account any padding
  18739. {
  18740. const size_t offset = buf->offset;
  18741. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18742. if (offset_pad != offset) {
  18743. uint8_t pad = 0;
  18744. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18745. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18746. }
  18747. }
  18748. }
  18749. if (only_meta) {
  18750. return;
  18751. }
  18752. size_t offset = 0;
  18753. // write tensor data
  18754. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18755. struct gguf_tensor_info * info = &ctx->infos[i];
  18756. const size_t size = info->size;
  18757. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18758. gguf_bwrite_el(buf, info->data, size);
  18759. if (size_pad != size) {
  18760. uint8_t pad = 0;
  18761. for (size_t j = 0; j < size_pad - size; ++j) {
  18762. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18763. }
  18764. }
  18765. GGML_ASSERT(offset == info->offset);
  18766. offset += size_pad;
  18767. }
  18768. }
  18769. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18770. FILE * file = ggml_fopen(fname, "wb");
  18771. if (!file) {
  18772. GGML_ASSERT(false && "failed to open file for writing");
  18773. }
  18774. struct gguf_buf buf = gguf_buf_init(16*1024);
  18775. gguf_write_to_buf(ctx, &buf, only_meta);
  18776. fwrite(buf.data, 1, buf.offset, file);
  18777. gguf_buf_free(buf);
  18778. fclose(file);
  18779. }
  18780. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18781. // no allocs - only compute size
  18782. struct gguf_buf buf = gguf_buf_init(0);
  18783. gguf_write_to_buf(ctx, &buf, true);
  18784. return buf.offset;
  18785. }
  18786. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18787. struct gguf_buf buf = gguf_buf_init(16*1024);
  18788. gguf_write_to_buf(ctx, &buf, true);
  18789. memcpy(data, buf.data, buf.offset);
  18790. gguf_buf_free(buf);
  18791. }
  18792. ////////////////////////////////////////////////////////////////////////////////
  18793. int ggml_cpu_has_avx(void) {
  18794. #if defined(__AVX__)
  18795. return 1;
  18796. #else
  18797. return 0;
  18798. #endif
  18799. }
  18800. int ggml_cpu_has_avx_vnni(void) {
  18801. #if defined(__AVXVNNI__)
  18802. return 1;
  18803. #else
  18804. return 0;
  18805. #endif
  18806. }
  18807. int ggml_cpu_has_avx2(void) {
  18808. #if defined(__AVX2__)
  18809. return 1;
  18810. #else
  18811. return 0;
  18812. #endif
  18813. }
  18814. int ggml_cpu_has_avx512(void) {
  18815. #if defined(__AVX512F__)
  18816. return 1;
  18817. #else
  18818. return 0;
  18819. #endif
  18820. }
  18821. int ggml_cpu_has_avx512_vbmi(void) {
  18822. #if defined(__AVX512VBMI__)
  18823. return 1;
  18824. #else
  18825. return 0;
  18826. #endif
  18827. }
  18828. int ggml_cpu_has_avx512_vnni(void) {
  18829. #if defined(__AVX512VNNI__)
  18830. return 1;
  18831. #else
  18832. return 0;
  18833. #endif
  18834. }
  18835. int ggml_cpu_has_fma(void) {
  18836. #if defined(__FMA__)
  18837. return 1;
  18838. #else
  18839. return 0;
  18840. #endif
  18841. }
  18842. int ggml_cpu_has_neon(void) {
  18843. #if defined(__ARM_NEON)
  18844. return 1;
  18845. #else
  18846. return 0;
  18847. #endif
  18848. }
  18849. int ggml_cpu_has_arm_fma(void) {
  18850. #if defined(__ARM_FEATURE_FMA)
  18851. return 1;
  18852. #else
  18853. return 0;
  18854. #endif
  18855. }
  18856. int ggml_cpu_has_metal(void) {
  18857. #if defined(GGML_USE_METAL)
  18858. return 1;
  18859. #else
  18860. return 0;
  18861. #endif
  18862. }
  18863. int ggml_cpu_has_f16c(void) {
  18864. #if defined(__F16C__)
  18865. return 1;
  18866. #else
  18867. return 0;
  18868. #endif
  18869. }
  18870. int ggml_cpu_has_fp16_va(void) {
  18871. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18872. return 1;
  18873. #else
  18874. return 0;
  18875. #endif
  18876. }
  18877. int ggml_cpu_has_wasm_simd(void) {
  18878. #if defined(__wasm_simd128__)
  18879. return 1;
  18880. #else
  18881. return 0;
  18882. #endif
  18883. }
  18884. int ggml_cpu_has_blas(void) {
  18885. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  18886. return 1;
  18887. #else
  18888. return 0;
  18889. #endif
  18890. }
  18891. int ggml_cpu_has_cuda(void) {
  18892. #if defined(GGML_USE_CUDA)
  18893. return 1;
  18894. #else
  18895. return 0;
  18896. #endif
  18897. }
  18898. int ggml_cpu_has_clblast(void) {
  18899. #if defined(GGML_USE_CLBLAST)
  18900. return 1;
  18901. #else
  18902. return 0;
  18903. #endif
  18904. }
  18905. int ggml_cpu_has_vulkan(void) {
  18906. #if defined(GGML_USE_VULKAN)
  18907. return 1;
  18908. #else
  18909. return 0;
  18910. #endif
  18911. }
  18912. int ggml_cpu_has_kompute(void) {
  18913. #if defined(GGML_USE_KOMPUTE)
  18914. return 1;
  18915. #else
  18916. return 0;
  18917. #endif
  18918. }
  18919. int ggml_cpu_has_sycl(void) {
  18920. #if defined(GGML_USE_SYCL)
  18921. return 1;
  18922. #else
  18923. return 0;
  18924. #endif
  18925. }
  18926. int ggml_cpu_has_gpublas(void) {
  18927. return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  18928. ggml_cpu_has_sycl();
  18929. }
  18930. int ggml_cpu_has_sse3(void) {
  18931. #if defined(__SSE3__)
  18932. return 1;
  18933. #else
  18934. return 0;
  18935. #endif
  18936. }
  18937. int ggml_cpu_has_ssse3(void) {
  18938. #if defined(__SSSE3__)
  18939. return 1;
  18940. #else
  18941. return 0;
  18942. #endif
  18943. }
  18944. int ggml_cpu_has_vsx(void) {
  18945. #if defined(__POWER9_VECTOR__)
  18946. return 1;
  18947. #else
  18948. return 0;
  18949. #endif
  18950. }
  18951. int ggml_cpu_has_matmul_int8(void) {
  18952. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18953. return 1;
  18954. #else
  18955. return 0;
  18956. #endif
  18957. }
  18958. ////////////////////////////////////////////////////////////////////////////////