| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277 |
- #!/usr/bin/env python3
- # HF llama --> gguf conversion
- import gguf
- import os
- import sys
- import struct
- import json
- import numpy as np
- import torch
- import argparse
- from typing import Any, List, Optional, TypeAlias
- from pathlib import Path
- from sentencepiece import SentencePieceProcessor
- #NDArray = np.ndarray[Any, Any]
- # compatible with python < 3.9
- NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
- # reverse HF permute back to original pth layout
- # https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
- def reverse_hf_permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- def count_model_parts(dir_model: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.startswith("pytorch_model-"):
- num_parts += 1
- if num_parts > 0:
- print("gguf: found " + str(num_parts) + " model parts")
- return num_parts
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(description="Convert a HuggingFace LLaMA model to a GGML compatible file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
- parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
- return parser.parse_args()
- args = parse_args()
- dir_model = args.model
- ftype = args.ftype
- if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file = sys.stderr)
- sys.exit(1)
- # possible tensor data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
- print("gguf: loading model "+dir_model.name)
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- hparams = json.load(f)
- if hparams["architectures"][0] != "LlamaForCausalLM":
- print("Model architecture not supported: " + hparams["architectures"][0])
- sys.exit()
- # get number of model parts
- num_parts = count_model_parts(dir_model)
- ARCH=gguf.MODEL_ARCH.LLAMA
- gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- print("gguf: get model metadata")
- block_count = hparams["num_hidden_layers"]
- head_count = hparams["num_attention_heads"]
- if "num_key_value_heads" in hparams:
- head_count_kv = hparams["num_key_value_heads"]
- else:
- head_count_kv = head_count
- if "_name_or_path" in hparams:
- hf_repo = hparams["_name_or_path"]
- else:
- hf_repo = ""
- if "max_sequence_length" in hparams:
- ctx_length = hparams["max_sequence_length"]
- elif "max_position_embeddings" in hparams:
- ctx_length = hparams["max_position_embeddings"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- gguf_writer.add_name(dir_model.name)
- gguf_writer.add_source_hf_repo(hf_repo)
- gguf_writer.add_tensor_data_layout("Meta AI original pth")
- gguf_writer.add_context_length(ctx_length)
- gguf_writer.add_embedding_length(hparams["hidden_size"])
- gguf_writer.add_block_count(block_count)
- gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
- gguf_writer.add_head_count(head_count)
- gguf_writer.add_head_count_kv(head_count_kv)
- gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- if "rope_scaling" in hparams and hparams["rope_scaling"] != None and "factor" in hparams["rope_scaling"]:
- if "type" in hparams["rope_scaling"]:
- if hparams["rope_scaling"]["type"] == "linear":
- gguf_writer.add_rope_scale_linear(hparams["rope_scaling"]["factor"])
- # TOKENIZATION
- print("gguf: get tokenizer metadata")
- tokens: List[bytes] = []
- scores: List[float] = []
- toktypes: List[int] = []
- tokenizer_model_file = dir_model / 'tokenizer.model'
- if not tokenizer_model_file.is_file():
- print(f'Error: Missing {tokenizer_model_file}', file = sys.stderr)
- sys.exit(1)
- # vocab type sentencepiece
- print("gguf: get sentencepiece tokenizer vocab, scores and token types")
- tokenizer = SentencePieceProcessor(str(tokenizer_model_file))
- for i in range(tokenizer.vocab_size()):
- text: bytes
- score: float
- piece = tokenizer.id_to_piece(i)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(i)
- toktype = 1 # defualt to normal token type
- if tokenizer.is_unknown(i):
- toktype = 2
- if tokenizer.is_control(i):
- toktype = 3
- # toktype = 4 is user-defined = tokens from added_tokens.json
- if tokenizer.is_unused(i):
- toktype = 5
- if tokenizer.is_byte(i):
- toktype = 6
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- addtokens_json = json.load(f)
- print("gguf: get added tokens")
- for key in addtokens_json:
- tokens.append( key.encode("utf-8") )
- scores.append(-1000.0)
- toktypes.append(4) # user-defined token type
- gguf_writer.add_tokenizer_model("llama")
- gguf_writer.add_token_list(tokens)
- gguf_writer.add_token_scores(scores)
- gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model)
- special_vocab.add_to_gguf(gguf_writer)
- # TENSORS
- tensor_map = gguf.get_tensor_name_map(ARCH,block_count)
- # tensor info
- print("gguf: get tensor metadata")
- if num_parts == 0:
- part_names = iter(("pytorch_model.bin",))
- else:
- part_names = (
- f"pytorch_model-{n:05}-of-{num_parts:05}.bin" for n in range(1, num_parts + 1)
- )
- for part_name in part_names:
- if args.vocab_only:
- break
- print("gguf: loading model part '" + part_name + "'")
- model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
- for name in model_part.keys():
- data = model_part[name]
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data.dtype
- # convert any unsupported data types to float32
- if data.dtype != torch.float16 and data.dtype != torch.float32:
- data = data.to(torch.float32)
- data = data.squeeze().numpy()
- # reverse permute these
- if name.endswith(".q_proj.weight"):
- data = reverse_hf_permute(data, head_count)
- if name.endswith(".k_proj.weight"):
- data = reverse_hf_permute(data, head_count, head_count_kv)
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
- if new_name is None:
- print("Can not map tensor '" + name + "'")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
- gguf_writer.add_tensor(new_name, data)
- print("gguf: write header")
- gguf_writer.write_header_to_file()
- print("gguf: write metadata")
- gguf_writer.write_kv_data_to_file()
- if not args.vocab_only:
- print("gguf: write tensors")
- gguf_writer.write_tensors_to_file()
- gguf_writer.close()
- print(f"gguf: model successfully exported to '{fname_out}'")
- print("")
|