| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195 |
- #!/usr/bin/env python3
- import gguf
- import argparse
- import concurrent.futures
- from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
- import copy
- import enum
- import faulthandler
- import functools
- import io
- import itertools
- import json
- import math
- import mmap
- import pickle
- import re
- import signal
- import struct
- import sys
- import time
- import zipfile
- import numpy as np
- from abc import ABCMeta, abstractmethod
- from dataclasses import dataclass
- from pathlib import Path
- from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Generator, Iterable, List, Literal, Optional, Sequence, Set, Tuple, Type, TypeVar, Union)
- from sentencepiece import SentencePieceProcessor # type: ignore
- if TYPE_CHECKING:
- from typing_extensions import TypeAlias
- if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
- faulthandler.register(signal.SIGUSR1)
- NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
- ARCH=gguf.MODEL_ARCH.LLAMA
- NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
- DEFAULT_CONCURRENCY = 8
- #
- # data types
- #
- @dataclass(frozen=True)
- class DataType:
- name: str
- dtype: 'np.dtype[Any]'
- valid_conversions: List[str]
- def elements_to_bytes(self, n_elements: int) -> int:
- return n_elements * self.dtype.itemsize
- @dataclass(frozen=True)
- class UnquantizedDataType(DataType):
- pass
- DT_F16 = UnquantizedDataType('F16', dtype = np.dtype(np.float16), valid_conversions = ['F32', 'Q8_0'])
- DT_F32 = UnquantizedDataType('F32', dtype = np.dtype(np.float32), valid_conversions = ['F16', 'Q8_0'])
- DT_I32 = UnquantizedDataType('I32', dtype = np.dtype(np.int16), valid_conversions = [])
- DT_BF16 = UnquantizedDataType('BF16', dtype = np.dtype(np.uint16), valid_conversions = ['F32', 'F16', 'Q8_0'])
- @dataclass(frozen=True)
- class QuantizedDataType(DataType):
- block_size: int
- quantized_dtype: 'np.dtype[Any]'
- ggml_type: gguf.GGMLQuantizationType
- def quantize(self, arr: NDArray) -> NDArray:
- raise NotImplementedError(f'Quantization for {self.name} not implemented')
- def elements_to_bytes(self, n_elements: int) -> int:
- assert n_elements % self.block_size == 0, f'Invalid number of elements {n_elements} for {self.name} with block size {self.block_size}'
- return self.quantized_dtype.itemsize * (n_elements // self.block_size)
- @dataclass(frozen=True)
- class Q8_0QuantizedDataType(QuantizedDataType):
- # Mini Q8_0 quantization in Python!
- def quantize(self, arr: NDArray) -> NDArray:
- assert arr.size % self.block_size == 0 and arr.size != 0, f'Bad array size {arr.size}'
- assert arr.dtype == np.float32, f'Bad array type {arr.dtype}'
- n_blocks = arr.size // self.block_size
- blocks = arr.reshape((n_blocks, self.block_size))
- # Much faster implementation of block quantization contributed by @Cebtenzzre
- def quantize_blocks_q8_0(blocks: NDArray) -> Iterable[Tuple[Any, Any]]:
- d = abs(blocks).max(axis = 1) / np.float32(127)
- with np.errstate(divide = 'ignore'):
- qs = (blocks / d[:, None]).round()
- qs[d == 0] = 0
- yield from zip(d, qs)
- return np.fromiter(quantize_blocks_q8_0(blocks), count = n_blocks, dtype = self.quantized_dtype)
- DT_Q8_0 = Q8_0QuantizedDataType('Q8_0',
- dtype = np.dtype(np.float32), valid_conversions = [],
- ggml_type = gguf.GGMLQuantizationType.Q8_0, block_size = 32,
- quantized_dtype = np.dtype([('d', '<f2'), ('qs', 'i1', (32,))]))
- # Quantized types skipped here because they may also map to np.float32
- NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = {}
- for dt in (DT_BF16, DT_F16, DT_F32, DT_I32):
- if dt.dtype in NUMPY_TYPE_TO_DATA_TYPE:
- raise ValueError(f'Invalid duplicate data type {dt}')
- NUMPY_TYPE_TO_DATA_TYPE[dt.dtype] = dt
- SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
- 'BF16': DT_BF16,
- 'F16': DT_F16,
- 'F32': DT_F32,
- 'I32': DT_I32,
- }
- # TODO: match this with `llama_ftype`
- # TODO: rename to LLAMAFileType
- # TODO: move to `gguf.py`
- class GGMLFileType(enum.IntEnum):
- AllF32 = 0
- MostlyF16 = 1 # except 1d tensors
- MostlyQ8_0 = 7 # except 1d tensors
- def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
- dt = GGML_FILE_TYPE_TO_DATA_TYPE.get(self)
- if dt is None:
- raise ValueError(self)
- # 1D tensors are always F32.
- return dt if len(tensor.shape) > 1 else DT_F32
- GGML_FILE_TYPE_TO_DATA_TYPE: Dict[GGMLFileType, DataType] = {
- GGMLFileType.AllF32 : DT_F32,
- GGMLFileType.MostlyF16 : DT_F16,
- GGMLFileType.MostlyQ8_0: DT_Q8_0,
- }
- #
- # hparams loading
- #
- @dataclass
- class Params:
- n_vocab: int
- n_embd: int
- n_mult: int
- n_layer: int
- n_ctx: int
- n_ff: int
- n_head: int
- n_head_kv: int
- f_norm_eps: float
- f_rope_freq_base: Optional[float] = None
- f_rope_scale: Optional[float] = None
- ftype: Optional[GGMLFileType] = None
- # path to the directory containing the model files
- path_model: Optional['Path'] = None
- @staticmethod
- def find_n_mult(n_ff: int, n_embd: int) -> int:
- # hardcoded magic range
- for n_mult in range(8192, 1, -1):
- calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
- if calc_ff == n_ff:
- return n_mult
- raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
- @staticmethod
- def guessed(model: 'LazyModel') -> 'Params':
- # try transformer naming first
- n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
- # try transformer naming first
- if "model.layers.0.self_attn.q_proj.weight" in model:
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
- elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
- else:
- n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
- if n_layer < 1:
- raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
- "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
- n_head = n_embd // 128 # guessed
- n_mult = 256 # guessed
- # TODO: verify this
- n_ff = int(2 * (4 * n_embd) / 3)
- n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult)
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = -1,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head,
- f_norm_eps = 1e-5,
- )
- @staticmethod
- def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"]
- n_embd = config["hidden_size"]
- n_layer = config["num_hidden_layers"]
- n_ff = config["intermediate_size"]
- n_head = config["num_attention_heads"]
- n_head_kv = config["num_key_value_heads"] if "num_key_value_heads" in config else n_head
- f_norm_eps = config["rms_norm_eps"]
- f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
- rope_scaling = config.get("rope_scaling")
- if isinstance(rope_scaling, dict) and rope_scaling.get("type") == "linear":
- f_rope_scale = config["rope_scaling"].get("factor")
- else:
- f_rope_scale = None
- n_mult = Params.find_n_mult(n_ff, n_embd)
- if "max_sequence_length" in config:
- n_ctx = config["max_sequence_length"]
- elif "max_position_embeddings" in config:
- n_ctx = config["max_position_embeddings"]
- else:
- raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n"
- "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = n_ctx,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head_kv,
- f_norm_eps = f_norm_eps,
- f_rope_freq_base = f_rope_freq_base,
- f_rope_scale = f_rope_scale,
- )
- # LLaMA v2 70B params.json
- # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
- @staticmethod
- def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"] if "vocab_size" in config else -1
- n_embd = config["dim"]
- n_layer = config["n_layers"]
- n_mult = config["multiple_of"]
- n_ff = -1
- n_head = config["n_heads"]
- n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
- f_norm_eps = config["norm_eps"]
- f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
- # hack to determine LLaMA v1 vs v2 vs CodeLlama
- if f_rope_freq_base and f_rope_freq_base == 1000000:
- # CodeLlama
- n_ctx = 16384
- elif config["norm_eps"] == 1e-05:
- # LLaMA v2
- n_ctx = 4096
- else:
- # LLaMA v1
- n_ctx = 2048
- if n_vocab == -1:
- n_vocab = model["tok_embeddings.weight"].shape[0]
- if n_ff == -1:
- n_ff = model["layers.0.feed_forward.w1.weight"].shape[0]
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_layer = n_layer,
- n_ctx = n_ctx,
- n_ff = n_ff,
- n_head = n_head,
- n_head_kv = n_head_kv,
- f_norm_eps = f_norm_eps,
- f_rope_freq_base = f_rope_freq_base,
- )
- @staticmethod
- def load(model_plus: 'ModelPlus') -> 'Params':
- hf_config_path = model_plus.paths[0].parent / "config.json"
- orig_config_path = model_plus.paths[0].parent / "params.json"
- if hf_config_path.exists():
- params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
- elif orig_config_path.exists():
- params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
- elif model_plus.format != 'none':
- params = Params.guessed(model_plus.model)
- else:
- raise ValueError('Cannot guess params when model format is none')
- params.path_model = model_plus.paths[0].parent
- return params
- #
- # vocab
- #
- class BpeVocab:
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
- self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read())
- added_tokens: Dict[str, int]
- if fname_added_tokens is not None:
- added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
- else:
- added_tokens = {}
- vocab_size: int = len(self.bpe_tokenizer)
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base: int = vocab_size
- self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
- self.fname_added_tokens = fname_added_tokens
- def bpe_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- tokenizer = self.bpe_tokenizer
- from transformers.models.gpt2 import tokenization_gpt2
- byte_encoder = tokenization_gpt2.bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
- for i, item in enumerate(tokenizer):
- text: bytes = item.encode("utf-8")
- score: float = -i
- yield text, score, gguf.TokenType.USER_DEFINED
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- yield from self.bpe_tokens()
- yield from self.added_tokens()
- def __repr__(self) -> str:
- return f"<BpeVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
- class SentencePieceVocab:
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
- added_tokens: Dict[str, int]
- if fname_added_tokens is not None:
- added_tokens = json.load(open(fname_added_tokens, encoding="utf-8"))
- else:
- added_tokens = {}
- vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base: int = vocab_size
- self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
- self.fname_added_tokens = fname_added_tokens
- def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- tokenizer = self.sentencepiece_tokenizer
- for i in range(tokenizer.vocab_size()):
- piece = tokenizer.id_to_piece(i)
- text: bytes = piece.encode("utf-8")
- score: float = tokenizer.get_score(i)
- toktype = gguf.TokenType.NORMAL
- if tokenizer.is_unknown(i):
- toktype = gguf.TokenType.UNKNOWN
- if tokenizer.is_control(i):
- toktype = gguf.TokenType.CONTROL
- # NOTE: I think added_tokens are user defined.
- # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
- # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
- if tokenizer.is_unused(i):
- toktype = gguf.TokenType.UNUSED
- if tokenizer.is_byte(i):
- toktype = gguf.TokenType.BYTE
- yield text, score, toktype
- def added_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
- def all_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]:
- yield from self.sentencepiece_tokens()
- yield from self.added_tokens()
- def __repr__(self) -> str:
- return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
- Vocab = Union[BpeVocab, SentencePieceVocab]
- #
- # data loading
- # TODO: reuse (probably move to gguf.py?)
- #
- def permute(weights: NDArray, n_head: int, n_head_kv: int) -> NDArray:
- #print( "permute debug " + str(weights.shape[0]) + " x " + str(weights.shape[1]) + " nhead " + str(n_head) + " nheadkv " + str(n_kv_head) )
- if n_head_kv is not None and n_head != n_head_kv:
- n_head //= n_head_kv
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- class Tensor(metaclass=ABCMeta):
- data_type: DataType
- @abstractmethod
- def astype(self, data_type: DataType) -> 'Tensor': ...
- @abstractmethod
- def permute(self, n_head: int, n_head_kv: int) -> 'Tensor': ...
- @abstractmethod
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def part(self, n_part: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def to_ggml(self) -> 'GGMLCompatibleTensor': ...
- def bf16_to_fp32(bf16_arr: np.ndarray[Any, np.dtype[np.uint16]]) -> NDArray:
- assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
- fp32_arr = bf16_arr.astype(np.uint32) << 16
- return fp32_arr.view(np.float32)
- class UnquantizedTensor(Tensor):
- def __init__(self, ndarray: NDArray) -> None:
- assert isinstance(ndarray, np.ndarray)
- self.ndarray = ndarray
- self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
- def astype(self, data_type: DataType) -> Tensor:
- dtype = data_type.dtype
- if self.data_type == DT_BF16:
- self.ndarray = bf16_to_fp32(self.ndarray)
- return UnquantizedTensor(self.ndarray.astype(dtype))
- def to_ggml(self) -> 'UnquantizedTensor':
- return self
- def permute_part(self, n_part: int, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head, n_head_kv))
- def part(self, n_part: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
- def permute(self, n_head: int, n_head_kv: int) -> 'UnquantizedTensor':
- return UnquantizedTensor(permute(self.ndarray, n_head, n_head_kv))
- def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
- tensor = lazy_tensor.load()
- assert isinstance(tensor, UnquantizedTensor)
- # double-check:
- actual_shape = list(tensor.ndarray.shape)
- assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
- if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
- if convert:
- tensor.ndarray = tensor.ndarray.astype(expected_dtype)
- else:
- raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
- return tensor.ndarray
- GGMLCompatibleTensor = Union[UnquantizedTensor]
- @dataclass
- class LazyTensor:
- _load: Callable[[], Tensor]
- shape: List[int]
- data_type: DataType
- description: str
- def load(self) -> Tensor:
- ret = self._load()
- # Should be okay if it maps to the same numpy type?
- assert ret.data_type == self.data_type or (self.data_type.dtype == ret.data_type.dtype), \
- (self.data_type, ret.data_type, self.description)
- return ret
- def astype(self, data_type: DataType) -> 'LazyTensor':
- self.validate_conversion_to(data_type)
- def load() -> Tensor:
- return self.load().astype(data_type)
- return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
- def validate_conversion_to(self, data_type: DataType) -> None:
- if data_type != self.data_type and data_type.name not in self.data_type.valid_conversions:
- raise ValueError(f'Cannot validate conversion from {self.data_type} to {data_type}.')
- LazyModel = Dict[str, LazyTensor]
- @dataclass
- class ModelPlus:
- model: LazyModel
- paths: List[Path] # Where this was read from.
- format: Literal['ggml', 'torch', 'safetensors', 'none']
- vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
- def merge_sharded(models: List[LazyModel]) -> LazyModel:
- # Original LLaMA models have each file contain one part of each tensor.
- # Use a dict instead of a set to preserve order.
- names = {name: None for model in models for name in model}
- def convert(name: str) -> LazyTensor:
- lazy_tensors: List[LazyTensor] = [model[name] for model in models]
- if len(lazy_tensors) == 1:
- # only one file; don't go through this procedure since there might
- # be quantized tensors
- return lazy_tensors[0]
- if len(lazy_tensors[0].shape) == 1:
- # the tensor is just duplicated in every file
- return lazy_tensors[0]
- if name.startswith('tok_embeddings.') or \
- name.endswith('.attention.wo.weight') or \
- name.endswith('.feed_forward.w2.weight'):
- # split by columns
- axis = 1
- else:
- # split by rows
- axis = 0
- concatenated_shape = list(lazy_tensors[0].shape)
- concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
- def load() -> UnquantizedTensor:
- ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
- concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
- return UnquantizedTensor(concatenated)
- description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
- return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
- return {name: convert(name) for name in names}
- def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
- formats = set(mp.format for mp in models_plus)
- assert len(formats) == 1, "different formats?"
- format = formats.pop()
- paths = [path for mp in models_plus for path in mp.paths]
- # Use the first non-None vocab, if any.
- try:
- vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
- except StopIteration:
- vocab = None
- if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
- # Transformers models put different tensors in different files, but
- # don't split indivdual tensors between files.
- model: LazyModel = {}
- for mp in models_plus:
- model.update(mp.model)
- else:
- model = merge_sharded([mp.model for mp in models_plus])
- return ModelPlus(model, paths, format, vocab)
- def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute(n_head, n_head_kv)
- return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
- def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int, n_head_kv: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute_part(n_part, n_head, n_head_kv)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}, {n_head_kv}) ' + lazy_tensor.description)
- def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().part(n_part)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
- # Functionality that simulates `torch.load` but where individual tensors are
- # only loaded into memory on demand, not all at once.
- # PyTorch can't do this natively as of time of writing:
- # - https://github.com/pytorch/pytorch/issues/64327
- # This allows us to de-shard without multiplying RAM usage, and also
- # conveniently drops the PyTorch dependency (though we still need numpy).
- @dataclass
- class LazyStorageKind:
- data_type: DataType
- @dataclass
- class LazyStorage:
- load: Callable[[int, int], NDArray]
- kind: LazyStorageKind
- description: str
- class LazyUnpickler(pickle.Unpickler):
- def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
- super().__init__(fp)
- self.data_base_path = data_base_path
- self.zip_file = zip_file
- def persistent_load(self, pid: Any) -> Any:
- assert pid[0] == 'storage'
- assert isinstance(pid[1], LazyStorageKind)
- data_type = pid[1].data_type
- filename_stem = pid[2]
- filename = self.data_base_path + '/' + filename_stem
- info = self.zip_file.getinfo(filename)
- def load(offset: int, elm_count: int) -> NDArray:
- dtype = data_type.dtype
- fp = self.zip_file.open(info)
- fp.seek(offset * dtype.itemsize)
- size = elm_count * dtype.itemsize
- data = fp.read(size)
- assert len(data) == size
- return np.frombuffer(data, dtype)
- description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
- return LazyStorage(load=load, kind=pid[1], description=description)
- @staticmethod
- def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
- # pyright: ignore[reportSelfClsParameterName]
- requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
- assert isinstance(storage, LazyStorage)
- def load() -> UnquantizedTensor:
- elm_count = stride[0] * size[0]
- return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
- description = f'pickled storage_offset={storage_offset} in {storage.description}'
- return LazyTensor(load, list(size), storage.kind.data_type, description)
- @staticmethod
- def rebuild_from_type_v2(func, new_type, args, state):
- return func(*args)
- CLASSES: Dict[Tuple[str, str], Any] = {
- # getattr used here as a workaround for mypy not being smart enough to detrmine
- # the staticmethods have a __func__ attribute.
- ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'),
- ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'),
- ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
- ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
- ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
- ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
- ('torch', 'Tensor'): LazyTensor,
- }
- def find_class(self, module: str, name: str) -> Any:
- if not module.startswith('torch'):
- return super().find_class(module, name)
- return self.CLASSES[(module, name)]
- def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
- zf = zipfile.ZipFile(outer_fp)
- pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
- assert len(pickle_paths) == 1, pickle_paths
- pickle_fp = zf.open(pickle_paths[0], 'r')
- unpickler = LazyUnpickler(pickle_fp,
- data_base_path=pickle_paths[0][:-4],
- zip_file=zf)
- model = unpickler.load()
- as_dict = dict(model.items())
- return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
- def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
- header_size, = struct.unpack('<Q', fp.read(8))
- header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
- # Use mmap for the actual data to avoid race conditions with the file offset.
- mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
- byte_buf = mapped[8 + header_size:]
- def convert(info: Dict[str, Any]) -> LazyTensor:
- data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
- numpy_dtype = data_type.dtype
- shape: List[int] = info['shape']
- begin, end = info['data_offsets']
- assert 0 <= begin <= end <= len(byte_buf)
- assert end - begin == math.prod(shape) * numpy_dtype.itemsize
- buf = byte_buf[begin:end]
- def load() -> UnquantizedTensor:
- return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
- description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
- return LazyTensor(load, shape, data_type, description)
- model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
- return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
- def must_read(fp: IO[bytes], length: int) -> bytes:
- ret = fp.read(length)
- if len(ret) < length:
- raise Exception("unexpectedly reached end of file")
- return ret
- @functools.lru_cache(maxsize=None)
- def lazy_load_file(path: Path) -> ModelPlus:
- fp = open(path, 'rb')
- first8 = fp.read(8)
- fp.seek(0)
- if first8[:2] == b'PK':
- # A zip file, i.e. PyTorch format
- return lazy_load_torch_file(fp, path)
- elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
- # Probably safetensors
- return lazy_load_safetensors_file(fp, path)
- else:
- raise ValueError(f"unknown format: {path}")
- In = TypeVar('In')
- Out = TypeVar('Out')
- def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int, max_workers: Optional[int] = None, use_processpool_executor: bool = False) -> Iterable[Out]:
- '''Parallel map, but with backpressure. If the caller doesn't call `next`
- fast enough, this will stop calling `func` at some point rather than
- letting results pile up in memory. Specifically, there is a max of one
- output value buffered per thread.'''
- if concurrency < 2:
- yield from map(func, iterable)
- # Not reached.
- iterable = iter(iterable)
- executor_class: Union[Type[ThreadPoolExecutor], Type[ProcessPoolExecutor]]
- if use_processpool_executor:
- executor_class = ProcessPoolExecutor
- else:
- executor_class = ThreadPoolExecutor
- with executor_class(max_workers = max_workers) as executor:
- futures: List[concurrent.futures.Future[Out]] = []
- done = False
- for _ in range(concurrency):
- try:
- futures.append(executor.submit(func, next(iterable)))
- except StopIteration:
- done = True
- break
- while futures:
- result = futures.pop(0).result()
- while not done and len(futures) < concurrency:
- try:
- futures.append(executor.submit(func, next(iterable)))
- except StopIteration:
- done = True
- break
- yield result
- def check_vocab_size(params: Params, vocab: Vocab) -> None:
- if params.n_vocab != vocab.vocab_size:
- assert isinstance(vocab, BpeVocab) or isinstance(vocab, SentencePieceVocab)
- if params.n_vocab == vocab.vocab_size_base:
- print("Ignoring added_tokens.json since model matches vocab size without it.")
- vocab.added_tokens_list = []
- vocab.vocab_size = vocab.vocab_size_base
- return
- msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
- if vocab.fname_added_tokens is not None:
- msg += f" combined with {vocab.fname_added_tokens}"
- msg += f" has {vocab.vocab_size})."
- if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
- msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
- raise Exception(msg)
- class OutputFile:
- def __init__(self, fname_out: Path) -> None:
- self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH])
- def add_meta_arch(self, params: Params) -> None:
- name = "LLaMA"
- if (params.n_ctx == 4096):
- name = "LLaMA v2"
- if params.path_model:
- name = str(params.path_model.parent).split('/')[-1]
- self.gguf.add_name (name)
- self.gguf.add_context_length (params.n_ctx)
- self.gguf.add_embedding_length (params.n_embd)
- self.gguf.add_block_count (params.n_layer)
- self.gguf.add_feed_forward_length (params.n_ff)
- self.gguf.add_rope_dimension_count(params.n_embd // params.n_head)
- self.gguf.add_head_count (params.n_head)
- self.gguf.add_head_count_kv (params.n_head_kv)
- self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
- if params.f_rope_freq_base:
- self.gguf.add_rope_freq_base(params.f_rope_freq_base)
- if params.f_rope_scale:
- self.gguf.add_rope_scale_linear(params.f_rope_scale)
- if params.ftype:
- self.gguf.add_file_type(params.ftype)
- def add_meta_vocab(self, vocab: Vocab) -> None:
- tokens = []
- scores = []
- toktypes = []
- # NOTE: `all_tokens` returns the the base vocabulary and added tokens
- # TODO: add special tokens?
- for text, score, toktype in vocab.all_tokens():
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- if isinstance(vocab, SentencePieceVocab):
- self.gguf.add_tokenizer_model("llama")
- elif isinstance(vocab, BpeVocab):
- self.gguf.add_tokenizer_model("gpt2")
- else:
- raise ValueError(f'Unknown vocab type: Not BpeVocab or SentencePieceVocab')
- self.gguf.add_token_list(tokens)
- self.gguf.add_token_scores(scores)
- self.gguf.add_token_types(toktypes)
- def add_meta_special_vocab(self, svocab: gguf.SpecialVocab) -> None:
- svocab.add_to_gguf(self.gguf)
- def add_tensor_info(self, name: str, tensor: LazyTensor) -> None:
- n_elements = int(np.prod(tensor.shape))
- raw_dtype = getattr(tensor.data_type, 'ggml_type', None)
- data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype
- data_nbytes = tensor.data_type.elements_to_bytes(n_elements)
- self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype = raw_dtype)
- def write_meta(self) -> None:
- self.gguf.write_header_to_file()
- self.gguf.write_kv_data_to_file()
- def write_tensor_info(self) -> None:
- self.gguf.write_ti_data_to_file()
- def close(self) -> None:
- self.gguf.close()
- @staticmethod
- def write_vocab_only(fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab) -> None:
- check_vocab_size(params, vocab)
- of = OutputFile(fname_out)
- # meta data
- of.add_meta_arch(params)
- of.add_meta_vocab(vocab)
- of.add_meta_special_vocab(svocab)
- of.write_meta()
- of.close()
- @staticmethod
- def do_item(item: Tuple[str, LazyTensor]) -> Tuple[DataType, NDArray]:
- name, lazy_tensor = item
- tensor = lazy_tensor.load().to_ggml()
- return (lazy_tensor.data_type, tensor.ndarray)
- @staticmethod
- def maybe_do_quantize(item: Tuple[DataType, NDArray]) -> NDArray:
- dt, arr = item
- if not isinstance(dt, QuantizedDataType):
- return arr
- return dt.quantize(arr)
- @staticmethod
- def write_all(fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, concurrency: int = DEFAULT_CONCURRENCY) -> None:
- check_vocab_size(params, vocab)
- of = OutputFile(fname_out)
- # meta data
- of.add_meta_arch(params)
- of.add_meta_vocab(vocab)
- of.add_meta_special_vocab(svocab)
- # tensor info
- for name, lazy_tensor in model.items():
- of.add_tensor_info(name, lazy_tensor)
- of.write_meta()
- of.write_tensor_info()
- # tensor data
- ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency)
- if ftype == GGMLFileType.MostlyQ8_0:
- ndarrays = bounded_parallel_map(OutputFile.maybe_do_quantize, ndarrays_inner, concurrency = concurrency, max_workers = concurrency, use_processpool_executor = True)
- else:
- ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner)
- start = time.time()
- for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
- elapsed = time.time() - start
- size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
- padi = len(str(len(model)))
- print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}")
- of.gguf.write_tensor_data(ndarray)
- of.close()
- def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
- wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
- if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
- return GGMLFileType.AllF32
- if output_type_str == "f16" or (output_type_str is None and wq_type in (DT_F16, DT_BF16)):
- return GGMLFileType.MostlyF16
- if output_type_str == "q8_0":
- return GGMLFileType.MostlyQ8_0
- name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
- raise Exception(f"Unexpected combination of types: {name_to_type}")
- def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
- return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
- for (name, tensor) in model.items()}
- def convert_model_names(model: LazyModel, params: Params) -> LazyModel:
- tmap = gguf.TensorNameMap(ARCH, params.n_layer)
- should_skip: Set[gguf.MODEL_TENSOR] = set(gguf.MODEL_TENSOR_SKIP.get(ARCH, []))
- tmp = model
- # HF models permut or pack some of the tensors, so we need to undo that
- for i in itertools.count():
- if f"model.layers.{i}.self_attn.q_proj.weight" in model:
- print(f"Permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_head_kv)
- #tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
- elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
- print(f"Unpacking and permuting layer {i}")
- tmp[f"model.layers.{i}.self_attn.q_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head, params.n_head)
- tmp[f"model.layers.{i}.self_attn.k_proj.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head, params.n_head_kv)
- tmp[f"model.layers.{i}.self_attn.v_proj.weight"] = part_lazy (model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
- del tmp[f"model.layers.{i}.self_attn.W_pack.weight"]
- else:
- break
- out: LazyModel = {}
- for name, lazy_tensor in model.items():
- tensor_type, name_new = tmap.get_type_and_name(name, try_suffixes = (".weight", ".bias")) or (None, None)
- if name_new is None:
- raise Exception(f"Unexpected tensor name: {name}")
- if tensor_type in should_skip:
- print(f"skipping tensor {name_new}")
- continue
- print(f"{name:48s} -> {name_new:40s} | {lazy_tensor.data_type.name:6s} | {lazy_tensor.shape}")
- out[name_new] = lazy_tensor
- return out
- def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the nth path in the model.
- '''
- # Support the following patterns:
- patterns: List[Tuple[str, str]] = [
- # - x.00.pth, x.01.pth, etc.
- (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
- # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
- (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
- # x.bin, x.bin.1, etc.
- (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
- ]
- for regex, replacement in patterns:
- if re.search(regex, path.name):
- new_path = path.with_name(re.sub(regex, replacement, path.name))
- if new_path.exists():
- return new_path
- return None
- def find_multifile_paths(path: Path) -> List[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the whole list of paths in the model.
- '''
- ret: List[Path] = []
- for i in itertools.count():
- nth_path = nth_multifile_path(path, i)
- if nth_path is None:
- break
- ret.append(nth_path)
- if not ret:
- # No matches. This should only happen if the file was named, e.g.,
- # foo.0, and there was no file named foo. Oh well, try to process it
- # as a single file.
- return [path]
- return ret
- def load_some_model(path: Path) -> ModelPlus:
- '''Load a model of any supported format.'''
- # Be extra-friendly and accept either a file or a directory:
- if path.is_dir():
- # Check if it's a set of safetensors files first
- files = list(path.glob("model-00001-of-*.safetensors"))
- if not files:
- # Try the PyTorch patterns too, with lower priority
- globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
- files = [file for glob in globs for file in path.glob(glob)]
- if not files:
- raise Exception(f"Can't find model in directory {path}")
- if len(files) > 1:
- raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
- path = files[0]
- paths = find_multifile_paths(path)
- models_plus: List[ModelPlus] = []
- for path in paths:
- print(f"Loading model file {path}")
- models_plus.append(lazy_load_file(path))
- model_plus = merge_multifile_models(models_plus)
- return model_plus
- def load_vocab(path: Path, vocabtype: Optional[str]) -> Union[BpeVocab, SentencePieceVocab]:
- # Be extra-friendly and accept either a file or a directory. Also, if it's
- # a directory, it might be the model directory, and tokenizer.model might
- # be in the parent of that.
- if path.is_dir():
- vocab_file = "tokenizer.model"
- if vocabtype == 'bpe':
- vocab_file = "vocab.json"
- path2 = path / vocab_file
- # Use `.parent` instead of /.. to handle the symlink case better.
- path3 = path.parent / vocab_file
- if path2.exists():
- path = path2
- elif path3.exists():
- path = path3
- else:
- raise FileNotFoundError(
- f"Could not find {vocab_file} in {path} or its parent; "
- "if it's in another directory, pass the directory as --vocab-dir")
- print(f"Loading vocab file '{path}', type '{vocabtype}'")
- added_tokens_path = path.parent / "added_tokens.json"
- if vocabtype == "bpe":
- return BpeVocab(path, added_tokens_path if added_tokens_path.exists() else None)
- elif vocabtype == "spm":
- return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)
- else:
- raise ValueError(f"Unsupported vocabulary type {vocabtype}")
- def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
- namestr = {
- GGMLFileType.AllF32: "f32",
- GGMLFileType.MostlyF16: "f16",
- GGMLFileType.MostlyQ8_0:"q8_0",
- }[file_type]
- ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf"
- if ret in model_paths:
- sys.stderr.write(
- f"Error: Default output path ({ret}) would overwrite the input. "
- "Please explicitly specify a path using --outfile.\n")
- sys.exit(1)
- return ret
- def do_dump_model(model_plus: ModelPlus) -> None:
- print(f"model_plus.paths = {model_plus.paths!r}")
- print(f"model_plus.format = {model_plus.format!r}")
- print(f"model_plus.vocab = {model_plus.vocab!r}")
- for name, lazy_tensor in model_plus.model.items():
- print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
- def main(args_in: Optional[List[str]] = None) -> None:
- parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
- parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
- parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outtype", choices=["f32", "f16", "q8_0"], help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)")
- parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
- parser.add_argument("--vocabtype", choices=["spm", "bpe"], help="vocab format (default: spm)", default="spm")
- parser.add_argument("--ctx", type=int, help="model training context (default: based on input)")
- parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default = DEFAULT_CONCURRENCY)
- args = parser.parse_args(args_in)
- if args.dump_single:
- model_plus = lazy_load_file(args.model)
- do_dump_model(model_plus)
- return
- if not args.vocab_only:
- model_plus = load_some_model(args.model)
- else:
- model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None)
- if args.dump:
- do_dump_model(model_plus)
- return
- params = Params.load(model_plus)
- if params.n_ctx == -1:
- if args.ctx is None:
- raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n"
- "Please specify one with --ctx:\n"
- " - LLaMA v1: --ctx 2048\n"
- " - LLaMA v2: --ctx 4096\n")
- params.n_ctx = args.ctx
- if args.outtype:
- params.ftype = {
- "f32": GGMLFileType.AllF32,
- "f16": GGMLFileType.MostlyF16,
- "q8_0": GGMLFileType.MostlyQ8_0,
- }[args.outtype]
- print(f"params = {params}")
- vocab: Vocab
- if args.vocab_only:
- assert args.outfile, "need --outfile if using --vocab-only"
- # FIXME: Try to respect vocab_dir somehow?
- vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
- special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
- outfile = args.outfile
- OutputFile.write_vocab_only(outfile, params, vocab, special_vocab)
- print(f"Wrote {outfile}")
- return
- if model_plus.vocab is not None and args.vocab_dir is None:
- vocab = model_plus.vocab
- else:
- vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
- vocab = load_vocab(vocab_dir, args.vocabtype)
- # FIXME: Try to respect vocab_dir somehow?
- special_vocab = gguf.SpecialVocab(model_plus.paths[0].parent, load_merges = args.vocabtype == 'bpe')
- model = model_plus.model
- model = convert_model_names(model, params)
- ftype = pick_output_type(model, args.outtype)
- model = convert_to_output_type(model, ftype)
- outfile = args.outfile or default_outfile(model_plus.paths, ftype)
- params.ftype = ftype
- print(f"Writing {outfile}, format {ftype}")
- OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, concurrency = args.concurrency)
- print(f"Wrote {outfile}")
- if __name__ == '__main__':
- main()
|