ggml.c 486 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  118. #include "ggml-opencl.h"
  119. #endif
  120. #elif defined(GGML_USE_OPENBLAS)
  121. #include <cblas.h>
  122. #elif defined(GGML_USE_CUBLAS)
  123. #include "ggml-cuda.h"
  124. #elif defined(GGML_USE_CLBLAST)
  125. #include "ggml-opencl.h"
  126. #endif
  127. #undef MIN
  128. #undef MAX
  129. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  130. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  131. // floating point type used to accumulate sums
  132. typedef double ggml_float;
  133. // 16-bit float
  134. // on Arm, we use __fp16
  135. // on x86, we use uint16_t
  136. #ifdef __ARM_NEON
  137. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  138. //
  139. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  140. //
  141. #include <arm_neon.h>
  142. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  143. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  144. #define GGML_FP16_TO_FP32(x) ((float) (x))
  145. #define GGML_FP32_TO_FP16(x) (x)
  146. #else
  147. #ifdef __wasm_simd128__
  148. #include <wasm_simd128.h>
  149. #else
  150. #ifdef __POWER9_VECTOR__
  151. #include <altivec.h>
  152. #undef bool
  153. #define bool _Bool
  154. #else
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #include <intrin.h>
  157. #else
  158. #include <immintrin.h>
  159. #endif
  160. #endif
  161. #endif
  162. #ifdef __F16C__
  163. #ifdef _MSC_VER
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  166. #else
  167. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  168. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  169. #endif
  170. #elif defined(__POWER9_VECTOR__)
  171. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  172. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  173. /* the inline asm below is about 12% faster than the lookup method */
  174. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  175. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  176. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  177. register float f;
  178. register double d;
  179. __asm__(
  180. "mtfprd %0,%2\n"
  181. "xscvhpdp %0,%0\n"
  182. "frsp %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=f"(f):
  185. /* in */ "r"(h));
  186. return f;
  187. }
  188. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  189. register double d;
  190. register ggml_fp16_t r;
  191. __asm__( /* xscvdphp can work on double or single precision */
  192. "xscvdphp %0,%2\n"
  193. "mffprd %1,%0\n" :
  194. /* temp */ "=d"(d),
  195. /* out */ "=r"(r):
  196. /* in */ "f"(f));
  197. return r;
  198. }
  199. #else
  200. // FP16 <-> FP32
  201. // ref: https://github.com/Maratyszcza/FP16
  202. static inline float fp32_from_bits(uint32_t w) {
  203. union {
  204. uint32_t as_bits;
  205. float as_value;
  206. } fp32;
  207. fp32.as_bits = w;
  208. return fp32.as_value;
  209. }
  210. static inline uint32_t fp32_to_bits(float f) {
  211. union {
  212. float as_value;
  213. uint32_t as_bits;
  214. } fp32;
  215. fp32.as_value = f;
  216. return fp32.as_bits;
  217. }
  218. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  219. const uint32_t w = (uint32_t) h << 16;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. const uint32_t two_w = w + w;
  222. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  223. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  224. const float exp_scale = 0x1.0p-112f;
  225. #else
  226. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  227. #endif
  228. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  229. const uint32_t magic_mask = UINT32_C(126) << 23;
  230. const float magic_bias = 0.5f;
  231. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  232. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  233. const uint32_t result = sign |
  234. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  235. return fp32_from_bits(result);
  236. }
  237. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  238. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  239. const float scale_to_inf = 0x1.0p+112f;
  240. const float scale_to_zero = 0x1.0p-110f;
  241. #else
  242. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  243. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  244. #endif
  245. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  246. const uint32_t w = fp32_to_bits(f);
  247. const uint32_t shl1_w = w + w;
  248. const uint32_t sign = w & UINT32_C(0x80000000);
  249. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  250. if (bias < UINT32_C(0x71000000)) {
  251. bias = UINT32_C(0x71000000);
  252. }
  253. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  254. const uint32_t bits = fp32_to_bits(base);
  255. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  256. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  257. const uint32_t nonsign = exp_bits + mantissa_bits;
  258. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  259. }
  260. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  261. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  262. #endif // __F16C__
  263. #endif // __ARM_NEON
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t table_gelu_f16[1 << 16];
  269. // precomputed silu table for f16 (128 KB)
  270. static ggml_fp16_t table_silu_f16[1 << 16];
  271. // precomputed exp table for f16 (128 KB)
  272. static ggml_fp16_t table_exp_f16[1 << 16];
  273. // precomputed f32 table for f16 (256 KB)
  274. static float table_f32_f16[1 << 16];
  275. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  276. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  277. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  278. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  279. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  280. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  281. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  282. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  283. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  284. // precomputed tables for expanding 8bits to 8 bytes:
  285. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  286. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  287. #endif
  288. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  289. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  290. // This is also true for POWER9.
  291. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  292. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  293. uint16_t s;
  294. memcpy(&s, &f, sizeof(uint16_t));
  295. return table_f32_f16[s];
  296. }
  297. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  298. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  299. #endif
  300. // note: do not use these inside ggml.c
  301. // these are meant to be used via the ggml.h API
  302. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  303. return (float) GGML_FP16_TO_FP32(x);
  304. }
  305. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  306. return GGML_FP32_TO_FP16(x);
  307. }
  308. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  309. for (size_t i = 0; i < n; i++) {
  310. y[i] = GGML_FP16_TO_FP32(x[i]);
  311. }
  312. }
  313. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  314. size_t i = 0;
  315. #if defined(__F16C__)
  316. for (; i + 7 < n; i += 8) {
  317. __m256 x_vec = _mm256_loadu_ps(x + i);
  318. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  319. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  320. }
  321. for(; i + 3 < n; i += 4) {
  322. __m128 x_vec = _mm_loadu_ps(x + i);
  323. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  324. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  325. }
  326. #endif
  327. for (; i < n; i++) {
  328. y[i] = GGML_FP32_TO_FP16(x[i]);
  329. }
  330. }
  331. //
  332. // timing
  333. //
  334. #if defined(_MSC_VER) || defined(__MINGW32__)
  335. static int64_t timer_freq;
  336. void ggml_time_init(void) {
  337. LARGE_INTEGER frequency;
  338. QueryPerformanceFrequency(&frequency);
  339. timer_freq = frequency.QuadPart;
  340. }
  341. int64_t ggml_time_ms(void) {
  342. LARGE_INTEGER t;
  343. QueryPerformanceCounter(&t);
  344. return (t.QuadPart * 1000) / timer_freq;
  345. }
  346. int64_t ggml_time_us(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceCounter(&t);
  349. return (t.QuadPart * 1000000) / timer_freq;
  350. }
  351. #else
  352. void ggml_time_init(void) {}
  353. int64_t ggml_time_ms(void) {
  354. struct timespec ts;
  355. clock_gettime(CLOCK_MONOTONIC, &ts);
  356. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  357. }
  358. int64_t ggml_time_us(void) {
  359. struct timespec ts;
  360. clock_gettime(CLOCK_MONOTONIC, &ts);
  361. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  362. }
  363. #endif
  364. int64_t ggml_cycles(void) {
  365. return clock();
  366. }
  367. int64_t ggml_cycles_per_ms(void) {
  368. return CLOCKS_PER_SEC/1000;
  369. }
  370. #ifdef GGML_PERF
  371. #define ggml_perf_time_ms() ggml_time_ms()
  372. #define ggml_perf_time_us() ggml_time_us()
  373. #define ggml_perf_cycles() ggml_cycles()
  374. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  375. #else
  376. #define ggml_perf_time_ms() 0
  377. #define ggml_perf_time_us() 0
  378. #define ggml_perf_cycles() 0
  379. #define ggml_perf_cycles_per_ms() 0
  380. #endif
  381. //
  382. // cache line
  383. //
  384. #if defined(__cpp_lib_hardware_interference_size)
  385. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  386. #else
  387. #if defined(__POWER9_VECTOR__)
  388. #define CACHE_LINE_SIZE 128
  389. #else
  390. #define CACHE_LINE_SIZE 64
  391. #endif
  392. #endif
  393. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  394. //
  395. // quantization
  396. //
  397. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  398. // multiply int8_t, add results pairwise twice
  399. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  400. // Get absolute values of x vectors
  401. const __m128i ax = _mm_sign_epi8(x, x);
  402. // Sign the values of the y vectors
  403. const __m128i sy = _mm_sign_epi8(y, x);
  404. // Perform multiplication and create 16-bit values
  405. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  406. const __m128i ones = _mm_set1_epi16(1);
  407. return _mm_madd_epi16(ones, dot);
  408. }
  409. #if __AVX__ || __AVX2__ || __AVX512F__
  410. // horizontally add 8 floats
  411. static inline float hsum_float_8(const __m256 x) {
  412. __m128 res = _mm256_extractf128_ps(x, 1);
  413. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  414. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  415. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  416. return _mm_cvtss_f32(res);
  417. }
  418. // horizontally add 8 int32_t
  419. static inline int hsum_i32_8(const __m256i a) {
  420. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  421. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  422. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  423. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  424. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  425. }
  426. // horizontally add 4 int32_t
  427. static inline int hsum_i32_4(const __m128i a) {
  428. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  429. const __m128i sum64 = _mm_add_epi32(hi64, a);
  430. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  431. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  432. }
  433. #if __AVX2__ || __AVX512F__
  434. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  435. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  436. uint32_t x32;
  437. memcpy(&x32, x, sizeof(uint32_t));
  438. const __m256i shuf_mask = _mm256_set_epi64x(
  439. 0x0303030303030303, 0x0202020202020202,
  440. 0x0101010101010101, 0x0000000000000000);
  441. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  442. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  443. bytes = _mm256_or_si256(bytes, bit_mask);
  444. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  445. }
  446. // Unpack 32 4-bit fields into 32 bytes
  447. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  448. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  449. {
  450. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  451. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  452. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  453. return _mm256_and_si256(lowMask, bytes);
  454. }
  455. // add int16_t pairwise and return as float vector
  456. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  457. const __m256i ones = _mm256_set1_epi16(1);
  458. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  459. return _mm256_cvtepi32_ps(summed_pairs);
  460. }
  461. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  462. #if __AVXVNNI__
  463. const __m256i zero = _mm256_setzero_si256();
  464. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  465. return _mm256_cvtepi32_ps(summed_pairs);
  466. #else
  467. // Perform multiplication and create 16-bit values
  468. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  469. return sum_i16_pairs_float(dot);
  470. #endif
  471. }
  472. // multiply int8_t, add results pairwise twice and return as float vector
  473. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  474. #if __AVXVNNIINT8__
  475. const __m256i zero = _mm256_setzero_si256();
  476. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  477. return _mm256_cvtepi32_ps(summed_pairs);
  478. #else
  479. // Get absolute values of x vectors
  480. const __m256i ax = _mm256_sign_epi8(x, x);
  481. // Sign the values of the y vectors
  482. const __m256i sy = _mm256_sign_epi8(y, x);
  483. return mul_sum_us8_pairs_float(ax, sy);
  484. #endif
  485. }
  486. static inline __m128i packNibbles( __m256i bytes )
  487. {
  488. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  489. #if __AVX512F__
  490. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  491. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  492. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  493. #else
  494. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  495. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  496. __m256i low = _mm256_and_si256( lowByte, bytes );
  497. high = _mm256_srli_epi16( high, 4 );
  498. bytes = _mm256_or_si256( low, high );
  499. // Compress uint16_t lanes into bytes
  500. __m128i r0 = _mm256_castsi256_si128( bytes );
  501. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  502. return _mm_packus_epi16( r0, r1 );
  503. #endif
  504. }
  505. #elif defined(__AVX__)
  506. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  507. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  508. uint32_t x32;
  509. memcpy(&x32, x, sizeof(uint32_t));
  510. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  511. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  512. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  513. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  514. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  515. bytesl = _mm_or_si128(bytesl, bit_mask);
  516. bytesh = _mm_or_si128(bytesh, bit_mask);
  517. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  518. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  519. return _mm256_set_m128i(bytesh, bytesl);
  520. }
  521. // Unpack 32 4-bit fields into 32 bytes
  522. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  523. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  524. {
  525. // Load 16 bytes from memory
  526. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  527. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  528. const __m128i lowMask = _mm_set1_epi8(0xF);
  529. tmpl = _mm_and_si128(lowMask, tmpl);
  530. tmph = _mm_and_si128(lowMask, tmph);
  531. return _mm256_set_m128i(tmph, tmpl);
  532. }
  533. // add int16_t pairwise and return as float vector
  534. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  535. const __m128i ones = _mm_set1_epi16(1);
  536. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  537. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  538. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  539. return _mm256_cvtepi32_ps(summed_pairs);
  540. }
  541. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  542. const __m128i axl = _mm256_castsi256_si128(ax);
  543. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  544. const __m128i syl = _mm256_castsi256_si128(sy);
  545. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  546. // Perform multiplication and create 16-bit values
  547. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  548. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  549. return sum_i16_pairs_float(doth, dotl);
  550. }
  551. // multiply int8_t, add results pairwise twice and return as float vector
  552. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  553. const __m128i xl = _mm256_castsi256_si128(x);
  554. const __m128i xh = _mm256_extractf128_si256(x, 1);
  555. const __m128i yl = _mm256_castsi256_si128(y);
  556. const __m128i yh = _mm256_extractf128_si256(y, 1);
  557. // Get absolute values of x vectors
  558. const __m128i axl = _mm_sign_epi8(xl, xl);
  559. const __m128i axh = _mm_sign_epi8(xh, xh);
  560. // Sign the values of the y vectors
  561. const __m128i syl = _mm_sign_epi8(yl, xl);
  562. const __m128i syh = _mm_sign_epi8(yh, xh);
  563. // Perform multiplication and create 16-bit values
  564. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  565. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  566. return sum_i16_pairs_float(doth, dotl);
  567. }
  568. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  572. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  573. __m128i low = _mm_and_si128( lowByte, bytes1 );
  574. high = _mm_srli_epi16( high, 4 );
  575. bytes1 = _mm_or_si128( low, high );
  576. high = _mm_andnot_si128( lowByte, bytes2 );
  577. low = _mm_and_si128( lowByte, bytes2 );
  578. high = _mm_srli_epi16( high, 4 );
  579. bytes2 = _mm_or_si128( low, high );
  580. return _mm_packus_epi16( bytes1, bytes2);
  581. }
  582. #endif
  583. #elif defined(__SSSE3__)
  584. // horizontally add 4x4 floats
  585. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  586. __m128 res_0 =_mm_hadd_ps(a, b);
  587. __m128 res_1 =_mm_hadd_ps(c, d);
  588. __m128 res =_mm_hadd_ps(res_0, res_1);
  589. res =_mm_hadd_ps(res, res);
  590. res =_mm_hadd_ps(res, res);
  591. return _mm_cvtss_f32(res);
  592. }
  593. #endif // __AVX__ || __AVX2__ || __AVX512F__
  594. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  595. #if __ARM_NEON
  596. #if !defined(__aarch64__)
  597. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  598. return
  599. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  600. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  601. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  602. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  603. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  604. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  605. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  606. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  607. }
  608. inline static int16_t vaddvq_s8(int8x16_t v) {
  609. return
  610. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  611. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  612. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  613. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  614. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  615. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  616. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  617. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  618. }
  619. inline static int32_t vaddvq_s16(int16x8_t v) {
  620. return
  621. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  622. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  623. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  624. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  625. }
  626. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  627. return
  628. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  629. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  630. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  631. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  632. }
  633. inline static int32_t vaddvq_s32(int32x4_t v) {
  634. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  635. }
  636. inline static float vaddvq_f32(float32x4_t v) {
  637. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  638. }
  639. float vminvq_f32(float32x4_t v) {
  640. return
  641. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  642. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  643. }
  644. float vmaxvq_f32(float32x4_t v) {
  645. return
  646. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  647. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  648. }
  649. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  650. int32x4_t res;
  651. res[0] = roundf(vgetq_lane_f32(v, 0));
  652. res[1] = roundf(vgetq_lane_f32(v, 1));
  653. res[2] = roundf(vgetq_lane_f32(v, 2));
  654. res[3] = roundf(vgetq_lane_f32(v, 3));
  655. return res;
  656. }
  657. #endif
  658. #endif
  659. #define QK4_0 32
  660. typedef struct {
  661. float d; // delta
  662. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  663. } block_q4_0;
  664. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  665. #define QK4_1 32
  666. typedef struct {
  667. float d; // delta
  668. float m; // min
  669. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  670. } block_q4_1;
  671. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  672. #define QK5_0 32
  673. typedef struct {
  674. ggml_fp16_t d; // delta
  675. uint8_t qh[4]; // 5-th bit of quants
  676. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  677. } block_q5_0;
  678. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  679. #define QK5_1 32
  680. typedef struct {
  681. ggml_fp16_t d; // delta
  682. ggml_fp16_t m; // min
  683. uint8_t qh[4]; // 5-th bit of quants
  684. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  685. } block_q5_1;
  686. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  687. #define QK8_0 32
  688. typedef struct {
  689. float d; // delta
  690. int8_t qs[QK8_0]; // quants
  691. } block_q8_0;
  692. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  693. #define QK8_1 32
  694. typedef struct {
  695. float d; // delta
  696. float s; // d * sum(qs[i])
  697. int8_t qs[QK8_1]; // quants
  698. } block_q8_1;
  699. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  700. // reference implementation for deterministic creation of model files
  701. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  702. static const int qk = QK4_0;
  703. assert(k % qk == 0);
  704. const int nb = k / qk;
  705. for (int i = 0; i < nb; i++) {
  706. float amax = 0.0f; // absolute max
  707. float max = 0.0f;
  708. for (int j = 0; j < qk; j++) {
  709. const float v = x[i*qk + j];
  710. if (amax < fabsf(v)) {
  711. amax = fabsf(v);
  712. max = v;
  713. }
  714. }
  715. const float d = max / -8;
  716. const float id = d ? 1.0f/d : 0.0f;
  717. y[i].d = d;
  718. for (int j = 0; j < qk/2; ++j) {
  719. const float x0 = x[i*qk + 0 + j]*id;
  720. const float x1 = x[i*qk + qk/2 + j]*id;
  721. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  722. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  723. y[i].qs[j] = xi0;
  724. y[i].qs[j] |= xi1 << 4;
  725. }
  726. }
  727. }
  728. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  729. quantize_row_q4_0_reference(x, y, k);
  730. }
  731. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  732. const int qk = QK4_1;
  733. assert(k % qk == 0);
  734. const int nb = k / qk;
  735. for (int i = 0; i < nb; i++) {
  736. float min = FLT_MAX;
  737. float max = -FLT_MAX;
  738. for (int j = 0; j < qk; j++) {
  739. const float v = x[i*qk + j];
  740. if (v < min) min = v;
  741. if (v > max) max = v;
  742. }
  743. const float d = (max - min) / ((1 << 4) - 1);
  744. const float id = d ? 1.0f/d : 0.0f;
  745. y[i].d = d;
  746. y[i].m = min;
  747. for (int j = 0; j < qk/2; ++j) {
  748. const float x0 = (x[i*qk + 0 + j] - min)*id;
  749. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  750. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  751. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  752. y[i].qs[j] = xi0;
  753. y[i].qs[j] |= xi1 << 4;
  754. }
  755. }
  756. }
  757. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  758. quantize_row_q4_1_reference(x, y, k);
  759. }
  760. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  761. static const int qk = QK5_0;
  762. assert(k % qk == 0);
  763. const int nb = k / qk;
  764. for (int i = 0; i < nb; i++) {
  765. float amax = 0.0f; // absolute max
  766. float max = 0.0f;
  767. for (int j = 0; j < qk; j++) {
  768. const float v = x[i*qk + j];
  769. if (amax < fabsf(v)) {
  770. amax = fabsf(v);
  771. max = v;
  772. }
  773. }
  774. const float d = max / -16;
  775. const float id = d ? 1.0f/d : 0.0f;
  776. y[i].d = GGML_FP32_TO_FP16(d);
  777. uint32_t qh = 0;
  778. for (int j = 0; j < qk/2; ++j) {
  779. const float x0 = x[i*qk + 0 + j]*id;
  780. const float x1 = x[i*qk + qk/2 + j]*id;
  781. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  782. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  783. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  784. // get the 5-th bit and store it in qh at the right position
  785. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  786. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  787. }
  788. memcpy(&y[i].qh, &qh, sizeof(qh));
  789. }
  790. }
  791. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  792. quantize_row_q5_0_reference(x, y, k);
  793. }
  794. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  795. const int qk = QK5_1;
  796. assert(k % qk == 0);
  797. const int nb = k / qk;
  798. for (int i = 0; i < nb; i++) {
  799. float min = FLT_MAX;
  800. float max = -FLT_MAX;
  801. for (int j = 0; j < qk; j++) {
  802. const float v = x[i*qk + j];
  803. if (v < min) min = v;
  804. if (v > max) max = v;
  805. }
  806. const float d = (max - min) / ((1 << 5) - 1);
  807. const float id = d ? 1.0f/d : 0.0f;
  808. y[i].d = GGML_FP32_TO_FP16(d);
  809. y[i].m = GGML_FP32_TO_FP16(min);
  810. uint32_t qh = 0;
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  815. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  816. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  817. // get the 5-th bit and store it in qh at the right position
  818. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  819. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  820. }
  821. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  822. }
  823. }
  824. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  825. quantize_row_q5_1_reference(x, y, k);
  826. }
  827. // reference implementation for deterministic creation of model files
  828. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  829. assert(k % QK8_0 == 0);
  830. const int nb = k / QK8_0;
  831. for (int i = 0; i < nb; i++) {
  832. float amax = 0.0f; // absolute max
  833. for (int j = 0; j < QK8_0; j++) {
  834. const float v = x[i*QK8_0 + j];
  835. amax = MAX(amax, fabsf(v));
  836. }
  837. const float d = amax / ((1 << 7) - 1);
  838. const float id = d ? 1.0f/d : 0.0f;
  839. y[i].d = d;
  840. for (int j = 0; j < QK8_0; ++j) {
  841. const float x0 = x[i*QK8_0 + j]*id;
  842. y[i].qs[j] = roundf(x0);
  843. }
  844. }
  845. }
  846. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  847. assert(QK8_0 == 32);
  848. assert(k % QK8_0 == 0);
  849. const int nb = k / QK8_0;
  850. block_q8_0 * restrict y = vy;
  851. #if defined(__ARM_NEON)
  852. for (int i = 0; i < nb; i++) {
  853. float32x4_t srcv [8];
  854. float32x4_t asrcv[8];
  855. float32x4_t amaxv[8];
  856. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  857. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  858. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  859. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  860. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  861. const float amax = vmaxvq_f32(amaxv[0]);
  862. const float d = amax / ((1 << 7) - 1);
  863. const float id = d ? 1.0f/d : 0.0f;
  864. y[i].d = d;
  865. for (int j = 0; j < 8; j++) {
  866. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  867. const int32x4_t vi = vcvtnq_s32_f32(v);
  868. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  869. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  870. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  871. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  872. }
  873. }
  874. #elif defined(__AVX2__) || defined(__AVX__)
  875. for (int i = 0; i < nb; i++) {
  876. // Load elements into 4 AVX vectors
  877. __m256 v0 = _mm256_loadu_ps( x );
  878. __m256 v1 = _mm256_loadu_ps( x + 8 );
  879. __m256 v2 = _mm256_loadu_ps( x + 16 );
  880. __m256 v3 = _mm256_loadu_ps( x + 24 );
  881. x += 32;
  882. // Compute max(abs(e)) for the block
  883. const __m256 signBit = _mm256_set1_ps( -0.0f );
  884. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  885. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  886. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  887. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  888. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  889. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  890. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  891. const float maxScalar = _mm_cvtss_f32( max4 );
  892. // Quantize these floats
  893. const float d = maxScalar / 127.f;
  894. y[i].d = d;
  895. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  896. const __m256 mul = _mm256_set1_ps( id );
  897. // Apply the multiplier
  898. v0 = _mm256_mul_ps( v0, mul );
  899. v1 = _mm256_mul_ps( v1, mul );
  900. v2 = _mm256_mul_ps( v2, mul );
  901. v3 = _mm256_mul_ps( v3, mul );
  902. // Round to nearest integer
  903. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  904. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  905. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  906. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  907. // Convert floats to integers
  908. __m256i i0 = _mm256_cvtps_epi32( v0 );
  909. __m256i i1 = _mm256_cvtps_epi32( v1 );
  910. __m256i i2 = _mm256_cvtps_epi32( v2 );
  911. __m256i i3 = _mm256_cvtps_epi32( v3 );
  912. #if defined(__AVX2__)
  913. // Convert int32 to int16
  914. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  915. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  916. // Convert int16 to int8
  917. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  918. // We got our precious signed bytes, but the order is now wrong
  919. // These AVX2 pack instructions process 16-byte pieces independently
  920. // The following instruction is fixing the order
  921. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  922. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  923. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  924. #else
  925. // Since we don't have in AVX some necessary functions,
  926. // we split the registers in half and call AVX2 analogs from SSE
  927. __m128i ni0 = _mm256_castsi256_si128( i0 );
  928. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  929. __m128i ni2 = _mm256_castsi256_si128( i1 );
  930. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  931. __m128i ni4 = _mm256_castsi256_si128( i2 );
  932. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  933. __m128i ni6 = _mm256_castsi256_si128( i3 );
  934. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  935. // Convert int32 to int16
  936. ni0 = _mm_packs_epi32( ni0, ni1 );
  937. ni2 = _mm_packs_epi32( ni2, ni3 );
  938. ni4 = _mm_packs_epi32( ni4, ni5 );
  939. ni6 = _mm_packs_epi32( ni6, ni7 );
  940. // Convert int16 to int8
  941. ni0 = _mm_packs_epi16( ni0, ni2 );
  942. ni4 = _mm_packs_epi16( ni4, ni6 );
  943. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  944. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  945. #endif
  946. }
  947. #else
  948. // scalar
  949. quantize_row_q8_0_reference(x, y, k);
  950. #endif
  951. }
  952. // reference implementation for deterministic creation of model files
  953. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  954. assert(QK8_1 == 32);
  955. assert(k % QK8_1 == 0);
  956. const int nb = k / QK8_1;
  957. for (int i = 0; i < nb; i++) {
  958. float amax = 0.0f; // absolute max
  959. for (int j = 0; j < QK8_1; j++) {
  960. const float v = x[i*QK8_1 + j];
  961. amax = MAX(amax, fabsf(v));
  962. }
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = d;
  966. int sum = 0;
  967. for (int j = 0; j < QK8_1/2; ++j) {
  968. const float v0 = x[i*QK8_1 + j]*id;
  969. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  970. y[i].qs[ j] = roundf(v0);
  971. y[i].qs[QK8_1/2 + j] = roundf(v1);
  972. sum += y[i].qs[ j];
  973. sum += y[i].qs[QK8_1/2 + j];
  974. }
  975. y[i].s = d * sum;
  976. }
  977. }
  978. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  979. assert(k % QK8_1 == 0);
  980. const int nb = k / QK8_1;
  981. block_q8_1 * restrict y = vy;
  982. #if defined(__ARM_NEON)
  983. for (int i = 0; i < nb; i++) {
  984. float32x4_t srcv [8];
  985. float32x4_t asrcv[8];
  986. float32x4_t amaxv[8];
  987. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  988. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  989. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  990. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  991. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  992. const float amax = vmaxvq_f32(amaxv[0]);
  993. const float d = amax / ((1 << 7) - 1);
  994. const float id = d ? 1.0f/d : 0.0f;
  995. y[i].d = d;
  996. int32x4_t accv = vdupq_n_s32(0);
  997. for (int j = 0; j < 8; j++) {
  998. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  999. const int32x4_t vi = vcvtnq_s32_f32(v);
  1000. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1001. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1002. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1003. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1004. accv = vaddq_s32(accv, vi);
  1005. }
  1006. y[i].s = d * vaddvq_s32(accv);
  1007. }
  1008. #elif defined(__AVX2__) || defined(__AVX__)
  1009. for (int i = 0; i < nb; i++) {
  1010. // Load elements into 4 AVX vectors
  1011. __m256 v0 = _mm256_loadu_ps( x );
  1012. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1013. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1014. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1015. x += 32;
  1016. // Compute max(abs(e)) for the block
  1017. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1018. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1019. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1020. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1021. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1022. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1023. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1024. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1025. const float maxScalar = _mm_cvtss_f32( max4 );
  1026. // Quantize these floats
  1027. const float d = maxScalar / 127.f;
  1028. y[i].d = d;
  1029. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1030. const __m256 mul = _mm256_set1_ps( id );
  1031. // Apply the multiplier
  1032. v0 = _mm256_mul_ps( v0, mul );
  1033. v1 = _mm256_mul_ps( v1, mul );
  1034. v2 = _mm256_mul_ps( v2, mul );
  1035. v3 = _mm256_mul_ps( v3, mul );
  1036. // Round to nearest integer
  1037. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1038. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1039. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1040. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1041. // Convert floats to integers
  1042. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1043. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1044. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1045. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1046. #if defined(__AVX2__)
  1047. // Compute the sum of the quants and set y[i].s
  1048. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1049. // Convert int32 to int16
  1050. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1051. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1052. // Convert int16 to int8
  1053. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1054. // We got our precious signed bytes, but the order is now wrong
  1055. // These AVX2 pack instructions process 16-byte pieces independently
  1056. // The following instruction is fixing the order
  1057. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1058. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1059. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1060. #else
  1061. // Since we don't have in AVX some necessary functions,
  1062. // we split the registers in half and call AVX2 analogs from SSE
  1063. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1064. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1065. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1066. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1067. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1068. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1069. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1070. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1071. // Compute the sum of the quants and set y[i].s
  1072. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1073. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1074. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1075. // Convert int32 to int16
  1076. ni0 = _mm_packs_epi32( ni0, ni1 );
  1077. ni2 = _mm_packs_epi32( ni2, ni3 );
  1078. ni4 = _mm_packs_epi32( ni4, ni5 );
  1079. ni6 = _mm_packs_epi32( ni6, ni7 );
  1080. // Convert int16 to int8
  1081. ni0 = _mm_packs_epi16( ni0, ni2 );
  1082. ni4 = _mm_packs_epi16( ni4, ni6 );
  1083. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1084. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1085. #endif
  1086. }
  1087. #else
  1088. // scalar
  1089. quantize_row_q8_1_reference(x, y, k);
  1090. #endif
  1091. }
  1092. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1093. static const int qk = QK4_0;
  1094. assert(k % qk == 0);
  1095. const int nb = k / qk;
  1096. for (int i = 0; i < nb; i++) {
  1097. const float d = x[i].d;
  1098. for (int j = 0; j < qk/2; ++j) {
  1099. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1100. const int x1 = (x[i].qs[j] >> 4) - 8;
  1101. y[i*qk + j + 0 ] = x0*d;
  1102. y[i*qk + j + qk/2] = x1*d;
  1103. }
  1104. }
  1105. }
  1106. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1107. static const int qk = QK4_1;
  1108. assert(k % qk == 0);
  1109. const int nb = k / qk;
  1110. for (int i = 0; i < nb; i++) {
  1111. const float d = x[i].d;
  1112. const float m = x[i].m;
  1113. for (int j = 0; j < qk/2; ++j) {
  1114. const int x0 = (x[i].qs[j] & 0x0F);
  1115. const int x1 = (x[i].qs[j] >> 4);
  1116. y[i*qk + j + 0 ] = x0*d + m;
  1117. y[i*qk + j + qk/2] = x1*d + m;
  1118. }
  1119. }
  1120. }
  1121. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1122. static const int qk = QK5_0;
  1123. assert(k % qk == 0);
  1124. const int nb = k / qk;
  1125. for (int i = 0; i < nb; i++) {
  1126. const float d = GGML_FP16_TO_FP32(x[i].d);
  1127. uint32_t qh;
  1128. memcpy(&qh, x[i].qh, sizeof(qh));
  1129. for (int j = 0; j < qk/2; ++j) {
  1130. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1131. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1132. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1133. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1134. y[i*qk + j + 0 ] = x0*d;
  1135. y[i*qk + j + qk/2] = x1*d;
  1136. }
  1137. }
  1138. }
  1139. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1140. static const int qk = QK5_1;
  1141. assert(k % qk == 0);
  1142. const int nb = k / qk;
  1143. for (int i = 0; i < nb; i++) {
  1144. const float d = GGML_FP16_TO_FP32(x[i].d);
  1145. const float m = GGML_FP16_TO_FP32(x[i].m);
  1146. uint32_t qh;
  1147. memcpy(&qh, x[i].qh, sizeof(qh));
  1148. for (int j = 0; j < qk/2; ++j) {
  1149. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1150. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1151. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1152. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1153. y[i*qk + j + 0 ] = x0*d + m;
  1154. y[i*qk + j + qk/2] = x1*d + m;
  1155. }
  1156. }
  1157. }
  1158. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1159. static const int qk = QK8_0;
  1160. assert(k % qk == 0);
  1161. const int nb = k / qk;
  1162. const block_q8_0 * restrict x = vx;
  1163. for (int i = 0; i < nb; i++) {
  1164. const float d = x[i].d;
  1165. for (int j = 0; j < qk; ++j) {
  1166. y[i*qk + j] = x[i].qs[j]*d;
  1167. }
  1168. }
  1169. }
  1170. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1171. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1172. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1173. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1174. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1175. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1176. [GGML_TYPE_Q4_0] = {
  1177. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1178. .quantize_row_q = quantize_row_q4_0,
  1179. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1180. .quantize_row_q_dot = quantize_row_q8_0,
  1181. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1182. .vec_dot_type = GGML_TYPE_Q8_0,
  1183. },
  1184. [GGML_TYPE_Q4_1] = {
  1185. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1186. .quantize_row_q = quantize_row_q4_1,
  1187. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1188. .quantize_row_q_dot = quantize_row_q8_1,
  1189. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1190. .vec_dot_type = GGML_TYPE_Q8_1,
  1191. },
  1192. [GGML_TYPE_Q5_0] = {
  1193. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1194. .quantize_row_q = quantize_row_q5_0,
  1195. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1196. .quantize_row_q_dot = quantize_row_q8_0,
  1197. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1198. .vec_dot_type = GGML_TYPE_Q8_0,
  1199. },
  1200. [GGML_TYPE_Q5_1] = {
  1201. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1202. .quantize_row_q = quantize_row_q5_1,
  1203. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1204. .quantize_row_q_dot = quantize_row_q8_1,
  1205. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1206. .vec_dot_type = GGML_TYPE_Q8_1,
  1207. },
  1208. [GGML_TYPE_Q8_0] = {
  1209. .dequantize_row_q = dequantize_row_q8_0,
  1210. .quantize_row_q = quantize_row_q8_0,
  1211. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1212. .quantize_row_q_dot = quantize_row_q8_0,
  1213. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1214. .vec_dot_type = GGML_TYPE_Q8_0,
  1215. },
  1216. [GGML_TYPE_Q8_1] = {
  1217. .dequantize_row_q = NULL, // TODO
  1218. .quantize_row_q = quantize_row_q8_1,
  1219. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1220. .quantize_row_q_dot = quantize_row_q8_1,
  1221. .vec_dot_q = NULL, // TODO
  1222. .vec_dot_type = GGML_TYPE_Q8_1,
  1223. },
  1224. };
  1225. // For internal test use
  1226. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1227. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1228. return quantize_fns[i];
  1229. }
  1230. //
  1231. // simd mappings
  1232. //
  1233. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1234. // we then implement the fundamental computation operations below using only these macros
  1235. // adding support for new architectures requires to define the corresponding SIMD macros
  1236. //
  1237. // GGML_F32_STEP / GGML_F16_STEP
  1238. // number of elements to process in a single step
  1239. //
  1240. // GGML_F32_EPR / GGML_F16_EPR
  1241. // number of elements to fit in a single register
  1242. //
  1243. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1244. #define GGML_SIMD
  1245. // F32 NEON
  1246. #define GGML_F32_STEP 16
  1247. #define GGML_F32_EPR 4
  1248. #define GGML_F32x4 float32x4_t
  1249. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1250. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1251. #define GGML_F32x4_LOAD vld1q_f32
  1252. #define GGML_F32x4_STORE vst1q_f32
  1253. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1254. #define GGML_F32x4_ADD vaddq_f32
  1255. #define GGML_F32x4_MUL vmulq_f32
  1256. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1257. #define GGML_F32x4_REDUCE(res, x) \
  1258. { \
  1259. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1260. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1261. } \
  1262. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1263. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1264. } \
  1265. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1266. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1267. } \
  1268. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1269. }
  1270. #define GGML_F32_VEC GGML_F32x4
  1271. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1272. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1273. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1274. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1275. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1276. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1277. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1278. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1279. // F16 NEON
  1280. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1281. #define GGML_F16_STEP 32
  1282. #define GGML_F16_EPR 8
  1283. #define GGML_F16x8 float16x8_t
  1284. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1285. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1286. #define GGML_F16x8_LOAD vld1q_f16
  1287. #define GGML_F16x8_STORE vst1q_f16
  1288. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1289. #define GGML_F16x8_ADD vaddq_f16
  1290. #define GGML_F16x8_MUL vmulq_f16
  1291. #define GGML_F16x8_REDUCE(res, x) \
  1292. { \
  1293. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1294. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1295. } \
  1296. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1297. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1298. } \
  1299. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1300. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1301. } \
  1302. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1303. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1304. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1305. }
  1306. #define GGML_F16_VEC GGML_F16x8
  1307. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1308. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1309. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1310. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1311. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1312. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1313. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1314. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1315. #else
  1316. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1317. // and take advantage of the vcvt_ functions to convert to/from FP16
  1318. #define GGML_F16_STEP 16
  1319. #define GGML_F16_EPR 4
  1320. #define GGML_F32Cx4 float32x4_t
  1321. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1322. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1323. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1324. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1325. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1326. #define GGML_F32Cx4_ADD vaddq_f32
  1327. #define GGML_F32Cx4_MUL vmulq_f32
  1328. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1329. #define GGML_F16_VEC GGML_F32Cx4
  1330. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1331. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1332. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1333. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1334. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1335. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1336. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1337. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1338. #endif
  1339. #elif defined(__AVX__)
  1340. #define GGML_SIMD
  1341. // F32 AVX
  1342. #define GGML_F32_STEP 32
  1343. #define GGML_F32_EPR 8
  1344. #define GGML_F32x8 __m256
  1345. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1346. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1347. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1348. #define GGML_F32x8_STORE _mm256_storeu_ps
  1349. #if defined(__FMA__)
  1350. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1351. #else
  1352. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1353. #endif
  1354. #define GGML_F32x8_ADD _mm256_add_ps
  1355. #define GGML_F32x8_MUL _mm256_mul_ps
  1356. #define GGML_F32x8_REDUCE(res, x) \
  1357. { \
  1358. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1359. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1360. } \
  1361. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1362. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1363. } \
  1364. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1365. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1366. } \
  1367. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1368. _mm256_extractf128_ps(x[0], 1)); \
  1369. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1370. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1371. }
  1372. // TODO: is this optimal ?
  1373. #define GGML_F32_VEC GGML_F32x8
  1374. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1375. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1376. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1377. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1378. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1379. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1380. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1381. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1382. // F16 AVX
  1383. #define GGML_F16_STEP 32
  1384. #define GGML_F16_EPR 8
  1385. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1386. #define GGML_F32Cx8 __m256
  1387. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1388. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1389. #if defined(__F16C__)
  1390. // the _mm256_cvt intrinsics require F16C
  1391. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1392. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1393. #else
  1394. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1395. float tmp[8];
  1396. for (int i = 0; i < 8; i++)
  1397. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1398. return _mm256_loadu_ps(tmp);
  1399. }
  1400. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1401. float arr[8];
  1402. _mm256_storeu_ps(arr, y);
  1403. for (int i = 0; i < 8; i++)
  1404. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1405. }
  1406. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1407. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1408. #endif
  1409. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1410. #define GGML_F32Cx8_ADD _mm256_add_ps
  1411. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1412. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1413. #define GGML_F16_VEC GGML_F32Cx8
  1414. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1415. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1416. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1417. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1418. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1419. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1420. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1421. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1422. #elif defined(__POWER9_VECTOR__)
  1423. #define GGML_SIMD
  1424. // F32 POWER9
  1425. #define GGML_F32_STEP 32
  1426. #define GGML_F32_EPR 4
  1427. #define GGML_F32x4 vector float
  1428. #define GGML_F32x4_ZERO 0.0f
  1429. #define GGML_F32x4_SET1 vec_splats
  1430. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1431. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1432. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1433. #define GGML_F32x4_ADD vec_add
  1434. #define GGML_F32x4_MUL vec_mul
  1435. #define GGML_F32x4_REDUCE(res, x) \
  1436. { \
  1437. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1438. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1439. } \
  1440. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1441. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1442. } \
  1443. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1444. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1445. } \
  1446. res = vec_extract(x[0], 0) + \
  1447. vec_extract(x[0], 1) + \
  1448. vec_extract(x[0], 2) + \
  1449. vec_extract(x[0], 3); \
  1450. }
  1451. #define GGML_F32_VEC GGML_F32x4
  1452. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1453. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1454. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1455. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1456. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1457. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1458. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1459. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1460. // F16 POWER9
  1461. #define GGML_F16_STEP GGML_F32_STEP
  1462. #define GGML_F16_EPR GGML_F32_EPR
  1463. #define GGML_F16_VEC GGML_F32x4
  1464. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1465. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1466. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1467. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1468. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1469. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1470. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1471. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1472. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1473. #define GGML_F16_VEC_STORE(p, r, i) \
  1474. if (i & 0x1) \
  1475. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1476. r[i - GGML_ENDIAN_BYTE(0)]), \
  1477. 0, p - GGML_F16_EPR)
  1478. #elif defined(__wasm_simd128__)
  1479. #define GGML_SIMD
  1480. // F32 WASM
  1481. #define GGML_F32_STEP 16
  1482. #define GGML_F32_EPR 4
  1483. #define GGML_F32x4 v128_t
  1484. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1485. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1486. #define GGML_F32x4_LOAD wasm_v128_load
  1487. #define GGML_F32x4_STORE wasm_v128_store
  1488. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1489. #define GGML_F32x4_ADD wasm_f32x4_add
  1490. #define GGML_F32x4_MUL wasm_f32x4_mul
  1491. #define GGML_F32x4_REDUCE(res, x) \
  1492. { \
  1493. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1494. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1495. } \
  1496. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1497. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1498. } \
  1499. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1500. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1501. } \
  1502. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1503. wasm_f32x4_extract_lane(x[0], 1) + \
  1504. wasm_f32x4_extract_lane(x[0], 2) + \
  1505. wasm_f32x4_extract_lane(x[0], 3); \
  1506. }
  1507. #define GGML_F32_VEC GGML_F32x4
  1508. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1509. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1510. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1511. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1512. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1513. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1514. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1515. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1516. // F16 WASM
  1517. #define GGML_F16_STEP 16
  1518. #define GGML_F16_EPR 4
  1519. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1520. float tmp[4];
  1521. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1522. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1523. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1524. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1525. return wasm_v128_load(tmp);
  1526. }
  1527. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1528. float tmp[4];
  1529. wasm_v128_store(tmp, x);
  1530. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1531. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1532. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1533. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1534. }
  1535. #define GGML_F16x4 v128_t
  1536. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1537. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1538. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1539. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1540. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1541. #define GGML_F16x4_ADD wasm_f32x4_add
  1542. #define GGML_F16x4_MUL wasm_f32x4_mul
  1543. #define GGML_F16x4_REDUCE(res, x) \
  1544. { \
  1545. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1546. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1547. } \
  1548. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1549. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1550. } \
  1551. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1552. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1553. } \
  1554. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1555. wasm_f32x4_extract_lane(x[0], 1) + \
  1556. wasm_f32x4_extract_lane(x[0], 2) + \
  1557. wasm_f32x4_extract_lane(x[0], 3); \
  1558. }
  1559. #define GGML_F16_VEC GGML_F16x4
  1560. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1561. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1562. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1563. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1564. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1565. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1566. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1567. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1568. #elif defined(__SSE3__)
  1569. #define GGML_SIMD
  1570. // F32 SSE
  1571. #define GGML_F32_STEP 32
  1572. #define GGML_F32_EPR 4
  1573. #define GGML_F32x4 __m128
  1574. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1575. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1576. #define GGML_F32x4_LOAD _mm_loadu_ps
  1577. #define GGML_F32x4_STORE _mm_storeu_ps
  1578. #if defined(__FMA__)
  1579. // TODO: Does this work?
  1580. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1581. #else
  1582. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1583. #endif
  1584. #define GGML_F32x4_ADD _mm_add_ps
  1585. #define GGML_F32x4_MUL _mm_mul_ps
  1586. #define GGML_F32x4_REDUCE(res, x) \
  1587. { \
  1588. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1589. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1590. } \
  1591. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1592. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1593. } \
  1594. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1595. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1596. } \
  1597. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1598. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1599. }
  1600. // TODO: is this optimal ?
  1601. #define GGML_F32_VEC GGML_F32x4
  1602. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1603. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1604. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1605. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1606. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1607. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1608. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1609. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1610. // F16 SSE
  1611. #define GGML_F16_STEP 32
  1612. #define GGML_F16_EPR 4
  1613. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1614. float tmp[4];
  1615. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1616. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1617. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1618. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1619. return _mm_loadu_ps(tmp);
  1620. }
  1621. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1622. float arr[4];
  1623. _mm_storeu_ps(arr, y);
  1624. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1625. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1626. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1627. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1628. }
  1629. #define GGML_F32Cx4 __m128
  1630. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1631. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1632. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1633. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1634. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1635. #define GGML_F32Cx4_ADD _mm_add_ps
  1636. #define GGML_F32Cx4_MUL _mm_mul_ps
  1637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1638. #define GGML_F16_VEC GGML_F32Cx4
  1639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1647. #endif
  1648. // GGML_F32_ARR / GGML_F16_ARR
  1649. // number of registers to use per step
  1650. #ifdef GGML_SIMD
  1651. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1652. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1653. #endif
  1654. //
  1655. // fundamental operations
  1656. //
  1657. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1658. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1659. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1660. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1661. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1662. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1663. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1664. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1665. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1666. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1667. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1668. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1669. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1670. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1671. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1672. #ifdef GGML_SIMD
  1673. float sumf = 0.0f;
  1674. const int np = (n & ~(GGML_F32_STEP - 1));
  1675. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1676. GGML_F32_VEC ax[GGML_F32_ARR];
  1677. GGML_F32_VEC ay[GGML_F32_ARR];
  1678. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1679. for (int j = 0; j < GGML_F32_ARR; j++) {
  1680. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1681. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1682. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1683. }
  1684. }
  1685. // reduce sum0..sum3 to sum0
  1686. GGML_F32_VEC_REDUCE(sumf, sum);
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. sumf += x[i]*y[i];
  1690. }
  1691. #else
  1692. // scalar
  1693. ggml_float sumf = 0.0;
  1694. for (int i = 0; i < n; ++i) {
  1695. sumf += (ggml_float)(x[i]*y[i]);
  1696. }
  1697. #endif
  1698. *s = sumf;
  1699. }
  1700. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1701. ggml_float sumf = 0.0;
  1702. #if defined(GGML_SIMD)
  1703. const int np = (n & ~(GGML_F16_STEP - 1));
  1704. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1705. GGML_F16_VEC ax[GGML_F16_ARR];
  1706. GGML_F16_VEC ay[GGML_F16_ARR];
  1707. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1708. for (int j = 0; j < GGML_F16_ARR; j++) {
  1709. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1710. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1711. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1712. }
  1713. }
  1714. // reduce sum0..sum3 to sum0
  1715. GGML_F16_VEC_REDUCE(sumf, sum);
  1716. // leftovers
  1717. for (int i = np; i < n; ++i) {
  1718. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1719. }
  1720. #else
  1721. for (int i = 0; i < n; ++i) {
  1722. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1723. }
  1724. #endif
  1725. *s = sumf;
  1726. }
  1727. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1728. const int qk = QK8_0;
  1729. const int nb = n / qk;
  1730. assert(n % qk == 0);
  1731. assert(nb % 2 == 0);
  1732. const block_q4_0 * restrict x = vx;
  1733. const block_q8_0 * restrict y = vy;
  1734. #if defined(__ARM_NEON)
  1735. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1736. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1737. for (int i = 0; i < nb; i += 2) {
  1738. const block_q4_0 * restrict x0 = &x[i + 0];
  1739. const block_q4_0 * restrict x1 = &x[i + 1];
  1740. const block_q8_0 * restrict y0 = &y[i + 0];
  1741. const block_q8_0 * restrict y1 = &y[i + 1];
  1742. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1743. const int8x16_t s8b = vdupq_n_s8(0x8);
  1744. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1745. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1746. // 4-bit -> 8-bit
  1747. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1748. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1749. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1750. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1751. // sub 8
  1752. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1753. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1754. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1755. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1756. // load y
  1757. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1758. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1759. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1760. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1761. #if defined(__ARM_FEATURE_DOTPROD)
  1762. // dot product into int32x4_t
  1763. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1764. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1765. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1766. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1767. #else
  1768. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1769. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1770. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1771. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1772. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1773. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1774. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1775. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1776. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1777. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1778. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1779. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1780. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1781. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1782. #endif
  1783. }
  1784. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1785. #elif defined(__AVX2__)
  1786. // Initialize accumulator with zeros
  1787. __m256 acc = _mm256_setzero_ps();
  1788. // Main loop
  1789. for (int i = 0; i < nb; ++i) {
  1790. /* Compute combined scale for the block */
  1791. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1792. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1793. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1794. const __m256i off = _mm256_set1_epi8( 8 );
  1795. bx = _mm256_sub_epi8( bx, off );
  1796. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1797. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1798. /* Multiply q with scale and accumulate */
  1799. acc = _mm256_fmadd_ps( d, q, acc );
  1800. }
  1801. *s = hsum_float_8(acc);
  1802. #elif defined(__AVX__)
  1803. // Initialize accumulator with zeros
  1804. __m256 acc = _mm256_setzero_ps();
  1805. // Main loop
  1806. for (int i = 0; i < nb; ++i) {
  1807. // Compute combined scale for the block
  1808. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1809. const __m128i lowMask = _mm_set1_epi8(0xF);
  1810. const __m128i off = _mm_set1_epi8(8);
  1811. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1812. __m128i bx = _mm_and_si128(lowMask, tmp);
  1813. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1814. bx = _mm_sub_epi8(bx, off);
  1815. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1816. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1817. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1818. bx = _mm_sub_epi8(bx, off);
  1819. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1820. // Convert int32_t to float
  1821. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1822. // Apply the scale, and accumulate
  1823. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1824. }
  1825. *s = hsum_float_8(acc);
  1826. #elif defined(__SSSE3__)
  1827. // set constants
  1828. const __m128i lowMask = _mm_set1_epi8(0xF);
  1829. const __m128i off = _mm_set1_epi8(8);
  1830. // Initialize accumulator with zeros
  1831. __m128 acc_0 = _mm_setzero_ps();
  1832. __m128 acc_1 = _mm_setzero_ps();
  1833. __m128 acc_2 = _mm_setzero_ps();
  1834. __m128 acc_3 = _mm_setzero_ps();
  1835. // First round without accumulation
  1836. {
  1837. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1838. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1839. // Compute combined scale for the block 0 and 1
  1840. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[0].d ), _mm_set1_ps( y[0].d ) );
  1841. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1842. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1843. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1844. bx_0 = _mm_sub_epi8(bx_0, off);
  1845. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1846. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1847. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1848. bx_1 = _mm_sub_epi8(bx_1, off);
  1849. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1850. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1851. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1852. // Compute combined scale for the block 2 and 3
  1853. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[1].d ), _mm_set1_ps( y[1].d ) );
  1854. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1855. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1856. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1857. bx_2 = _mm_sub_epi8(bx_2, off);
  1858. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1859. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1860. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1861. bx_3 = _mm_sub_epi8(bx_3, off);
  1862. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1863. // Convert int32_t to float
  1864. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1865. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1866. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1867. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1868. // Apply the scale
  1869. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1870. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1871. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1872. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1873. }
  1874. // Main loop
  1875. for (int i = 2; i < nb; i+=2) {
  1876. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1877. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1878. // Compute combined scale for the block 0 and 1
  1879. const __m128 d_0_1 = _mm_mul_ps( _mm_set1_ps( x[i].d ), _mm_set1_ps( y[i].d ) );
  1880. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1881. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1882. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1883. bx_0 = _mm_sub_epi8(bx_0, off);
  1884. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1885. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1886. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1887. bx_1 = _mm_sub_epi8(bx_1, off);
  1888. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1889. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  1890. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  1891. // Compute combined scale for the block 2 and 3
  1892. const __m128 d_2_3 = _mm_mul_ps( _mm_set1_ps( x[i + 1].d ), _mm_set1_ps( y[i + 1].d ) );
  1893. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  1894. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1895. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  1896. bx_2 = _mm_sub_epi8(bx_2, off);
  1897. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1898. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1899. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  1900. bx_3 = _mm_sub_epi8(bx_3, off);
  1901. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1902. // Convert int32_t to float
  1903. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1904. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1905. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1906. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1907. // Apply the scale
  1908. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  1909. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  1910. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  1911. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  1912. // Acummulate
  1913. acc_0 = _mm_add_ps(p0_d, acc_0);
  1914. acc_1 = _mm_add_ps(p1_d, acc_1);
  1915. acc_2 = _mm_add_ps(p2_d, acc_2);
  1916. acc_3 = _mm_add_ps(p3_d, acc_3);
  1917. }
  1918. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  1919. #else
  1920. // scalar
  1921. float sumf = 0.0;
  1922. for (int i = 0; i < nb; i++) {
  1923. int sumi = 0;
  1924. for (int j = 0; j < qk/2; ++j) {
  1925. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  1926. const int v1 = (x[i].qs[j] >> 4) - 8;
  1927. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  1928. }
  1929. sumf += (x[i].d*y[i].d)*sumi;
  1930. }
  1931. *s = sumf;
  1932. #endif
  1933. }
  1934. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1935. const int qk = QK8_1;
  1936. const int nb = n / qk;
  1937. assert(n % qk == 0);
  1938. assert(nb % 2 == 0);
  1939. const block_q4_1 * restrict x = vx;
  1940. const block_q8_1 * restrict y = vy;
  1941. // TODO: add WASM SIMD
  1942. #if defined(__ARM_NEON)
  1943. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1944. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1945. float summs = 0;
  1946. for (int i = 0; i < nb; i += 2) {
  1947. const block_q4_1 * restrict x0 = &x[i + 0];
  1948. const block_q4_1 * restrict x1 = &x[i + 1];
  1949. const block_q8_1 * restrict y0 = &y[i + 0];
  1950. const block_q8_1 * restrict y1 = &y[i + 1];
  1951. summs += x0->m * y0->s + x1->m * y1->s;
  1952. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1953. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1954. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1955. // 4-bit -> 8-bit
  1956. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1957. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1958. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1959. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1960. // load y
  1961. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1962. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1963. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1964. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1965. #if defined(__ARM_FEATURE_DOTPROD)
  1966. // dot product into int32x4_t
  1967. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  1968. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  1969. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  1970. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  1971. #else
  1972. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  1973. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  1974. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  1975. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  1976. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  1977. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  1978. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  1979. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  1980. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1981. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1982. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1983. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1984. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  1985. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  1986. #endif
  1987. }
  1988. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  1989. #elif defined(__AVX2__) || defined(__AVX__)
  1990. // Initialize accumulator with zeros
  1991. __m256 acc = _mm256_setzero_ps();
  1992. float summs = 0;
  1993. // Main loop
  1994. for (int i = 0; i < nb; ++i) {
  1995. const float * d0 = &x[i].d;
  1996. const float * d1 = &y[i].d;
  1997. summs += x[i].m * y[i].s;
  1998. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1999. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2000. // Compute combined scales
  2001. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2002. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2003. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2004. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2005. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2006. // Accumulate d0*d1*x*y
  2007. #if defined(__AVX2__)
  2008. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2009. #else
  2010. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2011. #endif
  2012. }
  2013. *s = hsum_float_8(acc) + summs;
  2014. #else
  2015. // scalar
  2016. float sumf = 0.0;
  2017. for (int i = 0; i < nb; i++) {
  2018. int sumi = 0;
  2019. for (int j = 0; j < qk/2; ++j) {
  2020. const int v0 = (x[i].qs[j] & 0x0F);
  2021. const int v1 = (x[i].qs[j] >> 4);
  2022. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2023. }
  2024. sumf += (x[i].d*y[i].d)*sumi + x[i].m*y[i].s;
  2025. }
  2026. *s = sumf;
  2027. #endif
  2028. }
  2029. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2030. const int qk = QK8_0;
  2031. const int nb = n / qk;
  2032. assert(n % qk == 0);
  2033. assert(nb % 2 == 0);
  2034. assert(qk == QK5_0);
  2035. const block_q5_0 * restrict x = vx;
  2036. const block_q8_0 * restrict y = vy;
  2037. #if defined(__ARM_NEON)
  2038. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2039. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2040. uint32_t qh0;
  2041. uint32_t qh1;
  2042. uint64_t tmp0[4];
  2043. uint64_t tmp1[4];
  2044. for (int i = 0; i < nb; i += 2) {
  2045. const block_q5_0 * restrict x0 = &x[i];
  2046. const block_q5_0 * restrict x1 = &x[i + 1];
  2047. const block_q8_0 * restrict y0 = &y[i];
  2048. const block_q8_0 * restrict y1 = &y[i + 1];
  2049. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2050. // extract the 5th bit via lookup table ((!b) << 4)
  2051. memcpy(&qh0, x0->qh, sizeof(qh0));
  2052. memcpy(&qh1, x1->qh, sizeof(qh1));
  2053. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2054. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2055. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2056. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2057. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2058. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2059. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2060. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2061. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2062. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2063. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2064. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2065. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2066. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2067. // 4-bit -> 8-bit
  2068. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2069. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2070. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2071. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2072. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2073. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2074. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2075. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2076. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2077. // load y
  2078. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2079. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2080. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2081. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2082. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2083. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2084. #if defined(__ARM_FEATURE_DOTPROD)
  2085. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2086. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2087. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2088. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2089. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2090. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2091. #else
  2092. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2093. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2094. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2095. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2096. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2097. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2098. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2099. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2100. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2101. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2102. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2103. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2104. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2105. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2106. #endif
  2107. }
  2108. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2109. #elif defined(__wasm_simd128__)
  2110. v128_t sumv = wasm_f32x4_splat(0.0f);
  2111. uint32_t qh;
  2112. uint64_t tmp[4];
  2113. // TODO: check if unrolling this is better
  2114. for (int i = 0; i < nb; ++i) {
  2115. const block_q5_0 * restrict x0 = &x[i];
  2116. const block_q8_0 * restrict y0 = &y[i];
  2117. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2118. const v128_t s16b = wasm_i8x16_splat(0x10);
  2119. // extract the 5th bit
  2120. memcpy(&qh, x0->qh, sizeof(qh));
  2121. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2122. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2123. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2124. tmp[3] = table_b2b_1[(qh >> 24) ];
  2125. const v128_t qhl = wasm_v128_load(tmp + 0);
  2126. const v128_t qhh = wasm_v128_load(tmp + 2);
  2127. const v128_t v0 = wasm_v128_load(x0->qs);
  2128. // 4-bit -> 8-bit
  2129. const v128_t v0l = wasm_v128_and (v0, m4b);
  2130. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2131. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2132. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2133. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2134. // load y
  2135. const v128_t v1l = wasm_v128_load(y0->qs);
  2136. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2137. // int8x16 -> int16x8
  2138. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2139. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2140. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2141. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2142. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2143. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2144. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2145. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2146. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2147. // dot product
  2148. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2149. wasm_i32x4_add(
  2150. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2151. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2152. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2153. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2154. }
  2155. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2156. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2157. #elif defined(__AVX2__)
  2158. // Initialize accumulator with zeros
  2159. __m256 acc = _mm256_setzero_ps();
  2160. // Main loop
  2161. for (int i = 0; i < nb; i++) {
  2162. /* Compute combined scale for the block */
  2163. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2164. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2165. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2166. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2167. bx = _mm256_or_si256(bx, bxhi);
  2168. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2169. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2170. /* Multiply q with scale and accumulate */
  2171. acc = _mm256_fmadd_ps(d, q, acc);
  2172. }
  2173. *s = hsum_float_8(acc);
  2174. #elif defined(__AVX__)
  2175. // Initialize accumulator with zeros
  2176. __m256 acc = _mm256_setzero_ps();
  2177. __m128i mask = _mm_set1_epi8((char)0xF0);
  2178. // Main loop
  2179. for (int i = 0; i < nb; i++) {
  2180. /* Compute combined scale for the block */
  2181. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2182. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2183. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2184. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2185. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2186. bxhil = _mm_andnot_si128(bxhil, mask);
  2187. bxhih = _mm_andnot_si128(bxhih, mask);
  2188. __m128i bxl = _mm256_castsi256_si128(bx);
  2189. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2190. bxl = _mm_or_si128(bxl, bxhil);
  2191. bxh = _mm_or_si128(bxh, bxhih);
  2192. bx = _mm256_set_m128i(bxh, bxl);
  2193. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2194. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2195. /* Multiply q with scale and accumulate */
  2196. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2197. }
  2198. *s = hsum_float_8(acc);
  2199. #else
  2200. // scalar
  2201. float sumf = 0.0;
  2202. for (int i = 0; i < nb; i++) {
  2203. uint32_t qh;
  2204. memcpy(&qh, x[i].qh, sizeof(qh));
  2205. int sumi = 0;
  2206. for (int j = 0; j < qk/2; ++j) {
  2207. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2208. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2209. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2210. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2211. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2212. }
  2213. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi;
  2214. }
  2215. *s = sumf;
  2216. #endif
  2217. }
  2218. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2219. const int qk = QK8_1;
  2220. const int nb = n / qk;
  2221. assert(n % qk == 0);
  2222. assert(nb % 2 == 0);
  2223. assert(qk == QK5_1);
  2224. const block_q5_1 * restrict x = vx;
  2225. const block_q8_1 * restrict y = vy;
  2226. #if defined(__ARM_NEON)
  2227. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2228. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2229. float summs0 = 0.0f;
  2230. float summs1 = 0.0f;
  2231. uint32_t qh0;
  2232. uint32_t qh1;
  2233. uint64_t tmp0[4];
  2234. uint64_t tmp1[4];
  2235. for (int i = 0; i < nb; i += 2) {
  2236. const block_q5_1 * restrict x0 = &x[i];
  2237. const block_q5_1 * restrict x1 = &x[i + 1];
  2238. const block_q8_1 * restrict y0 = &y[i];
  2239. const block_q8_1 * restrict y1 = &y[i + 1];
  2240. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2241. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2242. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2243. // extract the 5th bit via lookup table ((b) << 4)
  2244. memcpy(&qh0, x0->qh, sizeof(qh0));
  2245. memcpy(&qh1, x1->qh, sizeof(qh1));
  2246. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2247. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2248. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2249. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2250. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2251. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2252. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2253. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2254. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2255. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2256. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2257. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2258. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2259. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2260. // 4-bit -> 8-bit
  2261. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2262. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2263. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2264. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2265. // add high bit
  2266. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2267. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2268. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2269. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2270. // load y
  2271. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2272. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2273. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2274. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2275. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2276. const float x1d = GGML_FP16_TO_FP32(x1->d);
  2277. #if defined(__ARM_FEATURE_DOTPROD)
  2278. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2279. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2280. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), x0d*y0->d);
  2281. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2282. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2283. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), x1d*y1->d);
  2284. #else
  2285. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2286. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2287. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2288. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2289. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2290. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2291. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2292. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2293. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2294. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2295. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2296. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2297. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2298. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1d*y1->d);
  2299. #endif
  2300. }
  2301. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2302. #elif defined(__wasm_simd128__)
  2303. v128_t sumv = wasm_f32x4_splat(0.0f);
  2304. float summs = 0.0f;
  2305. uint32_t qh;
  2306. uint64_t tmp[4];
  2307. // TODO: check if unrolling this is better
  2308. for (int i = 0; i < nb; ++i) {
  2309. const block_q5_1 * restrict x0 = &x[i];
  2310. const block_q8_1 * restrict y0 = &y[i];
  2311. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2312. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2313. // extract the 5th bit
  2314. memcpy(&qh, x0->qh, sizeof(qh));
  2315. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2316. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2317. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2318. tmp[3] = table_b2b_0[(qh >> 24) ];
  2319. const v128_t qhl = wasm_v128_load(tmp + 0);
  2320. const v128_t qhh = wasm_v128_load(tmp + 2);
  2321. const v128_t v0 = wasm_v128_load(x0->qs);
  2322. // 4-bit -> 8-bit
  2323. const v128_t v0l = wasm_v128_and (v0, m4b);
  2324. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2325. static bool x = true;
  2326. // add high bit
  2327. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2328. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2329. // load y
  2330. const v128_t v1l = wasm_v128_load(y0->qs);
  2331. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2332. // int8x16 -> int16x8
  2333. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2334. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2335. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2336. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2337. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2338. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2339. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2340. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2341. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2342. // dot product
  2343. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2344. wasm_i32x4_add(
  2345. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2346. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2347. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2348. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2349. }
  2350. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2351. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2352. #elif defined(__AVX2__)
  2353. // Initialize accumulator with zeros
  2354. __m256 acc = _mm256_setzero_ps();
  2355. float summs = 0.0f;
  2356. // Main loop
  2357. for (int i = 0; i < nb; i++) {
  2358. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2359. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2360. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2361. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2362. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2363. bx = _mm256_or_si256(bx, bxhi);
  2364. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2365. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2366. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2367. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2368. }
  2369. *s = hsum_float_8(acc) + summs;
  2370. #elif defined(__AVX__)
  2371. // Initialize accumulator with zeros
  2372. __m256 acc = _mm256_setzero_ps();
  2373. __m128i mask = _mm_set1_epi8(0x10);
  2374. float summs = 0.0f;
  2375. // Main loop
  2376. for (int i = 0; i < nb; i++) {
  2377. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2378. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2379. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2380. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2381. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2382. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2383. bxhil = _mm_and_si128(bxhil, mask);
  2384. bxhih = _mm_and_si128(bxhih, mask);
  2385. __m128i bxl = _mm256_castsi256_si128(bx);
  2386. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2387. bxl = _mm_or_si128(bxl, bxhil);
  2388. bxh = _mm_or_si128(bxh, bxhih);
  2389. bx = _mm256_set_m128i(bxh, bxl);
  2390. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2391. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2392. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2393. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2394. }
  2395. *s = hsum_float_8(acc) + summs;
  2396. #else
  2397. // scalar
  2398. float sumf = 0.0;
  2399. for (int i = 0; i < nb; i++) {
  2400. uint32_t qh;
  2401. memcpy(&qh, x[i].qh, sizeof(qh));
  2402. int sumi = 0;
  2403. for (int j = 0; j < qk/2; ++j) {
  2404. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2405. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2406. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2407. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2408. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2409. }
  2410. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2411. }
  2412. *s = sumf;
  2413. #endif
  2414. }
  2415. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2416. const int qk = QK8_0;
  2417. const int nb = n / qk;
  2418. assert(n % qk == 0);
  2419. assert(nb % 2 == 0);
  2420. const block_q8_0 * restrict x = vx;
  2421. const block_q8_0 * restrict y = vy;
  2422. #if defined(__ARM_NEON)
  2423. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2424. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2425. for (int i = 0; i < nb; i += 2) {
  2426. const block_q8_0 * restrict x0 = &x[i + 0];
  2427. const block_q8_0 * restrict x1 = &x[i + 1];
  2428. const block_q8_0 * restrict y0 = &y[i + 0];
  2429. const block_q8_0 * restrict y1 = &y[i + 1];
  2430. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2431. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2432. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2433. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2434. // load y
  2435. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2436. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2437. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2438. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2439. #if defined(__ARM_FEATURE_DOTPROD)
  2440. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2441. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2442. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2443. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2444. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2445. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2446. #else
  2447. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2448. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2449. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2450. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2451. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2452. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2453. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2454. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2455. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2456. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2457. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2458. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2459. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2460. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2461. #endif
  2462. }
  2463. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2464. #elif defined(__AVX2__) || defined(__AVX__)
  2465. // Initialize accumulator with zeros
  2466. __m256 acc = _mm256_setzero_ps();
  2467. // Main loop
  2468. for (int i = 0; i < nb; ++i) {
  2469. // Compute combined scale for the block
  2470. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2471. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2472. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2473. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2474. // Multiply q with scale and accumulate
  2475. #if defined(__AVX2__)
  2476. acc = _mm256_fmadd_ps( d, q, acc );
  2477. #else
  2478. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2479. #endif
  2480. }
  2481. *s = hsum_float_8(acc);
  2482. #else
  2483. // scalar
  2484. float sumf = 0.0;
  2485. for (int i = 0; i < nb; i++) {
  2486. int sumi = 0;
  2487. for (int j = 0; j < qk; j++) {
  2488. sumi += x[i].qs[j]*y[i].qs[j];
  2489. }
  2490. sumf += (x[i].d*y[i].d)*sumi;
  2491. }
  2492. *s = sumf;
  2493. #endif
  2494. }
  2495. // compute GGML_VEC_DOT_UNROLL dot products at once
  2496. // xs - x row stride in bytes
  2497. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2498. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2499. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2500. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2501. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2502. }
  2503. #if defined(GGML_SIMD)
  2504. const int np = (n & ~(GGML_F16_STEP - 1));
  2505. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2506. GGML_F16_VEC ax[GGML_F16_ARR];
  2507. GGML_F16_VEC ay[GGML_F16_ARR];
  2508. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2509. for (int j = 0; j < GGML_F16_ARR; j++) {
  2510. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2511. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2512. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2513. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2514. }
  2515. }
  2516. }
  2517. // reduce sum0..sum3 to sum0
  2518. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2519. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2520. }
  2521. // leftovers
  2522. for (int i = np; i < n; ++i) {
  2523. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2524. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2525. }
  2526. }
  2527. #else
  2528. for (int i = 0; i < n; ++i) {
  2529. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2530. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2531. }
  2532. }
  2533. #endif
  2534. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2535. s[i] = sumf[i];
  2536. }
  2537. }
  2538. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2539. #if defined(GGML_SIMD)
  2540. const int np = (n & ~(GGML_F32_STEP - 1));
  2541. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2542. GGML_F32_VEC ax[GGML_F32_ARR];
  2543. GGML_F32_VEC ay[GGML_F32_ARR];
  2544. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2545. for (int j = 0; j < GGML_F32_ARR; j++) {
  2546. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2547. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2548. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2549. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2550. }
  2551. }
  2552. // leftovers
  2553. for (int i = np; i < n; ++i) {
  2554. y[i] += x[i]*v;
  2555. }
  2556. #else
  2557. // scalar
  2558. for (int i = 0; i < n; ++i) {
  2559. y[i] += x[i]*v;
  2560. }
  2561. #endif
  2562. }
  2563. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2564. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2565. #if defined(GGML_SIMD)
  2566. const int np = (n & ~(GGML_F32_STEP - 1));
  2567. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2568. GGML_F32_VEC ay[GGML_F32_ARR];
  2569. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2570. for (int j = 0; j < GGML_F32_ARR; j++) {
  2571. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2572. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2573. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2574. }
  2575. }
  2576. // leftovers
  2577. for (int i = np; i < n; ++i) {
  2578. y[i] *= v;
  2579. }
  2580. #else
  2581. // scalar
  2582. for (int i = 0; i < n; ++i) {
  2583. y[i] *= v;
  2584. }
  2585. #endif
  2586. }
  2587. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2588. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2589. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2590. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2591. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2592. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2593. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2594. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2595. static const float GELU_COEF_A = 0.044715f;
  2596. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2597. inline static float ggml_gelu_f32(float x) {
  2598. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2599. }
  2600. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2601. const uint16_t * i16 = (const uint16_t *) x;
  2602. for (int i = 0; i < n; ++i) {
  2603. y[i] = table_gelu_f16[i16[i]];
  2604. }
  2605. }
  2606. #ifdef GGML_GELU_FP16
  2607. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2608. uint16_t t;
  2609. for (int i = 0; i < n; ++i) {
  2610. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2611. memcpy(&t, &fp16, sizeof(uint16_t));
  2612. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2613. }
  2614. }
  2615. #else
  2616. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2617. for (int i = 0; i < n; ++i) {
  2618. y[i] = ggml_gelu_f32(x[i]);
  2619. }
  2620. }
  2621. #endif
  2622. // Sigmoid Linear Unit (SiLU) function
  2623. inline static float ggml_silu_f32(float x) {
  2624. return x/(1.0f + expf(-x));
  2625. }
  2626. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2627. // const uint16_t * i16 = (const uint16_t *) x;
  2628. // for (int i = 0; i < n; ++i) {
  2629. // y[i] = table_silu_f16[i16[i]];
  2630. // }
  2631. //}
  2632. #ifdef GGML_SILU_FP16
  2633. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2634. uint16_t t;
  2635. for (int i = 0; i < n; ++i) {
  2636. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2637. memcpy(&t, &fp16, sizeof(uint16_t));
  2638. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2639. }
  2640. }
  2641. #else
  2642. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2643. for (int i = 0; i < n; ++i) {
  2644. y[i] = ggml_silu_f32(x[i]);
  2645. }
  2646. }
  2647. #endif
  2648. inline static float ggml_silu_backward_f32(float x, float dy) {
  2649. const float s = 1.0f/(1.0f + expf(-x));
  2650. return dy*s*(1.0f + x*(1.0f - s));
  2651. }
  2652. #ifdef GGML_SILU_FP16
  2653. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2654. for (int i = 0; i < n; ++i) {
  2655. // we did not use x[i] to compute forward silu but its f16 equivalent
  2656. // take derivative at f16 of x[i]:
  2657. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2658. float usedx = GGML_FP16_TO_FP32(fp16);
  2659. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2660. }
  2661. }
  2662. #else
  2663. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2664. for (int i = 0; i < n; ++i) {
  2665. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2666. }
  2667. }
  2668. #endif
  2669. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2670. #ifndef GGML_USE_ACCELERATE
  2671. ggml_float sum = 0.0;
  2672. for (int i = 0; i < n; ++i) {
  2673. sum += (ggml_float)x[i];
  2674. }
  2675. *s = sum;
  2676. #else
  2677. vDSP_sve(x, 1, s, n);
  2678. #endif
  2679. }
  2680. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2681. ggml_float sum = 0.0;
  2682. for (int i = 0; i < n; ++i) {
  2683. sum += (ggml_float)x[i];
  2684. }
  2685. *s = sum;
  2686. }
  2687. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2688. #ifndef GGML_USE_ACCELERATE
  2689. float max = -INFINITY;
  2690. for (int i = 0; i < n; ++i) {
  2691. max = MAX(max, x[i]);
  2692. }
  2693. *s = max;
  2694. #else
  2695. vDSP_maxv(x, 1, s, n);
  2696. #endif
  2697. }
  2698. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2699. ggml_vec_norm_f32(n, s, x);
  2700. *s = 1.f/(*s);
  2701. }
  2702. //
  2703. // logging
  2704. //
  2705. #if (GGML_DEBUG >= 1)
  2706. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2707. #else
  2708. #define GGML_PRINT_DEBUG(...)
  2709. #endif
  2710. #if (GGML_DEBUG >= 5)
  2711. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2712. #else
  2713. #define GGML_PRINT_DEBUG_5(...)
  2714. #endif
  2715. #if (GGML_DEBUG >= 10)
  2716. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2717. #else
  2718. #define GGML_PRINT_DEBUG_10(...)
  2719. #endif
  2720. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2721. //
  2722. // data types
  2723. //
  2724. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2725. [GGML_TYPE_F32] = 1,
  2726. [GGML_TYPE_F16] = 1,
  2727. [GGML_TYPE_Q4_0] = QK4_0,
  2728. [GGML_TYPE_Q4_1] = QK4_1,
  2729. [GGML_TYPE_Q5_0] = QK5_0,
  2730. [GGML_TYPE_Q5_1] = QK5_1,
  2731. [GGML_TYPE_Q8_0] = QK8_0,
  2732. [GGML_TYPE_Q8_1] = QK8_1,
  2733. [GGML_TYPE_I8] = 1,
  2734. [GGML_TYPE_I16] = 1,
  2735. [GGML_TYPE_I32] = 1,
  2736. };
  2737. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  2738. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2739. [GGML_TYPE_F32] = sizeof(float),
  2740. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2741. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2742. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2743. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2744. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2745. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2746. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2747. [GGML_TYPE_I8] = sizeof(int8_t),
  2748. [GGML_TYPE_I16] = sizeof(int16_t),
  2749. [GGML_TYPE_I32] = sizeof(int32_t),
  2750. };
  2751. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  2752. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2753. [GGML_TYPE_F32] = "f32",
  2754. [GGML_TYPE_F16] = "f16",
  2755. [GGML_TYPE_Q4_0] = "q4_0",
  2756. [GGML_TYPE_Q4_1] = "q4_1",
  2757. [GGML_TYPE_Q5_0] = "q5_0",
  2758. [GGML_TYPE_Q5_1] = "q5_1",
  2759. [GGML_TYPE_Q8_0] = "q8_0",
  2760. [GGML_TYPE_Q8_1] = "q8_1",
  2761. [GGML_TYPE_I8] = "i8",
  2762. [GGML_TYPE_I16] = "i16",
  2763. [GGML_TYPE_I32] = "i32",
  2764. };
  2765. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  2766. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2767. [GGML_TYPE_F32] = false,
  2768. [GGML_TYPE_F16] = false,
  2769. [GGML_TYPE_Q4_0] = true,
  2770. [GGML_TYPE_Q4_1] = true,
  2771. [GGML_TYPE_Q5_0] = true,
  2772. [GGML_TYPE_Q5_1] = true,
  2773. [GGML_TYPE_Q8_0] = true,
  2774. [GGML_TYPE_Q8_1] = true,
  2775. [GGML_TYPE_I8] = false,
  2776. [GGML_TYPE_I16] = false,
  2777. [GGML_TYPE_I32] = false,
  2778. };
  2779. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  2780. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2781. "NONE",
  2782. "DUP",
  2783. "ADD",
  2784. "ADD1",
  2785. "ACC",
  2786. "SUB",
  2787. "MUL",
  2788. "DIV",
  2789. "SQR",
  2790. "SQRT",
  2791. "LOG",
  2792. "SUM",
  2793. "SUM_ROWS",
  2794. "MEAN",
  2795. "REPEAT",
  2796. "ABS",
  2797. "SGN",
  2798. "NEG",
  2799. "STEP",
  2800. "RELU",
  2801. "GELU",
  2802. "SILU",
  2803. "SILU_BACK",
  2804. "NORM",
  2805. "RMS_NORM",
  2806. "RMS_NORM_BACK",
  2807. "MUL_MAT",
  2808. "SCALE",
  2809. "SET",
  2810. "CPY",
  2811. "CONT",
  2812. "RESHAPE",
  2813. "VIEW",
  2814. "PERMUTE",
  2815. "TRANSPOSE",
  2816. "GET_ROWS",
  2817. "GET_ROWS_BACK",
  2818. "DIAG",
  2819. "DIAG_MASK_INF",
  2820. "DIAG_MASK_ZERO",
  2821. "SOFT_MAX",
  2822. "ROPE",
  2823. "ROPE_BACK",
  2824. "ALIBI",
  2825. "CONV_1D_1S",
  2826. "CONV_1D_2S",
  2827. "FLASH_ATTN",
  2828. "FLASH_FF",
  2829. "MAP_UNARY",
  2830. "MAP_BINARY",
  2831. };
  2832. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2833. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2834. "none",
  2835. "x",
  2836. "x+y",
  2837. "x+y",
  2838. "view(x,nb,offset)+=y->x",
  2839. "x-y",
  2840. "x*y",
  2841. "x/y",
  2842. "x^2",
  2843. "√x",
  2844. "log(x)",
  2845. "Σx",
  2846. "Σx_k",
  2847. "Σx/n",
  2848. "repeat(x)",
  2849. "abs(x)",
  2850. "sgn(x)",
  2851. "-x",
  2852. "step(x)",
  2853. "relu(x)",
  2854. "gelu(x)",
  2855. "silu(x)",
  2856. "silu_back(x)",
  2857. "norm(x)",
  2858. "rms_norm(x)",
  2859. "rms_norm_back(x)",
  2860. "X*Y",
  2861. "x*v",
  2862. "y-\\>view(x)",
  2863. "x-\\>y",
  2864. "cont(x)",
  2865. "reshape(x)",
  2866. "view(x)",
  2867. "permute(x)",
  2868. "transpose(x)",
  2869. "get_rows(x)",
  2870. "get_rows_back(x)",
  2871. "diag(x)",
  2872. "diag_mask_inf(x)",
  2873. "diag_mask_zero(x)",
  2874. "soft_max(x)",
  2875. "rope(x)",
  2876. "rope_back(x)",
  2877. "alibi(x)",
  2878. "conv_1d_1s(x)",
  2879. "conv_1d_2s(x)",
  2880. "flash_attn(x)",
  2881. "flash_ff(x)",
  2882. "f(x)",
  2883. "f(x,y)",
  2884. };
  2885. static_assert(GGML_OP_COUNT == 50, "GGML_OP_COUNT != 50");
  2886. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2887. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2888. //
  2889. // ggml context
  2890. //
  2891. struct ggml_context {
  2892. size_t mem_size;
  2893. void * mem_buffer;
  2894. bool mem_buffer_owned;
  2895. bool no_alloc;
  2896. int n_objects;
  2897. struct ggml_object * objects_begin;
  2898. struct ggml_object * objects_end;
  2899. struct ggml_scratch scratch;
  2900. struct ggml_scratch scratch_save;
  2901. };
  2902. struct ggml_context_container {
  2903. bool used;
  2904. struct ggml_context context;
  2905. };
  2906. //
  2907. // compute types
  2908. //
  2909. enum ggml_task_type {
  2910. GGML_TASK_INIT = 0,
  2911. GGML_TASK_COMPUTE,
  2912. GGML_TASK_FINALIZE,
  2913. };
  2914. struct ggml_compute_params {
  2915. enum ggml_task_type type;
  2916. int ith, nth;
  2917. // work buffer for all threads
  2918. size_t wsize;
  2919. void * wdata;
  2920. };
  2921. //
  2922. // ggml state
  2923. //
  2924. struct ggml_state {
  2925. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2926. };
  2927. // global state
  2928. static struct ggml_state g_state;
  2929. static atomic_int g_state_barrier = 0;
  2930. // barrier via spin lock
  2931. inline static void ggml_critical_section_start(void) {
  2932. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2933. while (processing > 0) {
  2934. // wait for other threads to finish
  2935. atomic_fetch_sub(&g_state_barrier, 1);
  2936. sched_yield(); // TODO: reconsider this
  2937. processing = atomic_fetch_add(&g_state_barrier, 1);
  2938. }
  2939. }
  2940. // TODO: make this somehow automatically executed
  2941. // some sort of "sentry" mechanism
  2942. inline static void ggml_critical_section_end(void) {
  2943. atomic_fetch_sub(&g_state_barrier, 1);
  2944. }
  2945. ////////////////////////////////////////////////////////////////////////////////
  2946. void ggml_print_object(const struct ggml_object * obj) {
  2947. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2948. obj->offs, obj->size, (const void *) obj->next);
  2949. }
  2950. void ggml_print_objects(const struct ggml_context * ctx) {
  2951. struct ggml_object * obj = ctx->objects_begin;
  2952. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2953. while (obj != NULL) {
  2954. ggml_print_object(obj);
  2955. obj = obj->next;
  2956. }
  2957. GGML_PRINT("%s: --- end ---\n", __func__);
  2958. }
  2959. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2960. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2961. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2962. }
  2963. int ggml_nrows(const struct ggml_tensor * tensor) {
  2964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2965. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2966. }
  2967. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2969. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2970. }
  2971. int ggml_blck_size(enum ggml_type type) {
  2972. return GGML_BLCK_SIZE[type];
  2973. }
  2974. size_t ggml_type_size(enum ggml_type type) {
  2975. return GGML_TYPE_SIZE[type];
  2976. }
  2977. float ggml_type_sizef(enum ggml_type type) {
  2978. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2979. }
  2980. const char * ggml_type_name(enum ggml_type type) {
  2981. return GGML_TYPE_NAME[type];
  2982. }
  2983. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2984. return GGML_TYPE_SIZE[tensor->type];
  2985. }
  2986. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2987. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2988. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2989. }
  2990. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2991. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2992. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2993. }
  2994. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2995. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2996. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2997. }
  2998. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2999. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3000. return
  3001. (t0->ne[0] == t1->ne[0]) &&
  3002. (t0->ne[2] == t1->ne[2]) &&
  3003. (t0->ne[3] == t1->ne[3]);
  3004. }
  3005. bool ggml_is_quantized(enum ggml_type type) {
  3006. return GGML_IS_QUANTIZED[type];
  3007. }
  3008. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3009. enum ggml_type wtype = GGML_TYPE_COUNT;
  3010. switch (ftype) {
  3011. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3012. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3013. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3014. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3015. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3016. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3017. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3018. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3019. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3020. }
  3021. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3022. return wtype;
  3023. }
  3024. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3025. return tensor->nb[0] > tensor->nb[1];
  3026. }
  3027. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3028. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3029. return
  3030. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3031. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3032. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3033. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3034. }
  3035. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3036. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3037. return
  3038. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3039. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3040. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3041. }
  3042. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3043. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3044. return
  3045. (t0->ne[0] == t1->ne[0] ) &&
  3046. (t0->ne[1] == t1->ne[1] ) &&
  3047. (t0->ne[2] == t1->ne[2] ) &&
  3048. (t0->ne[3] == t1->ne[3] );
  3049. }
  3050. // check if t1 can be represented as a repeatition of t0
  3051. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3052. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3053. return
  3054. (t1->ne[0]%t0->ne[0] == 0) &&
  3055. (t1->ne[1]%t0->ne[1] == 0) &&
  3056. (t1->ne[2]%t0->ne[2] == 0) &&
  3057. (t1->ne[3]%t0->ne[3] == 0);
  3058. }
  3059. static inline int ggml_up32(int n) {
  3060. return (n + 31) & ~31;
  3061. }
  3062. //static inline int ggml_up64(int n) {
  3063. // return (n + 63) & ~63;
  3064. //}
  3065. static inline int ggml_up(int n, int m) {
  3066. // assert m is a power of 2
  3067. GGML_ASSERT((m & (m - 1)) == 0);
  3068. return (n + m - 1) & ~(m - 1);
  3069. }
  3070. // assert that pointer is aligned to GGML_MEM_ALIGN
  3071. #define ggml_assert_aligned(ptr) \
  3072. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3073. ////////////////////////////////////////////////////////////////////////////////
  3074. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3075. // make this function thread safe
  3076. ggml_critical_section_start();
  3077. static bool is_first_call = true;
  3078. if (is_first_call) {
  3079. // initialize time system (required on Windows)
  3080. ggml_time_init();
  3081. // initialize GELU, SILU and EXP F32 tables
  3082. {
  3083. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3084. ggml_fp16_t ii;
  3085. for (int i = 0; i < (1 << 16); ++i) {
  3086. uint16_t ui = i;
  3087. memcpy(&ii, &ui, sizeof(ii));
  3088. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3089. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3090. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3091. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3092. }
  3093. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3094. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3095. }
  3096. // initialize g_state
  3097. {
  3098. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3099. g_state = (struct ggml_state) {
  3100. /*.contexts =*/ { { 0 } },
  3101. };
  3102. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3103. g_state.contexts[i].used = false;
  3104. }
  3105. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3106. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3107. }
  3108. #if defined(GGML_USE_CUBLAS)
  3109. ggml_init_cublas();
  3110. #elif defined(GGML_USE_CLBLAST)
  3111. ggml_cl_init();
  3112. #endif
  3113. is_first_call = false;
  3114. }
  3115. // find non-used context in g_state
  3116. struct ggml_context * ctx = NULL;
  3117. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3118. if (!g_state.contexts[i].used) {
  3119. g_state.contexts[i].used = true;
  3120. ctx = &g_state.contexts[i].context;
  3121. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3122. break;
  3123. }
  3124. }
  3125. if (ctx == NULL) {
  3126. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3127. ggml_critical_section_end();
  3128. return NULL;
  3129. }
  3130. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3131. *ctx = (struct ggml_context) {
  3132. /*.mem_size =*/ mem_size,
  3133. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3134. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3135. /*.no_alloc =*/ params.no_alloc,
  3136. /*.n_objects =*/ 0,
  3137. /*.objects_begin =*/ NULL,
  3138. /*.objects_end =*/ NULL,
  3139. /*.scratch =*/ { 0, 0, NULL, },
  3140. /*.scratch_save =*/ { 0, 0, NULL, },
  3141. };
  3142. GGML_ASSERT(ctx->mem_buffer != NULL);
  3143. ggml_assert_aligned(ctx->mem_buffer);
  3144. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3145. ggml_critical_section_end();
  3146. return ctx;
  3147. }
  3148. void ggml_free(struct ggml_context * ctx) {
  3149. // make this function thread safe
  3150. ggml_critical_section_start();
  3151. bool found = false;
  3152. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3153. if (&g_state.contexts[i].context == ctx) {
  3154. g_state.contexts[i].used = false;
  3155. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3156. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3157. if (ctx->mem_buffer_owned) {
  3158. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3159. }
  3160. found = true;
  3161. break;
  3162. }
  3163. }
  3164. if (!found) {
  3165. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3166. }
  3167. ggml_critical_section_end();
  3168. }
  3169. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3170. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3171. }
  3172. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3173. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3174. ctx->scratch = scratch;
  3175. return result;
  3176. }
  3177. // IMPORTANT:
  3178. // when creating "opt" tensors, always save and load the scratch buffer
  3179. // this is an error prone process, but it is necessary to support inplace
  3180. // operators when using scratch buffers
  3181. // TODO: implement a better way
  3182. void ggml_scratch_save(struct ggml_context * ctx) {
  3183. ctx->scratch_save = ctx->scratch;
  3184. ctx->scratch.data = NULL;
  3185. }
  3186. void ggml_scratch_load(struct ggml_context * ctx) {
  3187. ctx->scratch = ctx->scratch_save;
  3188. }
  3189. ////////////////////////////////////////////////////////////////////////////////
  3190. struct ggml_tensor * ggml_new_tensor_impl(
  3191. struct ggml_context * ctx,
  3192. enum ggml_type type,
  3193. int n_dims,
  3194. const int64_t* ne,
  3195. void* data) {
  3196. // always insert objects at the end of the context's memory pool
  3197. struct ggml_object * obj_cur = ctx->objects_end;
  3198. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3199. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3200. const size_t cur_end = cur_offs + cur_size;
  3201. size_t size_needed = 0;
  3202. if (data == NULL && !ctx->no_alloc) {
  3203. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3204. for (int i = 1; i < n_dims; i++) {
  3205. size_needed *= ne[i];
  3206. }
  3207. // align to GGML_MEM_ALIGN
  3208. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3209. }
  3210. char * const mem_buffer = ctx->mem_buffer;
  3211. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3212. if (ctx->scratch.data == NULL || data != NULL) {
  3213. size_needed += sizeof(struct ggml_tensor);
  3214. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3215. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3216. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3217. assert(false);
  3218. return NULL;
  3219. }
  3220. *obj_new = (struct ggml_object) {
  3221. .offs = cur_end + GGML_OBJECT_SIZE,
  3222. .size = size_needed,
  3223. .next = NULL,
  3224. };
  3225. } else {
  3226. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3227. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3228. assert(false);
  3229. return NULL;
  3230. }
  3231. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3232. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3233. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3234. assert(false);
  3235. return NULL;
  3236. }
  3237. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3238. *obj_new = (struct ggml_object) {
  3239. .offs = cur_end + GGML_OBJECT_SIZE,
  3240. .size = sizeof(struct ggml_tensor),
  3241. .next = NULL,
  3242. };
  3243. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3244. ctx->scratch.offs += size_needed;
  3245. }
  3246. if (obj_cur != NULL) {
  3247. obj_cur->next = obj_new;
  3248. } else {
  3249. // this is the first object in this context
  3250. ctx->objects_begin = obj_new;
  3251. }
  3252. ctx->objects_end = obj_new;
  3253. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3254. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3255. ggml_assert_aligned(result);
  3256. *result = (struct ggml_tensor) {
  3257. /*.type =*/ type,
  3258. /*.backend =*/ GGML_BACKEND_CPU,
  3259. /*.n_dims =*/ n_dims,
  3260. /*.ne =*/ { 1, 1, 1, 1 },
  3261. /*.nb =*/ { 0, 0, 0, 0 },
  3262. /*.op =*/ GGML_OP_NONE,
  3263. /*.is_param =*/ false,
  3264. /*.grad =*/ NULL,
  3265. /*.src0 =*/ NULL,
  3266. /*.src1 =*/ NULL,
  3267. /*.opt =*/ { NULL },
  3268. /*.n_tasks =*/ 0,
  3269. /*.perf_runs =*/ 0,
  3270. /*.perf_cycles =*/ 0,
  3271. /*.perf_time_us =*/ 0,
  3272. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3273. /*.name =*/ { 0 },
  3274. /*.pad =*/ { 0 },
  3275. };
  3276. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3277. //ggml_assert_aligned(result->data);
  3278. for (int i = 0; i < n_dims; i++) {
  3279. result->ne[i] = ne[i];
  3280. }
  3281. result->nb[0] = GGML_TYPE_SIZE[type];
  3282. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3283. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3284. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3285. }
  3286. ctx->n_objects++;
  3287. return result;
  3288. }
  3289. struct ggml_tensor * ggml_new_tensor(
  3290. struct ggml_context * ctx,
  3291. enum ggml_type type,
  3292. int n_dims,
  3293. const int64_t * ne) {
  3294. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3295. }
  3296. struct ggml_tensor * ggml_new_tensor_1d(
  3297. struct ggml_context * ctx,
  3298. enum ggml_type type,
  3299. int64_t ne0) {
  3300. return ggml_new_tensor(ctx, type, 1, &ne0);
  3301. }
  3302. struct ggml_tensor * ggml_new_tensor_2d(
  3303. struct ggml_context * ctx,
  3304. enum ggml_type type,
  3305. int64_t ne0,
  3306. int64_t ne1) {
  3307. const int64_t ne[2] = { ne0, ne1 };
  3308. return ggml_new_tensor(ctx, type, 2, ne);
  3309. }
  3310. struct ggml_tensor * ggml_new_tensor_3d(
  3311. struct ggml_context * ctx,
  3312. enum ggml_type type,
  3313. int64_t ne0,
  3314. int64_t ne1,
  3315. int64_t ne2) {
  3316. const int64_t ne[3] = { ne0, ne1, ne2 };
  3317. return ggml_new_tensor(ctx, type, 3, ne);
  3318. }
  3319. struct ggml_tensor * ggml_new_tensor_4d(
  3320. struct ggml_context * ctx,
  3321. enum ggml_type type,
  3322. int64_t ne0,
  3323. int64_t ne1,
  3324. int64_t ne2,
  3325. int64_t ne3) {
  3326. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3327. return ggml_new_tensor(ctx, type, 4, ne);
  3328. }
  3329. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3330. ggml_scratch_save(ctx);
  3331. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3332. ggml_scratch_load(ctx);
  3333. ggml_set_i32(result, value);
  3334. return result;
  3335. }
  3336. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3337. ggml_scratch_save(ctx);
  3338. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3339. ggml_scratch_load(ctx);
  3340. ggml_set_f32(result, value);
  3341. return result;
  3342. }
  3343. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3344. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3345. }
  3346. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3347. memset(tensor->data, 0, ggml_nbytes(tensor));
  3348. return tensor;
  3349. }
  3350. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3351. const int n = ggml_nrows(tensor);
  3352. const int nc = tensor->ne[0];
  3353. const size_t n1 = tensor->nb[1];
  3354. char * const data = tensor->data;
  3355. switch (tensor->type) {
  3356. case GGML_TYPE_I8:
  3357. {
  3358. assert(tensor->nb[0] == sizeof(int8_t));
  3359. for (int i = 0; i < n; i++) {
  3360. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3361. }
  3362. } break;
  3363. case GGML_TYPE_I16:
  3364. {
  3365. assert(tensor->nb[0] == sizeof(int16_t));
  3366. for (int i = 0; i < n; i++) {
  3367. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3368. }
  3369. } break;
  3370. case GGML_TYPE_I32:
  3371. {
  3372. assert(tensor->nb[0] == sizeof(int32_t));
  3373. for (int i = 0; i < n; i++) {
  3374. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3375. }
  3376. } break;
  3377. case GGML_TYPE_F16:
  3378. {
  3379. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3380. for (int i = 0; i < n; i++) {
  3381. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3382. }
  3383. } break;
  3384. case GGML_TYPE_F32:
  3385. {
  3386. assert(tensor->nb[0] == sizeof(float));
  3387. for (int i = 0; i < n; i++) {
  3388. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3389. }
  3390. } break;
  3391. default:
  3392. {
  3393. GGML_ASSERT(false);
  3394. } break;
  3395. }
  3396. return tensor;
  3397. }
  3398. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3399. const int n = ggml_nrows(tensor);
  3400. const int nc = tensor->ne[0];
  3401. const size_t n1 = tensor->nb[1];
  3402. char * const data = tensor->data;
  3403. switch (tensor->type) {
  3404. case GGML_TYPE_I8:
  3405. {
  3406. assert(tensor->nb[0] == sizeof(int8_t));
  3407. for (int i = 0; i < n; i++) {
  3408. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3409. }
  3410. } break;
  3411. case GGML_TYPE_I16:
  3412. {
  3413. assert(tensor->nb[0] == sizeof(int16_t));
  3414. for (int i = 0; i < n; i++) {
  3415. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3416. }
  3417. } break;
  3418. case GGML_TYPE_I32:
  3419. {
  3420. assert(tensor->nb[0] == sizeof(int32_t));
  3421. for (int i = 0; i < n; i++) {
  3422. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3423. }
  3424. } break;
  3425. case GGML_TYPE_F16:
  3426. {
  3427. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3428. for (int i = 0; i < n; i++) {
  3429. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3430. }
  3431. } break;
  3432. case GGML_TYPE_F32:
  3433. {
  3434. assert(tensor->nb[0] == sizeof(float));
  3435. for (int i = 0; i < n; i++) {
  3436. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3437. }
  3438. } break;
  3439. default:
  3440. {
  3441. GGML_ASSERT(false);
  3442. } break;
  3443. }
  3444. return tensor;
  3445. }
  3446. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3447. switch (tensor->type) {
  3448. case GGML_TYPE_I8:
  3449. {
  3450. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3451. return ((int8_t *)(tensor->data))[i];
  3452. } break;
  3453. case GGML_TYPE_I16:
  3454. {
  3455. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3456. return ((int16_t *)(tensor->data))[i];
  3457. } break;
  3458. case GGML_TYPE_I32:
  3459. {
  3460. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3461. return ((int32_t *)(tensor->data))[i];
  3462. } break;
  3463. case GGML_TYPE_F16:
  3464. {
  3465. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3466. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3467. } break;
  3468. case GGML_TYPE_F32:
  3469. {
  3470. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3471. return ((float *)(tensor->data))[i];
  3472. } break;
  3473. default:
  3474. {
  3475. GGML_ASSERT(false);
  3476. } break;
  3477. }
  3478. return 0.0f;
  3479. }
  3480. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3481. switch (tensor->type) {
  3482. case GGML_TYPE_I8:
  3483. {
  3484. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3485. ((int8_t *)(tensor->data))[i] = value;
  3486. } break;
  3487. case GGML_TYPE_I16:
  3488. {
  3489. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3490. ((int16_t *)(tensor->data))[i] = value;
  3491. } break;
  3492. case GGML_TYPE_I32:
  3493. {
  3494. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3495. ((int32_t *)(tensor->data))[i] = value;
  3496. } break;
  3497. case GGML_TYPE_F16:
  3498. {
  3499. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3500. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3501. } break;
  3502. case GGML_TYPE_F32:
  3503. {
  3504. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3505. ((float *)(tensor->data))[i] = value;
  3506. } break;
  3507. default:
  3508. {
  3509. GGML_ASSERT(false);
  3510. } break;
  3511. }
  3512. }
  3513. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3514. switch (tensor->type) {
  3515. case GGML_TYPE_I8:
  3516. {
  3517. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3518. return ((int8_t *)(tensor->data))[i];
  3519. } break;
  3520. case GGML_TYPE_I16:
  3521. {
  3522. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3523. return ((int16_t *)(tensor->data))[i];
  3524. } break;
  3525. case GGML_TYPE_I32:
  3526. {
  3527. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3528. return ((int32_t *)(tensor->data))[i];
  3529. } break;
  3530. case GGML_TYPE_F16:
  3531. {
  3532. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3533. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3534. } break;
  3535. case GGML_TYPE_F32:
  3536. {
  3537. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3538. return ((float *)(tensor->data))[i];
  3539. } break;
  3540. default:
  3541. {
  3542. GGML_ASSERT(false);
  3543. } break;
  3544. }
  3545. return 0.0f;
  3546. }
  3547. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3548. switch (tensor->type) {
  3549. case GGML_TYPE_I8:
  3550. {
  3551. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3552. ((int8_t *)(tensor->data))[i] = value;
  3553. } break;
  3554. case GGML_TYPE_I16:
  3555. {
  3556. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3557. ((int16_t *)(tensor->data))[i] = value;
  3558. } break;
  3559. case GGML_TYPE_I32:
  3560. {
  3561. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3562. ((int32_t *)(tensor->data))[i] = value;
  3563. } break;
  3564. case GGML_TYPE_F16:
  3565. {
  3566. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3567. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3568. } break;
  3569. case GGML_TYPE_F32:
  3570. {
  3571. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3572. ((float *)(tensor->data))[i] = value;
  3573. } break;
  3574. default:
  3575. {
  3576. GGML_ASSERT(false);
  3577. } break;
  3578. }
  3579. }
  3580. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3581. return tensor->data;
  3582. }
  3583. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3584. assert(tensor->type == GGML_TYPE_F32);
  3585. return (float *)(tensor->data);
  3586. }
  3587. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3588. return tensor->name;
  3589. }
  3590. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3591. strncpy(tensor->name, name, sizeof(tensor->name));
  3592. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3593. }
  3594. struct ggml_tensor * ggml_view_tensor(
  3595. struct ggml_context * ctx,
  3596. const struct ggml_tensor * src) {
  3597. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3598. result->nb[0] = src->nb[0];
  3599. result->nb[1] = src->nb[1];
  3600. result->nb[2] = src->nb[2];
  3601. result->nb[3] = src->nb[3];
  3602. return result;
  3603. }
  3604. ////////////////////////////////////////////////////////////////////////////////
  3605. // ggml_dup
  3606. struct ggml_tensor * ggml_dup_impl(
  3607. struct ggml_context * ctx,
  3608. struct ggml_tensor * a,
  3609. bool inplace) {
  3610. bool is_node = false;
  3611. if (!inplace && (a->grad)) {
  3612. is_node = true;
  3613. }
  3614. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3615. result->op = GGML_OP_DUP;
  3616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3617. result->src0 = a;
  3618. result->src1 = NULL;
  3619. return result;
  3620. }
  3621. struct ggml_tensor * ggml_dup(
  3622. struct ggml_context * ctx,
  3623. struct ggml_tensor * a) {
  3624. return ggml_dup_impl(ctx, a, false);
  3625. }
  3626. struct ggml_tensor * ggml_dup_inplace(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a) {
  3629. return ggml_dup_impl(ctx, a, true);
  3630. }
  3631. // ggml_add
  3632. struct ggml_tensor * ggml_add_impl(
  3633. struct ggml_context * ctx,
  3634. struct ggml_tensor * a,
  3635. struct ggml_tensor * b,
  3636. bool inplace) {
  3637. GGML_ASSERT(ggml_are_same_shape(a, b));
  3638. bool is_node = false;
  3639. if (!inplace && (a->grad || b->grad)) {
  3640. is_node = true;
  3641. }
  3642. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3643. result->op = GGML_OP_ADD;
  3644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3645. result->src0 = a;
  3646. result->src1 = b;
  3647. return result;
  3648. }
  3649. struct ggml_tensor * ggml_add(
  3650. struct ggml_context * ctx,
  3651. struct ggml_tensor * a,
  3652. struct ggml_tensor * b) {
  3653. return ggml_add_impl(ctx, a, b, false);
  3654. }
  3655. struct ggml_tensor * ggml_add_inplace(
  3656. struct ggml_context * ctx,
  3657. struct ggml_tensor * a,
  3658. struct ggml_tensor * b) {
  3659. return ggml_add_impl(ctx, a, b, true);
  3660. }
  3661. // ggml_add1
  3662. struct ggml_tensor * ggml_add1_impl(
  3663. struct ggml_context * ctx,
  3664. struct ggml_tensor * a,
  3665. struct ggml_tensor * b,
  3666. bool inplace) {
  3667. GGML_ASSERT(ggml_is_scalar(b));
  3668. GGML_ASSERT(ggml_is_padded_1d(a));
  3669. bool is_node = false;
  3670. if (!inplace && (a->grad || b->grad)) {
  3671. is_node = true;
  3672. }
  3673. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3674. result->op = GGML_OP_ADD1;
  3675. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3676. result->src0 = a;
  3677. result->src1 = b;
  3678. return result;
  3679. }
  3680. struct ggml_tensor * ggml_add1(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. struct ggml_tensor * b) {
  3684. return ggml_add1_impl(ctx, a, b, false);
  3685. }
  3686. struct ggml_tensor * ggml_add1_inplace(
  3687. struct ggml_context * ctx,
  3688. struct ggml_tensor * a,
  3689. struct ggml_tensor * b) {
  3690. return ggml_add1_impl(ctx, a, b, true);
  3691. }
  3692. // ggml_acc
  3693. struct ggml_tensor * ggml_acc_impl(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. struct ggml_tensor * b,
  3697. size_t nb1,
  3698. size_t nb2,
  3699. size_t nb3,
  3700. size_t offset,
  3701. bool inplace) {
  3702. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3703. GGML_ASSERT(ggml_is_contiguous(a));
  3704. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3705. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3706. bool is_node = false;
  3707. if (!inplace && (a->grad || b->grad)) {
  3708. is_node = true;
  3709. }
  3710. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3711. ggml_scratch_save(ctx);
  3712. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3713. ((int32_t *) c->data)[0] = nb1;
  3714. ((int32_t *) c->data)[1] = nb2;
  3715. ((int32_t *) c->data)[2] = nb3;
  3716. ((int32_t *) c->data)[3] = offset;
  3717. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3718. ggml_scratch_load(ctx);
  3719. result->op = GGML_OP_ACC;
  3720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3721. result->src0 = a;
  3722. result->src1 = b;
  3723. result->opt[0] = c;
  3724. return result;
  3725. }
  3726. struct ggml_tensor * ggml_acc(
  3727. struct ggml_context * ctx,
  3728. struct ggml_tensor * a,
  3729. struct ggml_tensor * b,
  3730. size_t nb1,
  3731. size_t nb2,
  3732. size_t nb3,
  3733. size_t offset) {
  3734. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3735. }
  3736. struct ggml_tensor * ggml_acc_inplace(
  3737. struct ggml_context * ctx,
  3738. struct ggml_tensor * a,
  3739. struct ggml_tensor * b,
  3740. size_t nb1,
  3741. size_t nb2,
  3742. size_t nb3,
  3743. size_t offset) {
  3744. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3745. }
  3746. // ggml_sub
  3747. struct ggml_tensor * ggml_sub_impl(
  3748. struct ggml_context * ctx,
  3749. struct ggml_tensor * a,
  3750. struct ggml_tensor * b,
  3751. bool inplace) {
  3752. GGML_ASSERT(ggml_are_same_shape(a, b));
  3753. bool is_node = false;
  3754. if (!inplace && (a->grad || b->grad)) {
  3755. is_node = true;
  3756. }
  3757. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3758. result->op = GGML_OP_SUB;
  3759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3760. result->src0 = a;
  3761. result->src1 = b;
  3762. return result;
  3763. }
  3764. struct ggml_tensor * ggml_sub(
  3765. struct ggml_context * ctx,
  3766. struct ggml_tensor * a,
  3767. struct ggml_tensor * b) {
  3768. return ggml_sub_impl(ctx, a, b, false);
  3769. }
  3770. struct ggml_tensor * ggml_sub_inplace(
  3771. struct ggml_context * ctx,
  3772. struct ggml_tensor * a,
  3773. struct ggml_tensor * b) {
  3774. return ggml_sub_impl(ctx, a, b, true);
  3775. }
  3776. // ggml_mul
  3777. struct ggml_tensor * ggml_mul_impl(
  3778. struct ggml_context * ctx,
  3779. struct ggml_tensor * a,
  3780. struct ggml_tensor * b,
  3781. bool inplace) {
  3782. GGML_ASSERT(ggml_are_same_shape(a, b));
  3783. bool is_node = false;
  3784. if (!inplace && (a->grad || b->grad)) {
  3785. is_node = true;
  3786. }
  3787. if (inplace) {
  3788. GGML_ASSERT(is_node == false);
  3789. }
  3790. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3791. result->op = GGML_OP_MUL;
  3792. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3793. result->src0 = a;
  3794. result->src1 = b;
  3795. return result;
  3796. }
  3797. struct ggml_tensor * ggml_mul(
  3798. struct ggml_context * ctx,
  3799. struct ggml_tensor * a,
  3800. struct ggml_tensor * b) {
  3801. return ggml_mul_impl(ctx, a, b, false);
  3802. }
  3803. struct ggml_tensor * ggml_mul_inplace(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. struct ggml_tensor * b) {
  3807. return ggml_mul_impl(ctx, a, b, true);
  3808. }
  3809. // ggml_div
  3810. struct ggml_tensor * ggml_div_impl(
  3811. struct ggml_context * ctx,
  3812. struct ggml_tensor * a,
  3813. struct ggml_tensor * b,
  3814. bool inplace) {
  3815. GGML_ASSERT(ggml_are_same_shape(a, b));
  3816. bool is_node = false;
  3817. if (!inplace && (a->grad || b->grad)) {
  3818. is_node = true;
  3819. }
  3820. if (inplace) {
  3821. GGML_ASSERT(is_node == false);
  3822. }
  3823. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3824. result->op = GGML_OP_DIV;
  3825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3826. result->src0 = a;
  3827. result->src1 = b;
  3828. return result;
  3829. }
  3830. struct ggml_tensor * ggml_div(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a,
  3833. struct ggml_tensor * b) {
  3834. return ggml_div_impl(ctx, a, b, false);
  3835. }
  3836. struct ggml_tensor * ggml_div_inplace(
  3837. struct ggml_context * ctx,
  3838. struct ggml_tensor * a,
  3839. struct ggml_tensor * b) {
  3840. return ggml_div_impl(ctx, a, b, true);
  3841. }
  3842. // ggml_sqr
  3843. struct ggml_tensor * ggml_sqr_impl(
  3844. struct ggml_context * ctx,
  3845. struct ggml_tensor * a,
  3846. bool inplace) {
  3847. bool is_node = false;
  3848. if (!inplace && (a->grad)) {
  3849. is_node = true;
  3850. }
  3851. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3852. result->op = GGML_OP_SQR;
  3853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3854. result->src0 = a;
  3855. result->src1 = NULL;
  3856. return result;
  3857. }
  3858. struct ggml_tensor * ggml_sqr(
  3859. struct ggml_context * ctx,
  3860. struct ggml_tensor * a) {
  3861. return ggml_sqr_impl(ctx, a, false);
  3862. }
  3863. struct ggml_tensor * ggml_sqr_inplace(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a) {
  3866. return ggml_sqr_impl(ctx, a, true);
  3867. }
  3868. // ggml_sqrt
  3869. struct ggml_tensor * ggml_sqrt_impl(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. bool inplace) {
  3873. bool is_node = false;
  3874. if (!inplace && (a->grad)) {
  3875. is_node = true;
  3876. }
  3877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3878. result->op = GGML_OP_SQRT;
  3879. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3880. result->src0 = a;
  3881. result->src1 = NULL;
  3882. return result;
  3883. }
  3884. struct ggml_tensor * ggml_sqrt(
  3885. struct ggml_context * ctx,
  3886. struct ggml_tensor * a) {
  3887. return ggml_sqrt_impl(ctx, a, false);
  3888. }
  3889. struct ggml_tensor * ggml_sqrt_inplace(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a) {
  3892. return ggml_sqrt_impl(ctx, a, true);
  3893. }
  3894. // ggml_log
  3895. struct ggml_tensor * ggml_log_impl(
  3896. struct ggml_context * ctx,
  3897. struct ggml_tensor * a,
  3898. bool inplace) {
  3899. bool is_node = false;
  3900. if (!inplace && (a->grad)) {
  3901. is_node = true;
  3902. }
  3903. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3904. result->op = GGML_OP_LOG;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src0 = a;
  3907. result->src1 = NULL;
  3908. return result;
  3909. }
  3910. struct ggml_tensor * ggml_log(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a) {
  3913. return ggml_log_impl(ctx, a, false);
  3914. }
  3915. struct ggml_tensor * ggml_log_inplace(
  3916. struct ggml_context * ctx,
  3917. struct ggml_tensor * a) {
  3918. return ggml_log_impl(ctx, a, true);
  3919. }
  3920. // ggml_sum
  3921. struct ggml_tensor * ggml_sum(
  3922. struct ggml_context * ctx,
  3923. struct ggml_tensor * a) {
  3924. bool is_node = false;
  3925. if (a->grad) {
  3926. is_node = true;
  3927. }
  3928. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3929. result->op = GGML_OP_SUM;
  3930. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3931. result->src0 = a;
  3932. result->src1 = NULL;
  3933. return result;
  3934. }
  3935. // ggml_sum_rows
  3936. struct ggml_tensor * ggml_sum_rows(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a) {
  3939. bool is_node = false;
  3940. if (a->grad) {
  3941. is_node = true;
  3942. }
  3943. int64_t ne[4] = {1,1,1,1};
  3944. for (int i=1; i<a->n_dims; ++i) {
  3945. ne[i] = a->ne[i];
  3946. }
  3947. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  3948. result->op = GGML_OP_SUM_ROWS;
  3949. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3950. result->src0 = a;
  3951. result->src1 = NULL;
  3952. return result;
  3953. }
  3954. // ggml_mean
  3955. struct ggml_tensor * ggml_mean(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a) {
  3958. bool is_node = false;
  3959. if (a->grad) {
  3960. GGML_ASSERT(false); // TODO: implement
  3961. is_node = true;
  3962. }
  3963. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3964. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3965. result->op = GGML_OP_MEAN;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src0 = a;
  3968. result->src1 = NULL;
  3969. return result;
  3970. }
  3971. // ggml_repeat
  3972. struct ggml_tensor * ggml_repeat(
  3973. struct ggml_context * ctx,
  3974. struct ggml_tensor * a,
  3975. struct ggml_tensor * b) {
  3976. GGML_ASSERT(ggml_can_repeat(a, b));
  3977. bool is_node = false;
  3978. if (a->grad) {
  3979. is_node = true;
  3980. }
  3981. if (ggml_are_same_shape(a, b) && !is_node) {
  3982. return a;
  3983. }
  3984. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3985. result->op = GGML_OP_REPEAT;
  3986. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3987. result->src0 = a;
  3988. result->src1 = b;
  3989. return result;
  3990. }
  3991. // ggml_abs
  3992. struct ggml_tensor * ggml_abs_impl(
  3993. struct ggml_context * ctx,
  3994. struct ggml_tensor * a,
  3995. bool inplace) {
  3996. bool is_node = false;
  3997. if (!inplace && (a->grad)) {
  3998. is_node = true;
  3999. }
  4000. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4001. result->op = GGML_OP_ABS;
  4002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4003. result->src0 = a;
  4004. result->src1 = NULL;
  4005. return result;
  4006. }
  4007. struct ggml_tensor * ggml_abs(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a) {
  4010. return ggml_abs_impl(ctx, a, false);
  4011. }
  4012. struct ggml_tensor * ggml_abs_inplace(
  4013. struct ggml_context * ctx,
  4014. struct ggml_tensor * a) {
  4015. return ggml_abs_impl(ctx, a, true);
  4016. }
  4017. // ggml_sgn
  4018. struct ggml_tensor * ggml_sgn_impl(
  4019. struct ggml_context * ctx,
  4020. struct ggml_tensor * a,
  4021. bool inplace) {
  4022. bool is_node = false;
  4023. if (!inplace && (a->grad)) {
  4024. is_node = true;
  4025. }
  4026. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4027. result->op = GGML_OP_SGN;
  4028. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4029. result->src0 = a;
  4030. result->src1 = NULL;
  4031. return result;
  4032. }
  4033. struct ggml_tensor * ggml_sgn(
  4034. struct ggml_context * ctx,
  4035. struct ggml_tensor * a) {
  4036. return ggml_sgn_impl(ctx, a, false);
  4037. }
  4038. struct ggml_tensor * ggml_sgn_inplace(
  4039. struct ggml_context * ctx,
  4040. struct ggml_tensor * a) {
  4041. return ggml_sgn_impl(ctx, a, true);
  4042. }
  4043. // ggml_neg
  4044. struct ggml_tensor * ggml_neg_impl(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. bool inplace) {
  4048. bool is_node = false;
  4049. if (!inplace && (a->grad)) {
  4050. is_node = true;
  4051. }
  4052. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4053. result->op = GGML_OP_NEG;
  4054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4055. result->src0 = a;
  4056. result->src1 = NULL;
  4057. return result;
  4058. }
  4059. struct ggml_tensor * ggml_neg(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * a) {
  4062. return ggml_neg_impl(ctx, a, false);
  4063. }
  4064. struct ggml_tensor * ggml_neg_inplace(
  4065. struct ggml_context * ctx,
  4066. struct ggml_tensor * a) {
  4067. return ggml_neg_impl(ctx, a, true);
  4068. }
  4069. // ggml_step
  4070. struct ggml_tensor * ggml_step_impl(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a,
  4073. bool inplace) {
  4074. bool is_node = false;
  4075. if (!inplace && (a->grad)) {
  4076. is_node = true;
  4077. }
  4078. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4079. result->op = GGML_OP_STEP;
  4080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4081. result->src0 = a;
  4082. result->src1 = NULL;
  4083. return result;
  4084. }
  4085. struct ggml_tensor * ggml_step(
  4086. struct ggml_context * ctx,
  4087. struct ggml_tensor * a) {
  4088. return ggml_step_impl(ctx, a, false);
  4089. }
  4090. struct ggml_tensor * ggml_step_inplace(
  4091. struct ggml_context * ctx,
  4092. struct ggml_tensor * a) {
  4093. return ggml_step_impl(ctx, a, true);
  4094. }
  4095. // ggml_relu
  4096. struct ggml_tensor * ggml_relu_impl(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a,
  4099. bool inplace) {
  4100. bool is_node = false;
  4101. if (!inplace && (a->grad)) {
  4102. is_node = true;
  4103. }
  4104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4105. result->op = GGML_OP_RELU;
  4106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4107. result->src0 = a;
  4108. result->src1 = NULL;
  4109. return result;
  4110. }
  4111. struct ggml_tensor * ggml_relu(
  4112. struct ggml_context * ctx,
  4113. struct ggml_tensor * a) {
  4114. return ggml_relu_impl(ctx, a, false);
  4115. }
  4116. struct ggml_tensor * ggml_relu_inplace(
  4117. struct ggml_context * ctx,
  4118. struct ggml_tensor * a) {
  4119. return ggml_relu_impl(ctx, a, true);
  4120. }
  4121. // ggml_gelu
  4122. struct ggml_tensor * ggml_gelu_impl(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. bool inplace) {
  4126. bool is_node = false;
  4127. if (!inplace && (a->grad)) {
  4128. is_node = true;
  4129. }
  4130. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4131. result->op = GGML_OP_GELU;
  4132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4133. result->src0 = a;
  4134. result->src1 = NULL;
  4135. return result;
  4136. }
  4137. struct ggml_tensor * ggml_gelu(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a) {
  4140. return ggml_gelu_impl(ctx, a, false);
  4141. }
  4142. struct ggml_tensor * ggml_gelu_inplace(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a) {
  4145. return ggml_gelu_impl(ctx, a, true);
  4146. }
  4147. // ggml_silu
  4148. struct ggml_tensor * ggml_silu_impl(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a,
  4151. bool inplace) {
  4152. bool is_node = false;
  4153. if (!inplace && (a->grad)) {
  4154. is_node = true;
  4155. }
  4156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4157. result->op = GGML_OP_SILU;
  4158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4159. result->src0 = a;
  4160. result->src1 = NULL;
  4161. return result;
  4162. }
  4163. struct ggml_tensor * ggml_silu(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_silu_impl(ctx, a, false);
  4167. }
  4168. struct ggml_tensor * ggml_silu_inplace(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_silu_impl(ctx, a, true);
  4172. }
  4173. // ggml_silu_back
  4174. struct ggml_tensor * ggml_silu_back(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. struct ggml_tensor * b) {
  4178. bool is_node = false;
  4179. if (a->grad || b->grad) {
  4180. // TODO: implement backward
  4181. is_node = true;
  4182. }
  4183. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4184. result->op = GGML_OP_SILU_BACK;
  4185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4186. result->src0 = a;
  4187. result->src1 = b;
  4188. return result;
  4189. }
  4190. // ggml_norm
  4191. struct ggml_tensor * ggml_norm_impl(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. bool inplace) {
  4195. bool is_node = false;
  4196. if (!inplace && (a->grad)) {
  4197. GGML_ASSERT(false); // TODO: implement backward
  4198. is_node = true;
  4199. }
  4200. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4201. result->op = GGML_OP_NORM;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src0 = a;
  4204. result->src1 = NULL; // TODO: maybe store epsilon here?
  4205. return result;
  4206. }
  4207. struct ggml_tensor * ggml_norm(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_norm_impl(ctx, a, false);
  4211. }
  4212. struct ggml_tensor * ggml_norm_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_norm_impl(ctx, a, true);
  4216. }
  4217. struct ggml_tensor * ggml_rms_norm_impl(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a,
  4220. bool inplace) {
  4221. bool is_node = false;
  4222. if (!inplace && (a->grad)) {
  4223. is_node = true;
  4224. }
  4225. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4226. result->op = GGML_OP_RMS_NORM;
  4227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4228. result->src0 = a;
  4229. result->src1 = NULL; // TODO: maybe store epsilon here?
  4230. return result;
  4231. }
  4232. struct ggml_tensor * ggml_rms_norm(
  4233. struct ggml_context * ctx,
  4234. struct ggml_tensor * a) {
  4235. return ggml_rms_norm_impl(ctx, a, false);
  4236. }
  4237. struct ggml_tensor * ggml_rms_norm_inplace(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a) {
  4240. return ggml_rms_norm_impl(ctx, a, true);
  4241. }
  4242. struct ggml_tensor * ggml_rms_norm_back(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a,
  4245. struct ggml_tensor * b) {
  4246. bool is_node = false;
  4247. if (a->grad) {
  4248. // TODO: implement backward
  4249. is_node = true;
  4250. }
  4251. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4252. result->op = GGML_OP_RMS_NORM_BACK;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src0 = a;
  4255. result->src1 = b;
  4256. return result;
  4257. }
  4258. // ggml_mul_mat
  4259. struct ggml_tensor * ggml_mul_mat(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b) {
  4263. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4264. GGML_ASSERT(!ggml_is_transposed(a));
  4265. bool is_node = false;
  4266. if (a->grad || b->grad) {
  4267. is_node = true;
  4268. }
  4269. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4270. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4271. result->op = GGML_OP_MUL_MAT;
  4272. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4273. result->src0 = a;
  4274. result->src1 = b;
  4275. return result;
  4276. }
  4277. // ggml_scale
  4278. struct ggml_tensor * ggml_scale_impl(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b,
  4282. bool inplace) {
  4283. GGML_ASSERT(ggml_is_scalar(b));
  4284. GGML_ASSERT(ggml_is_padded_1d(a));
  4285. bool is_node = false;
  4286. if (!inplace && (a->grad || b->grad)) {
  4287. is_node = true;
  4288. }
  4289. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4290. result->op = GGML_OP_SCALE;
  4291. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4292. result->src0 = a;
  4293. result->src1 = b;
  4294. return result;
  4295. }
  4296. struct ggml_tensor * ggml_scale(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b) {
  4300. return ggml_scale_impl(ctx, a, b, false);
  4301. }
  4302. struct ggml_tensor * ggml_scale_inplace(
  4303. struct ggml_context * ctx,
  4304. struct ggml_tensor * a,
  4305. struct ggml_tensor * b) {
  4306. return ggml_scale_impl(ctx, a, b, true);
  4307. }
  4308. // ggml_set
  4309. struct ggml_tensor * ggml_set_impl(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b,
  4313. size_t nb1,
  4314. size_t nb2,
  4315. size_t nb3,
  4316. size_t offset,
  4317. bool inplace) {
  4318. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4319. bool is_node = false;
  4320. if (!inplace && (a->grad || b->grad)) {
  4321. is_node = true;
  4322. }
  4323. // make a view of the destination
  4324. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4325. ggml_scratch_save(ctx);
  4326. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4327. (( int32_t * ) c->data)[0] = nb1;
  4328. (( int32_t * ) c->data)[1] = nb2;
  4329. (( int32_t * ) c->data)[2] = nb3;
  4330. (( int32_t * ) c->data)[3] = offset;
  4331. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4332. ggml_scratch_load(ctx);
  4333. result->op = GGML_OP_SET;
  4334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4335. result->src0 = a;
  4336. result->src1 = b;
  4337. result->opt[0] = c;
  4338. return result;
  4339. }
  4340. struct ggml_tensor * ggml_set(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b,
  4344. size_t nb1,
  4345. size_t nb2,
  4346. size_t nb3,
  4347. size_t offset) {
  4348. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4349. }
  4350. struct ggml_tensor * ggml_set_inplace(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. struct ggml_tensor * b,
  4354. size_t nb1,
  4355. size_t nb2,
  4356. size_t nb3,
  4357. size_t offset) {
  4358. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4359. }
  4360. struct ggml_tensor * ggml_set_1d(
  4361. struct ggml_context * ctx,
  4362. struct ggml_tensor * a,
  4363. struct ggml_tensor * b,
  4364. size_t offset) {
  4365. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4366. }
  4367. struct ggml_tensor * ggml_set_1d_inplace(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. struct ggml_tensor * b,
  4371. size_t offset) {
  4372. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4373. }
  4374. struct ggml_tensor * ggml_set_2d(
  4375. struct ggml_context * ctx,
  4376. struct ggml_tensor * a,
  4377. struct ggml_tensor * b,
  4378. size_t nb1,
  4379. size_t offset) {
  4380. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4381. }
  4382. struct ggml_tensor * ggml_set_2d_inplace(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * b,
  4386. size_t nb1,
  4387. size_t offset) {
  4388. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4389. }
  4390. // ggml_cpy
  4391. struct ggml_tensor * ggml_cpy_impl(
  4392. struct ggml_context * ctx,
  4393. struct ggml_tensor * a,
  4394. struct ggml_tensor * b,
  4395. bool inplace) {
  4396. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4397. bool is_node = false;
  4398. if (!inplace && (a->grad || b->grad)) {
  4399. is_node = true;
  4400. }
  4401. // make a view of the destination
  4402. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4403. result->op = GGML_OP_CPY;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src0 = a;
  4406. result->src1 = b;
  4407. return result;
  4408. }
  4409. struct ggml_tensor * ggml_cpy(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a,
  4412. struct ggml_tensor * b) {
  4413. return ggml_cpy_impl(ctx, a, b, false);
  4414. }
  4415. struct ggml_tensor * ggml_cpy_inplace(
  4416. struct ggml_context * ctx,
  4417. struct ggml_tensor * a,
  4418. struct ggml_tensor * b) {
  4419. return ggml_cpy_impl(ctx, a, b, true);
  4420. }
  4421. // ggml_cont
  4422. struct ggml_tensor * ggml_cont_impl(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a,
  4425. bool inplace) {
  4426. bool is_node = false;
  4427. if (!inplace && a->grad) {
  4428. is_node = true;
  4429. }
  4430. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4431. result->op = GGML_OP_CONT;
  4432. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4433. result->src0 = a;
  4434. result->src1 = NULL;
  4435. return result;
  4436. }
  4437. struct ggml_tensor * ggml_cont(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. return ggml_cont_impl(ctx, a, false);
  4441. }
  4442. struct ggml_tensor * ggml_cont_inplace(
  4443. struct ggml_context * ctx,
  4444. struct ggml_tensor * a) {
  4445. return ggml_cont_impl(ctx, a, true);
  4446. }
  4447. // ggml_reshape
  4448. struct ggml_tensor * ggml_reshape(
  4449. struct ggml_context * ctx,
  4450. struct ggml_tensor * a,
  4451. struct ggml_tensor * b) {
  4452. GGML_ASSERT(ggml_is_contiguous(a));
  4453. GGML_ASSERT(ggml_is_contiguous(b));
  4454. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4455. bool is_node = false;
  4456. if (a->grad) {
  4457. is_node = true;
  4458. }
  4459. if (b->grad) {
  4460. // gradient propagation is not supported
  4461. //GGML_ASSERT(false);
  4462. }
  4463. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4464. result->op = GGML_OP_RESHAPE;
  4465. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4466. result->src0 = a;
  4467. result->src1 = NULL;
  4468. return result;
  4469. }
  4470. struct ggml_tensor * ggml_reshape_1d(
  4471. struct ggml_context * ctx,
  4472. struct ggml_tensor * a,
  4473. int64_t ne0) {
  4474. GGML_ASSERT(ggml_is_contiguous(a));
  4475. GGML_ASSERT(ggml_nelements(a) == ne0);
  4476. bool is_node = false;
  4477. if (a->grad) {
  4478. is_node = true;
  4479. }
  4480. const int64_t ne[1] = { ne0 };
  4481. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4482. result->op = GGML_OP_RESHAPE;
  4483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4484. result->src0 = a;
  4485. result->src1 = NULL;
  4486. return result;
  4487. }
  4488. struct ggml_tensor * ggml_reshape_2d(
  4489. struct ggml_context * ctx,
  4490. struct ggml_tensor * a,
  4491. int64_t ne0,
  4492. int64_t ne1) {
  4493. GGML_ASSERT(ggml_is_contiguous(a));
  4494. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4495. bool is_node = false;
  4496. if (a->grad) {
  4497. is_node = true;
  4498. }
  4499. const int64_t ne[2] = { ne0, ne1 };
  4500. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4501. result->op = GGML_OP_RESHAPE;
  4502. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4503. result->src0 = a;
  4504. result->src1 = NULL;
  4505. return result;
  4506. }
  4507. struct ggml_tensor * ggml_reshape_3d(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. int64_t ne0,
  4511. int64_t ne1,
  4512. int64_t ne2) {
  4513. GGML_ASSERT(ggml_is_contiguous(a));
  4514. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4515. bool is_node = false;
  4516. if (a->grad) {
  4517. is_node = true;
  4518. }
  4519. const int64_t ne[3] = { ne0, ne1, ne2 };
  4520. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4521. result->op = GGML_OP_RESHAPE;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src0 = a;
  4524. result->src1 = NULL;
  4525. return result;
  4526. }
  4527. struct ggml_tensor * ggml_reshape_4d(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int64_t ne0,
  4531. int64_t ne1,
  4532. int64_t ne2,
  4533. int64_t ne3) {
  4534. GGML_ASSERT(ggml_is_contiguous(a));
  4535. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4536. bool is_node = false;
  4537. if (a->grad) {
  4538. is_node = true;
  4539. }
  4540. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4541. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4542. result->op = GGML_OP_RESHAPE;
  4543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4544. result->src0 = a;
  4545. result->src1 = NULL;
  4546. return result;
  4547. }
  4548. // ggml_view_1d
  4549. struct ggml_tensor * ggml_view_1d(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. int64_t ne0,
  4553. size_t offset) {
  4554. bool is_node = false;
  4555. if (a->grad) {
  4556. is_node = true;
  4557. }
  4558. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4559. result->op = GGML_OP_VIEW;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src0 = a;
  4562. result->src1 = NULL;
  4563. if (is_node) {
  4564. memcpy(result->padding, &offset, sizeof(offset));
  4565. }
  4566. return result;
  4567. }
  4568. // ggml_view_2d
  4569. struct ggml_tensor * ggml_view_2d(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a,
  4572. int64_t ne0,
  4573. int64_t ne1,
  4574. size_t nb1,
  4575. size_t offset) {
  4576. bool is_node = false;
  4577. if (a->grad) {
  4578. is_node = true;
  4579. }
  4580. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4581. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4582. result->nb[1] = nb1;
  4583. result->nb[2] = result->nb[1]*ne1;
  4584. result->nb[3] = result->nb[2];
  4585. result->op = GGML_OP_VIEW;
  4586. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4587. result->src0 = a;
  4588. result->src1 = NULL;
  4589. if (is_node) {
  4590. memcpy(result->padding, &offset, sizeof(offset));
  4591. }
  4592. return result;
  4593. }
  4594. // ggml_view_3d
  4595. struct ggml_tensor * ggml_view_3d(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. int64_t ne0,
  4599. int64_t ne1,
  4600. int64_t ne2,
  4601. size_t nb1,
  4602. size_t nb2,
  4603. size_t offset) {
  4604. bool is_node = false;
  4605. if (a->grad) {
  4606. is_node = true;
  4607. }
  4608. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4609. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4610. result->nb[1] = nb1;
  4611. result->nb[2] = nb2;
  4612. result->nb[3] = result->nb[2]*ne2;
  4613. result->op = GGML_OP_VIEW;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src0 = a;
  4616. result->src1 = NULL;
  4617. if (is_node) {
  4618. memcpy(result->padding, &offset, sizeof(offset));
  4619. }
  4620. return result;
  4621. }
  4622. // ggml_view_4d
  4623. struct ggml_tensor * ggml_view_4d(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a,
  4626. int64_t ne0,
  4627. int64_t ne1,
  4628. int64_t ne2,
  4629. int64_t ne3,
  4630. size_t nb1,
  4631. size_t nb2,
  4632. size_t nb3,
  4633. size_t offset) {
  4634. bool is_node = false;
  4635. if (a->grad) {
  4636. is_node = true;
  4637. }
  4638. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4639. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4640. result->nb[1] = nb1;
  4641. result->nb[2] = nb2;
  4642. result->nb[3] = nb3;
  4643. result->op = GGML_OP_VIEW;
  4644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4645. result->src0 = a;
  4646. result->src1 = NULL;
  4647. if (is_node) {
  4648. memcpy(result->padding, &offset, sizeof(offset));
  4649. }
  4650. return result;
  4651. }
  4652. // ggml_permute
  4653. struct ggml_tensor * ggml_permute(
  4654. struct ggml_context * ctx,
  4655. struct ggml_tensor * a,
  4656. int axis0,
  4657. int axis1,
  4658. int axis2,
  4659. int axis3) {
  4660. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4661. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4662. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4663. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4664. GGML_ASSERT(axis0 != axis1);
  4665. GGML_ASSERT(axis0 != axis2);
  4666. GGML_ASSERT(axis0 != axis3);
  4667. GGML_ASSERT(axis1 != axis2);
  4668. GGML_ASSERT(axis1 != axis3);
  4669. GGML_ASSERT(axis2 != axis3);
  4670. bool is_node = false;
  4671. if (a->grad) {
  4672. is_node = true;
  4673. }
  4674. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4675. int ne[GGML_MAX_DIMS];
  4676. int nb[GGML_MAX_DIMS];
  4677. ne[axis0] = a->ne[0];
  4678. ne[axis1] = a->ne[1];
  4679. ne[axis2] = a->ne[2];
  4680. ne[axis3] = a->ne[3];
  4681. nb[axis0] = a->nb[0];
  4682. nb[axis1] = a->nb[1];
  4683. nb[axis2] = a->nb[2];
  4684. nb[axis3] = a->nb[3];
  4685. result->ne[0] = ne[0];
  4686. result->ne[1] = ne[1];
  4687. result->ne[2] = ne[2];
  4688. result->ne[3] = ne[3];
  4689. result->nb[0] = nb[0];
  4690. result->nb[1] = nb[1];
  4691. result->nb[2] = nb[2];
  4692. result->nb[3] = nb[3];
  4693. result->op = GGML_OP_PERMUTE;
  4694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4695. result->src0 = a;
  4696. result->src1 = NULL;
  4697. if (is_node) {
  4698. result->padding[0] = axis0;
  4699. result->padding[1] = axis1;
  4700. result->padding[2] = axis2;
  4701. result->padding[3] = axis3;
  4702. }
  4703. return result;
  4704. }
  4705. // ggml_transpose
  4706. struct ggml_tensor * ggml_transpose(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. bool is_node = false;
  4710. if (a->grad) {
  4711. is_node = true;
  4712. }
  4713. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4714. result->ne[0] = a->ne[1];
  4715. result->ne[1] = a->ne[0];
  4716. result->nb[0] = a->nb[1];
  4717. result->nb[1] = a->nb[0];
  4718. result->op = GGML_OP_TRANSPOSE;
  4719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4720. result->src0 = a;
  4721. result->src1 = NULL;
  4722. return result;
  4723. }
  4724. // ggml_get_rows
  4725. struct ggml_tensor * ggml_get_rows(
  4726. struct ggml_context * ctx,
  4727. struct ggml_tensor * a,
  4728. struct ggml_tensor * b) {
  4729. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4730. bool is_node = false;
  4731. if (a->grad || b->grad) {
  4732. is_node = true;
  4733. }
  4734. // TODO: implement non F32 return
  4735. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4736. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4737. result->op = GGML_OP_GET_ROWS;
  4738. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4739. result->src0 = a;
  4740. result->src1 = b;
  4741. return result;
  4742. }
  4743. // ggml_get_rows_back
  4744. struct ggml_tensor * ggml_get_rows_back(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a,
  4747. struct ggml_tensor * b,
  4748. struct ggml_tensor * c) {
  4749. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4750. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4751. bool is_node = false;
  4752. if (a->grad || b->grad) {
  4753. is_node = true;
  4754. }
  4755. // TODO: implement non F32 return
  4756. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4757. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4758. result->op = GGML_OP_GET_ROWS_BACK;
  4759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4760. result->src0 = a;
  4761. result->src1 = b;
  4762. result->opt[0] = c;
  4763. return result;
  4764. }
  4765. // ggml_diag
  4766. struct ggml_tensor * ggml_diag(
  4767. struct ggml_context * ctx,
  4768. struct ggml_tensor * a) {
  4769. GGML_ASSERT(a->ne[1] == 1);
  4770. bool is_node = false;
  4771. if (a->grad) {
  4772. is_node = true;
  4773. }
  4774. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4775. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4776. result->op = GGML_OP_DIAG;
  4777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4778. result->src0 = a;
  4779. result->src1 = NULL;
  4780. return result;
  4781. }
  4782. // ggml_diag_mask_inf
  4783. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4784. struct ggml_context * ctx,
  4785. struct ggml_tensor * a,
  4786. int n_past,
  4787. bool inplace) {
  4788. bool is_node = false;
  4789. if (a->grad) {
  4790. is_node = true;
  4791. }
  4792. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4793. ggml_scratch_save(ctx);
  4794. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4795. ((int32_t *) b->data)[0] = n_past;
  4796. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4797. ggml_scratch_load(ctx);
  4798. result->op = GGML_OP_DIAG_MASK_INF;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src0 = a;
  4801. result->src1 = b;
  4802. return result;
  4803. }
  4804. struct ggml_tensor * ggml_diag_mask_inf(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. int n_past) {
  4808. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4809. }
  4810. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4811. struct ggml_context * ctx,
  4812. struct ggml_tensor * a,
  4813. int n_past) {
  4814. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4815. }
  4816. // ggml_diag_mask_zero
  4817. struct ggml_tensor * ggml_diag_mask_zero_impl(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. int n_past,
  4821. bool inplace) {
  4822. bool is_node = false;
  4823. if (a->grad) {
  4824. is_node = true;
  4825. }
  4826. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4827. ggml_scratch_save(ctx);
  4828. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4829. ggml_set_name(b, "n_past, inplace");
  4830. ((int32_t *) b->data)[0] = n_past;
  4831. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4832. ggml_scratch_load(ctx);
  4833. result->op = GGML_OP_DIAG_MASK_ZERO;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src0 = a;
  4836. result->src1 = b;
  4837. return result;
  4838. }
  4839. struct ggml_tensor * ggml_diag_mask_zero(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a,
  4842. int n_past) {
  4843. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4844. }
  4845. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. int n_past) {
  4849. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4850. }
  4851. // ggml_soft_max
  4852. struct ggml_tensor * ggml_soft_max_impl(
  4853. struct ggml_context * ctx,
  4854. struct ggml_tensor * a,
  4855. bool inplace) {
  4856. bool is_node = false;
  4857. if (a->grad) {
  4858. is_node = true;
  4859. }
  4860. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4861. result->op = GGML_OP_SOFT_MAX;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src0 = a;
  4864. result->src1 = NULL;
  4865. return result;
  4866. }
  4867. struct ggml_tensor * ggml_soft_max(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a) {
  4870. return ggml_soft_max_impl(ctx, a, false);
  4871. }
  4872. struct ggml_tensor * ggml_soft_max_inplace(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a) {
  4875. return ggml_soft_max_impl(ctx, a, true);
  4876. }
  4877. // ggml_rope
  4878. struct ggml_tensor * ggml_rope_impl(
  4879. struct ggml_context * ctx,
  4880. struct ggml_tensor * a,
  4881. int n_past,
  4882. int n_dims,
  4883. int mode,
  4884. bool inplace) {
  4885. GGML_ASSERT(n_past >= 0);
  4886. bool is_node = false;
  4887. if (!inplace && a->grad) {
  4888. is_node = true;
  4889. }
  4890. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4891. ggml_scratch_save(ctx);
  4892. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4893. ((int32_t *) b->data)[0] = n_past;
  4894. ((int32_t *) b->data)[1] = n_dims;
  4895. ((int32_t *) b->data)[2] = mode;
  4896. ggml_scratch_load(ctx);
  4897. result->op = GGML_OP_ROPE;
  4898. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4899. result->src0 = a;
  4900. result->src1 = b;
  4901. return result;
  4902. }
  4903. struct ggml_tensor * ggml_rope(
  4904. struct ggml_context * ctx,
  4905. struct ggml_tensor * a,
  4906. int n_past,
  4907. int n_dims,
  4908. int mode) {
  4909. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  4910. }
  4911. struct ggml_tensor * ggml_rope_inplace(
  4912. struct ggml_context * ctx,
  4913. struct ggml_tensor * a,
  4914. int n_past,
  4915. int n_dims,
  4916. int mode) {
  4917. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  4918. }
  4919. // ggml_rope_back
  4920. struct ggml_tensor * ggml_rope_back(
  4921. struct ggml_context * ctx,
  4922. struct ggml_tensor * a,
  4923. int n_past,
  4924. int n_dims,
  4925. int mode) {
  4926. GGML_ASSERT(n_past >= 0);
  4927. bool is_node = false;
  4928. if (a->grad) {
  4929. GGML_ASSERT(false); // TODO: implement backward
  4930. is_node = true;
  4931. }
  4932. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4933. ggml_scratch_save(ctx);
  4934. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4935. ggml_set_name(b, "n_past, n_dims, mode");
  4936. ((int32_t *) b->data)[0] = n_past;
  4937. ((int32_t *) b->data)[1] = n_dims;
  4938. ((int32_t *) b->data)[2] = mode;
  4939. ggml_scratch_load(ctx);
  4940. result->op = GGML_OP_ROPE_BACK;
  4941. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4942. result->src0 = a;
  4943. result->src1 = b;
  4944. return result;
  4945. }
  4946. // ggml_alibi
  4947. struct ggml_tensor * ggml_alibi(
  4948. struct ggml_context * ctx,
  4949. struct ggml_tensor * a,
  4950. int n_past,
  4951. int n_head) {
  4952. GGML_ASSERT(n_past >= 0);
  4953. bool is_node = false;
  4954. if (a->grad) {
  4955. GGML_ASSERT(false); // TODO: implement backward
  4956. is_node = true;
  4957. }
  4958. // TODO: when implement backward, fix this:
  4959. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4960. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4961. ggml_scratch_save(ctx);
  4962. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4963. ((int32_t *) b->data)[0] = n_past;
  4964. ((int32_t *) b->data)[1] = n_head;
  4965. ggml_scratch_load(ctx);
  4966. result->op = GGML_OP_ALIBI;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src0 = a;
  4969. result->src1 = b;
  4970. return result;
  4971. }
  4972. // ggml_conv_1d_1s
  4973. struct ggml_tensor * ggml_conv_1d_1s(
  4974. struct ggml_context * ctx,
  4975. struct ggml_tensor * a,
  4976. struct ggml_tensor * b) {
  4977. GGML_ASSERT(ggml_is_matrix(b));
  4978. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4979. GGML_ASSERT(a->ne[3] == 1);
  4980. bool is_node = false;
  4981. if (a->grad || b->grad) {
  4982. GGML_ASSERT(false); // TODO: implement backward
  4983. is_node = true;
  4984. }
  4985. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4986. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4987. result->op = GGML_OP_CONV_1D_1S;
  4988. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4989. result->src0 = a;
  4990. result->src1 = b;
  4991. return result;
  4992. }
  4993. // ggml_conv_1d_2s
  4994. struct ggml_tensor * ggml_conv_1d_2s(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. struct ggml_tensor * b) {
  4998. GGML_ASSERT(ggml_is_matrix(b));
  4999. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5000. GGML_ASSERT(a->ne[3] == 1);
  5001. bool is_node = false;
  5002. if (a->grad || b->grad) {
  5003. GGML_ASSERT(false); // TODO: implement backward
  5004. is_node = true;
  5005. }
  5006. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5007. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5008. result->op = GGML_OP_CONV_1D_2S;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src0 = a;
  5011. result->src1 = b;
  5012. return result;
  5013. }
  5014. // ggml_flash_attn
  5015. struct ggml_tensor * ggml_flash_attn(
  5016. struct ggml_context * ctx,
  5017. struct ggml_tensor * q,
  5018. struct ggml_tensor * k,
  5019. struct ggml_tensor * v,
  5020. bool masked) {
  5021. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5022. // TODO: check if vT can be multiplied by (k*qT)
  5023. bool is_node = false;
  5024. if (q->grad || k->grad || v->grad) {
  5025. GGML_ASSERT(false); // TODO: implement backward
  5026. is_node = true;
  5027. }
  5028. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5029. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5030. result->op = GGML_OP_FLASH_ATTN;
  5031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5032. result->src0 = q;
  5033. result->src1 = k;
  5034. result->opt[0] = v;
  5035. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5036. return result;
  5037. }
  5038. // ggml_flash_ff
  5039. struct ggml_tensor * ggml_flash_ff(
  5040. struct ggml_context * ctx,
  5041. struct ggml_tensor * a,
  5042. struct ggml_tensor * b0,
  5043. struct ggml_tensor * b1,
  5044. struct ggml_tensor * c0,
  5045. struct ggml_tensor * c1) {
  5046. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5047. // TODO: more checks
  5048. bool is_node = false;
  5049. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5050. GGML_ASSERT(false); // TODO: implement backward
  5051. is_node = true;
  5052. }
  5053. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5054. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5055. result->op = GGML_OP_FLASH_FF;
  5056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5057. result->src0 = a;
  5058. result->src1 = b0;
  5059. result->opt[0] = b1;
  5060. result->opt[1] = c0;
  5061. result->opt[2] = c1;
  5062. return result;
  5063. }
  5064. // ggml_map_unary
  5065. struct ggml_tensor * ggml_map_unary_impl_f32(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. const ggml_unary_op_f32_t fun,
  5069. bool inplace) {
  5070. bool is_node = false;
  5071. if (!inplace && a->grad) {
  5072. is_node = true;
  5073. }
  5074. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5075. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5076. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. result->op = GGML_OP_MAP_UNARY;
  5078. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5079. result->src0 = a;
  5080. result->opt[0] = addr_tensor;
  5081. return result;
  5082. }
  5083. struct ggml_tensor * ggml_map_unary_f32(
  5084. struct ggml_context * ctx,
  5085. struct ggml_tensor * a,
  5086. const ggml_unary_op_f32_t fun) {
  5087. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5088. }
  5089. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5090. struct ggml_context * ctx,
  5091. struct ggml_tensor * a,
  5092. const ggml_unary_op_f32_t fun) {
  5093. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5094. }
  5095. // ggml_map_binary
  5096. struct ggml_tensor * ggml_map_binary_impl_f32(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. struct ggml_tensor * b,
  5100. const ggml_binary_op_f32_t fun,
  5101. bool inplace) {
  5102. GGML_ASSERT(ggml_are_same_shape(a, b));
  5103. bool is_node = false;
  5104. if (!inplace && (a->grad || b->grad)) {
  5105. is_node = true;
  5106. }
  5107. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5108. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5109. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5110. result->op = GGML_OP_MAP_BINARY;
  5111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5112. result->src0 = a;
  5113. result->src1 = b;
  5114. result->opt[0] = addr_tensor;
  5115. return result;
  5116. }
  5117. struct ggml_tensor * ggml_map_binary_f32(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. struct ggml_tensor * b,
  5121. const ggml_binary_op_f32_t fun) {
  5122. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5123. }
  5124. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5125. struct ggml_context * ctx,
  5126. struct ggml_tensor * a,
  5127. struct ggml_tensor * b,
  5128. const ggml_binary_op_f32_t fun) {
  5129. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5130. }
  5131. ////////////////////////////////////////////////////////////////////////////////
  5132. void ggml_set_param(
  5133. struct ggml_context * ctx,
  5134. struct ggml_tensor * tensor) {
  5135. tensor->is_param = true;
  5136. GGML_ASSERT(tensor->grad == NULL);
  5137. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5138. }
  5139. // ggml_compute_forward_dup
  5140. static void ggml_compute_forward_dup_same_cont(
  5141. const struct ggml_compute_params * params,
  5142. const struct ggml_tensor * src0,
  5143. struct ggml_tensor * dst) {
  5144. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5145. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5146. GGML_ASSERT(src0->type == dst->type);
  5147. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5148. return;
  5149. }
  5150. const size_t nb00 = src0->nb[0];
  5151. const size_t nb0 = dst->nb[0];
  5152. const int ith = params->ith; // thread index
  5153. const int nth = params->nth; // number of threads
  5154. // parallelize by elements
  5155. const int ne = ggml_nelements(dst);
  5156. const int dr = (ne + nth - 1) / nth;
  5157. const int ie0 = dr * ith;
  5158. const int ie1 = MIN(ie0 + dr, ne);
  5159. if (ie0 < ie1) {
  5160. memcpy(
  5161. ((char *) dst->data + ie0*nb0),
  5162. ((char *) src0->data + ie0*nb00),
  5163. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5164. }
  5165. }
  5166. static void ggml_compute_forward_dup_f16(
  5167. const struct ggml_compute_params * params,
  5168. const struct ggml_tensor * src0,
  5169. struct ggml_tensor * dst) {
  5170. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5172. return;
  5173. }
  5174. const int64_t ne00 = src0->ne[0];
  5175. const int64_t ne01 = src0->ne[1];
  5176. const int64_t ne02 = src0->ne[2];
  5177. const int64_t ne03 = src0->ne[3];
  5178. const int64_t ne0 = dst->ne[0];
  5179. const int64_t ne1 = dst->ne[1];
  5180. const int64_t ne2 = dst->ne[2];
  5181. const int64_t ne3 = dst->ne[3];
  5182. const size_t nb00 = src0->nb[0];
  5183. const size_t nb01 = src0->nb[1];
  5184. const size_t nb02 = src0->nb[2];
  5185. const size_t nb03 = src0->nb[3];
  5186. const size_t nb0 = dst->nb[0];
  5187. const size_t nb1 = dst->nb[1];
  5188. const size_t nb2 = dst->nb[2];
  5189. const size_t nb3 = dst->nb[3];
  5190. const int ith = params->ith; // thread index
  5191. const int nth = params->nth; // number of threads
  5192. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5193. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5194. return;
  5195. }
  5196. // parallelize by rows
  5197. const int nr = ne01;
  5198. // number of rows per thread
  5199. const int dr = (nr + nth - 1) / nth;
  5200. // row range for this thread
  5201. const int ir0 = dr * ith;
  5202. const int ir1 = MIN(ir0 + dr, nr);
  5203. if (src0->type == dst->type &&
  5204. ne00 == ne0 &&
  5205. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5206. // copy by rows
  5207. const size_t rs = ne00*nb00;
  5208. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5210. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5211. memcpy(
  5212. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5213. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5214. rs);
  5215. }
  5216. }
  5217. }
  5218. return;
  5219. }
  5220. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5221. if (ggml_is_contiguous(dst)) {
  5222. if (nb00 == sizeof(ggml_fp16_t)) {
  5223. if (dst->type == GGML_TYPE_F16) {
  5224. size_t id = 0;
  5225. const size_t rs = ne00 * nb00;
  5226. char * dst_ptr = (char *) dst->data;
  5227. for (int i03 = 0; i03 < ne03; i03++) {
  5228. for (int i02 = 0; i02 < ne02; i02++) {
  5229. id += rs * ir0;
  5230. for (int i01 = ir0; i01 < ir1; i01++) {
  5231. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5232. memcpy(dst_ptr + id, src0_ptr, rs);
  5233. id += rs;
  5234. }
  5235. id += rs * (ne01 - ir1);
  5236. }
  5237. }
  5238. } else if (dst->type == GGML_TYPE_F32) {
  5239. size_t id = 0;
  5240. float * dst_ptr = (float *) dst->data;
  5241. for (int i03 = 0; i03 < ne03; i03++) {
  5242. for (int i02 = 0; i02 < ne02; i02++) {
  5243. id += ne00 * ir0;
  5244. for (int i01 = ir0; i01 < ir1; i01++) {
  5245. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5246. for (int i00 = 0; i00 < ne00; i00++) {
  5247. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5248. id++;
  5249. }
  5250. }
  5251. id += ne00 * (ne01 - ir1);
  5252. }
  5253. }
  5254. } else if (ggml_is_quantized(dst->type)) {
  5255. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5256. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5257. size_t id = 0;
  5258. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5259. char * dst_ptr = (char *) dst->data;
  5260. for (int i03 = 0; i03 < ne03; i03++) {
  5261. for (int i02 = 0; i02 < ne02; i02++) {
  5262. id += rs * ir0;
  5263. for (int i01 = ir0; i01 < ir1; i01++) {
  5264. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5265. for (int i00 = 0; i00 < ne00; i00++) {
  5266. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5267. }
  5268. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5269. id += rs;
  5270. }
  5271. id += rs * (ne01 - ir1);
  5272. }
  5273. }
  5274. } else {
  5275. GGML_ASSERT(false); // TODO: implement
  5276. }
  5277. } else {
  5278. //printf("%s: this is not optimal - fix me\n", __func__);
  5279. if (dst->type == GGML_TYPE_F32) {
  5280. size_t id = 0;
  5281. float * dst_ptr = (float *) dst->data;
  5282. for (int i03 = 0; i03 < ne03; i03++) {
  5283. for (int i02 = 0; i02 < ne02; i02++) {
  5284. id += ne00 * ir0;
  5285. for (int i01 = ir0; i01 < ir1; i01++) {
  5286. for (int i00 = 0; i00 < ne00; i00++) {
  5287. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5288. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5289. id++;
  5290. }
  5291. }
  5292. id += ne00 * (ne01 - ir1);
  5293. }
  5294. }
  5295. } else if (dst->type == GGML_TYPE_F16) {
  5296. size_t id = 0;
  5297. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5298. for (int i03 = 0; i03 < ne03; i03++) {
  5299. for (int i02 = 0; i02 < ne02; i02++) {
  5300. id += ne00 * ir0;
  5301. for (int i01 = ir0; i01 < ir1; i01++) {
  5302. for (int i00 = 0; i00 < ne00; i00++) {
  5303. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5304. dst_ptr[id] = *src0_ptr;
  5305. id++;
  5306. }
  5307. }
  5308. id += ne00 * (ne01 - ir1);
  5309. }
  5310. }
  5311. } else {
  5312. GGML_ASSERT(false); // TODO: implement
  5313. }
  5314. }
  5315. return;
  5316. }
  5317. // dst counters
  5318. int64_t i10 = 0;
  5319. int64_t i11 = 0;
  5320. int64_t i12 = 0;
  5321. int64_t i13 = 0;
  5322. if (dst->type == GGML_TYPE_F16) {
  5323. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5325. i10 += ne00 * ir0;
  5326. while (i10 >= ne0) {
  5327. i10 -= ne0;
  5328. if (++i11 == ne1) {
  5329. i11 = 0;
  5330. if (++i12 == ne2) {
  5331. i12 = 0;
  5332. if (++i13 == ne3) {
  5333. i13 = 0;
  5334. }
  5335. }
  5336. }
  5337. }
  5338. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5339. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5340. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5341. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5342. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5343. if (++i10 == ne00) {
  5344. i10 = 0;
  5345. if (++i11 == ne01) {
  5346. i11 = 0;
  5347. if (++i12 == ne02) {
  5348. i12 = 0;
  5349. if (++i13 == ne03) {
  5350. i13 = 0;
  5351. }
  5352. }
  5353. }
  5354. }
  5355. }
  5356. }
  5357. i10 += ne00 * (ne01 - ir1);
  5358. while (i10 >= ne0) {
  5359. i10 -= ne0;
  5360. if (++i11 == ne1) {
  5361. i11 = 0;
  5362. if (++i12 == ne2) {
  5363. i12 = 0;
  5364. if (++i13 == ne3) {
  5365. i13 = 0;
  5366. }
  5367. }
  5368. }
  5369. }
  5370. }
  5371. }
  5372. } else if (dst->type == GGML_TYPE_F32) {
  5373. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5374. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5375. i10 += ne00 * ir0;
  5376. while (i10 >= ne0) {
  5377. i10 -= ne0;
  5378. if (++i11 == ne1) {
  5379. i11 = 0;
  5380. if (++i12 == ne2) {
  5381. i12 = 0;
  5382. if (++i13 == ne3) {
  5383. i13 = 0;
  5384. }
  5385. }
  5386. }
  5387. }
  5388. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5389. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5390. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5391. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5392. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5393. if (++i10 == ne0) {
  5394. i10 = 0;
  5395. if (++i11 == ne1) {
  5396. i11 = 0;
  5397. if (++i12 == ne2) {
  5398. i12 = 0;
  5399. if (++i13 == ne3) {
  5400. i13 = 0;
  5401. }
  5402. }
  5403. }
  5404. }
  5405. }
  5406. }
  5407. i10 += ne00 * (ne01 - ir1);
  5408. while (i10 >= ne0) {
  5409. i10 -= ne0;
  5410. if (++i11 == ne1) {
  5411. i11 = 0;
  5412. if (++i12 == ne2) {
  5413. i12 = 0;
  5414. if (++i13 == ne3) {
  5415. i13 = 0;
  5416. }
  5417. }
  5418. }
  5419. }
  5420. }
  5421. }
  5422. } else {
  5423. GGML_ASSERT(false); // TODO: implement
  5424. }
  5425. }
  5426. static void ggml_compute_forward_dup_f32(
  5427. const struct ggml_compute_params * params,
  5428. const struct ggml_tensor * src0,
  5429. struct ggml_tensor * dst) {
  5430. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5432. return;
  5433. }
  5434. const int64_t ne00 = src0->ne[0];
  5435. const int64_t ne01 = src0->ne[1];
  5436. const int64_t ne02 = src0->ne[2];
  5437. const int64_t ne03 = src0->ne[3];
  5438. const int64_t ne0 = dst->ne[0];
  5439. const int64_t ne1 = dst->ne[1];
  5440. const int64_t ne2 = dst->ne[2];
  5441. const int64_t ne3 = dst->ne[3];
  5442. const size_t nb00 = src0->nb[0];
  5443. const size_t nb01 = src0->nb[1];
  5444. const size_t nb02 = src0->nb[2];
  5445. const size_t nb03 = src0->nb[3];
  5446. const size_t nb0 = dst->nb[0];
  5447. const size_t nb1 = dst->nb[1];
  5448. const size_t nb2 = dst->nb[2];
  5449. const size_t nb3 = dst->nb[3];
  5450. const int ith = params->ith; // thread index
  5451. const int nth = params->nth; // number of threads
  5452. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5453. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5454. return;
  5455. }
  5456. // parallelize by rows
  5457. const int nr = ne01;
  5458. // number of rows per thread
  5459. const int dr = (nr + nth - 1) / nth;
  5460. // row range for this thread
  5461. const int ir0 = dr * ith;
  5462. const int ir1 = MIN(ir0 + dr, nr);
  5463. if (src0->type == dst->type &&
  5464. ne00 == ne0 &&
  5465. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5466. // copy by rows
  5467. const size_t rs = ne00*nb00;
  5468. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5469. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5470. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5471. memcpy(
  5472. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5473. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5474. rs);
  5475. }
  5476. }
  5477. }
  5478. return;
  5479. }
  5480. if (ggml_is_contiguous(dst)) {
  5481. // TODO: simplify
  5482. if (nb00 == sizeof(float)) {
  5483. if (dst->type == GGML_TYPE_F32) {
  5484. size_t id = 0;
  5485. const size_t rs = ne00 * nb00;
  5486. char * dst_ptr = (char *) dst->data;
  5487. for (int i03 = 0; i03 < ne03; i03++) {
  5488. for (int i02 = 0; i02 < ne02; i02++) {
  5489. id += rs * ir0;
  5490. for (int i01 = ir0; i01 < ir1; i01++) {
  5491. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5492. memcpy(dst_ptr + id, src0_ptr, rs);
  5493. id += rs;
  5494. }
  5495. id += rs * (ne01 - ir1);
  5496. }
  5497. }
  5498. } else if (dst->type == GGML_TYPE_F16) {
  5499. size_t id = 0;
  5500. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5501. for (int i03 = 0; i03 < ne03; i03++) {
  5502. for (int i02 = 0; i02 < ne02; i02++) {
  5503. id += ne00 * ir0;
  5504. for (int i01 = ir0; i01 < ir1; i01++) {
  5505. for (int i00 = 0; i00 < ne00; i00++) {
  5506. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5507. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5508. id++;
  5509. }
  5510. }
  5511. id += ne00 * (ne01 - ir1);
  5512. }
  5513. }
  5514. } else if (ggml_is_quantized(dst->type)) {
  5515. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5516. size_t id = 0;
  5517. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5518. char * dst_ptr = (char *) dst->data;
  5519. for (int i03 = 0; i03 < ne03; i03++) {
  5520. for (int i02 = 0; i02 < ne02; i02++) {
  5521. id += rs * ir0;
  5522. for (int i01 = ir0; i01 < ir1; i01++) {
  5523. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5524. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5525. id += rs;
  5526. }
  5527. id += rs * (ne01 - ir1);
  5528. }
  5529. }
  5530. } else {
  5531. GGML_ASSERT(false); // TODO: implement
  5532. }
  5533. } else {
  5534. //printf("%s: this is not optimal - fix me\n", __func__);
  5535. if (dst->type == GGML_TYPE_F32) {
  5536. size_t id = 0;
  5537. float * dst_ptr = (float *) dst->data;
  5538. for (int i03 = 0; i03 < ne03; i03++) {
  5539. for (int i02 = 0; i02 < ne02; i02++) {
  5540. id += ne00 * ir0;
  5541. for (int i01 = ir0; i01 < ir1; i01++) {
  5542. for (int i00 = 0; i00 < ne00; i00++) {
  5543. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5544. dst_ptr[id] = *src0_ptr;
  5545. id++;
  5546. }
  5547. }
  5548. id += ne00 * (ne01 - ir1);
  5549. }
  5550. }
  5551. } else if (dst->type == GGML_TYPE_F16) {
  5552. size_t id = 0;
  5553. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5554. for (int i03 = 0; i03 < ne03; i03++) {
  5555. for (int i02 = 0; i02 < ne02; i02++) {
  5556. id += ne00 * ir0;
  5557. for (int i01 = ir0; i01 < ir1; i01++) {
  5558. for (int i00 = 0; i00 < ne00; i00++) {
  5559. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5560. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5561. id++;
  5562. }
  5563. }
  5564. id += ne00 * (ne01 - ir1);
  5565. }
  5566. }
  5567. } else {
  5568. GGML_ASSERT(false); // TODO: implement
  5569. }
  5570. }
  5571. return;
  5572. }
  5573. // dst counters
  5574. int64_t i10 = 0;
  5575. int64_t i11 = 0;
  5576. int64_t i12 = 0;
  5577. int64_t i13 = 0;
  5578. if (dst->type == GGML_TYPE_F32) {
  5579. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5580. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5581. i10 += ne00 * ir0;
  5582. while (i10 >= ne0) {
  5583. i10 -= ne0;
  5584. if (++i11 == ne1) {
  5585. i11 = 0;
  5586. if (++i12 == ne2) {
  5587. i12 = 0;
  5588. if (++i13 == ne3) {
  5589. i13 = 0;
  5590. }
  5591. }
  5592. }
  5593. }
  5594. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5595. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5596. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5597. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5598. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5599. if (++i10 == ne0) {
  5600. i10 = 0;
  5601. if (++i11 == ne1) {
  5602. i11 = 0;
  5603. if (++i12 == ne2) {
  5604. i12 = 0;
  5605. if (++i13 == ne3) {
  5606. i13 = 0;
  5607. }
  5608. }
  5609. }
  5610. }
  5611. }
  5612. }
  5613. i10 += ne00 * (ne01 - ir1);
  5614. while (i10 >= ne0) {
  5615. i10 -= ne0;
  5616. if (++i11 == ne1) {
  5617. i11 = 0;
  5618. if (++i12 == ne2) {
  5619. i12 = 0;
  5620. if (++i13 == ne3) {
  5621. i13 = 0;
  5622. }
  5623. }
  5624. }
  5625. }
  5626. }
  5627. }
  5628. } else if (dst->type == GGML_TYPE_F16) {
  5629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5631. i10 += ne00 * ir0;
  5632. while (i10 >= ne0) {
  5633. i10 -= ne0;
  5634. if (++i11 == ne1) {
  5635. i11 = 0;
  5636. if (++i12 == ne2) {
  5637. i12 = 0;
  5638. if (++i13 == ne3) {
  5639. i13 = 0;
  5640. }
  5641. }
  5642. }
  5643. }
  5644. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5645. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5646. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5647. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5648. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5649. if (++i10 == ne0) {
  5650. i10 = 0;
  5651. if (++i11 == ne1) {
  5652. i11 = 0;
  5653. if (++i12 == ne2) {
  5654. i12 = 0;
  5655. if (++i13 == ne3) {
  5656. i13 = 0;
  5657. }
  5658. }
  5659. }
  5660. }
  5661. }
  5662. }
  5663. i10 += ne00 * (ne01 - ir1);
  5664. while (i10 >= ne0) {
  5665. i10 -= ne0;
  5666. if (++i11 == ne1) {
  5667. i11 = 0;
  5668. if (++i12 == ne2) {
  5669. i12 = 0;
  5670. if (++i13 == ne3) {
  5671. i13 = 0;
  5672. }
  5673. }
  5674. }
  5675. }
  5676. }
  5677. }
  5678. } else {
  5679. GGML_ASSERT(false); // TODO: implement
  5680. }
  5681. }
  5682. static void ggml_compute_forward_dup(
  5683. const struct ggml_compute_params * params,
  5684. const struct ggml_tensor * src0,
  5685. struct ggml_tensor * dst) {
  5686. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5687. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5688. return;
  5689. }
  5690. switch (src0->type) {
  5691. case GGML_TYPE_F16:
  5692. {
  5693. ggml_compute_forward_dup_f16(params, src0, dst);
  5694. } break;
  5695. case GGML_TYPE_F32:
  5696. {
  5697. ggml_compute_forward_dup_f32(params, src0, dst);
  5698. } break;
  5699. default:
  5700. {
  5701. GGML_ASSERT(false);
  5702. } break;
  5703. }
  5704. }
  5705. // ggml_compute_forward_add
  5706. static void ggml_compute_forward_add_f32(
  5707. const struct ggml_compute_params * params,
  5708. const struct ggml_tensor * src0,
  5709. const struct ggml_tensor * src1,
  5710. struct ggml_tensor * dst) {
  5711. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5712. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5713. return;
  5714. }
  5715. const int ith = params->ith;
  5716. const int nth = params->nth;
  5717. const int nr = ggml_nrows(src0);
  5718. const int64_t ne0 = src0->ne[0];
  5719. const int64_t ne1 = src0->ne[1];
  5720. const int64_t ne2 = src0->ne[2];
  5721. const size_t nb00 = src0->nb[0];
  5722. const size_t nb01 = src0->nb[1];
  5723. const size_t nb02 = src0->nb[2];
  5724. const size_t nb03 = src0->nb[3];
  5725. const size_t nb10 = src1->nb[0];
  5726. const size_t nb11 = src1->nb[1];
  5727. const size_t nb12 = src1->nb[2];
  5728. const size_t nb13 = src1->nb[3];
  5729. const size_t nb0 = dst->nb[0];
  5730. const size_t nb1 = dst->nb[1];
  5731. const size_t nb2 = dst->nb[2];
  5732. const size_t nb3 = dst->nb[3];
  5733. GGML_ASSERT( nb0 == sizeof(float));
  5734. GGML_ASSERT(nb00 == sizeof(float));
  5735. // rows per thread
  5736. const int dr = (nr + nth - 1)/nth;
  5737. // row range for this thread
  5738. const int ir0 = dr*ith;
  5739. const int ir1 = MIN(ir0 + dr, nr);
  5740. if (nb10 == sizeof(float)) {
  5741. for (int ir = ir0; ir < ir1; ++ir) {
  5742. // src0, src1 and dst are same shape => same indices
  5743. const int i3 = ir/(ne2*ne1);
  5744. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5745. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5746. #ifdef GGML_USE_ACCELERATE
  5747. vDSP_vadd(
  5748. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5749. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5750. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5751. ne0);
  5752. #else
  5753. ggml_vec_add_f32(ne0,
  5754. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5755. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5756. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5757. #endif
  5758. // }
  5759. // }
  5760. }
  5761. } else {
  5762. // src1 is not contiguous
  5763. for (int ir = ir0; ir < ir1; ++ir) {
  5764. // src0, src1 and dst are same shape => same indices
  5765. const int i3 = ir/(ne2*ne1);
  5766. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5767. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5768. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5769. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5770. for (int i0 = 0; i0 < ne0; i0++) {
  5771. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5772. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5773. }
  5774. }
  5775. }
  5776. }
  5777. static void ggml_compute_forward_add_f16_f32(
  5778. const struct ggml_compute_params * params,
  5779. const struct ggml_tensor * src0,
  5780. const struct ggml_tensor * src1,
  5781. struct ggml_tensor * dst) {
  5782. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5783. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5784. return;
  5785. }
  5786. const int ith = params->ith;
  5787. const int nth = params->nth;
  5788. const int nr = ggml_nrows(src0);
  5789. const int64_t ne0 = src0->ne[0];
  5790. const int64_t ne1 = src0->ne[1];
  5791. const int64_t ne2 = src0->ne[2];
  5792. const size_t nb00 = src0->nb[0];
  5793. const size_t nb01 = src0->nb[1];
  5794. const size_t nb02 = src0->nb[2];
  5795. const size_t nb03 = src0->nb[3];
  5796. const size_t nb10 = src1->nb[0];
  5797. const size_t nb11 = src1->nb[1];
  5798. const size_t nb12 = src1->nb[2];
  5799. const size_t nb13 = src1->nb[3];
  5800. const size_t nb0 = dst->nb[0];
  5801. const size_t nb1 = dst->nb[1];
  5802. const size_t nb2 = dst->nb[2];
  5803. const size_t nb3 = dst->nb[3];
  5804. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5805. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5806. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5807. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5808. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5809. // rows per thread
  5810. const int dr = (nr + nth - 1)/nth;
  5811. // row range for this thread
  5812. const int ir0 = dr*ith;
  5813. const int ir1 = MIN(ir0 + dr, nr);
  5814. if (nb10 == sizeof(float)) {
  5815. for (int ir = ir0; ir < ir1; ++ir) {
  5816. // src0, src1 and dst are same shape => same indices
  5817. const int i3 = ir/(ne2*ne1);
  5818. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5819. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5820. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5821. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5822. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5823. for (int i = 0; i < ne0; i++) {
  5824. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5825. }
  5826. }
  5827. }
  5828. else {
  5829. // src1 is not contiguous
  5830. GGML_ASSERT(false);
  5831. }
  5832. }
  5833. static void ggml_compute_forward_add_f16_f16(
  5834. const struct ggml_compute_params * params,
  5835. const struct ggml_tensor * src0,
  5836. const struct ggml_tensor * src1,
  5837. struct ggml_tensor * dst) {
  5838. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5839. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5840. return;
  5841. }
  5842. const int ith = params->ith;
  5843. const int nth = params->nth;
  5844. const int nr = ggml_nrows(src0);
  5845. const int64_t ne0 = src0->ne[0];
  5846. const int64_t ne1 = src0->ne[1];
  5847. const int64_t ne2 = src0->ne[2];
  5848. const size_t nb00 = src0->nb[0];
  5849. const size_t nb01 = src0->nb[1];
  5850. const size_t nb02 = src0->nb[2];
  5851. const size_t nb03 = src0->nb[3];
  5852. const size_t nb10 = src1->nb[0];
  5853. const size_t nb11 = src1->nb[1];
  5854. const size_t nb12 = src1->nb[2];
  5855. const size_t nb13 = src1->nb[3];
  5856. const size_t nb0 = dst->nb[0];
  5857. const size_t nb1 = dst->nb[1];
  5858. const size_t nb2 = dst->nb[2];
  5859. const size_t nb3 = dst->nb[3];
  5860. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5861. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5862. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5863. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5864. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5865. // rows per thread
  5866. const int dr = (nr + nth - 1)/nth;
  5867. // row range for this thread
  5868. const int ir0 = dr*ith;
  5869. const int ir1 = MIN(ir0 + dr, nr);
  5870. if (nb10 == sizeof(ggml_fp16_t)) {
  5871. for (int ir = ir0; ir < ir1; ++ir) {
  5872. // src0, src1 and dst are same shape => same indices
  5873. const int i3 = ir/(ne2*ne1);
  5874. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5875. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5876. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5877. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5878. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5879. for (int i = 0; i < ne0; i++) {
  5880. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5881. }
  5882. }
  5883. }
  5884. else {
  5885. // src1 is not contiguous
  5886. GGML_ASSERT(false);
  5887. }
  5888. }
  5889. static void ggml_compute_forward_add_q_f32(
  5890. const struct ggml_compute_params * params,
  5891. const struct ggml_tensor * src0,
  5892. const struct ggml_tensor * src1,
  5893. struct ggml_tensor * dst) {
  5894. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5895. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5896. return;
  5897. }
  5898. const int nr = ggml_nrows(src0);
  5899. const int64_t ne00 = src0->ne[0];
  5900. const int64_t ne01 = src0->ne[1];
  5901. const int64_t ne02 = src0->ne[2];
  5902. //const int64_t ne03 = src0->ne[3];
  5903. const size_t nb00 = src0->nb[0];
  5904. const size_t nb01 = src0->nb[1];
  5905. const size_t nb02 = src0->nb[2];
  5906. const size_t nb03 = src0->nb[3];
  5907. const size_t nb10 = src1->nb[0];
  5908. const size_t nb11 = src1->nb[1];
  5909. const size_t nb12 = src1->nb[2];
  5910. const size_t nb13 = src1->nb[3];
  5911. const size_t nb0 = dst->nb[0];
  5912. const size_t nb1 = dst->nb[1];
  5913. const size_t nb2 = dst->nb[2];
  5914. const size_t nb3 = dst->nb[3];
  5915. const int ith = params->ith;
  5916. const int nth = params->nth;
  5917. const enum ggml_type type = src0->type;
  5918. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5919. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5920. // we don't support permuted src0 or src1
  5921. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  5922. GGML_ASSERT(nb10 == sizeof(float));
  5923. // dst cannot be transposed or permuted
  5924. GGML_ASSERT(nb0 <= nb1);
  5925. GGML_ASSERT(nb1 <= nb2);
  5926. GGML_ASSERT(nb2 <= nb3);
  5927. GGML_ASSERT(ggml_is_quantized(src0->type));
  5928. GGML_ASSERT(dst->type == src0->type);
  5929. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5930. // rows per thread
  5931. const int dr = (nr + nth - 1)/nth;
  5932. // row range for this thread
  5933. const int ir0 = dr*ith;
  5934. const int ir1 = MIN(ir0 + dr, nr);
  5935. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5936. for (int ir = ir0; ir < ir1; ++ir) {
  5937. // src0 indices
  5938. const int i03 = ir/(ne02*ne01);
  5939. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5940. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5941. // src1 and dst are same shape as src0 => same indices
  5942. const int i13 = i03;
  5943. const int i12 = i02;
  5944. const int i11 = i01;
  5945. const int i3 = i03;
  5946. const int i2 = i02;
  5947. const int i1 = i01;
  5948. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5949. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5950. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5951. assert(ne00 % 32 == 0);
  5952. // unquantize row from src0 to temp buffer
  5953. dequantize_row_q(src0_row, wdata, ne00);
  5954. // add src1
  5955. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5956. // quantize row to dst
  5957. quantize_row_q(wdata, dst_row, ne00);
  5958. }
  5959. }
  5960. static void ggml_compute_forward_add(
  5961. const struct ggml_compute_params * params,
  5962. const struct ggml_tensor * src0,
  5963. const struct ggml_tensor * src1,
  5964. struct ggml_tensor * dst) {
  5965. switch (src0->type) {
  5966. case GGML_TYPE_F32:
  5967. {
  5968. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5969. } break;
  5970. case GGML_TYPE_F16:
  5971. {
  5972. if (src1->type == GGML_TYPE_F16) {
  5973. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5974. }
  5975. else if (src1->type == GGML_TYPE_F32) {
  5976. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5977. }
  5978. else {
  5979. GGML_ASSERT(false);
  5980. }
  5981. } break;
  5982. case GGML_TYPE_Q4_0:
  5983. case GGML_TYPE_Q4_1:
  5984. case GGML_TYPE_Q5_0:
  5985. case GGML_TYPE_Q5_1:
  5986. case GGML_TYPE_Q8_0:
  5987. {
  5988. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5989. } break;
  5990. default:
  5991. {
  5992. GGML_ASSERT(false);
  5993. } break;
  5994. }
  5995. }
  5996. // ggml_compute_forward_add1
  5997. static void ggml_compute_forward_add1_f32(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. const struct ggml_tensor * src1,
  6001. struct ggml_tensor * dst) {
  6002. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6003. GGML_ASSERT(ggml_is_scalar(src1));
  6004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6005. return;
  6006. }
  6007. const int ith = params->ith;
  6008. const int nth = params->nth;
  6009. const int nr = ggml_nrows(src0);
  6010. const int64_t ne0 = src0->ne[0];
  6011. const int64_t ne1 = src0->ne[1];
  6012. const int64_t ne2 = src0->ne[2];
  6013. const size_t nb00 = src0->nb[0];
  6014. const size_t nb01 = src0->nb[1];
  6015. const size_t nb02 = src0->nb[2];
  6016. const size_t nb03 = src0->nb[3];
  6017. const size_t nb0 = dst->nb[0];
  6018. const size_t nb1 = dst->nb[1];
  6019. const size_t nb2 = dst->nb[2];
  6020. const size_t nb3 = dst->nb[3];
  6021. GGML_ASSERT( nb0 == sizeof(float));
  6022. GGML_ASSERT(nb00 == sizeof(float));
  6023. // rows per thread
  6024. const int dr = (nr + nth - 1)/nth;
  6025. // row range for this thread
  6026. const int ir0 = dr*ith;
  6027. const int ir1 = MIN(ir0 + dr, nr);
  6028. for (int ir = ir0; ir < ir1; ++ir) {
  6029. // src0 and dst are same shape => same indices
  6030. const int i3 = ir/(ne2*ne1);
  6031. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6032. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6033. #ifdef GGML_USE_ACCELERATE
  6034. UNUSED(ggml_vec_add1_f32);
  6035. vDSP_vadd(
  6036. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6037. (float *) ((char *) src1->data), 0,
  6038. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6039. ne0);
  6040. #else
  6041. ggml_vec_add1_f32(ne0,
  6042. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6043. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6044. *(float *) src1->data);
  6045. #endif
  6046. }
  6047. }
  6048. static void ggml_compute_forward_add1_f16_f32(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * src0,
  6051. const struct ggml_tensor * src1,
  6052. struct ggml_tensor * dst) {
  6053. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6054. GGML_ASSERT(ggml_is_scalar(src1));
  6055. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6056. return;
  6057. }
  6058. // scalar to add
  6059. const float v = *(float *) src1->data;
  6060. const int ith = params->ith;
  6061. const int nth = params->nth;
  6062. const int nr = ggml_nrows(src0);
  6063. const int64_t ne0 = src0->ne[0];
  6064. const int64_t ne1 = src0->ne[1];
  6065. const int64_t ne2 = src0->ne[2];
  6066. const size_t nb00 = src0->nb[0];
  6067. const size_t nb01 = src0->nb[1];
  6068. const size_t nb02 = src0->nb[2];
  6069. const size_t nb03 = src0->nb[3];
  6070. const size_t nb0 = dst->nb[0];
  6071. const size_t nb1 = dst->nb[1];
  6072. const size_t nb2 = dst->nb[2];
  6073. const size_t nb3 = dst->nb[3];
  6074. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6075. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6076. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6077. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6078. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6079. // rows per thread
  6080. const int dr = (nr + nth - 1)/nth;
  6081. // row range for this thread
  6082. const int ir0 = dr*ith;
  6083. const int ir1 = MIN(ir0 + dr, nr);
  6084. for (int ir = ir0; ir < ir1; ++ir) {
  6085. // src0 and dst are same shape => same indices
  6086. const int i3 = ir/(ne2*ne1);
  6087. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6088. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6089. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6090. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6091. for (int i = 0; i < ne0; i++) {
  6092. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6093. }
  6094. }
  6095. }
  6096. static void ggml_compute_forward_add1_f16_f16(
  6097. const struct ggml_compute_params * params,
  6098. const struct ggml_tensor * src0,
  6099. const struct ggml_tensor * src1,
  6100. struct ggml_tensor * dst) {
  6101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6102. GGML_ASSERT(ggml_is_scalar(src1));
  6103. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6104. return;
  6105. }
  6106. // scalar to add
  6107. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6108. const int ith = params->ith;
  6109. const int nth = params->nth;
  6110. const int nr = ggml_nrows(src0);
  6111. const int64_t ne0 = src0->ne[0];
  6112. const int64_t ne1 = src0->ne[1];
  6113. const int64_t ne2 = src0->ne[2];
  6114. const size_t nb00 = src0->nb[0];
  6115. const size_t nb01 = src0->nb[1];
  6116. const size_t nb02 = src0->nb[2];
  6117. const size_t nb03 = src0->nb[3];
  6118. const size_t nb0 = dst->nb[0];
  6119. const size_t nb1 = dst->nb[1];
  6120. const size_t nb2 = dst->nb[2];
  6121. const size_t nb3 = dst->nb[3];
  6122. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6123. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6124. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6125. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6126. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6127. // rows per thread
  6128. const int dr = (nr + nth - 1)/nth;
  6129. // row range for this thread
  6130. const int ir0 = dr*ith;
  6131. const int ir1 = MIN(ir0 + dr, nr);
  6132. for (int ir = ir0; ir < ir1; ++ir) {
  6133. // src0 and dst are same shape => same indices
  6134. const int i3 = ir/(ne2*ne1);
  6135. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6136. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6137. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6138. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6139. for (int i = 0; i < ne0; i++) {
  6140. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6141. }
  6142. }
  6143. }
  6144. static void ggml_compute_forward_add1_q_f32(
  6145. const struct ggml_compute_params * params,
  6146. const struct ggml_tensor * src0,
  6147. const struct ggml_tensor * src1,
  6148. struct ggml_tensor * dst) {
  6149. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6150. GGML_ASSERT(ggml_is_scalar(src1));
  6151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6152. return;
  6153. }
  6154. // scalar to add
  6155. const float v = *(float *) src1->data;
  6156. const int ith = params->ith;
  6157. const int nth = params->nth;
  6158. const int nr = ggml_nrows(src0);
  6159. const int64_t ne0 = src0->ne[0];
  6160. const int64_t ne1 = src0->ne[1];
  6161. const int64_t ne2 = src0->ne[2];
  6162. const size_t nb00 = src0->nb[0];
  6163. const size_t nb01 = src0->nb[1];
  6164. const size_t nb02 = src0->nb[2];
  6165. const size_t nb03 = src0->nb[3];
  6166. const size_t nb0 = dst->nb[0];
  6167. const size_t nb1 = dst->nb[1];
  6168. const size_t nb2 = dst->nb[2];
  6169. const size_t nb3 = dst->nb[3];
  6170. const enum ggml_type type = src0->type;
  6171. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6172. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6173. // we don't support permuted src0
  6174. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6175. // dst cannot be transposed or permuted
  6176. GGML_ASSERT(nb0 <= nb1);
  6177. GGML_ASSERT(nb1 <= nb2);
  6178. GGML_ASSERT(nb2 <= nb3);
  6179. GGML_ASSERT(ggml_is_quantized(src0->type));
  6180. GGML_ASSERT(dst->type == src0->type);
  6181. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6182. // rows per thread
  6183. const int dr = (nr + nth - 1)/nth;
  6184. // row range for this thread
  6185. const int ir0 = dr*ith;
  6186. const int ir1 = MIN(ir0 + dr, nr);
  6187. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6188. for (int ir = ir0; ir < ir1; ++ir) {
  6189. // src0 and dst are same shape => same indices
  6190. const int i3 = ir/(ne2*ne1);
  6191. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6192. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6193. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6194. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6195. assert(ne0 % 32 == 0);
  6196. // unquantize row from src0 to temp buffer
  6197. dequantize_row_q(src0_row, wdata, ne0);
  6198. // add src1
  6199. ggml_vec_acc1_f32(ne0, wdata, v);
  6200. // quantize row to dst
  6201. quantize_row_q(wdata, dst_row, ne0);
  6202. }
  6203. }
  6204. static void ggml_compute_forward_add1(
  6205. const struct ggml_compute_params * params,
  6206. const struct ggml_tensor * src0,
  6207. const struct ggml_tensor * src1,
  6208. struct ggml_tensor * dst) {
  6209. switch (src0->type) {
  6210. case GGML_TYPE_F32:
  6211. {
  6212. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6213. } break;
  6214. case GGML_TYPE_F16:
  6215. {
  6216. if (src1->type == GGML_TYPE_F16) {
  6217. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6218. }
  6219. else if (src1->type == GGML_TYPE_F32) {
  6220. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6221. }
  6222. else {
  6223. GGML_ASSERT(false);
  6224. }
  6225. } break;
  6226. case GGML_TYPE_Q4_0:
  6227. case GGML_TYPE_Q4_1:
  6228. case GGML_TYPE_Q5_0:
  6229. case GGML_TYPE_Q5_1:
  6230. case GGML_TYPE_Q8_0:
  6231. case GGML_TYPE_Q8_1:
  6232. {
  6233. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6234. } break;
  6235. default:
  6236. {
  6237. GGML_ASSERT(false);
  6238. } break;
  6239. }
  6240. }
  6241. // ggml_compute_forward_acc
  6242. static void ggml_compute_forward_acc_f32(
  6243. const struct ggml_compute_params * params,
  6244. const struct ggml_tensor * src0,
  6245. const struct ggml_tensor * src1,
  6246. const struct ggml_tensor * opt0,
  6247. struct ggml_tensor * dst) {
  6248. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6249. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6250. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6251. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6252. // view src0 and dst with these strides and data offset inbytes during acc
  6253. // nb0 is implicitely element_size because src0 and dst are contiguous
  6254. size_t nb1 = ((int32_t *) opt0->data)[0];
  6255. size_t nb2 = ((int32_t *) opt0->data)[1];
  6256. size_t nb3 = ((int32_t *) opt0->data)[2];
  6257. size_t offset = ((int32_t *) opt0->data)[3];
  6258. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6259. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6260. // memcpy needs to be synchronized across threads to avoid race conditions.
  6261. // => do it in INIT phase
  6262. memcpy(
  6263. ((char *) dst->data),
  6264. ((char *) src0->data),
  6265. ggml_nbytes(dst));
  6266. }
  6267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6268. return;
  6269. }
  6270. const int ith = params->ith;
  6271. const int nth = params->nth;
  6272. const int nr = ggml_nrows(src1);
  6273. const int nc = src1->ne[0];
  6274. const int64_t ne10 = src1->ne[0];
  6275. const int64_t ne11 = src1->ne[1];
  6276. const int64_t ne12 = src1->ne[2];
  6277. const int64_t ne13 = src1->ne[3];
  6278. const size_t nb10 = src1->nb[0];
  6279. const size_t nb11 = src1->nb[1];
  6280. const size_t nb12 = src1->nb[2];
  6281. const size_t nb13 = src1->nb[3];
  6282. // src0 and dst as viewed during acc
  6283. const size_t nb0 = ggml_element_size(src0);
  6284. const size_t nb00 = nb0;
  6285. const size_t nb01 = nb1;
  6286. const size_t nb02 = nb2;
  6287. const size_t nb03 = nb3;
  6288. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6289. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6290. GGML_ASSERT(nb10 == sizeof(float));
  6291. // rows per thread
  6292. const int dr = (nr + nth - 1)/nth;
  6293. // row range for this thread
  6294. const int ir0 = dr*ith;
  6295. const int ir1 = MIN(ir0 + dr, nr);
  6296. for (int ir = ir0; ir < ir1; ++ir) {
  6297. // src0 and dst are viewed with shape of src1 and offset
  6298. // => same indices
  6299. const int i3 = ir/(ne12*ne11);
  6300. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6301. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6302. #ifdef GGML_USE_ACCELERATE
  6303. vDSP_vadd(
  6304. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6305. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6306. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6307. #else
  6308. ggml_vec_add_f32(nc,
  6309. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6310. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6311. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6312. #endif
  6313. }
  6314. }
  6315. static void ggml_compute_forward_acc(
  6316. const struct ggml_compute_params * params,
  6317. const struct ggml_tensor * src0,
  6318. const struct ggml_tensor * src1,
  6319. const struct ggml_tensor * opt0,
  6320. struct ggml_tensor * dst) {
  6321. switch (src0->type) {
  6322. case GGML_TYPE_F32:
  6323. {
  6324. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6325. } break;
  6326. case GGML_TYPE_F16:
  6327. case GGML_TYPE_Q4_0:
  6328. case GGML_TYPE_Q4_1:
  6329. case GGML_TYPE_Q5_0:
  6330. case GGML_TYPE_Q5_1:
  6331. case GGML_TYPE_Q8_0:
  6332. case GGML_TYPE_Q8_1:
  6333. default:
  6334. {
  6335. GGML_ASSERT(false);
  6336. } break;
  6337. }
  6338. }
  6339. // ggml_compute_forward_sub
  6340. static void ggml_compute_forward_sub_f32(
  6341. const struct ggml_compute_params * params,
  6342. const struct ggml_tensor * src0,
  6343. const struct ggml_tensor * src1,
  6344. struct ggml_tensor * dst) {
  6345. assert(params->ith == 0);
  6346. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6348. return;
  6349. }
  6350. const int nr = ggml_nrows(src0);
  6351. const int64_t ne0 = src0->ne[0];
  6352. const int64_t ne1 = src0->ne[1];
  6353. const int64_t ne2 = src0->ne[2];
  6354. const size_t nb00 = src0->nb[0];
  6355. const size_t nb01 = src0->nb[1];
  6356. const size_t nb02 = src0->nb[2];
  6357. const size_t nb03 = src0->nb[3];
  6358. const size_t nb10 = src1->nb[0];
  6359. const size_t nb11 = src1->nb[1];
  6360. const size_t nb12 = src1->nb[2];
  6361. const size_t nb13 = src1->nb[3];
  6362. const size_t nb0 = dst->nb[0];
  6363. const size_t nb1 = dst->nb[1];
  6364. const size_t nb2 = dst->nb[2];
  6365. const size_t nb3 = dst->nb[3];
  6366. GGML_ASSERT( nb0 == sizeof(float));
  6367. GGML_ASSERT(nb00 == sizeof(float));
  6368. if (nb10 == sizeof(float)) {
  6369. for (int ir = 0; ir < nr; ++ir) {
  6370. // src0, src1 and dst are same shape => same indices
  6371. const int i3 = ir/(ne2*ne1);
  6372. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6373. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6374. #ifdef GGML_USE_ACCELERATE
  6375. vDSP_vsub(
  6376. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6377. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6378. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6379. ne0);
  6380. #else
  6381. ggml_vec_sub_f32(ne0,
  6382. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6383. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6384. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6385. #endif
  6386. // }
  6387. // }
  6388. }
  6389. } else {
  6390. // src1 is not contiguous
  6391. for (int ir = 0; ir < nr; ++ir) {
  6392. // src0, src1 and dst are same shape => same indices
  6393. const int i3 = ir/(ne2*ne1);
  6394. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6395. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6396. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6397. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6398. for (int i0 = 0; i0 < ne0; i0++) {
  6399. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6400. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6401. }
  6402. }
  6403. }
  6404. }
  6405. static void ggml_compute_forward_sub(
  6406. const struct ggml_compute_params * params,
  6407. const struct ggml_tensor * src0,
  6408. const struct ggml_tensor * src1,
  6409. struct ggml_tensor * dst) {
  6410. switch (src0->type) {
  6411. case GGML_TYPE_F32:
  6412. {
  6413. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6414. } break;
  6415. default:
  6416. {
  6417. GGML_ASSERT(false);
  6418. } break;
  6419. }
  6420. }
  6421. // ggml_compute_forward_mul
  6422. static void ggml_compute_forward_mul_f32(
  6423. const struct ggml_compute_params * params,
  6424. const struct ggml_tensor * src0,
  6425. const struct ggml_tensor * src1,
  6426. struct ggml_tensor * dst) {
  6427. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6428. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6429. return;
  6430. }
  6431. const int ith = params->ith;
  6432. const int nth = params->nth;
  6433. const int nr = ggml_nrows(src0);
  6434. const int64_t ne0 = src0->ne[0];
  6435. const int64_t ne1 = src0->ne[1];
  6436. const int64_t ne2 = src0->ne[2];
  6437. const size_t nb00 = src0->nb[0];
  6438. const size_t nb01 = src0->nb[1];
  6439. const size_t nb02 = src0->nb[2];
  6440. const size_t nb03 = src0->nb[3];
  6441. const size_t nb10 = src1->nb[0];
  6442. const size_t nb11 = src1->nb[1];
  6443. const size_t nb12 = src1->nb[2];
  6444. const size_t nb13 = src1->nb[3];
  6445. const size_t nb0 = dst->nb[0];
  6446. const size_t nb1 = dst->nb[1];
  6447. const size_t nb2 = dst->nb[2];
  6448. const size_t nb3 = dst->nb[3];
  6449. GGML_ASSERT( nb0 == sizeof(float));
  6450. GGML_ASSERT(nb00 == sizeof(float));
  6451. if (nb10 == sizeof(float)) {
  6452. for (int ir = ith; ir < nr; ir += nth) {
  6453. // src0, src1 and dst are same shape => same indices
  6454. const int i3 = ir/(ne2*ne1);
  6455. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6456. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6457. #ifdef GGML_USE_ACCELERATE
  6458. UNUSED(ggml_vec_mul_f32);
  6459. vDSP_vmul(
  6460. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6461. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6462. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6463. ne0);
  6464. #else
  6465. ggml_vec_mul_f32(ne0,
  6466. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6467. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6468. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6469. #endif
  6470. // }
  6471. // }
  6472. }
  6473. } else {
  6474. // src1 is not contiguous
  6475. for (int ir = ith; ir < nr; ir += nth) {
  6476. // src0, src1 and dst are same shape => same indices
  6477. const int i3 = ir/(ne2*ne1);
  6478. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6479. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6480. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6481. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6482. for (int i0 = 0; i0 < ne0; i0++) {
  6483. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6484. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6485. }
  6486. }
  6487. }
  6488. }
  6489. static void ggml_compute_forward_mul(
  6490. const struct ggml_compute_params * params,
  6491. const struct ggml_tensor * src0,
  6492. const struct ggml_tensor * src1,
  6493. struct ggml_tensor * dst) {
  6494. switch (src0->type) {
  6495. case GGML_TYPE_F32:
  6496. {
  6497. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6498. } break;
  6499. default:
  6500. {
  6501. GGML_ASSERT(false);
  6502. } break;
  6503. }
  6504. }
  6505. // ggml_compute_forward_div
  6506. static void ggml_compute_forward_div_f32(
  6507. const struct ggml_compute_params * params,
  6508. const struct ggml_tensor * src0,
  6509. const struct ggml_tensor * src1,
  6510. struct ggml_tensor * dst) {
  6511. assert(params->ith == 0);
  6512. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6514. return;
  6515. }
  6516. const int nr = ggml_nrows(src0);
  6517. const int64_t ne0 = src0->ne[0];
  6518. const int64_t ne1 = src0->ne[1];
  6519. const int64_t ne2 = src0->ne[2];
  6520. const size_t nb00 = src0->nb[0];
  6521. const size_t nb01 = src0->nb[1];
  6522. const size_t nb02 = src0->nb[2];
  6523. const size_t nb03 = src0->nb[3];
  6524. const size_t nb10 = src1->nb[0];
  6525. const size_t nb11 = src1->nb[1];
  6526. const size_t nb12 = src1->nb[2];
  6527. const size_t nb13 = src1->nb[3];
  6528. const size_t nb0 = dst->nb[0];
  6529. const size_t nb1 = dst->nb[1];
  6530. const size_t nb2 = dst->nb[2];
  6531. const size_t nb3 = dst->nb[3];
  6532. GGML_ASSERT( nb0 == sizeof(float));
  6533. GGML_ASSERT(nb00 == sizeof(float));
  6534. if (nb10 == sizeof(float)) {
  6535. for (int ir = 0; ir < nr; ++ir) {
  6536. // src0, src1 and dst are same shape => same indices
  6537. const int i3 = ir/(ne2*ne1);
  6538. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6539. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6540. #ifdef GGML_USE_ACCELERATE
  6541. vDSP_vdiv(
  6542. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6543. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6544. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6545. ne0);
  6546. #else
  6547. ggml_vec_div_f32(ne0,
  6548. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6549. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6550. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6551. #endif
  6552. // }
  6553. // }
  6554. }
  6555. } else {
  6556. // src1 is not contiguous
  6557. for (int ir = 0; ir < nr; ++ir) {
  6558. // src0, src1 and dst are same shape => same indices
  6559. const int i3 = ir/(ne2*ne1);
  6560. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6561. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6562. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6563. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6564. for (int i0 = 0; i0 < ne0; i0++) {
  6565. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6566. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6567. }
  6568. }
  6569. }
  6570. }
  6571. static void ggml_compute_forward_div(
  6572. const struct ggml_compute_params * params,
  6573. const struct ggml_tensor * src0,
  6574. const struct ggml_tensor * src1,
  6575. struct ggml_tensor * dst) {
  6576. switch (src0->type) {
  6577. case GGML_TYPE_F32:
  6578. {
  6579. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6580. } break;
  6581. default:
  6582. {
  6583. GGML_ASSERT(false);
  6584. } break;
  6585. }
  6586. }
  6587. // ggml_compute_forward_sqr
  6588. static void ggml_compute_forward_sqr_f32(
  6589. const struct ggml_compute_params * params,
  6590. const struct ggml_tensor * src0,
  6591. struct ggml_tensor * dst) {
  6592. assert(params->ith == 0);
  6593. assert(ggml_are_same_shape(src0, dst));
  6594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6595. return;
  6596. }
  6597. const int n = ggml_nrows(src0);
  6598. const int nc = src0->ne[0];
  6599. assert( dst->nb[0] == sizeof(float));
  6600. assert(src0->nb[0] == sizeof(float));
  6601. for (int i = 0; i < n; i++) {
  6602. ggml_vec_sqr_f32(nc,
  6603. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6604. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6605. }
  6606. }
  6607. static void ggml_compute_forward_sqr(
  6608. const struct ggml_compute_params * params,
  6609. const struct ggml_tensor * src0,
  6610. struct ggml_tensor * dst) {
  6611. switch (src0->type) {
  6612. case GGML_TYPE_F32:
  6613. {
  6614. ggml_compute_forward_sqr_f32(params, src0, dst);
  6615. } break;
  6616. default:
  6617. {
  6618. GGML_ASSERT(false);
  6619. } break;
  6620. }
  6621. }
  6622. // ggml_compute_forward_sqrt
  6623. static void ggml_compute_forward_sqrt_f32(
  6624. const struct ggml_compute_params * params,
  6625. const struct ggml_tensor * src0,
  6626. struct ggml_tensor * dst) {
  6627. assert(params->ith == 0);
  6628. assert(ggml_are_same_shape(src0, dst));
  6629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6630. return;
  6631. }
  6632. const int n = ggml_nrows(src0);
  6633. const int nc = src0->ne[0];
  6634. assert( dst->nb[0] == sizeof(float));
  6635. assert(src0->nb[0] == sizeof(float));
  6636. for (int i = 0; i < n; i++) {
  6637. ggml_vec_sqrt_f32(nc,
  6638. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6639. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6640. }
  6641. }
  6642. static void ggml_compute_forward_sqrt(
  6643. const struct ggml_compute_params * params,
  6644. const struct ggml_tensor * src0,
  6645. struct ggml_tensor * dst) {
  6646. switch (src0->type) {
  6647. case GGML_TYPE_F32:
  6648. {
  6649. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6650. } break;
  6651. default:
  6652. {
  6653. GGML_ASSERT(false);
  6654. } break;
  6655. }
  6656. }
  6657. // ggml_compute_forward_log
  6658. static void ggml_compute_forward_log_f32(
  6659. const struct ggml_compute_params * params,
  6660. const struct ggml_tensor * src0,
  6661. struct ggml_tensor * dst) {
  6662. GGML_ASSERT(params->ith == 0);
  6663. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6664. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6665. return;
  6666. }
  6667. const int n = ggml_nrows(src0);
  6668. const int nc = src0->ne[0];
  6669. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6670. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6671. for (int i = 0; i < n; i++) {
  6672. ggml_vec_log_f32(nc,
  6673. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6674. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6675. }
  6676. }
  6677. static void ggml_compute_forward_log(
  6678. const struct ggml_compute_params * params,
  6679. const struct ggml_tensor * src0,
  6680. struct ggml_tensor * dst) {
  6681. switch (src0->type) {
  6682. case GGML_TYPE_F32:
  6683. {
  6684. ggml_compute_forward_log_f32(params, src0, dst);
  6685. } break;
  6686. default:
  6687. {
  6688. GGML_ASSERT(false);
  6689. } break;
  6690. }
  6691. }
  6692. // ggml_compute_forward_sum
  6693. static void ggml_compute_forward_sum_f32(
  6694. const struct ggml_compute_params * params,
  6695. const struct ggml_tensor * src0,
  6696. struct ggml_tensor * dst) {
  6697. assert(params->ith == 0);
  6698. assert(ggml_is_scalar(dst));
  6699. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6700. return;
  6701. }
  6702. assert(ggml_is_scalar(dst));
  6703. assert(src0->nb[0] == sizeof(float));
  6704. const int64_t ne00 = src0->ne[0];
  6705. const int64_t ne01 = src0->ne[1];
  6706. const int64_t ne02 = src0->ne[2];
  6707. const int64_t ne03 = src0->ne[3];
  6708. const size_t nb01 = src0->nb[1];
  6709. const size_t nb02 = src0->nb[2];
  6710. const size_t nb03 = src0->nb[3];
  6711. ggml_float sum = 0;
  6712. ggml_float row_sum = 0;
  6713. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6714. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6715. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6716. ggml_vec_sum_ggf(ne00,
  6717. &row_sum,
  6718. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6719. sum += row_sum;
  6720. }
  6721. }
  6722. }
  6723. ((float *) dst->data)[0] = sum;
  6724. }
  6725. static void ggml_compute_forward_sum(
  6726. const struct ggml_compute_params * params,
  6727. const struct ggml_tensor * src0,
  6728. struct ggml_tensor * dst) {
  6729. switch (src0->type) {
  6730. case GGML_TYPE_F32:
  6731. {
  6732. ggml_compute_forward_sum_f32(params, src0, dst);
  6733. } break;
  6734. default:
  6735. {
  6736. GGML_ASSERT(false);
  6737. } break;
  6738. }
  6739. }
  6740. // ggml_compute_forward_sum_rows
  6741. static void ggml_compute_forward_sum_rows_f32(
  6742. const struct ggml_compute_params * params,
  6743. const struct ggml_tensor * src0,
  6744. struct ggml_tensor * dst) {
  6745. GGML_ASSERT(params->ith == 0);
  6746. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6747. return;
  6748. }
  6749. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6750. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6751. const int64_t ne00 = src0->ne[0];
  6752. const int64_t ne01 = src0->ne[1];
  6753. const int64_t ne02 = src0->ne[2];
  6754. const int64_t ne03 = src0->ne[3];
  6755. const int64_t ne0 = dst->ne[0];
  6756. const int64_t ne1 = dst->ne[1];
  6757. const int64_t ne2 = dst->ne[2];
  6758. const int64_t ne3 = dst->ne[3];
  6759. GGML_ASSERT(ne0 == 1);
  6760. GGML_ASSERT(ne1 == ne01);
  6761. GGML_ASSERT(ne2 == ne02);
  6762. GGML_ASSERT(ne3 == ne03);
  6763. const size_t nb01 = src0->nb[1];
  6764. const size_t nb02 = src0->nb[2];
  6765. const size_t nb03 = src0->nb[3];
  6766. const size_t nb1 = dst->nb[1];
  6767. const size_t nb2 = dst->nb[2];
  6768. const size_t nb3 = dst->nb[3];
  6769. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6770. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6771. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6772. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6773. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6774. float row_sum = 0;
  6775. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6776. dst_row[0] = row_sum;
  6777. }
  6778. }
  6779. }
  6780. }
  6781. static void ggml_compute_forward_sum_rows(
  6782. const struct ggml_compute_params * params,
  6783. const struct ggml_tensor * src0,
  6784. struct ggml_tensor * dst) {
  6785. switch (src0->type) {
  6786. case GGML_TYPE_F32:
  6787. {
  6788. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6789. } break;
  6790. default:
  6791. {
  6792. GGML_ASSERT(false);
  6793. } break;
  6794. }
  6795. }
  6796. // ggml_compute_forward_mean
  6797. static void ggml_compute_forward_mean_f32(
  6798. const struct ggml_compute_params * params,
  6799. const struct ggml_tensor * src0,
  6800. struct ggml_tensor * dst) {
  6801. assert(params->ith == 0);
  6802. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6803. return;
  6804. }
  6805. assert(src0->nb[0] == sizeof(float));
  6806. const int64_t ne00 = src0->ne[0];
  6807. const int64_t ne01 = src0->ne[1];
  6808. const int64_t ne02 = src0->ne[2];
  6809. const int64_t ne03 = src0->ne[3];
  6810. const size_t nb01 = src0->nb[1];
  6811. const size_t nb02 = src0->nb[2];
  6812. const size_t nb03 = src0->nb[3];
  6813. const int64_t ne0 = dst->ne[0];
  6814. const int64_t ne1 = dst->ne[1];
  6815. const int64_t ne2 = dst->ne[2];
  6816. const int64_t ne3 = dst->ne[3];
  6817. assert(ne0 == 1);
  6818. assert(ne1 == ne01);
  6819. assert(ne2 == ne02);
  6820. assert(ne3 == ne03);
  6821. UNUSED(ne0);
  6822. UNUSED(ne1);
  6823. UNUSED(ne2);
  6824. UNUSED(ne3);
  6825. const size_t nb1 = dst->nb[1];
  6826. const size_t nb2 = dst->nb[2];
  6827. const size_t nb3 = dst->nb[3];
  6828. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6829. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6830. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6831. ggml_vec_sum_f32(ne00,
  6832. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6833. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6834. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6835. }
  6836. }
  6837. }
  6838. }
  6839. static void ggml_compute_forward_mean(
  6840. const struct ggml_compute_params * params,
  6841. const struct ggml_tensor * src0,
  6842. struct ggml_tensor * dst) {
  6843. switch (src0->type) {
  6844. case GGML_TYPE_F32:
  6845. {
  6846. ggml_compute_forward_mean_f32(params, src0, dst);
  6847. } break;
  6848. default:
  6849. {
  6850. GGML_ASSERT(false);
  6851. } break;
  6852. }
  6853. }
  6854. // ggml_compute_forward_repeat
  6855. static void ggml_compute_forward_repeat_f32(
  6856. const struct ggml_compute_params * params,
  6857. const struct ggml_tensor * src0,
  6858. struct ggml_tensor * dst) {
  6859. GGML_ASSERT(params->ith == 0);
  6860. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6861. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6862. return;
  6863. }
  6864. const int64_t ne0 = dst->ne[0];
  6865. const int64_t ne1 = dst->ne[1];
  6866. const int64_t ne2 = dst->ne[2];
  6867. const int64_t ne3 = dst->ne[3];
  6868. const int64_t ne00 = src0->ne[0];
  6869. const int64_t ne01 = src0->ne[1];
  6870. const int64_t ne02 = src0->ne[2];
  6871. const int64_t ne03 = src0->ne[3];
  6872. const size_t nb0 = dst->nb[0];
  6873. const size_t nb1 = dst->nb[1];
  6874. const size_t nb2 = dst->nb[2];
  6875. const size_t nb3 = dst->nb[3];
  6876. const size_t nb00 = src0->nb[0];
  6877. const size_t nb01 = src0->nb[1];
  6878. const size_t nb02 = src0->nb[2];
  6879. const size_t nb03 = src0->nb[3];
  6880. // guaranteed to be an integer due to the check in ggml_can_repeat
  6881. const int nr0 = (int)(ne0/ne00);
  6882. const int nr1 = (int)(ne1/ne01);
  6883. const int nr2 = (int)(ne2/ne02);
  6884. const int nr3 = (int)(ne3/ne03);
  6885. // TODO: support for transposed / permuted tensors
  6886. GGML_ASSERT(nb0 == sizeof(float));
  6887. GGML_ASSERT(nb00 == sizeof(float));
  6888. // TODO: maybe this is not optimal?
  6889. for (int i3 = 0; i3 < nr3; i3++) {
  6890. for (int k3 = 0; k3 < ne03; k3++) {
  6891. for (int i2 = 0; i2 < nr2; i2++) {
  6892. for (int k2 = 0; k2 < ne02; k2++) {
  6893. for (int i1 = 0; i1 < nr1; i1++) {
  6894. for (int k1 = 0; k1 < ne01; k1++) {
  6895. for (int i0 = 0; i0 < nr0; i0++) {
  6896. ggml_vec_cpy_f32(ne00,
  6897. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6898. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6899. }
  6900. }
  6901. }
  6902. }
  6903. }
  6904. }
  6905. }
  6906. }
  6907. static void ggml_compute_forward_repeat(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. switch (src0->type) {
  6912. case GGML_TYPE_F32:
  6913. {
  6914. ggml_compute_forward_repeat_f32(params, src0, dst);
  6915. } break;
  6916. default:
  6917. {
  6918. GGML_ASSERT(false);
  6919. } break;
  6920. }
  6921. }
  6922. // ggml_compute_forward_abs
  6923. static void ggml_compute_forward_abs_f32(
  6924. const struct ggml_compute_params * params,
  6925. const struct ggml_tensor * src0,
  6926. struct ggml_tensor * dst) {
  6927. assert(params->ith == 0);
  6928. assert(ggml_are_same_shape(src0, dst));
  6929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6930. return;
  6931. }
  6932. const int n = ggml_nrows(src0);
  6933. const int nc = src0->ne[0];
  6934. assert(dst->nb[0] == sizeof(float));
  6935. assert(src0->nb[0] == sizeof(float));
  6936. for (int i = 0; i < n; i++) {
  6937. ggml_vec_abs_f32(nc,
  6938. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6939. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6940. }
  6941. }
  6942. static void ggml_compute_forward_abs(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * src0,
  6945. struct ggml_tensor * dst) {
  6946. switch (src0->type) {
  6947. case GGML_TYPE_F32:
  6948. {
  6949. ggml_compute_forward_abs_f32(params, src0, dst);
  6950. } break;
  6951. default:
  6952. {
  6953. GGML_ASSERT(false);
  6954. } break;
  6955. }
  6956. }
  6957. // ggml_compute_forward_sgn
  6958. static void ggml_compute_forward_sgn_f32(
  6959. const struct ggml_compute_params * params,
  6960. const struct ggml_tensor * src0,
  6961. struct ggml_tensor * dst) {
  6962. assert(params->ith == 0);
  6963. assert(ggml_are_same_shape(src0, dst));
  6964. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6965. return;
  6966. }
  6967. const int n = ggml_nrows(src0);
  6968. const int nc = src0->ne[0];
  6969. assert(dst->nb[0] == sizeof(float));
  6970. assert(src0->nb[0] == sizeof(float));
  6971. for (int i = 0; i < n; i++) {
  6972. ggml_vec_sgn_f32(nc,
  6973. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6974. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6975. }
  6976. }
  6977. static void ggml_compute_forward_sgn(
  6978. const struct ggml_compute_params * params,
  6979. const struct ggml_tensor * src0,
  6980. struct ggml_tensor * dst) {
  6981. switch (src0->type) {
  6982. case GGML_TYPE_F32:
  6983. {
  6984. ggml_compute_forward_sgn_f32(params, src0, dst);
  6985. } break;
  6986. default:
  6987. {
  6988. GGML_ASSERT(false);
  6989. } break;
  6990. }
  6991. }
  6992. // ggml_compute_forward_neg
  6993. static void ggml_compute_forward_neg_f32(
  6994. const struct ggml_compute_params * params,
  6995. const struct ggml_tensor * src0,
  6996. struct ggml_tensor * dst) {
  6997. assert(params->ith == 0);
  6998. assert(ggml_are_same_shape(src0, dst));
  6999. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7000. return;
  7001. }
  7002. const int n = ggml_nrows(src0);
  7003. const int nc = src0->ne[0];
  7004. assert(dst->nb[0] == sizeof(float));
  7005. assert(src0->nb[0] == sizeof(float));
  7006. for (int i = 0; i < n; i++) {
  7007. ggml_vec_neg_f32(nc,
  7008. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7009. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7010. }
  7011. }
  7012. static void ggml_compute_forward_neg(
  7013. const struct ggml_compute_params * params,
  7014. const struct ggml_tensor * src0,
  7015. struct ggml_tensor * dst) {
  7016. switch (src0->type) {
  7017. case GGML_TYPE_F32:
  7018. {
  7019. ggml_compute_forward_neg_f32(params, src0, dst);
  7020. } break;
  7021. default:
  7022. {
  7023. GGML_ASSERT(false);
  7024. } break;
  7025. }
  7026. }
  7027. // ggml_compute_forward_step
  7028. static void ggml_compute_forward_step_f32(
  7029. const struct ggml_compute_params * params,
  7030. const struct ggml_tensor * src0,
  7031. struct ggml_tensor * dst) {
  7032. assert(params->ith == 0);
  7033. assert(ggml_are_same_shape(src0, dst));
  7034. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7035. return;
  7036. }
  7037. const int n = ggml_nrows(src0);
  7038. const int nc = src0->ne[0];
  7039. assert(dst->nb[0] == sizeof(float));
  7040. assert(src0->nb[0] == sizeof(float));
  7041. for (int i = 0; i < n; i++) {
  7042. ggml_vec_step_f32(nc,
  7043. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7044. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7045. }
  7046. }
  7047. static void ggml_compute_forward_step(
  7048. const struct ggml_compute_params * params,
  7049. const struct ggml_tensor * src0,
  7050. struct ggml_tensor * dst) {
  7051. switch (src0->type) {
  7052. case GGML_TYPE_F32:
  7053. {
  7054. ggml_compute_forward_step_f32(params, src0, dst);
  7055. } break;
  7056. default:
  7057. {
  7058. GGML_ASSERT(false);
  7059. } break;
  7060. }
  7061. }
  7062. // ggml_compute_forward_relu
  7063. static void ggml_compute_forward_relu_f32(
  7064. const struct ggml_compute_params * params,
  7065. const struct ggml_tensor * src0,
  7066. struct ggml_tensor * dst) {
  7067. assert(params->ith == 0);
  7068. assert(ggml_are_same_shape(src0, dst));
  7069. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7070. return;
  7071. }
  7072. const int n = ggml_nrows(src0);
  7073. const int nc = src0->ne[0];
  7074. assert(dst->nb[0] == sizeof(float));
  7075. assert(src0->nb[0] == sizeof(float));
  7076. for (int i = 0; i < n; i++) {
  7077. ggml_vec_relu_f32(nc,
  7078. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7079. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7080. }
  7081. }
  7082. static void ggml_compute_forward_relu(
  7083. const struct ggml_compute_params * params,
  7084. const struct ggml_tensor * src0,
  7085. struct ggml_tensor * dst) {
  7086. switch (src0->type) {
  7087. case GGML_TYPE_F32:
  7088. {
  7089. ggml_compute_forward_relu_f32(params, src0, dst);
  7090. } break;
  7091. default:
  7092. {
  7093. GGML_ASSERT(false);
  7094. } break;
  7095. }
  7096. }
  7097. // ggml_compute_forward_gelu
  7098. static void ggml_compute_forward_gelu_f32(
  7099. const struct ggml_compute_params * params,
  7100. const struct ggml_tensor * src0,
  7101. struct ggml_tensor * dst) {
  7102. GGML_ASSERT(ggml_is_contiguous(src0));
  7103. GGML_ASSERT(ggml_is_contiguous(dst));
  7104. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7106. return;
  7107. }
  7108. const int ith = params->ith;
  7109. const int nth = params->nth;
  7110. const int nc = src0->ne[0];
  7111. const int nr = ggml_nrows(src0);
  7112. // rows per thread
  7113. const int dr = (nr + nth - 1)/nth;
  7114. // row range for this thread
  7115. const int ir0 = dr*ith;
  7116. const int ir1 = MIN(ir0 + dr, nr);
  7117. for (int i1 = ir0; i1 < ir1; i1++) {
  7118. ggml_vec_gelu_f32(nc,
  7119. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7120. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7121. #ifndef NDEBUG
  7122. for (int k = 0; k < nc; k++) {
  7123. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7124. UNUSED(x);
  7125. assert(!isnan(x));
  7126. assert(!isinf(x));
  7127. }
  7128. #endif
  7129. }
  7130. }
  7131. static void ggml_compute_forward_gelu(
  7132. const struct ggml_compute_params * params,
  7133. const struct ggml_tensor * src0,
  7134. struct ggml_tensor * dst) {
  7135. switch (src0->type) {
  7136. case GGML_TYPE_F32:
  7137. {
  7138. ggml_compute_forward_gelu_f32(params, src0, dst);
  7139. } break;
  7140. default:
  7141. {
  7142. GGML_ASSERT(false);
  7143. } break;
  7144. }
  7145. //printf("XXXXXXXX gelu\n");
  7146. }
  7147. // ggml_compute_forward_silu
  7148. static void ggml_compute_forward_silu_f32(
  7149. const struct ggml_compute_params * params,
  7150. const struct ggml_tensor * src0,
  7151. struct ggml_tensor * dst) {
  7152. GGML_ASSERT(ggml_is_contiguous(src0));
  7153. GGML_ASSERT(ggml_is_contiguous(dst));
  7154. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7156. return;
  7157. }
  7158. const int ith = params->ith;
  7159. const int nth = params->nth;
  7160. const int nc = src0->ne[0];
  7161. const int nr = ggml_nrows(src0);
  7162. // rows per thread
  7163. const int dr = (nr + nth - 1)/nth;
  7164. // row range for this thread
  7165. const int ir0 = dr*ith;
  7166. const int ir1 = MIN(ir0 + dr, nr);
  7167. for (int i1 = ir0; i1 < ir1; i1++) {
  7168. ggml_vec_silu_f32(nc,
  7169. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7170. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7171. #ifndef NDEBUG
  7172. for (int k = 0; k < nc; k++) {
  7173. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7174. UNUSED(x);
  7175. assert(!isnan(x));
  7176. assert(!isinf(x));
  7177. }
  7178. #endif
  7179. }
  7180. }
  7181. static void ggml_compute_forward_silu(
  7182. const struct ggml_compute_params * params,
  7183. const struct ggml_tensor * src0,
  7184. struct ggml_tensor * dst) {
  7185. switch (src0->type) {
  7186. case GGML_TYPE_F32:
  7187. {
  7188. ggml_compute_forward_silu_f32(params, src0, dst);
  7189. } break;
  7190. default:
  7191. {
  7192. GGML_ASSERT(false);
  7193. } break;
  7194. }
  7195. }
  7196. // ggml_compute_forward_silu_back
  7197. static void ggml_compute_forward_silu_back_f32(
  7198. const struct ggml_compute_params * params,
  7199. const struct ggml_tensor * src0,
  7200. const struct ggml_tensor * grad,
  7201. struct ggml_tensor * dst) {
  7202. GGML_ASSERT(ggml_is_contiguous(grad));
  7203. GGML_ASSERT(ggml_is_contiguous(src0));
  7204. GGML_ASSERT(ggml_is_contiguous(dst));
  7205. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7206. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7207. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7208. return;
  7209. }
  7210. const int ith = params->ith;
  7211. const int nth = params->nth;
  7212. const int nc = src0->ne[0];
  7213. const int nr = ggml_nrows(src0);
  7214. // rows per thread
  7215. const int dr = (nr + nth - 1)/nth;
  7216. // row range for this thread
  7217. const int ir0 = dr*ith;
  7218. const int ir1 = MIN(ir0 + dr, nr);
  7219. for (int i1 = ir0; i1 < ir1; i1++) {
  7220. ggml_vec_silu_backward_f32(nc,
  7221. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7222. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7223. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7224. #ifndef NDEBUG
  7225. for (int k = 0; k < nc; k++) {
  7226. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7227. UNUSED(x);
  7228. assert(!isnan(x));
  7229. assert(!isinf(x));
  7230. }
  7231. #endif
  7232. }
  7233. }
  7234. static void ggml_compute_forward_silu_back(
  7235. const struct ggml_compute_params * params,
  7236. const struct ggml_tensor * src0,
  7237. const struct ggml_tensor * grad,
  7238. struct ggml_tensor * dst) {
  7239. switch (src0->type) {
  7240. case GGML_TYPE_F32:
  7241. {
  7242. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7243. } break;
  7244. default:
  7245. {
  7246. GGML_ASSERT(false);
  7247. } break;
  7248. }
  7249. }
  7250. // ggml_compute_forward_norm
  7251. static void ggml_compute_forward_norm_f32(
  7252. const struct ggml_compute_params * params,
  7253. const struct ggml_tensor * src0,
  7254. struct ggml_tensor * dst) {
  7255. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7256. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7257. return;
  7258. }
  7259. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7260. const int ith = params->ith;
  7261. const int nth = params->nth;
  7262. const int64_t ne00 = src0->ne[0];
  7263. const int64_t ne01 = src0->ne[1];
  7264. const int64_t ne02 = src0->ne[2];
  7265. const int64_t ne03 = src0->ne[3];
  7266. const size_t nb01 = src0->nb[1];
  7267. const size_t nb02 = src0->nb[2];
  7268. const size_t nb03 = src0->nb[3];
  7269. const size_t nb1 = dst->nb[1];
  7270. const size_t nb2 = dst->nb[2];
  7271. const size_t nb3 = dst->nb[3];
  7272. const float eps = 1e-5f; // TODO: make this a parameter
  7273. // TODO: optimize
  7274. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7275. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7276. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7277. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7278. ggml_float sum = 0.0;
  7279. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7280. sum += (ggml_float)x[i00];
  7281. }
  7282. float mean = sum/ne00;
  7283. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7284. ggml_float sum2 = 0.0;
  7285. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7286. float v = x[i00] - mean;
  7287. y[i00] = v;
  7288. sum2 += (ggml_float)(v*v);
  7289. }
  7290. float variance = sum2/ne00;
  7291. const float scale = 1.0f/sqrtf(variance + eps);
  7292. ggml_vec_scale_f32(ne00, y, scale);
  7293. }
  7294. }
  7295. }
  7296. }
  7297. static void ggml_compute_forward_norm(
  7298. const struct ggml_compute_params * params,
  7299. const struct ggml_tensor * src0,
  7300. struct ggml_tensor * dst) {
  7301. switch (src0->type) {
  7302. case GGML_TYPE_F32:
  7303. {
  7304. ggml_compute_forward_norm_f32(params, src0, dst);
  7305. } break;
  7306. default:
  7307. {
  7308. GGML_ASSERT(false);
  7309. } break;
  7310. }
  7311. }
  7312. static void ggml_compute_forward_rms_norm_f32(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7317. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7318. return;
  7319. }
  7320. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7321. const int ith = params->ith;
  7322. const int nth = params->nth;
  7323. const int64_t ne00 = src0->ne[0];
  7324. const int64_t ne01 = src0->ne[1];
  7325. const int64_t ne02 = src0->ne[2];
  7326. const int64_t ne03 = src0->ne[3];
  7327. const size_t nb01 = src0->nb[1];
  7328. const size_t nb02 = src0->nb[2];
  7329. const size_t nb03 = src0->nb[3];
  7330. const size_t nb1 = dst->nb[1];
  7331. const size_t nb2 = dst->nb[2];
  7332. const size_t nb3 = dst->nb[3];
  7333. const float eps = 1e-6f; // TODO: make this a parameter
  7334. // TODO: optimize
  7335. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7336. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7337. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7338. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7339. ggml_float sum = 0.0;
  7340. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7341. sum += (ggml_float)(x[i00] * x[i00]);
  7342. }
  7343. float mean = sum/ne00;
  7344. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7345. memcpy(y, x, ne00 * sizeof(float));
  7346. // for (int i00 = 0; i00 < ne00; i00++) {
  7347. // y[i00] = x[i00];
  7348. // }
  7349. const float scale = 1.0f/sqrtf(mean + eps);
  7350. ggml_vec_scale_f32(ne00, y, scale);
  7351. }
  7352. }
  7353. }
  7354. }
  7355. static void ggml_compute_forward_rms_norm(
  7356. const struct ggml_compute_params * params,
  7357. const struct ggml_tensor * src0,
  7358. struct ggml_tensor * dst) {
  7359. switch (src0->type) {
  7360. case GGML_TYPE_F32:
  7361. {
  7362. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7363. } break;
  7364. default:
  7365. {
  7366. GGML_ASSERT(false);
  7367. } break;
  7368. }
  7369. }
  7370. static void ggml_compute_forward_rms_norm_back_f32(
  7371. const struct ggml_compute_params * params,
  7372. const struct ggml_tensor * src0,
  7373. const struct ggml_tensor * src1,
  7374. struct ggml_tensor * dst) {
  7375. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7377. return;
  7378. }
  7379. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7380. const int ith = params->ith;
  7381. const int nth = params->nth;
  7382. const int64_t ne00 = src0->ne[0];
  7383. const int64_t ne01 = src0->ne[1];
  7384. const int64_t ne02 = src0->ne[2];
  7385. const int64_t ne03 = src0->ne[3];
  7386. const size_t nb01 = src0->nb[1];
  7387. const size_t nb02 = src0->nb[2];
  7388. const size_t nb03 = src0->nb[3];
  7389. const size_t nb11 = src1->nb[1];
  7390. const size_t nb12 = src1->nb[2];
  7391. const size_t nb13 = src1->nb[3];
  7392. const size_t nb1 = dst->nb[1];
  7393. const size_t nb2 = dst->nb[2];
  7394. const size_t nb3 = dst->nb[3];
  7395. const float eps = 1e-6f; // TODO: make this a parameter
  7396. // TODO: optimize
  7397. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7398. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7399. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7400. // src1 is same shape as src0 => same indices
  7401. const int64_t i11 = i01;
  7402. const int64_t i12 = i02;
  7403. const int64_t i13 = i03;
  7404. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7405. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7406. ggml_float sum_xx = 0.0;
  7407. ggml_float sum_xdz = 0.0;
  7408. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7409. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7410. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7411. }
  7412. //const float mean = (float)(sum_xx)/ne00;
  7413. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7414. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7415. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7416. // we could cache rms from forward pass to improve performance.
  7417. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7418. //const float rms = sqrtf(mean_eps);
  7419. const float rrms = 1.0f / sqrtf(mean_eps);
  7420. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7421. {
  7422. // z = rms_norm(x)
  7423. //
  7424. // rms_norm(src0) =
  7425. // scale(
  7426. // src0,
  7427. // div(
  7428. // 1,
  7429. // sqrt(
  7430. // add(
  7431. // scale(
  7432. // sum(
  7433. // sqr(
  7434. // src0)),
  7435. // (1.0/N)),
  7436. // eps))));
  7437. // postorder:
  7438. // ## op args grad
  7439. // 00 param src0 grad[#00]
  7440. // 01 const 1
  7441. // 02 sqr (#00) grad[#02]
  7442. // 03 sum (#02) grad[#03]
  7443. // 04 const 1/N
  7444. // 05 scale (#03, #04) grad[#05]
  7445. // 06 const eps
  7446. // 07 add (#05, #06) grad[#07]
  7447. // 08 sqrt (#07) grad[#08]
  7448. // 09 div (#01,#08) grad[#09]
  7449. // 10 scale (#00,#09) grad[#10]
  7450. //
  7451. // backward pass, given grad[#10]
  7452. // #10: scale
  7453. // grad[#00] += scale(grad[#10],#09)
  7454. // grad[#09] += sum(mul(grad[#10],#00))
  7455. // #09: div
  7456. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7457. // #08: sqrt
  7458. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7459. // #07: add
  7460. // grad[#05] += grad[#07]
  7461. // #05: scale
  7462. // grad[#03] += scale(grad[#05],#04)
  7463. // #03: sum
  7464. // grad[#02] += repeat(grad[#03], #02)
  7465. // #02:
  7466. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7467. //
  7468. // substitute and simplify:
  7469. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7470. // grad[#02] = repeat(grad[#03], #02)
  7471. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7472. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7473. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7474. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7475. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7476. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7477. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7478. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7479. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7480. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7481. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7482. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7483. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7484. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7485. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7486. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7487. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7488. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7489. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7490. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7491. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7492. // a = b*c + d*e
  7493. // a = b*c*f/f + d*e*f/f
  7494. // a = (b*c*f + d*e*f)*(1/f)
  7495. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7496. // a = (b + d*e/c)*c
  7497. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7498. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7499. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7500. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7501. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7502. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7503. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7504. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7505. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7506. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7507. }
  7508. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7509. // post-order:
  7510. // dx := x
  7511. // dx := scale(dx,-mean_xdz/mean_eps)
  7512. // dx := add(dx, dz)
  7513. // dx := scale(dx, rrms)
  7514. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7515. ggml_vec_cpy_f32 (ne00, dx, x);
  7516. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7517. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7518. ggml_vec_acc_f32 (ne00, dx, dz);
  7519. ggml_vec_scale_f32(ne00, dx, rrms);
  7520. }
  7521. }
  7522. }
  7523. }
  7524. static void ggml_compute_forward_rms_norm_back(
  7525. const struct ggml_compute_params * params,
  7526. const struct ggml_tensor * src0,
  7527. const struct ggml_tensor * src1,
  7528. struct ggml_tensor * dst) {
  7529. switch (src0->type) {
  7530. case GGML_TYPE_F32:
  7531. {
  7532. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7533. } break;
  7534. default:
  7535. {
  7536. GGML_ASSERT(false);
  7537. } break;
  7538. }
  7539. }
  7540. // ggml_compute_forward_mul_mat
  7541. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7542. // helper function to determine if it is better to use BLAS or not
  7543. // for large matrices, BLAS is faster
  7544. static bool ggml_compute_forward_mul_mat_use_blas(
  7545. const struct ggml_tensor * src0,
  7546. const struct ggml_tensor * src1,
  7547. struct ggml_tensor * dst) {
  7548. //const int64_t ne00 = src0->ne[0];
  7549. //const int64_t ne01 = src0->ne[1];
  7550. const int64_t ne10 = src1->ne[0];
  7551. const int64_t ne0 = dst->ne[0];
  7552. const int64_t ne1 = dst->ne[1];
  7553. // TODO: find the optimal values for these
  7554. if (ggml_is_contiguous(src0) &&
  7555. ggml_is_contiguous(src1) &&
  7556. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7557. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7558. return true;
  7559. }
  7560. return false;
  7561. }
  7562. #endif
  7563. static void ggml_compute_forward_mul_mat_f32(
  7564. const struct ggml_compute_params * params,
  7565. const struct ggml_tensor * src0,
  7566. const struct ggml_tensor * src1,
  7567. struct ggml_tensor * dst) {
  7568. int64_t t0 = ggml_perf_time_us();
  7569. UNUSED(t0);
  7570. const int64_t ne00 = src0->ne[0];
  7571. const int64_t ne01 = src0->ne[1];
  7572. const int64_t ne02 = src0->ne[2];
  7573. const int64_t ne03 = src0->ne[3];
  7574. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7575. const int64_t ne10 = src1->ne[0];
  7576. #endif
  7577. const int64_t ne11 = src1->ne[1];
  7578. #ifndef NDEBUG
  7579. const int64_t ne12 = src1->ne[2];
  7580. const int64_t ne13 = src1->ne[3];
  7581. const int64_t ne0 = dst->ne[0];
  7582. const int64_t ne1 = dst->ne[1];
  7583. const int64_t ne2 = dst->ne[2];
  7584. const int64_t ne3 = dst->ne[3];
  7585. const int nb00 = src0->nb[0];
  7586. #endif
  7587. const int nb01 = src0->nb[1];
  7588. const int nb02 = src0->nb[2];
  7589. const int nb03 = src0->nb[3];
  7590. #ifndef NDEBUG
  7591. const int nb10 = src1->nb[0];
  7592. #endif
  7593. const int nb11 = src1->nb[1];
  7594. const int nb12 = src1->nb[2];
  7595. const int nb13 = src1->nb[3];
  7596. const int nb0 = dst->nb[0];
  7597. const int nb1 = dst->nb[1];
  7598. const int nb2 = dst->nb[2];
  7599. const int nb3 = dst->nb[3];
  7600. const int ith = params->ith;
  7601. const int nth = params->nth;
  7602. assert(ne02 == ne12);
  7603. assert(ne03 == ne13);
  7604. assert(ne2 == ne12);
  7605. assert(ne3 == ne13);
  7606. // we don't support permuted src0 or src1
  7607. assert(nb00 == sizeof(float));
  7608. assert(nb10 == sizeof(float));
  7609. // dst cannot be transposed or permuted
  7610. assert(nb0 == sizeof(float));
  7611. assert(nb0 <= nb1);
  7612. assert(nb1 <= nb2);
  7613. assert(nb2 <= nb3);
  7614. assert(ne0 == ne01);
  7615. assert(ne1 == ne11);
  7616. assert(ne2 == ne02);
  7617. assert(ne3 == ne03);
  7618. // nb01 >= nb00 - src0 is not transposed
  7619. // compute by src0 rows
  7620. #if defined(GGML_USE_CUBLAS)
  7621. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7622. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7623. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7624. }
  7625. return;
  7626. }
  7627. #endif
  7628. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7629. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7630. if (params->ith != 0) {
  7631. return;
  7632. }
  7633. if (params->type == GGML_TASK_INIT) {
  7634. return;
  7635. }
  7636. if (params->type == GGML_TASK_FINALIZE) {
  7637. return;
  7638. }
  7639. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7640. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7641. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7642. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7643. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7644. #if defined(GGML_USE_CLBLAST)
  7645. // zT = y * xT
  7646. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7647. ne11, ne01, ne10,
  7648. 1.0f, y, ne10,
  7649. x, ne10,
  7650. 0.0f, d, ne01,
  7651. GGML_TYPE_F32);
  7652. #else
  7653. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7654. ne11, ne01, ne10,
  7655. 1.0f, y, ne10,
  7656. x, ne00,
  7657. 0.0f, d, ne01);
  7658. #endif
  7659. }
  7660. }
  7661. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7662. return;
  7663. }
  7664. #endif
  7665. if (params->type == GGML_TASK_INIT) {
  7666. return;
  7667. }
  7668. if (params->type == GGML_TASK_FINALIZE) {
  7669. return;
  7670. }
  7671. // parallelize by src0 rows using ggml_vec_dot_f32
  7672. // total rows in src0
  7673. const int nr = ne01*ne02*ne03;
  7674. // rows per thread
  7675. const int dr = (nr + nth - 1)/nth;
  7676. // row range for this thread
  7677. const int ir0 = dr*ith;
  7678. const int ir1 = MIN(ir0 + dr, nr);
  7679. for (int ir = ir0; ir < ir1; ++ir) {
  7680. // src0 indices
  7681. const int i03 = ir/(ne02*ne01);
  7682. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7683. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7684. for (int64_t ic = 0; ic < ne11; ++ic) {
  7685. // src1 indices
  7686. const int i13 = i03;
  7687. const int i12 = i02;
  7688. const int i11 = ic;
  7689. // dst indices
  7690. const int i0 = i01;
  7691. const int i1 = i11;
  7692. const int i2 = i02;
  7693. const int i3 = i03;
  7694. ggml_vec_dot_f32(ne00,
  7695. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7696. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7697. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7698. }
  7699. }
  7700. //int64_t t1 = ggml_perf_time_us();
  7701. //static int64_t acc = 0;
  7702. //acc += t1 - t0;
  7703. //if (t1 - t0 > 10) {
  7704. // printf("\n");
  7705. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7706. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7707. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7708. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7709. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7710. //}
  7711. }
  7712. static void ggml_compute_forward_mul_mat_f16_f32(
  7713. const struct ggml_compute_params * params,
  7714. const struct ggml_tensor * src0,
  7715. const struct ggml_tensor * src1,
  7716. struct ggml_tensor * dst) {
  7717. int64_t t0 = ggml_perf_time_us();
  7718. UNUSED(t0);
  7719. const int64_t ne00 = src0->ne[0];
  7720. const int64_t ne01 = src0->ne[1];
  7721. const int64_t ne02 = src0->ne[2];
  7722. const int64_t ne03 = src0->ne[3];
  7723. const int64_t ne10 = src1->ne[0];
  7724. const int64_t ne11 = src1->ne[1];
  7725. const int64_t ne12 = src1->ne[2];
  7726. const int64_t ne13 = src1->ne[3];
  7727. const int64_t ne0 = dst->ne[0];
  7728. const int64_t ne1 = dst->ne[1];
  7729. const int64_t ne2 = dst->ne[2];
  7730. const int64_t ne3 = dst->ne[3];
  7731. //const int64_t ne = ne0*ne1*ne2*ne3;
  7732. const int nb00 = src0->nb[0];
  7733. const int nb01 = src0->nb[1];
  7734. const int nb02 = src0->nb[2];
  7735. const int nb03 = src0->nb[3];
  7736. const int nb10 = src1->nb[0];
  7737. const int nb11 = src1->nb[1];
  7738. const int nb12 = src1->nb[2];
  7739. const int nb13 = src1->nb[3];
  7740. const int nb0 = dst->nb[0];
  7741. const int nb1 = dst->nb[1];
  7742. const int nb2 = dst->nb[2];
  7743. const int nb3 = dst->nb[3];
  7744. const int ith = params->ith;
  7745. const int nth = params->nth;
  7746. GGML_ASSERT(ne02 == ne12);
  7747. GGML_ASSERT(ne03 == ne13);
  7748. GGML_ASSERT(ne2 == ne12);
  7749. GGML_ASSERT(ne3 == ne13);
  7750. // TODO: we don't support permuted src0
  7751. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7752. // dst cannot be transposed or permuted
  7753. GGML_ASSERT(nb0 == sizeof(float));
  7754. GGML_ASSERT(nb0 <= nb1);
  7755. GGML_ASSERT(nb1 <= nb2);
  7756. GGML_ASSERT(nb2 <= nb3);
  7757. GGML_ASSERT(ne0 == ne01);
  7758. GGML_ASSERT(ne1 == ne11);
  7759. GGML_ASSERT(ne2 == ne02);
  7760. GGML_ASSERT(ne3 == ne03);
  7761. // nb01 >= nb00 - src0 is not transposed
  7762. // compute by src0 rows
  7763. #if defined(GGML_USE_CUBLAS)
  7764. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7765. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7766. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7767. }
  7768. return;
  7769. }
  7770. #endif
  7771. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7772. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7773. GGML_ASSERT(nb10 == sizeof(float));
  7774. if (params->ith != 0) {
  7775. return;
  7776. }
  7777. if (params->type == GGML_TASK_INIT) {
  7778. return;
  7779. }
  7780. if (params->type == GGML_TASK_FINALIZE) {
  7781. return;
  7782. }
  7783. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7784. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7785. float * const wdata = params->wdata;
  7786. {
  7787. size_t id = 0;
  7788. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7789. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  7790. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  7791. }
  7792. }
  7793. assert(id*sizeof(float) <= params->wsize);
  7794. }
  7795. #if defined(GGML_USE_CLBLAST)
  7796. const float * x = wdata;
  7797. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7798. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7799. // zT = y * xT
  7800. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7801. ne11, ne01, ne10,
  7802. 1.0f, y, ne10,
  7803. x, ne10,
  7804. 0.0f, d, ne01,
  7805. GGML_TYPE_F32);
  7806. #else
  7807. const float * x = wdata;
  7808. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7809. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7810. // zT = y * xT
  7811. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7812. ne11, ne01, ne10,
  7813. 1.0f, y, ne10,
  7814. x, ne00,
  7815. 0.0f, d, ne01);
  7816. #endif
  7817. }
  7818. }
  7819. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  7820. return;
  7821. }
  7822. #endif
  7823. if (params->type == GGML_TASK_INIT) {
  7824. ggml_fp16_t * const wdata = params->wdata;
  7825. size_t id = 0;
  7826. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7827. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7828. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7829. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  7830. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  7831. }
  7832. }
  7833. }
  7834. }
  7835. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  7836. return;
  7837. }
  7838. if (params->type == GGML_TASK_FINALIZE) {
  7839. return;
  7840. }
  7841. // fp16 -> half the size, so divide by 2
  7842. // TODO: do not support transposed src1
  7843. assert(nb10/2 == sizeof(ggml_fp16_t));
  7844. // parallelize by src0 rows using ggml_vec_dot_f16
  7845. // total rows in src0
  7846. const int nr = ne01*ne02*ne03;
  7847. // rows per thread
  7848. const int dr = (nr + nth - 1)/nth;
  7849. // row range for this thread
  7850. const int ir0 = dr*ith;
  7851. const int ir1 = MIN(ir0 + dr, nr);
  7852. ggml_fp16_t * wdata = params->wdata;
  7853. for (int ir = ir0; ir < ir1; ++ir) {
  7854. // src0 indices
  7855. const int i03 = ir/(ne02*ne01);
  7856. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7857. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7858. const int i13 = i03;
  7859. const int i12 = i02;
  7860. const int i0 = i01;
  7861. const int i2 = i02;
  7862. const int i3 = i03;
  7863. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7864. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  7865. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7866. for (int64_t ic = 0; ic < ne11; ++ic) {
  7867. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  7868. }
  7869. }
  7870. //int64_t t1 = ggml_time_us();
  7871. //static int64_t acc = 0;
  7872. //acc += t1 - t0;
  7873. //if (t1 - t0 > 10) {
  7874. // printf("\n");
  7875. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7876. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7877. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7878. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7879. //}
  7880. }
  7881. static void ggml_compute_forward_mul_mat_q_f32(
  7882. const struct ggml_compute_params * params,
  7883. const struct ggml_tensor * src0,
  7884. const struct ggml_tensor * src1,
  7885. struct ggml_tensor * dst) {
  7886. int64_t t0 = ggml_perf_time_us();
  7887. UNUSED(t0);
  7888. const int64_t ne00 = src0->ne[0];
  7889. const int64_t ne01 = src0->ne[1];
  7890. const int64_t ne02 = src0->ne[2];
  7891. const int64_t ne03 = src0->ne[3];
  7892. const int64_t ne10 = src1->ne[0];
  7893. const int64_t ne11 = src1->ne[1];
  7894. const int64_t ne12 = src1->ne[2];
  7895. const int64_t ne13 = src1->ne[3];
  7896. const int64_t ne0 = dst->ne[0];
  7897. const int64_t ne1 = dst->ne[1];
  7898. const int64_t ne2 = dst->ne[2];
  7899. const int64_t ne3 = dst->ne[3];
  7900. const int nb00 = src0->nb[0];
  7901. const int nb01 = src0->nb[1];
  7902. const int nb02 = src0->nb[2];
  7903. const int nb03 = src0->nb[3];
  7904. const int nb10 = src1->nb[0];
  7905. const int nb11 = src1->nb[1];
  7906. const int nb12 = src1->nb[2];
  7907. const int nb13 = src1->nb[3];
  7908. const int nb0 = dst->nb[0];
  7909. const int nb1 = dst->nb[1];
  7910. const int nb2 = dst->nb[2];
  7911. const int nb3 = dst->nb[3];
  7912. const int ith = params->ith;
  7913. const int nth = params->nth;
  7914. GGML_ASSERT(ne02 == ne12);
  7915. GGML_ASSERT(ne03 == ne13);
  7916. GGML_ASSERT(ne2 == ne12);
  7917. GGML_ASSERT(ne3 == ne13);
  7918. const enum ggml_type type = src0->type;
  7919. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  7920. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  7921. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  7922. // we don't support permuted src0 or src1
  7923. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  7924. GGML_ASSERT(nb10 == sizeof(float));
  7925. // dst cannot be transposed or permuted
  7926. GGML_ASSERT(nb0 == sizeof(float));
  7927. GGML_ASSERT(nb0 <= nb1);
  7928. GGML_ASSERT(nb1 <= nb2);
  7929. GGML_ASSERT(nb2 <= nb3);
  7930. GGML_ASSERT(ne0 == ne01);
  7931. GGML_ASSERT(ne1 == ne11);
  7932. GGML_ASSERT(ne2 == ne02);
  7933. GGML_ASSERT(ne3 == ne03);
  7934. // nb01 >= nb00 - src0 is not transposed
  7935. // compute by src0 rows
  7936. #if defined(GGML_USE_CUBLAS)
  7937. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  7938. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7939. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7940. }
  7941. return;
  7942. }
  7943. #endif
  7944. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  7945. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7946. if (params->ith != 0) {
  7947. return;
  7948. }
  7949. if (params->type == GGML_TASK_INIT) {
  7950. return;
  7951. }
  7952. if (params->type == GGML_TASK_FINALIZE) {
  7953. return;
  7954. }
  7955. float * const wdata = params->wdata;
  7956. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7957. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7958. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7959. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7960. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7961. #if defined(GGML_USE_CLBLAST)
  7962. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  7963. #else
  7964. {
  7965. size_t id = 0;
  7966. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7967. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  7968. id += ne00;
  7969. }
  7970. assert(id*sizeof(float) <= params->wsize);
  7971. }
  7972. const float * x = wdata;
  7973. #endif
  7974. #if defined(GGML_USE_CLBLAST)
  7975. // zT = y * xT
  7976. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  7977. ne11, ne01, ne10,
  7978. 1.0f, y, ne10,
  7979. x, ne10,
  7980. 0.0f, d, ne01,
  7981. type);
  7982. #else
  7983. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7984. ne11, ne01, ne10,
  7985. 1.0f, y, ne10,
  7986. x, ne00,
  7987. 0.0f, d, ne01);
  7988. #endif
  7989. }
  7990. }
  7991. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7992. return;
  7993. }
  7994. #endif
  7995. if (params->type == GGML_TASK_INIT) {
  7996. char * wdata = params->wdata;
  7997. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7998. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7999. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8000. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8001. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8002. wdata += row_size;
  8003. }
  8004. }
  8005. }
  8006. return;
  8007. }
  8008. if (params->type == GGML_TASK_FINALIZE) {
  8009. return;
  8010. }
  8011. // parallelize by src0 rows using ggml_vec_dot_q
  8012. // total rows in src0
  8013. const int nr = ne01*ne02*ne03;
  8014. // rows per thread
  8015. const int dr = (nr + nth - 1)/nth;
  8016. // row range for this thread
  8017. const int ir0 = dr*ith;
  8018. const int ir1 = MIN(ir0 + dr, nr);
  8019. void * wdata = params->wdata;
  8020. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8021. for (int ir = ir0; ir < ir1; ++ir) {
  8022. // src0 indices
  8023. const int i03 = ir/(ne02*ne01);
  8024. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8025. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8026. const int i13 = i03;
  8027. const int i12 = i02;
  8028. const int i0 = i01;
  8029. const int i2 = i02;
  8030. const int i3 = i03;
  8031. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8032. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8033. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8034. assert(ne00 % 32 == 0);
  8035. for (int64_t ic = 0; ic < ne11; ++ic) {
  8036. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8037. }
  8038. }
  8039. //int64_t t1 = ggml_time_us();
  8040. //static int64_t acc = 0;
  8041. //acc += t1 - t0;
  8042. //if (t1 - t0 > 10) {
  8043. // printf("\n");
  8044. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8045. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8046. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8047. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8048. //}
  8049. }
  8050. static void ggml_compute_forward_mul_mat(
  8051. const struct ggml_compute_params * params,
  8052. const struct ggml_tensor * src0,
  8053. const struct ggml_tensor * src1,
  8054. struct ggml_tensor * dst) {
  8055. switch (src0->type) {
  8056. case GGML_TYPE_Q4_0:
  8057. case GGML_TYPE_Q4_1:
  8058. case GGML_TYPE_Q5_0:
  8059. case GGML_TYPE_Q5_1:
  8060. case GGML_TYPE_Q8_0:
  8061. case GGML_TYPE_Q8_1:
  8062. {
  8063. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8064. } break;
  8065. case GGML_TYPE_F16:
  8066. {
  8067. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8068. } break;
  8069. case GGML_TYPE_F32:
  8070. {
  8071. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8072. } break;
  8073. default:
  8074. {
  8075. GGML_ASSERT(false);
  8076. } break;
  8077. }
  8078. }
  8079. // ggml_compute_forward_scale
  8080. static void ggml_compute_forward_scale_f32(
  8081. const struct ggml_compute_params * params,
  8082. const struct ggml_tensor * src0,
  8083. const struct ggml_tensor * src1,
  8084. struct ggml_tensor * dst) {
  8085. GGML_ASSERT(ggml_is_contiguous(src0));
  8086. GGML_ASSERT(ggml_is_contiguous(dst));
  8087. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8088. GGML_ASSERT(ggml_is_scalar(src1));
  8089. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8090. return;
  8091. }
  8092. // scale factor
  8093. const float v = *(float *) src1->data;
  8094. const int ith = params->ith;
  8095. const int nth = params->nth;
  8096. const int nc = src0->ne[0];
  8097. const int nr = ggml_nrows(src0);
  8098. // rows per thread
  8099. const int dr = (nr + nth - 1)/nth;
  8100. // row range for this thread
  8101. const int ir0 = dr*ith;
  8102. const int ir1 = MIN(ir0 + dr, nr);
  8103. const size_t nb01 = src0->nb[1];
  8104. const size_t nb1 = dst->nb[1];
  8105. for (int i1 = ir0; i1 < ir1; i1++) {
  8106. if (dst->data != src0->data) {
  8107. // src0 is same shape as dst => same indices
  8108. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8109. }
  8110. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8111. }
  8112. }
  8113. static void ggml_compute_forward_scale(
  8114. const struct ggml_compute_params * params,
  8115. const struct ggml_tensor * src0,
  8116. const struct ggml_tensor * src1,
  8117. struct ggml_tensor * dst) {
  8118. switch (src0->type) {
  8119. case GGML_TYPE_F32:
  8120. {
  8121. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8122. } break;
  8123. default:
  8124. {
  8125. GGML_ASSERT(false);
  8126. } break;
  8127. }
  8128. }
  8129. // ggml_compute_forward_set
  8130. static void ggml_compute_forward_set_f32(
  8131. const struct ggml_compute_params * params,
  8132. const struct ggml_tensor * src0,
  8133. const struct ggml_tensor * src1,
  8134. const struct ggml_tensor * opt0,
  8135. struct ggml_tensor * dst) {
  8136. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8137. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8138. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8139. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8140. // view src0 and dst with these strides and data offset inbytes during set
  8141. // nb0 is implicitely element_size because src0 and dst are contiguous
  8142. size_t nb1 = ((int32_t *) opt0->data)[0];
  8143. size_t nb2 = ((int32_t *) opt0->data)[1];
  8144. size_t nb3 = ((int32_t *) opt0->data)[2];
  8145. size_t offset = ((int32_t *) opt0->data)[3];
  8146. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8147. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8148. // memcpy needs to be synchronized across threads to avoid race conditions.
  8149. // => do it in INIT phase
  8150. memcpy(
  8151. ((char *) dst->data),
  8152. ((char *) src0->data),
  8153. ggml_nbytes(dst));
  8154. }
  8155. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8156. return;
  8157. }
  8158. const int ith = params->ith;
  8159. const int nth = params->nth;
  8160. const int nr = ggml_nrows(src1);
  8161. const int nc = src1->ne[0];
  8162. const int64_t ne10 = src1->ne[0];
  8163. const int64_t ne11 = src1->ne[1];
  8164. const int64_t ne12 = src1->ne[2];
  8165. const int64_t ne13 = src1->ne[3];
  8166. const size_t nb10 = src1->nb[0];
  8167. const size_t nb11 = src1->nb[1];
  8168. const size_t nb12 = src1->nb[2];
  8169. const size_t nb13 = src1->nb[3];
  8170. // src0 and dst as viewed during set
  8171. const size_t nb0 = ggml_element_size(src0);
  8172. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8173. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8174. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8175. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8176. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8177. GGML_ASSERT(nb10 == sizeof(float));
  8178. // rows per thread
  8179. const int dr = (nr + nth - 1)/nth;
  8180. // row range for this thread
  8181. const int ir0 = dr*ith;
  8182. const int ir1 = MIN(ir0 + dr, nr);
  8183. for (int ir = ir0; ir < ir1; ++ir) {
  8184. // src0 and dst are viewed with shape of src1 and offset
  8185. // => same indices
  8186. const int i3 = ir/(ne12*ne11);
  8187. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8188. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8189. ggml_vec_cpy_f32(nc,
  8190. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8191. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8192. }
  8193. }
  8194. static void ggml_compute_forward_set(
  8195. const struct ggml_compute_params * params,
  8196. const struct ggml_tensor * src0,
  8197. const struct ggml_tensor * src1,
  8198. const struct ggml_tensor * opt0,
  8199. struct ggml_tensor * dst) {
  8200. switch (src0->type) {
  8201. case GGML_TYPE_F32:
  8202. {
  8203. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8204. } break;
  8205. case GGML_TYPE_F16:
  8206. case GGML_TYPE_Q4_0:
  8207. case GGML_TYPE_Q4_1:
  8208. case GGML_TYPE_Q5_0:
  8209. case GGML_TYPE_Q5_1:
  8210. case GGML_TYPE_Q8_0:
  8211. case GGML_TYPE_Q8_1:
  8212. default:
  8213. {
  8214. GGML_ASSERT(false);
  8215. } break;
  8216. }
  8217. }
  8218. // ggml_compute_forward_cpy
  8219. static void ggml_compute_forward_cpy(
  8220. const struct ggml_compute_params * params,
  8221. const struct ggml_tensor * src0,
  8222. struct ggml_tensor * dst) {
  8223. ggml_compute_forward_dup(params, src0, dst);
  8224. }
  8225. // ggml_compute_forward_cont
  8226. static void ggml_compute_forward_cont(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. struct ggml_tensor * dst) {
  8230. ggml_compute_forward_dup(params, src0, dst);
  8231. }
  8232. // ggml_compute_forward_reshape
  8233. static void ggml_compute_forward_reshape(
  8234. const struct ggml_compute_params * params,
  8235. const struct ggml_tensor * src0,
  8236. struct ggml_tensor * dst) {
  8237. // NOP
  8238. UNUSED(params);
  8239. UNUSED(src0);
  8240. UNUSED(dst);
  8241. }
  8242. // ggml_compute_forward_view
  8243. static void ggml_compute_forward_view(
  8244. const struct ggml_compute_params * params,
  8245. const struct ggml_tensor * src0) {
  8246. // NOP
  8247. UNUSED(params);
  8248. UNUSED(src0);
  8249. }
  8250. // ggml_compute_forward_permute
  8251. static void ggml_compute_forward_permute(
  8252. const struct ggml_compute_params * params,
  8253. const struct ggml_tensor * src0) {
  8254. // NOP
  8255. UNUSED(params);
  8256. UNUSED(src0);
  8257. }
  8258. // ggml_compute_forward_transpose
  8259. static void ggml_compute_forward_transpose(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0) {
  8262. // NOP
  8263. UNUSED(params);
  8264. UNUSED(src0);
  8265. }
  8266. // ggml_compute_forward_get_rows
  8267. static void ggml_compute_forward_get_rows_q(
  8268. const struct ggml_compute_params * params,
  8269. const struct ggml_tensor * src0,
  8270. const struct ggml_tensor * src1,
  8271. struct ggml_tensor * dst) {
  8272. assert(params->ith == 0);
  8273. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8274. return;
  8275. }
  8276. const int nc = src0->ne[0];
  8277. const int nr = ggml_nelements(src1);
  8278. const enum ggml_type type = src0->type;
  8279. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8280. assert( dst->ne[0] == nc);
  8281. assert( dst->ne[1] == nr);
  8282. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8283. for (int i = 0; i < nr; ++i) {
  8284. const int r = ((int32_t *) src1->data)[i];
  8285. dequantize_row_q(
  8286. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8287. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8288. }
  8289. }
  8290. static void ggml_compute_forward_get_rows_f16(
  8291. const struct ggml_compute_params * params,
  8292. const struct ggml_tensor * src0,
  8293. const struct ggml_tensor * src1,
  8294. struct ggml_tensor * dst) {
  8295. assert(params->ith == 0);
  8296. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8297. return;
  8298. }
  8299. const int nc = src0->ne[0];
  8300. const int nr = ggml_nelements(src1);
  8301. assert( dst->ne[0] == nc);
  8302. assert( dst->ne[1] == nr);
  8303. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8304. for (int i = 0; i < nr; ++i) {
  8305. const int r = ((int32_t *) src1->data)[i];
  8306. for (int j = 0; j < nc; ++j) {
  8307. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8308. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8309. }
  8310. }
  8311. }
  8312. static void ggml_compute_forward_get_rows_f32(
  8313. const struct ggml_compute_params * params,
  8314. const struct ggml_tensor * src0,
  8315. const struct ggml_tensor * src1,
  8316. struct ggml_tensor * dst) {
  8317. assert(params->ith == 0);
  8318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8319. return;
  8320. }
  8321. const int nc = src0->ne[0];
  8322. const int nr = ggml_nelements(src1);
  8323. assert( dst->ne[0] == nc);
  8324. assert( dst->ne[1] == nr);
  8325. assert(src0->nb[0] == sizeof(float));
  8326. for (int i = 0; i < nr; ++i) {
  8327. const int r = ((int32_t *) src1->data)[i];
  8328. ggml_vec_cpy_f32(nc,
  8329. (float *) ((char *) dst->data + i*dst->nb[1]),
  8330. (float *) ((char *) src0->data + r*src0->nb[1]));
  8331. }
  8332. }
  8333. static void ggml_compute_forward_get_rows(
  8334. const struct ggml_compute_params * params,
  8335. const struct ggml_tensor * src0,
  8336. const struct ggml_tensor * src1,
  8337. struct ggml_tensor * dst) {
  8338. switch (src0->type) {
  8339. case GGML_TYPE_Q4_0:
  8340. case GGML_TYPE_Q4_1:
  8341. case GGML_TYPE_Q5_0:
  8342. case GGML_TYPE_Q5_1:
  8343. case GGML_TYPE_Q8_0:
  8344. case GGML_TYPE_Q8_1:
  8345. {
  8346. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8347. } break;
  8348. case GGML_TYPE_F16:
  8349. {
  8350. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8351. } break;
  8352. case GGML_TYPE_F32:
  8353. {
  8354. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8355. } break;
  8356. default:
  8357. {
  8358. GGML_ASSERT(false);
  8359. } break;
  8360. }
  8361. //static bool first = true;
  8362. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8363. //if (first) {
  8364. // first = false;
  8365. //} else {
  8366. // for (int k = 0; k < dst->ne[1]; ++k) {
  8367. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8368. // for (int i = 0; i < 16; ++i) {
  8369. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8370. // }
  8371. // printf("\n");
  8372. // }
  8373. // printf("\n");
  8374. // }
  8375. // printf("\n");
  8376. // exit(0);
  8377. //}
  8378. }
  8379. // ggml_compute_forward_get_rows_back
  8380. static void ggml_compute_forward_get_rows_back_f32_f16(
  8381. const struct ggml_compute_params * params,
  8382. const struct ggml_tensor * src0,
  8383. const struct ggml_tensor * src1,
  8384. const struct ggml_tensor * opt0,
  8385. struct ggml_tensor * dst) {
  8386. GGML_ASSERT(params->ith == 0);
  8387. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8388. GGML_ASSERT(ggml_is_contiguous(opt0));
  8389. GGML_ASSERT(ggml_is_contiguous(dst));
  8390. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8391. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8392. return;
  8393. }
  8394. const int nc = src0->ne[0];
  8395. const int nr = ggml_nelements(src1);
  8396. GGML_ASSERT( dst->ne[0] == nc);
  8397. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8398. for (int i = 0; i < nr; ++i) {
  8399. const int r = ((int32_t *) src1->data)[i];
  8400. for (int j = 0; j < nc; ++j) {
  8401. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8402. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8403. }
  8404. }
  8405. }
  8406. static void ggml_compute_forward_get_rows_back_f32(
  8407. const struct ggml_compute_params * params,
  8408. const struct ggml_tensor * src0,
  8409. const struct ggml_tensor * src1,
  8410. const struct ggml_tensor * opt0,
  8411. struct ggml_tensor * dst) {
  8412. GGML_ASSERT(params->ith == 0);
  8413. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8414. GGML_ASSERT(ggml_is_contiguous(opt0));
  8415. GGML_ASSERT(ggml_is_contiguous(dst));
  8416. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8418. return;
  8419. }
  8420. const int nc = src0->ne[0];
  8421. const int nr = ggml_nelements(src1);
  8422. GGML_ASSERT( dst->ne[0] == nc);
  8423. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8424. for (int i = 0; i < nr; ++i) {
  8425. const int r = ((int32_t *) src1->data)[i];
  8426. ggml_vec_add_f32(nc,
  8427. (float *) ((char *) dst->data + r*dst->nb[1]),
  8428. (float *) ((char *) dst->data + r*dst->nb[1]),
  8429. (float *) ((char *) src0->data + i*src0->nb[1]));
  8430. }
  8431. }
  8432. static void ggml_compute_forward_get_rows_back(
  8433. const struct ggml_compute_params * params,
  8434. const struct ggml_tensor * src0,
  8435. const struct ggml_tensor * src1,
  8436. const struct ggml_tensor * opt0,
  8437. struct ggml_tensor * dst) {
  8438. switch (src0->type) {
  8439. case GGML_TYPE_F16:
  8440. {
  8441. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8442. } break;
  8443. case GGML_TYPE_F32:
  8444. {
  8445. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8446. } break;
  8447. default:
  8448. {
  8449. GGML_ASSERT(false);
  8450. } break;
  8451. }
  8452. //static bool first = true;
  8453. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8454. //if (first) {
  8455. // first = false;
  8456. //} else {
  8457. // for (int k = 0; k < dst->ne[1]; ++k) {
  8458. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8459. // for (int i = 0; i < 16; ++i) {
  8460. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8461. // }
  8462. // printf("\n");
  8463. // }
  8464. // printf("\n");
  8465. // }
  8466. // printf("\n");
  8467. // exit(0);
  8468. //}
  8469. }
  8470. // ggml_compute_forward_diag
  8471. static void ggml_compute_forward_diag_f32(
  8472. const struct ggml_compute_params * params,
  8473. const struct ggml_tensor * src0,
  8474. struct ggml_tensor * dst) {
  8475. GGML_ASSERT(params->ith == 0);
  8476. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8477. return;
  8478. }
  8479. // TODO: handle transposed/permuted matrices
  8480. const int ne00 = src0->ne[0];
  8481. const int ne01 = src0->ne[1];
  8482. const int ne02 = src0->ne[2];
  8483. const int ne03 = src0->ne[3];
  8484. const int ne0 = dst->ne[0];
  8485. const int ne1 = dst->ne[1];
  8486. const int ne2 = dst->ne[2];
  8487. const int ne3 = dst->ne[3];
  8488. GGML_ASSERT(ne00 == ne0);
  8489. GGML_ASSERT(ne00 == ne1);
  8490. GGML_ASSERT(ne01 == 1);
  8491. GGML_ASSERT(ne02 == ne2);
  8492. GGML_ASSERT(ne03 == ne3);
  8493. const int nb00 = src0->nb[0];
  8494. //const int nb01 = src0->nb[1];
  8495. const int nb02 = src0->nb[2];
  8496. const int nb03 = src0->nb[3];
  8497. const int nb0 = dst->nb[0];
  8498. const int nb1 = dst->nb[1];
  8499. const int nb2 = dst->nb[2];
  8500. const int nb3 = dst->nb[3];
  8501. GGML_ASSERT(nb00 == sizeof(float));
  8502. GGML_ASSERT(nb0 == sizeof(float));
  8503. for (int i3 = 0; i3 < ne3; i3++) {
  8504. for (int i2 = 0; i2 < ne2; i2++) {
  8505. for (int i1 = 0; i1 < ne1; i1++) {
  8506. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8507. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8508. for (int i0 = 0; i0 < i1; i0++) {
  8509. d[i0] = 0;
  8510. }
  8511. d[i1] = s[i1];
  8512. for (int i0 = i1+1; i0 < ne0; i0++) {
  8513. d[i0] = 0;
  8514. }
  8515. }
  8516. }
  8517. }
  8518. }
  8519. static void ggml_compute_forward_diag(
  8520. const struct ggml_compute_params * params,
  8521. const struct ggml_tensor * src0,
  8522. struct ggml_tensor * dst) {
  8523. switch (src0->type) {
  8524. case GGML_TYPE_F32:
  8525. {
  8526. ggml_compute_forward_diag_f32(params, src0, dst);
  8527. } break;
  8528. default:
  8529. {
  8530. GGML_ASSERT(false);
  8531. } break;
  8532. }
  8533. }
  8534. // ggml_compute_forward_diag_mask_inf
  8535. static void ggml_compute_forward_diag_mask_f32(
  8536. const struct ggml_compute_params * params,
  8537. const struct ggml_tensor * src0,
  8538. const struct ggml_tensor * src1,
  8539. struct ggml_tensor * dst,
  8540. const float value) {
  8541. assert(src1->type == GGML_TYPE_I32);
  8542. assert(ggml_nelements(src1) == 2);
  8543. const int ith = params->ith;
  8544. const int nth = params->nth;
  8545. const int n_past = ((int32_t *) src1->data)[0];
  8546. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8547. assert(n_past >= 0);
  8548. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8549. // memcpy needs to be synchronized across threads to avoid race conditions.
  8550. // => do it in INIT phase
  8551. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8552. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8553. memcpy(
  8554. ((char *) dst->data),
  8555. ((char *) src0->data),
  8556. ggml_nbytes(dst));
  8557. }
  8558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8559. return;
  8560. }
  8561. // TODO: handle transposed/permuted matrices
  8562. const int n = ggml_nrows(src0);
  8563. const int nc = src0->ne[0];
  8564. const int nr = src0->ne[1];
  8565. const int nz = n/nr;
  8566. assert( dst->nb[0] == sizeof(float));
  8567. assert(src0->nb[0] == sizeof(float));
  8568. for (int k = 0; k < nz; k++) {
  8569. for (int j = ith; j < nr; j += nth) {
  8570. for (int i = n_past; i < nc; i++) {
  8571. if (i > n_past + j) {
  8572. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8573. }
  8574. }
  8575. }
  8576. }
  8577. }
  8578. static void ggml_compute_forward_diag_mask_inf(
  8579. const struct ggml_compute_params * params,
  8580. const struct ggml_tensor * src0,
  8581. const struct ggml_tensor * src1,
  8582. struct ggml_tensor * dst) {
  8583. switch (src0->type) {
  8584. case GGML_TYPE_F32:
  8585. {
  8586. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8587. } break;
  8588. default:
  8589. {
  8590. GGML_ASSERT(false);
  8591. } break;
  8592. }
  8593. }
  8594. static void ggml_compute_forward_diag_mask_zero(
  8595. const struct ggml_compute_params * params,
  8596. const struct ggml_tensor * src0,
  8597. const struct ggml_tensor * src1,
  8598. struct ggml_tensor * dst) {
  8599. switch (src0->type) {
  8600. case GGML_TYPE_F32:
  8601. {
  8602. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8603. } break;
  8604. default:
  8605. {
  8606. GGML_ASSERT(false);
  8607. } break;
  8608. }
  8609. }
  8610. // ggml_compute_forward_soft_max
  8611. static void ggml_compute_forward_soft_max_f32(
  8612. const struct ggml_compute_params * params,
  8613. const struct ggml_tensor * src0,
  8614. struct ggml_tensor * dst) {
  8615. GGML_ASSERT(ggml_is_contiguous(src0));
  8616. GGML_ASSERT(ggml_is_contiguous(dst));
  8617. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8619. return;
  8620. }
  8621. // TODO: handle transposed/permuted matrices
  8622. const int ith = params->ith;
  8623. const int nth = params->nth;
  8624. const int nc = src0->ne[0];
  8625. const int nr = ggml_nrows(src0);
  8626. // rows per thread
  8627. const int dr = (nr + nth - 1)/nth;
  8628. // row range for this thread
  8629. const int ir0 = dr*ith;
  8630. const int ir1 = MIN(ir0 + dr, nr);
  8631. for (int i1 = ir0; i1 < ir1; i1++) {
  8632. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8633. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8634. #ifndef NDEBUG
  8635. for (int i = 0; i < nc; ++i) {
  8636. //printf("p[%d] = %f\n", i, p[i]);
  8637. assert(!isnan(sp[i]));
  8638. }
  8639. #endif
  8640. float max = -INFINITY;
  8641. ggml_vec_max_f32(nc, &max, sp);
  8642. ggml_float sum = 0.0;
  8643. uint16_t scvt;
  8644. for (int i = 0; i < nc; i++) {
  8645. if (sp[i] == -INFINITY) {
  8646. dp[i] = 0.0f;
  8647. } else {
  8648. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8649. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8650. memcpy(&scvt, &s, sizeof(scvt));
  8651. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8652. sum += (ggml_float)val;
  8653. dp[i] = val;
  8654. }
  8655. }
  8656. assert(sum > 0.0);
  8657. sum = 1.0/sum;
  8658. ggml_vec_scale_f32(nc, dp, sum);
  8659. #ifndef NDEBUG
  8660. for (int i = 0; i < nc; ++i) {
  8661. assert(!isnan(dp[i]));
  8662. assert(!isinf(dp[i]));
  8663. }
  8664. #endif
  8665. }
  8666. }
  8667. static void ggml_compute_forward_soft_max(
  8668. const struct ggml_compute_params * params,
  8669. const struct ggml_tensor * src0,
  8670. struct ggml_tensor * dst) {
  8671. switch (src0->type) {
  8672. case GGML_TYPE_F32:
  8673. {
  8674. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8675. } break;
  8676. default:
  8677. {
  8678. GGML_ASSERT(false);
  8679. } break;
  8680. }
  8681. }
  8682. // ggml_compute_forward_alibi
  8683. static void ggml_compute_forward_alibi_f32(
  8684. const struct ggml_compute_params * params,
  8685. const struct ggml_tensor * src0,
  8686. const struct ggml_tensor * src1,
  8687. struct ggml_tensor * dst) {
  8688. assert(params->ith == 0);
  8689. assert(src1->type == GGML_TYPE_I32);
  8690. assert(ggml_nelements(src1) == 2);
  8691. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8692. return;
  8693. }
  8694. const int n_past = ((int32_t *) src1->data)[0];
  8695. const int n_head = ((int32_t *) src1->data)[1];
  8696. assert(n_past >= 0);
  8697. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8698. const int ne1 = src0->ne[1]; // seq_len_without_past
  8699. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8700. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8701. const int n = ggml_nrows(src0);
  8702. const int ne2_ne3 = n/ne1; // ne2*ne3
  8703. const int nb0 = src0->nb[0];
  8704. const int nb1 = src0->nb[1];
  8705. const int nb2 = src0->nb[2];
  8706. //const int nb3 = src0->nb[3];
  8707. assert(nb0 == sizeof(float));
  8708. assert(ne1 + n_past == ne0); (void) n_past;
  8709. // add alibi to src0 (KQ_scaled)
  8710. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8711. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8712. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8713. for (int i = 0; i < ne0; i++) {
  8714. for (int j = 0; j < ne1; j++) {
  8715. for (int k = 0; k < ne2_ne3; k++) {
  8716. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8717. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8718. // TODO: k*nb2 or k*nb3
  8719. float m_k;
  8720. if (k < n_heads_log2_floor) {
  8721. m_k = powf(m0, k + 1);
  8722. } else {
  8723. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8724. }
  8725. pdst[0] = i * m_k + src[0];
  8726. }
  8727. }
  8728. }
  8729. }
  8730. static void ggml_compute_forward_alibi_f16(
  8731. const struct ggml_compute_params * params,
  8732. const struct ggml_tensor * src0,
  8733. const struct ggml_tensor * src1,
  8734. struct ggml_tensor * dst) {
  8735. assert(params->ith == 0);
  8736. assert(src1->type == GGML_TYPE_I32);
  8737. assert(ggml_nelements(src1) == 2);
  8738. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8739. return;
  8740. }
  8741. const int n_past = ((int32_t *) src1->data)[0];
  8742. const int n_head = ((int32_t *) src1->data)[1];
  8743. assert(n_past >= 0);
  8744. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8745. const int ne1 = src0->ne[1]; // seq_len_without_past
  8746. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8747. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8748. const int n = ggml_nrows(src0);
  8749. const int ne2_ne3 = n/ne1; // ne2*ne3
  8750. const int nb0 = src0->nb[0];
  8751. const int nb1 = src0->nb[1];
  8752. const int nb2 = src0->nb[2];
  8753. //const int nb3 = src0->nb[3];
  8754. assert(nb0 == sizeof(ggml_fp16_t));
  8755. assert(ne1 + n_past == ne0); (void) n_past;
  8756. // add alibi to src0 (KQ_scaled)
  8757. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8758. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  8759. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  8760. for (int i = 0; i < ne0; i++) {
  8761. for (int j = 0; j < ne1; j++) {
  8762. for (int k = 0; k < ne2_ne3; k++) {
  8763. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8764. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8765. // TODO: k*nb2 or k*nb3
  8766. float m_k;
  8767. if (k < n_heads_log2_floor) {
  8768. m_k = powf(m0, k + 1);
  8769. } else {
  8770. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8771. }
  8772. // we return F32
  8773. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  8774. }
  8775. }
  8776. }
  8777. }
  8778. static void ggml_compute_forward_alibi(
  8779. const struct ggml_compute_params * params,
  8780. const struct ggml_tensor * src0,
  8781. const struct ggml_tensor * src1,
  8782. struct ggml_tensor * dst) {
  8783. switch (src0->type) {
  8784. case GGML_TYPE_F16:
  8785. {
  8786. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  8787. } break;
  8788. case GGML_TYPE_F32:
  8789. {
  8790. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  8791. } break;
  8792. case GGML_TYPE_Q4_0:
  8793. case GGML_TYPE_Q4_1:
  8794. case GGML_TYPE_Q5_0:
  8795. case GGML_TYPE_Q5_1:
  8796. case GGML_TYPE_Q8_0:
  8797. case GGML_TYPE_Q8_1:
  8798. case GGML_TYPE_I8:
  8799. case GGML_TYPE_I16:
  8800. case GGML_TYPE_I32:
  8801. case GGML_TYPE_COUNT:
  8802. {
  8803. GGML_ASSERT(false);
  8804. } break;
  8805. }
  8806. }
  8807. // ggml_compute_forward_rope
  8808. static void ggml_compute_forward_rope_f32(
  8809. const struct ggml_compute_params * params,
  8810. const struct ggml_tensor * src0,
  8811. const struct ggml_tensor * src1,
  8812. struct ggml_tensor * dst) {
  8813. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8814. GGML_ASSERT(ggml_nelements(src1) == 3);
  8815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8816. return;
  8817. }
  8818. const int n_past = ((int32_t *) src1->data)[0];
  8819. const int n_dims = ((int32_t *) src1->data)[1];
  8820. const int mode = ((int32_t *) src1->data)[2];
  8821. assert(n_past >= 0);
  8822. const size_t nb00 = src0->nb[0];
  8823. const size_t nb01 = src0->nb[1];
  8824. const size_t nb02 = src0->nb[2];
  8825. const size_t nb03 = src0->nb[3];
  8826. const int64_t ne0 = dst->ne[0];
  8827. const int64_t ne1 = dst->ne[1];
  8828. const int64_t ne2 = dst->ne[2];
  8829. const int64_t ne3 = dst->ne[3];
  8830. const size_t nb0 = dst->nb[0];
  8831. const size_t nb1 = dst->nb[1];
  8832. const size_t nb2 = dst->nb[2];
  8833. const size_t nb3 = dst->nb[3];
  8834. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8835. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8836. GGML_ASSERT(nb00 == sizeof(float));
  8837. const int ith = params->ith;
  8838. const int nth = params->nth;
  8839. const int nr = ggml_nrows(dst);
  8840. GGML_ASSERT(n_dims <= ne0);
  8841. GGML_ASSERT(n_dims % 2 == 0);
  8842. // rows per thread
  8843. const int dr = (nr + nth - 1)/nth;
  8844. // row range for this thread
  8845. const int ir0 = dr*ith;
  8846. const int ir1 = MIN(ir0 + dr, nr);
  8847. // row index used to determine which thread to use
  8848. int ir = 0;
  8849. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8850. const bool is_neox = mode & 2;
  8851. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8852. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8853. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8854. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8855. if (ir++ < ir0) continue;
  8856. if (ir > ir1) break;
  8857. float theta = (float)p;
  8858. if (!is_neox) {
  8859. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8860. const float cos_theta = cosf(theta);
  8861. const float sin_theta = sinf(theta);
  8862. theta *= theta_scale;
  8863. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8864. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8865. const float x0 = src[0];
  8866. const float x1 = src[1];
  8867. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8868. dst_data[1] = x0*sin_theta + x1*cos_theta;
  8869. }
  8870. } else {
  8871. // TODO: this is probably wrong, but I can't figure it out ..
  8872. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8873. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8874. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8875. const float cos_theta = cosf(theta);
  8876. const float sin_theta = sinf(theta);
  8877. theta *= theta_scale;
  8878. const int64_t i0 = ib*n_dims + ic/2;
  8879. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8880. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8881. const float x0 = src[0];
  8882. const float x1 = src[n_dims/2];
  8883. dst_data[0] = x0*cos_theta - x1*sin_theta;
  8884. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  8885. }
  8886. }
  8887. }
  8888. }
  8889. }
  8890. }
  8891. }
  8892. static void ggml_compute_forward_rope_f16(
  8893. const struct ggml_compute_params * params,
  8894. const struct ggml_tensor * src0,
  8895. const struct ggml_tensor * src1,
  8896. struct ggml_tensor * dst) {
  8897. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  8898. GGML_ASSERT(ggml_nelements(src1) == 3);
  8899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8900. return;
  8901. }
  8902. const int n_past = ((int32_t *) src1->data)[0];
  8903. const int n_dims = ((int32_t *) src1->data)[1];
  8904. const int mode = ((int32_t *) src1->data)[2];
  8905. assert(n_past >= 0);
  8906. const size_t nb00 = src0->nb[0];
  8907. const size_t nb01 = src0->nb[1];
  8908. const size_t nb02 = src0->nb[2];
  8909. const size_t nb03 = src0->nb[3];
  8910. const int64_t ne0 = dst->ne[0];
  8911. const int64_t ne1 = dst->ne[1];
  8912. const int64_t ne2 = dst->ne[2];
  8913. const int64_t ne3 = dst->ne[3];
  8914. const size_t nb0 = dst->nb[0];
  8915. const size_t nb1 = dst->nb[1];
  8916. const size_t nb2 = dst->nb[2];
  8917. const size_t nb3 = dst->nb[3];
  8918. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  8919. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  8920. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8921. const int ith = params->ith;
  8922. const int nth = params->nth;
  8923. const int nr = ggml_nrows(dst);
  8924. GGML_ASSERT(n_dims <= ne0);
  8925. GGML_ASSERT(n_dims % 2 == 0);
  8926. // rows per thread
  8927. const int dr = (nr + nth - 1)/nth;
  8928. // row range for this thread
  8929. const int ir0 = dr*ith;
  8930. const int ir1 = MIN(ir0 + dr, nr);
  8931. // row index used to determine which thread to use
  8932. int ir = 0;
  8933. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  8934. const bool is_neox = mode & 2;
  8935. for (int64_t i3 = 0; i3 < ne3; i3++) {
  8936. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  8937. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  8938. for (int64_t i1 = 0; i1 < ne1; i1++) {
  8939. if (ir++ < ir0) continue;
  8940. if (ir > ir1) break;
  8941. float theta = (float)p;
  8942. if (!is_neox) {
  8943. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  8944. const float cos_theta = cosf(theta);
  8945. const float sin_theta = sinf(theta);
  8946. theta *= theta_scale;
  8947. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8948. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8949. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8950. const float x1 = GGML_FP16_TO_FP32(src[1]);
  8951. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8952. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8953. }
  8954. } else {
  8955. // TODO: this is probably wrong, but I can't figure it out ..
  8956. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  8957. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  8958. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  8959. const float cos_theta = cosf(theta);
  8960. const float sin_theta = sinf(theta);
  8961. theta *= theta_scale;
  8962. const int64_t i0 = ib*n_dims + ic/2;
  8963. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  8964. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  8965. const float x0 = GGML_FP16_TO_FP32(src[0]);
  8966. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  8967. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  8968. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  8969. }
  8970. }
  8971. }
  8972. }
  8973. }
  8974. }
  8975. }
  8976. static void ggml_compute_forward_rope(
  8977. const struct ggml_compute_params * params,
  8978. const struct ggml_tensor * src0,
  8979. const struct ggml_tensor * src1,
  8980. struct ggml_tensor * dst) {
  8981. switch (src0->type) {
  8982. case GGML_TYPE_F16:
  8983. {
  8984. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  8985. } break;
  8986. case GGML_TYPE_F32:
  8987. {
  8988. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  8989. } break;
  8990. default:
  8991. {
  8992. GGML_ASSERT(false);
  8993. } break;
  8994. }
  8995. }
  8996. // ggml_compute_forward_rope_back
  8997. static void ggml_compute_forward_rope_back_f32(
  8998. const struct ggml_compute_params * params,
  8999. const struct ggml_tensor * src0,
  9000. const struct ggml_tensor * src1,
  9001. struct ggml_tensor * dst) {
  9002. assert(src1->type == GGML_TYPE_I32);
  9003. assert(ggml_nelements(src1) == 3);
  9004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9005. return;
  9006. }
  9007. // y = rope(x, src1)
  9008. // dx = rope_back(dy, src1)
  9009. // src0 is dy, src1 contains options
  9010. const int n_past = ((int32_t *) src1->data)[0];
  9011. const int n_dims = ((int32_t *) src1->data)[1];
  9012. const int mode = ((int32_t *) src1->data)[2];
  9013. assert(n_past >= 0);
  9014. const size_t nb00 = src0->nb[0];
  9015. const size_t nb01 = src0->nb[1];
  9016. const size_t nb02 = src0->nb[2];
  9017. const size_t nb03 = src0->nb[3];
  9018. const int64_t ne0 = dst->ne[0];
  9019. const int64_t ne1 = dst->ne[1];
  9020. const int64_t ne2 = dst->ne[2];
  9021. const int64_t ne3 = dst->ne[3];
  9022. const size_t nb0 = dst->nb[0];
  9023. const size_t nb1 = dst->nb[1];
  9024. const size_t nb2 = dst->nb[2];
  9025. const size_t nb3 = dst->nb[3];
  9026. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9027. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9028. assert(nb0 == sizeof(float));
  9029. const int ith = params->ith;
  9030. const int nth = params->nth;
  9031. const int nr = ggml_nrows(dst);
  9032. // rows per thread
  9033. const int dr = (nr + nth - 1)/nth;
  9034. // row range for this thread
  9035. const int ir0 = dr*ith;
  9036. const int ir1 = MIN(ir0 + dr, nr);
  9037. // row index used to determine which thread to use
  9038. int ir = 0;
  9039. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9040. const bool is_neox = mode & 2;
  9041. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9042. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9043. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9044. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9045. if (ir++ < ir0) continue;
  9046. if (ir > ir1) break;
  9047. float theta = (float)p;
  9048. if (!is_neox) {
  9049. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9050. const float cos_theta = cosf(theta);
  9051. const float sin_theta = sinf(theta);
  9052. theta *= theta_scale;
  9053. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9054. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9055. const float dy0 = dy[0];
  9056. const float dy1 = dy[1];
  9057. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9058. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9059. }
  9060. } else {
  9061. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9062. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9063. const float cos_theta = cosf(theta);
  9064. const float sin_theta = sinf(theta);
  9065. theta *= theta_scale;
  9066. const int64_t i0 = ib*n_dims + ic/2;
  9067. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9068. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9069. const float dy0 = dy[0];
  9070. const float dy1 = dy[n_dims/2];
  9071. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9072. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9073. }
  9074. }
  9075. }
  9076. }
  9077. }
  9078. }
  9079. }
  9080. static void ggml_compute_forward_rope_back_f16(
  9081. const struct ggml_compute_params * params,
  9082. const struct ggml_tensor * src0,
  9083. const struct ggml_tensor * src1,
  9084. struct ggml_tensor * dst) {
  9085. assert(src1->type == GGML_TYPE_I32);
  9086. assert(ggml_nelements(src1) == 3);
  9087. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9088. return;
  9089. }
  9090. // y = rope(x, src1)
  9091. // dx = rope_back(dy, src1)
  9092. // src0 is dy, src1 contains options
  9093. const int n_past = ((int32_t *) src1->data)[0];
  9094. const int n_dims = ((int32_t *) src1->data)[1];
  9095. const int mode = ((int32_t *) src1->data)[2];
  9096. assert(n_past >= 0);
  9097. const size_t nb00 = src0->nb[0];
  9098. const size_t nb01 = src0->nb[1];
  9099. const size_t nb02 = src0->nb[2];
  9100. const size_t nb03 = src0->nb[3];
  9101. const int64_t ne0 = dst->ne[0];
  9102. const int64_t ne1 = dst->ne[1];
  9103. const int64_t ne2 = dst->ne[2];
  9104. const int64_t ne3 = dst->ne[3];
  9105. const size_t nb0 = dst->nb[0];
  9106. const size_t nb1 = dst->nb[1];
  9107. const size_t nb2 = dst->nb[2];
  9108. const size_t nb3 = dst->nb[3];
  9109. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9110. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9111. assert(nb0 == sizeof(ggml_fp16_t));
  9112. const int ith = params->ith;
  9113. const int nth = params->nth;
  9114. const int nr = ggml_nrows(dst);
  9115. // rows per thread
  9116. const int dr = (nr + nth - 1)/nth;
  9117. // row range for this thread
  9118. const int ir0 = dr*ith;
  9119. const int ir1 = MIN(ir0 + dr, nr);
  9120. // row index used to determine which thread to use
  9121. int ir = 0;
  9122. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9123. const bool is_neox = mode & 2;
  9124. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9125. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9126. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9127. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9128. if (ir++ < ir0) continue;
  9129. if (ir > ir1) break;
  9130. float theta = (float)p;
  9131. if (!is_neox) {
  9132. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9133. const float cos_theta = cosf(theta);
  9134. const float sin_theta = sinf(theta);
  9135. theta *= theta_scale;
  9136. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9137. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9138. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9139. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9140. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9141. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9142. }
  9143. } else {
  9144. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9145. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9146. const float cos_theta = cosf(theta);
  9147. const float sin_theta = sinf(theta);
  9148. theta *= theta_scale;
  9149. const int64_t i0 = ib*n_dims + ic/2;
  9150. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9151. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9152. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9153. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9154. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9155. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9156. }
  9157. }
  9158. }
  9159. }
  9160. }
  9161. }
  9162. }
  9163. static void ggml_compute_forward_rope_back(
  9164. const struct ggml_compute_params * params,
  9165. const struct ggml_tensor * src0,
  9166. const struct ggml_tensor * src1,
  9167. struct ggml_tensor * dst) {
  9168. switch (src0->type) {
  9169. case GGML_TYPE_F16:
  9170. {
  9171. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9172. } break;
  9173. case GGML_TYPE_F32:
  9174. {
  9175. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9176. } break;
  9177. default:
  9178. {
  9179. GGML_ASSERT(false);
  9180. } break;
  9181. }
  9182. }
  9183. // ggml_compute_forward_conv_1d_1s
  9184. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9185. const struct ggml_compute_params * params,
  9186. const struct ggml_tensor * src0,
  9187. const struct ggml_tensor * src1,
  9188. struct ggml_tensor * dst) {
  9189. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9190. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9191. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9192. int64_t t0 = ggml_perf_time_us();
  9193. UNUSED(t0);
  9194. const int64_t ne00 = src0->ne[0];
  9195. const int64_t ne01 = src0->ne[1];
  9196. const int64_t ne02 = src0->ne[2];
  9197. //const int64_t ne03 = src0->ne[3];
  9198. const int64_t ne10 = src1->ne[0];
  9199. const int64_t ne11 = src1->ne[1];
  9200. //const int64_t ne12 = src1->ne[2];
  9201. //const int64_t ne13 = src1->ne[3];
  9202. //const int64_t ne0 = dst->ne[0];
  9203. //const int64_t ne1 = dst->ne[1];
  9204. //const int64_t ne2 = dst->ne[2];
  9205. //const int64_t ne3 = dst->ne[3];
  9206. //const int64_t ne = ne0*ne1*ne2*ne3;
  9207. const int nb00 = src0->nb[0];
  9208. const int nb01 = src0->nb[1];
  9209. const int nb02 = src0->nb[2];
  9210. //const int nb03 = src0->nb[3];
  9211. const int nb10 = src1->nb[0];
  9212. const int nb11 = src1->nb[1];
  9213. //const int nb12 = src1->nb[2];
  9214. //const int nb13 = src1->nb[3];
  9215. //const int nb0 = dst->nb[0];
  9216. const int nb1 = dst->nb[1];
  9217. //const int nb2 = dst->nb[2];
  9218. //const int nb3 = dst->nb[3];
  9219. const int ith = params->ith;
  9220. const int nth = params->nth;
  9221. const int nk = ne00;
  9222. const int nh = nk/2;
  9223. const int ew0 = ggml_up32(ne01);
  9224. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9225. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9226. GGML_ASSERT(nb10 == sizeof(float));
  9227. if (params->type == GGML_TASK_INIT) {
  9228. // TODO: fix this memset (wsize is overestimated)
  9229. memset(params->wdata, 0, params->wsize);
  9230. // prepare kernel data (src0)
  9231. {
  9232. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9233. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9234. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9235. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9236. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9237. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9238. dst_data[i00*ew0 + i01] = src[i00];
  9239. }
  9240. }
  9241. }
  9242. }
  9243. // prepare source data (src1)
  9244. {
  9245. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9246. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9247. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9248. ggml_fp16_t * dst_data = wdata;
  9249. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9250. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9251. }
  9252. }
  9253. }
  9254. return;
  9255. }
  9256. if (params->type == GGML_TASK_FINALIZE) {
  9257. return;
  9258. }
  9259. // total rows in dst
  9260. const int nr = ne02;
  9261. // rows per thread
  9262. const int dr = (nr + nth - 1)/nth;
  9263. // row range for this thread
  9264. const int ir0 = dr*ith;
  9265. const int ir1 = MIN(ir0 + dr, nr);
  9266. for (int i1 = ir0; i1 < ir1; i1++) {
  9267. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9268. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9269. dst_data[i0] = 0;
  9270. for (int k = -nh; k <= nh; k++) {
  9271. float v = 0.0f;
  9272. ggml_vec_dot_f16(ew0, &v,
  9273. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9274. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9275. dst_data[i0] += v;
  9276. }
  9277. }
  9278. }
  9279. }
  9280. static void ggml_compute_forward_conv_1d_1s_f32(
  9281. const struct ggml_compute_params * params,
  9282. const struct ggml_tensor * src0,
  9283. const struct ggml_tensor * src1,
  9284. struct ggml_tensor * dst) {
  9285. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9286. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9287. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9288. int64_t t0 = ggml_perf_time_us();
  9289. UNUSED(t0);
  9290. const int64_t ne00 = src0->ne[0];
  9291. const int64_t ne01 = src0->ne[1];
  9292. const int64_t ne02 = src0->ne[2];
  9293. //const int64_t ne03 = src0->ne[3];
  9294. const int64_t ne10 = src1->ne[0];
  9295. const int64_t ne11 = src1->ne[1];
  9296. //const int64_t ne12 = src1->ne[2];
  9297. //const int64_t ne13 = src1->ne[3];
  9298. //const int64_t ne0 = dst->ne[0];
  9299. //const int64_t ne1 = dst->ne[1];
  9300. //const int64_t ne2 = dst->ne[2];
  9301. //const int64_t ne3 = dst->ne[3];
  9302. //const int64_t ne = ne0*ne1*ne2*ne3;
  9303. const int nb00 = src0->nb[0];
  9304. const int nb01 = src0->nb[1];
  9305. const int nb02 = src0->nb[2];
  9306. //const int nb03 = src0->nb[3];
  9307. const int nb10 = src1->nb[0];
  9308. const int nb11 = src1->nb[1];
  9309. //const int nb12 = src1->nb[2];
  9310. //const int nb13 = src1->nb[3];
  9311. //const int nb0 = dst->nb[0];
  9312. const int nb1 = dst->nb[1];
  9313. //const int nb2 = dst->nb[2];
  9314. //const int nb3 = dst->nb[3];
  9315. const int ith = params->ith;
  9316. const int nth = params->nth;
  9317. const int nk = ne00;
  9318. const int nh = nk/2;
  9319. const int ew0 = ggml_up32(ne01);
  9320. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9321. GGML_ASSERT(nb00 == sizeof(float));
  9322. GGML_ASSERT(nb10 == sizeof(float));
  9323. if (params->type == GGML_TASK_INIT) {
  9324. // TODO: fix this memset (wsize is overestimated)
  9325. memset(params->wdata, 0, params->wsize);
  9326. // prepare kernel data (src0)
  9327. {
  9328. float * const wdata = (float *) params->wdata + 0;
  9329. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9330. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9331. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9332. float * dst_data = wdata + i02*ew0*ne00;
  9333. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9334. dst_data[i00*ew0 + i01] = src[i00];
  9335. }
  9336. }
  9337. }
  9338. }
  9339. // prepare source data (src1)
  9340. {
  9341. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9342. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9343. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9344. float * dst_data = wdata;
  9345. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9346. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9347. }
  9348. }
  9349. }
  9350. return;
  9351. }
  9352. if (params->type == GGML_TASK_FINALIZE) {
  9353. return;
  9354. }
  9355. // total rows in dst
  9356. const int nr = ne02;
  9357. // rows per thread
  9358. const int dr = (nr + nth - 1)/nth;
  9359. // row range for this thread
  9360. const int ir0 = dr*ith;
  9361. const int ir1 = MIN(ir0 + dr, nr);
  9362. for (int i1 = ir0; i1 < ir1; i1++) {
  9363. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9364. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9365. dst_data[i0] = 0;
  9366. for (int k = -nh; k <= nh; k++) {
  9367. float v = 0.0f;
  9368. ggml_vec_dot_f32(ew0, &v,
  9369. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9370. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9371. dst_data[i0] += v;
  9372. }
  9373. }
  9374. }
  9375. }
  9376. static void ggml_compute_forward_conv_1d_1s(
  9377. const struct ggml_compute_params * params,
  9378. const struct ggml_tensor * src0,
  9379. const struct ggml_tensor * src1,
  9380. struct ggml_tensor * dst) {
  9381. switch (src0->type) {
  9382. case GGML_TYPE_F16:
  9383. {
  9384. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9385. } break;
  9386. case GGML_TYPE_F32:
  9387. {
  9388. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9389. } break;
  9390. default:
  9391. {
  9392. GGML_ASSERT(false);
  9393. } break;
  9394. }
  9395. }
  9396. // ggml_compute_forward_conv_1d_2s
  9397. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9398. const struct ggml_compute_params * params,
  9399. const struct ggml_tensor * src0,
  9400. const struct ggml_tensor * src1,
  9401. struct ggml_tensor * dst) {
  9402. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9403. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9404. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9405. int64_t t0 = ggml_perf_time_us();
  9406. UNUSED(t0);
  9407. const int64_t ne00 = src0->ne[0];
  9408. const int64_t ne01 = src0->ne[1];
  9409. const int64_t ne02 = src0->ne[2];
  9410. //const int64_t ne03 = src0->ne[3];
  9411. const int64_t ne10 = src1->ne[0];
  9412. const int64_t ne11 = src1->ne[1];
  9413. //const int64_t ne12 = src1->ne[2];
  9414. //const int64_t ne13 = src1->ne[3];
  9415. //const int64_t ne0 = dst->ne[0];
  9416. //const int64_t ne1 = dst->ne[1];
  9417. //const int64_t ne2 = dst->ne[2];
  9418. //const int64_t ne3 = dst->ne[3];
  9419. //const int64_t ne = ne0*ne1*ne2*ne3;
  9420. const int nb00 = src0->nb[0];
  9421. const int nb01 = src0->nb[1];
  9422. const int nb02 = src0->nb[2];
  9423. //const int nb03 = src0->nb[3];
  9424. const int nb10 = src1->nb[0];
  9425. const int nb11 = src1->nb[1];
  9426. //const int nb12 = src1->nb[2];
  9427. //const int nb13 = src1->nb[3];
  9428. //const int nb0 = dst->nb[0];
  9429. const int nb1 = dst->nb[1];
  9430. //const int nb2 = dst->nb[2];
  9431. //const int nb3 = dst->nb[3];
  9432. const int ith = params->ith;
  9433. const int nth = params->nth;
  9434. const int nk = ne00;
  9435. const int nh = nk/2;
  9436. const int ew0 = ggml_up32(ne01);
  9437. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9438. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9439. GGML_ASSERT(nb10 == sizeof(float));
  9440. if (params->type == GGML_TASK_INIT) {
  9441. // TODO: fix this memset (wsize is overestimated)
  9442. memset(params->wdata, 0, params->wsize);
  9443. // prepare kernel data (src0)
  9444. {
  9445. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9446. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9447. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9448. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9449. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9450. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9451. dst_data[i00*ew0 + i01] = src[i00];
  9452. }
  9453. }
  9454. }
  9455. }
  9456. // prepare source data (src1)
  9457. {
  9458. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9459. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9460. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9461. ggml_fp16_t * dst_data = wdata;
  9462. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9463. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9464. }
  9465. }
  9466. }
  9467. return;
  9468. }
  9469. if (params->type == GGML_TASK_FINALIZE) {
  9470. return;
  9471. }
  9472. // total rows in dst
  9473. const int nr = ne02;
  9474. // rows per thread
  9475. const int dr = (nr + nth - 1)/nth;
  9476. // row range for this thread
  9477. const int ir0 = dr*ith;
  9478. const int ir1 = MIN(ir0 + dr, nr);
  9479. for (int i1 = ir0; i1 < ir1; i1++) {
  9480. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9481. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9482. dst_data[i0/2] = 0;
  9483. for (int k = -nh; k <= nh; k++) {
  9484. float v = 0.0f;
  9485. ggml_vec_dot_f16(ew0, &v,
  9486. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9487. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9488. dst_data[i0/2] += v;
  9489. }
  9490. }
  9491. }
  9492. }
  9493. static void ggml_compute_forward_conv_1d_2s_f32(
  9494. const struct ggml_compute_params * params,
  9495. const struct ggml_tensor * src0,
  9496. const struct ggml_tensor * src1,
  9497. struct ggml_tensor * dst) {
  9498. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9499. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9500. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9501. int64_t t0 = ggml_perf_time_us();
  9502. UNUSED(t0);
  9503. const int64_t ne00 = src0->ne[0];
  9504. const int64_t ne01 = src0->ne[1];
  9505. const int64_t ne02 = src0->ne[2];
  9506. //const int64_t ne03 = src0->ne[3];
  9507. const int64_t ne10 = src1->ne[0];
  9508. const int64_t ne11 = src1->ne[1];
  9509. //const int64_t ne12 = src1->ne[2];
  9510. //const int64_t ne13 = src1->ne[3];
  9511. //const int64_t ne0 = dst->ne[0];
  9512. //const int64_t ne1 = dst->ne[1];
  9513. //const int64_t ne2 = dst->ne[2];
  9514. //const int64_t ne3 = dst->ne[3];
  9515. //const int64_t ne = ne0*ne1*ne2*ne3;
  9516. const int nb00 = src0->nb[0];
  9517. const int nb01 = src0->nb[1];
  9518. const int nb02 = src0->nb[2];
  9519. //const int nb03 = src0->nb[3];
  9520. const int nb10 = src1->nb[0];
  9521. const int nb11 = src1->nb[1];
  9522. //const int nb12 = src1->nb[2];
  9523. //const int nb13 = src1->nb[3];
  9524. //const int nb0 = dst->nb[0];
  9525. const int nb1 = dst->nb[1];
  9526. //const int nb2 = dst->nb[2];
  9527. //const int nb3 = dst->nb[3];
  9528. const int ith = params->ith;
  9529. const int nth = params->nth;
  9530. const int nk = ne00;
  9531. const int nh = nk/2;
  9532. const int ew0 = ggml_up32(ne01);
  9533. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9534. GGML_ASSERT(nb00 == sizeof(float));
  9535. GGML_ASSERT(nb10 == sizeof(float));
  9536. if (params->type == GGML_TASK_INIT) {
  9537. // TODO: fix this memset (wsize is overestimated)
  9538. memset(params->wdata, 0, params->wsize);
  9539. // prepare kernel data (src0)
  9540. {
  9541. float * const wdata = (float *) params->wdata + 0;
  9542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9543. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9544. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9545. float * dst_data = wdata + i02*ew0*ne00;
  9546. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9547. dst_data[i00*ew0 + i01] = src[i00];
  9548. }
  9549. }
  9550. }
  9551. }
  9552. // prepare source data (src1)
  9553. {
  9554. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9555. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9556. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9557. float * dst_data = wdata;
  9558. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9559. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9560. }
  9561. }
  9562. }
  9563. return;
  9564. }
  9565. if (params->type == GGML_TASK_FINALIZE) {
  9566. return;
  9567. }
  9568. // total rows in dst
  9569. const int nr = ne02;
  9570. // rows per thread
  9571. const int dr = (nr + nth - 1)/nth;
  9572. // row range for this thread
  9573. const int ir0 = dr*ith;
  9574. const int ir1 = MIN(ir0 + dr, nr);
  9575. for (int i1 = ir0; i1 < ir1; i1++) {
  9576. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9577. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9578. dst_data[i0/2] = 0;
  9579. for (int k = -nh; k <= nh; k++) {
  9580. float v = 0.0f;
  9581. ggml_vec_dot_f32(ew0, &v,
  9582. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9583. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9584. dst_data[i0/2] += v;
  9585. }
  9586. }
  9587. }
  9588. }
  9589. static void ggml_compute_forward_conv_1d_2s(
  9590. const struct ggml_compute_params * params,
  9591. const struct ggml_tensor * src0,
  9592. const struct ggml_tensor * src1,
  9593. struct ggml_tensor * dst) {
  9594. switch (src0->type) {
  9595. case GGML_TYPE_F16:
  9596. {
  9597. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9598. } break;
  9599. case GGML_TYPE_F32:
  9600. {
  9601. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9602. } break;
  9603. default:
  9604. {
  9605. GGML_ASSERT(false);
  9606. } break;
  9607. }
  9608. }
  9609. // ggml_compute_forward_flash_attn
  9610. static void ggml_compute_forward_flash_attn_f32(
  9611. const struct ggml_compute_params * params,
  9612. const struct ggml_tensor * q,
  9613. const struct ggml_tensor * k,
  9614. const struct ggml_tensor * v,
  9615. const bool masked,
  9616. struct ggml_tensor * dst) {
  9617. int64_t t0 = ggml_perf_time_us();
  9618. UNUSED(t0);
  9619. const int64_t neq0 = q->ne[0];
  9620. const int64_t neq1 = q->ne[1];
  9621. const int64_t neq2 = q->ne[2];
  9622. const int64_t neq3 = q->ne[3];
  9623. const int64_t nek0 = k->ne[0];
  9624. const int64_t nek1 = k->ne[1];
  9625. //const int64_t nek2 = k->ne[2];
  9626. //const int64_t nek3 = k->ne[3];
  9627. //const int64_t nev0 = v->ne[0];
  9628. const int64_t nev1 = v->ne[1];
  9629. //const int64_t nev2 = v->ne[2];
  9630. //const int64_t nev3 = v->ne[3];
  9631. const int64_t ne0 = dst->ne[0];
  9632. const int64_t ne1 = dst->ne[1];
  9633. //const int64_t ne2 = dst->ne[2];
  9634. //const int64_t ne3 = dst->ne[3];
  9635. const int nbk0 = k->nb[0];
  9636. const int nbk1 = k->nb[1];
  9637. const int nbk2 = k->nb[2];
  9638. const int nbk3 = k->nb[3];
  9639. const int nbq0 = q->nb[0];
  9640. const int nbq1 = q->nb[1];
  9641. const int nbq2 = q->nb[2];
  9642. const int nbq3 = q->nb[3];
  9643. const int nbv0 = v->nb[0];
  9644. const int nbv1 = v->nb[1];
  9645. const int nbv2 = v->nb[2];
  9646. const int nbv3 = v->nb[3];
  9647. const int nb0 = dst->nb[0];
  9648. const int nb1 = dst->nb[1];
  9649. const int nb2 = dst->nb[2];
  9650. const int nb3 = dst->nb[3];
  9651. const int ith = params->ith;
  9652. const int nth = params->nth;
  9653. const int64_t D = neq0;
  9654. const int64_t N = neq1;
  9655. const int64_t P = nek1 - N;
  9656. const int64_t M = P + N;
  9657. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9658. GGML_ASSERT(ne0 == D);
  9659. GGML_ASSERT(ne1 == N);
  9660. GGML_ASSERT(P >= 0);
  9661. GGML_ASSERT(nbq0 == sizeof(float));
  9662. GGML_ASSERT(nbk0 == sizeof(float));
  9663. GGML_ASSERT(nbv0 == sizeof(float));
  9664. GGML_ASSERT(neq0 == D);
  9665. GGML_ASSERT(nek0 == D);
  9666. GGML_ASSERT(nev1 == D);
  9667. GGML_ASSERT(neq1 == N);
  9668. GGML_ASSERT(nek1 == N + P);
  9669. GGML_ASSERT(nev1 == D);
  9670. // dst cannot be transposed or permuted
  9671. GGML_ASSERT(nb0 == sizeof(float));
  9672. GGML_ASSERT(nb0 <= nb1);
  9673. GGML_ASSERT(nb1 <= nb2);
  9674. GGML_ASSERT(nb2 <= nb3);
  9675. if (params->type == GGML_TASK_INIT) {
  9676. return;
  9677. }
  9678. if (params->type == GGML_TASK_FINALIZE) {
  9679. return;
  9680. }
  9681. // parallelize by q rows using ggml_vec_dot_f32
  9682. // total rows in q
  9683. const int nr = neq1*neq2*neq3;
  9684. // rows per thread
  9685. const int dr = (nr + nth - 1)/nth;
  9686. // row range for this thread
  9687. const int ir0 = dr*ith;
  9688. const int ir1 = MIN(ir0 + dr, nr);
  9689. const float scale = 1.0f/sqrtf(D);
  9690. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9691. for (int ir = ir0; ir < ir1; ++ir) {
  9692. // q indices
  9693. const int iq3 = ir/(neq2*neq1);
  9694. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9695. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9696. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9697. for (int i = M; i < Mup; ++i) {
  9698. S[i] = -INFINITY;
  9699. }
  9700. for (int64_t ic = 0; ic < nek1; ++ic) {
  9701. // k indices
  9702. const int ik3 = iq3;
  9703. const int ik2 = iq2;
  9704. const int ik1 = ic;
  9705. // S indices
  9706. const int i1 = ik1;
  9707. ggml_vec_dot_f32(neq0,
  9708. S + i1,
  9709. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9710. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9711. }
  9712. // scale
  9713. ggml_vec_scale_f32(nek1, S, scale);
  9714. if (masked) {
  9715. for (int64_t i = P; i < M; i++) {
  9716. if (i > P + iq1) {
  9717. S[i] = -INFINITY;
  9718. }
  9719. }
  9720. }
  9721. // softmax
  9722. {
  9723. float max = -INFINITY;
  9724. ggml_vec_max_f32(M, &max, S);
  9725. ggml_float sum = 0.0;
  9726. {
  9727. #ifdef GGML_SOFT_MAX_ACCELERATE
  9728. max = -max;
  9729. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9730. vvexpf(S, S, &Mup);
  9731. ggml_vec_sum_f32(Mup, &sum, S);
  9732. #else
  9733. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9734. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9735. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9736. float * SS = S + i;
  9737. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9738. if (SS[j] == -INFINITY) {
  9739. SS[j] = 0.0f;
  9740. } else {
  9741. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9742. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9743. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9744. sump[j] += (ggml_float)val;
  9745. SS[j] = val;
  9746. }
  9747. }
  9748. }
  9749. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9750. sum += sump[i];
  9751. }
  9752. #endif
  9753. }
  9754. assert(sum > 0.0);
  9755. sum = 1.0/sum;
  9756. ggml_vec_scale_f32(M, S, sum);
  9757. #ifndef NDEBUG
  9758. for (int i = 0; i < M; ++i) {
  9759. assert(!isnan(S[i]));
  9760. assert(!isinf(S[i]));
  9761. }
  9762. #endif
  9763. }
  9764. for (int64_t ic = 0; ic < nev1; ++ic) {
  9765. // dst indices
  9766. const int i1 = iq1;
  9767. const int i2 = iq2;
  9768. const int i3 = iq3;
  9769. ggml_vec_dot_f32(nek1,
  9770. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9771. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9772. S);
  9773. }
  9774. }
  9775. }
  9776. static void ggml_compute_forward_flash_attn_f16(
  9777. const struct ggml_compute_params * params,
  9778. const struct ggml_tensor * q,
  9779. const struct ggml_tensor * k,
  9780. const struct ggml_tensor * v,
  9781. const bool masked,
  9782. struct ggml_tensor * dst) {
  9783. int64_t t0 = ggml_perf_time_us();
  9784. UNUSED(t0);
  9785. const int64_t neq0 = q->ne[0];
  9786. const int64_t neq1 = q->ne[1];
  9787. const int64_t neq2 = q->ne[2];
  9788. const int64_t neq3 = q->ne[3];
  9789. const int64_t nek0 = k->ne[0];
  9790. const int64_t nek1 = k->ne[1];
  9791. //const int64_t nek2 = k->ne[2];
  9792. //const int64_t nek3 = k->ne[3];
  9793. //const int64_t nev0 = v->ne[0];
  9794. const int64_t nev1 = v->ne[1];
  9795. //const int64_t nev2 = v->ne[2];
  9796. //const int64_t nev3 = v->ne[3];
  9797. const int64_t ne0 = dst->ne[0];
  9798. const int64_t ne1 = dst->ne[1];
  9799. //const int64_t ne2 = dst->ne[2];
  9800. //const int64_t ne3 = dst->ne[3];
  9801. const int nbk0 = k->nb[0];
  9802. const int nbk1 = k->nb[1];
  9803. const int nbk2 = k->nb[2];
  9804. const int nbk3 = k->nb[3];
  9805. const int nbq0 = q->nb[0];
  9806. const int nbq1 = q->nb[1];
  9807. const int nbq2 = q->nb[2];
  9808. const int nbq3 = q->nb[3];
  9809. const int nbv0 = v->nb[0];
  9810. const int nbv1 = v->nb[1];
  9811. const int nbv2 = v->nb[2];
  9812. const int nbv3 = v->nb[3];
  9813. const int nb0 = dst->nb[0];
  9814. const int nb1 = dst->nb[1];
  9815. const int nb2 = dst->nb[2];
  9816. const int nb3 = dst->nb[3];
  9817. const int ith = params->ith;
  9818. const int nth = params->nth;
  9819. const int64_t D = neq0;
  9820. const int64_t N = neq1;
  9821. const int64_t P = nek1 - N;
  9822. const int64_t M = P + N;
  9823. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9824. GGML_ASSERT(ne0 == D);
  9825. GGML_ASSERT(ne1 == N);
  9826. GGML_ASSERT(P >= 0);
  9827. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  9828. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  9829. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  9830. GGML_ASSERT(neq0 == D);
  9831. GGML_ASSERT(nek0 == D);
  9832. GGML_ASSERT(nev1 == D);
  9833. GGML_ASSERT(neq1 == N);
  9834. GGML_ASSERT(nek1 == N + P);
  9835. GGML_ASSERT(nev1 == D);
  9836. // dst cannot be transposed or permuted
  9837. GGML_ASSERT(nb0 == sizeof(float));
  9838. GGML_ASSERT(nb0 <= nb1);
  9839. GGML_ASSERT(nb1 <= nb2);
  9840. GGML_ASSERT(nb2 <= nb3);
  9841. if (params->type == GGML_TASK_INIT) {
  9842. return;
  9843. }
  9844. if (params->type == GGML_TASK_FINALIZE) {
  9845. return;
  9846. }
  9847. // parallelize by q rows using ggml_vec_dot_f32
  9848. // total rows in q
  9849. const int nr = neq1*neq2*neq3;
  9850. // rows per thread
  9851. const int dr = (nr + nth - 1)/nth;
  9852. // row range for this thread
  9853. const int ir0 = dr*ith;
  9854. const int ir1 = MIN(ir0 + dr, nr);
  9855. const float scale = 1.0f/sqrtf(D);
  9856. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9857. for (int ir = ir0; ir < ir1; ++ir) {
  9858. // q indices
  9859. const int iq3 = ir/(neq2*neq1);
  9860. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9861. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9862. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  9863. for (int i = M; i < Mup; ++i) {
  9864. S[i] = -INFINITY;
  9865. }
  9866. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  9867. for (int64_t ic = 0; ic < nek1; ++ic) {
  9868. // k indices
  9869. const int ik3 = iq3;
  9870. const int ik2 = iq2;
  9871. const int ik1 = ic;
  9872. // S indices
  9873. const int i1 = ik1;
  9874. ggml_vec_dot_f16(neq0,
  9875. S + i1,
  9876. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9877. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9878. }
  9879. } else {
  9880. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  9881. // k indices
  9882. const int ik3 = iq3;
  9883. const int ik2 = iq2;
  9884. const int ik1 = ic;
  9885. // S indices
  9886. const int i1 = ik1;
  9887. ggml_vec_dot_f16_unroll(neq0, nbk1,
  9888. S + i1,
  9889. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  9890. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  9891. }
  9892. }
  9893. // scale
  9894. ggml_vec_scale_f32(nek1, S, scale);
  9895. if (masked) {
  9896. for (int64_t i = P; i < M; i++) {
  9897. if (i > P + iq1) {
  9898. S[i] = -INFINITY;
  9899. }
  9900. }
  9901. }
  9902. // softmax
  9903. {
  9904. float max = -INFINITY;
  9905. ggml_vec_max_f32(M, &max, S);
  9906. ggml_float sum = 0.0;
  9907. {
  9908. #ifdef GGML_SOFT_MAX_ACCELERATE
  9909. max = -max;
  9910. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  9911. vvexpf(S, S, &Mup);
  9912. ggml_vec_sum_f32(Mup, &sum, S);
  9913. #else
  9914. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  9915. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  9916. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  9917. float * SS = S + i;
  9918. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  9919. if (SS[j] == -INFINITY) {
  9920. SS[j] = 0.0f;
  9921. } else {
  9922. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  9923. memcpy(&scvt[j], &s, sizeof(uint16_t));
  9924. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  9925. sump[j] += (ggml_float)val;
  9926. SS[j] = val;
  9927. }
  9928. }
  9929. }
  9930. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  9931. sum += sump[i];
  9932. }
  9933. #endif
  9934. }
  9935. assert(sum > 0.0);
  9936. sum = 1.0/sum;
  9937. ggml_vec_scale_f32(M, S, sum);
  9938. #ifndef NDEBUG
  9939. for (int i = 0; i < M; ++i) {
  9940. assert(!isnan(S[i]));
  9941. assert(!isinf(S[i]));
  9942. }
  9943. #endif
  9944. }
  9945. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  9946. for (int64_t i = 0; i < M; i++) {
  9947. S16[i] = GGML_FP32_TO_FP16(S[i]);
  9948. }
  9949. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  9950. for (int64_t ic = 0; ic < nev1; ++ic) {
  9951. // dst indices
  9952. const int i1 = iq1;
  9953. const int i2 = iq2;
  9954. const int i3 = iq3;
  9955. ggml_vec_dot_f16(nek1,
  9956. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9957. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9958. S16);
  9959. }
  9960. } else {
  9961. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  9962. // dst indices
  9963. const int i1 = iq1;
  9964. const int i2 = iq2;
  9965. const int i3 = iq3;
  9966. ggml_vec_dot_f16_unroll(nek1, nbv1,
  9967. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  9968. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  9969. S16);
  9970. }
  9971. }
  9972. }
  9973. }
  9974. static void ggml_compute_forward_flash_attn(
  9975. const struct ggml_compute_params * params,
  9976. const struct ggml_tensor * q,
  9977. const struct ggml_tensor * k,
  9978. const struct ggml_tensor * v,
  9979. const bool masked,
  9980. struct ggml_tensor * dst) {
  9981. switch (q->type) {
  9982. case GGML_TYPE_F16:
  9983. {
  9984. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  9985. } break;
  9986. case GGML_TYPE_F32:
  9987. {
  9988. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  9989. } break;
  9990. default:
  9991. {
  9992. GGML_ASSERT(false);
  9993. } break;
  9994. }
  9995. }
  9996. // ggml_compute_forward_flash_ff
  9997. static void ggml_compute_forward_flash_ff_f16(
  9998. const struct ggml_compute_params * params,
  9999. const struct ggml_tensor * a, // F16
  10000. const struct ggml_tensor * b0, // F16 fc_w
  10001. const struct ggml_tensor * b1, // F32 fc_b
  10002. const struct ggml_tensor * c0, // F16 proj_w
  10003. const struct ggml_tensor * c1, // F32 proj_b
  10004. struct ggml_tensor * dst) {
  10005. int64_t t0 = ggml_perf_time_us();
  10006. UNUSED(t0);
  10007. const int64_t nea0 = a->ne[0];
  10008. const int64_t nea1 = a->ne[1];
  10009. const int64_t nea2 = a->ne[2];
  10010. const int64_t nea3 = a->ne[3];
  10011. const int64_t neb00 = b0->ne[0];
  10012. const int64_t neb01 = b0->ne[1];
  10013. //const int64_t neb02 = b0->ne[2];
  10014. //const int64_t neb03 = b0->ne[3];
  10015. const int64_t neb10 = b1->ne[0];
  10016. const int64_t neb11 = b1->ne[1];
  10017. //const int64_t neb12 = b1->ne[2];
  10018. //const int64_t neb13 = b1->ne[3];
  10019. const int64_t nec00 = c0->ne[0];
  10020. const int64_t nec01 = c0->ne[1];
  10021. //const int64_t nec02 = c0->ne[2];
  10022. //const int64_t nec03 = c0->ne[3];
  10023. const int64_t nec10 = c1->ne[0];
  10024. const int64_t nec11 = c1->ne[1];
  10025. //const int64_t nec12 = c1->ne[2];
  10026. //const int64_t nec13 = c1->ne[3];
  10027. const int64_t ne0 = dst->ne[0];
  10028. const int64_t ne1 = dst->ne[1];
  10029. const int64_t ne2 = dst->ne[2];
  10030. //const int64_t ne3 = dst->ne[3];
  10031. const int nba0 = a->nb[0];
  10032. const int nba1 = a->nb[1];
  10033. const int nba2 = a->nb[2];
  10034. const int nba3 = a->nb[3];
  10035. const int nbb00 = b0->nb[0];
  10036. const int nbb01 = b0->nb[1];
  10037. const int nbb02 = b0->nb[2];
  10038. const int nbb03 = b0->nb[3];
  10039. const int nbb10 = b1->nb[0];
  10040. //const int nbb11 = b1->nb[1];
  10041. //const int nbb12 = b1->nb[2];
  10042. //const int nbb13 = b1->nb[3];
  10043. const int nbc00 = c0->nb[0];
  10044. const int nbc01 = c0->nb[1];
  10045. const int nbc02 = c0->nb[2];
  10046. const int nbc03 = c0->nb[3];
  10047. const int nbc10 = c1->nb[0];
  10048. //const int nbc11 = c1->nb[1];
  10049. //const int nbc12 = c1->nb[2];
  10050. //const int nbc13 = c1->nb[3];
  10051. const int nb0 = dst->nb[0];
  10052. const int nb1 = dst->nb[1];
  10053. const int nb2 = dst->nb[2];
  10054. const int nb3 = dst->nb[3];
  10055. const int ith = params->ith;
  10056. const int nth = params->nth;
  10057. const int64_t D = nea0;
  10058. //const int64_t N = nea1;
  10059. const int64_t M = neb01;
  10060. GGML_ASSERT(ne0 == nea0);
  10061. GGML_ASSERT(ne1 == nea1);
  10062. GGML_ASSERT(ne2 == nea2);
  10063. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10064. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10065. GGML_ASSERT(nbb10 == sizeof(float));
  10066. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10067. GGML_ASSERT(nbc10 == sizeof(float));
  10068. GGML_ASSERT(neb00 == D);
  10069. GGML_ASSERT(neb01 == M);
  10070. GGML_ASSERT(neb10 == M);
  10071. GGML_ASSERT(neb11 == 1);
  10072. GGML_ASSERT(nec00 == M);
  10073. GGML_ASSERT(nec01 == D);
  10074. GGML_ASSERT(nec10 == D);
  10075. GGML_ASSERT(nec11 == 1);
  10076. // dst cannot be transposed or permuted
  10077. GGML_ASSERT(nb0 == sizeof(float));
  10078. GGML_ASSERT(nb0 <= nb1);
  10079. GGML_ASSERT(nb1 <= nb2);
  10080. GGML_ASSERT(nb2 <= nb3);
  10081. if (params->type == GGML_TASK_INIT) {
  10082. return;
  10083. }
  10084. if (params->type == GGML_TASK_FINALIZE) {
  10085. return;
  10086. }
  10087. // parallelize by a rows using ggml_vec_dot_f32
  10088. // total rows in a
  10089. const int nr = nea1*nea2*nea3;
  10090. // rows per thread
  10091. const int dr = (nr + nth - 1)/nth;
  10092. // row range for this thread
  10093. const int ir0 = dr*ith;
  10094. const int ir1 = MIN(ir0 + dr, nr);
  10095. for (int ir = ir0; ir < ir1; ++ir) {
  10096. // a indices
  10097. const int ia3 = ir/(nea2*nea1);
  10098. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10099. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10100. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10101. for (int64_t ic = 0; ic < neb01; ++ic) {
  10102. // b0 indices
  10103. const int ib03 = ia3;
  10104. const int ib02 = ia2;
  10105. const int ib01 = ic;
  10106. // S indices
  10107. const int i1 = ib01;
  10108. ggml_vec_dot_f16(nea0,
  10109. S + i1,
  10110. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10111. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10112. }
  10113. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10114. //ggml_vec_gelu_f32(neb01, S, S);
  10115. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10116. for (int64_t i = 0; i < M; i++) {
  10117. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10118. }
  10119. ggml_vec_gelu_f16(neb01, S16, S16);
  10120. {
  10121. // dst indices
  10122. const int i1 = ia1;
  10123. const int i2 = ia2;
  10124. const int i3 = ia3;
  10125. for (int64_t ic = 0; ic < nec01; ++ic) {
  10126. ggml_vec_dot_f16(neb01,
  10127. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10128. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10129. S16);
  10130. }
  10131. ggml_vec_add_f32(nec01,
  10132. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10133. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10134. (float *) c1->data);
  10135. }
  10136. }
  10137. }
  10138. static void ggml_compute_forward_flash_ff(
  10139. const struct ggml_compute_params * params,
  10140. const struct ggml_tensor * a,
  10141. const struct ggml_tensor * b0,
  10142. const struct ggml_tensor * b1,
  10143. const struct ggml_tensor * c0,
  10144. const struct ggml_tensor * c1,
  10145. struct ggml_tensor * dst) {
  10146. switch (b0->type) {
  10147. case GGML_TYPE_F16:
  10148. {
  10149. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10150. } break;
  10151. case GGML_TYPE_F32:
  10152. {
  10153. GGML_ASSERT(false); // TODO
  10154. } break;
  10155. default:
  10156. {
  10157. GGML_ASSERT(false);
  10158. } break;
  10159. }
  10160. }
  10161. // ggml_compute_forward_map_unary
  10162. static void ggml_compute_forward_map_unary_f32(
  10163. const struct ggml_compute_params * params,
  10164. const struct ggml_tensor * src0,
  10165. struct ggml_tensor * dst,
  10166. const ggml_unary_op_f32_t fun) {
  10167. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10168. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10169. return;
  10170. }
  10171. const int n = ggml_nrows(src0);
  10172. const int nc = src0->ne[0];
  10173. assert( dst->nb[0] == sizeof(float));
  10174. assert(src0->nb[0] == sizeof(float));
  10175. for (int i = 0; i < n; i++) {
  10176. fun(nc,
  10177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10178. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10179. }
  10180. }
  10181. static void ggml_compute_forward_map_unary(
  10182. const struct ggml_compute_params * params,
  10183. const struct ggml_tensor * src0,
  10184. struct ggml_tensor * dst,
  10185. const ggml_unary_op_f32_t fun) {
  10186. switch (src0->type) {
  10187. case GGML_TYPE_F32:
  10188. {
  10189. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10190. } break;
  10191. default:
  10192. {
  10193. GGML_ASSERT(false);
  10194. } break;
  10195. }
  10196. }
  10197. // ggml_compute_forward_map_binary
  10198. static void ggml_compute_forward_map_binary_f32(
  10199. const struct ggml_compute_params * params,
  10200. const struct ggml_tensor * src0,
  10201. const struct ggml_tensor * src1,
  10202. struct ggml_tensor * dst,
  10203. const ggml_binary_op_f32_t fun) {
  10204. assert(params->ith == 0);
  10205. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10207. return;
  10208. }
  10209. const int n = ggml_nrows(src0);
  10210. const int nc = src0->ne[0];
  10211. assert( dst->nb[0] == sizeof(float));
  10212. assert(src0->nb[0] == sizeof(float));
  10213. assert(src1->nb[0] == sizeof(float));
  10214. for (int i = 0; i < n; i++) {
  10215. fun(nc,
  10216. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10217. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10218. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10219. }
  10220. }
  10221. static void ggml_compute_forward_map_binary(
  10222. const struct ggml_compute_params * params,
  10223. const struct ggml_tensor * src0,
  10224. const struct ggml_tensor * src1,
  10225. struct ggml_tensor * dst,
  10226. const ggml_binary_op_f32_t fun) {
  10227. switch (src0->type) {
  10228. case GGML_TYPE_F32:
  10229. {
  10230. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10231. } break;
  10232. default:
  10233. {
  10234. GGML_ASSERT(false);
  10235. } break;
  10236. }
  10237. }
  10238. /////////////////////////////////
  10239. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10240. GGML_ASSERT(params);
  10241. switch (tensor->op) {
  10242. case GGML_OP_DUP:
  10243. {
  10244. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10245. } break;
  10246. case GGML_OP_ADD:
  10247. {
  10248. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10249. } break;
  10250. case GGML_OP_ADD1:
  10251. {
  10252. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10253. } break;
  10254. case GGML_OP_ACC:
  10255. {
  10256. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10257. } break;
  10258. case GGML_OP_SUB:
  10259. {
  10260. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10261. } break;
  10262. case GGML_OP_MUL:
  10263. {
  10264. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10265. } break;
  10266. case GGML_OP_DIV:
  10267. {
  10268. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10269. } break;
  10270. case GGML_OP_SQR:
  10271. {
  10272. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10273. } break;
  10274. case GGML_OP_SQRT:
  10275. {
  10276. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10277. } break;
  10278. case GGML_OP_LOG:
  10279. {
  10280. ggml_compute_forward_log(params, tensor->src0, tensor);
  10281. } break;
  10282. case GGML_OP_SUM:
  10283. {
  10284. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10285. } break;
  10286. case GGML_OP_SUM_ROWS:
  10287. {
  10288. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10289. } break;
  10290. case GGML_OP_MEAN:
  10291. {
  10292. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10293. } break;
  10294. case GGML_OP_REPEAT:
  10295. {
  10296. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10297. } break;
  10298. case GGML_OP_ABS:
  10299. {
  10300. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10301. } break;
  10302. case GGML_OP_SGN:
  10303. {
  10304. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10305. } break;
  10306. case GGML_OP_NEG:
  10307. {
  10308. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10309. } break;
  10310. case GGML_OP_STEP:
  10311. {
  10312. ggml_compute_forward_step(params, tensor->src0, tensor);
  10313. } break;
  10314. case GGML_OP_RELU:
  10315. {
  10316. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10317. } break;
  10318. case GGML_OP_GELU:
  10319. {
  10320. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10321. } break;
  10322. case GGML_OP_SILU:
  10323. {
  10324. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10325. } break;
  10326. case GGML_OP_SILU_BACK:
  10327. {
  10328. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10329. } break;
  10330. case GGML_OP_NORM:
  10331. {
  10332. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10333. } break;
  10334. case GGML_OP_RMS_NORM:
  10335. {
  10336. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10337. } break;
  10338. case GGML_OP_RMS_NORM_BACK:
  10339. {
  10340. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10341. } break;
  10342. case GGML_OP_MUL_MAT:
  10343. {
  10344. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10345. } break;
  10346. case GGML_OP_SCALE:
  10347. {
  10348. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10349. } break;
  10350. case GGML_OP_SET:
  10351. {
  10352. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10353. } break;
  10354. case GGML_OP_CPY:
  10355. {
  10356. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10357. } break;
  10358. case GGML_OP_CONT:
  10359. {
  10360. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10361. } break;
  10362. case GGML_OP_RESHAPE:
  10363. {
  10364. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10365. } break;
  10366. case GGML_OP_VIEW:
  10367. {
  10368. ggml_compute_forward_view(params, tensor->src0);
  10369. } break;
  10370. case GGML_OP_PERMUTE:
  10371. {
  10372. ggml_compute_forward_permute(params, tensor->src0);
  10373. } break;
  10374. case GGML_OP_TRANSPOSE:
  10375. {
  10376. ggml_compute_forward_transpose(params, tensor->src0);
  10377. } break;
  10378. case GGML_OP_GET_ROWS:
  10379. {
  10380. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10381. } break;
  10382. case GGML_OP_GET_ROWS_BACK:
  10383. {
  10384. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10385. } break;
  10386. case GGML_OP_DIAG:
  10387. {
  10388. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10389. } break;
  10390. case GGML_OP_DIAG_MASK_INF:
  10391. {
  10392. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10393. } break;
  10394. case GGML_OP_DIAG_MASK_ZERO:
  10395. {
  10396. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10397. } break;
  10398. case GGML_OP_SOFT_MAX:
  10399. {
  10400. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10401. } break;
  10402. case GGML_OP_ROPE:
  10403. {
  10404. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10405. } break;
  10406. case GGML_OP_ROPE_BACK:
  10407. {
  10408. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10409. } break;
  10410. case GGML_OP_ALIBI:
  10411. {
  10412. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10413. } break;
  10414. case GGML_OP_CONV_1D_1S:
  10415. {
  10416. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10417. } break;
  10418. case GGML_OP_CONV_1D_2S:
  10419. {
  10420. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10421. } break;
  10422. case GGML_OP_FLASH_ATTN:
  10423. {
  10424. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10425. GGML_ASSERT(t == 0 || t == 1);
  10426. bool masked = t != 0;
  10427. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10428. } break;
  10429. case GGML_OP_FLASH_FF:
  10430. {
  10431. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10432. } break;
  10433. case GGML_OP_MAP_UNARY:
  10434. {
  10435. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10436. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10437. }
  10438. break;
  10439. case GGML_OP_MAP_BINARY:
  10440. {
  10441. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10442. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10443. }
  10444. break;
  10445. case GGML_OP_NONE:
  10446. {
  10447. // nop
  10448. } break;
  10449. case GGML_OP_COUNT:
  10450. {
  10451. GGML_ASSERT(false);
  10452. } break;
  10453. }
  10454. }
  10455. ////////////////////////////////////////////////////////////////////////////////
  10456. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10457. struct ggml_tensor * src0 = tensor->src0;
  10458. struct ggml_tensor * src1 = tensor->src1;
  10459. switch (tensor->op) {
  10460. case GGML_OP_DUP:
  10461. {
  10462. if (src0->grad) {
  10463. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10464. }
  10465. } break;
  10466. case GGML_OP_ADD:
  10467. {
  10468. if (src0->grad) {
  10469. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10470. }
  10471. if (src1->grad) {
  10472. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10473. }
  10474. } break;
  10475. case GGML_OP_ADD1:
  10476. {
  10477. if (src0->grad) {
  10478. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10479. }
  10480. if (src1->grad) {
  10481. src1->grad = ggml_add_impl(ctx,
  10482. src1->grad,
  10483. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10484. inplace);
  10485. }
  10486. } break;
  10487. case GGML_OP_ACC:
  10488. {
  10489. if (src0->grad) {
  10490. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10491. }
  10492. if (src1->grad) {
  10493. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10494. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10495. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10496. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10497. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10498. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10499. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10500. tensor->grad,
  10501. src1->grad->ne[0],
  10502. src1->grad->ne[1],
  10503. src1->grad->ne[2],
  10504. src1->grad->ne[3],
  10505. nb1, nb2, nb3, offset);
  10506. src1->grad =
  10507. ggml_add_impl(ctx,
  10508. src1->grad,
  10509. ggml_reshape(ctx,
  10510. ggml_cont(ctx, tensor_grad_view),
  10511. src1->grad),
  10512. inplace);
  10513. }
  10514. } break;
  10515. case GGML_OP_SUB:
  10516. {
  10517. if (src0->grad) {
  10518. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10519. }
  10520. if (src1->grad) {
  10521. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10522. }
  10523. } break;
  10524. case GGML_OP_MUL:
  10525. {
  10526. if (src0->grad) {
  10527. src0->grad =
  10528. ggml_add_impl(ctx,
  10529. src0->grad,
  10530. ggml_mul(ctx, src1, tensor->grad),
  10531. inplace);
  10532. }
  10533. if (src1->grad) {
  10534. src1->grad =
  10535. ggml_add_impl(ctx,
  10536. src1->grad,
  10537. ggml_mul(ctx, src0, tensor->grad),
  10538. inplace);
  10539. }
  10540. } break;
  10541. case GGML_OP_DIV:
  10542. {
  10543. if (src0->grad) {
  10544. src0->grad =
  10545. ggml_add_impl(ctx,
  10546. src0->grad,
  10547. ggml_div(ctx, tensor->grad, src1),
  10548. inplace);
  10549. }
  10550. if (src1->grad) {
  10551. src1->grad =
  10552. ggml_sub_impl(ctx,
  10553. src1->grad,
  10554. ggml_mul(ctx,
  10555. tensor->grad,
  10556. ggml_div(ctx, tensor, src1)),
  10557. inplace);
  10558. }
  10559. } break;
  10560. case GGML_OP_SQR:
  10561. {
  10562. if (src0->grad) {
  10563. src0->grad =
  10564. ggml_add_impl(ctx,
  10565. src0->grad,
  10566. ggml_scale(ctx,
  10567. ggml_mul(ctx, src0, tensor->grad),
  10568. ggml_new_f32(ctx, 2.0f)),
  10569. inplace);
  10570. }
  10571. } break;
  10572. case GGML_OP_SQRT:
  10573. {
  10574. if (src0->grad) {
  10575. src0->grad =
  10576. ggml_add_impl(ctx,
  10577. src0->grad,
  10578. ggml_mul(ctx,
  10579. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10580. ggml_div(ctx,
  10581. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10582. tensor)),
  10583. inplace);
  10584. }
  10585. } break;
  10586. case GGML_OP_LOG:
  10587. {
  10588. if (src0->grad) {
  10589. src0->grad =
  10590. ggml_add_impl(ctx,
  10591. src0->grad,
  10592. ggml_div(ctx,
  10593. tensor->grad,
  10594. src0),
  10595. inplace);
  10596. }
  10597. } break;
  10598. case GGML_OP_SUM:
  10599. {
  10600. if (src0->grad) {
  10601. src0->grad =
  10602. ggml_add1_impl(ctx,
  10603. src0->grad,
  10604. tensor->grad,
  10605. inplace);
  10606. }
  10607. } break;
  10608. case GGML_OP_SUM_ROWS:
  10609. {
  10610. if (src0->grad) {
  10611. src0->grad =
  10612. ggml_add_impl(ctx,
  10613. src0->grad,
  10614. ggml_repeat(ctx,
  10615. tensor->grad,
  10616. src0->grad),
  10617. inplace);
  10618. }
  10619. } break;
  10620. case GGML_OP_MEAN:
  10621. {
  10622. GGML_ASSERT(false); // TODO: implement
  10623. } break;
  10624. case GGML_OP_REPEAT:
  10625. {
  10626. // necessary for llama
  10627. if (src0->grad) {
  10628. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10629. const int nc = tensor->ne[0];
  10630. const int nr = tensor->ne[1];
  10631. const int nc0 = src0->ne[0];
  10632. const int nr0 = src0->ne[1];
  10633. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10634. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10635. // tensor->grad [nc,nr,1,1]
  10636. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10637. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10638. // substitute [nc0,nr0,ncr,nrr]
  10639. // reshape [nc0*nr0,ncr*nrr,1,1]
  10640. // transpose [ncr*nrr,nc0*nr0,1,1]
  10641. // sum rows [1,nc0*nr0,1,1]
  10642. // transpose [nc0*nr0,1,1]
  10643. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10644. // add to src0->grad
  10645. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10646. struct ggml_tensor* F00 = tensor->grad;
  10647. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10648. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10649. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10650. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10651. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10652. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10653. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10654. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10655. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10656. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10657. src0->grad =
  10658. ggml_add_impl(ctx,
  10659. src0->grad,
  10660. F10,
  10661. inplace);
  10662. }
  10663. } break;
  10664. case GGML_OP_ABS:
  10665. {
  10666. if (src0->grad) {
  10667. src0->grad =
  10668. ggml_add_impl(ctx,
  10669. src0->grad,
  10670. ggml_mul(ctx,
  10671. ggml_sgn(ctx, src0),
  10672. tensor->grad),
  10673. inplace);
  10674. }
  10675. } break;
  10676. case GGML_OP_SGN:
  10677. {
  10678. if (src0->grad) {
  10679. // noop
  10680. }
  10681. } break;
  10682. case GGML_OP_NEG:
  10683. {
  10684. if (src0->grad) {
  10685. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10686. }
  10687. } break;
  10688. case GGML_OP_STEP:
  10689. {
  10690. if (src0->grad) {
  10691. // noop
  10692. }
  10693. } break;
  10694. case GGML_OP_RELU:
  10695. {
  10696. if (src0->grad) {
  10697. src0->grad = ggml_sub_impl(ctx,
  10698. src0->grad,
  10699. ggml_mul(ctx,
  10700. ggml_step(ctx, src0),
  10701. tensor->grad),
  10702. inplace);
  10703. }
  10704. } break;
  10705. case GGML_OP_GELU:
  10706. {
  10707. GGML_ASSERT(false); // TODO: not implemented
  10708. } break;
  10709. case GGML_OP_ALIBI:
  10710. {
  10711. GGML_ASSERT(false); // TODO: not implemented
  10712. } break;
  10713. case GGML_OP_SILU:
  10714. {
  10715. // necessary for llama
  10716. if (src0->grad) {
  10717. src0->grad = ggml_add_impl(ctx,
  10718. src0->grad,
  10719. ggml_silu_back(ctx, src0, tensor->grad),
  10720. inplace);
  10721. }
  10722. } break;
  10723. case GGML_OP_SILU_BACK:
  10724. {
  10725. GGML_ASSERT(false); // TODO: not implemented
  10726. } break;
  10727. case GGML_OP_NORM:
  10728. {
  10729. GGML_ASSERT(false); // TODO: not implemented
  10730. } break;
  10731. case GGML_OP_RMS_NORM:
  10732. {
  10733. // necessary for llama
  10734. if (src0->grad) {
  10735. src0->grad = ggml_add_impl(ctx,
  10736. src0->grad,
  10737. ggml_rms_norm_back(ctx, src0, tensor->grad),
  10738. inplace);
  10739. }
  10740. } break;
  10741. case GGML_OP_RMS_NORM_BACK:
  10742. {
  10743. GGML_ASSERT(false); // TODO: not implemented
  10744. } break;
  10745. case GGML_OP_MUL_MAT:
  10746. {
  10747. // https://cs231n.github.io/optimization-2/#staged
  10748. // # forward pass
  10749. // s0 = np.random.randn(5, 10)
  10750. // s1 = np.random.randn(10, 3)
  10751. // t = s0.dot(s1)
  10752. // # now suppose we had the gradient on t from above in the circuit
  10753. // dt = np.random.randn(*t.shape) # same shape as t
  10754. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  10755. // ds1 = t.T.dot(dt)
  10756. // tensor.shape [m,p]
  10757. // src0.shape [n,m]
  10758. // src1.shape [n,p]
  10759. // necessary for llama
  10760. if (src0->grad) {
  10761. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  10762. src0->grad =
  10763. ggml_add_impl(ctx,
  10764. src0->grad,
  10765. // ds0 = dt.dot(s1.T)
  10766. // ggml_out_prod(ctx, // [n,m]
  10767. // src1, // [n,p]
  10768. // tensor->grad), // [m,p]
  10769. // for now just using A*B==(B.T*A.T).T
  10770. ggml_cont(ctx, // [n,m]
  10771. ggml_transpose(ctx, // [n,m]
  10772. ggml_mul_mat(ctx, // [m,n]
  10773. ggml_cont(ctx, // [p,m]
  10774. ggml_transpose(ctx, // [p,m]
  10775. tensor->grad)), // [m,p]
  10776. ggml_cont(ctx, // [p,n]
  10777. ggml_transpose(ctx, // [p,n]
  10778. src1))))), // [n,p]
  10779. inplace);
  10780. }
  10781. if (src1->grad) {
  10782. src1->grad =
  10783. ggml_add_impl(ctx,
  10784. src1->grad,
  10785. // ds1 = s0.T.dot(dt):
  10786. ggml_mul_mat(ctx, // [n,p]
  10787. ggml_cont(ctx, // [m,n]
  10788. ggml_transpose(ctx, src0)), // [m,n]
  10789. tensor->grad), // [m,p]
  10790. inplace);
  10791. }
  10792. } break;
  10793. case GGML_OP_SCALE:
  10794. {
  10795. // necessary for llama
  10796. if (src0->grad) {
  10797. src0->grad =
  10798. ggml_add_impl(ctx,
  10799. src0->grad,
  10800. ggml_scale_impl(ctx, tensor->grad, src1, false),
  10801. inplace);
  10802. }
  10803. if (src1->grad) {
  10804. src1->grad =
  10805. ggml_add_impl(ctx,
  10806. src1->grad,
  10807. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  10808. inplace);
  10809. }
  10810. } break;
  10811. case GGML_OP_SET:
  10812. {
  10813. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10814. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10815. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10816. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10817. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10818. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10819. struct ggml_tensor * tensor_grad_view = NULL;
  10820. if (src0->grad || src1->grad) {
  10821. GGML_ASSERT(src0->type == tensor->type);
  10822. GGML_ASSERT(tensor->grad->type == tensor->type);
  10823. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  10824. tensor_grad_view = ggml_view_4d(ctx,
  10825. tensor->grad,
  10826. src1->grad->ne[0],
  10827. src1->grad->ne[1],
  10828. src1->grad->ne[2],
  10829. src1->grad->ne[3],
  10830. nb1, nb2, nb3, offset);
  10831. }
  10832. if (src0->grad) {
  10833. src0->grad = ggml_add_impl(ctx,
  10834. src0->grad,
  10835. ggml_acc_impl(ctx,
  10836. tensor->grad,
  10837. ggml_neg(ctx, tensor_grad_view),
  10838. nb1, nb2, nb3, offset, false),
  10839. inplace);
  10840. }
  10841. if (src1->grad) {
  10842. src1->grad =
  10843. ggml_add_impl(ctx,
  10844. src1->grad,
  10845. ggml_reshape(ctx,
  10846. ggml_cont(ctx, tensor_grad_view),
  10847. src1->grad),
  10848. inplace);
  10849. }
  10850. } break;
  10851. case GGML_OP_CPY:
  10852. {
  10853. // necessary for llama
  10854. // cpy overwrites value of src1 by src0 and returns view(src1)
  10855. // the overwriting is mathematically equivalent to:
  10856. // tensor = src0 * 1 + src1 * 0
  10857. if (src0->grad) {
  10858. // dsrc0 = dtensor * 1
  10859. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10860. }
  10861. if (src1->grad) {
  10862. // dsrc1 = dtensor * 0 -> noop
  10863. }
  10864. } break;
  10865. case GGML_OP_CONT:
  10866. {
  10867. // same as cpy
  10868. if (src0->grad) {
  10869. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  10870. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  10871. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10872. }
  10873. } break;
  10874. case GGML_OP_RESHAPE:
  10875. {
  10876. // necessary for llama
  10877. if (src0->grad) {
  10878. src0->grad =
  10879. ggml_add_impl(ctx, src0->grad,
  10880. ggml_reshape(ctx, tensor->grad, src0->grad),
  10881. inplace);
  10882. }
  10883. } break;
  10884. case GGML_OP_VIEW:
  10885. {
  10886. // necessary for llama
  10887. if (src0->grad) {
  10888. size_t offset;
  10889. memcpy(&offset, tensor->padding, sizeof(offset));
  10890. size_t nb1 = tensor->nb[1];
  10891. size_t nb2 = tensor->nb[2];
  10892. size_t nb3 = tensor->nb[3];
  10893. if (src0->type != src0->grad->type) {
  10894. // gradient is typically F32, but src0 could be other type
  10895. size_t ng = ggml_element_size(src0->grad);
  10896. size_t n0 = ggml_element_size(src0);
  10897. GGML_ASSERT(offset % n0 == 0);
  10898. GGML_ASSERT(nb1 % n0 == 0);
  10899. GGML_ASSERT(nb2 % n0 == 0);
  10900. GGML_ASSERT(nb3 % n0 == 0);
  10901. offset = (offset / n0) * ng;
  10902. nb1 = (nb1 / n0) * ng;
  10903. nb2 = (nb2 / n0) * ng;
  10904. nb3 = (nb3 / n0) * ng;
  10905. }
  10906. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  10907. }
  10908. } break;
  10909. case GGML_OP_PERMUTE:
  10910. {
  10911. // necessary for llama
  10912. if (src0->grad) {
  10913. int axis0 = tensor->padding[0] & 0x3;
  10914. int axis1 = tensor->padding[1] & 0x3;
  10915. int axis2 = tensor->padding[2] & 0x3;
  10916. int axis3 = tensor->padding[3] & 0x3;
  10917. int axes_backward[4] = {0,0,0,0};
  10918. axes_backward[axis0] = 0;
  10919. axes_backward[axis1] = 1;
  10920. axes_backward[axis2] = 2;
  10921. axes_backward[axis3] = 3;
  10922. src0->grad =
  10923. ggml_add_impl(ctx, src0->grad,
  10924. ggml_permute(ctx,
  10925. tensor->grad,
  10926. axes_backward[0],
  10927. axes_backward[1],
  10928. axes_backward[2],
  10929. axes_backward[3]),
  10930. inplace);
  10931. }
  10932. } break;
  10933. case GGML_OP_TRANSPOSE:
  10934. {
  10935. // necessary for llama
  10936. if (src0->grad) {
  10937. src0->grad =
  10938. ggml_add_impl(ctx, src0->grad,
  10939. ggml_transpose(ctx, tensor->grad),
  10940. inplace);
  10941. }
  10942. } break;
  10943. case GGML_OP_GET_ROWS:
  10944. {
  10945. // necessary for llama (only for tokenizer)
  10946. if (src0->grad) {
  10947. src0->grad =
  10948. ggml_add_impl(ctx, src0->grad,
  10949. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  10950. inplace);
  10951. }
  10952. if (src1->grad) {
  10953. // noop
  10954. }
  10955. } break;
  10956. case GGML_OP_GET_ROWS_BACK:
  10957. {
  10958. GGML_ASSERT(false); // TODO: not implemented
  10959. } break;
  10960. case GGML_OP_DIAG:
  10961. {
  10962. GGML_ASSERT(false); // TODO: not implemented
  10963. } break;
  10964. case GGML_OP_DIAG_MASK_INF:
  10965. {
  10966. // necessary for llama
  10967. if (src0->grad) {
  10968. assert(src1->type == GGML_TYPE_I32);
  10969. assert(ggml_nelements(src1) == 2);
  10970. const int n_past = ((int32_t *) src1->data)[0];
  10971. src0->grad =
  10972. ggml_add_impl(ctx, src0->grad,
  10973. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10974. inplace);
  10975. }
  10976. if (src1->grad) {
  10977. // noop
  10978. }
  10979. } break;
  10980. case GGML_OP_DIAG_MASK_ZERO:
  10981. {
  10982. // necessary for llama
  10983. if (src0->grad) {
  10984. assert(src1->type == GGML_TYPE_I32);
  10985. assert(ggml_nelements(src1) == 2);
  10986. const int n_past = ((int32_t *) src1->data)[0];
  10987. src0->grad =
  10988. ggml_add_impl(ctx, src0->grad,
  10989. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  10990. inplace);
  10991. }
  10992. if (src1->grad) {
  10993. // noop
  10994. }
  10995. } break;
  10996. case GGML_OP_SOFT_MAX:
  10997. {
  10998. // necessary for llama
  10999. if (src0->grad) {
  11000. // y = softmax(x)
  11001. //
  11002. // Jii = yi - yi*yi
  11003. // Jij = -yi*yj
  11004. // J = diag(y)-y.*y
  11005. // dx = J * dy
  11006. // dxk = sum(Jkj * dyk)
  11007. int64_t ne2[4] = {
  11008. tensor->ne[0],
  11009. 1,
  11010. tensor->ne[1]*tensor->ne[2],
  11011. tensor->ne[3]
  11012. };
  11013. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11014. ggml_reshape_4d(ctx,
  11015. ggml_cont(ctx, tensor),
  11016. ne2[0], ne2[1], ne2[2], ne2[3]));
  11017. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11018. ggml_reshape_4d(ctx,
  11019. ggml_cont(ctx, tensor->grad),
  11020. ne2[0], ne2[1], ne2[2], ne2[3]));
  11021. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11022. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11023. tensor2, // [ne0,1,ne1*ne2,ne3]
  11024. 1, 0, 2, 3));
  11025. src0->grad =
  11026. ggml_add_impl(ctx,
  11027. src0->grad, // [ne0,ne1,ne2,ne3]
  11028. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11029. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11030. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11031. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11032. tensor2), // [ne0,1,ne1*ne2,ne3]
  11033. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11034. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11035. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11036. grad2), // [ne0,1,ne1*ne2,ne3]
  11037. src0->grad),
  11038. inplace);
  11039. }
  11040. } break;
  11041. case GGML_OP_ROPE:
  11042. {
  11043. // necessary for llama
  11044. if (src0->grad) {
  11045. assert(src1->type == GGML_TYPE_I32);
  11046. assert(ggml_nelements(src1) == 3);
  11047. const int n_past = ((int32_t *) src1->data)[0];
  11048. const int n_dims = ((int32_t *) src1->data)[1];
  11049. const int mode = ((int32_t *) src1->data)[2];
  11050. src0->grad = ggml_add_impl(ctx,
  11051. src0->grad,
  11052. ggml_rope_back(ctx,
  11053. tensor->grad,
  11054. n_past,
  11055. n_dims,
  11056. mode),
  11057. inplace);
  11058. }
  11059. if (src1->grad) {
  11060. // noop
  11061. }
  11062. } break;
  11063. case GGML_OP_ROPE_BACK:
  11064. {
  11065. if (src0->grad) {
  11066. assert(src1->type == GGML_TYPE_I32);
  11067. assert(ggml_nelements(src1) == 3);
  11068. const int n_past = ((int32_t *) src1->data)[0];
  11069. const int n_dims = ((int32_t *) src1->data)[1];
  11070. const int mode = ((int32_t *) src1->data)[2];
  11071. src0->grad = ggml_add_impl(ctx,
  11072. src0->grad,
  11073. ggml_rope(ctx,
  11074. tensor->grad,
  11075. n_past,
  11076. n_dims,
  11077. mode),
  11078. inplace);
  11079. }
  11080. if (src1->grad) {
  11081. // noop
  11082. }
  11083. } break;
  11084. case GGML_OP_CONV_1D_1S:
  11085. {
  11086. GGML_ASSERT(false); // TODO: not implemented
  11087. } break;
  11088. case GGML_OP_CONV_1D_2S:
  11089. {
  11090. GGML_ASSERT(false); // TODO: not implemented
  11091. } break;
  11092. case GGML_OP_FLASH_ATTN:
  11093. {
  11094. GGML_ASSERT(false); // not supported
  11095. } break;
  11096. case GGML_OP_FLASH_FF:
  11097. {
  11098. GGML_ASSERT(false); // not supported
  11099. } break;
  11100. case GGML_OP_MAP_UNARY:
  11101. case GGML_OP_MAP_BINARY:
  11102. {
  11103. GGML_ASSERT(false); // not supported
  11104. } break;
  11105. case GGML_OP_NONE:
  11106. {
  11107. // nop
  11108. } break;
  11109. case GGML_OP_COUNT:
  11110. {
  11111. GGML_ASSERT(false);
  11112. } break;
  11113. }
  11114. }
  11115. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11116. if (node->grad == NULL) {
  11117. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11118. // it can also happen during forward pass, if the user performs computations with constants
  11119. if (node->op != GGML_OP_NONE) {
  11120. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11121. }
  11122. }
  11123. // check if already visited
  11124. for (int i = 0; i < cgraph->n_nodes; i++) {
  11125. if (cgraph->nodes[i] == node) {
  11126. return;
  11127. }
  11128. }
  11129. for (int i = 0; i < cgraph->n_leafs; i++) {
  11130. if (cgraph->leafs[i] == node) {
  11131. return;
  11132. }
  11133. }
  11134. if (node->src0) {
  11135. ggml_visit_parents(cgraph, node->src0);
  11136. }
  11137. if (node->src1) {
  11138. ggml_visit_parents(cgraph, node->src1);
  11139. }
  11140. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11141. if (node->opt[i]) {
  11142. ggml_visit_parents(cgraph, node->opt[i]);
  11143. }
  11144. }
  11145. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11146. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11147. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11148. cgraph->leafs[cgraph->n_leafs] = node;
  11149. cgraph->n_leafs++;
  11150. } else {
  11151. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11152. cgraph->nodes[cgraph->n_nodes] = node;
  11153. cgraph->grads[cgraph->n_nodes] = node->grad;
  11154. cgraph->n_nodes++;
  11155. }
  11156. }
  11157. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11158. if (!expand) {
  11159. cgraph->n_nodes = 0;
  11160. cgraph->n_leafs = 0;
  11161. }
  11162. const int n0 = cgraph->n_nodes;
  11163. UNUSED(n0);
  11164. ggml_visit_parents(cgraph, tensor);
  11165. const int n_new = cgraph->n_nodes - n0;
  11166. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11167. if (n_new > 0) {
  11168. // the last added node should always be starting point
  11169. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11170. }
  11171. }
  11172. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11173. ggml_build_forward_impl(cgraph, tensor, true);
  11174. }
  11175. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11176. struct ggml_cgraph result = {
  11177. /*.n_nodes =*/ 0,
  11178. /*.n_leafs =*/ 0,
  11179. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11180. /*.work_size =*/ 0,
  11181. /*.work =*/ NULL,
  11182. /*.nodes =*/ { NULL },
  11183. /*.grads =*/ { NULL },
  11184. /*.leafs =*/ { NULL },
  11185. /*.perf_runs =*/ 0,
  11186. /*.perf_cycles =*/ 0,
  11187. /*.perf_time_us =*/ 0,
  11188. };
  11189. ggml_build_forward_impl(&result, tensor, false);
  11190. return result;
  11191. }
  11192. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11193. struct ggml_cgraph result = *gf;
  11194. GGML_ASSERT(gf->n_nodes > 0);
  11195. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11196. if (keep) {
  11197. for (int i = 0; i < gf->n_nodes; i++) {
  11198. struct ggml_tensor * node = gf->nodes[i];
  11199. if (node->grad) {
  11200. node->grad = ggml_dup_tensor(ctx, node);
  11201. gf->grads[i] = node->grad;
  11202. }
  11203. }
  11204. }
  11205. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11206. struct ggml_tensor * node = gf->nodes[i];
  11207. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11208. if (node->grad) {
  11209. ggml_compute_backward(ctx, node, keep);
  11210. }
  11211. }
  11212. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11213. struct ggml_tensor * node = gf->nodes[i];
  11214. if (node->is_param) {
  11215. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11216. ggml_build_forward_impl(&result, node->grad, true);
  11217. }
  11218. }
  11219. return result;
  11220. }
  11221. //
  11222. // thread data
  11223. //
  11224. // synchronization is done via busy loops
  11225. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11226. //
  11227. #ifdef __APPLE__
  11228. //#include <os/lock.h>
  11229. //
  11230. //typedef os_unfair_lock ggml_lock_t;
  11231. //
  11232. //#define ggml_lock_init(x) UNUSED(x)
  11233. //#define ggml_lock_destroy(x) UNUSED(x)
  11234. //#define ggml_lock_lock os_unfair_lock_lock
  11235. //#define ggml_lock_unlock os_unfair_lock_unlock
  11236. //
  11237. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11238. typedef int ggml_lock_t;
  11239. #define ggml_lock_init(x) UNUSED(x)
  11240. #define ggml_lock_destroy(x) UNUSED(x)
  11241. #define ggml_lock_lock(x) UNUSED(x)
  11242. #define ggml_lock_unlock(x) UNUSED(x)
  11243. #define GGML_LOCK_INITIALIZER 0
  11244. typedef pthread_t ggml_thread_t;
  11245. #define ggml_thread_create pthread_create
  11246. #define ggml_thread_join pthread_join
  11247. #else
  11248. //typedef pthread_spinlock_t ggml_lock_t;
  11249. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11250. //#define ggml_lock_destroy pthread_spin_destroy
  11251. //#define ggml_lock_lock pthread_spin_lock
  11252. //#define ggml_lock_unlock pthread_spin_unlock
  11253. typedef int ggml_lock_t;
  11254. #define ggml_lock_init(x) UNUSED(x)
  11255. #define ggml_lock_destroy(x) UNUSED(x)
  11256. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11257. #define ggml_lock_lock(x) _mm_pause()
  11258. #else
  11259. #define ggml_lock_lock(x) UNUSED(x)
  11260. #endif
  11261. #define ggml_lock_unlock(x) UNUSED(x)
  11262. #define GGML_LOCK_INITIALIZER 0
  11263. typedef pthread_t ggml_thread_t;
  11264. #define ggml_thread_create pthread_create
  11265. #define ggml_thread_join pthread_join
  11266. #endif
  11267. struct ggml_compute_state_shared {
  11268. ggml_lock_t spin;
  11269. int n_threads;
  11270. // synchronization primitives
  11271. atomic_int n_ready;
  11272. atomic_bool has_work;
  11273. atomic_bool stop; // stop all threads
  11274. };
  11275. struct ggml_compute_state {
  11276. ggml_thread_t thrd;
  11277. struct ggml_compute_params params;
  11278. struct ggml_tensor * node;
  11279. struct ggml_compute_state_shared * shared;
  11280. };
  11281. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11282. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11283. const int n_threads = state->shared->n_threads;
  11284. while (true) {
  11285. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11286. atomic_store(&state->shared->has_work, false);
  11287. } else {
  11288. while (atomic_load(&state->shared->has_work)) {
  11289. if (atomic_load(&state->shared->stop)) {
  11290. return 0;
  11291. }
  11292. ggml_lock_lock (&state->shared->spin);
  11293. ggml_lock_unlock(&state->shared->spin);
  11294. }
  11295. }
  11296. atomic_fetch_sub(&state->shared->n_ready, 1);
  11297. // wait for work
  11298. while (!atomic_load(&state->shared->has_work)) {
  11299. if (atomic_load(&state->shared->stop)) {
  11300. return 0;
  11301. }
  11302. ggml_lock_lock (&state->shared->spin);
  11303. ggml_lock_unlock(&state->shared->spin);
  11304. }
  11305. // check if we should stop
  11306. if (atomic_load(&state->shared->stop)) {
  11307. break;
  11308. }
  11309. if (state->node) {
  11310. if (state->params.ith < state->params.nth) {
  11311. ggml_compute_forward(&state->params, state->node);
  11312. }
  11313. state->node = NULL;
  11314. } else {
  11315. break;
  11316. }
  11317. }
  11318. return 0;
  11319. }
  11320. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11321. const int n_threads = cgraph->n_threads;
  11322. struct ggml_compute_state_shared state_shared = {
  11323. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11324. /*.n_threads =*/ n_threads,
  11325. /*.n_ready =*/ 0,
  11326. /*.has_work =*/ false,
  11327. /*.stop =*/ false,
  11328. };
  11329. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11330. // create thread pool
  11331. if (n_threads > 1) {
  11332. ggml_lock_init(&state_shared.spin);
  11333. atomic_store(&state_shared.has_work, true);
  11334. for (int j = 0; j < n_threads - 1; j++) {
  11335. workers[j] = (struct ggml_compute_state) {
  11336. .thrd = 0,
  11337. .params = {
  11338. .type = GGML_TASK_COMPUTE,
  11339. .ith = j + 1,
  11340. .nth = n_threads,
  11341. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11342. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11343. },
  11344. .node = NULL,
  11345. .shared = &state_shared,
  11346. };
  11347. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11348. GGML_ASSERT(rc == 0);
  11349. UNUSED(rc);
  11350. }
  11351. }
  11352. // initialize tasks + work buffer
  11353. {
  11354. size_t work_size = 0;
  11355. // thread scheduling for the different operations
  11356. for (int i = 0; i < cgraph->n_nodes; i++) {
  11357. struct ggml_tensor * node = cgraph->nodes[i];
  11358. switch (node->op) {
  11359. case GGML_OP_CPY:
  11360. case GGML_OP_DUP:
  11361. {
  11362. node->n_tasks = n_threads;
  11363. size_t cur = 0;
  11364. if (ggml_is_quantized(node->type)) {
  11365. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11366. }
  11367. work_size = MAX(work_size, cur);
  11368. } break;
  11369. case GGML_OP_ADD:
  11370. case GGML_OP_ADD1:
  11371. {
  11372. node->n_tasks = n_threads;
  11373. size_t cur = 0;
  11374. if (ggml_is_quantized(node->src0->type)) {
  11375. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11376. }
  11377. work_size = MAX(work_size, cur);
  11378. } break;
  11379. case GGML_OP_ACC:
  11380. {
  11381. node->n_tasks = n_threads;
  11382. size_t cur = 0;
  11383. if (ggml_is_quantized(node->src0->type)) {
  11384. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11385. }
  11386. work_size = MAX(work_size, cur);
  11387. } break;
  11388. case GGML_OP_SUB:
  11389. case GGML_OP_DIV:
  11390. case GGML_OP_SQR:
  11391. case GGML_OP_SQRT:
  11392. case GGML_OP_LOG:
  11393. case GGML_OP_SUM:
  11394. case GGML_OP_SUM_ROWS:
  11395. case GGML_OP_MEAN:
  11396. case GGML_OP_REPEAT:
  11397. case GGML_OP_ABS:
  11398. case GGML_OP_SGN:
  11399. case GGML_OP_NEG:
  11400. case GGML_OP_STEP:
  11401. case GGML_OP_RELU:
  11402. {
  11403. node->n_tasks = 1;
  11404. } break;
  11405. case GGML_OP_MUL:
  11406. case GGML_OP_GELU:
  11407. case GGML_OP_SILU:
  11408. case GGML_OP_SILU_BACK:
  11409. case GGML_OP_NORM:
  11410. case GGML_OP_RMS_NORM:
  11411. case GGML_OP_RMS_NORM_BACK:
  11412. {
  11413. node->n_tasks = n_threads;
  11414. } break;
  11415. case GGML_OP_MUL_MAT:
  11416. {
  11417. node->n_tasks = n_threads;
  11418. // TODO: use different scheduling for different matrix sizes
  11419. //const int nr0 = ggml_nrows(node->src0);
  11420. //const int nr1 = ggml_nrows(node->src1);
  11421. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11422. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11423. size_t cur = 0;
  11424. #if defined(GGML_USE_CUBLAS)
  11425. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11426. node->n_tasks = 1; // TODO: this actually is doing nothing
  11427. // the threads are still spinning
  11428. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  11429. }
  11430. else
  11431. #endif
  11432. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11433. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11434. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11435. node->n_tasks = 1; // TODO: this actually is doing nothing
  11436. // the threads are still spinning
  11437. // here we need memory just for single 2D matrix from src0
  11438. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11439. } else {
  11440. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11441. }
  11442. #else
  11443. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11444. #endif
  11445. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11446. cur = 0;
  11447. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11448. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11449. node->n_tasks = 1;
  11450. }
  11451. #endif
  11452. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11453. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  11454. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11455. node->n_tasks = 1;
  11456. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11457. } else
  11458. #endif
  11459. {
  11460. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11461. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11462. }
  11463. } else {
  11464. GGML_ASSERT(false);
  11465. }
  11466. work_size = MAX(work_size, cur);
  11467. } break;
  11468. case GGML_OP_SCALE:
  11469. {
  11470. node->n_tasks = n_threads;
  11471. } break;
  11472. case GGML_OP_SET:
  11473. case GGML_OP_CONT:
  11474. case GGML_OP_RESHAPE:
  11475. case GGML_OP_VIEW:
  11476. case GGML_OP_PERMUTE:
  11477. case GGML_OP_TRANSPOSE:
  11478. case GGML_OP_GET_ROWS:
  11479. case GGML_OP_GET_ROWS_BACK:
  11480. case GGML_OP_DIAG:
  11481. case GGML_OP_DIAG_MASK_ZERO:
  11482. {
  11483. node->n_tasks = 1;
  11484. } break;
  11485. case GGML_OP_DIAG_MASK_INF:
  11486. case GGML_OP_SOFT_MAX:
  11487. case GGML_OP_ROPE:
  11488. case GGML_OP_ROPE_BACK:
  11489. {
  11490. node->n_tasks = n_threads;
  11491. } break;
  11492. case GGML_OP_ALIBI:
  11493. {
  11494. node->n_tasks = 1; //TODO
  11495. } break;
  11496. case GGML_OP_CONV_1D_1S:
  11497. case GGML_OP_CONV_1D_2S:
  11498. {
  11499. node->n_tasks = n_threads;
  11500. GGML_ASSERT(node->src0->ne[3] == 1);
  11501. GGML_ASSERT(node->src1->ne[2] == 1);
  11502. GGML_ASSERT(node->src1->ne[3] == 1);
  11503. size_t cur = 0;
  11504. const int nk = node->src0->ne[0];
  11505. if (node->src0->type == GGML_TYPE_F16 &&
  11506. node->src1->type == GGML_TYPE_F32) {
  11507. cur = sizeof(ggml_fp16_t)*(
  11508. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11509. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11510. );
  11511. } else if (node->src0->type == GGML_TYPE_F32 &&
  11512. node->src1->type == GGML_TYPE_F32) {
  11513. cur = sizeof(float)*(
  11514. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11515. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11516. );
  11517. } else {
  11518. GGML_ASSERT(false);
  11519. }
  11520. work_size = MAX(work_size, cur);
  11521. } break;
  11522. case GGML_OP_FLASH_ATTN:
  11523. {
  11524. node->n_tasks = n_threads;
  11525. size_t cur = 0;
  11526. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11527. if (node->src1->type == GGML_TYPE_F32) {
  11528. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11529. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11530. }
  11531. if (node->src1->type == GGML_TYPE_F16) {
  11532. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11533. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11534. }
  11535. work_size = MAX(work_size, cur);
  11536. } break;
  11537. case GGML_OP_FLASH_FF:
  11538. {
  11539. node->n_tasks = n_threads;
  11540. size_t cur = 0;
  11541. if (node->src1->type == GGML_TYPE_F32) {
  11542. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11543. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11544. }
  11545. if (node->src1->type == GGML_TYPE_F16) {
  11546. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11547. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11548. }
  11549. work_size = MAX(work_size, cur);
  11550. } break;
  11551. case GGML_OP_MAP_UNARY:
  11552. case GGML_OP_MAP_BINARY:
  11553. {
  11554. node->n_tasks = 1;
  11555. } break;
  11556. case GGML_OP_NONE:
  11557. {
  11558. node->n_tasks = 1;
  11559. } break;
  11560. case GGML_OP_COUNT:
  11561. {
  11562. GGML_ASSERT(false);
  11563. } break;
  11564. }
  11565. }
  11566. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11567. GGML_ASSERT(false); // TODO: better handling
  11568. }
  11569. if (work_size > 0 && cgraph->work == NULL) {
  11570. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11571. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11572. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11573. }
  11574. }
  11575. const int64_t perf_start_cycles = ggml_perf_cycles();
  11576. const int64_t perf_start_time_us = ggml_perf_time_us();
  11577. for (int i = 0; i < cgraph->n_nodes; i++) {
  11578. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11579. struct ggml_tensor * node = cgraph->nodes[i];
  11580. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11581. //if (node->grad == NULL && node->perf_runs > 0) {
  11582. // continue;
  11583. //}
  11584. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11585. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11586. // INIT
  11587. struct ggml_compute_params params = {
  11588. /*.type =*/ GGML_TASK_INIT,
  11589. /*.ith =*/ 0,
  11590. /*.nth =*/ node->n_tasks,
  11591. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11592. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11593. };
  11594. ggml_compute_forward(&params, node);
  11595. // COMPUTE
  11596. if (node->n_tasks > 1) {
  11597. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11598. atomic_store(&state_shared.has_work, false);
  11599. }
  11600. while (atomic_load(&state_shared.has_work)) {
  11601. ggml_lock_lock (&state_shared.spin);
  11602. ggml_lock_unlock(&state_shared.spin);
  11603. }
  11604. // launch thread pool
  11605. for (int j = 0; j < n_threads - 1; j++) {
  11606. workers[j].params = (struct ggml_compute_params) {
  11607. .type = GGML_TASK_COMPUTE,
  11608. .ith = j + 1,
  11609. .nth = node->n_tasks,
  11610. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11611. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11612. };
  11613. workers[j].node = node;
  11614. }
  11615. atomic_fetch_sub(&state_shared.n_ready, 1);
  11616. while (atomic_load(&state_shared.n_ready) > 0) {
  11617. ggml_lock_lock (&state_shared.spin);
  11618. ggml_lock_unlock(&state_shared.spin);
  11619. }
  11620. atomic_store(&state_shared.has_work, true);
  11621. }
  11622. params.type = GGML_TASK_COMPUTE;
  11623. ggml_compute_forward(&params, node);
  11624. // wait for thread pool
  11625. if (node->n_tasks > 1) {
  11626. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11627. atomic_store(&state_shared.has_work, false);
  11628. }
  11629. while (atomic_load(&state_shared.has_work)) {
  11630. ggml_lock_lock (&state_shared.spin);
  11631. ggml_lock_unlock(&state_shared.spin);
  11632. }
  11633. atomic_fetch_sub(&state_shared.n_ready, 1);
  11634. while (atomic_load(&state_shared.n_ready) != 0) {
  11635. ggml_lock_lock (&state_shared.spin);
  11636. ggml_lock_unlock(&state_shared.spin);
  11637. }
  11638. }
  11639. // FINALIZE
  11640. if (node->n_tasks > 1) {
  11641. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11642. atomic_store(&state_shared.has_work, false);
  11643. }
  11644. while (atomic_load(&state_shared.has_work)) {
  11645. ggml_lock_lock (&state_shared.spin);
  11646. ggml_lock_unlock(&state_shared.spin);
  11647. }
  11648. // launch thread pool
  11649. for (int j = 0; j < n_threads - 1; j++) {
  11650. workers[j].params = (struct ggml_compute_params) {
  11651. .type = GGML_TASK_FINALIZE,
  11652. .ith = j + 1,
  11653. .nth = node->n_tasks,
  11654. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11655. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11656. };
  11657. workers[j].node = node;
  11658. }
  11659. atomic_fetch_sub(&state_shared.n_ready, 1);
  11660. while (atomic_load(&state_shared.n_ready) > 0) {
  11661. ggml_lock_lock (&state_shared.spin);
  11662. ggml_lock_unlock(&state_shared.spin);
  11663. }
  11664. atomic_store(&state_shared.has_work, true);
  11665. }
  11666. params.type = GGML_TASK_FINALIZE;
  11667. ggml_compute_forward(&params, node);
  11668. // wait for thread pool
  11669. if (node->n_tasks > 1) {
  11670. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11671. atomic_store(&state_shared.has_work, false);
  11672. }
  11673. while (atomic_load(&state_shared.has_work)) {
  11674. ggml_lock_lock (&state_shared.spin);
  11675. ggml_lock_unlock(&state_shared.spin);
  11676. }
  11677. atomic_fetch_sub(&state_shared.n_ready, 1);
  11678. while (atomic_load(&state_shared.n_ready) != 0) {
  11679. ggml_lock_lock (&state_shared.spin);
  11680. ggml_lock_unlock(&state_shared.spin);
  11681. }
  11682. }
  11683. // performance stats (node)
  11684. {
  11685. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  11686. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  11687. node->perf_runs++;
  11688. node->perf_cycles += perf_cycles_cur;
  11689. node->perf_time_us += perf_time_us_cur;
  11690. }
  11691. }
  11692. // join thread pool
  11693. if (n_threads > 1) {
  11694. atomic_store(&state_shared.stop, true);
  11695. atomic_store(&state_shared.has_work, true);
  11696. for (int j = 0; j < n_threads - 1; j++) {
  11697. int rc = ggml_thread_join(workers[j].thrd, NULL);
  11698. GGML_ASSERT(rc == 0);
  11699. UNUSED(rc);
  11700. }
  11701. ggml_lock_destroy(&state_shared.spin);
  11702. }
  11703. // performance stats (graph)
  11704. {
  11705. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  11706. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  11707. cgraph->perf_runs++;
  11708. cgraph->perf_cycles += perf_cycles_cur;
  11709. cgraph->perf_time_us += perf_time_us_cur;
  11710. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  11711. __func__, cgraph->perf_runs,
  11712. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  11713. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  11714. (double) perf_time_us_cur / 1000.0,
  11715. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  11716. }
  11717. }
  11718. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  11719. for (int i = 0; i < cgraph->n_nodes; i++) {
  11720. struct ggml_tensor * grad = cgraph->grads[i];
  11721. if (grad) {
  11722. ggml_set_zero(grad);
  11723. }
  11724. }
  11725. }
  11726. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  11727. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  11728. GGML_PRINT("=== GRAPH ===\n");
  11729. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  11730. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  11731. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  11732. for (int i = 0; i < cgraph->n_nodes; i++) {
  11733. struct ggml_tensor * node = cgraph->nodes[i];
  11734. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  11735. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  11736. i,
  11737. node->ne[0], node->ne[1], node->ne[2],
  11738. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  11739. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  11740. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  11741. (double) node->perf_time_us / 1000.0,
  11742. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  11743. }
  11744. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  11745. for (int i = 0; i < cgraph->n_leafs; i++) {
  11746. struct ggml_tensor * node = cgraph->leafs[i];
  11747. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  11748. i,
  11749. node->ne[0], node->ne[1],
  11750. GGML_OP_LABEL[node->op]);
  11751. }
  11752. for (int i = 0; i < GGML_OP_COUNT; i++) {
  11753. if (perf_total_per_op_us[i] == 0) {
  11754. continue;
  11755. }
  11756. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  11757. }
  11758. GGML_PRINT("========================================\n");
  11759. }
  11760. // check if node is part of the graph
  11761. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11762. if (cgraph == NULL) {
  11763. return true;
  11764. }
  11765. for (int i = 0; i < cgraph->n_nodes; i++) {
  11766. if (cgraph->nodes[i] == node) {
  11767. return true;
  11768. }
  11769. }
  11770. return false;
  11771. }
  11772. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  11773. for (int i = 0; i < cgraph->n_nodes; i++) {
  11774. struct ggml_tensor * parent = cgraph->nodes[i];
  11775. if (parent->grad == node) {
  11776. return parent;
  11777. }
  11778. }
  11779. return NULL;
  11780. }
  11781. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  11782. char color[16];
  11783. FILE * fp = fopen(filename, "w");
  11784. GGML_ASSERT(fp);
  11785. fprintf(fp, "digraph G {\n");
  11786. fprintf(fp, " newrank = true;\n");
  11787. fprintf(fp, " rankdir = LR;\n");
  11788. for (int i = 0; i < gb->n_nodes; i++) {
  11789. struct ggml_tensor * node = gb->nodes[i];
  11790. if (ggml_graph_get_parent(gb, node) != NULL) {
  11791. continue;
  11792. }
  11793. if (node->is_param) {
  11794. snprintf(color, sizeof(color), "yellow");
  11795. } else if (node->grad) {
  11796. if (ggml_graph_find(gf, node)) {
  11797. snprintf(color, sizeof(color), "green");
  11798. } else {
  11799. snprintf(color, sizeof(color), "lightblue");
  11800. }
  11801. } else {
  11802. snprintf(color, sizeof(color), "white");
  11803. }
  11804. fprintf(fp, " \"%p\" [ "
  11805. "style = filled; fillcolor = %s; shape = record; "
  11806. "label=\"",
  11807. (void *) node, color);
  11808. if (strlen(node->name) > 0) {
  11809. fprintf(fp, "%s |", node->name);
  11810. }
  11811. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  11812. i, node->ne[0], node->ne[1],
  11813. GGML_OP_SYMBOL[node->op]);
  11814. if (node->grad) {
  11815. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  11816. } else {
  11817. fprintf(fp, "\"; ]\n");
  11818. }
  11819. }
  11820. for (int i = 0; i < gb->n_leafs; i++) {
  11821. struct ggml_tensor * node = gb->leafs[i];
  11822. snprintf(color, sizeof(color), "pink");
  11823. fprintf(fp, " \"%p\" [ "
  11824. "style = filled; fillcolor = %s; shape = record; "
  11825. "label=\"<x>",
  11826. (void *) node, color);
  11827. if (strlen(node->name) > 0) {
  11828. fprintf(fp, "%s | ", node->name);
  11829. }
  11830. if (ggml_nelements(node) == 1) {
  11831. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  11832. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  11833. }
  11834. else {
  11835. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  11836. }
  11837. }
  11838. else {
  11839. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  11840. }
  11841. fprintf(fp, "\"; ]\n");
  11842. }
  11843. for (int i = 0; i < gb->n_nodes; i++) {
  11844. struct ggml_tensor * node = gb->nodes[i];
  11845. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  11846. if (node->src0) {
  11847. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  11848. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  11849. parent0 ? (void *) parent0 : (void *) node->src0,
  11850. parent0 ? "g" : "x",
  11851. parent ? (void *) parent : (void *) node,
  11852. parent ? "g" : "x",
  11853. parent ? "empty" : "vee",
  11854. parent ? "dashed" : "solid");
  11855. }
  11856. if (node->src1) {
  11857. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  11858. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  11859. parent1 ? (void *) parent1 : (void *) node->src1,
  11860. parent1 ? "g" : "x",
  11861. parent ? (void *) parent : (void *) node,
  11862. parent ? "g" : "x",
  11863. parent ? "empty" : "vee",
  11864. parent ? "dashed" : "solid");
  11865. }
  11866. }
  11867. for (int i = 0; i < gb->n_leafs; i++) {
  11868. struct ggml_tensor * node = gb->leafs[i];
  11869. if (node->src0) {
  11870. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  11871. (void *) node->src0, "x",
  11872. (void *) node, "x");
  11873. }
  11874. if (node->src1) {
  11875. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  11876. (void *) node->src1, "x",
  11877. (void *) node, "x");
  11878. }
  11879. }
  11880. fprintf(fp, "}\n");
  11881. fclose(fp);
  11882. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  11883. }
  11884. ////////////////////////////////////////////////////////////////////////////////
  11885. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  11886. int i = 0;
  11887. for (int p = 0; p < np; ++p) {
  11888. const int64_t ne = ggml_nelements(ps[p]) ;
  11889. // TODO: add function to set tensor from array
  11890. for (int64_t j = 0; j < ne; ++j) {
  11891. ggml_set_f32_1d(ps[p], j, x[i++]);
  11892. }
  11893. }
  11894. }
  11895. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  11896. int i = 0;
  11897. for (int p = 0; p < np; ++p) {
  11898. const int64_t ne = ggml_nelements(ps[p]) ;
  11899. // TODO: add function to get all elements at once
  11900. for (int64_t j = 0; j < ne; ++j) {
  11901. x[i++] = ggml_get_f32_1d(ps[p], j);
  11902. }
  11903. }
  11904. }
  11905. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  11906. int i = 0;
  11907. for (int p = 0; p < np; ++p) {
  11908. const int64_t ne = ggml_nelements(ps[p]) ;
  11909. // TODO: add function to get all elements at once
  11910. for (int64_t j = 0; j < ne; ++j) {
  11911. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  11912. }
  11913. }
  11914. }
  11915. //
  11916. // ADAM
  11917. //
  11918. // ref: https://arxiv.org/pdf/1412.6980.pdf
  11919. //
  11920. static enum ggml_opt_result ggml_opt_adam(
  11921. struct ggml_context * ctx,
  11922. struct ggml_opt_params params,
  11923. struct ggml_tensor * f,
  11924. struct ggml_cgraph * gf,
  11925. struct ggml_cgraph * gb) {
  11926. GGML_ASSERT(ggml_is_scalar(f));
  11927. gf->n_threads = params.n_threads;
  11928. gb->n_threads = params.n_threads;
  11929. // these will store the parameters we want to optimize
  11930. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  11931. int np = 0;
  11932. int nx = 0;
  11933. for (int i = 0; i < gf->n_nodes; ++i) {
  11934. if (gf->nodes[i]->is_param) {
  11935. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  11936. GGML_ASSERT(np < GGML_MAX_PARAMS);
  11937. ps[np++] = gf->nodes[i];
  11938. nx += ggml_nelements(gf->nodes[i]);
  11939. }
  11940. }
  11941. // constants
  11942. const float alpha = params.adam.alpha;
  11943. const float beta1 = params.adam.beta1;
  11944. const float beta2 = params.adam.beta2;
  11945. const float eps = params.adam.eps;
  11946. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  11947. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  11948. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  11949. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  11950. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  11951. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  11952. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  11953. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  11954. // initialize
  11955. ggml_vec_set_f32(nx, m, 0.0f);
  11956. ggml_vec_set_f32(nx, v, 0.0f);
  11957. // update view
  11958. ggml_opt_get_params(np, ps, x);
  11959. // compute the function value
  11960. ggml_graph_reset (gf);
  11961. ggml_set_f32 (f->grad, 1.0f);
  11962. ggml_graph_compute(ctx, gb);
  11963. float fx_prev = ggml_get_f32_1d(f, 0);
  11964. if (pf) {
  11965. pf[0] = fx_prev;
  11966. }
  11967. int n_no_improvement = 0;
  11968. float fx_best = fx_prev;
  11969. // run the optimizer
  11970. for (int t = 0; t < params.adam.n_iter; ++t) {
  11971. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  11972. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  11973. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  11974. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  11975. for (int i = 0; i < np; ++i) {
  11976. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  11977. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  11978. }
  11979. const int64_t t_start_wall = ggml_time_us();
  11980. const int64_t t_start_cpu = ggml_cycles();
  11981. UNUSED(t_start_wall);
  11982. UNUSED(t_start_cpu);
  11983. {
  11984. // update the gradient
  11985. ggml_opt_get_grad(np, ps, g1);
  11986. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  11987. ggml_vec_scale_f32(nx, m, beta1);
  11988. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  11989. // g2 = g1^2
  11990. ggml_vec_sqr_f32 (nx, g2, g1);
  11991. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  11992. ggml_vec_scale_f32(nx, v, beta2);
  11993. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  11994. // m^hat = m_t / (1 - beta1^t)
  11995. // v^hat = v_t / (1 - beta2^t)
  11996. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  11997. ggml_vec_cpy_f32 (nx, mh, m);
  11998. ggml_vec_cpy_f32 (nx, vh, v);
  11999. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12000. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12001. ggml_vec_sqrt_f32 (nx, vh, vh);
  12002. ggml_vec_acc1_f32 (nx, vh, eps);
  12003. ggml_vec_div_f32 (nx, mh, mh, vh);
  12004. ggml_vec_sub_f32 (nx, x, x, mh);
  12005. // update the parameters
  12006. ggml_opt_set_params(np, ps, x);
  12007. }
  12008. ggml_graph_reset (gf);
  12009. ggml_set_f32 (f->grad, 1.0f);
  12010. ggml_graph_compute(ctx, gb);
  12011. const float fx = ggml_get_f32_1d(f, 0);
  12012. // check convergence
  12013. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12014. GGML_PRINT_DEBUG("converged\n");
  12015. return GGML_OPT_OK;
  12016. }
  12017. // delta-based convergence test
  12018. if (pf != NULL) {
  12019. // need at least params.past iterations to start checking for convergence
  12020. if (params.past <= t) {
  12021. const float rate = (pf[t%params.past] - fx)/fx;
  12022. if (fabsf(rate) < params.delta) {
  12023. return GGML_OPT_OK;
  12024. }
  12025. }
  12026. pf[t%params.past] = fx;
  12027. }
  12028. // check for improvement
  12029. if (params.max_no_improvement > 0) {
  12030. if (fx_best > fx) {
  12031. fx_best = fx;
  12032. n_no_improvement = 0;
  12033. } else {
  12034. ++n_no_improvement;
  12035. if (n_no_improvement >= params.max_no_improvement) {
  12036. return GGML_OPT_OK;
  12037. }
  12038. }
  12039. }
  12040. fx_prev = fx;
  12041. {
  12042. const int64_t t_end_cpu = ggml_cycles();
  12043. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12044. UNUSED(t_end_cpu);
  12045. const int64_t t_end_wall = ggml_time_us();
  12046. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12047. UNUSED(t_end_wall);
  12048. }
  12049. }
  12050. return GGML_OPT_DID_NOT_CONVERGE;
  12051. }
  12052. //
  12053. // L-BFGS
  12054. //
  12055. // the L-BFGS implementation below is based on the following implementation:
  12056. //
  12057. // https://github.com/chokkan/liblbfgs
  12058. //
  12059. struct ggml_lbfgs_iteration_data {
  12060. float alpha;
  12061. float ys;
  12062. float * s;
  12063. float * y;
  12064. };
  12065. static enum ggml_opt_result linesearch_backtracking(
  12066. struct ggml_context * ctx,
  12067. const struct ggml_opt_params * params,
  12068. int nx,
  12069. float * x,
  12070. float * fx,
  12071. float * g,
  12072. float * d,
  12073. float * step,
  12074. const float * xp,
  12075. struct ggml_tensor * f,
  12076. struct ggml_cgraph * gf,
  12077. struct ggml_cgraph * gb,
  12078. const int np,
  12079. struct ggml_tensor * ps[]) {
  12080. int count = 0;
  12081. float width = 0.0f;
  12082. float dg = 0.0f;
  12083. float finit = 0.0f;
  12084. float dginit = 0.0f;
  12085. float dgtest = 0.0f;
  12086. const float dec = 0.5f;
  12087. const float inc = 2.1f;
  12088. if (*step <= 0.f) {
  12089. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12090. }
  12091. // compute the initial gradient in the search direction
  12092. ggml_vec_dot_f32(nx, &dginit, g, d);
  12093. // make sure that d points to a descent direction
  12094. if (0 < dginit) {
  12095. return GGML_LINESEARCH_FAIL;
  12096. }
  12097. // initialize local variables
  12098. finit = *fx;
  12099. dgtest = params->lbfgs.ftol*dginit;
  12100. while (true) {
  12101. ggml_vec_cpy_f32(nx, x, xp);
  12102. ggml_vec_mad_f32(nx, x, d, *step);
  12103. // evaluate the function and gradient values
  12104. {
  12105. ggml_opt_set_params(np, ps, x);
  12106. ggml_graph_reset (gf);
  12107. ggml_set_f32 (f->grad, 1.0f);
  12108. ggml_graph_compute(ctx, gb);
  12109. ggml_opt_get_grad(np, ps, g);
  12110. *fx = ggml_get_f32_1d(f, 0);
  12111. }
  12112. ++count;
  12113. if (*fx > finit + (*step)*dgtest) {
  12114. width = dec;
  12115. } else {
  12116. // Armijo condition is satisfied
  12117. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12118. return count;
  12119. }
  12120. ggml_vec_dot_f32(nx, &dg, g, d);
  12121. // check the Wolfe condition
  12122. if (dg < params->lbfgs.wolfe * dginit) {
  12123. width = inc;
  12124. } else {
  12125. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12126. // regular Wolfe conditions
  12127. return count;
  12128. }
  12129. if(dg > -params->lbfgs.wolfe*dginit) {
  12130. width = dec;
  12131. } else {
  12132. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12133. return count;
  12134. }
  12135. return count;
  12136. }
  12137. }
  12138. if (*step < params->lbfgs.min_step) {
  12139. return GGML_LINESEARCH_MINIMUM_STEP;
  12140. }
  12141. if (*step > params->lbfgs.max_step) {
  12142. return GGML_LINESEARCH_MAXIMUM_STEP;
  12143. }
  12144. if (params->lbfgs.max_linesearch <= count) {
  12145. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12146. }
  12147. (*step) *= width;
  12148. }
  12149. return GGML_LINESEARCH_FAIL;
  12150. }
  12151. static enum ggml_opt_result ggml_opt_lbfgs(
  12152. struct ggml_context * ctx,
  12153. struct ggml_opt_params params,
  12154. struct ggml_tensor * f,
  12155. struct ggml_cgraph * gf,
  12156. struct ggml_cgraph * gb) {
  12157. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12158. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12159. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12160. return GGML_OPT_INVALID_WOLFE;
  12161. }
  12162. }
  12163. gf->n_threads = params.n_threads;
  12164. gb->n_threads = params.n_threads;
  12165. const int m = params.lbfgs.m;
  12166. // these will store the parameters we want to optimize
  12167. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12168. int np = 0;
  12169. int nx = 0;
  12170. for (int i = 0; i < gf->n_nodes; ++i) {
  12171. if (gf->nodes[i]->is_param) {
  12172. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12173. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12174. ps[np++] = gf->nodes[i];
  12175. nx += ggml_nelements(gf->nodes[i]);
  12176. }
  12177. }
  12178. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12179. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12180. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12181. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12182. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12183. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12184. float fx = 0.0f; // cost function value
  12185. float xnorm = 0.0f; // ||x||
  12186. float gnorm = 0.0f; // ||g||
  12187. float step = 0.0f;
  12188. // initialize x from the graph nodes
  12189. ggml_opt_get_params(np, ps, x);
  12190. // the L-BFGS memory
  12191. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12192. for (int i = 0; i < m; ++i) {
  12193. lm[i].alpha = 0.0f;
  12194. lm[i].ys = 0.0f;
  12195. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12196. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12197. }
  12198. // evaluate the function value and its gradient
  12199. {
  12200. ggml_opt_set_params(np, ps, x);
  12201. ggml_graph_reset (gf);
  12202. ggml_set_f32 (f->grad, 1.0f);
  12203. ggml_graph_compute(ctx, gb);
  12204. ggml_opt_get_grad(np, ps, g);
  12205. fx = ggml_get_f32_1d(f, 0);
  12206. }
  12207. if (pf) {
  12208. pf[0] = fx;
  12209. }
  12210. float fx_best = fx;
  12211. // search direction = -gradient
  12212. ggml_vec_neg_f32(nx, d, g);
  12213. // ||x||, ||g||
  12214. ggml_vec_norm_f32(nx, &xnorm, x);
  12215. ggml_vec_norm_f32(nx, &gnorm, g);
  12216. if (xnorm < 1.0f) {
  12217. xnorm = 1.0f;
  12218. }
  12219. // already optimized
  12220. if (gnorm/xnorm <= params.lbfgs.eps) {
  12221. return GGML_OPT_OK;
  12222. }
  12223. // initial step
  12224. ggml_vec_norm_inv_f32(nx, &step, d);
  12225. int j = 0;
  12226. int k = 1;
  12227. int ls = 0;
  12228. int end = 0;
  12229. int bound = 0;
  12230. int n_no_improvement = 0;
  12231. float ys = 0.0f;
  12232. float yy = 0.0f;
  12233. float beta = 0.0f;
  12234. while (true) {
  12235. // store the current position and gradient vectors
  12236. ggml_vec_cpy_f32(nx, xp, x);
  12237. ggml_vec_cpy_f32(nx, gp, g);
  12238. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12239. if (ls < 0) {
  12240. // linesearch failed - go back to the previous point and return
  12241. ggml_vec_cpy_f32(nx, x, xp);
  12242. ggml_vec_cpy_f32(nx, g, gp);
  12243. return ls;
  12244. }
  12245. ggml_vec_norm_f32(nx, &xnorm, x);
  12246. ggml_vec_norm_f32(nx, &gnorm, g);
  12247. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12248. if (xnorm < 1.0f) {
  12249. xnorm = 1.0f;
  12250. }
  12251. if (gnorm/xnorm <= params.lbfgs.eps) {
  12252. // converged
  12253. return GGML_OPT_OK;
  12254. }
  12255. // delta-based convergence test
  12256. if (pf != NULL) {
  12257. // need at least params.past iterations to start checking for convergence
  12258. if (params.past <= k) {
  12259. const float rate = (pf[k%params.past] - fx)/fx;
  12260. if (fabsf(rate) < params.delta) {
  12261. return GGML_OPT_OK;
  12262. }
  12263. }
  12264. pf[k%params.past] = fx;
  12265. }
  12266. // check for improvement
  12267. if (params.max_no_improvement > 0) {
  12268. if (fx < fx_best) {
  12269. fx_best = fx;
  12270. n_no_improvement = 0;
  12271. } else {
  12272. n_no_improvement++;
  12273. if (n_no_improvement >= params.max_no_improvement) {
  12274. return GGML_OPT_OK;
  12275. }
  12276. }
  12277. }
  12278. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  12279. // reached the maximum number of iterations
  12280. return GGML_OPT_DID_NOT_CONVERGE;
  12281. }
  12282. // update vectors s and y:
  12283. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  12284. // y_{k+1} = g_{k+1} - g_{k}.
  12285. //
  12286. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  12287. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  12288. // compute scalars ys and yy:
  12289. // ys = y^t \cdot s -> 1 / \rho.
  12290. // yy = y^t \cdot y.
  12291. //
  12292. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  12293. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  12294. lm[end].ys = ys;
  12295. // find new search direction
  12296. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  12297. bound = (m <= k) ? m : k;
  12298. k++;
  12299. end = (end + 1)%m;
  12300. // initialize search direction with -g
  12301. ggml_vec_neg_f32(nx, d, g);
  12302. j = end;
  12303. for (int i = 0; i < bound; ++i) {
  12304. j = (j + m - 1) % m;
  12305. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  12306. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  12307. lm[j].alpha /= lm[j].ys;
  12308. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  12309. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  12310. }
  12311. ggml_vec_scale_f32(nx, d, ys/yy);
  12312. for (int i = 0; i < bound; ++i) {
  12313. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  12314. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  12315. beta /= lm[j].ys;
  12316. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  12317. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  12318. j = (j + 1)%m;
  12319. }
  12320. step = 1.0;
  12321. }
  12322. return GGML_OPT_DID_NOT_CONVERGE;
  12323. }
  12324. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  12325. struct ggml_opt_params result;
  12326. switch (type) {
  12327. case GGML_OPT_ADAM:
  12328. {
  12329. result = (struct ggml_opt_params) {
  12330. .type = GGML_OPT_ADAM,
  12331. .n_threads = 1,
  12332. .past = 0,
  12333. .delta = 1e-5f,
  12334. .max_no_improvement = 100,
  12335. .print_forward_graph = true,
  12336. .print_backward_graph = true,
  12337. .adam = {
  12338. .n_iter = 10000,
  12339. .alpha = 0.001f,
  12340. .beta1 = 0.9f,
  12341. .beta2 = 0.999f,
  12342. .eps = 1e-8f,
  12343. .eps_f = 1e-5f,
  12344. .eps_g = 1e-3f,
  12345. },
  12346. };
  12347. } break;
  12348. case GGML_OPT_LBFGS:
  12349. {
  12350. result = (struct ggml_opt_params) {
  12351. .type = GGML_OPT_LBFGS,
  12352. .n_threads = 1,
  12353. .past = 0,
  12354. .delta = 1e-5f,
  12355. .max_no_improvement = 0,
  12356. .print_forward_graph = true,
  12357. .print_backward_graph = true,
  12358. .lbfgs = {
  12359. .m = 6,
  12360. .n_iter = 100,
  12361. .max_linesearch = 20,
  12362. .eps = 1e-5f,
  12363. .ftol = 1e-4f,
  12364. .wolfe = 0.9f,
  12365. .min_step = 1e-20f,
  12366. .max_step = 1e+20f,
  12367. .linesearch = GGML_LINESEARCH_DEFAULT,
  12368. },
  12369. };
  12370. } break;
  12371. }
  12372. return result;
  12373. }
  12374. enum ggml_opt_result ggml_opt(
  12375. struct ggml_context * ctx,
  12376. struct ggml_opt_params params,
  12377. struct ggml_tensor * f) {
  12378. bool free_ctx = false;
  12379. if (ctx == NULL) {
  12380. struct ggml_init_params params_ctx = {
  12381. .mem_size = 16*1024*1024,
  12382. .mem_buffer = NULL,
  12383. .no_alloc = false,
  12384. };
  12385. ctx = ggml_init(params_ctx);
  12386. if (ctx == NULL) {
  12387. return GGML_OPT_NO_CONTEXT;
  12388. }
  12389. free_ctx = true;
  12390. }
  12391. enum ggml_opt_result result = GGML_OPT_OK;
  12392. // build forward + backward compute graphs
  12393. struct ggml_cgraph gf = ggml_build_forward (f);
  12394. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  12395. switch (params.type) {
  12396. case GGML_OPT_ADAM:
  12397. {
  12398. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  12399. } break;
  12400. case GGML_OPT_LBFGS:
  12401. {
  12402. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  12403. } break;
  12404. }
  12405. if (params.print_forward_graph) {
  12406. ggml_graph_print (&gf);
  12407. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  12408. }
  12409. if (params.print_backward_graph) {
  12410. ggml_graph_print (&gb);
  12411. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  12412. }
  12413. if (free_ctx) {
  12414. ggml_free(ctx);
  12415. }
  12416. return result;
  12417. }
  12418. ////////////////////////////////////////////////////////////////////////////////
  12419. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12420. assert(k % QK4_0 == 0);
  12421. const int nb = k / QK4_0;
  12422. for (int b = 0; b < n; b += k) {
  12423. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  12424. quantize_row_q4_0_reference(src + b, y, k);
  12425. for (int i = 0; i < nb; i++) {
  12426. for (int j = 0; j < QK4_0; j += 2) {
  12427. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12428. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12429. hist[vi0]++;
  12430. hist[vi1]++;
  12431. }
  12432. }
  12433. }
  12434. return (n/QK4_0*sizeof(block_q4_0));
  12435. }
  12436. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12437. assert(k % QK4_1 == 0);
  12438. const int nb = k / QK4_1;
  12439. for (int b = 0; b < n; b += k) {
  12440. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  12441. quantize_row_q4_1_reference(src + b, y, k);
  12442. for (int i = 0; i < nb; i++) {
  12443. for (int j = 0; j < QK4_1; j += 2) {
  12444. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  12445. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  12446. hist[vi0]++;
  12447. hist[vi1]++;
  12448. }
  12449. }
  12450. }
  12451. return (n/QK4_1*sizeof(block_q4_1));
  12452. }
  12453. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12454. assert(k % QK5_0 == 0);
  12455. const int nb = k / QK5_0;
  12456. for (int b = 0; b < n; b += k) {
  12457. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  12458. quantize_row_q5_0_reference(src + b, y, k);
  12459. for (int i = 0; i < nb; i++) {
  12460. uint32_t qh;
  12461. memcpy(&qh, &y[i].qh, sizeof(qh));
  12462. for (int j = 0; j < QK5_0; j += 2) {
  12463. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12464. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12465. // cast to 16 bins
  12466. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12467. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12468. hist[vi0]++;
  12469. hist[vi1]++;
  12470. }
  12471. }
  12472. }
  12473. return (n/QK5_0*sizeof(block_q5_0));
  12474. }
  12475. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  12476. assert(k % QK5_1 == 0);
  12477. const int nb = k / QK5_1;
  12478. for (int b = 0; b < n; b += k) {
  12479. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  12480. quantize_row_q5_1_reference(src + b, y, k);
  12481. for (int i = 0; i < nb; i++) {
  12482. uint32_t qh;
  12483. memcpy(&qh, &y[i].qh, sizeof(qh));
  12484. for (int j = 0; j < QK5_1; j += 2) {
  12485. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  12486. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  12487. // cast to 16 bins
  12488. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  12489. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  12490. hist[vi0]++;
  12491. hist[vi1]++;
  12492. }
  12493. }
  12494. }
  12495. return (n/QK5_1*sizeof(block_q5_1));
  12496. }
  12497. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  12498. assert(k % QK8_0 == 0);
  12499. const int nb = k / QK8_0;
  12500. for (int b = 0; b < n; b += k) {
  12501. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  12502. quantize_row_q8_0_reference(src + b, y, k);
  12503. for (int i = 0; i < nb; i++) {
  12504. for (int j = 0; j < QK8_0; ++j) {
  12505. const int8_t vi = y[i].qs[j];
  12506. hist[vi/16 + 8]++;
  12507. }
  12508. }
  12509. }
  12510. return (n/QK8_0*sizeof(block_q8_0));
  12511. }
  12512. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  12513. size_t result = 0;
  12514. switch (type) {
  12515. case GGML_TYPE_Q4_0:
  12516. {
  12517. GGML_ASSERT(start % QK4_0 == 0);
  12518. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  12519. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  12520. } break;
  12521. case GGML_TYPE_Q4_1:
  12522. {
  12523. GGML_ASSERT(start % QK4_1 == 0);
  12524. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  12525. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  12526. } break;
  12527. case GGML_TYPE_Q5_0:
  12528. {
  12529. GGML_ASSERT(start % QK5_0 == 0);
  12530. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  12531. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  12532. } break;
  12533. case GGML_TYPE_Q5_1:
  12534. {
  12535. GGML_ASSERT(start % QK5_1 == 0);
  12536. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  12537. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  12538. } break;
  12539. case GGML_TYPE_Q8_0:
  12540. {
  12541. GGML_ASSERT(start % QK8_0 == 0);
  12542. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  12543. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  12544. } break;
  12545. default:
  12546. assert(false);
  12547. }
  12548. return result;
  12549. }
  12550. ////////////////////////////////////////////////////////////////////////////////
  12551. int ggml_cpu_has_avx(void) {
  12552. #if defined(__AVX__)
  12553. return 1;
  12554. #else
  12555. return 0;
  12556. #endif
  12557. }
  12558. int ggml_cpu_has_avx2(void) {
  12559. #if defined(__AVX2__)
  12560. return 1;
  12561. #else
  12562. return 0;
  12563. #endif
  12564. }
  12565. int ggml_cpu_has_avx512(void) {
  12566. #if defined(__AVX512F__)
  12567. return 1;
  12568. #else
  12569. return 0;
  12570. #endif
  12571. }
  12572. int ggml_cpu_has_avx512_vbmi(void) {
  12573. #if defined(__AVX512VBMI__)
  12574. return 1;
  12575. #else
  12576. return 0;
  12577. #endif
  12578. }
  12579. int ggml_cpu_has_avx512_vnni(void) {
  12580. #if defined(__AVX512VNNI__)
  12581. return 1;
  12582. #else
  12583. return 0;
  12584. #endif
  12585. }
  12586. int ggml_cpu_has_fma(void) {
  12587. #if defined(__FMA__)
  12588. return 1;
  12589. #else
  12590. return 0;
  12591. #endif
  12592. }
  12593. int ggml_cpu_has_neon(void) {
  12594. #if defined(__ARM_NEON)
  12595. return 1;
  12596. #else
  12597. return 0;
  12598. #endif
  12599. }
  12600. int ggml_cpu_has_arm_fma(void) {
  12601. #if defined(__ARM_FEATURE_FMA)
  12602. return 1;
  12603. #else
  12604. return 0;
  12605. #endif
  12606. }
  12607. int ggml_cpu_has_f16c(void) {
  12608. #if defined(__F16C__)
  12609. return 1;
  12610. #else
  12611. return 0;
  12612. #endif
  12613. }
  12614. int ggml_cpu_has_fp16_va(void) {
  12615. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  12616. return 1;
  12617. #else
  12618. return 0;
  12619. #endif
  12620. }
  12621. int ggml_cpu_has_wasm_simd(void) {
  12622. #if defined(__wasm_simd128__)
  12623. return 1;
  12624. #else
  12625. return 0;
  12626. #endif
  12627. }
  12628. int ggml_cpu_has_blas(void) {
  12629. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  12630. return 1;
  12631. #else
  12632. return 0;
  12633. #endif
  12634. }
  12635. int ggml_cpu_has_cublas(void) {
  12636. #if defined(GGML_USE_CUBLAS)
  12637. return 1;
  12638. #else
  12639. return 0;
  12640. #endif
  12641. }
  12642. int ggml_cpu_has_clblast(void) {
  12643. #if defined(GGML_USE_CLBLAST)
  12644. return 1;
  12645. #else
  12646. return 0;
  12647. #endif
  12648. }
  12649. int ggml_cpu_has_gpublas(void) {
  12650. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  12651. }
  12652. int ggml_cpu_has_sse3(void) {
  12653. #if defined(__SSE3__)
  12654. return 1;
  12655. #else
  12656. return 0;
  12657. #endif
  12658. }
  12659. int ggml_cpu_has_vsx(void) {
  12660. #if defined(__POWER9_VECTOR__)
  12661. return 1;
  12662. #else
  12663. return 0;
  12664. #endif
  12665. }
  12666. ////////////////////////////////////////////////////////////////////////////////