llama-bench.cpp 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <iterator>
  12. #include <map>
  13. #include <numeric>
  14. #include <regex>
  15. #include <sstream>
  16. #include <string>
  17. #include <vector>
  18. #include "ggml.h"
  19. #include "llama.h"
  20. #include "common.h"
  21. #include "build-info.h"
  22. #include "ggml-cuda.h"
  23. // utils
  24. static uint64_t get_time_ns() {
  25. using clock = std::chrono::high_resolution_clock;
  26. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  27. }
  28. template<class T>
  29. static std::string join(const std::vector<T> & values, const std::string & delim) {
  30. std::ostringstream str;
  31. for (size_t i = 0; i < values.size(); i++) {
  32. str << values[i];
  33. if (i < values.size() - 1) {
  34. str << delim;
  35. }
  36. }
  37. return str.str();
  38. }
  39. template<class T>
  40. static std::vector<T> split(const std::string & str, char delim) {
  41. std::vector<T> values;
  42. std::istringstream str_stream(str);
  43. std::string token;
  44. while (std::getline(str_stream, token, delim)) {
  45. T value;
  46. std::istringstream token_stream(token);
  47. token_stream >> value;
  48. values.push_back(value);
  49. }
  50. return values;
  51. }
  52. template<typename T>
  53. static T avg(const std::vector<T> & v) {
  54. if (v.empty()) {
  55. return 0;
  56. }
  57. T sum = std::accumulate(v.begin(), v.end(), T(0));
  58. return sum / (T)v.size();
  59. }
  60. template<typename T>
  61. static T stdev(const std::vector<T> & v) {
  62. if (v.size() <= 1) {
  63. return 0;
  64. }
  65. T mean = avg(v);
  66. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  67. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  68. return stdev;
  69. }
  70. static std::string get_cpu_info() {
  71. std::string id;
  72. #ifdef __linux__
  73. FILE * f = fopen("/proc/cpuinfo", "r");
  74. if (f) {
  75. char buf[1024];
  76. while (fgets(buf, sizeof(buf), f)) {
  77. if (strncmp(buf, "model name", 10) == 0) {
  78. char * p = strchr(buf, ':');
  79. if (p) {
  80. p++;
  81. while (std::isspace(*p)) {
  82. p++;
  83. }
  84. while (std::isspace(p[strlen(p) - 1])) {
  85. p[strlen(p) - 1] = '\0';
  86. }
  87. id = p;
  88. break;
  89. }
  90. }
  91. }
  92. }
  93. #endif
  94. // TODO: other platforms
  95. return id;
  96. }
  97. static std::string get_gpu_info() {
  98. std::string id;
  99. #ifdef GGML_USE_CUBLAS
  100. int count = ggml_cuda_get_device_count();
  101. for (int i = 0; i < count; i++) {
  102. char buf[128];
  103. ggml_cuda_get_device_description(i, buf, sizeof(buf));
  104. id += buf;
  105. if (i < count - 1) {
  106. id += "/";
  107. }
  108. }
  109. #endif
  110. // TODO: other backends
  111. return id;
  112. }
  113. // command line params
  114. enum output_formats {CSV, JSON, MARKDOWN, SQL};
  115. struct cmd_params {
  116. std::vector<std::string> model;
  117. std::vector<int> n_prompt;
  118. std::vector<int> n_gen;
  119. std::vector<int> n_batch;
  120. std::vector<bool> f32_kv;
  121. std::vector<int> n_threads;
  122. std::vector<int> n_gpu_layers;
  123. std::vector<int> main_gpu;
  124. std::vector<bool> mul_mat_q;
  125. std::vector<bool> low_vram;
  126. std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
  127. int reps;
  128. bool verbose;
  129. output_formats output_format;
  130. };
  131. static const cmd_params cmd_params_defaults = {
  132. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  133. /* n_prompt */ {512},
  134. /* n_gen */ {128},
  135. /* n_batch */ {512},
  136. /* f32_kv */ {false},
  137. /* n_threads */ {get_num_physical_cores()},
  138. /* n_gpu_layers */ {99},
  139. /* main_gpu */ {0},
  140. /* mul_mat_q */ {true},
  141. /* low_vram */ {false},
  142. /* tensor_split */ {{}},
  143. /* reps */ 5,
  144. /* verbose */ false,
  145. /* output_format */ MARKDOWN
  146. };
  147. static void print_usage(int /* argc */, char ** argv) {
  148. printf("usage: %s [options]\n", argv[0]);
  149. printf("\n");
  150. printf("options:\n");
  151. printf(" -h, --help\n");
  152. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  153. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  154. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  155. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  156. printf(" --memory-f32 <0|1> (default: %s)\n", join(cmd_params_defaults.f32_kv, ",").c_str());
  157. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  158. printf(" -ngl N, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  159. printf(" -mg i, --main-gpu <n> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  160. printf(" -lv, --low-vram <0|1> (default: %s)\n", join(cmd_params_defaults.low_vram, ",").c_str());
  161. printf(" -mmq, --mul-mat-q <0|1> (default: %s)\n", join(cmd_params_defaults.mul_mat_q, ",").c_str());
  162. printf(" -ts, --tensor_split <ts0/ts1/..> \n");
  163. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  164. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", cmd_params_defaults.output_format == CSV ? "csv" : cmd_params_defaults.output_format == JSON ? "json" : cmd_params_defaults.output_format == MARKDOWN ? "md" : "sql");
  165. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  166. printf("\n");
  167. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  168. }
  169. static cmd_params parse_cmd_params(int argc, char ** argv) {
  170. cmd_params params;
  171. std::string arg;
  172. bool invalid_param = false;
  173. const std::string arg_prefix = "--";
  174. const char split_delim = ',';
  175. params.verbose = cmd_params_defaults.verbose;
  176. params.output_format = cmd_params_defaults.output_format;
  177. params.reps = cmd_params_defaults.reps;
  178. for (int i = 1; i < argc; i++) {
  179. arg = argv[i];
  180. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  181. std::replace(arg.begin(), arg.end(), '_', '-');
  182. }
  183. if (arg == "-h" || arg == "--help") {
  184. print_usage(argc, argv);
  185. exit(0);
  186. } else if (arg == "-m" || arg == "--model") {
  187. if (++i >= argc) {
  188. invalid_param = true;
  189. break;
  190. }
  191. auto p = split<std::string>(argv[i], split_delim);
  192. params.model.insert(params.model.end(), p.begin(), p.end());
  193. } else if (arg == "-p" || arg == "--n-prompt") {
  194. if (++i >= argc) {
  195. invalid_param = true;
  196. break;
  197. }
  198. auto p = split<int>(argv[i], split_delim);
  199. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  200. } else if (arg == "-n" || arg == "--n-gen") {
  201. if (++i >= argc) {
  202. invalid_param = true;
  203. break;
  204. }
  205. auto p = split<int>(argv[i], split_delim);
  206. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  207. } else if (arg == "-b" || arg == "--batch-size") {
  208. if (++i >= argc) {
  209. invalid_param = true;
  210. break;
  211. }
  212. auto p = split<int>(argv[i], split_delim);
  213. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  214. } else if (arg == "--memory-f32") {
  215. if (++i >= argc) {
  216. invalid_param = true;
  217. break;
  218. }
  219. auto p = split<int>(argv[i], split_delim);
  220. params.f32_kv.insert(params.f32_kv.end(), p.begin(), p.end());
  221. } else if (arg == "-t" || arg == "--threads") {
  222. if (++i >= argc) {
  223. invalid_param = true;
  224. break;
  225. }
  226. auto p = split<int>(argv[i], split_delim);
  227. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  228. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  229. if (++i >= argc) {
  230. invalid_param = true;
  231. break;
  232. }
  233. auto p = split<int>(argv[i], split_delim);
  234. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  235. } else if (arg == "-mg" || arg == "--main-gpu") {
  236. if (++i >= argc) {
  237. invalid_param = true;
  238. break;
  239. }
  240. params.main_gpu = split<int>(argv[i], split_delim);
  241. } else if (arg == "-lv" || arg == "--low-vram") {
  242. if (++i >= argc) {
  243. invalid_param = true;
  244. break;
  245. }
  246. auto p = split<bool>(argv[i], split_delim);
  247. params.low_vram.insert(params.low_vram.end(), p.begin(), p.end());
  248. } else if (arg == "-mmq" || arg == "--mul-mat-q") {
  249. if (++i >= argc) {
  250. invalid_param = true;
  251. break;
  252. }
  253. auto p = split<bool>(argv[i], split_delim);
  254. params.mul_mat_q.insert(params.mul_mat_q.end(), p.begin(), p.end());
  255. } else if (arg == "-ts" || arg == "--tensor-split") {
  256. if (++i >= argc) {
  257. invalid_param = true;
  258. break;
  259. }
  260. for (auto ts : split<std::string>(argv[i], split_delim)) {
  261. // split string by ; and /
  262. const std::regex regex{R"([;/]+)"};
  263. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  264. std::vector<std::string> split_arg{it, {}};
  265. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  266. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  267. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  268. if (i < split_arg.size()) {
  269. tensor_split[i] = std::stof(split_arg[i]);
  270. } else {
  271. tensor_split[i] = 0.0f;
  272. }
  273. }
  274. params.tensor_split.push_back(tensor_split);
  275. }
  276. } else if (arg == "-r" || arg == "--repetitions") {
  277. if (++i >= argc) {
  278. invalid_param = true;
  279. break;
  280. }
  281. params.reps = std::stoi(argv[i]);
  282. } else if (arg == "-o" || arg == "--output") {
  283. if (++i >= argc) {
  284. invalid_param = true;
  285. break;
  286. }
  287. if (argv[i] == std::string("csv")) {
  288. params.output_format = CSV;
  289. } else if (argv[i] == std::string("json")) {
  290. params.output_format = JSON;
  291. } else if (argv[i] == std::string("md")) {
  292. params.output_format = MARKDOWN;
  293. } else if (argv[i] == std::string("sql")) {
  294. params.output_format = SQL;
  295. } else {
  296. invalid_param = true;
  297. break;
  298. }
  299. } else if (arg == "-v" || arg == "--verbose") {
  300. params.verbose = true;
  301. } else {
  302. invalid_param = true;
  303. break;
  304. }
  305. }
  306. if (invalid_param) {
  307. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  308. print_usage(argc, argv);
  309. exit(1);
  310. }
  311. // set defaults
  312. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  313. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  314. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  315. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  316. if (params.f32_kv.empty()) { params.f32_kv = cmd_params_defaults.f32_kv; }
  317. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  318. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  319. if (params.mul_mat_q.empty()) { params.mul_mat_q = cmd_params_defaults.mul_mat_q; }
  320. if (params.low_vram.empty()) { params.low_vram = cmd_params_defaults.low_vram; }
  321. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  322. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  323. return params;
  324. }
  325. struct cmd_params_instance {
  326. std::string model;
  327. int n_prompt;
  328. int n_gen;
  329. int n_batch;
  330. bool f32_kv;
  331. int n_threads;
  332. int n_gpu_layers;
  333. int main_gpu;
  334. bool mul_mat_q;
  335. bool low_vram;
  336. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  337. llama_context_params to_llama_params() const {
  338. llama_context_params lparams = llama_context_default_params();
  339. lparams.n_ctx = n_prompt + n_gen;
  340. lparams.n_batch = n_batch;
  341. lparams.f16_kv = !f32_kv;
  342. lparams.n_gpu_layers = n_gpu_layers;
  343. lparams.main_gpu = main_gpu;
  344. lparams.mul_mat_q = mul_mat_q;
  345. lparams.low_vram = low_vram;
  346. lparams.tensor_split = tensor_split.data();
  347. return lparams;
  348. }
  349. };
  350. static std::vector<cmd_params_instance> get_cmd_params_instances_int(const cmd_params & params, int n_gen, int n_prompt) {
  351. std::vector<cmd_params_instance> instances;
  352. for (const auto & m : params.model)
  353. for (const auto & nb : params.n_batch)
  354. for (const auto & fk : params.f32_kv)
  355. for (const auto & nl : params.n_gpu_layers)
  356. for (const auto & mg : params.main_gpu)
  357. for (const auto & mmq : params.mul_mat_q)
  358. for (const auto & lv : params.low_vram)
  359. for (const auto & ts : params.tensor_split)
  360. for (const auto & nt : params.n_threads) {
  361. cmd_params_instance instance = {
  362. /* .model = */ m,
  363. /* .n_prompt = */ n_prompt,
  364. /* .n_gen = */ n_gen,
  365. /* .n_batch = */ nb,
  366. /* .f32_kv = */ fk,
  367. /* .n_threads = */ nt,
  368. /* .n_gpu_layers = */ nl,
  369. /* .main_gpu = */ mg,
  370. /* .mul_mat_q = */ mmq,
  371. /* .low_vram = */ lv,
  372. /* .tensor_split = */ ts,
  373. };
  374. instances.push_back(instance);
  375. }
  376. return instances;
  377. }
  378. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  379. std::vector<cmd_params_instance> instances;
  380. for (const auto & n_prompt : params.n_prompt) {
  381. if (n_prompt == 0) {
  382. continue;
  383. }
  384. auto instances_prompt = get_cmd_params_instances_int(params, 0, n_prompt);
  385. instances.insert(instances.end(), instances_prompt.begin(), instances_prompt.end());
  386. }
  387. for (const auto & n_gen : params.n_gen) {
  388. if (n_gen == 0) {
  389. continue;
  390. }
  391. auto instances_gen = get_cmd_params_instances_int(params, n_gen, 0);
  392. instances.insert(instances.end(), instances_gen.begin(), instances_gen.end());
  393. }
  394. return instances;
  395. }
  396. struct test {
  397. static const std::string build_commit;
  398. static const int build_number;
  399. static const bool cuda;
  400. static const bool opencl;
  401. static const bool metal;
  402. static const bool gpu_blas;
  403. static const bool blas;
  404. static const std::string cpu_info;
  405. static const std::string gpu_info;
  406. std::string model_filename;
  407. std::string model_type;
  408. uint64_t model_size;
  409. uint64_t model_n_params;
  410. int n_batch;
  411. int n_threads;
  412. bool f32_kv;
  413. int n_gpu_layers;
  414. int main_gpu;
  415. bool mul_mat_q;
  416. bool low_vram;
  417. std::array<float, LLAMA_MAX_DEVICES> tensor_split;
  418. int n_prompt;
  419. int n_gen;
  420. std::string test_time;
  421. std::vector<uint64_t> samples_ns;
  422. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  423. model_filename = inst.model;
  424. char buf[128];
  425. llama_model_desc(lmodel, buf, sizeof(buf));
  426. model_type = buf;
  427. model_size = llama_model_size(lmodel);
  428. model_n_params = llama_model_n_params(lmodel);
  429. n_batch = inst.n_batch;
  430. n_threads = inst.n_threads;
  431. f32_kv = inst.f32_kv;
  432. n_gpu_layers = inst.n_gpu_layers;
  433. main_gpu = inst.main_gpu;
  434. mul_mat_q = inst.mul_mat_q;
  435. low_vram = inst.low_vram;
  436. tensor_split = inst.tensor_split;
  437. n_prompt = inst.n_prompt;
  438. n_gen = inst.n_gen;
  439. // RFC 3339 date-time format
  440. time_t t = time(NULL);
  441. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  442. test_time = buf;
  443. (void) ctx;
  444. }
  445. uint64_t avg_ns() const {
  446. return ::avg(samples_ns);
  447. }
  448. uint64_t stdev_ns() const {
  449. return ::stdev(samples_ns);
  450. }
  451. std::vector<double> get_ts() const {
  452. int n_tokens = n_prompt + n_gen;
  453. std::vector<double> ts;
  454. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  455. return ts;
  456. }
  457. double avg_ts() const {
  458. return ::avg(get_ts());
  459. }
  460. double stdev_ts() const {
  461. return ::stdev(get_ts());
  462. }
  463. static std::string get_backend() {
  464. if (cuda) {
  465. return GGML_CUDA_NAME;
  466. }
  467. if (opencl) {
  468. return "OpenCL";
  469. }
  470. if (metal) {
  471. return "Metal";
  472. }
  473. if (gpu_blas) {
  474. return "GPU BLAS";
  475. }
  476. if (blas) {
  477. return "BLAS";
  478. }
  479. return "CPU";
  480. }
  481. static const std::vector<std::string> & get_fields() {
  482. static const std::vector<std::string> fields = {
  483. "build_commit", "build_number",
  484. "cuda", "opencl", "metal", "gpu_blas", "blas",
  485. "cpu_info", "gpu_info",
  486. "model_filename", "model_type", "model_size", "model_n_params",
  487. "n_batch", "n_threads", "f16_kv",
  488. "n_gpu_layers", "main_gpu", "mul_mat_q", "low_vram", "tensor_split",
  489. "n_prompt", "n_gen", "test_time",
  490. "avg_ns", "stddev_ns",
  491. "avg_ts", "stddev_ts"
  492. };
  493. return fields;
  494. }
  495. enum field_type {STRING, BOOL, INT, FLOAT};
  496. static field_type get_field_type(const std::string & field) {
  497. if (field == "build_number" || field == "n_batch" || field == "n_threads" ||
  498. field == "model_size" || field == "model_n_params" ||
  499. field == "n_gpu_layers" || field == "main_gpu" ||
  500. field == "n_prompt" || field == "n_gen" ||
  501. field == "avg_ns" || field == "stddev_ns") {
  502. return INT;
  503. }
  504. if (field == "cuda" || field == "opencl" || field == "metal" || field == "gpu_blas" || field == "blas" ||
  505. field == "f16_kv" || field == "mul_mat_q" || field == "low_vram") {
  506. return BOOL;
  507. }
  508. if (field == "avg_ts" || field == "stddev_ts") {
  509. return FLOAT;
  510. }
  511. return STRING;
  512. }
  513. std::vector<std::string> get_values() const {
  514. std::string tensor_split_str;
  515. int max_nonzero = 0;
  516. for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
  517. if (tensor_split[i] > 0) {
  518. max_nonzero = i;
  519. }
  520. }
  521. for (int i = 0; i <= max_nonzero; i++) {
  522. char buf[32];
  523. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  524. tensor_split_str += buf;
  525. if (i < max_nonzero) {
  526. tensor_split_str += "/";
  527. }
  528. }
  529. std::vector<std::string> values = {
  530. build_commit, std::to_string(build_number),
  531. std::to_string(cuda), std::to_string(opencl), std::to_string(metal), std::to_string(gpu_blas), std::to_string(blas),
  532. cpu_info, gpu_info,
  533. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  534. std::to_string(n_batch), std::to_string(n_threads), std::to_string(!f32_kv),
  535. std::to_string(n_gpu_layers), std::to_string(main_gpu), std::to_string(mul_mat_q), std::to_string(low_vram), tensor_split_str,
  536. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  537. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  538. std::to_string(avg_ts()), std::to_string(stdev_ts())
  539. };
  540. return values;
  541. }
  542. std::map<std::string, std::string> get_map() const {
  543. std::map<std::string, std::string> map;
  544. auto fields = get_fields();
  545. auto values = get_values();
  546. std::transform(fields.begin(), fields.end(), values.begin(),
  547. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  548. return map;
  549. }
  550. };
  551. const std::string test::build_commit = BUILD_COMMIT;
  552. const int test::build_number = BUILD_NUMBER;
  553. const bool test::cuda = !!ggml_cpu_has_cublas();
  554. const bool test::opencl = !!ggml_cpu_has_clblast();
  555. const bool test::metal = !!ggml_cpu_has_metal();
  556. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  557. const bool test::blas = !!ggml_cpu_has_blas();
  558. const std::string test::cpu_info = get_cpu_info();
  559. const std::string test::gpu_info = get_gpu_info();
  560. struct printer {
  561. virtual ~printer() {}
  562. FILE * fout;
  563. virtual void print_header(const cmd_params & params) { (void) params; };
  564. virtual void print_test(const test & t) = 0;
  565. virtual void print_footer() { };
  566. };
  567. struct csv_printer : public printer {
  568. static std::string escape_csv(const std::string & field) {
  569. std::string escaped = "\"";
  570. for (auto c : field) {
  571. if (c == '"') {
  572. escaped += "\"";
  573. }
  574. escaped += c;
  575. }
  576. escaped += "\"";
  577. return escaped;
  578. }
  579. void print_header(const cmd_params & params) override {
  580. std::vector<std::string> fields = test::get_fields();
  581. fprintf(fout, "%s\n", join(fields, ",").c_str());
  582. (void) params;
  583. }
  584. void print_test(const test & t) override {
  585. std::vector<std::string> values = t.get_values();
  586. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  587. fprintf(fout, "%s\n", join(values, ",").c_str());
  588. }
  589. };
  590. struct json_printer : public printer {
  591. bool first = true;
  592. static std::string escape_json(const std::string & value) {
  593. std::string escaped;
  594. for (auto c : value) {
  595. if (c == '"') {
  596. escaped += "\\\"";
  597. } else if (c == '\\') {
  598. escaped += "\\\\";
  599. } else if (c <= 0x1f) {
  600. char buf[8];
  601. snprintf(buf, sizeof(buf), "\\u%04x", c);
  602. escaped += buf;
  603. } else {
  604. escaped += c;
  605. }
  606. }
  607. return escaped;
  608. }
  609. static std::string format_value(const std::string & field, const std::string & value) {
  610. switch (test::get_field_type(field)) {
  611. case test::STRING:
  612. return "\"" + escape_json(value) + "\"";
  613. case test::BOOL:
  614. return value == "0" ? "false" : "true";
  615. default:
  616. return value;
  617. }
  618. }
  619. void print_header(const cmd_params & params) override {
  620. fprintf(fout, "[\n");
  621. (void) params;
  622. }
  623. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  624. assert(fields.size() == values.size());
  625. for (size_t i = 0; i < fields.size(); i++) {
  626. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  627. }
  628. }
  629. void print_test(const test & t) override {
  630. if (first) {
  631. first = false;
  632. } else {
  633. fprintf(fout, ",\n");
  634. }
  635. fprintf(fout, " {\n");
  636. print_fields(test::get_fields(), t.get_values());
  637. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  638. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  639. fprintf(fout, " }");
  640. fflush(fout);
  641. }
  642. void print_footer() override {
  643. fprintf(fout, "\n]\n");
  644. }
  645. };
  646. struct markdown_printer : public printer {
  647. std::vector<std::string> fields;
  648. static int get_field_width(const std::string & field) {
  649. if (field == "model") {
  650. return -30;
  651. }
  652. if (field == "t/s") {
  653. return 16;
  654. }
  655. if (field == "size" || field == "params") {
  656. return 10;
  657. }
  658. if (field == "n_gpu_layers") {
  659. return 3;
  660. }
  661. int width = std::max((int)field.length(), 10);
  662. if (test::get_field_type(field) == test::STRING) {
  663. return -width;
  664. }
  665. return width;
  666. }
  667. static std::string get_field_display_name(const std::string & field) {
  668. if (field == "n_gpu_layers") {
  669. return "ngl";
  670. }
  671. if (field == "n_threads") {
  672. return "threads";
  673. }
  674. if (field == "mul_mat_q") {
  675. return "mmq";
  676. }
  677. if (field == "tensor_split") {
  678. return "ts";
  679. }
  680. return field;
  681. }
  682. void print_header(const cmd_params & params) override {
  683. // select fields to print
  684. fields.push_back("model");
  685. fields.push_back("size");
  686. fields.push_back("params");
  687. fields.push_back("backend");
  688. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  689. if (!is_cpu_backend) {
  690. fields.push_back("n_gpu_layers");
  691. }
  692. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  693. fields.push_back("n_threads");
  694. }
  695. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  696. fields.push_back("n_batch");
  697. }
  698. if (params.f32_kv.size() > 1 || params.f32_kv != cmd_params_defaults.f32_kv) {
  699. fields.push_back("f16_kv");
  700. }
  701. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  702. fields.push_back("main_gpu");
  703. }
  704. if (params.mul_mat_q.size() > 1 || params.mul_mat_q != cmd_params_defaults.mul_mat_q) {
  705. fields.push_back("mul_mat_q");
  706. }
  707. if (params.low_vram.size() > 1 || params.low_vram != cmd_params_defaults.low_vram) {
  708. fields.push_back("low_vram");
  709. }
  710. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  711. fields.push_back("tensor_split");
  712. }
  713. fields.push_back("test");
  714. fields.push_back("t/s");
  715. fprintf(fout, "|");
  716. for (const auto & field : fields) {
  717. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  718. }
  719. fprintf(fout, "\n");
  720. fprintf(fout, "|");
  721. for (const auto & field : fields) {
  722. int width = get_field_width(field);
  723. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  724. }
  725. fprintf(fout, "\n");
  726. }
  727. void print_test(const test & t) override {
  728. std::map<std::string, std::string> vmap = t.get_map();
  729. fprintf(fout, "|");
  730. for (const auto & field : fields) {
  731. std::string value;
  732. char buf[128];
  733. if (field == "model") {
  734. value = t.model_type;
  735. } else if (field == "size") {
  736. if (t.model_size < 1024*1024*1024) {
  737. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  738. } else {
  739. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  740. }
  741. value = buf;
  742. } else if (field == "params") {
  743. if (t.model_n_params < 1000*1000*1000) {
  744. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  745. } else {
  746. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  747. }
  748. value = buf;
  749. } else if (field == "backend") {
  750. value = test::get_backend();
  751. } else if (field == "test") {
  752. if (t.n_prompt > 0 && t.n_gen == 0) {
  753. snprintf(buf, sizeof(buf), "pp %d", t.n_prompt);
  754. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  755. snprintf(buf, sizeof(buf), "tg %d", t.n_gen);
  756. } else {
  757. assert(false);
  758. exit(1);
  759. }
  760. value = buf;
  761. } else if (field == "t/s") {
  762. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  763. value = buf;
  764. } else if (vmap.find(field) != vmap.end()) {
  765. value = vmap.at(field);
  766. } else {
  767. assert(false);
  768. exit(1);
  769. }
  770. int width = get_field_width(field);
  771. if (field == "t/s") {
  772. // HACK: the utf-8 character is 2 bytes
  773. width += 1;
  774. }
  775. fprintf(fout, " %*s |", width, value.c_str());
  776. }
  777. fprintf(fout, "\n");
  778. }
  779. void print_footer() override {
  780. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  781. }
  782. };
  783. struct sql_printer : public printer {
  784. static std::string get_sql_field_type(const std::string & field) {
  785. switch (test::get_field_type(field)) {
  786. case test::STRING:
  787. return "TEXT";
  788. case test::BOOL:
  789. case test::INT:
  790. return "INTEGER";
  791. case test::FLOAT:
  792. return "REAL";
  793. default:
  794. assert(false);
  795. exit(1);
  796. }
  797. }
  798. void print_header(const cmd_params & params) override {
  799. std::vector<std::string> fields = test::get_fields();
  800. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  801. for (size_t i = 0; i < fields.size(); i++) {
  802. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  803. }
  804. fprintf(fout, ");\n");
  805. fprintf(fout, "\n");
  806. (void) params;
  807. }
  808. void print_test(const test & t) override {
  809. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  810. fprintf(fout, "VALUES (");
  811. std::vector<std::string> values = t.get_values();
  812. for (size_t i = 0; i < values.size(); i++) {
  813. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  814. }
  815. fprintf(fout, ");\n");
  816. }
  817. };
  818. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  819. std::vector<llama_token> tokens(n_batch, llama_token_bos(ctx));
  820. int n_processed = 0;
  821. while (n_processed < n_prompt) {
  822. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  823. llama_eval(ctx, tokens.data(), n_tokens, n_past + n_processed, n_threads);
  824. n_processed += n_tokens;
  825. }
  826. }
  827. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  828. llama_token token = llama_token_bos(ctx);
  829. for (int i = 0; i < n_gen; i++) {
  830. llama_eval(ctx, &token, 1, n_past + i, n_threads);
  831. }
  832. }
  833. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  834. (void) level;
  835. (void) text;
  836. (void) user_data;
  837. }
  838. int main(int argc, char ** argv) {
  839. // try to set locale for unicode characters in markdown
  840. setlocale(LC_CTYPE, ".UTF-8");
  841. #if !defined(NDEBUG)
  842. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  843. #endif
  844. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  845. fprintf(stderr, "warning: debug build, performance may be affected\n");
  846. #endif
  847. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  848. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  849. #endif
  850. cmd_params params = parse_cmd_params(argc, argv);
  851. // initialize llama.cpp
  852. if (!params.verbose) {
  853. llama_log_set(llama_null_log_callback, NULL);
  854. }
  855. bool numa = false;
  856. llama_backend_init(numa);
  857. // initialize printer
  858. std::unique_ptr<printer> p;
  859. switch (params.output_format) {
  860. case CSV:
  861. p.reset(new csv_printer());
  862. break;
  863. case JSON:
  864. p.reset(new json_printer());
  865. break;
  866. case MARKDOWN:
  867. p.reset(new markdown_printer());
  868. break;
  869. case SQL:
  870. p.reset(new sql_printer());
  871. break;
  872. default:
  873. assert(false);
  874. exit(1);
  875. }
  876. p->fout = stdout;
  877. p->print_header(params);
  878. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  879. for (const auto & inst : params_instances) {
  880. // TODO: keep the model between tests when possible
  881. llama_context_params lparams = inst.to_llama_params();
  882. llama_model * lmodel = llama_load_model_from_file(inst.model.c_str(), lparams);
  883. if (lmodel == NULL) {
  884. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  885. return 1;
  886. }
  887. llama_context * ctx = llama_new_context_with_model(lmodel, lparams);
  888. if (ctx == NULL) {
  889. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  890. llama_free_model(lmodel);
  891. return 1;
  892. }
  893. test t(inst, lmodel, ctx);
  894. // warmup run
  895. if (t.n_prompt > 0) {
  896. test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
  897. }
  898. if (t.n_gen > 0) {
  899. test_gen(ctx, 1, 0, t.n_threads);
  900. }
  901. for (int i = 0; i < params.reps; i++) {
  902. uint64_t t_start = get_time_ns();
  903. if (t.n_prompt > 0) {
  904. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  905. }
  906. if (t.n_gen > 0) {
  907. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  908. }
  909. uint64_t t_ns = get_time_ns() - t_start;
  910. t.samples_ns.push_back(t_ns);
  911. }
  912. p->print_test(t);
  913. llama_print_timings(ctx);
  914. llama_free(ctx);
  915. llama_free_model(lmodel);
  916. }
  917. p->print_footer();
  918. llama_backend_free();
  919. return 0;
  920. }